WO2009113306A1 - 色変換出力装置、色変換テーブル及びその作成方法 - Google Patents
色変換出力装置、色変換テーブル及びその作成方法 Download PDFInfo
- Publication number
- WO2009113306A1 WO2009113306A1 PCT/JP2009/001099 JP2009001099W WO2009113306A1 WO 2009113306 A1 WO2009113306 A1 WO 2009113306A1 JP 2009001099 W JP2009001099 W JP 2009001099W WO 2009113306 A1 WO2009113306 A1 WO 2009113306A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- color
- data
- gamut
- color data
- input
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 335
- 238000000034 method Methods 0.000 title claims description 38
- 238000013507 mapping Methods 0.000 claims abstract description 201
- 230000002194 synthesizing effect Effects 0.000 claims abstract description 33
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 32
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 32
- 239000000203 mixture Substances 0.000 claims description 128
- 230000006835 compression Effects 0.000 claims description 71
- 238000007906 compression Methods 0.000 claims description 71
- 239000002131 composite material Substances 0.000 claims description 29
- 238000010586 diagram Methods 0.000 description 58
- 230000008859 change Effects 0.000 description 31
- 239000003086 colorant Substances 0.000 description 27
- 238000003860 storage Methods 0.000 description 14
- 238000004364 calculation method Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 10
- 238000006073 displacement reaction Methods 0.000 description 8
- 230000014509 gene expression Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000012886 linear function Methods 0.000 description 2
- 235000012736 patent blue V Nutrition 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- -1 that is Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/46—Colour picture communication systems
- H04N1/56—Processing of colour picture signals
- H04N1/60—Colour correction or control
- H04N1/6058—Reduction of colour to a range of reproducible colours, e.g. to ink- reproducible colour gamut
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/001—Texturing; Colouring; Generation of texture or colour
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/46—Colour picture communication systems
- H04N1/56—Processing of colour picture signals
- H04N1/60—Colour correction or control
- H04N1/62—Retouching, i.e. modification of isolated colours only or in isolated picture areas only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/46—Colour picture communication systems
- H04N1/56—Processing of colour picture signals
- H04N1/60—Colour correction or control
- H04N1/62—Retouching, i.e. modification of isolated colours only or in isolated picture areas only
- H04N1/628—Memory colours, e.g. skin or sky
Definitions
- the present invention relates to a color conversion output device, a color conversion table, and a method for creating the color conversion output device, and in particular, a color conversion output device that outputs after converting input color data of a first color gamut into output color data of a second color gamut.
- a color conversion output device that outputs after converting input color data of a first color gamut into output color data of a second color gamut.
- CRT Cathode Ray Tube
- PDP Plasma Display Panel
- LCD Liquid Crystal Display
- a panel such as a projector as display output devices for displaying images.
- Each of these has different color gamuts as reproducible color gamuts.
- the color gamut that can be reproduced by each device is different for each device. For example, when a certain image signal is displayed on a certain display output device, the image signal is corrected to the color gamut corresponding to the display output device. It is necessary.
- each device typified by R, G, B, and media-specific signal values are specified in, for example, the CIE (Commission Internationale de l'Eclairage).
- CIE Commission Internationale de l'Eclairage
- L * a * b *, L * u * v *, and other color space values such as L * u * v * are converted into device-independent color system values, and the device-independent color system values are compressed and expanded. It is common.
- Compression is a method for compressing all colors. That is, when compression is performed from the first color gamut to the second color gamut, all the colors in the first color gamut are compressed and all the colors are included in the second color gamut. Color conversion is performed (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).
- a color that cannot be reproduced in the color gamut of the reproduction destination device is compressed and reproduced in a direction that minimizes the color difference, and compression is performed so that the color with the shortest lightness or saturation is selected.
- a method is disclosed (see, for example, Patent Document 9 and Patent Document 10).
- the ratio of the color reproduction range between the input side and the output side is And a method of outputting the color system value of the input image after enlarging it so that the color reproduction range on the input side is expanded in accordance with (see, for example, Patent Document 11), and luminance using a linear expansion formula (L *) and saturation (C *) color attributes are expanded to convert color coordinates, and a method for controlling the converted color coordinates so that they do not fall outside the device color gamut is disclosed (for example, , See Patent Document 12).
- L * linear expansion formula
- C * saturation
- the color gamut conversion especially the color gamut compression method, can be broadly divided into compression and clipping.
- each of these methods has advantages and disadvantages.
- the compression In the case of compression, there are advantages that the relative color relationship does not change for each color and that the gradation expression is maintained.
- the color that can be faithfully reproduced in the reproduction destination device that is the second color gamut, that is, the color that does not need to be compressed is compressed, and the color of the first color gamut
- the compression has a disadvantage that a pseudo contour and a pseudo gradation appear at a portion where the color smoothly changes in the non-linear compression.
- clipping has the advantage of faithfully reproducing reproducible colors.
- many out-of-gamut colors after compression become the same color, so that the continuity of the color tone deteriorates and the gradation expression is inferior.
- color gamut expansion has the same disadvantages and advantages as the above compression. For example, if the color gamut is greatly expanded with red and green, the skin color and the color of the lawn, etc., change, giving a sense of discomfort to people.
- any of these conventional color gamut conversions can be performed by changing the chromaticity point of the first color data to the chromaticity point of the second color data in a certain color space such as XYZ or L * a * b *. It deals with how to shift or change. For this reason, there is a possibility that deviation and discontinuity may occur in the distribution of the color data in the color space due to the shift and change.
- the present invention solves the above-described problems, and provides a color conversion output device, a color conversion table, and a method for creating the color conversion output device that can suppress color deviation and occurrence of discontinuity while suppressing color change. For the purpose.
- a color conversion output device provides a second color based on first color data and second color data obtained from input color data of a first color gamut.
- a color conversion and output device for generating and outputting output color data of a gamut, wherein the first color mapping generates the first color data by mapping the input color data in the second color gamut Color synthesis for generating synthesized color data by synthesizing the first color data and the second color data at a ratio corresponding to the first color gamut and the second color gamut
- a color data output unit that outputs the combined color data combined by the combining unit as the output color data.
- the color conversion output device outputs two different color data based on the input color data when the input color data is output to a device having a different color gamut by compressing or expanding the color gamut.
- the color conversion device can relieve any one of the two color data with the other color data even if a color change occurs due to a shift or change of the chromaticity point.
- the color conversion output device can alleviate one color data even if a color bias or discontinuity occurs in the other of the two color data. Thereby, the color conversion output device according to the present invention can suppress the occurrence of color deviation and discontinuity while suppressing a change in color.
- the first color mapping unit compresses and maps the input color data of the first color gamut into the second color gamut when the first color gamut includes all of the second color gamut. By doing so, the first color data is generated, and the color composition unit regards the input color data of the first color gamut as the second color data, and the first color data and the second color data.
- the color data may be combined.
- the configuration of the color conversion output device can be simplified.
- the first color mapping unit as the compression mapping, if the input color data is in the second gamut, the input color data is within the second gamut so that chromaticity is not displaced.
- the first color data is generated by mapping the input color data to the color gamut boundary of the second color gamut when the input color data is outside the second color gamut. Also good.
- the color conversion output device increases the first color data composition ratio in the color region where it is desired to maintain the color, and the second color region in the color region where it is desired to suppress color deviation and discontinuity.
- the color composition unit increases the ratio of the second color data as the difference between the widths of the first color gamut and the second color gamut in the hue and brightness of the input color data increases.
- the first color data and the second color data may be combined.
- the color conversion device when the difference in the gamut width is large, the ratio of the second color data converted into a color reproducible by the output device becomes high. Thereby, the color conversion device according to the present invention can reproduce the color difference of the input color data in the vicinity of the second color gamut boundary.
- the color composition unit may output the first color data as the composite color data when the input color data is in the first color range.
- the composition ratio of the first color data in which the color is maintained is high for the color range that gives the person a sense of incongruity due to changes in the color of the skin color and lawn.
- the color conversion output device can reduce a sense of discomfort given to a person.
- the first color range may be a skin color.
- the color composition unit synthesizes the first color data and the second color data so that the ratio of the second color data increases as the saturation of the input color data increases. May be.
- the first color mapping unit converts the input color data into device-independent color space data, which is a device-independent color space, and converts the converted device-independent color space data to the first color mapping unit. If the inversely converted data is in the second color gamut, the inversely converted data is used as the first color data, and the inverse conversion is performed. When the processed data is out of the second color gamut, the inversely converted data may be converted into data of the color gamut boundary of the second color gamut, and the converted data may be used as the first color data. .
- the color conversion device further includes a second color mapping unit that generates the second color data by mapping the input color data in the second color gamut, and the first color
- the first color mapping unit compresses and maps the input color data of the first gamut into the second gamut.
- the second color mapping unit generates color data, and when the input color data is included in a predetermined first color range of the first color gamut, the second color mapping unit converts the input color data into the second color data.
- the second color data may be generated by mapping the color gamut to color data associated with the first color range.
- the first color mapping unit places the input color data in the second color gamut so that chromaticity is not displaced.
- the first color data is generated by mapping, and the color composition unit regards the input color data of the first color gamut as the second color data, and the first color data and the first color data.
- the two color data may be combined.
- the color conversion output device increases the first color data composition ratio in the color region where it is desired to maintain the color, and the second color region in the color region where it is desired to suppress color deviation and discontinuity.
- the color composition unit increases the ratio of the second color data as the difference between the widths of the first color gamut and the second color gamut in the hue and brightness of the input color data increases.
- the first color data and the second color data may be combined.
- the color conversion output device can generate output color data obtained by shifting the input color data to a color range that can be reproduced by the output device.
- the color composition unit may output the first color data as the composite color data when the input color data is in the first color range.
- the composition ratio of the first color data in which the color is maintained is high for the color range that gives the person a sense of incongruity due to changes in the color of the skin color and lawn.
- the color conversion output device can reduce a sense of discomfort given to a person.
- the first color mapping unit converts the input color data into device-independent color space data, which is a device-independent color space, and converts the converted device-independent color space data to the first color mapping unit.
- the first color data may be generated by performing inverse conversion to a color space depending on a device having a color gamut of two.
- the color conversion device further includes a second color mapping unit that generates the second color data by mapping the input color data in the second color gamut, and the first color
- the first color mapping unit maps the input color data in the second gamut so that chromaticity is not displaced.
- the second color mapping unit maps the input color data of the first color gamut to predetermined color data of the second color gamut, thereby generating the second color data. May be generated.
- the color conversion output device further includes a second color mapping unit that generates the second color data by mapping the input color data in the second color gamut; A color gamut region determining unit that determines whether or not the color gamut is included in the second color gamut, and the first color mapping unit includes the input color data within the second color gamut by the color gamut region determining unit. If it is determined that the input color data is included, the first color data is generated by mapping the input color data in the second color gamut so that the chromaticity is not displaced.
- the input color data in the color gamut may be regarded as the second color data, and the first color data and the second color data may be combined.
- the color conversion output device suppresses a change in color while Color gamut conversion that suppresses the occurrence of bias and discontinuity.
- the color conversion output device further includes a conversion table indicating a correspondence relationship between the RGB signals included in the input color data and the ratio, and the color synthesis unit is configured to convert the conversion table based on the input color data.
- the composite color data may be output as the output color data using the ratio obtained from the following.
- the present invention can be realized not only as such a color conversion output device, but also as a color conversion output method that uses characteristic means included in the color conversion output device as a step. Can also be realized as a color conversion output program that causes a computer to execute.
- the present invention can be realized as a color conversion table that is referred to in order to realize input / output characteristics equivalent to those of the color conversion output device, can be realized as a color conversion table creation device that creates a color conversion table, It can also be realized as a color conversion table creation method that uses characteristic means included in the table creation device as steps, or as a color conversion table creation program that causes a computer to execute such characteristic steps.
- Such a color conversion output program, a color conversion table, and a color conversion table creation program can be distributed via a recording medium such as a CD-ROM and a transmission medium such as the Internet.
- the present invention can also be realized as a color conversion output device that performs color conversion processing based on a color conversion table recording medium in which a color conversion table is recorded.
- the present invention can be realized as a semiconductor integrated circuit that realizes part or all of the functions of the color conversion output device or the color conversion table creation device.
- the present invention can provide a color conversion output device, a color conversion table, and a method for creating the color conversion output device that can suppress color deviation and discontinuity while suppressing color change.
- FIG. 1 is a block diagram showing a basic configuration of a color conversion device according to Embodiment 1 of the present invention.
- FIG. 2 is a diagram showing an example of color gamuts with different standards in the color conversion device according to Embodiment 1 of the present invention.
- FIG. 3A is a diagram showing an example of color gamut compression by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 3B is a diagram showing an example of color gamut compression by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 3C is a diagram showing an example of color gamut compression by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 3A is a diagram showing an example of color gamut compression by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 3B is a diagram showing an example of color gamut compression by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 3C is a diagram showing
- FIG. 4 is a diagram showing an example of a color composition ratio by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 5 is a diagram showing an example of a color composition ratio by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 6 is a diagram showing an example of a color composition ratio by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 7A is a diagram showing an example of color gamut compression by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 7B is a diagram showing an example of color gamut compression by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 7C is a diagram showing an example of color gamut compression by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 8 is a diagram illustrating an example of color gamut compression by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 9A is a diagram showing an example of color gamut expansion by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 9B is a diagram showing an example of color gamut expansion by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 9C is a diagram showing an example of color gamut expansion by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 9A is a diagram showing an example of color gamut expansion by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 9B is a diagram showing an example of color gamut expansion by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 9C is a diagram showing
- FIG. 10A is a diagram showing an example of color gamut expansion by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 10B is a diagram showing an example of color gamut expansion by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 10C is a diagram showing an example of color gamut expansion by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 11 is a diagram showing an example of color gamut expansion by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 12 is a block diagram showing a configuration of a modified example of the color conversion device according to Embodiment 1 of the present invention.
- FIG. 12 is a block diagram showing a configuration of a modified example of the color conversion device according to Embodiment 1 of the present invention.
- FIG. 13 is a flowchart showing the flow of color conversion processing by the color conversion device according to Embodiment 1 of the present invention.
- FIG. 14 is a block diagram showing a basic configuration of a color conversion device according to Embodiment 2 of the present invention.
- FIG. 15 is a diagram showing an example of color gamuts with different standards in the color conversion device according to Embodiment 2 of the present invention.
- FIG. 16 is a block diagram showing a configuration of a modification of the color conversion device according to Embodiment 2 of the present invention.
- FIG. 17A is a diagram showing xy values of chromaticity coordinates of three primary colors of RGB according to Embodiment 2 of the present invention.
- FIG. 17B is a diagram illustrating xy values of chromaticity coordinates of sRGB RGB three primary colors according to Embodiment 2 of the present invention.
- FIG. 17C is a diagram showing xy values of chromaticity coordinates of the RGB three primary colors of the output device 1 according to Embodiment 2 of the present invention.
- FIG. 17D is a diagram showing xy values of chromaticity coordinates of the RGB three primary colors of the output device 2 according to Embodiment 2 of the present invention.
- FIG. 18 is a diagram showing an example of color gamut compression by the color conversion device according to Embodiment 2 of the present invention.
- FIG. 19 is a diagram illustrating an example of color gamut compression by the color conversion device according to Embodiment 2 of the present invention.
- FIG. 20 is a diagram showing an example of color gamut expansion by the color conversion device according to Embodiment 2 of the present invention.
- FIG. 21 is a diagram showing an example of color gamut expansion by the color conversion device according to Embodiment 2 of the present invention.
- FIG. 22 is a flowchart showing the flow of color conversion processing by the color conversion device according to Embodiment 2 of the present invention.
- FIG. 23 is a block diagram showing a basic configuration of a color conversion device according to Embodiment 3 of the present invention.
- FIG. 24 is a diagram illustrating an example of color gamuts with different standards in the color conversion device according to Embodiment 3 of the present invention.
- FIG. 25 is a diagram illustrating an example of color gamuts with different standards in the color conversion device according to Embodiment 3 of the present invention.
- FIG. 26 is a diagram showing an example of color gamuts with different standards in the color conversion device according to Embodiment 3 of the present invention.
- FIG. 27 is a block diagram showing a configuration of a modified example of the color conversion device according to Embodiment 3 of the present invention.
- FIG. 28A is a diagram showing an example of color gamut conversion by the color conversion device according to Embodiment 3 of the present invention.
- FIG. 28B is a diagram showing an example of color gamut conversion by the color conversion device according to Embodiment 3 of the present invention.
- FIG. 29 is a diagram illustrating an example of color gamut conversion by the color conversion device according to Embodiment 3 of the present invention.
- FIG. 30A is a diagram showing an example of color gamut conversion by the color conversion device according to Embodiment 3 of the present invention.
- FIG. 30B is a diagram showing an example of color gamut conversion by the color conversion device according to Embodiment 3 of the present invention.
- FIG. 30C is a diagram showing an example of color gamut conversion by the color conversion device according to Embodiment 3 of the present invention.
- FIG. 31 is a diagram showing an example of color gamut conversion by the color conversion device according to Embodiment 3 of the present invention.
- FIG. 32 is a flowchart showing the flow of color conversion processing by the color conversion device according to Embodiment 3 of the present invention.
- FIG. 33 is a diagram illustrating a configuration of a color conversion output device including a three-dimensional LUT and a three-dimensional interpolation unit according to the embodiment of the present invention.
- FIG. 34 is a diagram illustrating a configuration of a color conversion output device including a three-dimensional LUT that outputs a composition ratio according to an embodiment of the present invention.
- the color conversion output device converts input color data into first converted color data that maintains the color, and generates the converted color data, color deviation, and discontinuity.
- the original input color data that has not been processed is synthesized and output. Accordingly, the color conversion output device according to the present invention changes the color tone by changing the composition ratio according to which of the color change and the color bias or discontinuity is important. While suppressing, it is possible to suppress the occurrence of color deviation and discontinuity.
- FIG. 1 is a block diagram showing a basic configuration of a color conversion device 100 according to an embodiment of the present invention.
- the color conversion output device 100 shown in FIG. 1 converts the input color data 20 of the first color gamut into the output color data 24 of the second color gamut and outputs it to the output device.
- the color conversion device 100 generates the output color data 24 of the second color gamut based on the first color data and the second color data obtained from the input color data of the first color gamut. Output above.
- the color conversion output device 100 obtains input color data 20 such as RGB from image data such as video or a photograph, and outputs input color data 21 and input color data 21 as a predetermined data.
- the first color mapping unit 11 that generates the first converted color data 22 by mapping to the color gamut, and the mapped first converted color data 22 and the input color data directly supplied from the color data acquisition unit 10
- the color composition unit 12 generates composite color data 23 by combining 21 with a predetermined ratio, and color data output that outputs the composite color data 23 as output color data 24 to a device that generates a color such as a display or a printer.
- Unit 13
- mapping method of the first color mapping unit 11 differs depending on whether the color conversion is related to color gamut compression or color gamut expansion.
- the first color mapping unit 11 When the color gamut compression, that is, when the color gamut of the input color data 20 is wider than the color gamut of the output device (when the first color gamut includes all of the second color gamut), the first color mapping unit 11 The color data 20 is compression mapped as color data within the color gamut of the output device.
- the first color mapping unit 11 maps the input color data 21 as color data within the color gamut of the output device.
- the color gamut compression that is, the color gamut of the input color data 20 is wider than the color gamut of the output color data 24 output by the color data output unit 13
- a photograph taken with Adobe is output to a sRGB (standard RGB) display, or a video signal of NTSC (National Television Standards Committee) is converted to BT.
- a video signal of NTSC National Television Standards Committee
- FIG. 2 shows Adobe, NTSC, sRGB and BT.
- 7 is a diagram illustrating a color gamut of 709;
- FIG. 2 the color gamuts of Adobe and NTSC are sRGB and BT. Since the color gamut is wider than 709, it is necessary to compress the color gamut.
- the color data acquisition unit 10 converts externally input image data (input color data 20) into RGB linear input color data 21. For example, since gamma ( ⁇ ) of AdobeRGB and sRGB is 0.45, the color data acquisition unit 10 normalizes (0.0 to 1) by dividing the RGB input color data 20 by the level width (255 in 8 bits). Then, the input color data 21 is generated by converting it to a linear value by raising the inverse ⁇ to a power of 2.2.
- the color data acquisition unit 10 temporarily converts the input image data into RGB data. , RGB may be converted into linear input color data 21.
- the color data acquisition unit 10 supplies the converted input color data 21 to the first color mapping unit 11 and the color synthesis unit 12.
- the first color mapping unit 11 generates the first converted color data 22 by compressing and mapping the input color data 21 supplied from the color data acquisition unit 10 to the color data in the color gamut of the output color data 24.
- the first color mapping unit 11 compresses and maps the input color data 21 so that the chromaticity is not displaced as much as possible (the color does not change).
- the first color mapping unit 11 uses a device-independent color space, which is a device-independent color space, for the RGB input color data 21 supplied from the color data acquisition unit 10 as compression mapping.
- a device-independent color space which is a device-independent color space
- the CIE XYZ chromaticity value is converted, the converted chromaticity value is compressed into a chromaticity value in the color gamut of the output device, and then converted back to the original RGB color data to obtain the first converted color data 22 is generated.
- the first color mapping unit 11 performs conversion from RGB to XYZ using Equation (1), and when the output device is an sRGB display, The first color mapping unit 11 performs conversion from XYZ to RGB using Expression (2).
- the first color mapping unit 11 basically uses the clipping described above as a compression mapping in this embodiment.
- Color gamut compression by clipping has the advantage of faithfully reproducing colors that can be reproduced within the color gamut of the output device.
- Clipping compression is suitable.
- the value is set to 0. In the case of 1 or more, it is set to 1. That is, when the chromaticity value of the input color data 21 is included in the second gamut as the compression mapping, the first color mapping unit 11 inputs the chromaticity so as not to be displaced (hereinafter, chromaticity displacement). When the color data 21 is mapped in the second color gamut and the chromaticity value of the input color data 21 is outside the second color gamut, the input color data 21 is mapped to the color gamut boundary of the second color gamut. .
- the first color mapping unit 11 converts the XYZ values into chromaticity values in the L * a * b * space using Equations (3) and (4), and then converts the lightness (L) and chromaticity values. The degree (C) and the hue (H) are calculated. Next, the first color mapping unit 11 performs clipping based on the color difference, brightness, or saturation using the calculated values of brightness (L), saturation (C), and hue (H).
- the color composition unit 12 includes input color data 21 (RGB) output from the color data acquisition unit 10 and first converted color data 22 (R′G′B ′) compression-mapped by the first color mapping unit 11. ) In accordance with the first color gamut and the second color gamut, thereby generating synthesized color data 23. In other words, the color composition unit 12 regards the input color data 21 in the first color gamut as the color data in the second color gamut, and synthesizes the input color data 21 and the first converted color data 22.
- the color synthesizing unit 12 is configured so that the ratio of the first converted color data 22 (R′G′B ′) that has been subjected to compression clipping is as high as possible for colors that cause discomfort to humans when the color changes, such as skin color.
- the input color data 21 and the first converted color data 22 are synthesized so that the color of the color gamut boundary of the output device and the colors in the vicinity of the color gamut boundary will be higher.
- the input color data 21 is color data in which the input color data 21 in the first color gamut is regarded as the color data in the second color gamut. That is, the input color data 21 corresponds to color data obtained by reducing the chromaticity of the first color gamut to the second color gamut at a certain ratio. Therefore, the input color data 21 is color data in which color deviation and discontinuity due to color gamut conversion do not occur.
- the color composition unit 12 calculates the hue (H), saturation (S), and brightness (V) from the input color data 21 (RGB).
- the color synthesizing unit 12 uses the following formula (5), or the above formula (3) and formula (4).
- MAX and MIN are the maximum and minimum RGB values, respectively.
- the color synthesizing unit 12 sets a color range (hereinafter referred to as a storage color range) in which the color tone is not desired to be changed as much as possible and a color range that is not desired, that is, a color range that is desired to be compressed (hereinafter referred to as a compressed color range). H), saturation (S), and brightness (V).
- the color composition unit 12 uses the input color data 21 (RGB) and the first color for each of the storage color range and the compressed color range based on the hue (H), saturation (S), and brightness (V) values.
- the input color data 21 and the first converted color data 22 are synthesized by changing the synthesis ratio with the converted color data 22 (R′G′B ′).
- the composition ratio r differs depending on the hue (H), saturation (S), and lightness (V) of the input color data 21.
- hue (H) is particularly narrowed in the green (G), yellow (Y), and cyan (C) color areas.
- the composite ratio of 21 (RGB) is set higher.
- the composition ratio of the input color data 21 (RGB) is set higher as the saturation increases for all hues. At this time, the setting of the composition ratio is adjusted according to the hue and brightness.
- the composition ratio of the input color data 21 (RGB) is set high. At this time, the setting of the composition ratio is adjusted according to the saturation and the hue.
