WO2009110500A1 - 無線通信方法及びシステム - Google Patents

無線通信方法及びシステム Download PDF

Info

Publication number
WO2009110500A1
WO2009110500A1 PCT/JP2009/054052 JP2009054052W WO2009110500A1 WO 2009110500 A1 WO2009110500 A1 WO 2009110500A1 JP 2009054052 W JP2009054052 W JP 2009054052W WO 2009110500 A1 WO2009110500 A1 WO 2009110500A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
communication device
wireless communication
received
presence confirmation
Prior art date
Application number
PCT/JP2009/054052
Other languages
English (en)
French (fr)
Inventor
正行 坂田
洋明 網中
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US12/920,783 priority Critical patent/US8787833B2/en
Priority to EP09718301.6A priority patent/EP2254379A4/en
Publication of WO2009110500A1 publication Critical patent/WO2009110500A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals

Definitions

  • the present invention relates to a wireless communication method and system suitable for use in ITS (Intelligent Transport Systems).
  • ITS is examining a system for providing information useful for avoiding accidents, such as early detection of oncoming vehicles on roads with poor visibility and advance notification of vehicles approaching intersections with poor visibility.
  • a configuration is conceivable in which a terminal device capable of wireless communication is mounted in each vehicle, and data such as the position and speed of each other is notified by the terminal device.
  • the frequency band used for wireless communication is low, the number of links available for communication in the frequency band is reduced.
  • the number of vehicles equipped with ITS terminal devices tends to increase, it is desirable to improve the frequency band utilization efficiency and provide communication services to more ITS users.
  • radio waves in a relatively high frequency band of about several GHz have high straightness and a large spatial attenuation rate. Therefore, when radio waves of such a high frequency band are used in wireless communication, a terminal device mounted in a vehicle far away from the own vehicle or a range that cannot be seen from the own vehicle, for example, a position where the view is blocked by a building or the like It is difficult to communicate with a terminal device mounted on a car.
  • radio waves in a relatively low frequency band of about several hundred MHz have a low spatial attenuation factor and a high diffraction factor. For this reason, when radio waves in such a low frequency band are used for wireless communication, communication is possible even with a terminal device mounted in a vehicle that cannot be seen from the host vehicle.
  • radio waves in a low frequency band are used for wireless communication, the number of terminal devices that can communicate increases as the communication area expands. As a result, communication is performed not only with vehicles that need to be monitored, that is, not only oncoming vehicles on roads with poor visibility but also vehicles entering intersections with poor visibility, but also terminal devices mounted on other vehicles. Therefore, more information than necessary is provided to users who use ITS.
  • an object of the present invention is to provide a radio communication method and a radio communication system that can improve communication efficiency of frequency bands and provide communication services to more users.
  • a wireless communication method of the present invention is a wireless communication method for transmitting and receiving data between at least two communication devices capable of wireless communication,
  • the first communication device transmits a presence confirmation request notification to the second communication device using a first frequency band and a second frequency band that is different from the first frequency band, and
  • the second communication device sends a presence confirmation response notification for responding to the first frequency band and the second frequency band existence confirmation request notification received normally, to the first frequency band and the second frequency band.
  • Replies to the first communication device using a frequency band corresponding to the second frequency band When the first communication device receives one or more presence confirmation response notifications transmitted from the second communication device, the first communication device transmits using the higher frequency band of the first and second frequency bands. And transmitting / receiving data to / from the second communication device using a frequency band corresponding to the presence confirmation response notification.
  • the wireless communication system of the present invention is a wireless communication system for transmitting and receiving data between at least two communication devices capable of wireless communication,
  • a presence confirmation request notification is transmitted using a first frequency band and a second frequency band that is different from the first frequency band, respectively, and the first frequency band and the second frequency band,
  • data is transmitted and received using a frequency band corresponding to a higher frequency band among the first and second frequency bands.
  • a first communication device When one or more of the first frequency band or the second frequency band existence confirmation request notification is normally received, the frequencies corresponding to the first frequency band and the second frequency band are used.
  • a second communication device that returns a presence confirmation response notification for responding to the normally received presence confirmation request notification to the first communication device; Have
  • FIG. 1 is a block diagram illustrating a configuration example of a terminal device included in the wireless communication system according to the first embodiment.
  • FIG. 2 is a sequence diagram illustrating a processing procedure of the wireless communication system according to the first embodiment.
  • FIG. 3 is a flowchart showing a processing procedure of the transmission source terminal shown in FIG.
  • FIG. 4 is a flowchart showing another processing procedure of the transmission source terminal shown in FIG.
  • FIG. 5 is a flowchart showing a processing procedure of the destination terminal shown in FIG.
  • FIG. 6 is a flowchart showing another processing procedure of the transmission destination terminal shown in FIG.
  • FIG. 7 is a flowchart illustrating a processing procedure of the transmission source terminal according to the second embodiment.
  • wireless communication is performed with a communication partner (terminal device) using radio waves of at least two types of frequency bands having different frequencies.
  • communication with a communication partner (terminal device) that can be visually recognized with each other is performed using radio waves in a relatively high frequency band that has high straightness, and a communication partner that cannot visually recognize each other has a relatively high diffraction rate. Communication is performed using radio waves in a low frequency band.
  • Each terminal device is mounted on a car, for example, and transmits / receives data such as the position and speed of each other.
  • any frequency band may be used as the first frequency band as long as it is a relatively high frequency band with high straightness, and the second frequency band having a frequency different from the first frequency band has a diffraction rate. Any frequency band may be used as long as the frequency is relatively low.
  • terminal devices communicate with each other using radio waves in two types of frequency bands.
  • the terminal devices communicate using radio waves in the first frequency band and the second frequency band.
  • the structure which performs the communication using the radio wave of three or more types of frequency bands from which a frequency differs may be sufficient.
  • FIG. 1 is a block diagram illustrating a configuration example of a terminal device included in the wireless communication system according to the first embodiment.
  • the terminal device 60 of this embodiment includes a wireless communication unit 601, two reception processing units 602 and 603, a reception information processing unit 604, a transmission data control unit 605, and two transmission processing units 606 and 607.
  • two power control units 608 and 609 are provided.
  • the wireless communication unit 601 receives wireless signals in the first frequency band (5.8 GHz) and the second frequency band (700 MHz), and outputs the wireless signals in the first frequency band to the reception processing unit 602.
  • the radio signal of the second frequency band is output to the reception processing unit 603.
  • the reception processing units 602 and 603 down-convert the frequency of the radio signal received from the radio communication unit 601 and execute demodulation processing and decoding processing according to a predetermined radio scheme. Also, the reception processing units 602 and 603 output the decoded reception data to the reception information processing unit 604.
  • the reception information processing unit 604 selects a frequency band used in the subsequent wireless communication according to the frequency band of the wireless signal received by the wireless communication unit 601. Specifically, when radio signals in the first frequency band (5.8 GHz) and the second frequency band (700 MHz) are received, the first frequency band is selected and the radio signal in the second frequency band is selected. When only the first frequency band is received, the second frequency band is selected.
  • the transmission data control unit 605 outputs the transmission data to the transmission processing unit 606 when using the first frequency band for wireless communication according to the frequency band selected by the reception information processing unit 604, and outputs the second frequency band. When is used, the transmission data is output to the transmission processing unit 607.
  • the transmission processing units 606 and 607 up-convert the frequency of transmission data received from the transmission data control unit 605, and execute encoding processing and modulation processing according to a predetermined radio system. Also, the modulated radio signal is output to power control units 608 and 609.
  • the power control units 608 and 609 amplify the radio signals received from the transmission processing units 606 and 607 to required power and output the amplified signals to the radio communication unit 601.
  • the wireless communication unit 601 transmits the wireless signal received from the power control units 608 and 609.
  • FIG. 2 is a sequence diagram illustrating a processing procedure of the wireless communication system according to the first embodiment.
  • (5.8 GHz) is added to wireless communication using the first frequency band (5.8 GHz)
  • (700 MHz) is added to wireless communication using the second frequency band (700 MHz). Distinguish.
  • a transmission source terminal device that desires communication is defined as a transmission source terminal (first terminal device), and a terminal device that is a communication partner of the transmission source terminal is defined as a transmission destination terminal (second terminal device).
  • a processing procedure (wireless communication method) of the wireless communication system according to the present embodiment will be described.
  • the terminal device 60 illustrated in FIG. 1 is configured to have the functions of a transmission source terminal and a transmission destination terminal described below.
  • the transmission source terminal transmits two probe requests (presence confirmation request notifications) using the first frequency band (5.8 GHz) and the second frequency band (700 MHz), respectively.
  • the probe request is a notification used to confirm the presence / absence of a terminal device that is a communication partner.
  • a terminal device (hereinafter referred to as a transmission destination terminal) that is a communication partner that has received the probe request returns a probe response (presence confirmation response notification) for notifying the existence of its own device to the transmission source terminal of the probe request.
  • the transmission source terminal that has received the probe response transmits a connection request for establishing a wireless communication link with the transmission destination terminal to the transmission destination terminal.
  • the transmission destination terminal can receive both probe requests transmitted in the first frequency band and the second frequency band. .
  • the transmission destination terminal shifts to the processing of Alt1 shown in FIG. 2, and returns two probe responses to the transmission source terminal using the first frequency band and the second frequency band.
  • the source terminal When the source terminal receives the probe response of the first frequency band and the second frequency band, respectively, the source terminal selects the first frequency band (5.8 GHz) as the frequency band used for communication with the destination terminal, A connection request is transmitted to the destination terminal using the frequency band of 1. Thereafter, the transmission source terminal establishes a link using the first frequency band with the transmission destination terminal by a known procedure.
  • the first frequency band 5.8 GHz
  • the transmission destination terminal can receive only the probe request transmitted in the second frequency band (700 MHz). In that case, the transmission destination terminal proceeds to the processing of Alt2 shown in FIG. 2, and returns a probe response to the transmission source terminal using the second frequency band.
  • the source terminal When the source terminal receives the probe response in the second frequency band, the source terminal selects the second frequency band as a frequency band used for communication with the destination terminal, and uses the second frequency band to send a connection request to the destination. Send to the terminal. Thereafter, the transmission source terminal establishes a link using the second frequency band with the transmission destination terminal by a known procedure.
  • communication with a communication partner (terminal device) that can be visually recognized with each other is performed using radio waves in a relatively high frequency band having high straightness, and a communication partner that is not visually recognized with a relatively low diffraction rate. Since communication is performed using radio waves in the frequency band, use efficiency of the frequency band is improved. Therefore, communication services can be provided to more ITS users.
  • FIG. 3 is a flowchart showing a processing procedure of the transmission source terminal shown in FIG.
  • (5.8 GHz) is added to wireless communication in the first frequency band (5.8 GHz)
  • (700 MHz) is added to wireless communication in the second frequency band (700 MHz) for distinction. Yes.
  • (5.8 GHz) is added to the wireless communication using the first frequency band (5.8 GHz)
  • the second frequency band (700 MHz) is used.
  • the wireless communication is distinguished by adding (700 MHz).
  • the transmission source terminal When establishing a link with a transmission destination terminal, the transmission source terminal first transmits a probe request using the second frequency band (700 MHz) (step A1), followed by the first frequency band (5.8 GHz). To transmit a probe request (step A2).
  • the transmission source terminal When the transmission source terminal transmits the probe request, the transmission source terminal starts a timer for a predetermined time period used for measuring the time until execution of reception determination of the probe response (step A3).
  • the source terminal determines whether or not the timer has timed out (step A4) and waits until the timer times out.
  • the transmission source terminal determines whether or not a probe response in the first frequency band has been received (step A5).
  • the transmission source terminal selects the first frequency band as a frequency band used for communication with the transmission destination terminal, and uses the first frequency band to make a connection request. Is transmitted (step A6).
  • the transmission source terminal establishes a link with the transmission destination terminal using the first frequency band (step A7).
  • the link is disconnected (step A8), the process returns to the process of step A1 and the same process is performed. repeat.
  • the transmission source terminal determines whether or not the probe response of the second frequency band is received (step A9). If the probe response of the second frequency band has not been received, the process returns to step A1 and the same process is repeated.
  • the transmission source terminal When receiving the probe response of the second frequency band, the transmission source terminal selects the second frequency band as a frequency band used for communication with the transmission destination terminal, and uses the second frequency band to make a connection request. Is transmitted (step A10).
  • the transmission source terminal establishes a link with the transmission destination terminal using the second frequency band (step A11), and when the link is disconnected (step A12), the process returns to the process of step A1 and the same process is performed. repeat.
  • the transmission source terminal again uses the two frequencies. Send a probe request using a band.
  • these processes are repeated a predetermined number of times and neither probe response in either frequency band can be received, it is determined that the source terminal is in a state where it cannot communicate with the destination terminal.
  • FIG. 4 is a flowchart showing another processing procedure of the transmission source terminal shown in FIG.
  • FIG. 4 shows a processing procedure in which the link can be re-established using the first frequency band when the vehicle on which the transmission destination terminal is mounted moves from the invisible range to the visible range.
  • FIG. 4 shows processing in which step A5-1 is added to the flowchart shown in FIG.
  • the transmission source terminal When the link with the transmission destination terminal using the second frequency band (700 MHz) is established in step A11, the transmission source terminal periodically transmits a probe request using the first frequency band (5.8 GHz). To do. In this case, since a link using the second frequency band has already been established, it is not necessary to transmit a probe request using the second frequency band. Therefore, the transmission source terminal proceeds to the process of step A2 and transmits only the probe request of the first frequency band.
  • the transmission source terminal starts a timer in step A3, and after the timer times out in step A4, receives a probe response in the first frequency band in step A5. It is determined whether or not.
  • the transmission source terminal confirms whether or not the link using the second frequency band is disconnected (step A5-1). If the link is not disconnected, the process returns to step A2 and the same process is repeated. If the link using the second frequency band is disconnected, it is determined in step A9 whether a probe response of the second frequency band is received. If a probe response of the second frequency band is received, the second frequency band is selected in step A10, a connection request is transmitted using the second frequency band, and a link with the destination terminal Is established (step A11).
  • the transmission source terminal opens the link using the second frequency band, and selects the first frequency band in step A6. Then, a connection request is transmitted using the first frequency band to establish a link with the transmission destination terminal (step A7).
  • the first wave number band is used. Link can be established.
  • FIG. 5 is a flowchart showing a processing procedure of the destination terminal shown in FIG.
  • the destination terminal first determines whether or not it has received a probe request in the second frequency band (700 MHz) (step B1).
  • a probe request in the second frequency band is received, a probe response is returned to the transmission source terminal using the second frequency band (step B2).
  • the transmission destination terminal determines whether or not the probe request of the first frequency band (5.8 GHz) has been received (step B3).
  • a probe response is returned to the transmission source terminal using the first frequency band (step B4).
  • the destination terminal determines whether or not a connection request for the second frequency band has been received (step B5).
  • the transmission destination terminal selects the second frequency band as a frequency band used for communication with the transmission source terminal (step B6), and uses the second frequency band. Then, a link with the transmission source terminal is established (step B7). If the link is disconnected (step B8), the process returns to step B1 and the same process is repeated.
  • the transmission destination terminal determines whether or not the connection request of the first frequency band has been received (step B9).
  • the transmission destination terminal selects the first frequency band as the frequency band used for communication with the transmission source terminal (step B10), and uses the first frequency band. Then, a link with the transmission source terminal is established (step B11). When the link is disconnected (step B12), the process returns to step B1 and the same process is repeated.
  • the transmission destination terminal In the processing procedure of the transmission destination terminal shown in FIG. 5, when no probe response and connection request in the first frequency band (5.8 GHz) and the second frequency band (700 MHz) are received, the transmission destination terminal Repeats the determination of whether or not a probe response or connection request has been received a predetermined number of times. If no probe response or connection request is received, it is determined that the destination terminal cannot communicate with the source terminal.
  • the transmission destination terminal After establishing the link using the first frequency band or the second frequency band, the transmission destination terminal tries to establish the link again by repeating the processing procedure shown in FIG. 5 when the link is disconnected. .
  • the link can be re-established using the second wave number band.
  • FIG. 6 is a flowchart showing another processing procedure of the transmission destination terminal shown in FIG.
  • the vehicle equipped with the transmission source terminal cannot be visually recognized from the vehicle equipped with the transmission destination terminal. Even when moving to the range, the transmission destination terminal can communicate with the transmission source terminal using the second frequency band (700 MHz).
  • FIG. 6 shows that when a vehicle equipped with a transmission source terminal moves from a range that cannot be viewed with a vehicle equipped with a transmission destination terminal to a visible range, the link can be re-established using the first frequency band.
  • the processing procedure is shown.
  • FIG. 6 is a process obtained by reducing the processes of Step B8 and Step B11 from the flowchart shown in FIG.
  • the transmission source terminal returns to the process of step B1 and repeats the same process.
  • the transmission source terminal establishes a link with the transmission destination terminal using the first frequency band (5.8 GHz) in step B11
  • the transmission source terminal returns to the process of step B1 and repeats the same process.
  • the transmission destination terminal uses the first frequency band and the second frequency band after the link with the transmission destination terminal is established using the second frequency band (700 MHz) or the first frequency band (5.8 GHz). It is determined whether or not a frequency band probe request or connection request is received.
  • step B3 When a probe request in the first frequency band (5.8 GHz) is received in step B3, a probe response in the first frequency band is returned to the transmission source terminal in step B4.
  • a connection request for the first frequency band (5.8 GHz) is received in step B9, the first frequency band is selected in step B10, and the first frequency band is used in step B11. Establish a link.
  • FIG. 7 is a flowchart illustrating a processing procedure of the transmission source terminal according to the second embodiment. Since the configuration of the terminal device is the same as that of the first embodiment, description thereof is omitted.
  • a radio wave in a relatively low frequency band of about several hundred MHz has a low spatial attenuation factor, so that the radio wave reaches farther. That is, when receiving radio waves in the first frequency band and radio waves in the second frequency band from the same position, the received power of radio waves in the second frequency band is larger than radio waves in the first frequency band.
  • the link is made using the second frequency band instead of the first frequency band. It is an example to establish.
  • the transmission power of the second frequency band at the transmission source terminal is adjusted so that the reception power of the first frequency band and the reception power of the second frequency band at the transmission destination terminal have the same value.
  • the transmission source terminal first transmits a probe request using the second frequency band (700 MHz) (step C1), and then uses the first frequency band (5.8 GHz). A probe request is transmitted (step C2).
  • the transmission source terminal When the transmission source terminal receives the probe responses for the probe requests in the first frequency band and the second frequency band (step C3), the transmission source terminal calculates the difference between the received powers of the two received probe responses.
  • the transmission power of the second frequency band of the transmission source terminal is set so that the reception power of the first frequency band and the reception power of the second frequency band have the same value (step C4).
  • the transmission source terminal selects the second frequency band as the frequency band used for communication with the transmission destination terminal, the transmission source terminal transmits a connection request for the second frequency band with the set transmission power (step C5). A link with the destination terminal is established (step C6).
  • step C4 can be executed by the reception information processing unit 604 shown in FIG. 1, and the transmission power in the second frequency band can be adjusted by the power control unit 607 shown in FIG.
  • the transmission power of communication using the second frequency band in the transmission source terminal is reduced. Therefore, power consumption of the terminal device is reduced. Moreover, since the communication area of a transmission source terminal becomes narrow by reducing the transmission power of a 2nd frequency band, the number of the terminal devices (transmission destination terminal) which can communicate reduces. Therefore, communication with terminal devices mounted on vehicles other than vehicles that require monitoring, such as oncoming vehicles on roads with poor visibility and vehicles approaching intersections with poor visibility, etc., is reduced, for users using ITS Provision of unnecessary information is suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Traffic Control Systems (AREA)

Abstract

 第1の通信装置は、第1の周波数帯及びそれと異なる周波数帯である第2の周波数帯を用いて存在確認要求通知を送信する。第2の通信装置は、正常に受信した第1の周波数帯及び第2の周波数帯の存在確認要求通知に対し、応答するための存在確認応答通知を第1の周波数帯及び第2の周波数帯に対応した周波数帯を用いて第1の通信装置に返信する。第1の通信装置は、第2の通信装置から送信された1つ以上の存在確認応答通知を受信した場合、第1及び第2の周波数帯のうち、高い周波数帯を用いて送信された存在確認応答通知に対応した周波数帯を用いて第2の通信装置とデータを送受信する。

Description

無線通信方法及びシステム
 本発明はITS(高度道路交通システム:Intelligent Transport Systems)に用いて好適な無線通信方法及びシステムに関する。
 ITSでは、視界が不良な道路における対向車の早期発見や見通しが悪い交差点への進入車両の事前通知等、事故の回避に役立つ情報を提供するためのシステムが検討されている。そのようなシステムを実現するための手段として、各車に無線通信が可能な端末装置を搭載し、該端末装置によって互いの位置や速度等のデータを通知する構成が考えられる。
 現在日本では、ITSで使用する無線周波数として、5.8GHz帯と700MHz帯の2種類が検討されている。なお、ITSで使用する狭域通信(DSRC:Dedicated Short-Range Communication)用の装置については、例えば特開2003-203292号公報等で提案されている。
 一般に、無線通信に用いる周波数帯が低い場合、該周波数帯で通信に利用できるリンク数が低減する。一方、ITS用の端末装置を搭載する車は増大する傾向にあるため、周波数帯の利用効率を向上させて、より多くのITSのユーザに通信サービスを提供できることが望ましい。
 なお、数GHz程度の比較的高い周波数帯の電波は、直進性が高く、空間減衰率が大きい。そのため、このような高い周波数帯の電波を無線通信で使用すると、自車から遠く離れた車に搭載された端末装置、あるいは自車から視認できない範囲、例えば建造物等によって視界が遮られる位置の車に搭載された端末装置と通信することは困難である。
 それに対して、数百MHz程度の比較的低い周波数帯の電波は、空間減衰率が少なく、回折率が大きい。そのため、このような低い周波数帯の電波を無線通信に利用すると、自車から視認できない車に搭載された端末装置であっても通信が可能になる。しかしながら、低い周波数帯の電波を無線通信で利用すると、通信エリアが広がることで通信可能な端末装置の数が増大する。その結果、監視を必要とする車、すなわち上記視界が不良な道路における対向車や見通しが悪い交差点への進入車両だけでなく、それら以外の車に搭載された端末装置とも通信することになる。したがって、ITSを利用するユーザに対して、必要以上に多くの情報が提供されてしまう。
 そこで、本発明は、周波数帯の利用効率を向上させて、より多くのユーザに通信サービスを提供することが可能な無線通信方法及び無線通信システムを提供することを目的とする。
 上記目的を達成するため本発明の無線通信方法は、無線通信が可能な少なくとも2つの通信装置間でデータを送受信するための無線通信方法であって、
 第1の通信装置は、第1の周波数帯及び前記第1の周波数帯と異なる周波数帯である第2の周波数帯をそれぞれ用いて存在確認要求通知を第2の通信装置に送信し、
 前記第2の通信装置は、正常に受信した前記第1の周波数帯及び前記第2の周波数帯の存在確認要求通知に対し、応答するための存在確認応答通知を、前記第1の周波数帯及び前記第2の周波数帯に対応した周波数帯を用いて前記第1の通信装置に返信し、
 前記第1の通信装置は、前記第2の通信装置から送信された1つ以上の前記存在確認応答通知を受信した場合、第1および第2の周波数帯のうち、高い周波数帯を用いて送信された前記存在確認応答通知に対応した周波数帯を用いて前記第2の通信装置とデータを送受信する方法である。
 一方、本発明の無線通信システムは、無線通信が可能な少なくとも2つの通信装置間でデータを送受信するための無線通信システムであって、 
 第1の周波数帯及び前記第1の周波数帯と異なる周波数帯である第2の周波数帯をそれぞれ用いて存在確認要求通知を送信し、前記第1の周波数帯及び前記第2の周波数帯の、前記存在確認要求通知に応答するための存在確認応答通知のうち1つ以上受信した場合は、第1および第2の周波数帯のうち、高い周波数帯に対応した周波数帯を用いてデータを送受信する第1の通信装置と、 
 前記第1の周波数帯または前記第2の周波数帯の存在確認要求通知のうち1つ以上を正常に受信した場合、前記第1の周波数帯及び前記第2の周波数帯に対応した周波数を用いて、正常に受信した前記存在確認要求通知に応答するための存在確認応答通知を、前記第1の通信装置に返信する第2の通信装置と、
を有する。
図1は、第1の実施の形態の無線通信システムが備える端末装置の一構成例を示すブロック図である。 図2は、第1の実施の形態の無線通信システムの処理手順を示すシーケンス図である。 図3は、図2に示した送信元端末の処理手順を示すフローチャートである。 図4は、図2に示した送信元端末の他の処理手順を示すフローチャートである。 図5は、図2に示した送信先端末の処理手順を示すフローチャートである。 図6は、図2に示した送信先端末の他の処理手順を示すフローチャートである。 図7は、第2の実施の形態の送信元端末の処理手順を示したフローチャートである。
 次に本発明について図面を用いて説明する。
 (第1の実施の形態)
 本発明の無線通信システムでは、周波数が異なる、少なくとも2種類の周波数帯の電波を用いて通信相手(端末装置)と無線通信を行う。
 第1の実施の形態では、互いに視認できる通信相手(端末装置)とは直進性が高い比較的高い周波数帯の電波を用いて通信を行い、互いに視認できない通信相手とは回折率が大きい比較的低い周波数帯の電波を用いて通信を行う。各端末装置は、例えば車に搭載され、互いの位置や速度等のデータを送受信する。
 以下では、高い周波数帯として上記5.8GHz帯を用い、低い周波数帯として上記700MHz帯を用いる例で説明するが、本発明はこれらの周波数帯に限定されるものではない。すなわち、第1の周波数帯には、直進性が高い比較的高い周波数帯であればどの周波数帯を用いてもよく、第1の周波数帯と周波数が異なる第2の周波数帯には、回折率が大きい比較的低い周波数帯であればどの周波数帯を用いてもよい。
 また、以下では、2種類の周波数帯の電波を用いて端末装置どうしが通信を行う例で説明するが、端末装置は、上記第1の周波数帯及び第2の周波数帯の電波を用いて通信する構成を含んでいればよく、周波数が異なる3種類以上の周波数帯の電波を用いて通信を行う構成であってもよい。
 図1は第1の実施の形態の無線通信システムが備える端末装置の一構成例を示すブロック図である。
 図1に示すように、本実施形態の端末装置60は、無線通信部601、2つの受信処理部602及び603、受信情報処理部604、送信データ制御部605、2つの送信処理部606及び607並びに2つの電力制御部608及び609を備えている。
 無線通信部601は、第1の周波数帯(5.8GHz)及び第2の周波数帯(700MHz)の無線信号をそれぞれ受信し、第1の周波数帯の無線信号を受信処理部602へ出力し、第2の周波数帯の無線信号を受信処理部603へ出力する。
 受信処理部602及び603は、無線通信部601から受け取った無線信号の周波数をダウンコンバートし、所定の無線方式に応じた復調処理や復号処理を実行する。また、受信処理部602及び603は、復号した受信データを受信情報処理部604へ出力する。
 受信情報処理部604は、無線通信部601で受信した無線信号の周波数帯に応じて以降の無線通信で用いる周波数帯を選択する。具体的には、第1の周波数帯(5.8GHz)及び第2の周波数帯(700MHz)の無線信号をそれぞれ受信した場合は第1の周波数帯を選択し、第2の周波数帯の無線信号のみを受信した場合は第2の周波数帯を選択する。
 送信データ制御部605は、受信情報処理部604で選択された周波数帯に応じて、無線通信に第1の周波数帯を用いる場合は送信データを送信処理部606へ出力し、第2の周波数帯を用いる場合は送信データを送信処理部607へ出力する。
 送信処理部606及び607は、送信データ制御部605から受け取った送信データの周波数をアップコンバートし、所定の無線方式に応じた符号化処理や変調処理を実行する。また、変調した無線信号を電力制御部608及び609へ出力する。
 電力制御部608及び609は、送信処理部606及び607から受け取った無線信号を所要の電力まで増幅し、無線通信部601へ出力する。
 無線通信部601は、電力制御部608,609から受け取った無線信号を送信する。
 図2は第1の実施の形態の無線通信システムの処理手順を示すシーケンス図である。なお、図2では、第1の周波数帯(5.8GHz)を用いる無線通信に(5.8GHz)を追記し、第2の周波数帯(700MHz)を用いる無線通信に(700MHz)を追記して区別している。
 以下では、通信を希望する送信元の端末装置を送信元端末(第1の端末装置)と定義し、送信元端末の通信相手となる端末装置を送信先端末(第2の端末装置)と定義して、本実施形態の無線通信システムの処理手順(無線通信方法)を説明する。図1に示した端末装置60は、以下に示す送信元端末及び送信先端末の機能をそれぞれ備えた構成である。
 図2に示すように、送信元端末は、第1の周波数帯(5.8GHz)と第2の周波数帯(700MHz)とをそれぞれ用いて2つのプローブリクエスト(存在確認要求通知)を送信する。プローブリクエストは、通信相手となる端末装置の存在有無を確認するために用いる通知である。プローブリクエストを受信した通信相手となる端末装置(以下、送信先端末と称す)は、自装置の存在をプローブリクエストの送信元端末へ通知するためのプローブレスポンス(存在確認応答通知)を返信する。プローブレスポンスを受信した送信元端末は、送信先端末との間に無線通信用のリンクを確立するためのコネクションリクエストを送信先端末に送信する。
 ここで、送信先端末を搭載した車が、送信元端末を搭載する車から視認できる場合、送信先端末は第1の周波数帯及び第2の周波数帯で送信されたプローブリクエストを両方とも受信できる。その場合、送信先端末は、図2に示すAlt1の処理へ移行し、第1の周波数帯及び第2の周波数帯を用いて2つのプローブレスポンスを送信元端末へ返信する。
 送信元端末は、第1の周波数帯及び第2の周波数帯のプローブレスポンスをそれぞれ受信すると、第1の周波数帯(5.8GHz)を送信先端末との通信に用いる周波数帯として選択し、第1の周波数帯を用いてコネクションリクエストを送信先端末へ送信する。その後、送信元端末は、送信先端末との間に周知の手順により第1の周波数帯を用いたリンクを確立する。
 一方、送信先端末を搭載する車が、送信元端末を搭載する車から視認できない場合、送信先端末は第2の周波数帯(700MHz)で送信されたプローブリクエストのみを受信できる。その場合、送信先端末は、図2に示すAlt2の処理へ移行し、第2の周波数帯を用いてプローブレスポンスを送信元端末へ返信する。
 送信元端末は、第2の周波数帯のプローブレスポンスを受信すると、第2の周波数帯を送信先端末との通信に用いる周波数帯として選択し、第2の周波数帯を用いてコネクションリクエストを送信先端末へ送信する。その後、送信元端末は、送信先端末との間に周知の手順により第2の周波数帯を用いたリンクを確立する。
 本実施形態によれば、互いに視認できる通信相手(端末装置)とは直進性が高い比較的高い周波数帯の電波を用いて通信を行い、互いに視認できない通信相手とは回折率が大きい比較的低い周波数帯の電波を用いて通信を行うため、周波数帯の利用効率が向上する。そのため、より多くのITSのユーザに通信サービスを提供することができる。
 図3は図2に示した送信元端末の処理手順を示すフローチャートである。なお、図3では、第1の周波数帯(5.8GHz)の無線通信に(5.8GHz)を追記し、第2の周波数帯(700MHz)の無線通信に(700MHz)を追記して区別している。同様に、以下の図4~図7で示す各処理についても第1の周波数帯(5.8GHz)を用いる無線通信に(5.8GHz)を追記し、第2の周波数帯(700MHz)を用いる無線通信に(700MHz)を追記して区別している。
 送信先端末とリンク確立をする場合、まず送信元端末は、第2の周波数帯(700MHz)を用いてプローブリクエストを送信し(ステップA1)、続いて第1の周波数帯(5.8GHz)を用いてプローブリクエストを送信する(ステップA2)。
 送信元端末は、プローブリクエストを送信すると、プローブレスポンスの受信判定を実行するまでの時間の測定に用いる、予め設定された一定時間のタイマーを起動する(ステップA3)。
 次に、送信元端末は、タイマーがタイムアウトしたか否かを判定し(ステップA4)、タイマーがタイムアウトするまで待ち受ける。タイマーがタイムアウトすると、送信元端末は、第1の周波数帯のプローブレスポンスを受信しているか否かを判定する(ステップA5)。
 第1の周波数帯のプローブレスポンスを受信している場合、送信元端末は、第1の周波数帯を送信先端末との通信に用いる周波数帯として選択し、第1の周波数帯を用いてコネクションリクエストを送信する(ステップA6)。
 その後、送信元端末は、第1の周波数帯を用いて送信先端末とのリンクを確立し(ステップA7)、該リンクが切断した場合は(ステップA8)ステップA1の処理へ戻って同様の処理を繰り返す。
 ステップA5の処理で第1の周波数帯のプローブレスポンスを受信していない場合、送信元端末は、第2の周波数帯のプローブレスポンスを受信しているか否かを判定する(ステップA9)。第2の周波数帯のプローブレスポンスを受信していない場合はステップA1の処理へ戻って同様の処理を繰り返す。
 第2の周波数帯のプローブレスポンスを受信している場合、送信元端末は、第2の周波数帯を送信先端末との通信に用いる周波数帯として選択し、第2の周波数帯を用いてコネクションリクエストを送信する(ステップA10)。
 その後、送信元端末は、第2の周波数帯を用いて送信先端末とのリンクを確立し(ステップA11)、該リンクが切断した場合は(ステップA12)ステップA1の処理へ戻って同様の処理を繰り返す。
 図3に示した処理手順では、第1の周波数帯(5.8GHz)のプローブレスポンス及び第2の周波数帯(700MHz)のプローブレスポンスを共に受信しない場合、送信元端末は、再度、2つの周波数帯を用いてプローブリクエストを送信する。これらの処理を予め設定した回数だけ繰り返し、どちらの周波数帯のプローブレスポンスも受信できない場合、送信元端末は送信先端末と通信できない状態にあると判定する。
 また、第1の周波数帯または第2の周波数帯の電波を用いてリンクを確立した後、リンクが切断した場合は同様の処理手順を繰り返すことでリンクの確立を再度試みる。したがって、第1の周波数帯(5.8GHz)を用いて通信していた送信先端末を搭載する車が、送信元端末を搭載する車が視認できない範囲へ移動した場合でも、第2の周波数帯を用いて再度リンクを確立できる。
 図4は図2に示した送信元端末の他の処理手順を示すフローチャートである。
 図3に示した処理手順では、第1の周波数帯(5.8GHz)を用いて送信先端末と通信を開始した後、送信先端末を搭載する車が視認できない範囲へ移動した場合でも、送信元端末は第2の周波数帯(700MHz)を用いて送信先端末と通信できる。しかしながら、第2の周波数帯を利用して送信先端末と通信を開始した後、送信先端末を搭載する車が、送信元端末を搭載する車で視認できない範囲から視認できる範囲へ移動した場合、第1の周波数帯を用いて通信することができない。
 図4は、送信先端末を搭載する車が視認できない範囲から視認できる範囲へ移動した場合に、第1の周波数帯を用いてリンクを再確立できるようにした処理手順を示している。
 図4は、図3に示したフローチャートにステップA5-1を追加した処理である。送信元端末は、ステップA11にて第2の周波数帯(700MHz)を用いた送信先端末とのリンクが確立すると、第1の周波数帯(5.8GHz)を用いてプローブリクエストを定期的に送信する。この場合、第2の周波数帯を用いたリンクは既に確立しているため、第2の周波数帯を用いたプローブリクエストを送信する必要はない。したがって、送信元端末は、ステップA2の処理に移行して第1の周波数帯のプローブリクエストのみ送信する。
 以下、図3に示した処理と同様に、送信元端末は、ステップA3にてタイマーを起動し、ステップA4にてタイマーがタイムアウトした後、ステップA5にて第1の周波数帯のプローブレスポンスを受信しているか否かを判定する。
 第1の周波数帯のプローブレスポンスを受信していない場合、送信元端末は第2の周波数帯を用いたリンクが切断しているか否かを確認する(ステップA5-1)。リンクが切断していない場合はステップA2の処理へ戻って同様の処理を繰り返す。また、第2の周波数帯を用いたリンクが切断している場合は、ステップA9にて第2の周波数帯のプローブレスポンスを受信しているか否かを判定する。第2の周波数帯のプローブレスポンスを受信している場合は、ステップA10にて第2の周波数帯を選択し、該第2の周波数帯を用いてコネクションリクエストを送信し、送信先端末とのリンクを確立する(ステップA11)。
 ステップA5の処理で第1の周波数帯のプローブレスポンスを受信している場合、送信元端末は、第2の周波数帯を用いたリンクを開放し、ステップA6にて第1の周波数帯を選択し、該第1の周波数帯を用いてコネクションリクエストを送信して送信先端末とのリンクを確立する(ステップA7)。
 したがって、第2の周波数帯を用いて通信していた送信先端末を搭載する車が、送信元端末を搭載する車により視認できない範囲から視認できる範囲へ移動した場合でも第1の波数帯を用いてリンクを確立できる。
 図5は図2に示した送信先端末の処理手順を示すフローチャートである。
 図5に示すように、送信先端末は、まず第2の周波数帯(700MHz)のプローブリクエストを受信したか否かを判定する(ステップB1)。第2の周波数帯のプローブリクエストを受信した場合は第2の周波数帯を用いてプローブレスポンスを送信元端末へ返信する(ステップB2)。
 第2の周波数帯のプローブリクエストを受信していない場合、送信先端末は第1の周波数帯(5.8GHz)のプローブリクエストを受信したか否かを判定する(ステップB3)。第1の周波数帯のプローブリクエストを受信した場合は第1の周波数帯を用いてプローブレスポンスを送信元端末へ返信する(ステップB4)。
 第1の周波数帯のプローブリクエストを受信していない場合、送信先端末は第2の周波数帯のコネクションリクエストを受信したか否かを判定する(ステップB5)。第2の周波数帯のコネクションリクエストを受信している場合、送信先端末は第2の周波数帯を送信元端末との通信に用いる周波数帯として選択し(ステップB6)、第2の周波数帯を用いて送信元端末とのリンクを確立し(ステップB7)、該リンクが切断した場合は(ステップB8)ステップB1の処理へ戻って同様の処理を繰り返す。
 ステップB5にて第2の周波数帯のコネクションリクエストを受信していない場合、送信先端末は第1の周波数帯のコネクションリクエストを受信したか否かを判定する(ステップB9)。第1の周波数帯のコネクションリクエストを受信している場合、送信先端末は第1の周波数帯を送信元端末との通信に用いる周波数帯として選択し(ステップB10)、第1の周波数帯を用いて送信元端末とのリンクを確立し(ステップB11)、該リンクが切断した場合は(ステップB12)ステップB1の処理へ戻って同様の処理を繰り返す。
 図5に示した送信先端末の処理手順では、第1の周波数帯(5.8GHz)及び第2の周波数帯(700MHz)のプローブレスポンス及びコネクションリクエストを何も受信していない場合、送信先端末はプローブレスポンスまたはコネクションリクエストの受信有無の判定を予め設定した回数だけ繰り返す。そして、プローブレスポンス及びコネクションリクエストを何も受信しない場合、送信先端末は送信元端末と通信できない状態にあると判断する。
 また、送信先端末は、第1の周波数帯または第2の周波数帯を用いてリンクを確立した後、そのリンクが切断した場合は図5に示す処理手順を繰り返すことでリンクの確立を再度試みる。
 したがって、第1の周波数帯(5.8GHz)を用いて通信していた送信元端末を搭載する車が視認できない範囲へ移動した場合でも、第2の波数帯を用いてリンクを再度確立できる。
 図6は図2に示した送信先端末の他の処理手順を示すフローチャートである。
 図5に示した処理手順では、第1の周波数帯(5.8GHz)を用いて送信元端末と通信を開始した後、送信元端末を搭載する車が送信先端末を搭載する車から視認できない範囲へ移動した場合でも、送信先端末は第2の周波数帯(700MHz)を用いて送信元端末と通信できる。
 しかしながら、第2の周波数帯を利用して送信元端末と通信を開始した後、送信元端末を搭載する車が、送信先端末を搭載する車で視認できない範囲から視認できる範囲へ移動した場合、第1の周波数帯を用いて通信することができない。
 図6は、送信元端末を搭載する車が、送信先端末を搭載する車で視認できない範囲から視認できる範囲へ移動した場合に、第1の周波数帯を用いてリンクを再確立できるようにした処理手順を示している。
 図6は、図5に示したフローチャートからステップB8及びステップB11の処理を削減した処理である。送信元端末は、ステップB7にて第2の周波数帯(700MHz)を用いた送信先端末とのリンクが確立すると、ステップB1の処理へ戻って同様の処理を繰り返す。また、送信元端末は、ステップB11にて第1の周波数帯(5.8GHz)を用いて送信先端末とのリンクを確立すると、ステップB1の処理へ戻って同様の処理を繰り返す。すなわち、送信先端末は、第2の周波数帯(700MHz)または第1の周波数帯(5.8GHz)を用いて送信先端末とのリンクが確立した後も、第1の周波数帯及び第2の周波数帯のプローブリクエストまたはコネクションリクエストを受信しているか否かを判定する。
 そして、ステップB3にて第1の周波数帯(5.8GHz)のプローブリクエストを受信した場合は、ステップB4にて第1の周波数帯のプローブレスポンスを送信元端末へ返信する。また、ステップB9にて第1の周波数帯(5.8GHz)のコネクションリクエストを受信した場合は、ステップB10にて第1の周波数帯を選択し、ステップB11にて第1の周波数帯を用いてリンクを確立する。
 したがって、第2の周波数帯を利用して送信元端末と通信を開始した後に送信元端末を搭載する車が、送信先端末を搭載する車で視認できない範囲から視認できる範囲へ移動した場合でも、第1の周波数帯を用いてリンクを再度確立できる。
(第2の実施の形態)
 図7は第2の実施の形態の送信元端末の処理手順を示したフローチャートである。端末装置の構成は第1の実施の形態と同様であるため、その説明は省略する。
 上述したように、数百MHz程度の比較的低い周波数帯の電波は、空間減衰率が少ないため電波がより遠くにまで到達する。すなわち、同じ位置から第1の周波数帯の電波及び第2の周波数帯の電波を受信する場合、第1の周波数帯の電波よりも第2の周波数帯の電波の方が受信電力が大きくなる。
 図7に示す処理手順は、送信先端末が第1の周波数帯及び第2の周波数帯共に受信できる距離にいる場合に、第1の周波数帯ではなく、第2の周波数帯を用いてリンクを確立する例である。本実施形態では、送信先端末における第1の周波数帯の受信電力及び第2の周波数帯の受信電力が同じ値となるように、送信元端末における第2の周波数帯の送信電力を調整する。
 図7に示す処理手順では、送信元端末は、まず第2の周波数帯(700MHz)を用いてプローブリクエストを送信し(ステップC1)、続いて第1の周波数帯(5.8GHz)を用いてプローブリクエストを送信する(ステップC2)。
 送信元端末は、第1の周波数帯及び第2の周波数帯のプローブリクエストに対するプローブレスポンスをそれぞれ受信すると(ステップC3)、受信した2つのプローブレスポンスの受信電力の差を計算し、送信先端末における第1の周波数帯の受信電力及び第2の周波数帯の受信電力が同じ値となるように、送信元端末の第2の周波数帯の送信電力を設定する(ステップC4)。
 送信元端末は、送信先端末との通信に用いる周波数帯として第2の周波数帯を選択した場合、上記設定した送信電力にて第2の周波数帯のコネクションリクエストを送信し(ステップC5)、送信先端末とのリンクを確立する(ステップC6)。
 なお、上記ステップC4における計算処理は、図1に示した受信情報処理部604で実行可能であり、第2の周波数帯の送信電力は図1に示した電力制御部607で調整可能である。
 第2の実施の形態によれば、送信元端末における第2の周波数帯を用いた通信の送信電力が低減する。したがって、端末装置の消費電力が低減する。また、第2の周波数帯の送信電力を低減することで、送信元端末の通信エリアが狭くなるため、通信可能な端末装置(送信先端末)の数が低減する。したがって、視界が不良な道路における対向車や見通しが悪い交差点への進入車両等の、監視を必要とする車以外の車に搭載された端末装置との通信が低減し、ITSを利用するユーザに対する不要な情報の提供が抑制される。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細は本願発明のスコープ内で当業者が理解し得る様々な変更が可能である。
 この出願は、2008年3月7日に出願された特願2008-057706号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (10)

  1.  無線通信が可能な少なくとも2つの通信装置間でデータを送受信するための無線通信方法であって、
     第1の通信装置は、第1の周波数帯及び前記第1の周波数帯と異なる周波数帯である第2の周波数帯をそれぞれ用いて存在確認要求通知を第2の通信装置に送信し、
     前記第2の通信装置は、正常に受信した前記第1の周波数帯及び前記第2の周波数帯の存在確認要求通知に対し、応答するための存在確認応答通知を、前記第1の周波数帯及び前記第2の周波数帯に対応した周波数帯を用いて前記第1の通信装置に返信し、
     前記第1の通信装置は、前記第2の通信装置から送信された1つ以上の前記存在確認応答通知を受信した場合、第1および第2の周波数帯のうち、高い周波数帯を用いて送信された前記存在確認応答通知に対応した周波数帯を用いて前記第2の通信装置とデータを送受信する無線通信方法。
  2.  前記第1の通信装置は、
     前記第2の周波数帯を用いて前記第2の通信装置とデータを送受信しているときも、所定の周期毎に少なくとも前記第1の周波数帯を用いて前記存在確認要求通知を前記第2の通信装置に送信する請求項1記載の無線通信方法。
  3.  前記第2の通信装置は、
     前記第2の周波数帯を用いて前記第1の通信装置とデータを送受信しているときも、所定の周期毎に少なくとも前記第1の周波数帯の前記存在確認要求通知を受信しているか否かを判断する請求項1または2記載の無線通信方法。
  4.  前記第1の通信装置は、 
     前記第2の通信装置における前記第1の周波数帯の電波及び前記第2の周波数帯の電波の受信電力が等しくなるように前記第2の周波数帯の電波の送信電力を調整する請求項1から3のいずれか1項記載の無線通信方法。
  5.  前記存在確認要求通知は、プローブリクエストを示し、前記存在確認応答通知は、プローブレスポンスを示す請求項1から3記載の無線通信方法。
  6.  無線通信が可能な少なくとも2つの通信装置間でデータを送受信するための無線通信システムであって、 
     第1の周波数帯及び前記第1の周波数帯と異なる周波数帯である第2の周波数帯をそれぞれ用いて存在確認要求通知を送信し、前記第1の周波数帯及び前記第2の周波数帯の、前記存在確認要求通知に応答するための存在確認応答通知のうち1つ以上受信した場合は、第1および第2の周波数帯のうち、高い周波数帯に対応した周波数帯を用いてデータを送受信する第1の通信装置と、 
     前記第1の周波数帯または前記第2の周波数帯の存在確認要求通知のうち1つ以上を正常に受信した場合、前記第1の周波数帯及び前記第2の周波数帯に対応した周波数を用いて、正常に受信した前記存在確認要求通知に応答するための存在確認応答通知を、前記第1の通信装置に返信する第2の通信装置と、
    を有する無線通信システム。
  7.  前記第1の通信装置は、
     前記第2の周波数帯を用いて前記第2の通信装置とデータを送受信しているときも、所定の周期毎に前記第1の周波数帯を用いて前記存在確認要求通知を前記第2の通信装置に送信する請求項6記載の無線通信システム。
  8.  前記第2の通信装置は、
     前記第2の周波数帯を用いて前記第1の通信装置とデータを送受信しているときも、所定の周期毎に前記第1の周波数帯の前記存在確認要求通知を受信しているか否かを判断する請求項6または7記載の無線通信システム。
  9.  前記第1の通信装置は、
     前記第2の通信装置における前記第1の周波数帯の電波及び前記第2の周波数帯の電波の受信電力が等しくなるように前記第2の周波数帯の電波の送信電力を調整する請求項6から8のいずれか1項記載の無線通信システム。
  10.  前記存在確認要求通知は、プローブリクエストを示し、前記存在確認応答通知は、プローブレスポンスを示す請求項6から8記載の無線通信システム。
PCT/JP2009/054052 2008-03-07 2009-03-04 無線通信方法及びシステム WO2009110500A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/920,783 US8787833B2 (en) 2008-03-07 2009-03-04 Radio communication method and system
EP09718301.6A EP2254379A4 (en) 2008-03-07 2009-03-04 RADIO COMMUNICATION METHOD AND SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008057706A JP5082937B2 (ja) 2008-03-07 2008-03-07 無線通信方法及びシステム
JP2008-057706 2008-03-07

Publications (1)

Publication Number Publication Date
WO2009110500A1 true WO2009110500A1 (ja) 2009-09-11

Family

ID=41056053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054052 WO2009110500A1 (ja) 2008-03-07 2009-03-04 無線通信方法及びシステム

Country Status (4)

Country Link
US (1) US8787833B2 (ja)
EP (1) EP2254379A4 (ja)
JP (1) JP5082937B2 (ja)
WO (1) WO2009110500A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234073B2 (ja) * 2010-09-07 2013-07-10 株式会社デンソー 車載装置
US8687512B2 (en) * 2011-04-29 2014-04-01 Aruba Networks, Inc. Signal strength aware band steering
US8655278B2 (en) * 2011-06-20 2014-02-18 Hewlett-Packard Development Company, L.P. Band steering
CN104054282B (zh) * 2012-01-18 2018-02-09 Lg电子株式会社 装置对装置通信方法及其装置
JP5980658B2 (ja) * 2012-07-09 2016-08-31 住友電工システムソリューション株式会社 光ビーコン
JP5949301B2 (ja) * 2012-08-08 2016-07-06 住友電気工業株式会社 路車間通信システム、光ビーコン及び路車間通信方法
JP6022362B2 (ja) * 2013-01-15 2016-11-09 株式会社トヨタIt開発センター 無線通信装置および無線通信方法
JP6212280B2 (ja) * 2013-04-26 2017-10-11 キヤノン株式会社 通信装置、通信方法およびプログラム
JP6216149B2 (ja) 2013-04-26 2017-10-18 キヤノン株式会社 通信装置、通信方法およびプログラム
WO2015170392A1 (ja) * 2014-05-08 2015-11-12 富士通株式会社 無線通信システム、端末、基地局および処理方法
US10395001B2 (en) 2015-11-25 2019-08-27 Synopsys, Inc. Multiple patterning layout decomposition considering complex coloring rules
JP7055683B2 (ja) * 2018-03-30 2022-04-18 株式会社東芝 車載通信装置及び無線通信方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203292A (ja) 2002-01-09 2003-07-18 Mitsubishi Electric Corp 高度道路交通システムの狭域通信用車載器
WO2007126065A1 (ja) * 2006-04-27 2007-11-08 Kyocera Corporation 移動体通信システム、基地局装置及び移動体通信システムの周波数割当方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269938A (ja) 1999-03-19 2000-09-29 Kokusai Electric Co Ltd 無線通信方法及び無線通信装置
JP2004221812A (ja) 2003-01-14 2004-08-05 Sony Corp 通信装置および方法
JP2004357180A (ja) 2003-05-30 2004-12-16 Toshiba Corp 無線通信機器の通信方法
US7573857B1 (en) * 2004-01-16 2009-08-11 Qualcomm Incorporated Capacity management for wireless local area networks
US7483674B2 (en) * 2004-08-31 2009-01-27 Telefonaktiebolaget L M Ericsson (Publ) Providing robustness in fading radio channels
US7797018B2 (en) * 2005-04-01 2010-09-14 Interdigital Technology Corporation Method and apparatus for selecting a multi-band access point to associate with a multi-band mobile station
US8139672B2 (en) * 2005-09-23 2012-03-20 Qualcomm Incorporated Method and apparatus for pilot communication in a multi-antenna wireless communication system
US7720036B2 (en) * 2005-10-26 2010-05-18 Intel Corporation Communication within a wireless network using multiple frequency bands
US8340071B2 (en) * 2005-10-26 2012-12-25 Intel Corporation Systems for communicating using multiple frequency bands in a wireless network
KR100694215B1 (ko) * 2005-11-24 2007-03-14 삼성전자주식회사 무선 랜 네트워크 및 무선 랜 단말의 채널 선택 방법
US7990920B2 (en) * 2007-04-26 2011-08-02 Samsung Electronics Co., Ltd. Transmit diversity for acknowledgement and category 0 bits in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203292A (ja) 2002-01-09 2003-07-18 Mitsubishi Electric Corp 高度道路交通システムの狭域通信用車載器
WO2007126065A1 (ja) * 2006-04-27 2007-11-08 Kyocera Corporation 移動体通信システム、基地局装置及び移動体通信システムの周波数割当方法
JP2007300192A (ja) * 2006-04-27 2007-11-15 Kyocera Corp 移動体通信システム、基地局装置及び移動体通信システムの周波数割当方法
EP2023646A1 (en) * 2006-04-27 2009-02-11 Kyocera Corporation Mobile communication system, base station device, and mobile communication system frequency allocation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2254379A4

Also Published As

Publication number Publication date
US8787833B2 (en) 2014-07-22
EP2254379A1 (en) 2010-11-24
JP5082937B2 (ja) 2012-11-28
JP2009218676A (ja) 2009-09-24
EP2254379A4 (en) 2016-06-08
US20110014876A1 (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5082937B2 (ja) 無線通信方法及びシステム
KR101962235B1 (ko) 광대역 근거리 무선 통신 장치 및 방법
EP3506681B1 (en) Data transmission method and device in multilink environment
US8274405B2 (en) System and method for device management on a dedicated short-range communication network
JP4968332B2 (ja) 無線リソース共有機能を有する移動無線通信システム
EP1875753A1 (en) Method and system for bluetooth and wireless local area network coexistence
JP6447554B2 (ja) 移動体間通信システムおよび移動体用受信制御装置
EP1850609A4 (en) FREQUENCY SHARING METHOD, RECEPTION STATION AND TRANSMISSION STATION
KR20080041286A (ko) 위급 상황에서의 무선 통신을 위한 방법 및 시스템
JP2007267167A (ja) 無線通信システムおよび基地局・移動体無線通信装置
JP2008099085A (ja) 無線通信用車載器
CN106488478B (zh) 一种车辆终端和路侧设备及其通信的方法
JP5418648B2 (ja) 無線通信方法及びシステム
JP5445645B2 (ja) 無線通信方法及びシステム
JP6305366B2 (ja) 無線通信装置および無線通信システム
JP2016082554A (ja) 無線lanと狭域通信システムとの周波数共用方法
JP5353858B2 (ja) 無線通信装置
JP2003199159A (ja) 無線通信装置及び無線通信システム
WO2022206671A1 (zh) 一种消息传输方法、终端及芯片系统
JP4776637B2 (ja) 通信システム
JP2004080588A (ja) 移動通信システムおよび移動通信システムの通信方法
KR20070080157A (ko) 휴대용 단말기를 이용한 차량 제어 장치 및 방법
JP6747036B2 (ja) 移動無線通信システム、移動局及び移動局間通信方法
JP2500437B2 (ja) 無線デ―タ伝送用送受信装置
JP4786418B2 (ja) 無線通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718301

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12920783

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009718301

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009718301

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE