WO2009112125A1 - Verfahren zur fahrlichtsteuerung eines fahrzeugs - Google Patents

Verfahren zur fahrlichtsteuerung eines fahrzeugs Download PDF

Info

Publication number
WO2009112125A1
WO2009112125A1 PCT/EP2009/000504 EP2009000504W WO2009112125A1 WO 2009112125 A1 WO2009112125 A1 WO 2009112125A1 EP 2009000504 W EP2009000504 W EP 2009000504W WO 2009112125 A1 WO2009112125 A1 WO 2009112125A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
vehicle
beam distribution
high beam
headlight
Prior art date
Application number
PCT/EP2009/000504
Other languages
English (en)
French (fr)
Inventor
Volker Oltmann
Bernd Woltermann
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2009112125A1 publication Critical patent/WO2009112125A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • B60Q1/1415Dimming circuits
    • B60Q1/1423Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/05Special features for controlling or switching of the light beam
    • B60Q2300/056Special anti-blinding beams, e.g. a standard beam is chopped or moved in order not to blind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/10Indexing codes relating to particular vehicle conditions
    • B60Q2300/11Linear movements of the vehicle
    • B60Q2300/112Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/10Indexing codes relating to particular vehicle conditions
    • B60Q2300/12Steering parameters
    • B60Q2300/122Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/30Indexing codes relating to the vehicle environment
    • B60Q2300/33Driving situation
    • B60Q2300/332Driving situation on city roads
    • B60Q2300/3321Detection of streetlights
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/40Indexing codes relating to other road users or special conditions
    • B60Q2300/41Indexing codes relating to other road users or special conditions preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/40Indexing codes relating to other road users or special conditions
    • B60Q2300/42Indexing codes relating to other road users or special conditions oncoming vehicle

Definitions

  • the invention relates to a method for driving light control of a vehicle according to the preamble of claim 1.
  • a motor vehicle with a lighting device comprising a control device and a controllable via the control unit for illuminating the vehicle apron lighting device on the individual different, complementary illumination areas are illuminable, in their entirety the Make up the illumination volume of the lighting device.
  • the individual footprints are selectively controllable. It is a device for determining the position of another located in the environment of the motor vehicle other road users, in particular another motor vehicle, provided relative to the own motor vehicle.
  • the lighting device is controllable for changing the illumination volume or its illumination characteristic as a function of the determined position.
  • the lighting device is designed in particular as an LED array, so that the illumination areas are selectively switchable.
  • EP 1 826 476 A1 discloses an illumination device for illuminating the surrounding of a vehicle with at least one light source whose optical axis is oriented in the direction of imaging optics, wherein a diaphragm arrangement with at least two diaphragms is arranged between the light source and the imaging optics and each diaphragm is separately movable. At least one aperture is positionally displaceable at least between the light source and the imaging optics.
  • the headlight range of the high beam of the vehicle is changeable. The positions of the panels are so changeable, that subregions of a current entire luminous range of the high beam can be changed independently of other subregions in the headlamp range.
  • a headlamp system for vehicles with at least one headlamp unit can be emitted by the light beam with different characteristics.
  • a sensor device is provided by which the traffic situation in front of the vehicle is detected and evaluated.
  • a switching device is provided, by means of which the characteristic of the light beam emitted by the at least one headlamp unit is changed as a function of the traffic situation detected by the sensor device, the traffic situation being evaluated by the sensor device for preceding vehicles and their distance from the vehicle.
  • the characteristic of the light beam emitted by the at least one headlight unit is changed in such a way that it illuminates the distant area in front of the vehicle less than without the vehicle ahead.
  • the sensor device evaluates the traffic situation on oncoming vehicles and on which side of the vehicle there are oncoming vehicles.
  • the characteristic of the light beam emitted by the at least one headlamp unit is controlled in such a way that it has a greater range in each case on the own directional lane of the vehicle than in the oncoming traffic lane.
  • the headlight system is operable in a high-beam operating position. In the case of vehicles driving a short distance ahead and / or oncoming vehicles, the headlight system is switched to a dipped-beam operating position.
  • DE 10 2004 042 092 A1 discloses a method for controlling a light-generating device for motor vehicles, in which a subregion of the light bundle corresponding to the oncoming motor vehicle is recessed as a function of the relative movement between the motor vehicle emitting a light bundle and an oncoming and / or preceding vehicle is, wherein the light generating device is driven such that only those portions of the entire light distribution are left out, which are arranged above a predetermined base light distribution.
  • the omission of the subregions takes place for example by means of LED arrays or with the aid of micromirror arrays.
  • DE 198 22 142 C2 discloses a method for generating a light beam impinging on the roadway in front of a motor vehicle in which the light intensity distribution within the light beam is controlled and / or regulated within the light beam in dependence on the light conditions in front of the motor vehicle such that the driver of a oncoming motor vehicle is not dazzled by the generated light beam.
  • the light intensity of the generated light beam is set to approximately zero in a range of the light intensity distribution.
  • the range of the light intensity distribution is changed depending on the movement of the own and / or the oncoming motor vehicle.
  • the light intensity distribution is influenced by means of micromirror arrays.
  • a method for driving light control of a vehicle in which a headlight range and a swivel angle of one or more beams of different headlights adjusted and a glare-free for other road users space is generated, wherein upon activation of a cornering light and / or cornering light, the headlight range is varied as a function of a cornering light angle and / or cornering light angle.
  • the low-beam distribution and a high beam distribution are set as light distributions and detected with a sensor oncoming and / or moving in the same direction objects.
  • the high beam distribution is pivoted in dependence on a position of the detected objects out of the range such that a glare-free space is generated for the objects, wherein the high beam distribution is pivoted maximally to edges of the object.
  • the driver of the vehicle is able to use a light setting corresponding to a high beam without forgetting to switch on or off the high beam, which enhances the driving comfort for the driver and safety enhancement creates for all road users.
  • the driving light is controlled according to the cornering light function, so that maximum illumination is achieved for the driver of the vehicle.
  • the method provides that by means of the sensor lateral edges of at least one object located in front of the vehicle in the form of a left edge angle and a right edge angle with respect to a sensor zero axis of the sensor are determined. In addition, a distance and a direction of travel of the object in front of the vehicle are identified.
  • a position of the edge is determined from the associated edge angle and the distance and transformed to adjust the pivot angle from a related to the sensor coordinate system in a related to the corresponding headlight coordinate system.
  • the high beam distribution has an inner high beam angle and an outer high beam angle with respect to a respective headlight zero axis, wherein the headlight is pivoted maximum to a maximum pivot angle.
  • the pivoting angle for pivoting the headlights can be chosen as follows, that the inner high beam angle from the view of the object maximum up to the corresponding headlight facing edge, if the pivot angle is smaller than the maximum pivot angle.
  • the pivoting angle for pivoting the headlights is selected such that a tolerance range is set between the inner high-beam angle from the view of the object and the edge facing the corresponding headlight.
  • the pivoting angle for pivoting the headlights is selected such that a safety range is set between the inner high beam angle from the viewpoint of the object and the edge facing the corresponding headlight.
  • the pivoting angle for pivoting the headlights is set as a function of a speed of the vehicle and a steering angle, d. H. that the headlights can be used simultaneously to realize a cornering and / or cornering light, or that headlights already used in the vehicle are suitable for realizing the cornering and / or cornering light for carrying out the method according to the invention and its developments.
  • the swivel angle for swiveling the headlights is selected such that a tolerance range and a curve safety range are set between the inner high beam angle from the viewpoint of the object and the edge facing the corresponding headlight.
  • the tolerance range, the safety range and / or the curve safety range are set variably as a function of a vehicle speed, an object speed, a distance between the vehicle and the object and / or the steering angle, so that always the maximum illumination, the avoidance the glare and a pleasant perceived for the driver driving light control is achieved.
  • the driver of the vehicle is thus an optimal, adapted to a current traffic events illumination available, with no actions of the driver to adjust this illumination are necessary. This makes it possible for the driver to focus exclusively on the traffic, so that the traffic safety is further increased.
  • the object is determined to be relevant if it is located in the direction of travel in an area in front of the vehicle.
  • the pivot angle of the headlamp is selected or switched to the low-beam distribution such that a glare-free space is generated for a first relevant object and then one or more adjacent objects are detected and one or more glare-free spaces are generated for them.
  • the maximum illumination for the driver of the vehicle is achieved while avoiding dazzling of all other road users.
  • the method additionally provides that the sensor detects whether the vehicle is moving in an area with street lighting. In this case, switching is made from the high beam distribution to the low beam distribution.
  • a coordinated driving light control of the individual headlights is carried out, so that a very wide variety of illumination characteristics can be generated.
  • a vertical light-dark boundary is generated at the inner high-beam angle by means of the headlights, so that an exactly limited glare-free space is created. This achieves a further improvement of the visibility for the driver of the vehicle with simultaneously improved limitation of the glare-free space.
  • FIG. 1 shows schematically a vehicle with a sensor and two headlamps and an object located in front of the vehicle in the direction of travel
  • Fig. 2 shows schematically the vehicle according to Figure 1 and high beam distributions of
  • Fig. 3 shows schematically the vehicle according to Figure 1 and a maximum
  • FIG. 4 shows schematically the vehicle and the object according to FIG. 1 and a pivoted main beam distribution
  • FIG. 5A schematically shows the vehicle according to FIG. 1 and an object located a short distance in front of the vehicle
  • FIG. 5B schematically shows the vehicle according to FIG. 1 and an object located a short distance to the left in front of the vehicle
  • 5C schematically shows the vehicle according to FIG. 1 and an object located at a short distance to the right in front of the vehicle
  • FIG. 6 shows schematically the vehicle according to FIG. 1 and an object located in front of the vehicle and the setting of a safety area
  • FIG. 7 shows schematically the vehicle according to FIG. 1 and an object in a curve in front of the vehicle in the direction of travel
  • FIG. 8 shows schematically the vehicle according to FIG. 1 and several objects located in front of the vehicle
  • Fig. 9A schematically classical high beam distributions
  • Fig. 9B schematically high beam distributions with a vertical cut-off.
  • FIG. 1 shows a vehicle F with a sensor 1 and two headlights 2 and an object located in front of the vehicle F in the direction of travel.
  • the sensor 1 is in particular a camera with which the object O is detected.
  • the sensor 1 has opening angles ⁇ ⁇ and - ⁇ ⁇ with respect to a sensor zero axis Ys. In this case, responsive and / or moving objects O moving in the same direction can be detected in a region in the direction of travel in front of the vehicle F.
  • the headlamps 2 are designed to be pivotable in order to execute a cornering light function, and a respective low-beam light distribution (not shown in detail) and a high-beam distribution FV shown in FIG. 2 can be set as light distributions.
  • a distance E to the vehicle F 1 will be a direction of travel and lateral edges K in the form of a left edge angle ⁇ ⁇ "and a right one Edge angle ⁇ « re determined with respect to the sensor zero axis Y s .
  • a position of an edge K is determined from the associated edge angle ⁇ ⁇ re or ⁇ ⁇ "and the distance E.
  • the high-beam distribution FV is pivoted out of the range in such a way as to produce a glare-free space for the object O, with the high-beam distribution FV being pivoted maximally to edges K of the object O.
  • the position of the edge K is transformed from a coordinate system related to the sensor 1 into a coordinate system based on the corresponding headlight 2.
  • the respective high beam distribution FV has, as shown in Figure 2, a zero position.
  • the high beam distributions FV are characterized by the inner high beam angle niu « 0 and re ⁇ fl 0 with respect to a headlight zero axis Y S w and limited.
  • the respective outer high beam angles i ⁇ fl a and re ⁇ f i a result arithmetically from a total opening angle ⁇ fl minus the respective inner high beam angle ⁇ , c ⁇ fl 0 and re ⁇ fl °.
  • the high-beam light distributions FV according to FIG. 1 are pivoted from the zero position of the inner high-beam angles ⁇ , ⁇ n ° and Te ⁇ i ⁇ ° maximum to the edges K of the object O, so that high-beam distributions FV through the inner high-beam angles I1 Co n 0 * and re W f i 0 * are limited and the object O is in the glare-free space.
  • FIG. 3 shows the vehicle F with only one headlight 2 for a simplified illustration.
  • the illustration clarifies that the pivot angle of the high beam distribution FV is limited on the one hand by an inner maximum pivot angle ⁇ ⁇ l max and on the other hand by an outer maximum pivot angle ⁇ K ⁇ amax .
  • These maximum pivot angles ⁇ K ⁇ ⁇ max , ⁇ ⁇ amax are limited by a maximum pivoting of the headlamp 2 by an inner cornering angle ⁇ K ⁇ 'and an outer cornering angle ⁇ K ⁇ a from a cornering function.
  • the objects O may be objects O which approach the vehicle F as well as objects O which move in front of it. That is, the object O is located in an area around the Cornering light angle ⁇ K ⁇ ', ⁇ a pivoted or unswung main beam distribution FV 1 , the glare-free space is generated by the pivoting of the high beam distribution FV.
  • the driving light of the headlamp 2 is controlled according to the cornering function and the high beam distribution FV is maintained.
  • FIG. 4 shows the vehicle F and the object O according to FIG. 1 and a pivoted main beam distribution FV of a headlight 2, in particular the left headlight 2.
  • the object O is located in the direction of travel in an area in front of the vehicle F, so that the object O would be in an undeflected position of the high beam distribution FV in this.
  • the high beam distribution FV of the right headlamp 2 is pivoted to the right by a swivel angle which corresponds to the outer cornering angle ⁇ K ⁇ a shown .
  • the high beam distribution FV is thereby pivoted at least so far that the right inner high beam angle re ü) f i ° extends in particular to a maximum of the edge K of the object O.
  • the pivoting angle of the high beam distribution FV is chosen so that between the inner high beam angle re u) f i ° from the viewpoint of the object O and the headlight 2 facing edge K of the object O a tolerance range T is set, so that a continuous pivoting of the high beam distribution FV be avoided by inaccurate detection of the sensor 1 or by movements of the object O.
  • FIGS. 5A to 5C the vehicle according to FIG. 1 and the object O are shown comparatively in three different situations.
  • the inner and the outer maximum pivot angle ⁇ K ⁇ ⁇ max, ⁇ K ⁇ amax and ⁇ a necessary angle K ⁇ _ represented k which describes the pivoting angle, which is necessary so that the left inner main beam angle re ⁇ f i 0 to a maximum of the edge K of the object O is pivoted.
  • the object O is located in the direction of travel in the area in front of the vehicle F with almost no lateral offset therefrom. Therefore, the necessary angle ⁇ K ⁇ _ k for pivoting the headlight 2 is formed smaller than the outer maximum pivot angle ⁇ ⁇ amax , so that by glancing the high beam distribution FV a glare-free space for the object O is generated.
  • the object O is located in the direction of travel in the area in front of the vehicle F with a lateral offset to the left towards it. Therefore, the necessary angle ⁇ « ⁇ _ k is formed larger than the outer maximum pivot angle ⁇ K ⁇ amax , so that no glare-free space for the object O is generated by pivoting the high beam distribution FV. In this case, the high beam distribution FV is switched to the low beam distribution to produce the glare-free space.
  • the transition between the high beam distribution FV and the low beam distribution can be done gradually, so that, for example, flicker phenomena are avoided.
  • the object O is located in the direction of travel in the area in front of the vehicle F with a lateral offset to the right towards it.
  • the lateral offset is so great that the object O is located outside the range of the high beam distribution FV pivoted about the cornering light angle ⁇ K ⁇ ', ⁇ K ⁇ a , so that the driving light of the headlamp 2 is controlled according to the cornering function.
  • a glare of the object O, at least by means of the left headlamp 2 is not possible because the inner maximum swivel angle ⁇ ' max is smaller than the necessary angle ⁇ K ⁇ _ k .
  • FIG. 6 shows the vehicle F according to FIG. 1 and an object O located in front of the vehicle F, in particular a further vehicle. At least one exterior mirror OA is located on this vehicle. In order not to dazzle a driver of the vehicle in front through its exterior mirror OA, in addition to the necessary angle ⁇ K ⁇ _ k, a safety area S is set between the left inner high beam angle ⁇ fl ° not shown here and the edge K of the object O facing it ,
  • FIG. 7 shows the vehicle F according to FIG. 1 and the object O in the direction of travel in front of the vehicle F. Since the vehicle F also follows the curve, the main beam distributions FV are the headlights 2 (here, by way of example only the left headlight 2 is shown ) is pivoted in the direction of the curve. The pivoting angle for pivoting the headlights 2 is set in dependence on a speed of the vehicle F and a steering angle.
  • the pivot angle for pivoting the headlamp 2 is chosen so that between the left inner high beam angle h fl ⁇ 0 is a safety margin curve KS be set from the perspective of the object O and of the corresponding headlamp 2 facing edge K in addition to the safety area S, so that the high beam light distribution FV is passed to the object O.
  • the tolerance range T 1 of the safety area S and / or the curve safety area KS are variably set as a function of a vehicle speed, an object speed, the distance E between the vehicle F and the object O and / or the steering angle, so that always the maximum illumination, the avoidance of glare and a pleasant perceived for the driver driving light control is achieved. Furthermore, a constant switching between the high beam distribution FV and the low beam distribution is avoided by the tolerance range T, the security area S and / or the curve security area KS, which is advantageous both for the driver of the vehicle F and for the other road users.
  • FIG. 8 shows the vehicle F according to FIG. 1 and several objects 01 to 03 located in front of the vehicle F. At least one relevant object 01 is determined from these objects 01 to 03.
  • the object 01 is relevant if, as already described, it is located in the area ahead of the vehicle F in the direction of travel.
  • the headlights 2 are thereby pivoted at least by the necessary angle ⁇ K ⁇ _ k to the left or the necessary angle ⁇ K ⁇ _ k i to the right, so that the glare-free space is generated for the relevant object 01.
  • the headlamp or 2 are pivoted so that this object 02 is located in the glare-free space.
  • the right-hand headlamp 2 is pivoted further to the right by a necessary angle ⁇ K ⁇ _k 2 , so that the right inner high-beam angle r ( W reaches at most the right edge K of the object 02.
  • the object 03 is not relevant in the illustrated exemplary embodiment, so that the left high beam distribution FV can be performed between the relevant object 01 and the non-relevant object 02 without dazzling both objects 01 and 03.
  • FIG. 9A shows typical high beam distributions FV of two headlights 2 on a white wall, the brightest point of the respective high beam distribution FV being in the center thereof and the brightness decreasing outwards. A portion of the low beam distribution is imperceptible.
  • FIG. 9B shows high-beam distributions FV of two headlights 2 with a vertical light-dark boundary HDG on the white wall.
  • the respective high beam distributions FV are vertically sharply defined in the center of the vehicle and are supported in the middle and on the outside by the respective low beam distributions AV. This light distribution is referred to as Operafernlicht.
  • the method according to the invention and embodiments thereof can be carried out with both high beam distributions FV shown in FIGS. 9A and 9B. Due to the sharp vertical cut-off line HDG, the partial remote light is particularly well suited to fade out, ie. H. for generating the glare-free space, since the object boundary points or the edges K of the object O can be illuminated directly past.
  • the classical high beam distribution FV according to FIG. 9A has the advantage over the partial high beam of greater illumination and higher brightness.
  • the method is expanded so that, if no objects O are detected, the main beam distribution FV is selected when the high beam distribution FV is activated, whereas the high beam distribution FV takes place via the divided beam in the case of a detected object O for hiding.
  • the sensor 1 detects whether the vehicle F is moving in an area with street lighting, then that is switched in this case from the high beam distribution FV to the low beam distribution.
  • a coordinated driving light control of the individual headlights 2 is performed.
  • a headlight 2 with high beam distribution FV and the other with low beam distribution can be operated.
  • any known type of headlamps and bulbs can be used. Both separate and separate light sources can be provided for the realization of the high beam distribution FV and the low beam distribution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Fahrlichtsteuerung eines Fahrzeugs (F) mit einem schwenkbaren Scheinwerfer (2), bei dem als Lichtverteilungen ein Abblendlichtverteilung und einen Fernlichtverteilung (FV) eingestellt werden, und mit einem Sensor (1) zu einer Detektion von entgegenkommenden und/oder sich in gleicher Richtung bewegenden Objekten (O), dadurch gekennzeichnet, dass die Fernlichtverteilung (FV) in Abhängigkeit von einer Position der detektierten Objekte (O) derart aus dem Bereich dieser geschwenkt wird, dass ein für die Objekte (O) blendfreier Raum erzeugt wird, wobei die Fernlichtverteilung (FV) maximal bis an Kanten (K) des Objekts (O) geschwenkt wird.

Description

Verfahren zur Fahrlichtsteuerung eines Fahrzeugs
Die Erfindung betrifft ein Verfahren zur Fahrlichtsteuerung eines Fahrzeugsgemäß dem Oberbegriff des Anspruchs 1.
Aus der DE 10 2005 014 953 A1 ist ein Kraftfahrzeug mit einer Beleuchtungseinrichtung bekannt, wobei das Kraftfahrzeug ein Steuergerät und eine über das Steuergerät zum Ausleuchten des Fahrzeugvorfelds ansteuerbare Leuchteinrichtung umfasst, über die einzelne unterschiedliche, einander ergänzende Ausleuchtbereiche ausleuchtbar sind, die in ihrer Gesamtheit das Ausleuchtvolumen der Leuchteinrichtung bilden. Die einzelnen Ausleuchtbereiche sind selektiv steuerbar. Es ist eine Einrichtung zur Ermittlung der Position eines im Umfeld des Kraftfahrzeugs befindlichen anderen Verkehrsteilnehmers, insbesondere eines anderen Kraftfahrzeugs, relativ zum eigenen Kraftfahrzeug vorgesehen. Die Leuchteinrichtung ist zum Verändern des Ausleuchtvolumens oder dessen Ausleuchtcharakteristik in Abhängigkeit der ermittelten Position steuerbar. Die Leuchteinrichtung ist insbesondere als LED-Array ausgeführt, so dass die Ausleuchtbereiche selektiv schaltbar sind.
Weiterhin ist aus der EP 1 826 476 A1 ist eine Beleuchtungsvorrichtung zur Umgebungsausleuchtung eines Fahrzeugs mit zumindest einer Lichtquelle bekannt, deren optische Achse in Richtung einer Abbildungsoptik orientiert ist, wobei zwischen der Lichtquelle und der Abbildungsoptik eine Blendenanordnung mit zumindest zwei Blenden angeordnet ist und jede Blende separat bewegbar ist. Zumindest eine Blende ist zumindest zwischen der Lichtquelle und der Abbildungsoptik positionsveränderlich verschiebbar. Abhängig von den Stellungen der Blenden ist die Leuchtweite des Fernlichts des Fahrzeugs veränderbar. Die Stellungen der Blenden sind dabei derart veränderbar, dass Teilbereiche eines momentanen gesamten Leuchtbereichs des Fernlichts unabhängig von anderen Teilbereichen in der Leuchtweite veränderbar sind.
Gemäß der DE 197 16 784 B4 ist eine Scheinwerferanlage für Fahrzeuge mit wenigstens einer Scheinwerfereinheit bekannt, durch die Lichtbündel mit verschiedenen Charakteristiken aussendbar sind. Es ist eine Sensoreinrichtung vorgesehen, durch die die Verkehrssituation vor dem Fahrzeug erfasst und ausgewertet wird. Weiter ist eine Umschalteinrichtung vorgesehen, durch die abhängig von der durch die Sensoreinrichtung erfassten Verkehrssituation die Charakteristik des durch die wenigstens eine Scheinwerfereinheit ausgesandten Lichtbündels verändert wird, wobei durch die Sensoreinrichtung die Verkehrssituation auf voraus fahrende Fahrzeuge und deren Abstand zum Fahrzeug ausgewertet wird. Bei mit geringem Abstand vorausfahrendem Fahrzeug wird die Charakteristik des durch die wenigstens eine Scheinwerfereinheit ausgesandten Lichtbündels derart verändert, dass durch dieses der Fernbereich vor dem Fahrzeug weniger stark beleuchtet wird als ohne vorausfahrendes Fahrzeug. Durch die Sensoreinrichtung wird die Verkehrssituation auf entgegenkommende Fahrzeuge und darauf, auf welcher Seite des Fahrzeugs sich entgegenkommende Fahrzeuge befinden, ausgewertet. Die Charakteristik des durch die wenigstens eine Scheinwerfereinheit ausgesandten Lichtbündels wird derart gesteuert, dass dieses jeweils auf der eigenen Richtungsfahrspur des Fahrzeugs eine größere Reichweite aufweist als auf der Gegenverkehrsfahrspur. Die Scheinwerferanlage ist in einer Betriebsstellung für Fernlicht betreibbar. Bei mit geringem Abstand vorausfahrendem Fahrzeug und/oder bei entgegenkommenden Fahrzeugen wird die Scheinwerferanlage in eine Betriebsstellung für Abblendlicht umgeschaltet.
In der DE 10 2004 042 092 A1 wird ein Verfahren zur Ansteuerung einer Lichterzeugungseinrichtung für Kraftfahrzeuge offenbart, bei dem in Abhängigkeit von der Relativbewegung zwischen dem ein Lichtbündel abgebenden Kraftfahrzeug und einem entgegenkommenden und/oder vorausfahrenden Kraftfahrzeugs ein zu dem entgegenkommenden Kraftfahrzeug korrespondierender Teilbereich des Lichtbündels ausgespart wird, wobei die Lichterzeugungseinrichtung derart angesteuert wird, dass nur solche Teilbereiche der gesamten Lichtverteilung ausgespart werden, die oberhalb einer vorgegebenen Basislichtverteilung angeordnet sind. Das Aussparen der Teilbereiche erfolgt beispielsweise mittels LED-Arrays oder mit Hilfe von Mikrospiegelarrays. Aus der DE 198 22 142 C2 ist ein Verfahren zum Erzeugen eines vor einem Kraftfahrzeug auf die Fahrbahn auftreffenden Lichtbündels bekannt, bei dem die Lichtstärkeverteilung innerhalb des Lichtbündels in Abhängigkeit von den Lichtverhältnissen vor dem Kraftfahrzeug derart gesteuert und/oder geregelt wird, dass der Fahrer eines entgegenkommenden Kraftfahrzeugs von dem erzeugten Lichtbündel nicht geblendet wird. Die Lichtstärke des erzeugten Lichtbündels wird in einem Bereich der Lichtstärkeverteilung auf etwa Null gesetzt. Der Bereich der Lichtstärkeverteilung wird in Abhängigkeit von der Bewegung des eigenen und/oder des entgegenkommenden Kraftfahrzeugs verändert. Die Lichtstärkeverteilung wird mit Hilfe von Mikrospiegelarrays beeinflusst.
Weiterhin ist aus der noch nicht veröffentlichten Patentanmeldung der Anmelderin mit der Anmeldenummer DE 10 2007 038 077.3 ein Verfahren zur Fahrlichtsteuerung eines Fahrzeugs bekannt, bei dem eine Leuchtweite und ein Schwenkwinkel eines oder mehrerer Lichtkegel verschiedener Scheinwerfer eingestellt und ein für andere Verkehrsteilnehmer blendfreier Raum erzeugt wird, wobei bei einer Aktivierung eines Kurvenlichts und/oder Abbiegelichts die Leuchtweite in Abhängigkeit eines Kurvenlichtwinkels und/oder Abbiegelichtwinkels variiert wird.
Es ist eine Aufgabe der Erfindung, ein verbessertes Verfahren zur Fahrlichtsteuerung eines Fahrzeugs anzugeben.
Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
Bei dem erfindungsgemäßen Verfahren zur Fahrlichtsteuerung eines Fahrzeugs mit einem schwenkbaren Scheinwerfer werden als Lichtverteilungen die Abblendlichtverteilung und eine Fernlichtverteilung eingestellt und mit einem Sensor entgegenkommende und/oder sich in gleicher Richtung bewegenden Objekten detektiert. Erfindungsgemäß wird die Fernlichtverteilung in Abhängigkeit von einer Position der detektierten Objekte derart aus dem Bereich dieser geschwenkt, dass ein für die Objekte blendfreier Raum erzeugt wird, wobei die Fernlichtverteilung maximal bis an Kanten des Objekts geschwenkt wird. Dadurch ist eine gezielt vorgebbare Ausleuchtcharakteristik eines dem Fahrzeug vorausliegenden Bereichs realisierbar, insbesondere ein für andere Verkehrsteilnehmer blendfreien Raum bei maximal möglicher Sicht für einen Fahrer des Fahrzeugs unter Vermeidung unangenehmer Lichteffekte erzeugbar. Weiterhin ist es dem Fahrer des Fahrzeugs durch die automatische Einstellung des blendfreien Raumes möglich, dauerhaft eine Lichteinstellung, die einem Fernlicht entspricht, zu nutzen, ohne ein Ein- oder Ausschalten des Fernlichts zu vergessen, was eine Steigerung des Fahrkomforts für den Fahrer und eine Sicherheitserhöhung für alle Verkehrsteilnehmer schafft.
Weiterhin wird anhand eines Kurvenlichtwinkels aus einer Kurvenlichtfunktion des Scheinwerfers ermittelt, ob sich das Objekt in Fahrtrichtung vor dem Fahrzeug befindet.
Befindet sich das Objekt außerhalb des in Fahrtrichtung vor dem Fahrzeug liegenden Bereichs, wird das Fahrlicht nach der Kurvenlichtfunktion gesteuert, so dass für den Fahrer des Fahrzeugs eine maximale Ausleuchtung erzielt wird.
Zur Erzeugung des blendfreien Raumes sieht das Verfahren vor, dass mittels des Sensors seitliche Kanten mindestens eines vor dem Fahrzeug befindlichen Objekts in Form eines linken Kantenwinkels und eines rechten Kantenwinkels in Bezug auf eine Sensornullachse des Sensors ermittelt werden. Zusätzlich werden eine Entfernung und eine Fahrtrichtung des vor dem Fahrzeug befindlichen Objekts identifiziert.
Eine Position der Kante wird aus dem zugehörigen Kantenwinkel und der Entfernung bestimmt und zur Einstellung des Schwenkwinkels aus einem auf den Sensor bezogenen Koordinatensystem in ein auf den entsprechenden Scheinwerfer bezogenes Koordinatensystem transformiert.
Die Fernlichtverteilung weist einen inneren Fernlichtwinkel und einen äußeren Fernlichtwinkel bezüglich einer jeweiligen Scheinwerfernullachse auf, wobei der Scheinwerfer maximal bis zu einem Maximalschwenkwinkel geschwenkt wird.
Der Schwenkwinkel zum Schwenken der Scheinwerfer kann daraus folgend so gewählt werden, dass der innere Fernlichtwinkel aus Sicht des Objekts maximal bis an die dem entsprechenden Scheinwerfer zugewandte Kante heranreicht, sofern der Schwenkwinkel kleiner ist als der Maximalschwenkwinkel.
Alternativ wird der Schwenkwinkel zum Schwenken der Scheinwerfer so gewählt, dass zwischen dem inneren Fernlichtwinkel aus Sicht des Objekts und der dem entsprechenden Scheinwerfer zugewandten Kante ein Toleranzbereich eingestellt wird. Daraus resultiert der Vorteil, dass bei Bewegungen des vor dem Fahrzeug befindlichen Objekts kein ständiges, von dem Fahrer des Fahrzeuges als unangenehm empfundenes, Schwenken der Fernlichtverteilung ausgeführt wird, so dass eine gleichmäßige Fahrlichtsteuerung erreicht wird. Weiterhin kann so eine ungenaue Erfassung des Objektes, beispielsweise mittels einer Kamera, ausgeglichen werden.
Gemäß einer sinnvollen Weiterbildung des Verfahrens wird der Schwenkwinkel zum Schwenken der Scheinwerfer so gewählt, dass zwischen dem inneren Fernlichtwinkel aus Sicht des Objekts und der dem entsprechenden Scheinwerfer zugewandten Kante ein Sicherheitsbereich eingestellt wird. Somit wird vorzugsweise eine Blendung eines vorausfahrenden Fahrzeugführers über die Außenspiegel seines Fahrzeuges vermieden.
Mittels der Scheinwerfer ist es weiterhin möglich, dass bei einer Kurvenfahrt der Schwenkwinkel zum Schwenken der Scheinwerfer in Abhängigkeit von einer Geschwindigkeit des Fahrzeuges und eines Lenkwinkels eingestellt wird, d. h. dass die Scheinwerfer gleichzeitig zu einer Realisierung eines Kurven- und/oder Abbiegelichtes verwendet werden können oder dass bereits in dem Fahrzeug verwendete Scheinwerfer zur Verwirklichung des Kurven- und/oder Abbiegelichtes zur Durchführung des erfindungsgemäßen Verfahrens und dessen Weiterbildungen geeignet sind.
Befindet sich bei der Kurvenfahrt ein Objekt vor dem Fahrzeug, wird der Schwenkwinkel zum Schwenken der Scheinwerfer so gewählt, dass zwischen dem inneren Fernlichtwinkel aus Sicht des Objekts und der dem entsprechenden Scheinwerfer zugewandten Kante ein Toleranzbereich und ein Kurvensicherheitsbereich eingestellt werden. Dadurch wird eine Blendung des vorausfahrenden Fahrzeugführers über die Außenspiegel, den Innenspiegel und/oder eine direkte Blendung durch Scheiben seines Fahrzeuges vermieden. In einer Ausgestaltung der Erfindung werden der Toleranzbereich, der Sicherheitsbereich und/oder der Kurvensicherheitsbereich variabel in Abhängigkeit von einer Fahrzeuggeschwindigkeit, einer Objektgeschwindigkeit, einer Entfernung zwischen dem Fahrzeug und dem Objekt und/oder dem Lenkwinkel eingestellt, so dass stets die maximale Ausleuchtung, die Vermeidung der Blendung und eine für den Fahrer angenehm empfunden Fahrlichtsteuerung erzielt wird.
Ist zur Erzeugung des blendfreien Raumes ein über den Maximalschwenkwinkel hinausgehender Schwenkwinkel bei eingeschalteter Fernlichtverteilung erforderlich, wird von der Fernlichtverteilung auf die Abblendlichtverteilung umgeschaltet. Dem Fahrer des Fahrzeugs steht dadurch eine optimale, an ein momentanes Verkehrsgeschehen angepasste Ausleuchtung zur Verfügung, wobei keine Aktionen des Fahrers zur Einstellung dieser Ausleuchtung notwendig sind. Dadurch ist es dem Fahrer möglich, sich ausschließlich auf das Verkehrsgeschehen zu konzentrieren, so dass die Verkehrssicherheit weiter erhöht wird.
Befinden sich mehrere Objekte vor dem Fahrzeug, wird zumindest ein relevantes Objekt ermittelt. Gemäß einer Ausgestaltung der Erfindung wird das Objekt dann als relevant ermittelt, wenn dieses sich in Fahrtrichtung in einem Bereich vor dem Fahrzeug befindet. Bei mehreren relevanten Objekten wird der Schwenkwinkel des Scheinwerfers derart gewählt oder auf die Abblendlichtverteilung umgeschaltet, dass für ein erstes relevantes Objekt ein blendfreier Raum erzeugt wird und anschließend ein oder mehrere angrenzende Objekte detektiert und für diese ein oder mehrere blendfreie Räume erzeugt werden. Somit wird die maximale Ausleuchtung für den Fahrer des Fahrzeugs bei gleichzeitiger Vermeidung einer Blendung aller anderen Verkehrsteilnehmer erzielt.
Das Verfahren sieht in einer Weiterbildung zusätzlich vor, dass der Sensor detektiert, ob sich das Fahrzeug in einem Bereich mit Straßenbeleuchtung bewegt. In diesem Fall wird von der Fernlichtverteilung auf die Abblendlichtverteilung umgeschaltet.
Bei Fahrzeugen mit mehreren Scheinwerfern wird eine aufeinander abgestimmte Fahrlichtsteuerung der einzelnen Scheinwerfer ausgeführt, so dass unterschiedlichste Ausleuchtcharakteristika erzeugt werden können. Gemäß einer vorteilhaften Weiterbildung der Erfindung wird mittels der Scheinwerfer eine vertikale Hell-Dunkel-Grenze an dem inneren Fernlichtwinkel erzeugt, so dass ein exakt begrenzter blendfreier Raum entsteht. Dadurch wird eine weitere Verbesserung der Sicht für den Fahrer des Fahrzeugs bei gleichzeitig verbesserter Begrenzung des blendfreien Raumes erzielt.
Ausführungsbeispiele der Erfindung werden im Folgenden anhand von Zeichnungen näher erläutert.
Dabei zeigen:
Fig. 1 schematisch ein Fahrzeug mit einem Sensor und zwei Scheinwerfern und ein in Fahrtrichtung in einem Bereich vor dem Fahrzeug befindliches Objekt,
Fig. 2 schematisch das Fahrzeug gemäß Figur 1 und Fernlichtverteilungen der
Scheinwerfer,
Fig. 3 schematisch das Fahrzeug gemäß Figur 1 und einen maximalen
Schwenkbereich eines Scheinwerfers,
Fig. 4 schematisch das Fahrzeug und das Objekt gemäß Figur 1 und eine geschwenkte Fernlichtverteilung,
Fig. 5A schematisch das Fahrzeug gemäß Figur 1 und ein in geringer Entfernung vor dem Fahrzeug befindliches Objekt,
Fig. 5B schematisch das Fahrzeug gemäß Figur 1 und ein in geringer Entfernung links vor dem Fahrzeug befindliches Objekt,
Fig. 5C schematisch das Fahrzeug gemäß Figur 1 und ein in geringer Entfernung rechts vor dem Fahrzeug befindliches Objekt,
Fig. 6 schematisch das Fahrzeug gemäß Figur 1 und ein vor dem Fahrzeug befindliches Objekt und die Einstellung eines Sicherheitsbereiches, Fig. 7 schematisch das Fahrzeug gemäß Figur 1 und ein in Fahrtrichtung vor dem Fahrzeug in einer Kurve befindliches Objekt,
Fig. 8 schematisch das Fahrzeug gemäß Figur 1 und mehrere vor dem Fahrzeug befindliche Objekte,
Fig. 9A schematisch klassische Fernlichtverteilungen, und
Fig. 9B schematisch Fernlichtverteilungen mit einer vertikalen Hell-Dunkel-Grenze.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
Figur 1 zeigt ein Fahrzeug F mit einem Sensor 1 und zwei Scheinwerfern 2 und ein in Fahrtrichtung in einem Bereich vor dem Fahrzeug F befindliches Objekt. Bei dem Sensor 1 handelt es sich insbesondere um eine Kamera, mit welcher das Objekt O erfasst wird. Die Sensor 1 weist Öffnungswinkel ωκ und -ωκ in Bezug auf eine Sensornullachse Ys auf. Dabei können entgegenkommende und/oder sich in gleicher Richtung bewegenden Objekte O in einem Bereich in Fahrtrichtung vor dem Fahrzeug F detektiert werden.
Die Scheinwerfer 2 sind zur Ausführung einer Kurvenlichtfunktion schwenkbar ausgeführt und als Lichtverteilungen können jeweils eine nicht näher dargestellte Abblendlichtverteilung und eine in Figur 2 dargestellte Fernlichtverteilung FV eingestellt werden.
Als Daten des vor dem Fahrzeug F befindlichen Objektes O, bei welchem es sich beispielsweise ebenfalls um ein Fahrzeug handeln kann, werden eine Entfernung E zu dem Fahrzeug F1 eine Fahrtrichtung und seitliche Kanten K in Form eines linken Kantenwinkels ωκ'' und eines rechten Kantenwinkels ω«re in Bezug auf die Sensornullachse Ys ermittelt. Eine Position einer Kante K wird aus dem zugehörigen Kantenwinkel ωκ re oder ωκ'' und der Entfernung E ermittelt. Erfindungsgemäß wird die Fernlichtverteilung FV in Abhängigkeit von einer Position des detektierten Objekts O derart aus dem Bereich dieses geschwenkt, dass ein für das Objekt O blendfreier Raum erzeugt wird, wobei die Fernlichtverteilung FV maximal bis an Kanten K des Objekts O geschwenkt wird.
Zur Einstellung eines Schwenkwinkels wird die Position der Kante K aus einem auf den Sensor 1 bezogenen Koordinatensystem in ein auf den entsprechenden Scheinwerfer 2 bezogenes Koordinatensystem transformiert.
Die jeweilige Fernlichtverteilung FV weist, wie in Figur 2 dargestellt, eine Nullstellung auf. Dabei sind die Fernlichtverteilungen FV durch die inneren Fernlichtwinkel niu«0 und reωfl 0 bezüglich einer Scheinwerfernullachse YSw gekennzeichnet und begrenzt. Die jeweiligen äußeren Fernlichtwinkel iιωfl a und reωfia ergeben sich rechnerisch aus einem Gesamtöffnungswinkel ωfl abzüglich des jeweiligen inneren Fernlichtwinkels ι,cαfl 0 und reωfl°.
Zur Erzeugung des blendfreien Raums werden die Fernlichtlichtverteilungen FV gemäß Figur 1 von der Nullposition der inneren Fernlichtwinkel \,ωn° und Te^i\° aus maximal bis an die Kanten K des Objekts O geschwenkt, so dass Fernlichtverteilungen FV durch die inneren Fernlichtwinkel I1Con 0* und reWfi0* begrenzt werden und sich das Objekt O in dem blendfreien Raum befindet.
In Figur 3 ist zu einer vereinfachten Darstellung das Fahrzeug F mit nur einem Scheinwerfer 2 gezeigt. Dabei verdeutlicht die Darstellung, dass der Schwenkwinkel der Fernlichtverteilung FV zum einen durch einen inneren Maximalschwenkwinkel ωκlmax und zum anderen durch einen äußeren Maximalschwenkwinkel ωKιamax begrenzt ist. Diese Maximalschwenkwinkel ωKιιmax, ω«ιamax sind durch eine maximale Schwenkbarkeit des Scheinwerfers 2 um einen inneren Kurvenlichtwinkel ωKι' und einen äußeren Kurvenlichtwinkel ωKιa aus einer Kurvenlichtfunktion begrenzt.
Anhand eines eingestellten Kurvenlichtwinkels ωKι', ωKιa aus der Kurvenlichtfunktion des Scheinwerfers 2 wird ermittelt, ob sich das Objekt O in Fahrtrichtung in einem Bereich vor dem Fahrzeug F befindet. Bei den Objekten O kann sich sowohl um dem Fahrzeug F entgegenkommende als auch um diesem sich vorausbewegende Objekte O handeln. Das heißt, befindet sich das Objekt O in einem Bereich der um den Kurvenlichtwinkels ωKι', ω«ιa geschwenkten oder ungeschwenkten Fernlichtverteilung FV1 wird der blendfreie Raum durch das Schwenken der Fernlichtverteilung FV erzeugt. Befindet sich das Objekt O jedoch außerhalb des in Fahrtrichtung vor dem Fahrzeug F liegenden Bereichs befindet, wird das Fahrlicht des Scheinwerfers 2 nach der Kurvenlichtfunktion gesteuert und die Fernlichtverteilung FV beibehalten.
Figur 4 zeigt das Fahrzeug F und das Objekt O gemäß Figur 1 und eine geschwenkte Fernlichtverteilung FV eines Scheinwerfers 2, insbesondere des linken Scheinwerfers 2. Das Objekt O befindet sich dabei in Fahrtrichtung in einem Bereich vor dem Fahrzeug F, so dass sich das Objekt O bei einer ungeschwenkten Position der Fernlichtverteilung FV in dieser befinden würde. Um eine Blendung zu vermeiden, wird, wie dargestellt, die Fernlichtverteilung FV des rechten Scheinwerfers 2 um einen Schwenkwinkel, der dem dargestellten äußeren Kurvenlichtwinkel ωKιa entspricht, nach rechts geschwenkt. Die Fernlichtverteilung FV wird dabei zumindest so weit geschwenkt, dass der rechte innere Fernlichtwinkel reü)fi° insbesondere bis maximal an die Kante K des Objektes O reicht.
Gemäß einer Weiterbildung der Erfindung wird der Schwenkwinkel der Fernlichtverteilung FV so gewählt, dass zwischen dem inneren Fernlichtwinkel reu)fi° aus Sicht des Objekts O und der dem Scheinwerfer 2 zugewandten Kante K des Objekts O ein Toleranzbereich T eingestellt wird, so dass eine ständiges Schwenken der Fernlichtverteilung FV durch eine ungenaue Erfassung des Sensors 1 oder durch Bewegungen des Objekts O vermieden werden.
In den Figuren 5A bis 5C sind das Fahrzeug gemäß Figur 1 und das Objekt O in drei verschiedenen Situationen vergleichend dargestellt. Um eine Übersichtlichkeit sicherzustellen, sind lediglich die Fernlichtverteilung FV, der innere bzw. der äußere Maximalschwenkwinkel ωKιιmax, ωKιamax und einen notwendigen Winkel ωKι_k dargestellt welcher den Schwenkwinkel beschreibt, der notwendig ist, damit der linke innere Fernlichtwinkel reωfi0 bis maximal an die Kante K des Objektes O geschwenkt wird.
In Figur 5A befindet sich das Objekt O in Fahrtrichtung in dem Bereich vor dem Fahrzeug F nahezu ohne seitlichen Versatz zu diesem. Daher ist der notwendige Winkel ωKι_k zum Schwenken des Scheinwerfers 2 geringer ausgebildet als der äußere Maximalschwenkwinkel ωκ amax, so dass durch Schwenken der Fernlichtverteilung FV ein blendfreier Raum für das Objekt O erzeugt wird. In Figur 5B befindet sich das Objekt O in Fahrtrichtung in dem Bereich vor dem Fahrzeug F mit einem seitlichen Versatz nach links zu diesem. Daher ist der notwendige Winkel ω«ι_k größer ausgebildet als der äußere Maximalschwenkwinkel ωKιamax, so dass durch Schwenken der Fernlichtverteilung FV kein blendfreier Raum für das Objekt O erzeugt wird. In diesem Fall wird von der Fernlichtverteilung FV auf die Abblendlichtverteilung umgeschaltet, um den blendfreien Raum zu erzeugen. Der Übergang zwischen der Fernlichtverteilung FV und der Abblendlichtverteilung kann dabei allmählich erfolgen, so dass beispielsweise Flickererscheinungen vermieden werden.
In Figur 5C befindet sich das Objekt O in Fahrtrichtung in dem Bereich vor dem Fahrzeug F mit einem seitlichen Versatz nach rechts zu diesem. Der seitliche Versatz ist dabei derart groß, dass sich das Objekt O außerhalb des Bereiches der um den Kurvenlichtwinkels ωKι', ωKιa geschwenkten oder ungeschwenkten Fernlichtverteilung FV befindet, so dass das Fahrlicht des Scheinwerfers 2 nach der Kurvenlichtfunktion gesteuert wird. Eine Blendung des Objekts O, zumindest mittels des linken Scheinwerfers 2, ist nicht möglich, da der innere Maximalschwenkwinkel ωκι'max kleiner ist als der notwendige Winkel ωKι_k.
Figur 6 zeigt das Fahrzeug F gemäß Figur 1 und ein vor dem Fahrzeug F befindliches Objekt O, insbesondere ein weiteres Fahrzeug. An diesem Fahrzeug befindet sich zumindest ein Außenspiegel OA. Um einen Fahrer des vorausfahrenden Fahrzeugs durch seinen Außenspiegel OA nicht zu blenden, wird zusätzlich zu dem notwendigen Winkel ωKι_k ein Sicherheitsbereich S zwischen dem hier nicht explizit dargestellten linken inneren Fernlichtwinkel i^fl° und der diesem zugewandten Kante K des Objekts O eingestellt.
Figur 7 zeigt das Fahrzeug F gemäß Figur 1 und das in Fahrtrichtung vor dem Fahrzeug F in einer Kurve befindliche Objekt O. Da das Fahrzeug F ebenfalls der Kurve folgt, sind die Fernlichtverteilungen FV der Scheinwerfer 2 (hier ist nur beispielhaft der linke Scheinwerfer 2 dargestellt) in Richtung des Kurvenverlaufs geschwenkt. Der Schwenkwinkel zum Schwenken der Scheinwerfer 2 wird dabei in Abhängigkeit von einer Geschwindigkeit des Fahrzeugs F und eines Lenkwinkels eingestellt. Da bei der dargestellten Kurvenfahrt die Gefahr einer Blendung eines Fahrers eines vorausfahrenden Fahrzeugs sowohl über die über die Außenspiegel OA und einen Innenspiegel als auch durch Scheiben seines Fahrzeuges besteht, wird der Schwenkwinkel zum Schwenken der Scheinwerfer 2 so gewählt, dass zwischen dem linken inneren Fernlichtwinkel hωfl 0 aus Sicht des Objekts O und der dem entsprechenden Scheinwerfer 2 zugewandten Kante K zusätzlich zum Sicherheitsbereich S ein Kurvensicherheitsbereich KS eingestellt werden, so dass die Fernlichtverteilung FV an dem Objekt O vorbeigeführt wird.
In einer Ausgestaltung der Erfindung werden der Toleranzbereich T1 der Sicherheitsbereich S und/oder der Kurvensicherheitsbereich KS variabel in Abhängigkeit von einer Fahrzeuggeschwindigkeit, einer Objektgeschwindigkeit, der Entfernung E zwischen dem Fahrzeug F und dem Objekt O und/oder dem Lenkwinkel eingestellt, so dass stets die maximale Ausleuchtung, die Vermeidung der Blendung und eine für den Fahrer angenehm empfunden Fahrlichtsteuerung erzielt wird. Weiterhin wird durch den Toleranzbereich T, den Sicherheitsbereich S und/oder den Kurvensicherheitsbereich KS ein ständiges Umschalten zwischen der Fernlichtverteilung FV und der Abblendlichtverteilung vermieden, was sowohl für den Fahrer des Fahrzeugs F als auch für die anderen Verkehrsteilnehmer vorteilhaft ist.
Figur 8 zeigt das Fahrzeug F gemäß Figur 1 und mehrere vor dem Fahrzeug F befindliche Objekte 01 bis 03. Aus diesen Objekten 01 bis 03 wird zumindest ein relevantes Objekt 01 ermittelt. Das Objekt 01 ist dann relevant, wenn es sich wie bereits beschrieben, in Fahrtrichtung in dem Bereich vor dem Fahrzeug F befindet. Die Scheinwerfer 2 werden dabei zumindest um den notwendigen Winkel ωKι_k nach links bzw. den notwendigen Winkel ωKι_ki nach rechts geschwenkt, so dass für das relevante Objekt 01 der blendfreie Raum erzeugt wird.
Werden weitere relevante Objekte, wie das Objekt 02, detektiert, werden der oder die Scheinwerfer 2 derart geschwenkt, dass auch dieses Objekt 02 sich in dem blendfreien Raum befindet. Hier wird insbesondere der rechte Scheinwerfer 2 um einen notwendigen Winkel ωKι_k2 weiter nach rechts geschwenkt, so dass der rechte innere Fernlichtwinkel r(W bis maximal an die rechte Kante K des Objekts 02 reicht. Das Objekt 03 ist im dargestellten Ausführungsbeispiel nicht relevant, so dass die linke Fernlichtverteilung FV zwischen dem relevanten Objekt 01 und dem nicht relevanten Objekt 02 durchgeführt werden kann, ohne dass eine Blendung beider Objekte 01 und 03 entsteht.
Die Figur 9A zeigt typische Fernlichtverteilungen FV zweier Scheinwerfer 2 auf einer weißen Wand, wobei der hellste Punkt der jeweiligen Fernlichtverteilung FV in deren Zentrum liegt und die Helligkeit nach außen abnimmt. Ein Anteil der Abblendlichtverteilung ist nicht wahrnehmbar.
Die Figur 9B zeigt Fernlichtverteilungen FV zweier Scheinwerfer 2 mit einer vertikalen Hell-Dunkel-Grenze HDG auf der weißen Wand. Die jeweiligen Fernlichtverteilungen FV sind fahrzeugmittig vertikal scharf begrenzt und werden in der Mitte und außen durch die jeweiligen Abblendlichtverteilungen AV unterstützt. Diese Lichtverteilung wird als Teilfernlicht bezeichnet.
Das erfindungsgemäße Verfahren und Ausgestaltungen dieses können mit beiden in den Figuren 9A und 9B dargestellten Fernlichtverteilungen FV durchgeführt werden. Aufgrund der scharfen vertikalen Hell-Dunkel-Grenze HDG eignet sich das Teilfernlicht besonders gut zum Ausblenden, d. h. zur Erzeugung des blendfreien Raums, da an den Objektbegrenzungspunkten bzw. den Kanten K des Objekts O direkt vorbei geleuchtet werden kann.
Die klassische Fernlichtverteilung FV gemäß Figur 9A hat dabei gegenüber dem Teilfernlicht den Vorteil einer größeren Ausleuchtung und einer höheren Helligkeit.
Aus diesem Grunde wird gemäß einer vorteilhaften Weiterbildung das Verfahren derart erweitert, dass sofern keine Objekte O detektiert werden, bei Aktivierung der Fernlichtverteilung FV die klassische Fernlichtverteilung FV gewählt wird, während hingegen bei einem detektierten Objekt O zum Ausblenden die Fernlichtverteilung FV über das Teilfernlicht erfolgt.
Gemäß weiterer nicht näher dargestellter Weiterbildungen der Erfindung detektiert der Sensor 1 , ob sich das Fahrzeug F in einem Bereich mit Straßenbeleuchtung bewegt, so dass in diesem Fall von der Fernlichtverteilung FV auf die Abblendlichtverteilung umgeschaltet wird.
Weiterhin wird, wie bereits beschrieben, eine aufeinander abgestimmte Fahrlichtsteuerung der einzelnen Scheinwerfer 2 ausgeführt wird. Dabei kann neben unterschiedlichen Schwenkwinkeln auch ein Scheinwerfer 2 mit Fernlichtverteilung FV und der andere mit Abblendlichtverteilung betreiben werden.
Zur Durchführung des erfindungsgemäßen Verfahrens und Weiterbildungen dieses kann jede bekannte Art von Scheinwerfern und Leuchtmitteln verwendet werden. Dabei können sowohl separate als auch getrennte Leuchtmittel für die Realisierung der Fernlichtverteilung FV und der Abblendlichtverteilung vorgesehen sein.

Claims

Patentansprüche
1. Verfahren zur Fahrlichtsteuerung eines Fahrzeugs (F) mit einem schwenkbaren Scheinwerfer (2), bei dem als Lichtverteilungen ein Abblendlichtverteilung und einen Fernlichtverteilung (FV) eingestellt werden, und mit einem Sensor (1) zu einer Detektion von entgegenkommenden und/oder sich in gleicher Richtung bewegenden Objekten (O), dadurch gekennzeichnet, dass die Fernlichtverteilung (FV) in Abhängigkeit von einer Position der detektierten Objekte (O) derart aus dem Bereich dieser geschwenkt wird, dass ein für die Objekte (O) blendfreier Raum erzeugt wird, wobei die Fernlichtverteilung (FV) maximal bis an Kanten (K) des Objekts (O) geschwenkt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass anhand eines Kurvenlichtwinkels (ω«ι) aus einer Kurvenlichtfunktion des Scheinwerfers (2) ermittelt wird, ob sich das Objekt (O) in Fahrtrichtung in einem Bereich vor dem Fahrzeug (F) befindet.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Fahrlicht nach der Kurvenlichtfunktion gesteuert wird, wenn sich das Objekt (O) außerhalb des in Fahrtrichtung vor dem Fahrzeug (F) liegenden Bereichs befindet.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Fernlichtverteilung (FV) einen inneren Fernlichtwinkel (^n 0, reWfl 0) und einen äußeren Fernlichtwinkel Cco«', ι,ωfl a) bezüglich einer jeweiligen Scheinwerfernullachse (YSw) aufweist, wobei der Scheinwerfer (2) maximal bis zu einem Maximalschwenkwinkel (ωκι'max, ωKιamax) geschwenkt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Schwenkwinkel zum Schwenken des Scheinwerfers (2) so gewählt wird, dass der innere Fernlichtwinkel („co«0, rfl 0) aus Sicht des Objekts (O) maximal bis an die dem entsprechenden Scheinwerfer zugewandte Kante (K) heranreicht, sofern der Schwenkwinkel kleiner ist als der Maximalschwenkwinkel (ωκrax, ωKιamax).
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Schwenkwinkel zum Schwenken des Scheinwerfers (2) so gewählt wird, dass zwischen dem inneren Fernlichtwinkel (iιωfl°, re0) aus Sicht des Objekts (O) und der dem entsprechenden Scheinwerfer (2) zugewandten Kante (K) ein Toleranzbereich (T) eingestellt wird.
7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der Schwenkwinkel zum Schwenken des Scheinwerfers (2) so gewählt wird, dass zwischen dem inneren Fernlichtwinkel (πU)«0, reωfi0) aus Sicht des Objekts (O) und der dem entsprechenden Scheinwerfer (2) zugewandten Kante (K) ein Sicherheitsbereich (S) eingestellt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei einer Kurvenfahrt der Schwenkwinkel zum Schwenken des Scheinwerfers (2) in Abhängigkeit von einer Geschwindigkeit des Fahrzeuges (F) und eines Lenkwinkels eingestellt wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei einer Kurvenfahrt der Schwenkwinkel zum Schwenken des Scheinwerfers (2) so gewählt wird, dass zwischen dem inneren Fernlichtwinkel (ι,ωfl 0, rei*)f\0) aus Sicht des Objekts (O) und der dem entsprechenden Scheinwerfer (2) zugewandten Kante (K) ein Kurvensicherheitsbereich (KS) eingestellt wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Toleranzbereich (T), der Sicherheitsbereich (S) und/oder der Kurvensicherheitsbereich (KS) variabel in Abhängigkeit von einer Fahrzeuggeschwindigkeit, einer Objektgeschwindigkeit, einer Entfernung (E) und/oder dem Lenkwinkel eingestellt werden.
11. Verfahren nach einem der Ansprüche 4 bis 10, dadurch gekennzeichnet, dass von der Fernlichtverteilung (FV) auf die Abblendlichtverteilung umgeschaltet wird, wenn ein über den Maximalschwenkwinkel (ωκι'max, ω«ιamax) hinausgehender Schwenkwinkel bei eingeschalteter Fernlichtverteilung (FV) erforderlich ist, um den blendfreien Raum zu erzeugen.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass aus mehreren sich vor dem Fahrzeug (F) befindlichen Objekten (O) zumindest ein relevantes Objekt (01 , 02) ermittelt wird.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass das Objekt (01 , 02) dann als relevant ermittelt wird, wenn dieses sich in Fahrtrichtung in dem Bereich vor dem Fahrzeug (F) befindet.
14. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass bei mehreren relevanten Objekten (01 , 02) der Schwenkwinkel des Scheinwerfers (2) derart gewählt oder auf die Abblendlichtverteilung umgeschaltet wird, dass für ein erstes relevantes Objekt (01) ein blendfreier Raum erzeugt wird und anschließend ein oder mehrere angrenzende relevante Objekte (02) detektiert und für diese ein oder mehrere blendfreie Räume erzeugt werden.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Sensor (1) detektiert, ob sich das Fahrzeug (F) in einem Bereich mit Straßenbeleuchtung bewegt und dass in diesem Fall von der Fernlichtverteilung (FV) auf die Abblendlichtverteilung umgeschaltet wird.
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei Fahrzeugen (F) mit mehreren Scheinwerfern (2) eine aufeinander abgestimmte Fahrlichtsteuerung der einzelnen Scheinwerfer (2) ausgeführt wird.
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mittels des Scheinwerfers (2) eine vertikale Hell-Dunkel-Grenze (HDG) an dem inneren Fernlichtwinkel (ι,ωfl 0, rei0fi°) erzeugt wird.
18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mittels des Sensors (1) die seitlichen Kanten (K) mindestens eines vor dem Fahrzeug (F) befindlichen Objekts (O) in Form eines linken Kantenwinkels (ωκ") und eines rechten Kantenwinkels (ωκ re) in Bezug auf eine Sensornullachse (Ys) des Sensors ermittelt werden.
19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Entfernung (E) und eine Bewegungsrichtung oder Fahrtrichtung des vor dem Fahrzeug (F) befindlichen Objekt (O) identifiziert werden.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass eine Position der Kante (K) aus dem zugehörigen Kantenwinkel (ωκ", ωκ re) und der Entfernung € bestimmt und zur Einstellung des Schwenkwinkels aus einem auf den Sensor (1) bezogenen Koordinatensystem in ein auf den entsprechenden Scheinwerfer (2) bezogenes Koordinatensystem transformiert wird.
PCT/EP2009/000504 2008-03-14 2009-01-27 Verfahren zur fahrlichtsteuerung eines fahrzeugs WO2009112125A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008014182.8 2008-03-14
DE200810014182 DE102008014182A1 (de) 2008-03-14 2008-03-14 Verfahren zur Fahrlichtsteuerung eines Fahrzeugs

Publications (1)

Publication Number Publication Date
WO2009112125A1 true WO2009112125A1 (de) 2009-09-17

Family

ID=40566321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/000504 WO2009112125A1 (de) 2008-03-14 2009-01-27 Verfahren zur fahrlichtsteuerung eines fahrzeugs

Country Status (2)

Country Link
DE (1) DE102008014182A1 (de)
WO (1) WO2009112125A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010048100A1 (de) 2010-10-09 2012-04-12 Daimler Ag Verfahren und Vorrichtung zur Fahrlichtsteuerung eines Fahrzeugs
EP2156983B1 (de) * 2008-08-20 2012-06-20 Hella KGaA Hueck & Co. Verfahren und Vorrichtung zum Steuern der vertikalen Hell-Dunkel-Grenze bei Scheinwerfern
JP2012126200A (ja) * 2010-12-14 2012-07-05 Stanley Electric Co Ltd 配光制御システム及び配光制御装置
JP2012187950A (ja) * 2011-03-09 2012-10-04 Stanley Electric Co Ltd 配光制御システム
JP2013043623A (ja) * 2011-08-26 2013-03-04 Stanley Electric Co Ltd 車両用前照灯の点灯制御装置、車両用前照灯システム
JP2013079044A (ja) * 2011-10-05 2013-05-02 Stanley Electric Co Ltd 車両用灯具の配光制御装置、車両用灯具の配光制御システム
FR3022326A1 (fr) * 2014-06-16 2015-12-18 Valeo Vision Module d'eclairage et/ou de signalisation rotatif
WO2016208408A1 (ja) * 2015-06-26 2016-12-29 株式会社デンソー 車両用の前照灯制御装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023093B4 (de) 2009-05-12 2023-06-29 Mercedes-Benz Group AG Verfahren zur Fahrlichtsteuerung eines Fahrzeugs
DE102009057391A1 (de) 2009-05-20 2010-12-02 Daimler Ag Verfahren zur automatischen Fahrlichtsteuerung eines Fahrzeugs
DE102009031805A1 (de) 2009-05-20 2010-03-04 Daimler Ag Verfahren und Vorrichtung zur Erfassung von Objekten in einer Umgebung eines Fahrzeugs
DE102009024129B4 (de) 2009-06-05 2024-02-08 Mercedes-Benz Group AG Verfahren zur Fahrlichtsteuerung verschiedener Lichtverteilungen eines Fahrzeugs
JP5424771B2 (ja) * 2009-08-04 2014-02-26 株式会社小糸製作所 車両用前照灯の配光制御システム
EP2338731B1 (de) * 2009-12-04 2014-09-03 Hella KGaA Hueck & Co. Steuergerät zur Steuerung von Fahrzeugscheinwerfern zum Erzeugen einer Lichtverteilung mit nachführbaren vertikalen Hell-Dunkel-Grenzen
DE102009057745A1 (de) * 2009-12-10 2011-06-16 Hella Kgaa Hueck & Co. Vorrichtung, Anordnung und Verfahren zum Steuern von Lichtverteilungen eines Frontscheinwerfers eines Kraftfahrzeugs mit vertikaler Hell-Dunkel-Grenze zur Reduktion von Lichtbewegungen bei kurvenreichen Streckenabschnitten
JP5398507B2 (ja) 2009-12-16 2014-01-29 株式会社小糸製作所 車両用前照灯装置
DE102010006296A1 (de) 2010-01-30 2010-09-16 Daimler Ag Verfahren zur Fahrlichtsteuerung eines Fahrzeugs
DE102010010426A1 (de) * 2010-03-05 2011-09-08 Hella Kgaa Hueck & Co. Verfahren und Vorrichtung zum Entblenden von entgegenkommenden Fahrzeugen bei baulichen Fahrbahnbegrenzungen
DE102010010424A1 (de) * 2010-03-05 2011-09-08 Hella Kgaa Hueck & Co. Verfahren zur Ausleuchtung eines vor einem Fahrzeug mit Scheinwerfern mit einstellbaren vertikalen Hell-Dunkel-Grenzen liegenden Verkehrsraums
DE102010010425A1 (de) * 2010-03-05 2011-09-08 Hella Kgaa Hueck & Co. Verfahren zum Steuern von Hauptscheinwerfern mit einstellbarer adaptiver Hell-Dunkel-Grenze und mit einstellbarer vertikaler Hell-Dunkel-Grenze
DE102010010909A1 (de) * 2010-03-10 2011-09-15 Daimler Ag Verfahren zum Justieren und/oder Kalibrieren einer optischen Einheit eines Fahrzeugs
JP2011240870A (ja) * 2010-05-20 2011-12-01 Koito Mfg Co Ltd 車両用灯具システム、制御装置、および車両用灯具
DE102010033011A1 (de) 2010-07-31 2011-03-17 Daimler Ag Verfahren zum Einstellen eines Betriebsverhaltens einer Lichtverteilung eines Fahrzeugscheinwerfers mit einer horizontal verschiebbaren Hell-Dunkel-Grenze
DE102010035636B4 (de) * 2010-08-27 2024-10-10 HELLA GmbH & Co. KGaA Vorrichtung zum Wechseln von einer Fernlichtverteilung zu einer ein zu entblendendes Objekt entblendenden Lichtverteilung
US8972117B2 (en) 2010-11-12 2015-03-03 Toyota Jidosha Kabushiki Kaisha Vehicular light distribution control system and vehicular light distribution control method
DE102011000316B4 (de) * 2011-01-25 2023-09-28 HELLA GmbH & Co. KGaA Verfahren für die Kalibrierung einer vertikalen Hell-Dunkel-Grenze sowie Fahrzeuge mit einer variierbaren Hell-Dunkel-Grenze
DE102011050532B4 (de) * 2011-05-20 2020-03-12 HELLA GmbH & Co. KGaA Steuergerät und Verfahren zum Steuern von Frontscheinwerfern von Fahrzeugen
DE102011050535B4 (de) * 2011-05-20 2023-09-28 HELLA GmbH & Co. KGaA Scheinwerferanordnung aus einem rechten und einem linken Schein- werfer umfassend eine Lichtquellenmatrix und ein Steuergerät zum Steuern der Scheinwerfer
DE102012018117A1 (de) * 2012-09-13 2014-03-13 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben einer frontalen Scheinwerfereinrichtung eines Fahrzeugs, Fahrerassistenzvorrichtung und Fahrzeug
FR2999128B1 (fr) * 2012-12-11 2015-01-02 Valeo Vision Procede et dispositif de commande d'un faisceau lumineux
DE102014206327A1 (de) * 2014-04-02 2015-10-08 Robert Bosch Gmbh Verfahren zum Betreiben eines Abbiegelichts eines Fahrzeugs und Fahrzeugbeleuchtung
CN106166980A (zh) 2015-05-22 2016-11-30 福特全球技术公司 用于控制前照灯的方法和装置
KR101859047B1 (ko) 2015-06-24 2018-05-17 엘지전자 주식회사 헤드 램프, 차량 운전 보조 장치 및 차량
DE102016008981A1 (de) * 2016-07-23 2018-01-25 Daimler Ag Vorrichtung und Verfahren zur Einstellung einer Lichtverteilung eines Scheinwerfers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1000265A (en) * 1961-10-09 1965-08-04 Baumanns Herbert Beam-directing device for radiation transmitters, more particularly head lamps
US3249761A (en) * 1961-10-09 1966-05-03 Baumanns Herbert Photoelectric headlamp dimmer which adjusts headlamps inwardly
EP1757485A1 (de) * 2005-08-24 2007-02-28 Dr.Ing. h.c.F. Porsche Aktiengesellschaft Verfahren zur Steuerung der Leuchtweite der Scheinwerfer eines Kraftfahrzeuges
US20070147055A1 (en) * 2005-12-28 2007-06-28 Koito Manufacturing Co., Ltd. Vehicle lighting device
WO2008155342A1 (de) * 2007-06-21 2008-12-24 Volkswagen Ag Verfahren zum steuern einer scheinwerferanordnung für ein fahrzeug mit separaten scheinwerfern für ein abblendlicht und ein fernlicht
WO2009021594A1 (de) * 2007-08-11 2009-02-19 Daimler Ag Verfahren und vorrichtung zur fahrlichtsteuerung eines fahrzeugs
EP2039567A1 (de) * 2007-09-24 2009-03-25 Hella KGaA Hueck & Co. Projektionsscheinwerfeanordnung für Fahrzeuge

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19716784B4 (de) 1997-04-22 2006-05-18 Automotive Lighting Reutlingen Gmbh Scheinwerferanlage für Fahrzeuge
DE19822142C2 (de) 1998-05-16 2000-08-17 Bosch Gmbh Robert Verfahren und Vorrichtung zum Erzeugen eines vor einem Kraftfahrzeug auf die Fahrbahn auftreffenden Lichtbündels
DE102004042092B4 (de) 2004-08-30 2020-01-02 HELLA GmbH & Co. KGaA Verfahren zur Ansteuerung einer Lichterzeugungseinrichtung für Kraftfahrzeuge sowie Vorrichtung
DE102005014953A1 (de) 2005-04-01 2006-10-05 Audi Ag Kraftfahrzeug mit einer Beleuchtungseinrichtung mit veränderbarem Ausleuchtvolumen
DE102006008188A1 (de) 2006-02-22 2007-08-30 Audi Ag Beleuchtungsvorrichtung für ein Fahrzeug

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1000265A (en) * 1961-10-09 1965-08-04 Baumanns Herbert Beam-directing device for radiation transmitters, more particularly head lamps
US3249761A (en) * 1961-10-09 1966-05-03 Baumanns Herbert Photoelectric headlamp dimmer which adjusts headlamps inwardly
EP1757485A1 (de) * 2005-08-24 2007-02-28 Dr.Ing. h.c.F. Porsche Aktiengesellschaft Verfahren zur Steuerung der Leuchtweite der Scheinwerfer eines Kraftfahrzeuges
US20070147055A1 (en) * 2005-12-28 2007-06-28 Koito Manufacturing Co., Ltd. Vehicle lighting device
WO2008155342A1 (de) * 2007-06-21 2008-12-24 Volkswagen Ag Verfahren zum steuern einer scheinwerferanordnung für ein fahrzeug mit separaten scheinwerfern für ein abblendlicht und ein fernlicht
WO2009021594A1 (de) * 2007-08-11 2009-02-19 Daimler Ag Verfahren und vorrichtung zur fahrlichtsteuerung eines fahrzeugs
EP2039567A1 (de) * 2007-09-24 2009-03-25 Hella KGaA Hueck & Co. Projektionsscheinwerfeanordnung für Fahrzeuge

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2156983B1 (de) * 2008-08-20 2012-06-20 Hella KGaA Hueck & Co. Verfahren und Vorrichtung zum Steuern der vertikalen Hell-Dunkel-Grenze bei Scheinwerfern
DE102010048100A1 (de) 2010-10-09 2012-04-12 Daimler Ag Verfahren und Vorrichtung zur Fahrlichtsteuerung eines Fahrzeugs
DE102010048100B4 (de) 2010-10-09 2023-08-10 Mercedes-Benz Group AG Verfahren und Vorrichtung zur Fahrlichtsteuerung eines Fahrzeugs
JP2012126200A (ja) * 2010-12-14 2012-07-05 Stanley Electric Co Ltd 配光制御システム及び配光制御装置
JP2012187950A (ja) * 2011-03-09 2012-10-04 Stanley Electric Co Ltd 配光制御システム
JP2013043623A (ja) * 2011-08-26 2013-03-04 Stanley Electric Co Ltd 車両用前照灯の点灯制御装置、車両用前照灯システム
JP2013079044A (ja) * 2011-10-05 2013-05-02 Stanley Electric Co Ltd 車両用灯具の配光制御装置、車両用灯具の配光制御システム
FR3022326A1 (fr) * 2014-06-16 2015-12-18 Valeo Vision Module d'eclairage et/ou de signalisation rotatif
EP2957464A1 (de) * 2014-06-16 2015-12-23 Valeo Vision Drehbares beleuchtungs- und/oder signalisierungsmodul
WO2016208408A1 (ja) * 2015-06-26 2016-12-29 株式会社デンソー 車両用の前照灯制御装置
JP2017013516A (ja) * 2015-06-26 2017-01-19 株式会社デンソー 車両用の前照灯制御装置

Also Published As

Publication number Publication date
DE102008014182A1 (de) 2009-09-17

Similar Documents

Publication Publication Date Title
WO2009112125A1 (de) Verfahren zur fahrlichtsteuerung eines fahrzeugs
DE102009057219B4 (de) Vorrichtung zur Steuerung eines Fahrlichts eines Fahrzeugs
EP2039567B1 (de) Projektionsscheinwerfeanordnung für Fahrzeuge
DE102007045150B4 (de) Scheinwerferanordnung für ein Fahrzeug und Verfahren zum Steuern einer Scheinwerferanordnung
EP2069685B1 (de) Scheinwerferanordnung für ein fahrzeug und verfahren zum steuern einer scheinwerferanordnung
EP2160304B1 (de) Verfahren zum steuern einer scheinwerferanordnung für ein fahrzeug mit separaten scheinwerfern für ein abblendlicht und ein fernlicht
DE102008053945B4 (de) Verfahren zum Steuern einer Scheinwerferanordnung für ein Fahrzeug und Scheinwerferanordnung hierfür
DE102009057391A1 (de) Verfahren zur automatischen Fahrlichtsteuerung eines Fahrzeugs
DE102009024129B4 (de) Verfahren zur Fahrlichtsteuerung verschiedener Lichtverteilungen eines Fahrzeugs
DE102004034838A1 (de) Fahrzeugscheinwerfersystem mit variabler Strahlform
DE102010048100B4 (de) Verfahren und Vorrichtung zur Fahrlichtsteuerung eines Fahrzeugs
EP3033248A1 (de) Verfahren zum steuern einer scheinwerferanordnung für ein fahrzeug und scheinwerferanordnung
DE102008053947A1 (de) Fahrzeugleuchtensystem
DE102021106713A1 (de) System und Verfahren betreffend einen adaptiven Fahrzeugscheinwerfer
EP2864158A1 (de) Verfahren zum betreiben eines scheinwerfersystems in einem fahrzeug und dazugehöriges scheinwerfersystem
DE102006061873A1 (de) Fahrzeug-Frontlicht
DE102004041415B4 (de) Einrichtung zur automatischen Einstellung der Richtung der Lichtstrahlachse eines Fahrzeugscheinwerfers
WO2017000007A1 (de) Steuerungsvorrichtung für eine beleuchtungsvorrichtung eines kraftfahrzeuges sowie verfahren zum steuern einer solchen beleuchtungsvorrichtung
DE102009023093B4 (de) Verfahren zur Fahrlichtsteuerung eines Fahrzeugs
EP3018007A2 (de) Verfahren zum steuern einer scheinwerferanordnung für ein fahrzeug und scheinwerferanordnung
DE102006045525B4 (de) Scheinwerfer für ein Fahrzeug
DE19914412A1 (de) Scheinwerfer für Fahrzeuge zur Aussendung eines veränderlichen Lichtbündels und Scheinwerferanlage mit wenigstens zwei der Scheinwerfer
DE10352950A1 (de) Scheinwerfersystem eines Kraftfahrzeugs mit horizontaler Verstelleinrichtung und adaptiven Beleuchtungsarten
DE60318581T2 (de) Doppelfunktionsscheinwerfereinrichtung für Kfz
DE102010026672A1 (de) Scheinwerfer für ein Fahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09720615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09720615

Country of ref document: EP

Kind code of ref document: A1