- the basic setting of the composition ratio r is set based on the difference (or ratio) between the color gamuts of the first color gamut and the second color gamut.
- the composition ratio of the color data 21 (RGB) is set high.
- the difference (or ratio) of the gamut width between the two gamuts is often not uniform and varies depending on the hue (H), saturation (S), and lightness (V), so the hue (H),
- the composition ratio is adjusted according to the saturation (S) and lightness (V).
- FIGS. 3A to 3C are diagrams visually showing the difference in the width between the two color gamuts and the size of the composition ratio at that time for three different hues (H0, H1, and H2).
- 3A to 3C show a case where compression is performed from the first color gamut having a wide color gamut to the second color gamut having a narrower color gamut.
- 3A to 3C the color gamut width difference between the two color gamuts is indicated by hatching. The wider the shaded area is, the higher the composition ratio of the input color data 21 (RGB) is set, as indicated by the size of the white arrow.
- RGB composition ratio of the input color data 21
- the difference in the color gamut between the two gamuts is relatively large, and in the hue H0 shown in FIG. 3C, the difference in the gamut between the two gamuts is relatively large.
- the hue H1 shown in FIG. 3B which is small, the color gamut difference between the two gamuts is intermediate between the hue H0 and the hue H2.
- FIG. 4 shows the composition ratio with respect to the saturation (S) when the difference in the gamut width between the two gamuts is small (for example, the ratio of the first gamut / second gamut is 1.2 or less). The value of r is shown.
- FIG. 5 shows the saturation when the difference in the gamut width between the two gamuts is medium (for example, the ratio of the first gamut / second gamut is 1.2 to 1.5).
- the value of the composition ratio r with respect to the degree (S) is shown.
- FIG. 6 shows the saturation (S) when the difference in the gamut width between the two gamuts is large (for example, the ratio of the first gamut / second gamut exceeds 1.5).
- the value of the composition ratio r with respect to is shown.
- the input color data 21 is used as the synthesized color data 23 in a wider color gamut as the difference in the width of the color gamut between the two color gamuts is larger. Further, when compared at the same saturation (S), the greater the difference in the gamut width between the two gamuts, the higher the composition ratio of the input color data 21.
- the ratio for synthesizing the first converted color data 22 is set to be high.
- the first converted color data 22 has a hue (H) in the red, yellow, and magenta color ranges and the lightness (V) is in the middle to high range.
- the composition ratio is increased, and conversely, the composition ratio of the input color data 21 (RGB) is decreased.
- the composition ratio r is the color gamut width, hue (H), saturation (S), and brightness between the two gamuts as described above.
- the ratio for synthesizing the first converted color data 22 is set to be higher than that determined by the same method as that for the compressed color range.
- the color composition unit 12 outputs the first converted color data 22 as the composite color data 23 when the input color data 21 is in the first color range (skin color or the like).
- a sigmoid nonlinear function is used as a function of the synthesis ratio r, but a linear function may be used.
- FIG. 7A shows an XYZ conversion using the above equation (1) after inverse gamma conversion of 8-bit input color data 20 (RGB) and the input color data 21 (RGB) in AdobeRGB which is the first color gamut. It is a figure which shows the chromaticity value 30 of Yxy after having performed.
- the chromaticity value 30 of Yxy is converted into sRGB, which is the second color gamut, using the above equation (2) after XYZ conversion, and further converted to gamma conversion to convert the converted value to 8 from 0 to 255.
- the first converted color data 22 is a value clipped to 0 when the RGB value is 0 or less and 1 when 1 or more in the above equation (2).
- FIG. 7C shows the input RGB data 21 that is the input color data 21, the value of the combined color data 23 obtained by combining the data compressed and clipped to sRGB with the combined ratio r value according to the above setting, and the combined color data 23. It is a figure which shows the chromaticity value 31 of Yxy.
- the above-mentioned AdobeRGB data (input color data 20) in FIG. 7A shows sample data when the green (G) level value is changed and Y indicating luminance is made as constant as possible.
- FIG. 8 shows a comparison of the results of the color gamut compression conversion with the xy chromaticity values.
- the xy value of the AdobeRGB data in the first color gamut (Yxy chromaticity value 30 in FIG. 7A) is indicated by a black circle, and the data from the first color gamut AdobeRGB to the data in the second color gamut sRGB.
- the xy value (Yxy chromaticity value 31 in FIG. 7C) of the compressed data is indicated by a white circle.
- the color data output unit 13 outputs the synthesized color data 23 synthesized by the color synthesis unit 12 as output color data 24.
- the color data output unit 13 outputs the output color data 24 to an output device such as a display, a projector, or a printer.
- the output device is an sRGB color gamut display.
- the above embodiment has been described with the color gamut compression from the AdobeRGB color gamut to the sRGB color gamut.
- the color gamut compression is not limited to a specific color gamut such as a standard, but from another wider color gamut to a narrower color gamut. It goes without saying that can be converted in the same way.
- the color conversion device 100 includes the first converted color data 22 obtained by compression mapping the input color data 21 having a wide color gamut to the output device having a narrow color gamut, and the compression The composite color data 23 obtained by combining the input color data 21 to be output depending on the device color gamut without mapping is output.
- the color conversion output device 100 mainly uses color data in a reproducible color gamut, that is, the first converted color data 22 that is compression-mapped, for color data such as skin color that should not change in color.
- the color conversion output device 100 mainly synthesizes input color data 21 reproduced depending on the color gamut of the output device with input color data outside the color gamut that cannot be reproduced by the output device. Further, the color conversion output device 100 appropriately synthesizes the input color data 21 and the first conversion color data 22 according to the hue, saturation, and lightness and outputs them.
- the color conversion apparatus 100 can maintain the continuity of the color gradation without changing the relative color relationship within the color gamut of the output device, without changing the color of the skin color or the like.
- the color gamut expansion that is, the case where the color gamut of the input color data 20 is narrower than the color gamut of the output color data 24 output by the color data output unit 13.
- a photograph taken with sRGB opposite to the color gamut compression is output to an AdobeRGB compatible display, or BT.
- the video signal 709 is displayed on a display compatible with the NTSC color gamut.
- the color gamuts of AdobeRGB and NTSC are sRGB, BT. Since the color gamut is wider than 709, the color gamut needs to be expanded.
- the color gamut expansion does not change the overall basic configuration from the above color gamut compression, but the functions of the first color mapping unit 11 and the color synthesis unit 12 are somewhat different. Further, the basic mechanism remains the same as the input color data and the output color data handled for the color data acquisition unit 10 and the color data output unit 13 are reversed. For this reason, the description will focus on the different parts of the gamut expansion. In this embodiment, the color gamut conversion from sRGB to AdobeRGB will be described, contrary to the color gamut compression embodiment.
- the color data acquisition unit 10 converts externally input image data (input color data 20) into RGB linear input color data 21. Since the sRGB gamma ( ⁇ ) is 0.45, the color data acquisition unit 10 normalizes (0.0-1%) by dividing the input RGB input color data 20 by the level width (255 in 8 bits). The input color data 21 is generated by converting it to a linear value by raising the power of inverse ⁇ to 2.2.
- the first color mapping unit 11 generates the first converted color data 22 by mapping the input color data 21 supplied from the color data acquisition unit 10 to the color data in the color gamut of the output color data 24. Specifically, as the mapping at this time, the first color mapping unit 11 maintains the chromaticity point without changing the color gamut of the sRGB color gamut within the AdobeRGB color gamut of the output device (without changing the chromaticity). ), I.e. mapping without expansion and compression.
- the first color mapping unit 11 uses the device-independent color space, for example, the sRGB input color data 21 supplied from the color data acquisition unit 10. After conversion to XYZ device-independent color space data, the converted XYZ values are inversely converted as RGB in the RGB color gamut of the output device to generate first converted color data 22.
- the first color mapping unit 11 performs conversion from RGB to XYZ of sRGB using Expression (6), and conversion from XYZ to RGB of AdobeRGB using Expression (7).
- the first converted color data 22 (RGB) subjected to matrix conversion from sRGB to AdobeRGB according to the above formulas (6) and (7) maintains the chromaticity point of the sRGB color gamut within the AdobeRGB color gamut. (That is, chromaticity storage mapping that holds the chromaticity point of the input color data 21).
- the color composition unit 12 includes input color data 21 (RGB) output from the color data acquisition unit 10 and first converted color data 22 (R′G′B ′) mapped by the first color mapping unit 11. Are combined to generate combined color data 23.
- the color synthesizing unit 12 converts the first color conversion data 22 (R) in which the color that causes a sense of incongruity to humans, such as skin color, is mapped by the first color mapping unit 11 (the chromaticity storage mapping) as much as possible.
- the color of the output device gamut boundary and its neighboring colors are the same as the input color data 21 and the first color so that the ratio of the input color data 21 (RGB) is high so that the ratio of 'G'B') increases.
- the converted color data 22 is synthesized.
- hue (H), saturation (S), and brightness (V) are calculated from input color data 21 (RGB).
- a color range in which the color tone is not desired to be changed as much as possible hereinafter referred to as a stored color range
- a color range that is not desired that is, a color range that is to be extended
- hue (H) and saturation (S ) And brightness (V) is represented by hue (H) and saturation (S ) And brightness (V)
- the input color data 21 (RGB) and the above mapping are performed according to the hue (H), saturation (S), and brightness (V) values.
- the first conversion color data 22 (R′G′B ′) is combined at a different ratio.
- the composition ratio r differs depending on the hue (H), saturation (S), and lightness (V).
- hue (H) is particularly narrowed in the green (G), yellow (Y), and cyan (C) color areas.
- the composite ratio of 21 (RGB) is set higher.
- the composition ratio of the input color data 21 (RGB) is set higher as the saturation increases for all hues. At this time, the setting of the composition ratio is adjusted according to the hue and brightness.
- the composition ratio of the input color data 21 (RGB) is set high. At this time, the setting of the composition ratio is adjusted according to the saturation and the hue.
- the basic setting of the composition ratio r is set based on the difference (or ratio) between the color gamuts of the first color gamut and the second color gamut.
- the composition ratio of the color data 21 (RGB) is set high.
- the difference (or ratio) of the gamut width between the two gamuts is often not uniform and varies depending on the hue (H), saturation (S), and lightness (V), so the hue (H),
- the composition ratio is adjusted according to the saturation (S) and lightness (V).
- FIGS. 9A to 9C are diagrams visually showing the difference in the width between the two color gamuts and the size of the composition ratio at that time for three different hues (H0, H1, and H2).
- 9A to 9C show a case where the first color gamut having a narrow color gamut is expanded to the second color gamut having a wider color gamut.
- the color gamut difference between the two color gamuts is indicated by hatched portions. The wider the shaded area is, the higher the composition ratio of the input color data 21 (RGB) is set, as indicated by the size of the white arrow.
- RGB composition ratio of the input color data 21
- the difference in the color gamut between the two gamuts is relatively large, and in the hue H0 shown in FIG. 9C, the difference in the gamut between the two gamuts is relatively large.
- the difference in the color gamut width between the two gamuts is intermediate between the hue H0 and the hue H2.
- FIG. 4 shows the composition ratio with respect to the saturation (S) when the difference in the gamut width between the two gamuts is small (for example, the ratio of the first gamut / second gamut is 1.2 or less). The value of r is shown.
- FIG. 5 shows the saturation when the difference in the gamut width between the two gamuts is medium (for example, the ratio of the first gamut / second gamut is 1.2 to 1.5).
- the value of the composition ratio r with respect to the degree (S) is shown.
- FIG. 6 shows the saturation (S) when the difference in the gamut width between the two gamuts is large (for example, the ratio of the first gamut / second gamut exceeds 1.5).
- the value of the composition ratio r with respect to is shown.
- the input color data 21 is used as the synthesized color data 23 in a wider color gamut as the difference in the width of the color gamut between the two color gamuts is larger. Further, when compared at the same saturation (S), the greater the difference in the gamut width between the two gamuts, the higher the composition ratio of the input color data 21.
- the ratio for synthesizing the first converted color data 22 is set to be high.
- the first converted color data 22 has a hue (H) in the red, yellow, and magenta color ranges and the lightness (V) is in the middle to high range.
- the composition ratio is increased, and conversely, the composition ratio of the input color data 21 (RGB) is decreased.
- a sigmoid nonlinear function is used as a function of the synthesis ratio r, but a linear function may be used.
- sRGB which is the first color gamut
- 8-bit input color data 20 (RGB) and input color data 20 (RGB) are subjected to inverse gamma conversion and then subjected to XYZ conversion using the above equation (6).
- the xy chromaticity value 30 of XYZ is converted to XYZ using the equation (7), then converted to AdobeRGB, which is the second color gamut, and the converted value is gamma-converted to convert 8-bit values from 0 to 255.
- FIG. 10C shows the value of the combined color data 23 obtained by combining the sRGB data that is the input color data 21 and the data mapped to AdobeRGB with the combined ratio r value according to the above setting, It is a figure which shows the chromaticity value 31 of Yxy.
- the sRGB data (input color data 20) in FIG. 10A shows sample data when the green (G) level value is changed and Y indicating luminance is made as constant as possible.
- FIG. 11 shows a comparison of the results of this color gamut expansion conversion with xy chromaticity values.
- the xy value of the sRGB data in the first color gamut (Yxy chromaticity value 30 in FIG. 10A) is indicated by a white circle, and the data from the first color gamut sRGB to the data in the second color gamut AdobeRGB.
- the xy value (Yxy chromaticity value 31 in FIG. 10C) of the data expanded to is indicated by a black circle.
- the color data output unit 13 outputs the synthesized color data 23 synthesized by the color synthesis unit 12 as output color data 24.
- the color data output unit 13 outputs the output color data 24 to an output device such as a display, a projector, or a printer.
- the output device is an AdobeRGB color gamut display.
- the gamut expansion is not limited to a specific gamut such as a standard, but is expanded from another narrower gamut to a wider gamut. It goes without saying that can be converted in the same way.
- FIG. 12 is a block diagram showing a configuration of a color conversion output device 101 that is a modification of the color conversion output device 100 according to Embodiment 1 of the present invention. As shown in FIG. 12, input color data 20 before converting input color data 20 input from the outside into RGB linear input color data 21 may be combined in the color combining unit 12.
- the color conversion output device 101 shown in FIG. 12 includes a color data acquisition unit 10, a first color mapping unit 11, a color data output unit 13, and a color synthesis unit 12.
- the color data acquisition unit 10 converts input color data 20 input from the outside into RGB linear input color data 21 (inverse gamma conversion).
- the first color mapping unit 11 generates first converted color data 22 by mapping the converted input color data 21.
- the color data output unit 13 generates color data 28 by converting the first converted color data 22 so that it can be displayed on the output device (gamma conversion).
- the color synthesizing unit 12 synthesizes the input color data 20 before the inverse gamma conversion and the color data 28.
- the color data acquisition unit 10, the color synthesis unit 12, and the color data output unit 13 may be collectively configured by an LUT (lookup table), or only the color synthesis unit 12 may be configured by an LUT. .
- the color conversion device 100 has the first converted color in which the input color data 20 with a narrow color gamut is mapped as data in the color gamut of an output device with a wide color gamut.
- the data 22 and the input color data 21 output depending on the device color gamut without mapping are output as synthesized color data 23.
- the color conversion output device 100 does not change the chromaticity point of the input color data for color data whose color should not change, such as skin color, that is, the input color data 21 is used as the color data in the color gamut of the output device.
- the first converted color data 22 mapped without chromaticity displacement is mainly used.
- the color conversion output device 100 mainly uses input color data 21 that is reproduced depending on the color gamut of the output device as color data that exceeds the color gamut of the input color data 20 and can be reproduced by the output device. Use.
- the color conversion output device 100 appropriately synthesizes the input color data 21 and the first conversion color data 22 and two different color data according to hue, saturation, and brightness. As a result, the color conversion output device 100 can maintain the continuity of the color gradation without changing the relative color relationship within the color gamut of the output device and without changing the color of the skin color.
- FIG. 13 is a flowchart showing the flow of the color conversion operation of the color conversion output device 100.
- the color data acquisition unit 10 acquires input color data 20 input from the outside (S101). Further, the color data acquisition unit 10 converts the acquired input color data 20 into linear input color data 21.
- the first color mapping unit 11 generates the first converted color data 22 by mapping the input color data 21 converted by the color data acquisition unit 10 to the color data in the color gamut of the output color data 24. (S102).
- the first color mapping unit 11 causes the input color data 21 to be within the second color gamut without chromaticity displacement when the input color data 21 is within the second color gamut.
- the input color data 21 is mapped to the color gamut boundary of the second color gamut.
- the first color mapping unit 11 maps the input color data 21 within the second color gamut without chromaticity displacement.
- the color synthesizing unit 12 synthesizes the combined color data 23 by synthesizing the input color data 21 and the first converted color data 22 at a ratio according to the first color gamut and the second color gamut. Generate (S103). Specifically, the color composition unit 12 increases the ratio of the input color data 21 as the difference between the widths of the first color gamut and the second color gamut in the hue and brightness of the input color data 21 increases. As described above, the first converted color data 22 and the input color data 21 are synthesized.
- the color data output unit 13 outputs the composite color data 23 as output color data 24 to the output device (S104).
- Embodiment 2 The color conversion output device according to Embodiment 2 of the present invention is a modification of the color conversion output device 100 according to Embodiment 1 described above.
- FIG. 14 is a block diagram showing a basic configuration of the color conversion device 200 according to Embodiment 2 of the present invention.
- the color conversion output device 200 further receives the input color data 21 output by the color data acquisition unit 10 in the second color gamut.
- a second color mapping unit 14 for mapping as the converted color data 25 is provided.
- the color gamut of the output device is usually the second color gamut of the conversion destination or a color gamut very close to it, but in the second embodiment of the present invention, there are individual variations in the color gamut of the output device. Considering the case where there is a change with time, it is assumed that the data is correctly output as the color data in the second color gamut while assuming that it is somewhat deviated from the second color gamut.
- the second color mapping unit 14 regards the input color data 21 as the color data of the second color gamut and generates the second converted color data 25 by mapping it to the second color gamut.
- color gamut compression a case where the color gamut of the input color data 20 of the first color gamut input to the color data acquisition unit 10 is wider than the second color gamut of the conversion destination.
- sRGB standard RGB
- the color gamut of AdobeRGB is wider than the color gamut of sRGB as shown in FIG. If it is output to the sRGB color gamut without color conversion, the color becomes light and the saturation appears to be lowered.
- the second color mapping unit 14 converts the input color data 21 (R, G, B) into a color in a device-independent color space that is a device-independent color space.
- a degree value for example, XYZ
- the chromaticity value is converted back to the original RGB color data as an XYZ value in the second color gamut.
- the second color mapping unit 14 converts the input color data 21 into XYZ values using the inverse transformation of the above equation (2), and then uses the above equation (2) to convert the RGB color data. Convert to In other words, the input color data is originally RGB data in the AdobeRGB color gamut, but is regarded as RGB data in the sRGB color gamut, converted to XYZ, and converted back to RGB data in the sRGB color gamut, so that the same value is obtained. Become. Therefore, in this case, the second color mapping unit 14 may actually output the input color data 21 supplied from the color data acquisition unit 10 as the second converted color data 25 as it is.
- the second color mapping unit 14 converts the input color data 21 (R, G, B) supplied from the color data acquisition unit 10 by the above equation (1), and then converts a predetermined chromaticity value. After performing specific mapping for mapping to another predetermined chromaticity value, the second converted color data 25 may be generated by performing inverse conversion to RGB data using the above equation (2). .
- the specific mapping means that when the chromaticity value of the input color data 21 is included in the predetermined first color range of the first color gamut, the input color data 21 is converted to the second color gamut. And mapping to the color data associated with the first color range.
- the second color mapping unit 14 performs a specific mapping in which the chromaticity values at the boundary of the first gamut and its surroundings are shifted as much as possible to the chromaticity values at and around the boundary of the second gamut. You may go. Thereby, the color data can be shifted within a color gamut that is the same as or close to the color gamut of the output device.
- the second color mapping unit 14 specifies the first color gamut in order to change the hue, saturation, or lightness of a certain color range to a predetermined hue, saturation, or lightness for the purpose of drawing or appearance.
- a specific mapping may be performed in which the chromaticity value is changed to a specific chromaticity value in the second color gamut. For example, this specific mapping shifts the sky blue to a blue chromaticity value that is more blue than it actually is. In these cases, the input color data 21 and the second converted color data 25 are different.
- the color composition unit 12 includes first converted color data 22 (R1, G1, B1) mapped by the first color mapping unit 11 and second converted color data 25 mapped by the second color mapping unit 14.
- the synthesized color data 23 is generated by synthesizing (R2, G2, B2).
- the color synthesizing unit 12 reverses so that the ratio of the first converted color data 22 (R1, G1, B1) that has been subjected to compression clipping is as high as possible for colors that cause a sense of incongruity when the color changes, such as skin color.
- the first conversion color data 22 and the second conversion color data 25 are set so that the ratio of the second conversion color data 25 (R2, G2, B2) is high for the second color gamut boundary and its neighboring colors. Is synthesized.
- the color synthesis unit 12 Hue (H), saturation (S), and brightness (V) are calculated from the converted color data 25 (R2, G2, B2).
- the color composition unit 12 uses the above formula (5), or the above formula (3) and the formula (4).
- the color composition unit 12 acquires the input color data 21 from the color data acquisition unit 10, and from this input color data 21 (R, G, B), hue (H), saturation (S), and The brightness (V) is calculated.
- the second color mapping unit 14 performs the specific mapping
- the above composition ratio is basically followed.
- the second converted color data 25 R2, G2,.
- the composition ratio of B2 is set higher.
- the second converted color data 25 (R2, G2, B2) is the same as the input color data 21 (R, G, B)
- the first converted color data 22 R1, G1, B1
- the second Examples of the combined color data 23 obtained by combining the converted color data 25 (R2, G2, B2) and the chromaticity points thereof are the same as those in FIGS. 7A to 7C and FIG.
- the color data output unit 13 outputs the output color data 24 to the output device 1 that is somewhat deviated from the second color gamut. Will be described.
- FIGS. 17A to 17D are diagrams showing xy values of chromaticity coordinates of RGB primary colors of Adobe RGB, sRGB, output device 1, and output device 2, respectively.
- FIG. 18 is a diagram showing AdobeRGB, sRGB, and the color gamut of the output device 1.
- the color data The output unit 13 converts the xy value of the composite color data 23 (Yxy chromaticity value 31 in FIG. 7C) into XYZ, and then generates RGB data by converting using the following equation (8). After the data is gamma converted, it is converted to an 8-bit RGB value. Thereby, for example, the color data output unit 13 generates output color data 24 (R, G, B) shown in FIG.
- the color gamut compression is not limited to a specific color gamut such as a standard, but from another wider color gamut to a narrower color gamut. It goes without saying that can be converted in the same way.
- the color data output unit 13 outputs the composite color data 23. May be output as output color data 24 to the output device.
- the color conversion device 200 converts the input color data 20 of the first color gamut into the color data of the second color gamut having a narrower color gamut. That is, when the color gamut of the input color data 20 is wider than the second color gamut of the output color data 24, the first converted color data 22 obtained by compression mapping the input color data 21 to the second color gamut, and the input The composite color data 23 obtained by combining the second converted color data 25 (same as the input color data 21) obtained by mapping the color data 21 to the second color gamut as the color data of the second color gamut is output.
- the color conversion output device 200 includes the first converted color data 22 obtained by compression mapping the input color data 21 to the second color gamut, and the first color obtained by mapping the input color data 21 to a specific color in the second color gamut.
- the combined color data 23 obtained by combining the two converted color data (different from the input color data 21) is output.
- the color conversion output device 200 mainly uses the first converted color data 22 that is color data in a reproducible color gamut, that is, color data that has been compression-mapped, for color data such as skin color that should not change in color. Use. Further, the color conversion output device 200 mainly uses input color data reproduced depending on the second color gamut or color data mapped to a specific color as the input color data 21 outside the second color gamut. Used for. Further, the color conversion device 200 appropriately combines the first converted color data 22 and the second converted color data 25 according to the hue, saturation, and lightness and outputs the result. Accordingly, the color conversion output device 200 can maintain the continuity of the color gradation without changing the relative color relationship within the color tone of the skin color or the output device and the color gamut of the output device.
- the color gamut expansion that is, the case where the color gamut of the input color data 20 is narrower than the second color gamut.
- the color gamut of AdobeRGB is wider than the color gamut of sRGB, so that the color gamut needs to be expanded. If output to the AdobeRGB color gamut without any processing as it is, the color in the expanded color gamut region looks vivid, but the overall color balance may be lost or the color may be changed, which may make the user feel uncomfortable.
- the color gamut expansion is the same as the above color gamut compression, but the overall basic configuration is the same, but each component is somewhat different. For this reason, the description will focus on the different parts of the gamut expansion.
- the color gamut conversion from sRGB to AdobeRGB will be described, contrary to the color gamut compression embodiment.
- the second color mapping unit 14 converts the input color data 21 (R, G, B) into a device-independent color space that is a device-independent color space, for example, XYZ chromaticity.
- the value is converted into a value, and the chromaticity value is converted into XYZ in the second color gamut, and this time, it is converted back to the original RGB color data.
- the second color mapping unit 14 converts the input color data 21 into XYZ values using the inverse transformation of the above equation (7), and then uses the above equation (7) to convert the RGB color data. Convert to That is, the input color data 21 is originally RGB data in the sRGB color gamut. However, even if the input color data 21 is regarded as RGB data in the sAdobeRGB color gamut, it is converted into XYZ values and converted back to RGB data in the AdobeRGB color gamut. It becomes the same value. Therefore, in this case, the second color mapping unit 14 actually uses the input color data 21 (R, G, B) supplied from the color data acquisition unit 10 as it is as the second converted color data 25 (R2, G2). , B2). In this case, the input color data 21 (R, G, B) and the second converted color data 25 (R2, G2, B2) are the same.
- the second color mapping unit 14 converts the input color data 21 (R, G, B) supplied from the color data acquisition unit 10 by the above equation (6), and then converts a predetermined chromaticity value.
- the second converted color data 25 may be generated by performing specific mapping to another predetermined chromaticity value and then inversely converting to RGB data using the above equation (7).
- the second color mapping unit 14 performs a specific mapping in which the chromaticity values at the boundary of the first gamut and its surroundings are shifted as much as possible to the chromaticity values at and around the boundary of the second gamut. You may go. Thereby, the color data can be shifted within a color gamut that is the same as or close to the color gamut of the output device.
- the second color mapping unit 14 specifies the first color gamut in order to change the hue, saturation, or lightness of a certain color range to a predetermined hue, saturation, or lightness for the purpose of drawing or appearance.
- a specific mapping may be performed in which the chromaticity value is changed to a specific chromaticity value in the second color gamut. For example, this specific mapping shifts the sky blue to a blue chromaticity value that is more blue than it actually is. In these cases, the input color data 21 and the second converted color data 25 are different.
- the color synthesizing unit 12 generates synthesized color data 23 by synthesizing the first converted color data 22 (R1, G1, B1) and the second converted color data 25 (R2, G2, B2). .
- the color synthesizing unit 12 sets the ratio of the first converted color data 22 (R1, G1, B1), which is chromaticity-preserving mapped, for colors that cause a sense of discomfort to humans when the color changes, such as skin color. . Further, the color composition unit 12 sets the color gamut boundary and the color in the vicinity thereof so that the ratio of the vivid second converted color data 25 (R2, G2, B2) having as high saturation as possible is high.
- the synthesizing unit 12 acquires the input color data 21 from the color data acquisition unit 10, and uses the input color data 21 (R, G, B) to change the hue (H), saturation (S), and The brightness (V) is calculated.
- the second color mapping unit 14 performs the specific mapping
- the above composition ratio is basically followed.
- the second conversion color data 25 R2, G2,.
- the composition ratio of B2 is set higher.
- the second converted color data 25 (R2, G2, B2) is the same as the input color data 21 (R, G, B)
- the first converted color data 22 R1, G1, B1
- the second Examples of the combined color data 23 obtained by combining the converted color data 25 (R2, G2, B2) and the chromaticity points thereof are the same as those in FIGS. 10A to 10C and FIG.
- the color data output unit 13 outputs the output color data 24 to the output device 2 that is somewhat deviated from the second color gamut. Will be described.
- FIG. 20 is a diagram showing AdobeRGB, sRGB, and the color gamut of the output device 2.
- the color data The output unit 13 converts the xy value (Yxy chromaticity value 31 in FIG. 10C) of the composite color data 23 into XYZ, and then generates RGB data by converting using the following equation (9). After the data is gamma converted, it is converted to an 8-bit RGB value. Thereby, for example, the color data output unit 13 generates output color data 24 (R, G, B) shown in FIG.
- the color gamut of the output device 2 in this case is slightly narrower than the color gamut of AdobeRGB, when the value of R, G, or B converted by Equation (9) becomes 0 or less, the value is clipped to 0. The For this reason, the color gradation may be saturated. As a countermeasure, the accuracy of chromaticity is slightly reduced near the boundary of the second color gamut. However, by replacing the second color gamut with the color gamut of the output device 2, the continuity of the color gradation can be maintained.
- the gamut expansion from the sRGB gamut to the AdobeB gamut has been described.
- the gamut expansion is not limited to a specific gamut such as a standard, but is expanded from another narrower gamut to a wider gamut. It goes without saying that can be converted in the same way.
- the color data output unit 13 When the color gamut of the output device is very close to that of the second color gamut (for example, when the color difference cannot be visually identified), the color data output unit 13 outputs the composite color data 23. May be output as output color data 24 to the output device.
- the color conversion device 200 converts the input color data 20 of the first color gamut into the color data of the second color gamut having a wider color gamut. That is, when the color gamut of the input color data 20 is narrower than the second color gamut of the output color data 24, the chromaticity of the first color gamut is not shifted to the second color gamut of the input color data 21.
- the first converted color data 22 mapped as chromaticity storage and the second converted color data 25 (the input color data 21 and the input color data 21 mapped to the second color gamut as the color data of the second color gamut) And the synthesized color data 23 is output.
- the color conversion output device 200 may include the first conversion color data 22 obtained by mapping the input color data 21 to the chromaticity storage map and the second conversion obtained by mapping the input color data 21 to a specific color in the second color gamut.
- the synthesized color data 23 obtained by synthesizing the color data 25 (different from the input color data 21) is output.
- the color conversion output device 200 mainly uses the first converted color data 22 that has been subjected to chromaticity storage mapping for color data such as skin color that should not change in color. Further, the color conversion output device 200 mainly includes input color data reproduced depending on the second color gamut or color data mapped to a specific color in the color gamut exceeding the first color gamut. Use. Further, the color conversion device 200 appropriately combines the first converted color data 22 and the second converted color data 25 according to the hue, saturation, and lightness and outputs the result. Accordingly, the color conversion output device 200 can maintain the continuity of the color gradation without changing the relative color relationship within the color tone of the skin color or the output device and the color gamut of the output device.
- FIG. 22 is a flowchart showing the flow of the color conversion operation of the color conversion output device 200.
- the color data acquisition unit 10 acquires input color data 20 input from the outside (S201). Further, the color data acquisition unit 10 converts the acquired input color data 20 into linear input color data 21.
- the first color mapping unit 11 generates the first converted color data 22 by mapping the input color data 21 converted by the color data acquisition unit 10 to the color data in the color gamut of the output color data 24. (S202).
- the second color mapping unit 14 regards the input color data 21 converted by the color data acquisition unit 10 as the color data in the color gamut of the output color data 24, and maps the second converted color data 25. Generate (S203).
- the color synthesizing unit 12 generates the synthesized color data 23 by synthesizing the first converted color data 22 and the second converted color data 25 (S204).
- the color data output unit 13 outputs the composite color data 23 as output color data 24 to the output device (S205).
- step S202 and step S203 may be arbitrary, and step S203 may be performed before step S202, or step S202 and step S203 may be performed simultaneously.
- the color data output unit 13 outputs the first converted color data 22 and the second converted color data 25 as an output device. May be converted so that it can be displayed (gamma conversion), and the color synthesis unit 12 may synthesize the two converted data.
- the color conversion output device according to Embodiment 3 of the present invention is a modification of the color conversion output device 100 according to Embodiment 2 described above.
- FIG. 23 is a block diagram showing a basic configuration of a color conversion device 300 according to Embodiment 3 of the present invention.
- the color conversion output device 300 includes, in addition to the configuration of the color conversion output device 100 according to the first embodiment, whether or not the color gamut in the input color data 21 is included in the converted second color gamut.
- a color gamut area determination unit 15 is provided for determining whether the color gamut area is not a color area.
- the function of the first color mapping unit 11 is different from that of the second embodiment.
- the color gamut of the output device of the color data output unit 13 is usually the second color gamut of the conversion destination and a color gamut very close to it (a difference in color gamut cannot be visually identified). Assumes the case.
- the sRGB color gamut does not match the output device color gamut. That is, in the color range such as yellow, the sRGB color gamut is wider than the output device color gamut, and in the color range such as cyan, the output device color gamut is wider than the sRGB color gamut.
- the color gamut region 40 shown in FIG. 25 is a color gamut region common to the sRGB color gamut of the first color gamut and the color gamut of the output device of the second color gamut.
- the color gamut area 40 is a color gamut area included in the second color gamut of the first color gamut.
- a color gamut area other than the color gamut area 40 in the first color gamut is a color gamut area 41 that is not included in the second color gamut in the first color gamut, and a color in the second color gamut.
- a color gamut area other than the color gamut area 40 is a color gamut area 42 that is not included in the first color gamut of the second color gamut.
- the sRGB color data is color gamut compressed as shown by the inward arrows.
- the color gamut region 42 in which the color gamut is wider than the sRGB color gamut, it is necessary to extend the color gamut of the sRGB color data as indicated by the outward arrows.
- the color data acquisition unit 10 converts the input color data 20 into input color data 21, and converts the converted input color data 21 into a color gamut region determination unit 15, a first color mapping unit 11, and a second color mapping unit 14. To supply.
- the color gamut area determination unit 15 determines whether or not the input color data 21 of the sRGB color gamut that is the first color gamut is included in the output device color gamut that is the second color gamut. In the present embodiment, the color of the input color data 21 in the color gamut area 40 common to the sRGB color gamut of the first color gamut and the color gamut of the output device of the second color gamut shown in FIG. It is determined whether or not an xy value, for example, is included. Note that the color gamut area determination unit 15 converts the RGB value of the input color data 21 into the XYZ value using the above equation (6) for the xy chromaticity value of the input color data 21, and converts the converted XYZ value and the equation (10). ) Is used to calculate the xy value.
- the color gamut area determination unit 15 indicates that the color gamut of the input color data 21 is in the second color gamut.
- the identification signal 26 is supplied to the first color mapping unit 11.
- an out-of-gamut identification signal 27 indicating that the color gamut of the input color data 21 is out of the second color gamut is generated. This is supplied to the first color mapping unit 11.
- the first color mapping unit 11 maps the color data supplied from the color data acquisition unit 10 as color data in the second color gamut.
- the first color mapping unit 11 receives the in-gamut identification signal 26 indicating that the color gamut of the input color data 21 is in the second color gamut from the color gamut region determination unit 15, The color data of the first color gamut is mapped into the second color gamut without changing the chromaticity in the first color gamut.
- the color gamut determination unit 15 receives the out-of-gamut identification signal 27 indicating that the color gamut of the input color data 21 is outside the second color gamut
- the first color mapping unit 11 The color data of the first color gamut is mapped to the color gamut boundary of the second color gamut.
- the first color mapping unit 11 converts the RGB input color data 21 into a device-independent color space that is a device-independent color space, such as CIE XYZ or xy chromaticity values.
- the first chromaticity value 22 is generated by mapping the chromaticity value as the XYZ or xy value in the second color gamut and inversely converting the mapped XYZ or xy value to the original RGB color data. To do.
- the first color mapping unit 11 When the input color data 21 is sRGB RGB data, the first color mapping unit 11 performs conversion from RGB to XYZ using the above equation (6). Further, the first color mapping unit 11 further converts the xy chromaticity value using the equation (10). The first color mapping unit 11 uses Expressions (11) and (12) in order to perform inverse conversion to the original RGB after mapping into the second color gamut.
- the first color mapping unit 11 basically uses the clipping described above.
- Color gamut compression by clipping has the advantage of faithfully reproducing colors that can be reproduced within the color gamut of the output device.
- the simplest clipping compression is, for example, when converting to the RGB color gamut, in the series of conversions of the above formula (6), the above formula (10), the above formula (11), and the above formula (12), In (12), when the value of R, G or B is 0 or less, the value is 0, and when it is 1 or more, it is 1.
- the first color mapping unit 11 converts the XYZ values into chromaticity values in the L * a * b * space using the above formulas (3) and (4), and then the brightness (L). , Saturation (C), and hue (H) are calculated. Next, the first color mapping unit 11 performs clipping based on the color difference, brightness, or saturation using the calculated values of brightness (L), saturation (C), and hue (H).
- the first converted color data 22 mapped by the first color mapping unit 11 is supplied to the color synthesis unit 12.
- the second color mapping unit 14 regards the color data of the first color gamut as the color data of the second color gamut and maps the color data to the color data of the second color gamut, thereby converting the second converted color data 25. Is generated. Alternatively, the second color mapping unit 14 generates the second converted color data 25 by specifically mapping the color data of the first color gamut to the predetermined color data of the second color gamut.
- the color of the first color gamut is substantially This is the same as making the second color data as it is. That is, the input color data 21 and the second converted color data 25 are the same. Therefore, the color composition of the sRGB input color data 21 of the first color gamut is the color data of the output device color gamut that is the second color gamut, that is, the second converted color data 25 depending on the device color gamut. To the unit 12.
- the second color mapping unit 14 when the second color mapping unit 14 performs specific mapping of the color data of the first color gamut to the predetermined color data of the second color gamut, the second color mapping unit 14 inputs RGB data. After the color data 21 is converted by the above formulas (6) and (10), it is mapped to a predetermined xy chromaticity value and then converted back to RGB data by the above formulas (11) and (12). Thus, the second converted color data 25 may be generated.
- the color synthesis unit 12 includes first converted color data 22 (R1, G1, B1) mapped by the first color mapping unit 11 and second converted color data mapped by the second color mapping unit 14. 25 (R2, G2, B2) are combined to generate combined color data 23.
- the color synthesizing unit 12 has a high ratio of the first converted color data 22 (R1, G1, B1) in which the chromaticity of the input color data does not change as much as possible for colors that cause a sense of discomfort to humans when the color changes, such as skin color.
- the first converted color data 22 and the second converted color data 25 are synthesized.
- the first converted color data 22 is set so that the ratio of the second converted color data 25 (R2, G2, B2) is as high as possible for the second color gamut boundary and the color in the vicinity thereof to secure a color reproduction range.
- the second converted color data 25 are synthesized.
- the color combining unit 12 Hue (H), saturation (S), and brightness (V) are calculated from the second converted color data 25 (R2, G2, B2).
- the color synthesizing unit 12 uses the above formula (5), or once converted into XYZ, using the above formula (3) and formula (4), the hue (H), saturation (S), and brightness. (V) is calculated.
- the input color data 21 is acquired from the color data acquisition unit 10
- the hue (H), saturation (S), and brightness (V) are calculated using the input color data 21 (R, G, B).
- the storage color range and the compression extended color range are divided using hue (H), saturation (S), and lightness (L).
- the color composition unit 12 uses the first converted color data 22 (R1,%) For each of the storage color range and the compressed color range based on the hue (H), saturation (S), and lightness (L) values.
- the first conversion color data 22 and the second conversion color data 25 are combined by changing the combination ratio of G1, B1) and the second conversion color data 25 (R2, G2, B2).
- the composition ratio r differs depending on the hue (H), saturation (S), and lightness (L).
- H hue
- S saturation
- L lightness
- the hue of the green (G) color region is shifted to the cyan side, and the color gamut is widened with cyan (C).
- C cyan
- the color gamut is narrow.
- the second converted color data 25 R2, G2, B2 is used in the color gamut regions of the green (G), yellow (Y), and cyan (C) hues. ) Is set higher.
- the composition ratio of the input color data 21 (RGB) is set higher as the saturation increases for all hues. At this time, the setting of the composition ratio is adjusted according to the hue and brightness.
- the composition ratio of the input color data 21 (RGB) is set high. At this time, the setting of the composition ratio is adjusted according to the saturation and the hue.
- the basic setting of the composition ratio r is set based on the difference (or ratio) between the color gamuts of the first color gamut and the second color gamut.
- the composition ratio of the color data 21 (RGB) is set high.
- the difference (or ratio) of the gamut width between the two gamuts is often not uniform and varies depending on the hue (H), saturation (S), and lightness (V), so the hue (H),
- the composition ratio is adjusted according to the saturation (S) and lightness (V).
- the color synthesizing unit 12 performs the second conversion as the difference in the color gamut width between the two color gamuts increases.
- the composition ratio of the color data 25 (R2, G2, B2) is set high.
- the second color mapping unit 14 performs the specific mapping
- the above composition ratio is basically followed.
- the color composition unit 12 performs the second conversion color.
- the composition ratio of data 25 (R2, G2, B2) is set higher.
- the synthesized color data 23 actually generated by synthesizing the first converted color data 22 (R1, G1, B1) and the second converted color data 25 (R2, G2, B2) and its xy Examples of chromaticity values are shown in FIGS. 28A, 28B and 29.
- FIG. Here, a case where the second converted color data 25 (R2, G2, B2) is the same as the input color data 21 (R, G, B) will be described. Further, it is assumed that the input color data 20 (R, G, B) and the Yxy chromaticity value 30 are the same as those in FIG. 10A.
- FIG. 28A reversely converts the xy value (Yxy chromaticity value 30) shown in FIG. 10A into the RGB of the output device as the second color gamut using the above equations (11) and (12). Furthermore, it is a figure which shows the value of the 1st conversion color data 22 (R1, G1, B1) converted into the 8-bit RGB value of 0 to 255 by carrying out the gamma conversion of the inversely converted value.
- the RGB values shown in FIG. 28A are values clipped to 0 when the values of R, G, and B are 0 or less and 1 when they are 1 or more.
- 28B shows the second converted color data 25 (R2, G2, B2), that is, the input color data 20 (R, G, B) of FIG.
- FIG. 29 shows the xy chromaticity value of the sRGB data in the first color gamut of the input color data 20 and the xy chromaticity of the synthesized color data 23 (output color data 24) synthesized by the color conversion output device 300. It is a figure which shows a value.
- a white circle indicates the xy value of the sRGB data in the first color gamut (Yxy chromaticity value 30 in FIG. 10A), and the black circle indicates the second color from the sRGB data in the first color gamut.
- 28 shows the composite color data 23 (Yxy chromaticity value 31 in FIG. 28B) converted into the color gamut of the output device of the gamut.
- the green color reproduction range can be expanded as much as possible, there is almost no displacement of the chromaticity value near white close to the skin color, and the relative color relationship does not change, and the color gradation is continuous. Sex is also maintained.
- FIG. 30A shows the 8-bit data value of the first color gamut sRGB that is the input color data 20 (R, G, B), and the above-described equations (6) and (10) by inverse gamma conversion.
- FIG. 30B shows that the xy chromaticity value 32 is inversely converted to RGB of the output device as the second color gamut using the above equations (11) and (12), and the inversely converted value is gamma converted.
- 30B are values clipped to 0 when the values of R, G, and B are 0 or less in the above equation (12) and to 1 when 1 or more.
- 30C shows the second converted color data 25 (R2, G2, B2), that is, the input color data 20 (R, G, B) of FIG. 30A and the first converted color data 22 (R1, G1) of FIG. 30B.
- B1) is a diagram showing an example of the RGB value of the synthesized color data 23 synthesized with the synthesis ratio according to the above setting and the xy chromaticity value 33 thereof.
- the value of sRGB which is the input color data 20 in FIG. 30A is obtained by extracting skin color sample data and yellow (Y) color range data.
- FIG. 31 shows the xy chromaticity value of the sRGB data of the first color gamut that is the input color data 20 shown in FIG. 30A and the xy of the synthesized color data 23 (output color data 24) synthesized by the color conversion output device 300. It is a figure which shows chromaticity value.
- a white circle indicates an xy value of the sRGB data in the first color gamut (xy chromaticity value 32 in FIG. 30A), and a black circle indicates the second color gamut from the sRGB data in the first color gamut.
- the xy value of the composite color data 23 converted into the color gamut of the output device (xy chromaticity value in FIG. 30C) is shown.
- the displacement of the skin color sample data surrounded by the dotted line is very small before and after the conversion. Further, the relative color relationship of the yellow (Y) color range remains unchanged, and the continuity of the color gradation is maintained.
- the color data output unit 13 outputs the color data synthesized by the color synthesis unit 12.
- the output is an output device such as a display, projector or printer.
- the color conversion from the sRGB color gamut to the color gamut of an output device has been described.
- the color conversion is not limited to a specific color gamut such as a standard. Needless to say, the color conversion to the output device of the color gamut can be performed in the same manner.
- the color conversion device 300 is configured so that the first color gamut of the input color data 20 cannot be completely included by the second color gamut of the output color data 24. Even when the second color gamut of the output color data 24 cannot be completely included by the first color gamut of the input color data 20, the color tone such as skin color and the relative color within the color gamut of the output device are relative. The continuity of color gradation can be maintained without changing the color relationship.
- FIG. 32 is a flowchart showing the flow of the color conversion operation of the color conversion output device 300.
- the color data acquisition unit 10 acquires input color data 20 input from the outside (S301). Further, the color data acquisition unit 10 converts the acquired input color data 20 into linear input color data 21.
- the color gamut area determination unit 15 determines whether or not the input color data 21 is included in the second color gamut (S302).
- the first color mapping unit 11 inputs the input color data 21 converted by the color data acquisition unit 10 into the second color gamut.
- the first converted color data 22 is generated by mapping without changing the chromaticity in the first color gamut (S303).
- the first color mapping unit 11 uses the input color data 21 converted by the color data acquisition unit 10 as the second color gamut.
- the first converted color data 22 is generated by mapping to the color gamut boundary of the color gamut (S304).
- step S303 or step S304 the second color mapping unit 14 performs mapping by regarding the input color data 21 converted by the color data acquisition unit 10 as color data in the color gamut of the output color data 24 and performing mapping. Conversion color data 25 is generated (S305).
- the color synthesizing unit 12 generates the synthesized color data 23 by synthesizing the first converted color data 22 and the second converted color data 25 (S306).
- the color data output unit 13 outputs the composite color data 23 as output color data 24 to the output device (S307).
- steps S302 to S304 and step S305 may be arbitrary.
- step S305 may be performed before step S302, or step S305 and one of steps S302 to S304 may be performed simultaneously. Also good.
- the color data output unit 13 outputs the first converted color data 22 and the second converted color data 25 as an output device. May be converted so that it can be displayed (gamma conversion), and the color synthesis unit 12 may synthesize the two converted data.
- the functions of the color conversion output devices 100, 200, and 300 according to the first to third embodiments can be realized by, for example, a device including an arithmetic device and a memory executing a program.
- SDI Serial Digital Interface
- DVI Digital Visual Interface
- HDMI High-Definition Multimedia Interface
- USB Universal Serial Bus
- 94 such as IE, or IE 13 or IE 13
- Color data such as images recorded on (Blu-ray Disc), DVD (Digital Versatile Disc), HDD (Hard Disk Drive), CD-ROM (Compact Disc Only Memory) or memory card is input to the above device. Is done.
- the input color data is once recorded in a memory buffer provided in the apparatus.
- the recorded color data is sequentially sent to an arithmetic device (for example, CPU), and color conversion processing as shown in the above-described embodiment is performed in accordance with a program executed by the arithmetic device.
- the color data subjected to the color conversion processing is temporarily stored in the output memory buffer, and is output in synchronization with the output (or display) of the output device (for example, display).
- the present invention also uses an LUT (Look Up Table) indicating the correspondence between the input color data 20 and the output color data 24 calculated by the characteristic steps of the color conversion output device 100, 200 or 300. It can also be realized.
- the present invention may be realized as a color conversion table indicating the correspondence between the input color data 20 and the output color data 24.
- the color conversion table indicates, for example, a correspondence relationship between the input color data 20 illustrated in FIG. 7A and the composite color data 23 (output color data 24) illustrated in FIG. 7C.
- the present invention may be realized as a method for creating a color conversion table for creating the color conversion table.
- the color conversion table creation method according to the present invention includes a characteristic step by the color conversion output device 100, 200 or 300, and the output color data 24 calculated in the step, the input color data. And a creation step of creating a color conversion table having output color data 24 corresponding to 20.
- the program and the LUT are recorded in the color conversion output devices 100 to 300 or a memory (RAM) inside or outside the arithmetic processing unit, or an external recording medium such as an HDD, a DVD, or a nonvolatile memory card. It is also possible to record it.
- the color conversion program includes inverse gamma conversion and gamma conversion of input color data 20 and output color data 24, matrix operation between two different color gamuts, RGB to HSV (hue, saturation, brightness) conversion, and color mapping. Arithmetic and color composition calculations are executed by the arithmetic unit. These conversions and calculations are performed by the calculation device in the procedure shown in the above embodiment.
- the color conversion LUT (color conversion table) is, for example, a three-dimensional LUT composed of RGB that maps RGB of the input color data 20 to RGB data of the output color data 24.
- This LUT is for mapping the values of the three-dimensional color space of the input color data 20 (RGB) to the three-dimensional space of the output color data 24 (RGB) as a result of color synthesis.
- the color conversion LUT is created by converting the input color data 20 (RGB) into two color gamuts based on the composition ratio, hue (H), saturation (S), or lightness (V) of the two color data shown in the above embodiment.
- the RGB value of the output color data as a result is set as the data of the RGB grid points of the color conversion LUT.
- the three-dimensional LUT is, for example, 16 (R) ⁇ 16 (G) ⁇ 16 (B), 32 (R) ⁇ 32 (G) ⁇ 32 (B), or 64 (R) ⁇ 64 (G) ⁇ 64 ( B) RGB grid points.
- the number of grid points may be determined by the accuracy required for color conversion.
- the data of each lattice point is data of 8 bits or 10 bits, for example.
- an interpolation operation may be incorporated so that color discontinuity does not occur between the values.
- FIG. 33 is a diagram showing a configuration of a color conversion output device 400 configured by a three-dimensional LUT and a three-dimensional interpolation unit from the input of the color data acquisition unit 10 to the output of the color data output unit 13 shown in FIG. is there.
- the R signal 410, G signal 411, and B signal 412 included in the input color data 20 to be input are input to the three three-dimensional LUTs 401, 402, and 403.
- the three-dimensional LUTs 401, 402, and 403 respectively convert the R signal 410, the G signal 411, and the B signal 412 to convert the R point lattice cube cube eight-point data 413, 414, and the position (R, G, B). 415 is output.
- These data 413, 414, and 415 are input to the three-dimensional interpolation units 404, 405, and 406, respectively.
- the three-dimensional interpolation units 404, 405, and 406 use the data 413, 414, and 415 as original data for interpolating the data, and generate an R signal 416, a G signal 417, and a B signal 418.
- the three-dimensional interpolation units 404, 405, and 406 determine which grid point is to be used based on the upper 4 bits of the input RGB, and interpolate using the lower 4 bits. Determine the coefficients in the operation.
- the three-dimensional interpolation units 404, 405, and 406 perform interpolation calculation three-dimensionally, and perform interpolation on the R, G, and B axes for each of R, G, and B.
- the RGB grid points are 16 ⁇ 16 ⁇ 16 and the RGB data is 8 bits, a 16 ⁇ 16 ⁇ 16 LUT is required for each of R, G, and B. Therefore, when configuring an LUT using a memory, As a memory capacity to be used, 16 ⁇ 16 ⁇ 16 ⁇ 3 ⁇ 8 bits are required.
- processing from the output of the color data acquisition unit 10 to the input of the color data output unit 13 shown in FIG. 1 can be configured with a three-dimensional LUT and a three-dimensional interpolation unit.
- FIG. 34 is a diagram illustrating a configuration of a color conversion output device 500 including a three-dimensional LUT that outputs a composition ratio and a mixing unit that mixes two input color data according to the composition ratio.
- the R signal 510, G signal 511, and B signal 512 included in the input color data 20 to be input are respectively input to the mixing units 504, 505, and 506 corresponding to R, G, and B, respectively. Further, the R signal 510, the G signal 511, and the B signal 512 are input to the matrix calculation unit 501 and the three-dimensional LUT 502.
- the matrix calculation unit 501 corresponds to the first color mapping unit 11 illustrated in FIG. 1, and performs a matrix calculation that combines the above formulas (1) and (2), whereby the R signal 513, the G signal 514, and A B signal 515 is generated.
- the three-dimensional LUT 502 generates synthesis ratio data 516 corresponding to the synthesis ratio r corresponding to R, G, and B.
- the three-dimensional interpolation unit 503 generates the composition ratio data 517 by performing an interpolation operation on the composition ratio data 516.
- the operations of the three-dimensional LUT 502 and the three-dimensional interpolation unit 503 are the same as the operations of the three-dimensional LUT 401 and the three-dimensional interpolation unit 404 in the description of FIG.
- the mixing unit 504 generates the R signal 518 by mixing the R signal 510 and the R signal 513 at the ratio of the synthesis ratio r indicated by the synthesis ratio data 517.
- the mixing unit 505 generates the G signal 519 by mixing the G signal 511 and the G signal 514 at the ratio of the combination ratio r indicated by the combination ratio data 517.
- the mixing unit 506 generates the B signal 520 by mixing the B signal 512 and the B signal 515 at the ratio of the combination ratio r indicated by the combination ratio data 517.
- the LUT data is data corresponding to R, G, B signals, but in the three-dimensional LUT 502, the LUT data is data of the composition ratio r and is data corresponding to a coefficient.
- the accuracy of the composition ratio r may be lower than the accuracy of the RGB data itself. For example, even if the RGB data is 8 bits and the bit of the composition ratio r is reduced by several bits (for example, 5 bits), the output data can be of the same level of quality.
- the LUT may be one 16 ⁇ 16 ⁇ 16, and if the number of bits can be 5 bits, the LUT is configured using a memory. In this case, 16 ⁇ 16 ⁇ 16 ⁇ 5 bits ⁇ 1 is required as the memory capacity to be used.
- the color conversion output device 500 needs to add a matrix calculation unit 501, but the capacity required for the LUT can be reduced to about 1/5. Therefore, when the color conversion output device 500 is realized by hardware, the scale can be reduced as a whole.
- the color conversion output device 400 shown in FIG. 33 needs to change the LUT.
- the color conversion output device 500 shown in FIG. Since the configuration is different from the LUT, only the setting of the matrix calculation unit 501 needs to be changed. That is, the color conversion output device 500 can easily change the characteristics.
- the color conversion output device 400 shown in FIG. 33 needs to handle a plurality of LUT data, for example, in a ROM.
- the nine coefficient data of the matrix calculation unit 501 is set as one set, and it is only necessary to have a plurality of sets.
- the functions of the color conversion output devices 100, 200, and 300 may be realized as an LSI that is an integrated circuit. These LSIs may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Furthermore, by referring to a color conversion LUT (color conversion table), it may be realized as a color conversion output device that realizes input / output characteristics equivalent to those of the color conversion output devices 100, 200, and 300, or a semiconductor integrated circuit. . Specifically, the color conversion apparatus includes the color conversion table and a conversion unit that converts the input color data 20 into output color data 24 using the color conversion table.
- a color conversion LUT color conversion table
- the conversion unit when creating a different color conversion table for each color signal of the RGB signal included in the input color data 20, the conversion unit converts each color signal of the RGB signal included in the input color data 20.
- the input data 20 is converted into the output color data 24 using the color conversion table created in step (b).
- LSI LSI is used, it may be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
- the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
- An FPGA Field Programmable Gate Array
- a reconfigurable processor that can reconfigure the connection and setting of the circuit cells inside the LSI may be used.
- the present invention can be applied to a color conversion output device that is mounted as a CMS (color management system) on a product such as a display, a projector, a printer, or a digital camera and can improve color reproducibility in color gamut conversion.
- the present invention can also be applied to a color conversion output method, a color conversion output program, a color conversion table, a color conversion table creation method, a color conversion table recording medium, and a color conversion integrated circuit.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Facsimile Image Signal Circuits (AREA)
- Image Processing (AREA)
- Color Image Communication Systems (AREA)
Abstract
本発明に係る色変換出力装置(100)は、第1の色域の入力色データ(20)から得られる第1の変換色データ(22)と入力色データ(21)とを基に、第2の色域の出力色データ(24)を生成したうえで出力する色変換出力装置(100)であって、入力色データ(21)を第2の色域内にマッピングすることにより第1の変換色データ(22)を生成する第1の色マッピング部(11)と、第1の変換色データ(22)と第2の変換色データ(25)とを、第1の色域と第2の色域とに応じた比率で合成することにより合成色データ(23)を生成する色合成部(12)と、合成色データ(23)を第2の色域の出力色データ(24)として出力する色データ出力部(13)とを備える。
Description
本発明は、色変換出力装置、色変換テーブル及びその作成方法に関し、特に、第1の色域の入力色データを第2の色域の出力色データへ変換したうえで出力する色変換出力装置に関する。
異種デバイス、及び異種メディア間で色再現を実現するためには、入出力デバイスの色域の違いを補正する必要がある。この入出力デバイスの色域の違いを補正する技術のことを色域変換又は色域圧縮拡張と呼ぶ。
例えば画像表示を行う表示出力デバイスとしてはCRT(Cathode Ray Tube)、PDP(Plasma Display Panel)、LCD(Liquid Crystal Display)、及びプロジェクターなどのパネルなどが存在する。これらはそれぞれが再現可能な色域として異なる色域を有している。
このようにデバイスが再現可能な色域はデバイスごとに異なるため、例えば或る画像信号を或る表示出力デバイスで表示させる際には、画像信号をその表示出力デバイスに応じた色域に補正することが必要である。
色域の違いを補正するためには、R、G、Bに代表される各々のデバイス、及びメディア固有の信号値を、例えばCIE(Commission Internationale de l’Eclairage:国際照明委員会)に規定されるXYZ、L*a*b*、及びL*u*v*などの色空間等のデバイス非依存の表色系の値に変換し、そのデバイス非依存表色系の値に圧縮拡張を行うことが一般的である。
ところで、色域圧縮の方法は、大きくコンプレッションとクリッピングとに分けられる。
コンプレッションとは、すべての色を圧縮する方法である。すなわちコンプレッションとは、第1の色域から第2の色域への圧縮をする場合、第1の色域内の全ての色を圧縮することにより、その全ての色が第2の色域に含まれるように色変換を行うものである(例えば、特許文献1、特許文献2及び特許文献3参照)。
なお、圧縮には色域内外の色を線形に圧縮する方法、及び色の彩度が大きいほど圧縮率を大きくする非線形な圧縮方法がある。また、色相、彩度又は明度によって圧縮の割合を変えたり、色を維持する領域と色を維持しない領域とに色域を分割し、分割した領域をそれぞれ異なる変換直線により彩度を圧縮する方法などが開示されている(例えば、特許文献4、特許文献5、特許文献6、及び特許文献7参照)。
一方、クリッピングでは、第1の色域の色の内の、第2の色域に含まれる色、即ち再現先のデバイスで忠実に再現できる色は忠実に再現し(圧縮しない)、再現不可能な色、つまり再現先デバイスの色域に含まれない色のみ圧縮するという方法である(例えば、特許文献8参照)。
なお、クリッピングには、再現先デバイスの色域で再現できない色を、色差が最小になるような方向へ圧縮して再現する方法、及び明度又は彩度が最短の色を選択するように圧縮する方法が開示されている(例えば、特許文献9、及び特許文献10参照)。
また、色域の拡張については、例えば、入力された画像に対する出力側色再現範囲が表色系の値において入力側色再現範囲より広いときに、入力側と出力側との色再現範囲の比に応じて入力側色再現範囲が拡大するように、入力された画像の表色系の値を拡大写像したうえで出力する方法(例えば、特許文献11参照)、及び線形拡張式を用いて輝度(L*)及び彩度(C*)の色属性を拡張することにより色座標を変換し、変換した色座標がデバイスの色域外に外れないように制御する方法などが開示されている(例えば、特許文献12参照)。
特開昭60-105376号公報
特開昭61-288690号公報
特開昭63-254889号公報
特開平06-255130号公報
特開昭61-288662号公報
特開平07-220067号公報
特開2003-283846号公報
特開昭63-195777号公報
特開平04-040072号公報
特開2000-278546号公報
特開平03-158075号公報
特開2003-153027号公報
上記で示したように色域の変換とりわけ色域の圧縮方法は、大きくコンプレッションとクリッピングとに分けられる。しかしこれら方法にはそれぞれ長所と短所がある。
コンプレッションの場合、各色について相対的な色の関係が変わらないこと、及び階調表現が保たれるという長所がある。ところがその一方で、コンプレッションでは、第2の色域である再現先のデバイスでも忠実に再現可能であった色、つまり圧縮する必要がない色まで圧縮してしまい第1の色域の色味とかなり違って見えたりするという短所がある。また、コンプレッションでは、非線形な圧縮では滑らかに色が変化する部分で疑似輪郭及び疑似階調が現れたりするといった短所がある。
一方、クリッピングの場合、再現可能な色を忠実に再現するという長所がある。しかし、クリッピングでは、多くの色域外色の圧縮後の色が同じ色になってしまうため、色調の連続性が劣化し階調表現に劣るといった短所がある。
なお色域拡張についても、上記圧縮と同様な短所と長所がある。例えば、赤及び緑で色域を大きく拡張すると、肌色及び芝生などの色味が変わってしまい人に違和感を与える。
ところで、これら従来の色域変換はいずれもある色空間、例えば、XYZあるいはL*a*b*といった空間で、第1の色データの色度点を第2の色データの色度点へどのようにシフト又は変更するかを扱ったものである。このためシフト及び変更によってどうしても色空間内の色データの分布に偏り及び不連続性が生じてしまう可能性があった。
以上のように、従来の色域変換では、色味の変化を抑えることと、色の偏り及び不連続性の発生を抑制することとを両立することが困難であるという課題がある。
そこで本発明は、上記課題を解決するものであって、色味の変化を抑えつつ、色の偏り及び不連続性の発生を抑制できる色変換出力装置、色変換テーブル及びその作成方法を提供することを目的とする。
上記目的を達成するために、本発明に係る色変換出力装置は、第1の色域の入力色データから得られる第1の色データと第2の色データとを基に、第2の色域の出力色データを生成したうえで出力する色変換出力装置であって、前記入力色データを前記第2の色域内にマッピングすることにより前記第1の色データを生成する第1の色マッピング部と、前記第1の色データと前記第2の色データとを、前記第1の色域と前記第2の色域とに応じた比率で合成することにより合成色データを生成する色合成部と、前記合成部で合成された合成色データを前記出力色データとして出力する色データ出力部とを備える。
この構成によれば、本発明に係る色変換出力装置は、入力色データを異なる色域のデバイスへ色域圧縮又は色域拡張して出力する際に、入力色データに基づく2つの異なる色データを所定の合成比率で合成する。これにより、本発明に係る色変換出力装置は、2つの色データのどちらか一方において、色度点のシフト又は変更によって、色味の変化が発生したとしても、他方の色データで緩和できる。また、本発明に係る色変換出力装置は、2つの色データの他方において、色の偏り及び不連続性が発生したとしても、一方の色データで緩和できる。これにより、本発明に係る色変換出力装置は、色味の変化を抑えつつ、色の偏り及び不連続性の発生を抑制できる。
また、前記第1の色マッピング部は、前記第1の色域が前記第2の色域を全て含む場合、前記第1の色域の前記入力色データを前記第2の色域内へ圧縮マッピングすることにより前記第1の色データを生成し、前記色合成部は、前記第1の色域の前記入力色データを前記第2の色データとみなし、前記第1の色データと前記第2の色データとを合成してもよい。
この構成によれば、入力色データを第2の色データとして用いるので、色変換出力装置の構成を簡略化できる。
また、前記第1の色マッピング部は、前記圧縮マッピングとして、前記入力色データが前記第2の色域内にある場合は、色度が変位しないように当該入力色データを前記第2の色域内にマッピングすることにより前記第1の色データを生成し、前記入力色データが前記第2の色域外にある場合は、当該入力色データを前記第2の色域の色域境界へマッピングしてもよい。
この構成によれば、第1の色データでは、色味の変化が抑制され、第2の色データでは、色の偏り及び不連続性が抑制される。これにより、本発明に係る色変換出力装置は、色味を維持したい色領域では、第1の色データの合成比率を高くし、色の偏り及び不連続性を抑制したい色領域では、第2の色データの合成比率を高くすることで、色味の変化を抑えつつ、色の偏り及び不連続性の発生を抑制できる。
また、前記色合成部は、前記入力色データの色相及び明度における前記第1の色域と前記第2の色域の広さの差が大きくなるにつれ、前記第2の色データの比率が高くなるように、前記第1の色データと前記第2の色データとを合成してもよい。
この構成によれば、色域の広さの差が大きい場合には、出力デバイスで再現可能な色に変換された第2の色データの比率が高くなる。これにより、本発明に係る色変換出力装置は、第2の色域境界付近で入力色データの色の違いを再現できる。
また、前記色合成部は、前記入力色データが、第1の色範囲にある場合、前記第1の色データを前記合成色データとして出力してもよい。
この構成によれば、肌色及び芝生などの色味が変わることにより人に違和感を与える色範囲に対しては、色味が維持された第1の色データの合成比率が高くなる。これにより、本発明に係る色変換出力装置は、人に与える違和感を低減できる。
また、前記第1の色範囲は、肌色であってもよい。
また、前記色合成部は、前記入力色データの彩度が高くなるにつれ、前記第2の色データの比率が高くなるように、前記第1の色データと前記第2の色データとを合成してもよい。
また、前記第1の色マッピング部は、前記入力色データをデバイスに依存しない色空間であるデバイス非依存型色空間のデータに変換し、変換した前記デバイス非依存型色空間のデータを前記第2の色域のデバイスに依存した色空間に逆変換し、当該逆変換したデータが前記第2の色域内にある場合は、当該逆変換したデータを前記第1の色データとし、当該逆変換したデータが前記第2の色域外にある場合は、当該逆変換したデータを前記第2の色域の色域境界のデータに変換し、当該変換したデータを前記第1の色データとしてもよい。
また、前記色変換出力装置は、さらに、前記入力色データを前記第2の色域内にマッピングすることにより前記第2の色データを生成する第2の色マッピング部を備え、前記第1の色域が前記第2の色域を全て含む場合、前記第1の色マッピング部は、前記第1の色域の前記入力色データを前記第2の色域内へ圧縮マッピングすることにより前記第1の色データを生成し、前記第2の色マッピング部は、前記入力色データが前記第1の色域の予め定められた第1の色範囲に含まれる場合、当該入力色データを、前記第2の色域の、前記第1の色範囲に対応付けられた色データへマッピングすることにより前記第2の色データを生成してもよい。
また、前記第1の色域の全てが前記第2の色域に含まれる場合、前記第1の色マッピング部は、色度が変位しないように当該入力色データを前記第2の色域内にマッピングすることにより前記第1の色データを生成し、前記色合成部は、前記第1の色域の前記入力色データを前記第2の色データとみなし、前記第1の色データと前記第2の色データとを合成してもよい。
この構成によれば、第1の色データでは、色味の変化が抑制され、第2の色データでは、色の偏り及び不連続性が抑制される。これにより、本発明に係る色変換出力装置は、色味を維持したい色領域では、第1の色データの合成比率を高くし、色の偏り及び不連続性を抑制したい色領域では、第2の色データの合成比率を高くすることで、色味の変化を抑えつつ、色の偏り及び不連続性の発生を抑制できる。
また、前記色合成部は、前記入力色データの色相及び明度における前記第1の色域と前記第2の色域の広さの差が大きくなるにつれ、前記第2の色データの比率が高くなるように、前記第1の色データと前記第2の色データとを合成してもよい。
この構成によれば、色域の広さの差が大きい場合には、出力デバイスで再現可能な色に変換された第2の色データの比率が高くなる。これにより、本発明に係る色変換出力装置は、出力デバイスで再現可能な色範囲まで、入力色データをシフトさせた出力色データを生成できる。
また、前記色合成部は、前記入力色データが、第1の色範囲にある場合、前記第1の色データを前記合成色データとして出力してもよい。
この構成によれば、肌色及び芝生などの色味が変わることにより人に違和感を与える色範囲に対しては、色味が維持された第1の色データの合成比率が高くなる。これにより、本発明に係る色変換出力装置は、人に与える違和感を低減できる。
また、前記第1の色マッピング部は、前記入力色データをデバイスに依存しない色空間であるデバイス非依存型色空間のデータに変換し、変換した前記デバイス非依存型色空間のデータを前記第2の色域のデバイスに依存した色空間に逆変換することにより前記第1の色データを生成してもよい。
また、前記色変換出力装置は、さらに、前記入力色データを前記第2の色域内にマッピングすることにより前記第2の色データを生成する第2の色マッピング部を備え、前記第1の色域の全てが前記第2の色域に含まれる場合、前記第1の色マッピング部は、色度が変位しないように当該入力色データを前記第2の色域内にマッピングすることにより前記第1の色データを生成し、前記第2の色マッピング部は、前記第1の色域の前記入力色データを前記第2の色域の所定の色データへマッピングすることにより前記第2の色データを生成してもよい。
また、前記色変換出力装置は、さらに、前記入力色データを前記第2の色域内にマッピングすることにより前記第2の色データを生成する第2の色マッピング部と、前記入力色データが前記第2の色域内に含まれる否かを判定する色域領域判定部とを備え、前記第1の色マッピング部は、前記色域領域判定部により前記入力色データが前記第2の色域内に含まれると判定された場合、色度が変位しないように当該入力色データを前記第2の色域内にマッピングすることにより前記第1の色データを生成し、前記色合成部は、前記第1の色域の前記入力色データを前記第2の色データとみなし、前記第1の色データと前記第2の色データとを合成してもよい。
この構成によれば、第1の色域及び第2の色域の一方が、他方を包括する場合でなくても、本発明に係る色変換出力装置は、色味の変化を抑えつつ、色の偏り及び不連続性の発生を抑制した色域変換を行える。
また、前記色変換出力装置は、さらに、前記入力色データが有するRGB信号と、前記比率との対応関係を示す変換テーブルを備え、前記色合成部は、前記入力色データを基に前記変換テーブルから得られる比率を用いて前記合成色データを前記出力色データとして出力してもよい。
なお、本発明は、このような色変換出力装置として実現できるだけでなく、色変換出力装置に含まれる特徴的な手段をステップとする色変換出力方法として実現したり、そのような特徴的なステップをコンピュータに実行させる色変換出力プログラムとして実現したりすることもできる。
さらに、本発明は、色変換出力装置と同等の入出力特性を実現するために参照される色変換テーブルとして実現したり、色変換テーブルを作成する色変換テーブル作成装置として実現したり、色変換テーブル作成装置に含まれる特徴的な手段をステップとする色変換テーブル作成方法として実現したり、そのような特徴的なステップをコンピュータに実行させる色変換テーブル作成プログラムとして実現したりすることもできる。
そして、そのような色変換出力プログラム、色変換テーブル、及び色変換テーブル作成プログラムは、CD-ROM等の記録媒体及びインターネット等の伝送媒体を介して流通させることができるのは言うまでもない。また、本発明は、色変換テーブルが記録された色変換テーブル記録媒体に基づき色変換処理をする色変換出力装置としても実現できる。
さらに、本発明は、上記色変換出力装置又は色変換テーブル作成装置の機能の一部又は全てを実現する半導体集積回路として実現できる。
以上のように、本発明は、色味の変化を抑えつつ、色の偏り及び不連続性の発生を抑制できる色変換出力装置、色変換テーブル及びその作成方法を提供できる。
10 色データ取得部
11 第1の色マッピング部
12 色合成部
13 色データ出力部
14 第2の色マッピング部
15 色域領域判定部
20、21 入力色データ
22 第1の変換色データ
23 合成色データ
24 出力色データ
25 第2の変換色データ
26 色域内識別信号
27 色域外識別信号
28 色データ
30、31 Yxyの色度値
32、33 xy色度値
40、41、42 色域領域
100、101、200、300、400、500 色変換出力装置
401、402、403、502 3次元LUT
404、405、406、503 3次元補間部
410、416、510、513、518 R信号
411、417、511、514、519 G信号
412、418、512、515、520 B信号
413、414、415 データ
501 マトリクス演算部
504、505、506 混合部
516、517 合成比率データ
11 第1の色マッピング部
12 色合成部
13 色データ出力部
14 第2の色マッピング部
15 色域領域判定部
20、21 入力色データ
22 第1の変換色データ
23 合成色データ
24 出力色データ
25 第2の変換色データ
26 色域内識別信号
27 色域外識別信号
28 色データ
30、31 Yxyの色度値
32、33 xy色度値
40、41、42 色域領域
100、101、200、300、400、500 色変換出力装置
401、402、403、502 3次元LUT
404、405、406、503 3次元補間部
410、416、510、513、518 R信号
411、417、511、514、519 G信号
412、418、512、515、520 B信号
413、414、415 データ
501 マトリクス演算部
504、505、506 混合部
516、517 合成比率データ
以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
本発明の実施の形態1に係る色変換出力装置は、入力色データを、色味を維持した第1の変換色データに変換し、当該変換色データと、色の偏り及び不連続性の発生していない元の入力色データとを合成し出力する。これにより、本発明に係る色変換出力装置は、色味の変化と、色の偏り及び不連続性とのどちらを重視するかに応じて、合成比率を変化させることにより、色味の変化を抑えつつ、色の偏り及び不連続性の発生を抑制できる。
本発明の実施の形態1に係る色変換出力装置は、入力色データを、色味を維持した第1の変換色データに変換し、当該変換色データと、色の偏り及び不連続性の発生していない元の入力色データとを合成し出力する。これにより、本発明に係る色変換出力装置は、色味の変化と、色の偏り及び不連続性とのどちらを重視するかに応じて、合成比率を変化させることにより、色味の変化を抑えつつ、色の偏り及び不連続性の発生を抑制できる。
まず、本発明の実施の形態1に係る色変換出力装置の構成を説明する。
図1は、本発明の実施の形態に係る色変換出力装置100の基本的な構成を示すブロック図である。図1に示す色変換出力装置100は、第1の色域の入力色データ20を第2の色域の出力色データ24へ変換し出力デバイスへ出力する。また、色変換出力装置100は、第1の色域の入力色データから得られる第1の色データと第2の色データとを基に、第2の色域の出力色データ24を生成したうえで出力する。この色変換出力装置100は、ビデオ、又は写真などの画像データをRGBなどの入力色データ20を取得したうえで入力色データ21を出力する色データ取得部10と、入力色データ21を所定の色域にマッピングすることにより第1の変換色データ22を生成する第1の色マッピング部11と、マッピングされた第1の変換色データ22と色データ取得部10から直接供給される入力色データ21とを所定の比率で合成することにより合成色データ23を生成する色合成部12と、合成色データ23を出力色データ24としてデスプレイ又はプリンターなどの色を発生するデバイスへ出力する色データ出力部13とを備える。
但し、上記第1の色マッピング部11のマッピングの仕方は、上記色変換が色域圧縮に係わるものかあるいは色域拡張に係わるものかで異なる。
色域圧縮、すなわち入力色データ20の色域が出力デバイスの色域よりも広い場合(第1の色域が第2の色域を全て含む場合)、第1の色マッピング部11は、入力色データ20を出力デバイスの色域内での色データとして圧縮マッピングする。
他方、色域拡張、すなわち入力色データ20の色域が出力デバイスの色域よりも狭い場合(第1の色域の全てが第2の色域に含まれる場合)、第1の色マッピング部11は入力色データ21を出力デバイスの色域内での色データとしてマッピングする。
まず、色域圧縮、すなわち入力色データ20の色域が色データ出力部13により出力される出力色データ24の色域よりも広い場合について説明する。例えば、Adobe(登録商標)で撮影された写真をsRGB(standard RGB)のデスプレイへ出力する場合、又はNTSC(National Television Standards Committee)の映像信号をBT.709のデスプレイへ表示する場合である。
図2は、Adobe、NTSC、sRGB及びBT.709の色域を示す図である。図2に示すようにAdobe及びNTSCの色域はsRGB及びBT.709の色域よりも広いため、色域を圧縮する必要がある。
色データ取得部10は、外部から入力された画像データ(入力色データ20)をRGBのリニア(線形)な入力色データ21に変換する。例えば、AdobeRGB及びsRGBのガンマ(γ)は0.45なので、色データ取得部10は、RGBの入力色データ20をレベル幅(8bitでは255)で除算することで正規化(0.0~1.0の値に)した後、逆γの2.2をベキ乗することでリニア(線形)な値に変換することにより入力色データ21を生成する。なお、入力された画像データがRGBの色データでない場合、例えば輝度データと色差データとからなる画像データの場合、色データ取得部10は、入力された画像データをRGBデータへ一旦色変換したのち、RGBのリニアな入力色データ21に変換すればよい。また、色データ取得部10は、変換した入力色データ21を第1の色マッピング部11と色合成部12とへ供給する。
第1の色マッピング部11は、色データ取得部10から供給された入力色データ21を出力色データ24の色域内の色データに圧縮マッピングすることにより第1の変換色データ22を生成する。ここで、第1の色マッピング部11は、できるだけ色度が変位しない(色味が変化しない)ように入力色データ21を圧縮マッピングする。
具体的には、第1の色マッピング部11は、圧縮マッピングとして、色データ取得部10から供給されたRGBの入力色データ21を一旦デバイスに依存しない色空間であるデバイス非依存型色空間、例えばCIEのXYZの色度値に変換し、変換した色度値を出力デバイスの色域内の色度値に圧縮した後、元のRGBの色データへ逆変換することにより第1の変換色データ22を生成する。
例えば、入力色データ20がAdobeRGBのRGBデータの場合、第1の色マッピング部11は、RGBからXYZへの変換を、式(1)を用いて行い、出力デバイスがsRGBのデスプレイの場合、第1の色マッピング部11は、XYZからRGBへの変換を、式(2)を用いて行う。
なお、第1の色マッピング部11は、圧縮マッピングとして本実施例では、基本的に上記で説明したクリッピングを用いる。クリッピングによる色域圧縮は、出力デバイスの色域内で再現可能な色を忠実に再現できるという長所がある。ここで、肌色など色味が変わると人に違和感を与える色は入力色データの色度点をできるだけ変位させないようにする必要がある。よって、肌色などそれほど彩度が高くない色の範囲は出力デバイスの色域内で再現可能な、しかも入力色データの色度点(例えば、XYZのような色度値で示される点)をそのまま再現するクリッピング圧縮が適する。
最も単純なクリッピング圧縮は、例えば、AdobeRGBの色域からsRGBの色域へ変換する際に、上記式(2)でR、G又はBの値が0以下になった場合その値を0に、1以上の場合は1にすることである。つまり、第1の色マッピング部11は、圧縮マッピングとして、入力色データ21の色度値が第2の色域内に含まれる場合は、色度が変位(以下、色度変位)しないように入力色データ21を第2の色域内にマッピングし、入力色データ21の色度値が第2の色域外にある場合は、当該入力色データ21を第2の色域の色域境界へマッピングする。
なお、クリッピングについては、色域で再現できない色域外の色を、色差が最小になるような方向へ圧縮する方法を用いてもよいし、明度又は彩度が最短の色を選択するなどしてもよい。この場合、第1の色マッピング部11は、XYZ値を、式(3)及び式(4)を用いてL*a*b*空間の色度値に変換したうえで明度(L)、彩度(C)、及び色相(H)を算出する。次に、第1の色マッピング部11は、算出した明度(L)、彩度(C)、及び色相(H)の値を用いて、色差、明度又は彩度をもとにクリッピングする。なお、式(3)のXn、Yn、Znは、光源の3刺激値であり、例えば標準イルミナントD65の場合は(Xn、Yn、Zn)=(95.04、100.00、108.89)である。
色合成部12は、色データ取得部10から出力される入力色データ21(RGB)と上記第1の色マッピング部11で圧縮マッピングされた第1の変換色データ22(R’G’B’)とを、第1の色域と第2の色域とに応じて合成することにより、合成色データ23を生成する。言い換えると、色合成部12は、第1の色域の入力色データ21を第2の色域の色データとみなし、入力色データ21と第1の変換色データ22とを合成する。
ここで色合成部12は、肌色など色味が変わると人に違和感を生じる色はできるだけ圧縮クリッピングされた第1の変換色データ22(R’G’B’)の比率が高くなるように、逆に出力デバイスの色域境界及びその近傍の色は入力色データ21(RGB)の比率が高くなるように入力色データ21と第1の変換色データ22とを合成する。
ここで、入力色データ21は、第1の色域の入力色データ21を第2の色域の色データとみなした色データである。つまり、入力色データ21は、第1の色域の色度を、第2の色域に一定の比率で縮小した色データに相当する。よって、入力色データ21は、色域変換による色の偏り及び不連続性が発生していない色データである。
具体的な合成方法としては、例えば、まず、色合成部12は、入力色データ21(RGB)から色相(H)、彩度(S)及び明度(V)を算出する。例えば、色合成部12は、下記の式(5)、又は上記式(3)と式(4)とを用いる。
式(5)においてMAX、MINはそれぞれRGB値の最大値及び最小値である。
次に、色合成部12は、肌色など色味をできるだけ変えたくない色範囲(以下、保存色範囲と呼ぶ)と、そうでない、すなわち圧縮したい色範囲(以下、圧縮色範囲)とを色相(H)、彩度(S)及び明度(V)を用いて設定する。また、色合成部12は、保存色範囲及び圧縮色範囲のそれぞれに対して、その色相(H)、彩度(S)及び明度(V)の値によって入力色データ21(RGB)と第1の変換色データ22(R’G’B’)との合成比率を変えて入力色データ21と第1の変換色データ22とを合成する。
合成比率をrで表し、その範囲を0.0~1.0で示すとした場合、r=1.0は合成色データ23において入力色データ21(RGB)の占める割合が100%のときであり、r=0.0は合成色データ23において第1の変換色データ22(R’G’B’)の占める割合が100%のときである。従ってrがその間の値の場合は、色合成部12は、入力色データ21(RGB)と第1の変換色データ22(R’G’B’)とを合成比率rで合成する。つまり、色合成部12は、入力色データ21(RGB)にrを乗算し、第1の変換色データ22(R’G’B’)に1-rを乗算し、それぞれを足し合わせることにより、合成色データ23を生成する。
但し、上記合成比率rは、入力色データ21の色相(H)、彩度(S)及び明度(V)によって異なる。例えば、AdobeRGBの色域からsRGBの色域へ変換するとき、色相(H)については特に緑色(G)、黄色(Y)、シアン(C)の色領域が狭まるため、この領域で入力色データ21(RGB)の合成比率を高めに設定する。
また、彩度(S)については全ての色相について彩度が高くなるにつれ入力色データ21(RGB)の合成比率を高めに設定する。このとき、色相及び明度によって合成比率の設定を調整する。
また、明度(V)については明度が比較的高いとき入力色データ21(RGB)の合成比率を高めに設定する。このとき、彩度及び色相によって合成比率の設定を調整する。
また、合成比率rの基本的な設定は、第1の色域と第2の色域の色域の広さの差(又は比)に基づいて設定される。第1の色域が第2の色域よりも広く第2の色域へ色域圧縮する場合、第2の色域を超える第1の色域の広さが大であればある程、入力色データ21(RGB)の合成比率を高めに設定する。但し、2つの色域間の色域の広さの差(又は比)は色相(H)、彩度(S)、明度(V)によって均一ではなく異なる場合が多いため、色相(H)、彩度(S)、明度(V)によって合成比率を調整する。
図3A~図3Cは、3つの異なる色相(H0、H1、H2)について2つの色域間の広さの違いとそのときの合成比率の大きさを視覚的に示す図である。また、図3A~図3Cでは、広い色域の第1の色域からそれより狭い色域の第2の色域へ圧縮する場合を示している。また、図3A~図3Cでは、2つの色域間の色域の広さ差は斜線部分で示してある。そしてこの斜線部分の領域が広い程、それはちょうど白い矢印の大きさで示したように、入力色データ21(RGB)の合成比率を高く設定する。例えば、図3Aに示す色相H2では、2つの色域間の色域の広さ差が比較的大きく、図3Cに示す色相H0では、2つの色域間の色域の広さ差が比較的小さく、図3Bに示す色相H1では、2つの色域間の色域の広さ差は、色相H0と色相H2の場合の中間である。
更に具体的に、ある色相(例えば図3A~図3CのH0~H2)のある明度(例えば図3A~図3Cの横軸に示す明度(V))のときの、彩度(S)の大きさに対する合成比率rの設定を説明する。図4は2つの色域間の色域の広さの差が小さい(例えば、第1の色域/第2の色域の比が1.2以下)場合の彩度(S)に対する合成比率rの値を示したものである。この場合、入力色データ21(RGB)と第1の変換色データ22(R’G’B’)との合成の割合が等しいr=0.5のときの彩度(S)の閾値がS0になるように設定している。すなわち、彩度(S)がかなり高い閾値S0から急激に入力色データ21(RGB)の比率が高くなるように設定する。
また、図5は2つの色域間の色域の広さの差が中ぐらい(例えば、第1の色域/第2の色域の比が1.2~1.5)の場合の彩度(S)に対する合成比率rの値を示したものである。この場合、合成比率r=0.5のときの彩度(S)の閾値がS1になるように設定している。すなわち、彩度(S)が中位の閾値S1からゆるやかに入力色データ21(RGB)の比率が高くなるように設定する。
また、図6は2つの色域間の色域の広さの差が大きい(例えば、第1の色域/第2の色域の比が1.5を超える)場合の彩度(S)に対する合成比率rの値を示したものである。この場合、合成比率r=0.5のときの彩度(S)の閾値がS2になるように設定している。すなわち、彩度(S)がかなり小さい閾値S2から急激に入力色データ21(RGB)の比率が高くなるように設定する。
このように、2つの色域間の色域の広さの差が大きいほど、広い色域において入力色データ21が合成色データ23として用いられる。また、同じ彩度(S)にて比較した場合、2つの色域間の色域の広さの差が大きいほど、入力色データ21の合成比率が高くなる。
またこのように、色相(H)と明度(V)との組(図3A~図3Cの縦軸)ごとに、図4~図6に示すような彩度(S)に対する合成比率rの値が設定される。
なお、肌色など色味をできるだけ変えたくない上記保存色範囲では、第1の変換色データ22(R’G’B’)を合成する比率が高くなるように設定する。例えば、肌色に対しては、色相(H)が赤、黄色、及びマゼンタの色範囲で明度(V)が中位から高い範囲で第1の変換色データ22(R’G’B’)の合成比率を高くし、逆に入力色データ21(RGB)の合成比率を低くする。また、彩度(S)の閾値の設定では合成比率r=0.5のときの彩度(S)の閾値が0.5~0.8の範囲になるように設定する。
言い換えると、入力色データ21が圧縮色範囲に含まれる場合、合成比率rは、上述したような2つの色域間の色域の広さ、色相(H)、彩度(S)、及び明度(V)により決定され、保存色範囲では、圧縮色範囲と同様の方法で決定される場合よりも、第1の変換色データ22を合成する比率が高くなるように設定する。例えば、色合成部12は、入力色データ21が、第1の色範囲(肌色等)にある場合、第1の変換色データ22を合成色データ23として出力する。
なお、本実施例では上記合成比率rの関数としてシグモイドの非線形な関数を使用したが線形な関数でも良い。
次に、入力色データ20(RGB)と第1の変換色データ22(R’G’B’)とを合成した合成色データ23とその色度点との例を、図7A~図7C及び図8に示す。
図7Aは、第1の色域であるAdobeRGBで8ビットの入力色データ20(RGB)と、当該入力色データ21(RGB)を逆ガンマ変換したうえで上記式(1)を用いてXYZ変換した後のYxyの色度値30とを示す図である。図7Bは、Yxyの色度値30をXYZ変換後に上記式(2)を用いて、第2の色域であるsRGBへ変換し、さらに変換した値をガンマ変換することにより0から255の8ビットのR’G’B’に変換した第1の変換色データ22(R’G’B’)の値を示す図である。但し、第1の変換色データ22は、上記式(2)でRGB値が0以下の場合は0に、1以上の場合は1にクリップした値である。図7Cは、入力色データ21であるAdobeRGBのデータと、sRGBへ圧縮クリッピングされたデータを上記の設定に沿った合成比率r値で合成した合成色データ23の値と、当該合成色データ23のYxyの色度値31とを示す図である。
上記図7AのAdobeRGBのデータ(入力色データ20)は緑(G)レベル値を変化させ、輝度を示すYをできるだけ一定にした場合のサンプルデータを示している。この色域圧縮変換の結果をxyの色度値で比較したのが図8である。図8において、第1の色域のAdobeRGBのデータのxy値(図7AのYxyの色度値30)を黒丸で示し、第1の色域AdobeRGBのデータから第2の色域sRGBのデータへ圧縮されたデータのxy値(図7CのYxyの色度値31)を白丸で示す。このように、AdobeRGBからsRGBへ色域圧縮の結果は、肌色に近い白色付近の色度値の変位はほとんどなく、また相対的な色関係は変わらずに、色階調の連続性も維持されている。
色データ出力部13は、色合成部12で合成された合成色データ23を出力色データ24として出力する。この色データ出力部13は、出力色データ24をデスプレイ、プロジェクター又はプリンターなどの出力デバイスに出力する。上記の実施例ではその出力デバイスはsRGB色域のデスプレイである。
なお、上記実施例はAdobeRGB色域からsRGB色域への色域圧縮で説明したが、規格などの特定の色域に限らずその他のより広い色域からより狭い色域へ色域圧縮する場合も同様にして変換できることは言うまでもない。
以上のように、本発明の実施の形態1に係る色変換出力装置100は、色域の広い入力色データ21を色域の狭い出力デバイスへ圧縮マッピングした第1の変換色データ22と、圧縮マッピングせずにデバイス色域に依存して出力する入力色データ21とを合成した合成色データ23を出力する。
さらに色変換出力装置100は、肌色など色味が変化してはいけない色データには、再現可能な色域内の色データ、すなわち圧縮マッピングした第1の変換色データ22を主に用いる。また、色変換出力装置100は、出力デバイスで再現できない色域外の入力色データには、出力デバイスの色域に依存して再現される入力色データ21を主に合成する。さらに色変換出力装置100は、それらの入力色データ21と第1の変換色データ22とを色相、彩度及び明度によって適度に合成して出力する。これらにより、色変換出力装置100は、出力デバイスの色域内で相対的な色関係を変えることなく、肌色などの色味も変えず色階調の連続性も維持できる。
次に、色域拡張、すなわち入力色データ20の色域が色データ出力部13により出力される出力色データ24の色域よりも狭い場合について説明する。例えば、上記色域圧縮と逆のsRGBで撮影された写真をAdobeRGB対応のデスプレイへ出力する場合、又はBT.709の映像信号をNTSC色域対応のデスプレイへ表示する場合である。図2に示すようにAdobeRGBやNTSCの色域はsRGBやBT.709の色域よりも広いため、色域を拡張する必要がある。
色域拡張は上記色域圧縮と全体の基本的構成は変わらないが、第1の色マッピング部11と色合成部12の機能が幾分異なる。また、色データ取得部10及び色データ出力部13について扱う入力色データと出力色データが逆になるだけで基本的な仕組みは変わらない。このため、色域拡張で特に異なる部分を中心に説明する。なお、本実施例は上記色域圧縮の実施例と逆に、sRGBからAdobeRGBへの色域変換について説明する。
色データ取得部10は、外部から入力された画像データ(入力色データ20)をRGBのリニア(線形)な入力色データ21に変換する。sRGBのガンマ(γ)は0.45なので、色データ取得部10は、入力されたRGBの入力色データ20をレベル幅(8bitでは255)で除算することで正規化(0.0~1.0の値に)した後、逆γの2.2をベキ乗することでリニア(線形)な値に変換することにより入力色データ21を生成する。
第1の色マッピング部11は、色データ取得部10から供給された入力色データ21を出力色データ24の色域内の色データにマッピングすることにより第1の変換色データ22を生成する。具体的には、第1の色マッピング部11は、このときのマッピングとして、出力デバイスのAdobeRGB色域内でsRGB色域の色域を変位させず色度点を維持したまま(色度変位させず)、すなわち、拡張及び圧縮せずにマッピングする。
具体的には、AdobeRGBはsRGBよりも色域が広いため、第1の色マッピング部11は、色データ取得部10から供給されたsRGBの入力色データ21を一旦デバイスに依存しない色空間、例えばXYZのデバイス非依存型色空間のデータに変換した後、変換したXYZ値を出力デバイスのAdobeRGBの色域のRGBとして逆変換することにより第1の変換色データ22を生成する。
例えば、第1の色マッピング部11は、sRGBのRGBからXYZへの変換を、式(6)を用いて行い、XYZからAdobeRGBのRGBへの変換を、式(7)を用いて行う。
上記式(6)と式(7)とによって、sRGBからAdobeRGBへマトリックス変換された第1の変換色データ22(RGB)は、AdobeRGBの色域内でsRGBの色域の色度点を維持している(すなち、入力色データ21の色度点を保持した色度保存マッピング)。
色合成部12は、色データ取得部10から出力された入力色データ21(RGB)と上記第1の色マッピング部11でマッピングされた第1の変換色データ22(R’G’B’)とを合成することで合成色データ23を生成する。
ここで色合成部12は、肌色など色味が変わると人に違和感を生じる色はできるだけ第1の色マッピング部11でマッピング(上記色度保存マッピング)された第1の変換色データ22(R’G’B’)の比率が高くなるように、逆に出力デバイスの色域境界及びその近傍の色は入力色データ21(RGB)の比率が高くなるように入力色データ21と第1の変換色データ22とを合成する。
具体的な合成方法は、上記色域圧縮と同様に、まず、入力色データ21(RGB)から色相(H)、彩度(S)及び明度(V)を算出する。次に、肌色など色味をできるだけ変えたくない色範囲(以下、保存色範囲と呼ぶ)と、そうでない、すなわち拡張したい色範囲(以下、拡張色範囲)を色相(H)、彩度(S)及び明度(V)を用いて分けるとともに、その色相(H)、彩度(S)及び明度(V)の値によって入力色データ21(RGB)と上記マッピング(上記色度保存マッピング)された第1の変換色データ22(R’G’B’)との合成比率を変えて合成する。
合成比率をrで表し、その範囲を0.0~1.0で示すとした場合、r=1.0は合成色データ23において入力色データ21(RGB)の占める割合が100%のときであり、r=0.0は合成色データ23において第1の変換色データ22(R’G’B’)の占める割合が100%のときである。従ってrがその間の値の場合は、色合成部12は、入力色データ21(RGB)と第1の変換色データ22(R’G’B’)とを合成比率rで合成する。つまり、色合成部12は、入力色データ21(RGB)にrを乗算し、第1の変換色データ22(R’G’B’)に1-rを乗算し、それぞれを足し合わせることにより、合成色データ23を生成する。
但し、上記合成比率rは色相(H)、彩度(S)及び明度(V)によって異なる。例えば、AdobeRGBの色域からsRGBの色域へ変換するとき、色相(H)については特に緑色(G)、黄色(Y)、シアン(C)の色領域が狭まるため、この領域で入力色データ21(RGB)の合成比率を高めに設定する。
また、彩度(S)については全ての色相について彩度が高くなるにつれ入力色データ21(RGB)の合成比率を高めに設定する。このとき、色相及び明度によって合成比率の設定を調整する。
また、明度(V)については明度が比較的高いとき入力色データ21(RGB)の合成比率を高めに設定する。このとき、彩度及び色相によって合成比率の設定を調整する。
また、合成比率rの基本的な設定は、第1の色域と第2の色域の色域の広さの差(又は比)に基づいて設定される。第1の色域が第2の色域よりも広く第2の色域へ色域圧縮する場合、第2の色域を超える第1の色域の広さが大であればある程、入力色データ21(RGB)の合成比率を高めに設定する。但し、2つの色域間の色域の広さの差(又は比)は色相(H)、彩度(S)、明度(V)によって均一ではなく異なる場合が多いため、色相(H)、彩度(S)、明度(V)によって合成比率を調整する。
図9A~図9Cは、3つの異なる色相(H0、H1、H2)について2つの色域間の広さの違いとそのときの合成比率の大きさを視覚的に示す図である。また、図9A~図9Cでは、狭い色域の第1の色域からそれより広い色域の第2の色域へ拡張する場合を示している。また、図9A~図9Cでは、2つの色域間の色域の広さ差は斜線部分で示してある。そしてこの斜線部分の領域が広い程、それはちょうど白い矢印の大きさで示したように、入力色データ21(RGB)の合成比率を高く設定する。例えば、図9Aに示す色相H2では、2つの色域間の色域の広さ差が比較的大きく、図9Cに示す色相H0では、2つの色域間の色域の広さ差が比較的小さく、図9Bに示す色相H1では、2つの色域間の色域の広さ差は、色相H0と色相H2の場合の中間である。
更に具体的に、ある色相(例えば図9A~図9CのH0~H2)のある明度(例えば図9A~図9Cの横軸に示す明度(V))のときの、彩度(S)の大きさに対する合成比率rの設定を説明する。図4は2つの色域間の色域の広さの差が小さい(例えば、第1の色域/第2の色域の比が1.2以下)場合の彩度(S)に対する合成比率rの値を示したものである。この場合、入力色データ21(RGB)と第1の変換色データ22(R’G’B’)との合成の割合が等しいr=0.5のときの彩度(S)の閾値がS0になるように設定している。すなわち、彩度(S)がかなり高い閾値S0から急激に入力色データ21(RGB)の比率が高くなるように設定する。
また、図5は2つの色域間の色域の広さの差が中ぐらい(例えば、第1の色域/第2の色域の比が1.2~1.5)の場合の彩度(S)に対する合成比率rの値を示したものである。この場合、合成比率r=0.5のときの彩度(S)の閾値がS1になるように設定している。すなわち、彩度(S)が中位の閾値S1からゆるやかに入力色データ21(RGB)の比率が高くなるように設定する。
また、図6は2つの色域間の色域の広さの差が大きい(例えば、第1の色域/第2の色域の比が1.5を超える)場合の彩度(S)に対する合成比率rの値を示したものである。この場合、合成比率r=0.5のときの彩度(S)の閾値がS2になるように設定している。すなわち、彩度(S)がかなり小さい閾値S2から急激に入力色データ21(RGB)の比率が高くなるように設定する。
このように、2つの色域間の色域の広さの差が大きいほど、広い色域において入力色データ21が合成色データ23として用いられる。また、同じ彩度(S)にて比較した場合、2つの色域間の色域の広さの差が大きいほど、入力色データ21の合成比率が高くなる。
またこのように、色相(H)と明度(V)との組(図9A~図9Cの縦軸)ごとに、図4~図6に示すような彩度(S)に対する合成比率rの値が設定される。
なお、肌色など色味をできるだけ変えたくない上記保存色範囲では、第1の変換色データ22(R’G’B’)を合成する比率が高くなるように設定する。例えば、肌色に対しては、色相(H)が赤、黄色、及びマゼンタの色範囲で明度(V)が中位から高い範囲で第1の変換色データ22(R’G’B’)の合成比率を高くし、逆に入力色データ21(RGB)の合成比率を低くする。また、彩度(S)の閾値の設定では合成比率r=0.5のときの彩度(S)の閾値が0.5~0.8の範囲になるように設定する。
なお、本実施例では上記合成比率rの関数としてシグモイドの非線形な関数を使用したが線形な関数でも良い。
次に、入力色データ21(RGB)と、第1の色マッピング部11でマッピング(上記色度保存マッピング)された第1の変換色データ22(R’G’B’)とを合成した合成色データ23とその色度点との例を、図10A~図10C及び図11に示す。
図10Aは、第1の色域であるsRGBで8ビットの入力色データ20(RGB)と、入力色データ20(RGB)を逆ガンマ変換したうえで上記式(6)を用いてXYZ変換した後のYxyの色度値30とを示す図である。図10Bは、Yxyの色度値30をXYZ変換した後式(7)を用いて第2の色域であるAdobeRGBへ変換し、変換した値をガンマ変換することにより0から255の8ビットのR’G’B’に変換した第1の変換色データ22(R’G’B’)の値を示す図である。図10Cは、入力色データ21であるsRGBのデータと、AdobeRGBへマッピングされたデータとを上記の設定に沿った合成比率r値で合成した合成色データ23の値と、当該合成色データ23のYxyの色度値31とを示す図である。
上記図10AのsRGBのデータ(入力色データ20)は緑(G)レベル値を変化させ、輝度を示すYをできるだけ一定にした場合のサンプルデータを示している。この色域拡張変換の結果をxyの色度値で比較したのが図11である。図11において、第1の色域のsRGBのデータのxy値(図10AののYxyの色度値30)を白丸で示し、第1の色域sRGBのデータから第2の色域AdobeRGBのデータへ拡張されたデータのxy値(図10CのYxyの色度値31)を黒丸で示す。このように、sRGBからAdobeRGBへ色域拡張の結果は、肌色に近い白色付近の色度値の変位はほとんどなく、また相対的な色関係は変わらずに、色階調の連続性も維持されている。
色データ出力部13は、色合成部12で合成された合成色データ23を出力色データ24として出力する。この色データ出力部13は、出力色データ24をデスプレイ、プロジェクター又はプリンターなどの出力デバイスに出力する。上記の実施例ではその出力デバイスはAdobeRGBの色域対応デスプレイである。
なお、上記実施例はsRGB色域からAdobe色域への色域拡張で説明したが、規格などの特定の色域に限らずその他のより狭い色域からより広い色域へ色域拡張する場合も同様にして変換できることは言うまでもない。
また、図12は、本発明の実施の形態1に係る色変換出力装置100の変形例である色変換出力装置101の構成を示すブロック図である。図12に示すように、外部から入力される入力色データ20をRGBのリニアな入力色データ21に変換する前の入力色データ20を色合成部12において合成してもよい。
具体的には、図12に示す色変換出力装置101は、色データ取得部10と、第1の色マッピング部11と、色データ出力部13と、色合成部12とを備える。色データ取得部10は、外部から入力される入力色データ20をRGBのリニアな入力色データ21に変換(逆ガンマ変換)する。第1の色マッピング部11は、変換された入力色データ21をマッピングすることにより第1の変換色データ22を生成する。色データ出力部13は、第1の変換色データ22を出力デバイスで表示可能なように変換(ガンマ変換)することにより色データ28を生成する。色合成部12は、逆ガンマ変換前の入力色データ20と、色データ28と合成する。
また、色データ取得部10、色合成部12及び、色データ出力部13をまとめてLUT(ルックアップテーブル)で構成しても構わないし、色合成部12のみをLUTで構成しても構わない。
以上のように、本発明の実施の形態1に係る色変換出力装置100は、色域の狭い入力色データ20を、色域の広い出力デバイスの色域内のデータとしてマッピングした第1の変換色データ22と、マッピングせずにデバイス色域に依存して出力する入力色データ21とを合成した合成色データ23として出力する。
さらに色変換出力装置100は、肌色など色味が変化してはいけない色データについては入力色データの色度点を変えない、すなわち入力色データ21を出力デバイスの色域内の色データには、色度変位させずにマッピングした第1の変換色データ22を主に用いる。また色変換出力装置100は、入力色データ20の色域を超え出力デバイスで再現可能な色域の色データには、出力デバイスの色域に依存して再現される入力色データ21を主に用いる。さらに色変換出力装置100は、それらの入力色データ21と第1の変換色データ22と2つの異なる色データを色相、彩度及び明度によって適度に合成する。これらにより、色変換出力装置100は、出力デバイスの色域内で相対的な色関係を変えることなく、肌色などの色味も変えずに色階調の連続性も維持できる。
次に、色変換出力装置100の色変換動作の流れを説明する。
図13は、色変換出力装置100の色変換動作の流れを示すフローチャートである。
図13に示すように、まず、色データ取得部10は、外部から入力される入力色データ20を取得する(S101)。また、色データ取得部10は、取得した入力色データ20をリニア(線形)な入力色データ21に変換する。
次に、第1の色マッピング部11は、色データ取得部10により変換された入力色データ21を出力色データ24の色域内の色データにマッピングすることにより第1の変換色データ22を生成する(S102)。
具体的には、色域圧縮の場合、第1の色マッピング部11は、入力色データ21が第2の色域内にある場合は、色度変位させず入力色データ21を第2の色域内にマッピングし、入力色データ21が第2の色域外にある場合は、当該入力色データ21を第2の色域の色域境界へマッピングする。また、色域圧縮の場合、第1の色マッピング部11は、色度変位させず入力色データ21を第2の色域内にマッピングする。
次に、色合成部12は、入力色データ21と第1の変換色データ22とを、第1の色域と第2の色域とに応じた比率で合成することにより合成色データ23を生成する(S103)。具体的には、色合成部12は、入力色データ21の色相及び明度における第1の色域と第2の色域の広さの差が大きくなるにつれ、入力色データ21の比率が高くなるように、第1の変換色データ22と入力色データ21とを合成する。
次に、色データ出力部13は、合成色データ23を出力色データ24として出力デバイスに出力する(S104)。
(実施の形態2)
本発明の実施の形態2に係る色変換出力装置は、上述した実施の形態1に係る色変換出力装置100の変形例である。
本発明の実施の形態2に係る色変換出力装置は、上述した実施の形態1に係る色変換出力装置100の変形例である。
なお、以下では、上述した実施の形態1と重複する説明は省略し、相違点のみを説明する。
図14は、本発明の実施の形態2に係る色変換出力装置200の基本的な構成を示すブロック図である。この色変換出力装置200は、実施の形態1に係る色変換出力装置100の構成に加え、さらに、色データ取得部10により出力される入力色データ21を第2の色域内での第2の変換色データ25としてマッピングする第2の色マッピング部14を備える。
なお、出力デバイスの色域は、通常変換先の第2の色域かそれに非常に近似した色域であることが多いが、本発明の実施の形態2では出力デバイスの色域に個体バラツキや経時変化がある場合を考慮し、第2の色域から幾分ずれていることも想定したうえで第2の色域内の色データとして正しく出力させる場合について説明する。
第2の色マッピング部14は、入力色データ21を第2の色域の色データとみなし第2の色域へマッピングすることにより第2の変換色データ25を生成する。
まず、色域圧縮、すなわち色データ取得部10に入力された第1の色域の入力色データ20の色域が変換先の第2の色域よりも広い場合について説明する。例えば、AdobeRGBで撮影された写真をsRGB(standard RGB)のデスプレイへ出力する場合、図15に示すようにAdobeRGBの色域はsRGBの色域よりも広いため、色域を圧縮する必要がある。もし、色変換せずにsRGBの色域へ出力すると色が薄くなり彩度が低下して見える。
第2の色マッピング部14は、上記第1の色マッピング部11と同様に、入力色データ21(R、G、B)を一旦デバイスに依存しない色空間であるデバイス非依存型色空間の色度値(例えば、XYZ)に変換し、その色度値を第2の色域内のXYZ値として、元のRGBの色データへ逆変換する。
具体的には、第2の色マッピング部14は、入力色データ21上記式(2)の逆変換を用いて、XYZ値に変換し、その後、上記式(2)を用いてRGBの色データへ変換する。つまり、入力色データは本来AdobeRGB色域のRGBデータであるが、それをsRGB色域のRGBデータとみなしてXYZへ変換し、それをsRGB色域のRGBデータへ逆変換しても同じ値になる。従って、この場合実際には、第2の色マッピング部14は、色データ取得部10から供給された入力色データ21をそのまま第2の変換色データ25として出力してもよい。
なお、第2の色マッピング部14は、色データ取得部10から供給された入力色データ21(R、G、B)を上記式(1)で変換した後、予め定められた色度値を、予め定められた別の色度値へマッピングする特定マッピングを行った後で、上記式(2)を用いてRGBデータに逆変換することにより第2の変換色データ25を生成してもよい。言い換えると、特定マッピングとは、入力色データ21の色度値が第1の色域の予め定められた第1の色範囲に含まれる場合、当該入力色データ21を、第2の色域の、上記第1の色範囲に対応付けられた色データへマッピングすることである。
例えば、第2の色マッピング部14は、特に第1の色域の境界及びその周辺の色度値が第2の色域の境界及びその周辺の色度値にできるだけシフトするような特定マッピングを行ってもよい。これにより、出力デバイスの色域と同一又は近似した色域内に、色データをシフトできる。または、第2の色マッピング部14は、絵づくりや見栄えの目的で、ある色範囲の色相、彩度又は明度を所定の色相、彩度又は明度へ変更するために第1の色域の特定の色度値を第2の色域の特定の色度値へ変更するような特定マッピングを行ってもよい。例えば、この特定マッピングは、空の青色を実際より、より青い色度値へシフトさせる。これらの場合、入力色データ21と第2の変換色データ25とは異なる。
色合成部12は、第1の色マッピング部11でマッピングされた第1の変換色データ22(R1、G1、B1)と第2の色マッピング部14でマッピングされた第2の変換色データ25(R2、G2、B2)とを合成することにより、合成色データ23を生成する。
ここで色合成部12は、肌色など色味が変わると人に違和感を生じる色はできるだけ圧縮クリッピングされた第1の変換色データ22(R1、G1、B1)の比率が高くなるように、逆に第2の色域境界及びその近傍の色は第2の変換色データ25(R2、G2、B2)の比率が高くなるように第1の変換色データ22と第2の変換色データ25とを合成する。
具体的な合成方法としては、例えば、まず、第2の変換色データ25(R2、G2、B2)が入力色データ21(R、G、B)と同じ場合、色合成部12は、第2の変換色データ25(R2、G2、B2)から色相(H)、彩度(S)及び明度(V)を算出する。例えば、色合成部12は、上記の式(5)、又は上記の式(3)と式(4)とを用いる。
なお、第2の変換色データ25(R2、G2、B2)が入力色データ21(R、G、B)と異なる場合、すなわち第2の色マッピング部14が上記特定マッピングを行う場合は、図16に示すように、色合成部12は、色データ取得部10から入力色データ21を取得し、この入力色データ21(R、G、B)から色相(H)、彩度(S)及び明度(V)を算出する。
また、第2の変換色データ25(R2、G2、B2)が入力色データ21(R、G、B)と同じ場合の、色合成部12による合成比率rの設定方法は、実施の形態1と同様であり説明は省略する。
なお、第2の色マッピング部14が上記特定マッピングを行う場合も基本的に上記の合成比率に従うが、特定マッピングで特に設定されたマッピング範囲については第2の変換色データ25(R2、G2、B2)の合成比率を高めに設定する。
また、第2の変換色データ25(R2、G2、B2)が入力色データ21(R、G、B)と同じ場合の、色合成部12による合成比率rの設定方法は、実施の形態1と同様であり説明は省略する。
また、第2の変換色データ25(R2、G2、B2)が入力色データ21(R、G、B)と同じ場合における、第1の変換色データ22(R1、G1、B1)と第2の変換色データ25(R2、G2、B2)とを合成した合成色データ23とその色度点との例は、図7A~図7C及び図8と同様であり説明は省略する。
以下、出力デバイスの色域に個体バラツキや経時変化がある場合を想定し、色データ出力部13が、第2の色域から幾分ずれている出力デバイス1に出力色データ24を出力する場合について説明する。
図17A~図17Dは、それぞれ、AdobeRGB、sRGB、出力デバイス1及び出力デバイス2のRGB三原色の色度座標のxy値を示す図である。また、図18は、AdobeRGB、sRGB及び出力デバイス1の色域を示す図である。
例えば、出力デバイス1の色域が図17Cに示すRGB三原色の色度座標xy値で表されるとして、合成色データ23を上記第2の色域の色データとして正確に出力する場合、色データ出力部13は、合成色データ23のxy値(図7CのYxyの色度値31)をXYZに変換したうえで、下記式(8)で変換することによりRGBデータを生成し、生成したRGBデータをガンマ変換した後、8ビットのRGB値に変換する。これにより、例えば、色データ出力部13は、図19に示す出力色データ24(R、G、B)を生成する。
なお、上記実施例はAdobeRGB色域からsRGB色域への色域圧縮で説明したが、規格などの特定の色域に限らずその他のより広い色域からより狭い色域へ色域圧縮する場合も同様にして変換できることは言うまでもない。また、出力デバイスの色域が上記第2の色域の非常に近似している場合(例えば、視覚的に色差が識別できない程度の場合)には、色データ出力部13は、合成色データ23をそのまま出力色データ24として出力デバイスに出力してもよい。
以上のように、本発明の実施の形態2に係る色変換出力装置200は、第1の色域の入力色データ20をそれより色域の狭い第2の色域の色データへ変換するとき、すなわち入力色データ20の色域が、出力色データ24の第2の色域よりも広いとき、入力色データ21を第2の色域へ圧縮マッピングした第1の変換色データ22と、入力色データ21を第2の色域の色データとして第2の色域へマッピングした第2の変換色データ25(入力色データ21と同じ)とを合成した合成色データ23を出力する。または、色変換出力装置200は、入力色データ21を第2の色域へ圧縮マッピングした第1の変換色データ22と、入力色データ21を第2の色域の特定の色へマッピングした第2の変換色データ(入力色データ21と異なる)とを合成した合成色データ23を出力する。
このとき色変換出力装置200は、肌色など色味が変化してはいけない色データには、再現可能な色域内の色データである第1の変換色データ22すなわち圧縮マッピングした色データを主に用いる。また、色変換出力装置200は、第2の色域外の入力色データ21には、第2の色域に依存して再現される入力色データ、又は特定の色へマッピングされた色データを主に用いる。さらに色変換出力装置200は、それらの第1の変換色データ22と第2の変換色データ25とを色相、彩度及び明度によって適度に合成して出力する。これらにより、色変換出力装置200は、肌色などの色味や出力デバイスの色域内で相対的な色関係を変えることもなく、色階調の連続性を維持できる。
次に、色域拡張、すなわち入力色データ20の色域が第2の色域よりも狭い場合について説明する。例えば、上記色域圧縮とは逆に、sRGBで撮影された写真をAdobeRGB対応のデスプレイへ出力する場合などである。この場合、図15に示すようにAdobeRGBの色域はsRGBの色域よりも広いため、色域を拡張する必要がある。そのまま何も処理しないでAdobeRGBの色域へ出力すると拡張された色域領域の色が鮮やかに見えるが、全体の色バランスが崩れたり色味が変わってしまい人に違和感を与える場合がある。
色域拡張は上記色域圧縮と全体の基本的構成は変わらないが各構成部分が幾分異なる。このため、色域拡張で特に異なる部分を中心に説明する。なお、本実施例は上記色域圧縮の実施例と逆に、sRGBからAdobeRGBへの色域変換について説明する。
第2の色マッピング部14は、上記色域圧縮と同様に、入力色データ21(R、G、B)を一旦デバイスに依存しない色空間であるデバイス非依存型色空間、例えばXYZの色度値に変換し、その色度値を第2の色域内のXYZとして、今度は元のRGBの色データへ逆変換する。
具体的には、第2の色マッピング部14は、入力色データ21を上記式(7)の逆変換を用いてXYZ値に変換し、その後、上記式(7)を用いてRGBの色データへ変換する。つまり、入力色データ21は本来sRGB色域のRGBデータであるが、それをsAdobeRGB色域のRGBデータとみなしてXYZの値へ変換し、それをAdobeRGB色域のRGBデータへ逆変換しても同じ値になる。従って、この場合実際には、第2の色マッピング部14は、色データ取得部10から供給された入力色データ21(R、G、B)をそのまま第2の変換色データ25(R2、G2、B2)として出力してもよい。この場合、入力色データ21(R、G、B)と第2の変換色データ25(R2、G2、B2)とは同じである。
なお、第2の色マッピング部14は、色データ取得部10から供給された入力色データ21(R、G、B)を上記式(6)で変換した後、予め定められた色度値を、別の予め定められた色度値へ特定マッピングをした後上記式(7)を用いてRGBデータに逆変換することにより第2の変換色データ25を生成してもよい。例えば、第2の色マッピング部14は、特に第1の色域の境界及びその周辺の色度値が第2の色域の境界及びその周辺の色度値にできるだけシフトするような特定マッピングを行ってもよい。これにより、出力デバイスの色域と同一又は近似した色域内に、色データをシフトできる。または、第2の色マッピング部14は、絵づくりや見栄えの目的で、ある色範囲の色相、彩度又は明度を所定の色相、彩度又は明度へ変更するために第1の色域の特定の色度値を第2の色域の特定の色度値へ変更するような特定マッピングを行ってもよい。例えば、この特定マッピングは、空の青色を実際より、より青い色度値へシフトさせる。これらの場合、入力色データ21と第2の変換色データ25とは異なる。
色合成部12は、上記第1の変換色データ22(R1、G1、B1)と上記第2の変換色データ25(R2、G2、B2)とを合成することにより合成色データ23を生成する。
ここで色合成部12は、肌色など色味が変わると人に違和感を生じる色は色度保存マッピングした第1の変換色データ22(R1、G1、B1)の比率が高くなるように設定する。また、色合成部12は、色域境界及びその近傍の色はできるだけ彩度の高い鮮やかな第2の変換色データ25(R2、G2、B2)の比率が高くなるように設定する。
具体的な合成方法としては、上記色域圧縮と同様に、まず、第2の変換色データ25(R2、G2、B2)が入力色データ21(R、G、B)と同じ場合、色合成部12は、第2の変換色データ25(R2、G2、B2)から色相(H)、彩度(S)及び明度(V)を算出する。なお、第2の変換色データ25(R2、G2、B2)が入力色データ21(R、G、B)と異なる場合、すなわち第2の色マッピング部14が上記特定マッピングを行う場合は、色合成部12は、図16に示すように色データ取得部10から入力色データ21を取得しこの入力色データ21(R、G、B)を用いて色相(H)、彩度(S)及び明度(V)を算出する。
また、第2の変換色データ25(R2、G2、B2)が入力色データ21(R、G、B)と同じ場合の、色合成部12による合成比率rの設定方法は、実施の形態1と同様であり説明は省略する。
なお、第2の色マッピング部14が上記特定マッピングを行う場合も基本的に上記の合成比率に従うが、特定マッピングでは特に設定されたマッピング範囲については第2の変換色データ25(R2、G2、B2)の合成比率を高めに設定する。
また、第2の変換色データ25(R2、G2、B2)が入力色データ21(R、G、B)と同じ場合の、色合成部12による合成比率rの設定方法は、実施の形態1と同様であり説明は省略する。
また、第2の変換色データ25(R2、G2、B2)が入力色データ21(R、G、B)と同じ場合における、第1の変換色データ22(R1、G1、B1)と第2の変換色データ25(R2、G2、B2)とを合成した合成色データ23とその色度点との例は、図10A~図10C及び図11と同様であり説明は省略する。
以下、出力デバイスの色域に個体バラツキや経時変化がある場合を想定し、色データ出力部13が、第2の色域から幾分ずれている出力デバイス2に出力色データ24を出力する場合について説明する。
図20は、AdobeRGB、sRGB及び出力デバイス2の色域を示す図である。
例えば、出力デバイス2の色域が図17Dに示すRGB三原色の色度座標xy値で表されるとして、合成色データ23を上記第2の色域の色データとして正確に出力する場合、色データ出力部13は、合成色データ23のxy値(図10CのYxyの色度値31)をXYZに変換したうえで、下記式(9)で変換することによりRGBデータを生成し、生成したRGBデータをガンマ変換した後、8ビットRGB値に変換する。これにより、例えば、色データ出力部13は、図21に示す出力色データ24(R、G、B)を生成する。
但し、この場合の出力デバイス2の色域はAdobeRGBの色域よりも少し狭いため、式(9)で変換したR、G又はBの値が0以下になった場合その値が0にクリッピングされる。このため、色階調が飽和してしまう場合がある。この対策としては色度の正確さは第2色域の境界付近で少し低下するが、上記第2の色域を出力デバイス2の色域に置き換えることで色階調の連続性を維持できる。
なお、上記実施例はsRGB色域からAdobeB色域への色域拡張で説明したが、規格などの特定の色域に限らずその他のより狭い色域からより広い色域へ色域拡張する場合も同様にして変換できることは言うまでもない。また、出力デバイスの色域が上記第2の色域の非常に近似している場合(例えば、視覚的に色差が識別できない程度の場合)には、色データ出力部13は、合成色データ23をそのまま出力色データ24として出力デバイスに出力してもよい。
以上のように、本発明の実施の形態2に係る色変換出力装置200は、第1の色域の入力色データ20をそれより色域の広い第2の色域の色データへ変換するとき、すなわち入力色データ20の色域が、出力色データ24の第2の色域よりも狭いとき、入力色データ21を第2の色域へ色度変位させず第1の色域の色度として色度保存マッピングした第1の変換色データ22と、入力色データ21を第2の色域の色データとして第2の色域へマッピングした第2の変換色データ25(入力色データ21と同じ)とを合成した合成色データ23を出力する。または、色変換出力装置200は、入力色データ21を上記色度保存マッピングした第1の変換色データ22と、入力色データ21を第2の色域の特定の色へマッピングした第2の変換色データ25(入力色データ21と異なる)とを合成した合成色データ23を出力する。
このとき色変換出力装置200は、肌色など色味が変化してはいけない色データには、色度保存マッピングした第1の変換色データ22を主に用いる。また、色変換出力装置200は、第1の色域を超える色域には、第2の色域に依存して再現される入力色データ、又は特定の色へマッピングされた色データを主に用いる。さらに色変換出力装置200は、それらの第1の変換色データ22と第2の変換色データ25とを色相、彩度及び明度によって適度に合成して出力する。これらにより、色変換出力装置200は、肌色などの色味や出力デバイスの色域内で相対的な色関係を変えることもなく、色階調の連続性を維持できる。
次に、色変換出力装置200の色変換動作の流れを説明する。
図22は、色変換出力装置200の色変換動作の流れを示すフローチャートである。
図22に示すように、まず、色データ取得部10は、外部から入力される入力色データ20を取得する(S201)。また、色データ取得部10は、取得した入力色データ20をリニア(線形)な入力色データ21に変換する。
次に、第1の色マッピング部11は、色データ取得部10により変換された入力色データ21を出力色データ24の色域内の色データにマッピングすることにより第1の変換色データ22を生成する(S202)。
また、第2の色マッピング部14は、色データ取得部10により変換された入力色データ21を出力色データ24の色域内の色データとみなしてマッピングすることにより第2の変換色データ25を生成する(S203)。
次に、色合成部12は、第1の変換色データ22と第2の変換色データ25とを合成することにより合成色データ23を生成する(S204)。
次に、色データ出力部13は、合成色データ23を出力色データ24として出力デバイスに出力する(S205)。
なお、ステップS202とステップS203との順序は任意でよく、ステップS202の前にステップS203を行ってもよいし、ステップS202とステップS203とを同時に行ってもよい。
なお、上述した実施の形態1に係る色変換出力装置100の変形例(図12)と同様に、色データ出力部13が第1の変換色データ22及び第2の変換色データ25を出力デバイスで表示可能なように変換(ガンマ変換)し、色合成部12が当該変換後の2つのデータを合成してもよい。
(実施の形態3)
本発明の実施の形態3に係る色変換出力装置は、上述した実施の形態2に係る色変換出力装置100の変形例である。
本発明の実施の形態3に係る色変換出力装置は、上述した実施の形態2に係る色変換出力装置100の変形例である。
なお、以下では、上述した実施の形態1又は2と重複する説明は省略し、相違点のみを説明する。
図23は、本発明の実施の形態3に係る色変換出力装置300の基本的な構成を示すブロック図である。この色変換出力装置300は、実施の形態1に係る色変換出力装置100の構成に加え、さらに、入力色データ21における色域が変換後の第2の色域内に含まれる色域領域か含まれない色域領域かを判定する色域領域判定部15を備える。また、第1の色マッピング部11の機能が実施の形態2と異なる。
なお、ここでは、色データ出力部13の出力デバイスの色域は、通常、変換先の第2の色域及びそれに非常に近似した(色域の差が視覚的に識別できない)色域である場合を前提とする。
いま、第1の色域と第2の色域とを、図24に示すsRGB(standard RGB)の色域と出力デバイスの色域とを、xyの色度値(以下、xy色度値)を用いる場合を例に説明する。図24に示すようにsRGBの色域と出力デバイスの色域とは一致しない。つまり、黄色などの色範囲では、sRGBの色域の方が出力デバイスの色域よりも広く、シアンなどの色範囲では、出力デバイスの色域の方がsRGBの色域よりも広い。
図24のように、第1の色域であるsRGBの入力色データが第2の色域である出力デバイスの色域で完全に包含できない場合、一部の色範囲の色域には色域圧縮を行い、別の一部色範囲の色域には色域拡張を行わないと色の再現範囲、色の階調性及び色の連続性が劣化する。
すなわち、本実施例で言えば、図25に示す色域領域40は、第1の色域のsRGBの色域と第2の色域の出力デバイスの色域とで共通な色域領域である。言い換えると、色域領域40は、第1の色域のうち第2の色域内に含まれる色域領域である。逆に第1の色域のうち色域領域40以外の色域領域が第1の色域のうち第2の色域内に含まれない色域領域41であり、第2の色域のうち色域領域40以外の色域領域が第2の色域のうち第1の色域内に含まれない色域領域42である。
従って、sRGBの色データを第1の色域から第2の色域へ色域圧縮又は色域拡張する必要がある。すなわち、図26の矢印で示したようにsRGBの色域が出力デバイスの色域よりも広い色域領域41では内向きの矢印で示したようにsRGBの色データを色域圧縮し、出力デバイスの色域がsRGBの色域よりも広い色域領域42では外向きの矢印で示したようにsRGBの色データを色域拡張する必要がある。
色データ取得部10は、入力色データ20を入力色データ21に変換し、変換した入力色データ21を、色域領域判定部15、第1の色マッピング部11及び第2の色マッピング部14へ供給する。
色域領域判定部15は、上記第1の色域であるsRGB色域の入力色データ21が上記第2の色域である出力デバイス色域内に含まれるか否かを判定する。本実施例で言えば、図25に示す第1の色域のsRGBの色域と第2の色域の出力デバイスの色域とに共通な色域領域40に、上記入力色データ21の色度、例えばxy値が含まれるか否かを判定する。なお、色域領域判定部15は、入力色データ21のxy色度値は上記式(6)を用いて入力色データ21のRGB値をXYZ値へ変換し、変換したXYZ値と式(10)とを用いてxy値を算出する。
色域領域判定部15は、上記入力色データ21が第2の色域の出力デバイスの色域内に含まれる場合、入力色データ21の色域が第2の色域内であることを示す色域内識別信号26を第1の色マッピング部11へ供給する。逆に、上記入力色データ21が第2の色域の出力デバイスの色域内に含まれない場合、入力色データ21の色域が第2の色域外であることを示す色域外識別信号27を第1の色マッピング部11へ供給する。
第1の色マッピング部11は、色データ取得部10から供給された色データを第2の色域内の色データとしてマッピングする。このとき第1の色マッピング部11は、上記色域領域判定部15から入力色データ21の色域が第2の色域内であることを示す色域内識別信号26を受けている場合には、第1の色域の色データを第2の色域内へ第1の色域のまま色度変位させずにマッピングする。また、上記色域領域判定部15から入力色データ21の色域が第2の色域外であることを示す色域外識別信号27を受けている場合には、第1の色マッピング部11は、第1の色域の色データを第2の色域の色域境界へマッピングする。
具体的には、第1の色マッピング部11は、RGBの入力色データ21を一旦デバイスに依存しない色空間であるデバイス非依存型色空間、例えばCIEのXYZ又はxyの色度値に変換し、その色度値を第2の色域内のXYZ又はxyの値としてマッピングし、マッピングしたXYZ又はxyの値を元のRGBの色データへ逆変換することにより第1の変換色データ22を生成する。
入力色データ21がsRGBのRGBデータの場合、第1の色マッピング部11は、RGBからXYZへの変換を上記式(6)を用いて行う。また、第1の色マッピング部11は、xyの色度値へは、さらに上記式(10)を用いて変換する。また、第1の色マッピング部11は、第2の色域内へマッピング後、元のRGBへ逆変換するために、式(11)及び式(12)を用いる。
本実施例のマッピングでは、第1の色マッピング部11は、基本的に上記で説明したクリッピングを用いる。クリッピングによる色域圧縮は、出力デバイスの色域内で再現可能な色を忠実に再現できるという長所がある。ここで、肌色など色味が変わると人に違和感を与える色は入力色データの色度をできるだけ変位させないようにする必要がある。よって、彩度が高くない色の範囲は出力デバイスの色域内で再現可能な、しかも入力色データの色度点(例えば、xyのような色度値で示される点)をそのまま再現するクリッピングが適する。
最も単純なクリッピング圧縮は、例えば、RGBの色域へ変換する際に、上記式(6)、上記式(10)、上記式(11)及び上記式(12)の一連の変換において、上記式(12)でR、G又はBの値が0以下になった場合その値を0に、1以上の場合は1にすることである。なお、クリッピングについては、色域で再現できない色域外の色を、色差が最小になるような方向へ圧縮する方法を用いてもよいし、明度又は彩度が最短の色を選択するなどしてもよい。この場合、第1の色マッピング部11は、XYZ値を、上記式(3)及び上記式(4)を用いてL*a*b*空間の色度値に変換したうえで明度(L)、彩度(C)、及び色相(H)を算出する。次に、第1の色マッピング部11は、算出した明度(L)、彩度(C)、及び色相(H)の値を用いて、色差、明度又は彩度をもとにクリッピングする。
上記第1の色マッピング部11でマッピングされた第1の変換色データ22は色合成部12へ供給される。
第2の色マッピング部14は、上記第1の色域の色データを上記第2の色域の色データとみなし第2の色域の色データへマッピングすることにより第2の変換色データ25を生成する。または、第2の色マッピング部14は、上記第1の色域の色データを上記第2の色域の所定の色データへ特定マッピングすることにより第2の変換色データ25を生成する。
第2の色マッピング部14が第1の色域の色データを第2の色域の色データとみなし第2の色域の色データへマッピングする場合、実質的に第1の色域の色データをそのまま第2の色データとすることと同じである。すなわち、入力色データ21と第2の変換色データ25とが同じである。よって、第1の色域のsRGBの入力色データ21がそのまま第2の色域である出力デバイスの色域の色データ、つまりデバイスの色域に依存した第2の変換色データ25として色合成部12へ供給される。
一方、第2の色マッピング部14が第1の色域の色データを上記第2の色域の所定の色データへ特定マッピングする場合、第2の色マッピング部14は、RGBデータである入力色データ21を上記の式(6)及び式(10)で変換した後、所定のxy色度値へマッピングをした後上記の式(11)及び式(12)でRGBデータに逆変換することにより第2の変換色データ25を生成してもよい。
色合成部12は、第1の色マッピング部11でマッピングされた第1の変換色データ22(R1、G1、B1)と、第2の色マッピング部14でマッピングされた第2の変換色データ25(R2、G2、B2)とを合成することにより、合成色データ23を生成する。
ここで色合成部12は、肌色など色味が変わると人に違和感を生じる色はできるだけ入力色データの色度が変位しない第1の変換色データ22(R1、G1、B1)の比率が高くなるように第1の変換色データ22と第2の変換色データ25とを合成する。また、第2の色域境界及びその近傍の色は色再現範囲を確保するためできるだけ第2の変換色データ25(R2、G2、B2)の比率が高くなるように第1の変換色データ22と第2の変換色データ25とを合成する。
なお、具体的な合成方法としては、例えば、まず、第2の変換色データ25(R2、G2、B2)が入力色データ21(R、G、B)と同じ場合、色合成部12は、第2の変換色データ25(R2、G2、B2)から色相(H)、彩度(S)及び明度(V)を算出する。例えば、色合成部12は、上記式(5)を用いて、又は一旦XYZに変換後上記の式(3)と式(4)とを用いて色相(H)、彩度(S)及び明度(V)を算出する。
なお、第2の変換色データ25(R2、G2、B2)が入力色データ21(R、G、B)と異なる場合、すなわち第2の色マッピング部14が上記特定マッピングを行う場合は、図27に示すように色データ取得部10から入力色データ21を取得しこの入力色データ21(R、G、B)を用いて色相(H)、彩度(S)及び明度(V)を算出する。
次に、保存色範囲と、圧縮拡張色範囲とを、色相(H)、彩度(S)及び明度(L)を用いて分ける。また、色合成部12は、保存色範囲及び圧縮色範囲のそれぞれに対して、その色相(H)、彩度(S)及び明度(L)の値によって第1の変換色データ22(R1、G1、B1)と第2の変換色データ25(R2、G2、B2)との合成比率を変えて第1の変換色データ22と第2の変換色データ25とを合成する。
ここで、合成比率rは色相(H)、彩度(S)及び明度(L)によって異なる。例えば、sRGBの色域から出力デバイスの色域へ変換するとき、緑色(G)の色領域は色相がシアン側にずれており、またシアン(C)で色域が広くなり黄色(Y)では色域が狭くなっている。ここでは、色再現可能な範囲をできるだけ利用するように、緑色(G)、黄色(Y)、シアン(C)の色相の色域領域では、第2の変換色データ25(R2、G2、B2)の合成比率を高めに設定する。
また、彩度(S)については全ての色相について彩度が高くなるにつれ入力色データ21(RGB)の合成比率を高めに設定する。このとき、色相及び明度によって合成比率の設定を調整する。
また、明度(V)については明度が比較的高いとき入力色データ21(RGB)の合成比率を高めに設定する。このとき、彩度及び色相によって合成比率の設定を調整する。
また、合成比率rの基本的な設定は、第1の色域と第2の色域の色域の広さの差(又は比)に基づいて設定される。第1の色域が第2の色域よりも広く第2の色域へ色域圧縮する場合、第2の色域を超える第1の色域の広さが大であればある程、入力色データ21(RGB)の合成比率を高めに設定する。但し、2つの色域間の色域の広さの差(又は比)は色相(H)、彩度(S)、明度(V)によって均一ではなく異なる場合が多いため、色相(H)、彩度(S)、明度(V)によって合成比率を調整する。
また、実施の形態1及び2と同様に、色合成部12は、色域圧縮及び色域拡張を行う場合ともに、2つの色域間の色域の広さ差が広い程、第2の変換色データ25(R2、G2、B2)の合成比率を高く設定する。
なお、第2の色マッピング部14が上記特定マッピングを行う場合も基本的に上記の合成比率に従うが、特定マッピングで特に設定されたマッピング範囲については、色合成部12は、第2の変換色データ25(R2、G2、B2)の合成比率を高めに設定する。
次に、第1の変換色データ22(R1、G1、B1)と第2の変換色データ25(R2、G2、B2)とを合成することで実際に生成された合成色データ23とそのxy色度値の例を図28A、図28B及び図29に示す。ここでは、第2の変換色データ25(R2、G2、B2)が入力色データ21(R、G、B)と同じ場合について説明する。また、入力色データ20(R、G、B)と、そのYxyの色度値30とは、図10Aと同様であるとする。
図28Aは、図10Aに示すxy値(Yxyの色度値30)を上記の式(11)と式(12)とを用いて、第2の色域として出力デバイスのRGBへ逆変換し、さらに逆変換した値をガンマ変換することにより0から255の8ビットのRGB値に変換した第1の変換色データ22(R1、G1、B1)の値を示す図である。但し、図28Aに示すRGB値は上記式(12)でR、G、Bの値が0以下の場合は0に、1以上の場合は1にクリップした値である。図28Bは第2の変換色データ25(R2、G2、B2)、つまり図10Aの入力色データ20(R、G、B)と、図28Aの第1の変換色データ22(R1、G1、B1)とを上記の設定に沿った合成比率で合成した合成色データ23のRGB値と、そのYxyの色度値31の一例を示す図である。
図29は、この入力色データ20の第1の色域のsRGBのデータのxy色度値と、色変換出力装置300により色合成された合成色データ23(出力色データ24)のxy色度値とを示す図である。図29において、白丸は、第1の色域のsRGBのデータのxy値(図10AのYxyの色度値30)を示し、黒丸は、第1の色域のsRGBのデータから第2の色域の出力デバイスの色域へ変換された合成色データ23(図28BのYxyの色度値31)を示す。図29に示すように、緑色の色再現範囲をできるだけ広げることができ、肌色に近い白色付近の色度値の変位はほとんどなく、また相対的な色関係は変わらずに、色階調の連続性も維持されている。
また、合成色データ23とそのxy色度値の別の例を図30A~図30C、及び図31に示す。
図30Aは、入力色データ20(R、G、B)である第1の色域sRGBの8ビットのデータ値と、当該データ値を逆ガンマ変換して上記の式(6)と式(10)とを用いてxy値に変換したxy色度値32とを示す図である。図30Bは、xy色度値32を上記の式(11)と式(12)とを用いて、第2の色域として出力デバイスのRGBへ逆変換し、逆変換した値をガンマ変換することにより0から255の8ビットのRGB値に変換した第1の変換色データ22(R1、G1、B1)の値を示す図である。但し、図30Bに示す値は、上記式(12)でR、G、Bの値が0以下の場合は0に、1以上の場合は1にクリップした値である。図30Cは、第2の変換色データ25(R2、G2、B2)、つまり図30Aの入力色データ20(R、G、B)と、図30Bの第1の変換色データ22(R1、G1、B1)とを上記の設定に沿った合成比率で合成した合成色データ23のRGB値と、そのxy色度値33との一例を示す図である。
上記図30Aの入力色データ20であるsRGBの値は、肌色のサンプルデータと黄色(Y)の色範囲のデータとを抽出したものである。
図31は、図30Aに示す入力色データ20である第1の色域のsRGBデータのxy色度値と、色変換出力装置300により色合成した合成色データ23(出力色データ24)のxy色度値とを示す図である。図31において、白丸は、第1の色域のsRGBのデータのxy値(図30Aのxy色度値32)を示し、黒丸は、第1の色域のsRGBのデータから第2の色域の出力デバイスの色域へ変換された合成色データ23のxy値(図30Cのxy色度値)を示す。図31に示すように点線で囲んだ肌色のサンプルデータの色度は変換前と変換後でその変位が非常に小さい。また、黄色(Y)の色範囲の相対的な色関係は変わらずに、色階調の連続性も維持されている。
色データ出力部13は、色合成部12で合成された色データを出力する。出力はデスプレイ、プロジェクターあるいはプリンターなどの出力デバイスである。
なお、上記実施例はsRGB色域からある出力デバイスの色域への色変換で説明したが、規格などの特定の色域に限らず、所定の色域の入力色データあるいは入力デバイスから所定の色域の出力デバイスへ色変換する場合も同様に変換できることは言うまでもない。
以上のように、本発明の実施の形態3に係る色変換出力装置300は、入力色データ20の第1の色域が、出力色データ24の第2の色域により完全に包含できない場合、及び、出力色データ24の第2の色域が、入力色データ20の第1の色域により完全に包含できない場合であっても、肌色などの色味や出力デバイスの色域内で相対的な色関係を変えることもなく、色階調の連続性を維持できる。
次に、色変換出力装置300の色変換動作の流れを説明する。
図32は、色変換出力装置300の色変換動作の流れを示すフローチャートである。
図32に示すように、まず、色データ取得部10は、外部から入力される入力色データ20を取得する(S301)。また、色データ取得部10は、取得した入力色データ20をリニア(線形)な入力色データ21に変換する。
次に、色域領域判定部15は、入力色データ21が第2の色域内に含まれるか否かを判定する(S302)。
入力色データ21が第2の色域内に含まれる場合(S302でYes)、第1の色マッピング部11は、色データ取得部10により変換された入力色データ21を、第2の色域内へ第1の色域のまま色度変位させずにマッピングすることにより第1の変換色データ22を生成する(S303)。
一方、入力色データ21が第2の色域内に含まれない場合(S302でNo)、第1の色マッピング部11は、色データ取得部10により変換された入力色データ21を、第2の色域の色域境界へマッピングすることにより第1の変換色データ22を生成する(S304)。
ステップS303又はステップS304の後、第2の色マッピング部14は、色データ取得部10により変換された入力色データ21を出力色データ24の色域内の色データとみなしてマッピングすることにより第2の変換色データ25を生成する(S305)。
次に、色合成部12は、第1の変換色データ22と第2の変換色データ25とを合成することにより合成色データ23を生成する(S306)。
次に、色データ出力部13は、合成色データ23を出力色データ24として出力デバイスに出力する(S307)。
なお、ステップS302~S304と、ステップS305との順序は任意でよく、例えば、ステップS302の前にステップS305を行ってもよいし、ステップS305と、ステップS302~S304のうちいずれかとを同時に行ってもよい。
また、上述した実施の形態1に係る色変換出力装置100の変形例(図12)と同様に、色データ出力部13が第1の変換色データ22及び第2の変換色データ25を出力デバイスで表示可能なように変換(ガンマ変換)し、色合成部12が当該変換後の2つのデータを合成してもよい。
ところで、上記実施の形態1~3に係る色変換出力装置100、200及び300の機能は、例えば、演算装置とメモリとを備える装置が、プログラムを実行することにより実現できる。
例えば、SDI(Serial Digital Interface)、DVI(Digital Visual Interface)、HDMI(High-Definition Multimedia Interface)、USB(Universal Serial Bus)、又はIEEE1394などのインタフェースを介して、放送映像、又は、記録媒体(BD(Blu-ray Disc)、DVD(Digital Versatile Disc)、HDD(Hard Disk Drive)、CD-ROM(Compact Disc Read Only Memory)又はメモリカード)に記録された画像などの色データが、上記装置に入力される。入力された色データは、一旦上記装置が備えるメモリバッファに記録される。記録された色データは順次、演算装置(例えばCPU)へ送られ、当該演算装置により実行されるプログラムに沿って上記実施例で示したような色変換の処理を行う。色変換処理された色データは出力メモリバッファに一時蓄えられ、出力デバイス(例えばデスプレイ)の出力(又は表示)同期にあわせて出力される。
また、本発明は、上記色変換出力装置100、200又は300による特徴的なステップにより算出された、入力色データ20と出力色データ24との対応関係を示すLUT(ルックアップテーブル)を用いて実現することもできる。すなわち、本発明は、入力色データ20と出力色データ24との対応関係を示す色変換テーブルとして実現してもよい。具体的には、色変換テーブルは、例えば、図7Aに示す入力色データ20と、図7Cに示す合成色データ23(出力色データ24)との対応関係を示す。
さらに、本発明は、上記色変換テーブルを作成する色変換テーブルの作成方法として実現してもよい。具体的には、本発明にかかわる色変換テーブルの作成方法は、上記色変換出力装置100、200又は300による特徴的なステップと、当該ステップで算出された出力色データ24を、当該入力色データ20に対応する出力色データ24とした色変換テーブルを作成する作成ステップとを含む。
もちろん、上記プログラム及びLUTは、色変換出力装置100~300又は上記演算処理装置の内部又は外部のメモリ(RAM)に記録しておいたり、HDD、DVD、又は不揮発性メモリカードなどの外部記録媒体へ記録しておくことも可能である。
なお、色変換のプログラムは、入力色データ20及び出力色データ24の逆ガンマ変換及びガンマ変換、2つの異なる色域間のマトリック演算、RGBからHSV(色相、彩度、明度)変換、色マッピング演算並びに色合成演算を演算装置に実行させる。これらの変換及び演算は上記実施例で示した手順で演算装置により実行される。
また、色変換のLUT(色変換テーブル)は、例えば、入力色データ20のRGBを出力色データ24のRGBデータへマッピングするRGBからなる3次元のLUTである。このLUTは、入力色データ20(RGB)の3次元色空間の値を、色合成された結果としての出力色データ24(RGB)の3次元空間へ写像するためのものである。また色変換LUTの作成は、入力色データ20(RGB)を上記実施例で示した2つの色データの合成比率、色相(H)、彩度(S)あるいは明度(V)で2つの色域間の広さの差(又は比)に基づいて設定し、その結果としての出力色データのRGB値を色変換LUTのRGB格子点のデータとする。3次元のLUTは、例えば、16(R)×16(G)×16(B)、32(R)×32(G)×32(B)又は64(R)×64(G)×64(B)のRGB格子点からなる。この格子点の数は色変換に求められる精度によって決めればよい。各格子点のデータは例えば8ビット、又は10ビット等のデータである。
更に、RGB格子点が少ない場合はその間の値で色の不連続性が生じないように補間演算を組み込んでおいてもよい。
ここで、より具体的にRGBからなる3次元のLUTを用いた構成を、図面を参照しながら説明する。
図33は、図1に示す色データ取得部10の入力から色データ出力部13の出力までの処理を3次元LUTと3次元補間部とで構成した色変換出力装置400の構成を示す図である。
入力される入力色データ20に含まれるR信号410、G信号411及びB信号412は、3個の3次元LUT401、402及び403に入力される。3次元LUT401、402及び403は、それぞれR信号410、G信号411及びB信号412を変換することにより(R、G、B)の位置を含むLUTの格子立方体の8点のデータ413、414及び415を出力する。
これらのデータ413、414及び415はそれぞれ3次元補間部404、405及び406に入力される。3次元補間部404、405及び406は、データ413、414及び415を、データを補間するための元のデータとしてとして使用し、R信号416、G信号417及びB信号418を生成する。
RGB格子点が、例えば16×16×16の場合、3次元補間部404、405及び406は、入力されたRGBの上位4ビットによりどの格子点を使用するかを決定し、下位4ビットにより補間演算における係数を決定する。3次元補間部404、405及び406は、補間演算を3次元的に行い、また、R、G、B毎にR、G、Bのそれぞれの軸において補間を行う。
RGB格子点が16×16×16であり、RGBデータが8ビットの場合、R、G、Bそれぞれに16×16×16のLUTが必用となるため、メモリを用いてLUTを構成する場合、使用するメモリ容量としては16×16×16×3×8ビットが必要となる。
また、図1に示す色データ取得部10の出力から色データ出力部13の入力までの処理を3次元LUTと3次元補間部とで構成することも可能である。
さらに、別の具体的な構成について図面を参照しながら説明する。
図34は、合成比率を出力する3次元LUTと、その合成比率に応じ、入力された2系統の色データを混合する混合部を備える色変換出力装置500の構成を示す図である。
入力される入力色データ20に含まれるR信号510、G信号511及びB信号512はそれぞれ、R、G、Bにそれぞれ対応する混合部504、505及び506に入力される。また、R信号510、G信号511及びB信号512は、マトリクス演算部501と、3次元LUT502に入力される。
マトリクス演算部501は、図1に示す第1の色マッピング部11に相当し、上記式(1)、及び式(2)を合わせたマトリクス演算を行うことにより、R信号513、G信号514及びB信号515を生成する。
3次元LUT502は、R、G、Bに対応した合成比率rに相当する合成比率データ516を生成する。3次元補間部503は、合成比率データ516に補間演算を行うことにより合成比率データ517を生成する。なお、3次元LUT502及び3次元補間部503の動作は、図33の説明における3次元LUT401及び3次元補間部404の動作と同様である。
また、混合部504は、合成比率データ517に示される合成比率rの割合で、R信号510とR信号513とを混合することによりR信号518を生成する。混合部505は、合成比率データ517に示される合成比率rの割合で、G信号511とG信号514とを混合することによりG信号519を生成する。混合部506は、合成比率データ517に示される合成比率rの割合で、B信号512とB信号515とを混合することによりB信号520を生成する。
ここで、3次元LUT401ではLUTデータはR、G、Bの信号に相当するデータであるが、3次元LUT502ではLUTデータは合成比率rのデータであり、係数に相当するデータである。また、入力データと色マッピング後のデータとは相関があるため、合成比率rが合成後のRGBデータに及ぼす影響は、RGBデータそのものを変化させた場合の影響に比較して小さい。このため、色マッピングにおける変換前後の色域の差に依存はするが、合成比率rの精度はRGBデータそのものの精度より低くて良い。例えば、RGBデータが8ビットに対し合成比率rのビットを数ビット小さくしても(例えば5ビット)、出力データを同等レベルの品位とすることが可能となる。
RGB格子点が、16×16×16、データが8ビットの場合、LUTは16×16×16が1個で良く、ビット数が5ビットで可能とすれば、メモリを用いてLUTを構成する場合、使用するメモリ容量としては16×16×16×5ビット×1が必要である。
このため、図33の色変換出力装置400の構成と比較すると、色変換出力装置500では、マトリクス演算部501を加える必要があるが、LUTに必要な容量は1/5程度にできる。よって、色変換出力装置500をハードウェアで実現した場合、全体として規模を小さくすることが可能である。
また、例えば表示出力デバイスの変更により特性を変更する場合、図33に示す色変換出力装置400ではLUTの変更が必要となるが、図34に示す色変換出力装置500では、マトリクス演算部501がLUTとは別構成のため、マトリクス演算部501の設定を変えるのみでよい。つまり、色変換出力装置500は、特性の変更が容易である。
また、複数の表示出力デバイスに対応する場合、又は、複数のマトリクス演算特性を持ちたい場合に、図33に示す色変換出力装置400では複数のLUTのデータを例えばROMに持つ等の対応が必要となるが、図34に示す色変換出力装置500では、マトリクス演算部501の9個の係数データを1セットとし、これを複数セット持つのみでよい。
また、色変換出力装置100、200及び300の機能の一部又は全部を集積回路であるLSIとして実現してもよい。これらのLSIは、個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。さらに、色変換のLUT(色変換テーブル)を参照することで、色変換出力装置100、200及び300と同等の入出力特性を実現する色変換出力装置、又は半導体集積回路として実現してもよい。具体的には、当該色変換出力装置は、上記色変換テーブルと、当該色変換テーブルを用いて入力色データ20を出力色データ24に変換する変換部とを備える。また、記録媒体に記録された色変換テーブルを参照することで色変換処理を実現する色変換出力装置又は半導体集積回路として実現してもよい。また、上述したように、入力色データ20に含まれるRGB信号の色信号毎に異なる色変換テーブルを作成する場合には、上記変換部は、入力色データ20に含まれるRGB信号の色信号毎に作成された上記色変換テーブルを用いて入力データ20を出力色データ24に変換する。なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサーで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)、又は、LSI内部の回路セルの接続及び設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
また、上記実施の形態1~3に係る、色変換出力装置100、200、300、及びその変形例の機能のうち少なくとも一部を組み合わせてもよい。
本発明は、デスプレイ、プロジェクター、プリンター又はデジタルカメラなど製品に、CMS(カラーマネジメントシステム)として搭載され、色域変換などでの色再現性を高めることができる色変換出力装置に適用できる。また、本発明は、色変換出力方法、色変換出力プログラム、色変換テーブル、色変換テーブルの作成方法、色変換テーブル記録媒体、及び色変換集積回路に適用できる。
Claims (20)
- 第1の色域の入力色データから得られる第1の色データと第2の色データとを基に、第2の色域の出力色データを生成したうえで出力する色変換出力装置であって、
前記入力色データを前記第2の色域内にマッピングすることにより前記第1の色データを生成する第1の色マッピング部と、
前記第1の色データと前記第2の色データとを、前記第1の色域と前記第2の色域とに応じた比率で合成することにより合成色データを生成する色合成部と、
前記合成部で合成された合成色データを前記出力色データとして出力する色データ出力部とを備える
色変換出力装置。 - 前記第1の色マッピング部は、前記第1の色域が前記第2の色域を全て含む場合、前記第1の色域の前記入力色データを前記第2の色域内へ圧縮マッピングすることにより前記第1の色データを生成し、
前記色合成部は、前記第1の色域の前記入力色データを前記第2の色データとみなし、前記第1の色データと前記第2の色データとを合成する
請求項1記載の色変換出力装置。 - 前記第1の色マッピング部は、前記圧縮マッピングとして、前記入力色データが前記第2の色域内にある場合は、色度が変位しないように当該入力色データを前記第2の色域内にマッピングすることにより前記第1の色データを生成し、前記入力色データが前記第2の色域外にある場合は、当該入力色データを前記第2の色域の色域境界へマッピングする
請求項2記載の色変換出力装置。 - 前記色合成部は、前記入力色データの色相及び明度における前記第1の色域と前記第2の色域の広さの差が大きくなるにつれ、前記第2の色データの比率が高くなるように、前記第1の色データと前記第2の色データとを合成する
請求項3記載の色変換出力装置。 - 前記色合成部は、前記入力色データが、第1の色範囲にある場合、前記第1の色データを前記合成色データとして出力する
請求項4記載の色変換出力装置。 - 前記第1の色範囲は、肌色である
請求項5記載の色変換出力装置。 - 前記色合成部は、前記入力色データの彩度が高くなるにつれ、前記第2の色データの比率が高くなるように、前記第1の色データと前記第2の色データとを合成する
請求項4記載の色変換出力装置。 - 前記第1の色マッピング部は、前記入力色データをデバイスに依存しない色空間であるデバイス非依存型色空間のデータに変換し、変換した前記デバイス非依存型色空間のデータを前記第2の色域のデバイスに依存した色空間に逆変換し、当該逆変換したデータが前記第2の色域内にある場合は、当該逆変換したデータを前記第1の色データとし、当該逆変換したデータが前記第2の色域外にある場合は、当該逆変換したデータを前記第2の色域の色域境界のデータに変換し、当該変換したデータを前記第1の色データとする
請求項3記載の色変換出力装置。 - 前記色変換出力装置は、さらに、
前記入力色データを前記第2の色域内にマッピングすることにより前記第2の色データを生成する第2の色マッピング部を備え、
前記第1の色域が前記第2の色域を全て含む場合、前記第1の色マッピング部は、前記第1の色域の前記入力色データを前記第2の色域内へ圧縮マッピングすることにより前記第1の色データを生成し、
前記第2の色マッピング部は、前記入力色データが前記第1の色域の予め定められた第1の色範囲に含まれる場合、当該入力色データを、前記第2の色域の、前記第1の色範囲に対応付けられた色データへマッピングすることにより前記第2の色データを生成する
請求項1記載の色変換出力装置。 - 前記第1の色域の全てが前記第2の色域に含まれる場合、前記第1の色マッピング部は、色度が変位しないように当該入力色データを前記第2の色域内にマッピングすることにより前記第1の色データを生成し、
前記色合成部は、前記第1の色域の前記入力色データを前記第2の色データとみなし、前記第1の色データと前記第2の色データとを合成する
請求項1記載の色変換出力装置。 - 前記色合成部は、前記入力色データの色相及び明度における前記第1の色域と前記第2の色域の広さの差が大きくなるにつれ、前記第2の色データの比率が高くなるように、前記第1の色データと前記第2の色データとを合成する
請求項10記載の色変換出力装置。 - 前記色合成部は、前記入力色データが、第1の色範囲にある場合、前記第1の色データを前記合成色データとして出力する
請求項11記載の色変換出力装置。 - 前記第1の色マッピング部は、前記入力色データをデバイスに依存しない色空間であるデバイス非依存型色空間のデータに変換し、変換した前記デバイス非依存型色空間のデータを前記第2の色域のデバイスに依存した色空間に逆変換することにより前記第1の色データを生成する
請求項10記載の色変換出力装置。 - 前記色変換出力装置は、さらに、
前記入力色データを前記第2の色域内にマッピングすることにより前記第2の色データを生成する第2の色マッピング部を備え、
前記第1の色域の全てが前記第2の色域に含まれる場合、前記第1の色マッピング部は、色度が変位しないように当該入力色データを前記第2の色域内にマッピングすることにより前記第1の色データを生成し、
前記第2の色マッピング部は、前記第1の色域の前記入力色データを前記第2の色域の所定の色データへマッピングすることにより前記第2の色データを生成する
請求項1記載の色変換出力装置。 - 前記色変換出力装置は、さらに、
前記入力色データを前記第2の色域内にマッピングすることにより前記第2の色データを生成する第2の色マッピング部と、
前記入力色データが前記第2の色域内に含まれる否かを判定する色域領域判定部とを備え、
前記第1の色マッピング部は、前記色域領域判定部により前記入力色データが前記第2の色域内に含まれると判定された場合、色度が変位しないように当該入力色データを前記第2の色域内にマッピングすることにより前記第1の色データを生成し、
前記色合成部は、前記第1の色域の前記入力色データを前記第2の色データとみなし、前記第1の色データと前記第2の色データとを合成する
請求項1記載の色変換出力装置。 - 前記色変換出力装置は、さらに、
前記入力色データが有するRGB信号と、前記比率との対応関係を示す変換テーブルを備え、
前記色合成部は、前記入力色データを基に前記変換テーブルから得られる比率を用いて前記合成色データを前記出力色データとして出力する
請求項1記載の色変換出力装置。 - 第1の色域の入力色データと、第2の色域の出力色データとの対応関係を示す色変換テーブルの作成方法であって、
前記入力色データを前記第2の色域内にマッピングすることにより第1の色データを生成する第1の色マッピングステップと、
前記第1の色データと、前記入力色データから得られる第2の色データとを、前記第1の色域と前記第2の色域とに応じた比率で合成することにより合成色データを生成する色合成ステップと、
前記合成ステップで合成された合成色データを、前記入力色データに対応する前記出力色データとした前記色変換テーブルを作成する作成ステップとを含む
色変換テーブル作成方法。 - 前記色変換テーブルの作成方法は、前記入力色データに含まれるRGB信号の色信号毎に異なる色変換テーブルを作成する
請求項17記載の色変換テーブル作成方法。 - 第1の色域の入力色データを第2の色域の出力色データへ変換したうえで出力する色変換出力装置であって、
請求項17記載の色変換テーブルと、
前記入力色データを取得する色データ取得部と、
前記色変換テーブルを用いて前記入力色データを前記出力色データに変換する変換部と、
前記変換部で合成された前記出力色データを出力する色データ出力部とを備える
色変換出力装置。 - 第1の色域の入力色データを第2の色域の出力色データへ変換したうえで出力する色変換出力装置であって、
請求項18記載の色変換テーブルと、
前記入力色データを取得する色データ取得部と、
前記入力色データに含まれるRGB信号の色信号毎に作成された前記色変換テーブルを用いて前記入力データを前記出力色データに変換する変換部と、
前記変換部で合成された前記出力色データを出力する色データ出力部とを備える
色変換出力装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/921,867 US8542246B2 (en) | 2008-03-11 | 2009-03-11 | Color conversion device, color conversion table and color conversion method |
EP09720809.4A EP2254090B1 (en) | 2008-03-11 | 2009-03-11 | Color conversion output device, color conversion table and method for creating same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-061880 | 2008-03-11 | ||
JP2008-061895 | 2008-03-11 | ||
JP2008061897A JP2009218963A (ja) | 2008-03-11 | 2008-03-11 | 色変換出力装置、色変換出力方法、色変換出力プログラム、色変換テーブル、色変換テーブル記録媒体並びに色変換集積回路 |
JP2008061895A JP2009218962A (ja) | 2008-03-11 | 2008-03-11 | 色変換出力装置、色変換出力方法、色変換出力プログラム、色変換テーブル、色変換テーブル記録媒体並びに色変換集積回路 |
JP2008-061897 | 2008-03-11 | ||
JP2008061880A JP2009218961A (ja) | 2008-03-11 | 2008-03-11 | 色変換出力装置、色変換出力方法、色変換出力プログラム、色変換テーブル、色変換テーブル記録媒体並びに色変換集積回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009113306A1 true WO2009113306A1 (ja) | 2009-09-17 |
Family
ID=41064979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/001099 WO2009113306A1 (ja) | 2008-03-11 | 2009-03-11 | 色変換出力装置、色変換テーブル及びその作成方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8542246B2 (ja) |
EP (1) | EP2254090B1 (ja) |
WO (1) | WO2009113306A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110235907A1 (en) * | 2010-03-26 | 2011-09-29 | Fuji Xerox Co., Ltd. | Color processing apparatus and computer readable medium storing program |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9008812B2 (en) * | 2008-06-19 | 2015-04-14 | Sirius Xm Radio Inc. | Method and apparatus for using selected content tracks from two or more program channels to automatically generate a blended mix channel for playback to a user upon selection of a corresponding preset button on a user interface |
KR101783259B1 (ko) * | 2010-12-31 | 2017-10-10 | 삼성디스플레이 주식회사 | 데이터 보상 방법 및 이를 수행하는 데이터 보상 장치 및 상기 데이터 보상 장치를 포함하는 표시 장치 |
KR101803571B1 (ko) * | 2011-06-17 | 2017-11-30 | 엘지디스플레이 주식회사 | 입체영상표시장치와 이의 구동방법 |
KR20140081693A (ko) * | 2012-12-21 | 2014-07-01 | 삼성디스플레이 주식회사 | 영상 처리 장치 및 영상 처리 방법 |
JP2014155024A (ja) * | 2013-02-07 | 2014-08-25 | Japan Display Inc | 色変換装置、表示装置、電子機器及び色変換方法 |
JP2015133638A (ja) * | 2014-01-14 | 2015-07-23 | 三星ディスプレイ株式會社Samsung Display Co.,Ltd. | 画像処理装置および画像処理方法 |
JP2015154459A (ja) * | 2014-02-19 | 2015-08-24 | 三星ディスプレイ株式會社Samsung Display Co.,Ltd. | 画像処理装置および画像処理方法 |
KR101561618B1 (ko) * | 2014-02-19 | 2015-10-30 | 안동대학교 산학협력단 | 단색 스캐닝 카메라에서의 컬러 영상 획득 시스템 및 방법 |
JP6229625B2 (ja) * | 2014-09-24 | 2017-11-15 | 株式会社Jvcケンウッド | 色域変換装置、色域変換方法および色域変換プログラム |
JP6065934B2 (ja) * | 2015-04-08 | 2017-01-25 | ソニー株式会社 | 映像信号処理装置および撮像システム |
JP6614859B2 (ja) * | 2015-08-24 | 2019-12-04 | キヤノン株式会社 | 表示装置、表示装置の制御方法、画像処理装置、プログラム、及び、記録媒体 |
US10424269B2 (en) | 2016-12-22 | 2019-09-24 | Ati Technologies Ulc | Flexible addressing for a three dimensional (3-D) look up table (LUT) used for gamut mapping |
US10885676B2 (en) * | 2016-12-27 | 2021-01-05 | Samsung Electronics Co., Ltd. | Method and apparatus for modifying display settings in virtual/augmented reality |
US10242647B2 (en) * | 2017-02-24 | 2019-03-26 | Ati Technologies Ulc | Three dimensional (3-D) look up table (LUT) used for gamut mapping in floating point format |
US10453171B2 (en) | 2017-03-24 | 2019-10-22 | Ati Technologies Ulc | Multiple stage memory loading for a three-dimensional look up table used for gamut mapping |
US10819882B2 (en) * | 2018-02-28 | 2020-10-27 | Panasonic Intellectual Property Management Co., Ltd. | Image processing device and imaging apparatus |
US10565957B2 (en) * | 2018-06-19 | 2020-02-18 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Gamut mapping method and device for compressing out-of-gamut area to in-of-gamut area, storage medium, and electronic device |
CN112449168B (zh) * | 2019-09-03 | 2021-11-23 | 深圳Tcl新技术有限公司 | 一种色域映射方法及系统 |
KR102566794B1 (ko) * | 2021-05-17 | 2023-08-14 | 엘지전자 주식회사 | 디스플레이 장치 및 그의 동작 방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11177835A (ja) * | 1997-12-16 | 1999-07-02 | Fuji Photo Film Co Ltd | 色変換方法 |
JP2000134490A (ja) * | 1998-10-26 | 2000-05-12 | Fujitsu Ltd | 色信号変換方法、色信号変換装置、記録媒体、デバイスドライバ及び色変換テーブル |
JP2005284521A (ja) * | 2004-03-29 | 2005-10-13 | Seiko Epson Corp | 複数種類の色再現に対応した色変換プロファイルを利用した印刷制御 |
JP2006094531A (ja) * | 2004-09-23 | 2006-04-06 | Toshiba Corp | カラー画像処理装置 |
JP2007053521A (ja) * | 2005-08-17 | 2007-03-01 | Seiko Epson Corp | 画像データ変換装置、印刷装置、画像データ変換方法、印刷方法、および変換テーブル作成方法 |
JP2007074514A (ja) * | 2005-09-08 | 2007-03-22 | Sony Corp | 色域圧縮方法、プログラム、色域圧縮装置 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60105376A (ja) | 1983-11-14 | 1985-06-10 | Toshiba Corp | カラ−画像出力装置 |
JPH0636548B2 (ja) | 1985-06-17 | 1994-05-11 | キヤノン株式会社 | カラ−画像信号処理方法 |
US4758885A (en) | 1985-06-17 | 1988-07-19 | Canon Kabushiki Kaisha | Method of processing color image |
JPS61288690A (ja) | 1985-06-17 | 1986-12-18 | Canon Inc | カラ−画像処理方法 |
EP0273398B1 (en) | 1986-12-25 | 1995-02-08 | Konica Corporation | Method of correcting color images |
JPH0748869B2 (ja) | 1987-04-10 | 1995-05-24 | コニカ株式会社 | 色分解画像修正方法 |
JP2601265B2 (ja) | 1987-02-07 | 1997-04-16 | オリンパス光学工業株式会社 | 色彩補正方式 |
JP2845523B2 (ja) | 1989-11-15 | 1999-01-13 | コニカ株式会社 | 色推定方法 |
JP3099344B2 (ja) | 1990-06-05 | 2000-10-16 | 富士ゼロックス株式会社 | 画像処理装置 |
US5933252A (en) * | 1990-11-21 | 1999-08-03 | Canon Kabushiki Kaisha | Color image processing method and apparatus therefor |
JP3155768B2 (ja) | 1991-03-20 | 2001-04-16 | キヤノン株式会社 | 画像処理方法及び装置 |
JPH07220067A (ja) | 1994-01-31 | 1995-08-18 | Canon Inc | 画像処理方法およびその装置 |
US7728845B2 (en) * | 1996-02-26 | 2010-06-01 | Rah Color Technologies Llc | Color calibration of color image rendering devices |
US6225974B1 (en) * | 1997-06-19 | 2001-05-01 | Electronics For Imaging, Inc. | Gamut correction with color separation and methods and apparatuses for performing same |
US6204939B1 (en) * | 1998-03-30 | 2001-03-20 | Seiko Epson Corporation | Color matching accuracy inside and outside the gamut |
US6181445B1 (en) * | 1998-03-30 | 2001-01-30 | Seiko Epson Corporation | Device-independent and medium-independent color matching between an input device and an output device |
JP3583630B2 (ja) * | 1998-11-30 | 2004-11-04 | 富士通株式会社 | カラーデータ変換方法 |
JP2000278546A (ja) * | 1999-01-22 | 2000-10-06 | Sony Corp | 画像処理装置及び画像処理方法、色域変換テーブル作成装置及び色域変換テーブル作成方法、画像処理プログラムを記録した記録媒体、並びに色域変換テーブル作成プログラムを記録した記録媒体 |
US6400843B1 (en) * | 1999-04-22 | 2002-06-04 | Seiko Epson Corporation | Color image reproduction with accurate inside-gamut colors and enhanced outside-gamut colors |
US7177465B1 (en) * | 1999-07-16 | 2007-02-13 | Fuji Photo Film Co., Ltd. | Method of compressing/extending color reproducing space, color reproducing method and color reproducing apparatus |
US6532081B1 (en) * | 1999-07-23 | 2003-03-11 | Xerox Corporation | Weight calculation for blending color transformation lookup tables |
KR100416231B1 (ko) | 2001-11-08 | 2004-01-31 | 한국전자통신연구원 | 칼라 디바이스의 선형 색역폭 확장장치 및 그 방법 |
JP2003283846A (ja) | 2002-03-20 | 2003-10-03 | Ricoh Co Ltd | ガマット処理方法 |
US7379207B2 (en) * | 2004-01-14 | 2008-05-27 | Xerox Corporation | Method and system for device-independent color gamut mapping |
KR20050120958A (ko) * | 2004-06-21 | 2005-12-26 | 삼성전자주식회사 | 확장된 색재현 범위를 갖는 색재현 장치를 위한 색신호처리방법 및 그 처리장치 |
US7592996B2 (en) * | 2006-06-02 | 2009-09-22 | Samsung Electronics Co., Ltd. | Multiprimary color display with dynamic gamut mapping |
JP2008005381A (ja) * | 2006-06-26 | 2008-01-10 | Fujifilm Corp | 色変換定義作成方法、プロファイル作成方法、色変換定義作成装置、プロファイル作成装置、色変換定義作成プログラム、および、プロファイル作成プログラム |
JP5188082B2 (ja) * | 2007-03-26 | 2013-04-24 | キヤノン株式会社 | 画像出力機器の色変換定義の作成方法、作成装置及びそのプログラム |
-
2009
- 2009-03-11 WO PCT/JP2009/001099 patent/WO2009113306A1/ja active Application Filing
- 2009-03-11 US US12/921,867 patent/US8542246B2/en active Active
- 2009-03-11 EP EP09720809.4A patent/EP2254090B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11177835A (ja) * | 1997-12-16 | 1999-07-02 | Fuji Photo Film Co Ltd | 色変換方法 |
JP2000134490A (ja) * | 1998-10-26 | 2000-05-12 | Fujitsu Ltd | 色信号変換方法、色信号変換装置、記録媒体、デバイスドライバ及び色変換テーブル |
JP2005284521A (ja) * | 2004-03-29 | 2005-10-13 | Seiko Epson Corp | 複数種類の色再現に対応した色変換プロファイルを利用した印刷制御 |
JP2006094531A (ja) * | 2004-09-23 | 2006-04-06 | Toshiba Corp | カラー画像処理装置 |
JP2007053521A (ja) * | 2005-08-17 | 2007-03-01 | Seiko Epson Corp | 画像データ変換装置、印刷装置、画像データ変換方法、印刷方法、および変換テーブル作成方法 |
JP2007074514A (ja) * | 2005-09-08 | 2007-03-22 | Sony Corp | 色域圧縮方法、プログラム、色域圧縮装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2254090A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110235907A1 (en) * | 2010-03-26 | 2011-09-29 | Fuji Xerox Co., Ltd. | Color processing apparatus and computer readable medium storing program |
US8818090B2 (en) * | 2010-03-26 | 2014-08-26 | Fuji Xerox Co., Ltd. | Color processing apparatus and computer readable medium storing program |
Also Published As
Publication number | Publication date |
---|---|
EP2254090B1 (en) | 2015-08-26 |
US20110012920A1 (en) | 2011-01-20 |
EP2254090A4 (en) | 2012-06-27 |
US8542246B2 (en) | 2013-09-24 |
EP2254090A1 (en) | 2010-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009113306A1 (ja) | 色変換出力装置、色変換テーブル及びその作成方法 | |
JP5296889B2 (ja) | 画像処理装置および画像処理方法 | |
EP2023642B1 (en) | Color image display device and color conversion device | |
KR101348369B1 (ko) | 디스플레이 장치의 색 변환 방법 및 장치 | |
KR100834762B1 (ko) | 이 기종간 색역 사상 방법 및 장치 | |
JP4209439B2 (ja) | 画像処理装置、画像処理システム、画像処理方法、画像処理プログラムおよび集積回路装置 | |
US7173736B2 (en) | Image processing apparatus and method | |
KR100938846B1 (ko) | 색변환장치 및 그 방법 | |
WO2005048583A1 (ja) | 色補正装置および色補正方法 | |
JP5253274B2 (ja) | 色変換出力装置 | |
JP4950846B2 (ja) | カラー画像表示装置及び色変換装置 | |
JP2004356930A (ja) | 色彩調整装置及びその方法 | |
US9584702B2 (en) | Image processing apparatus for correcting color information and method therefor | |
JP2002118764A (ja) | 色再現域圧縮方法および色再現域圧縮装置 | |
WO2010131499A1 (ja) | 画像処理装置および画像処理方法 | |
US7999826B2 (en) | Color conversion device, color conversion method, color conversion program, recording medium recording color conversion program, image processing device, and image display device | |
JP2010183232A (ja) | 色域変換装置 | |
JP3954244B2 (ja) | 色再現空間の圧縮・伸張方法 | |
KR100510308B1 (ko) | 화상 처리 장치 | |
JPWO2011039811A1 (ja) | 画像信号処理装置及び画像信号処理方法 | |
KR20170124554A (ko) | 적응적 컬러 그레이드 보간 방법 및 디바이스 | |
JP2007142494A (ja) | 画像処理装置および方法、並びにプログラム | |
JP2009218962A (ja) | 色変換出力装置、色変換出力方法、色変換出力プログラム、色変換テーブル、色変換テーブル記録媒体並びに色変換集積回路 | |
JP2009218961A (ja) | 色変換出力装置、色変換出力方法、色変換出力プログラム、色変換テーブル、色変換テーブル記録媒体並びに色変換集積回路 | |
JP2009218963A (ja) | 色変換出力装置、色変換出力方法、色変換出力プログラム、色変換テーブル、色変換テーブル記録媒体並びに色変換集積回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09720809 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12921867 Country of ref document: US Ref document number: 2009720809 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |