WO2022206671A1 - 一种消息传输方法、终端及芯片系统 - Google Patents

一种消息传输方法、终端及芯片系统 Download PDF

Info

Publication number
WO2022206671A1
WO2022206671A1 PCT/CN2022/083363 CN2022083363W WO2022206671A1 WO 2022206671 A1 WO2022206671 A1 WO 2022206671A1 CN 2022083363 W CN2022083363 W CN 2022083363W WO 2022206671 A1 WO2022206671 A1 WO 2022206671A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
vehicle
technology
message
ghz
Prior art date
Application number
PCT/CN2022/083363
Other languages
English (en)
French (fr)
Inventor
宋大克
林力新
孟梦
余小勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022206671A1 publication Critical patent/WO2022206671A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a message transmission method, a terminal and a chip system.
  • V2X Vehicle to Everything
  • LTE-V Long Term Evolution-Vehicle
  • LTE-V Long Term Evolution-Vehicle
  • the LTE-V technology is an evolution technology based on the 4G Long Term Evolution (Long Term Evolution, LTE) system.
  • the working frequency band of LTE-V technology is between 5905-5925MHz.
  • the distance between vehicles is long and there are obstacles between vehicles, when V2X messages are transmitted based on LTE-V technology, the problem of V2X message transmission failure often occurs.
  • Embodiments of the present application provide a message transmission method, a terminal, and a storage medium, which can improve the success rate of V2X message transmission.
  • an embodiment of the present application provides a message transmission method, including:
  • the first terminal determines the type of sidelink service to be transmitted
  • the first terminal uses the first communication technology to send the sidelink service, where the working frequency band of the first communication technology is less than 5.9 GHz.
  • the first type of service may be a prescribed security type service (eg, a security type message), or may be an emergency type service (eg, a message with a higher degree of urgency) classified according to the degree of urgency.
  • V2X vehicle-to-everything
  • the first communication technology whose working frequency band is lower than 5.9 GHz is compared with LTE-V in the field of vehicle networking.
  • NR-V communication technology has a low working frequency band, and the first communication technology whose working frequency band is lower than 5.9GHz can transmit farther and has stronger diffraction ability of obstacles. Therefore, the first communication technology whose working frequency band is lower than 5.9GHz
  • the transmission success rate is higher.
  • the method further includes:
  • the first terminal uses the second communication technology to transmit the sidelink service, wherein the working frequency band of the second communication technology is greater than or equal to 5.9 GHz.
  • the first communication technology includes at least one of the following: a Bluetooth technology with an operating frequency band of 2.4 GHz, a Wi-Fi technology with an operating frequency band of 2.4 GHz, and a Wi-Fi technology with an operating frequency band of 5.0 GHz -Fi technology, vehicle long-term evolution technology with a working frequency band of 2.4GHz, and new air interface vehicle communication technology with a working frequency band of 2.4GHz.
  • the first terminal using the first communication technology to transmit sidelink services includes:
  • the first terminal uses the Wi-Fi technology whose working frequency band is 2.4 GHz to broadcast the extended beacon frame, wherein the extended field of the extended beacon frame carries the sidelink service.
  • the first terminal using the first communication technology to transmit sidelink services includes:
  • the first terminal uses the Bluetooth technology with a working frequency band of 2.4 GHz to broadcast the extended Bluetooth broadcast message, wherein the extension field of the extended Bluetooth broadcast message carries the sidelink service.
  • the first communication technology includes a Wi-Fi technology with an operating frequency band of 2.4 GHz and a Bluetooth technology with an operating frequency band of 2.4 GHz, and the Wi-Fi technology with an operating frequency band of 2.4 GHz and The Bluetooth technology with the working frequency band of 2.4GHz shares the antenna;
  • the transmission of the sidelink service by the first terminal using the first communication technology includes:
  • the first terminal transmits the sidelink service by using the Wi-Fi technology whose working frequency band is 2.4 GHz;
  • the first terminal transmits the sidelink service by using the Bluetooth technology whose working frequency band is 2.4 GHz, wherein the first time period and the second time period are alternately arranged.
  • the method further includes:
  • the first terminal uses the first communication technology or the second communication technology to transmit the sidelink service, where the priority of the second type of service is lower than that of the first type of service priority, the working frequency band of the second communication technology is greater than or equal to 5.9GHz.
  • the first terminal uses the first communication technology or the second communication technology to transmit the sidelink service, including:
  • the first terminal obtains the load parameter value of the channel corresponding to the first communication technology
  • the first terminal transmits the sidelink service by using the first communication technology
  • the first terminal transmits the sidelink service by using the second communication technology.
  • the method further includes:
  • the first terminal acquires a second terminal on the same lane as the first terminal
  • the first terminal obtains the distance between the first terminal and the second terminal
  • the first terminal acquires a forward collision warning message, and the forward collision warning message is a sidelink service.
  • acquiring the second terminal on the same lane as the first terminal by the first terminal includes:
  • the first terminal acquires the channel state information of the Wi-Fi signal in the environment where the first terminal is located, wherein the Wi-Fi signal in the environment where the first terminal is located includes the Wi-Fi signal sent by the third Wi-Fi module, and the third Wi-Fi signal is sent by the third Wi-Fi module.
  • the Fi module includes the Wi-Fi module set on the third terminal;
  • the first terminal obtains a second terminal on the same lane as the first terminal from the third terminal according to the channel state information.
  • acquiring the distance between the first terminal and the second terminal by the first terminal includes:
  • the first terminal calculates the distance between the first terminal and the second terminal according to the transmission time and the reception time of the information transmitted between the first Wi-Fi module and the second Wi-Fi module, wherein the first Wi-Fi module includes The Wi-Fi module set on the first terminal, and the second Wi-Fi module includes the Wi-Fi module set on the second terminal.
  • an embodiment of the present application provides a terminal, including:
  • the type determination module is used to determine the type of the sidelink service to be transmitted in the vehicle-to-everything scenario
  • the message sending module is configured to send the sidelink service by using a first communication technology if the type of the sidelink service is the first type of service, wherein the working frequency band of the first communication technology is less than 5.9 GHz.
  • a terminal including a processor, where the processor is configured to run a computer program stored in a memory to implement the method of any one of the first aspect of the present application.
  • a chip system including a processor coupled with a memory, and the processor executes a computer program stored in the memory, so as to implement the method of any one of the first aspect of the present application.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by one or more processors, implements any one of the methods of the first aspect of the present application.
  • an embodiment of the present application provides a computer program product that, when the computer program product runs on a device, causes the device to execute any one of the methods in the first aspect.
  • FIG. 1 is a schematic diagram of an application scenario of a message transmission method provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a hardware structure of a terminal for executing a message transmission method provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of various communication technologies for transmitting V2X messages provided by an embodiment of the present application
  • FIG. 4(a) is a schematic diagram of transmitting V2X messages using Wi-Fi technology according to an embodiment of the present application
  • FIG. 4(b) is a schematic diagram of a scenario for transmitting V2X messages using Wi-Fi technology according to an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a method for transmitting a V2X message according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a data format of a Beacon frame provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of classification of V2X messages according to an embodiment of the present application.
  • FIG. 8(a) is a schematic diagram of transmitting V2X messages using Bluetooth technology according to an embodiment of the present application.
  • FIG. 8(b) is a schematic diagram of a scenario in which a V2X message is transmitted using Bluetooth technology according to an embodiment of the present application;
  • FIG. 9 is a schematic diagram of a data format of a Bluetooth broadcast message provided by an embodiment of the present application.
  • FIG. 10(a) is a schematic diagram of transmitting a V2X message using the LTE-V technology of 2.4 GHz according to an embodiment of the present application;
  • FIG. 10(b) is a schematic diagram of a scenario in which a V2X message is transmitted using the LTE-V technology of 2.4 GHz according to an embodiment of the present application;
  • Figure 11(a) is a schematic diagram of transmitting V2X messages in a concurrent manner using 5.9 GHz LTE-V and 2.4 GHz Wi-Fi according to an embodiment of the application;
  • Figure 11(b) is a schematic diagram of a scenario in which a V2X message is transmitted in a concurrent manner using 5.9 GHz LTE-V and 2.4 GHz Wi-Fi according to an embodiment of the application;
  • FIG. 12(a) is a schematic diagram of transmitting V2X messages in a concurrent manner using 2.4GHz Bluetooth and 2.4GHz Wi-Fi according to an embodiment of the application;
  • FIG. 12(b) is a schematic diagram of a scenario for transmitting V2X messages in a concurrent manner using 2.4GHz Bluetooth and 2.4GHz Wi-Fi according to an embodiment of the application;
  • 13(a) is a schematic diagram of transmitting V2X messages in a concurrent manner using 2.4GHz Bluetooth and 5.9GHz LTE-V according to an embodiment of the application;
  • FIG. 13(b) is a schematic diagram of a scenario in which a V2X message is transmitted in a concurrent manner using 2.4GHz Bluetooth and 5.9GHz LTE-V according to an embodiment of the application;
  • FIG. 14(a) is a schematic diagram of transmitting V2X messages in a concurrent manner using 2.4GHz Bluetooth, 2.4GHz Wi-Fi, and 5.9GHz LTE-V, according to an embodiment of the application;
  • FIG. 14(b) is a schematic diagram of a scenario for transmitting V2X messages in a concurrent manner using 2.4GHz Bluetooth, 2.4GHz Wi-Fi, and 5.9GHz LTE-V, according to an embodiment of the application;
  • 15 is a schematic diagram of a method for measuring vehicle distance provided by an embodiment of the application.
  • Fig. 16(a) and Fig. 16(b) are schematic diagrams of a method for detecting whether a vehicle is in the same lane according to an embodiment of the present application;
  • 17 is a schematic flowchart of a vehicle transmitting a V2X message in a tunnel to issue an early warning according to an embodiment of the present application;
  • FIG. 18 is a schematic block diagram of functional architecture modules of a terminal for executing a message transmission method according to an embodiment of the present application.
  • one or more refers to one, two or more; "and/or”, which describes the association relationship of associated objects, indicates that there may be three kinds of relationships; for example, A and/or B can mean that A exists alone, A and B exist simultaneously, and B exists independently, wherein A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an "or" relationship.
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • LTE long-term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine to machine
  • 5G communication system 5G communication system.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the provided method is used in an NR system or a 5G network as an example for description.
  • the scenario includes: multiple terminals (for example, terminal 10, terminal 20, and terminal 30), and the multiple terminals can communicate with each other.
  • the terminal 10 among the multiple terminals may not pass through
  • the base station directly transmits the service to the terminal 20 or the terminal 30 .
  • V2X a scenario in which terminals communicate directly without going through a base station
  • a service transmitted between terminals in a V2X scenario is referred to as a sidelink (Sidelink) service
  • V2X service may include signaling or data packets (for example, taking the terminal 10 as a vehicle as an example, the service sent by the terminal 10 to other terminals may be data packets such as the current vehicle speed of the terminal 10, whether to brake, turning, etc.).
  • the terminal is used as an example of a vehicle.
  • a terminal is a device with wireless communication functions that can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted. It can also be deployed on water (such as ships, etc.). It can also be deployed in the air (eg on airplanes, balloons, satellites, etc.).
  • the terminal is also called user equipment (UE), mobile station (MS), mobile terminal (MT) and terminal equipment, etc. It is a device that provides voice and/or data connectivity to users. equipment.
  • the terminal includes a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal can be: a mobile phone (mobile phone), a tablet computer, a notebook computer, a palmtop computer, a mobile internet device (MID), a wearable device (such as a smart watch, a smart bracelet, a pedometer, etc.), In-vehicle equipment (for example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rails, etc.), virtual reality (VR) equipment, augmented reality (AR) equipment, industrial control (industrial control) Wireless terminals, smart home equipment (for example, refrigerators, TVs, air conditioners, electricity meters, etc.), intelligent robots, workshop equipment, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart Wireless terminals in the power grid (smart grid), wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes, flying equipment (for example, smart Robots, hot air balloons, drones, airplanes), etc.
  • MID mobile internet device
  • a wearable device such as a smart watch, a
  • the terminal device is a terminal device that often works on the ground, such as a vehicle-mounted device.
  • chips deployed in the above-mentioned devices such as system-on-a-chip (SOC), baseband chips, etc., or other chips with communication functions, may also be referred to as terminals.
  • the terminal may be a vehicle with a corresponding communication function, or a vehicle-mounted communication device, or other embedded communication device, or may be a user's handheld communication device, including a mobile phone, a tablet computer, and the like.
  • the current vehicle can communicate with the roadside infrastructure (V2I) through vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) (for example, the infrastructure is a roadside unit (roadside unit). side unit (RSU)) or vehicle-to-pedestrian (V2P) or vehicle-to-network (V2N) communication to obtain road condition information or receive information services in time, these communication methods can be collectively referred to as V2X Communication (where X stands for anything).
  • the above communication usually refers to the network used by V2X communication as the Internet of Vehicles.
  • unmanned driving unmanned driving
  • automatic driving automated driving/ADS
  • driver assistance driver assistance/ADAS
  • intelligent driving intelligent driving
  • connected driving intelligent network driving, car sharing.
  • the terminal may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones. Use, such as all kinds of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the vehicle A can move to the terminal 20 (for example, the vehicle identified as B) located in front of it.
  • the vehicle (referred to as: vehicle B)) and the terminal 30 (for example, the vehicle identified as C (referred to as: vehicle C)) send the side-link service (for example, the side-link service may be an overtaking indication, the current speed of vehicle A (for example, 75km/h)), so that after receiving the current speed of vehicle A and the overtaking instruction, vehicle B and vehicle C slow down and drive so that vehicle A can safely overtake.
  • the side-link service may be an overtaking indication, the current speed of vehicle A (for example, 75km/h)
  • LTE-V as a communication standard in the field of V2X technology, specifies the communication protocol of V2X messages.
  • LTE-V technology communicates based on the 5.9GHz frequency band.
  • the 5.9GHz band is ultra-high frequency centimeter waves with wavelengths between 10mm and 100mm.
  • the longer the wavelength the less attenuation, and the easier it is to continue to propagate around obstacles. Therefore, compared with the electromagnetic waves in the 2.4GHz band, the electromagnetic waves in the 5.9GHz band have greater attenuation when passing through obstacles, and the signal coverage is smaller. That is, the LTE-V technology based on 5.9GHz has a smaller signal coverage than the communication technology based on 2.4GHz, and the attenuation is greater when there are obstacles.
  • vehicle A broadcasts sidelink services based on 5.9GHz LTE-V technology.
  • Sidelink traffic broadcast by vehicle A The distance between vehicle A and vehicle C is long, and there is an obstacle vehicle B. Therefore, vehicle C may not be able to successfully receive the sidelink traffic broadcast by vehicle A.
  • vehicle D the distance between vehicle D and vehicle A is relatively far, but if there is no obstruction, vehicle D may not be able to successfully receive the sidelink broadcast by vehicle A. business. Or if the distance between vehicle D and vehicle A is relatively short, but there is an obstacle blocking, vehicle D may not be able to successfully receive the sidelink service broadcast by vehicle A.
  • vehicle A can transmit a V2X message (the V2X message is a sidelink service) by using a communication technology based on other frequency bands.
  • a communication technology based on other frequency bands.
  • the embodiments of the present application are described by taking as an example the problem of solving the problem of low success rate when transmitting V2X messages using the 5.9 GHz LTE-V technology. In practical applications, it can also solve the problem of low success rate when transmitting V2X messages with the New Radio-V2X (NR-V2X) technology. That is, the 5.9 GHz-based LTE-V technology in the embodiments of the present application may also be the NR-V2X technology. For the related content of NR-V2X technology, you can refer to the NR-V2X technical standard.
  • the Bluetooth module on the electronic device carried by the user can establish a connection with the Bluetooth module on the vehicle.
  • the electronic device carried by the user enters the V2X message transmission scenario provided by the embodiment of the present application to execute the message transmission method provided by the embodiment of the present application.
  • a virtual button may also be set on the electronic device carried by the user. The user clicks the virtual button, and the electronic device carried by the user enters the V2X message transmission scenario provided by the embodiment of the present application to execute the message provided by the embodiment of the present application. transfer method.
  • the embodiment of the present application does not limit the manner in which the electronic device carried by the user enters the V2X message transmission scenario provided by the embodiment of the present application and executes the message transmission method provided by the embodiment of the present application.
  • FIG. 2 shows a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • the terminal provided in this embodiment of the present application includes a processor 21, a communication line 24, and at least one transceiver (in FIG. 2, it is only exemplary that the transceiver 23 is included for illustration).
  • the processor 21 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors for controlling the execution of the programs of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication line 24 may include a path to communicate information between the above-described components.
  • Transceiver 23 using any transceiver-like device for communicating with other terminals or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the terminal may further include a memory 22 .
  • the memory 22 may be read-only memory (ROM) or other type of static storage device that can store static information and instructions, random access memory (RAM) or other type of static storage device that can store information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being executed by a computer Access any other medium without limitation.
  • the memory may exist independently and be connected to the processor through communication line 34 .
  • the memory can also be integrated with the processor.
  • the memory 22 is used for storing computer-executed instructions for executing the solution of the present application, and the execution is controlled by the processor 21 .
  • the processor 21 is configured to execute the computer-executed instructions stored in the memory 22, thereby implementing the message transmission method provided by the following embodiments of the present application.
  • the computer-executed instructions in the embodiment of the present application may also be referred to as application code, which is not specifically limited in the embodiment of the present application.
  • the processor 21 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 2 .
  • the terminal may include multiple processors, for example, the processor 21 and the processor 25 in FIG. 2 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the embodiment of the present application does not specifically limit the specific structure of the execution body of a message transmission method, as long as the program that records the message transmission method provided by the The transmission method can be used for communication.
  • the execution body of a message transmission method provided by the embodiments of the present application may be a functional module in an electronic device set on a vehicle or an electronic device carried by a person on the vehicle that can call a program and execute the program; or a function module applied to the vehicle A processing device, eg a chip, in an electronic device provided or carried by a person in a vehicle.
  • V2X messages are provided in this embodiment of the present application.
  • vehicle A when vehicle A recognizes that the current V2X scene is present, vehicle A needs to broadcast a V2X message to other vehicles.
  • vehicle A In addition to transmitting V2X messages to other vehicles through 5.9GHz LTE-V technology, vehicle A can also transmit V2X messages to other vehicles in the following ways:
  • Vehicle A can transmit V2X messages to other vehicles through 2.4GHz Wi-Fi technology
  • Vehicle A can transmit V2X messages to other vehicles through 2.4GHz Bluetooth technology
  • Vehicle A can transmit V2X messages to other vehicles through 2.4GHz LTE-V technology;
  • Vehicle A can transmit V2X messages to other vehicles concurrently through 2.4GHz Wi-Fi technology and 2.4GHz Bluetooth technology;
  • Vehicle A can transmit V2X messages to other vehicles concurrently through 2.4GHz Wi-Fi technology and 5.9GHz LTE-V technology;
  • Vehicle A can transmit V2X messages to other vehicles concurrently through 2.4GHz Bluetooth technology and 5.9GHz LTE-V technology;
  • Vehicle A can transmit V2X messages to other vehicles concurrently through 2.4GHz Bluetooth technology, 2.4GHz Wi-Fi technology, and 5.9GHz LTE-V technology.
  • FIG. 4( a ) is a schematic diagram of transmitting a V2X message through a 2.4 GHz Wi-Fi technology according to an embodiment of the present application.
  • vehicle A has one or more V2X scenarios, for example, abnormal vehicle warning, forward collision warning, emergency braking warning, speed limit warning, and the like.
  • the one or more V2X scenarios may be user-defined settings, or may be configured by the manufacturer when vehicle A leaves the factory, which is not limited in this embodiment of the present application.
  • Vehicle A has judgment conditions for each V2X scenario. When vehicle A detects that the current judgment condition is met, vehicle A recognizes that the current situation is a V2X scene. When vehicle A recognizes the V2X scene and determines that it is necessary to transmit V2X messages to other vehicles (for example, emergency braking warning needs to transmit V2X messages to other vehicles), it needs to transmit V2X messages related to the current V2X scene to other vehicles.
  • the judgment condition may be: vehicle A has a breakdown. Vehicle A detects that vehicle A is faulty, that is, vehicle A recognizes that the current V2X scene is present, and vehicle A can broadcast a V2X message (abnormal vehicle reminder) to remind surrounding vehicles that the vehicle is an abnormal vehicle.
  • V2X message abnormal vehicle reminder
  • a short inter-frame space can be used to transmit V2X messages, and the 802.11b protocol is followed when transmitting V2X messages, so that the transmission distance is longer.
  • the transmission mode of the V2X message shown in FIG. 4(a) can be applied to the application scenario shown in FIG. 4(b).
  • vehicle A when vehicle A needs to transmit a V2X message to other vehicles, if the V2X message is broadcast through the 5.9GHz LTE-V technology, the distance between vehicle B and vehicle A is relatively close and there is no obstacle If the object is blocked, vehicle B can successfully receive the V2X message broadcast by vehicle A.
  • vehicle C and vehicle A is large and there is an obstacle to vehicle B, so that vehicle C may not be able to successfully receive the V2X message broadcast by vehicle A. Therefore, the vehicle A can broadcast the V2X message based on the 2.4GHz Wi-Fi technology.
  • vehicle A broadcasts a V2X message based on the 2.4GHz Wi-Fi technology
  • both vehicle B and vehicle C can successfully receive the V2X message broadcast by vehicle A.
  • vehicle A when vehicle A needs to directionally transmit V2X messages to vehicle B, if vehicle A has detected that the distance between vehicle B and vehicle A is close and there are no obstacles, vehicle A can also use 5.9GHz LTE -V technology broadcasts the V2X message.
  • V2X message broadcast by vehicle A uses the 5.9 GHz LTE-V technology to broadcast the V2X message
  • vehicle C can receive the V2X message broadcast by vehicle A based on the 2.4GHz Wi-Fi technology than by receiving the LTE-V technology broadcast by vehicle A based on the 5.9GHz technology.
  • the success rate of V2X messages is higher. Therefore, when vehicle A broadcasts V2X messages to other vehicles based on the 2.4GHz Wi-Fi technology, the success rate is higher.
  • Figure 5 describes the technical implementation process of vehicle A transmitting V2X messages based on 2.4GHz Wi-Fi technology.
  • vehicle A determines the V2X message to send to other vehicles based on the current V2X scene; vehicle A determines whether the V2X message is a safety message, and when the V2X message is a safety message, vehicle A The V2X message is broadcast using 2.4GHz Wi-Fi technology.
  • vehicle A determines the load status of the channel corresponding to the 2.4GHz Wi-Fi technology.
  • vehicle A broadcasts the V2X message using the 2.4GHz Wi-Fi technology.
  • vehicle A broadcasts the V2X message using 5.9GHz LTE-V technology.
  • the load threshold can be set in vehicle A. When vehicle A detects that the data transmitted through the 2.4GHz Wi-Fi channel is greater than the load threshold, it means that the 2.4GHz Wi-Fi channel is congested; When the data transmitted by the Fi channel is less than or equal to the load threshold, it indicates that the 2.4GHz Wi-Fi channel is good.
  • the above method for judging the load condition of the 2.4GHz Wi-Fi channel is only for example.
  • other methods can also be used, such as measuring the channel load rate of the channel.
  • the load threshold value is a value in units of data volume; when the load parameter value is the channel load rate, the load threshold value is a proportional value.
  • vehicle A can not only send safety messages to other vehicles, but also non-safety messages to other vehicles. Therefore, if vehicle A needs to send safety messages to other vehicles.
  • vehicle A uses 2.4GHz Wi-Fi technology to broadcast safety V2X messages in order to successfully transmit safety messages to other vehicles.
  • the channel is congested, when the 2.4GHz Wi-Fi channel is good, broadcast non-secure V2X messages through the 2.4GHz Wi-Fi technology.
  • the 2.4GHz Wi-Fi channel is congested, non-secure V2X messages are broadcast through the 5.9GHz LTE-V technology.
  • the Wi-Fi technology adopted by the vehicle A uses three independent channels on 2.4 GHz: channel 1, channel 6, and channel 11.
  • a beacon (Beacon) frame is used.
  • Beacon frames are data frames that follow the Wi-Fi protocol.
  • V2X messages are datasets that follow the LTE-V protocol.
  • the beacon frame can be extended, and the V2X message can be carried through the extended field.
  • Fig. 6 shows the data format of the beacon frame defined by the 802.11 protocol and the data format of the beacon frame after the extension field adopted by the embodiment of the present application.
  • the data format of the beacon frame adopted in this application follows the 802.11 protocol stipulation common to wireless local area networks, and only some fields are extended.
  • field 0 in the beacon frame specified by the 802.11 protocol is an element identifier (Element ID), and in the beacon frame provided by this embodiment of the application is a specific supply (vender Specific IE); the field in the beacon frame specified by the 802.11 protocol 1 is the length (Length), which is also the length (Length) in the beacon frame provided by the embodiment of this application; fields 2 to 4 in the beacon frame specified by the 802.11 protocol are the organization identifier (Organization Identifier), which are provided in the embodiment of this application. It is not shown in the beacon frame of the 802.11 protocol; in the beacon frame specified by the 802.11 protocol, fields 5 to 9 are Vender Specific.
  • TLV Type TLV Type
  • field 7 TLV length (TLV length)
  • field 8 and field 9 are content (content).
  • it can be determined whether the current beacon frame is used to transmit V2X messages through the feature ID (Feature ID); the security V2X message can be placed in the content (content) field of the beacon frame after the extension field.
  • the extension of the beacon frame in the embodiment of the present application does not add additional fields, but extends functions of some existing fields, and the extended functions include carrying V2X messages.
  • beacon frame is a broadcast frame
  • vehicle A broadcasts a safety V2X message through the beacon frame
  • vehicle B can receive the safety V2X message
  • vehicle C may receive the safety V2X message.
  • vehicle A can also directionally transmit V2X messages to a designated vehicle.
  • vehicle A may obtain unique identifiers of other vehicles in the vicinity of vehicle A.
  • the unique identifier of the designated vehicle is carried in the beacon frame.
  • the vehicle that receives the beacon frame first determines whether the unique identifier carried in the beacon frame is consistent with the unique identifier of the vehicle; if it is consistent, the vehicle that receives the beacon frame parses the beacon frame and obtains the V2X message; in the case of inconsistency, receives the The vehicle of the beacon frame discards the received beacon frame.
  • Vehicle A can also establish a communication connection with the designated vehicle, and directionally transmit V2X messages to the designated vehicle through the established communication connection.
  • This embodiment of the present application does not limit whether the V2X message is transmitted in a broadcast manner or the V2X message is transmitted by using an established communication connection.
  • FIG. 7 is a classification of V2X messages.
  • V2X messages are divided into three categories: security V2X messages, efficiency V2X messages, and information service V2X messages.
  • the safety V2X messages include: 1. Forward collision warning, 2. Intersection collision warning, 3. Left turn assist, 4. Blind spot warning/lane change assist, 5. Reverse overpass warning, 6. Emergency Braking warning, 7. Abnormal vehicle warning, 8. Vehicle loss of control warning, 9. Road danger status warning, 10. Speed limit warning, 11. Red light warning, 12. Collision warning for vulnerable traffic participants.
  • the types of messages may also be classified in other ways (such as importance, urgency, etc.), that is, in the embodiments of the present application, messages with higher importance and more urgent urgency use communication technologies lower than 5.9 GHz transmission.
  • security V2X messages can also be transmitted on the 5.0GHz Wi-Fi channel.
  • security V2X messages can also be transmitted on the 5.0GHz Wi-Fi channel.
  • FIG. 8( a ) is a schematic diagram of transmitting a V2X message through a 2.4 GHz Bluetooth technology according to an embodiment of the present application.
  • the transmission mode of the V2X message shown in Fig. 8(a) can be applied to the application scenario shown in Fig. 8(b).
  • the vehicle A can broadcast the V2X message based on the 2.4GHz Bluetooth technology.
  • vehicle B and vehicle C can successfully receive the V2X message broadcast by vehicle A.
  • vehicle C receiving the V2X message broadcast by vehicle A based on 2.4GHz Bluetooth technology is more efficient than receiving vehicle A based on 5.9GHz LTE-V technology broadcast.
  • the success rate of V2X messages is higher. Therefore, when vehicle A broadcasts V2X messages to other vehicles based on the 2.4GHz Bluetooth technology, the success rate is higher.
  • the technical implementation process of vehicle A using 2.4GHz Bluetooth technology to transmit V2X messages can be obtained: when vehicle A recognizes the V2X scene, vehicle A is based on the current V2X scene. Determine the V2X message sent to other vehicles; Vehicle A determines whether the V2X message is a safety message. When the V2X message is a safety message, Vehicle A uses 2.4GHz Bluetooth technology to broadcast the V2X message. When the V2X message is a non-safety message When the message is sent, Vehicle A judges the load of the channel corresponding to the 2.4GHz Bluetooth technology. When the 2.4GHz Bluetooth channel is good, it uses the 2.4GHz Bluetooth technology to broadcast the V2X message, and when the 2.4GHz Bluetooth channel is congested, it uses the 5.9GHz channel. LTE-V technology broadcasts this V2X message.
  • the Bluetooth technology adopted by the vehicle A may be low-power bluetooth, and the low-power bluetooth uses three independent channels on 2.4 GHz: channel 37, channel 38, and channel 39 for broadcasting.
  • the vehicle A uses the 2.4GHz Bluetooth technology to transmit the message, it can also use the form of broadcasting. Even if there is no Bluetooth connection between the two vehicles, one of the vehicles can transmit the V2X message to the other vehicle by broadcasting the Bluetooth information carrying the V2X message.
  • the vehicle uses 2.4GHz Bluetooth to broadcast the Bluetooth information carrying the V2X message, the same message can be broadcast on three channels.
  • the data format of the Bluetooth broadcast message adopted in the embodiment of the present application includes a header (Header) and a payload (Payload), wherein the header (Header) includes a PDU type (PDU Type), reserved bits (RFU), transmit address type (TxAdd), receive address type (RxAdd), length (Length) and reserved bits (RFU), payload (Payload) includes broadcast address (AdvA) and broadcast data (AdvData).
  • the V2X message can be stored in the field corresponding to the broadcast data as broadcast data.
  • the extension of the Bluetooth broadcast message in the embodiment of the present application does not add additional fields, but extends functions of some existing fields, and the extended functions include carrying V2X messages.
  • the functions of some fields in the payload of the Bluetooth broadcast message are extended to carry V2X messages.
  • Bluetooth 5.0 the broadcast packet defined by Bluetooth 5.0 has 255 user bytes, which is an 8-fold expansion compared to Bluetooth 4.2.
  • the maximum broadcast byte defined by Bluetooth 5.0 is 1650.
  • Bluetooth 5.0 can meet the needs of big data broadcasting.
  • the fragmented broadcast transmission message is not very reliable, and it may be easy for the receiver to not receive the complete information. Therefore, the key content of the V2X message can be filled in the Bluetooth broadcast message.
  • the above embodiments all take low-power Bluetooth as an example to illustrate that 2.4GHz Bluetooth technology can be used to broadcast V2X messages.
  • 2.4GHz classic Bluetooth can also be used to broadcast V2X messages.
  • the data message When using 2.4GHz classic Bluetooth to broadcast V2X messages , the data message also needs to be expanded, and the embodiments of the present application will not describe them one by one.
  • FIG. 10( a ) is a schematic diagram of transmitting a V2X message through the 2.4 GHz LTE-V technology according to an embodiment of the present application.
  • the transmission mode of the V2X message shown in Figure 10(a) can be applied to the application scenario shown in Figure 10(b).
  • vehicle A can broadcast the V2X message based on the 2.4GHz LTE-V technology V2X messages.
  • vehicle B and vehicle C can successfully receive the V2X message broadcast by vehicle A.
  • vehicle C receiving the V2X message broadcast by vehicle A based on 2.4GHz LTE-V technology is more efficient than receiving vehicle A based on 5.9GHz LTE-V V2X messages broadcast by technology have a higher success rate. Therefore, when vehicle A broadcasts V2X messages to other vehicles based on the 2.4GHz LTE-V technology, the success rate is higher.
  • the technical implementation process of vehicle A using 2.4GHz LTE-V technology to transmit V2X messages can be obtained: when vehicle A recognizes the V2X scene, vehicle A based on the current The V2X scenario determines the V2X message sent to other vehicles; Vehicle A determines whether the V2X message is a safety message. When the V2X message is a safety message, Vehicle A uses the 2.4GHz LTE-V technology to broadcast the V2X message.
  • V2X message When it is a non-safety message, vehicle A judges the load condition of the channel corresponding to the 2.4GHz LTE-V technology, and when the 2.4GHz LTE-V channel is good, uses the 2.4GHz LTE-V technology to broadcast the V2X message.
  • the V2X message is broadcast using the LTE-V technology of 5.9 GHz.
  • the LTE-V module corresponding to the LTE-V technology sets the range of the transmission frequency, which is usually a frequency band range corresponding to 5.9 GHz.
  • the LTE-V module set on vehicle A can be modified, and the software program built in the LTE-V module can be modified at the same time, so that the transmission and reception frequency ranges of the modified LTE-V module are both in the frequency band corresponding to 2.4GHz scope.
  • an LTE-V module is set on vehicle A or an LTE-V module is set on an electronic device carried by a user on vehicle A, if the LTE-V module has been set to transmit at 2.4GHz frequency, the 2.4GHz LTE-V technology needs to be used to send non-secure V2X messages. In practical applications, whether to delay broadcasting can be selected according to the load condition of the channel used by the 2.4GHz LTE-V technology.
  • a non-safety V2X message is broadcast when the channel used by the 2.4GHz LTE-V technology is good; the non-safety V2X message is not broadcast when the channel used by the 2.4GHz LTE-V technology is congested , but wait until the channel used by the 2.4GHz LTE-V technology is good before broadcasting the non-safety V2X message.
  • the V2X message can still be transmitted with reference to the schematic flowchart of the V2X message transmission using the Wi-Fi technology shown in FIG. 5 .
  • FIG. 11( a ) is a schematic diagram of concurrently transmitting V2X messages using the 5.9 GHz LTE-V technology and the 2.4 GHz Wi-Fi technology according to an embodiment of the present application.
  • Vehicle A uses 5.9GHz LTE-V technology and 2.4GHz Wi-Fi technology to transmit V2X messages concurrently
  • Vehicle A uses 5.9GHz LTE-V technology to transmit V2X messages.
  • Vehicle A also transmits the same V2X message using 2.4GHz Wi-Fi technology. It can also be understood that while the vehicle A uses the 5.9GHz LTE-V technology to transmit the V2X message, it uses the 2.4GHz Wi-Fi technology to supplement the same V2X message.
  • the transmission mode of the V2X message shown in Fig. 11(a) can be applied to the application scenario shown in Fig. 11(b).
  • the V2X message is broadcast through the 5.9GHz LTE-V technology
  • the distance between vehicle B and vehicle A is relatively close and there is no obstacle If the object is blocked, vehicle B can successfully receive the V2X message broadcast by vehicle A.
  • the distance between vehicle C and vehicle A is large and there is an obstacle to vehicle B, so that vehicle C may not be able to successfully receive the V2X message broadcast by vehicle A. Therefore, vehicle A can use 2.4GHz Wi-Fi technology to supplement the same V2X message.
  • vehicle A supplements the same V2X message based on 2.4GHz Wi-Fi technology, even if vehicle C can successfully receive the V2X message broadcast by vehicle A using 5.9GHz LTE-V technology, it can also successfully receive vehicle A The same V2X message sent by the 2.4GHz Wi-Fi technology supplement.
  • vehicle A uses 2.4GHz Wi-Fi technology to broadcast V2X messages with a higher success rate than using 5.9GHz LTE-V technology to broadcast V2X messages to other vehicles, it can be understood that vehicle A uses 2.4GHz Wi-Fi - Fi technology and 5.9GHz LTE-V technology concurrently have a higher success rate than broadcasting V2X messages using 5.9GHz LTE-V technology alone.
  • V2X message transmission using the 2.4GHz Wi-Fi technology shown in FIG. 5 it can be obtained that the vehicle A uses the 2.4GHz Wi-Fi technology and the 5.9GHz LTE-V technology to transmit the V2X message concurrently.
  • vehicle A determines the V2X message to send to other vehicles based on the current V2X scene; vehicle A determines whether the V2X message is a safety message, and when the V2X message is a safety message, vehicle A uses 2.4
  • the V2X message is broadcast concurrently by the GHz Wi-Fi technology and the 5.9GHz LTE-V technology.
  • Vehicle A judges the load of the channel corresponding to the 2.4GHz LTE-V technology, and in the When the 2.4GHz LTE-V channel is good, use the 2.4GHz LTE-V technology or use the 2.4GHz Wi-Fi technology and the 5.9GHz LTE-V technology to broadcast the V2X message concurrently, and use the 2.4GHz LTE-V technology to broadcast the V2X message.
  • the V2X message is broadcast using 5.9GHz LTE-V technology.
  • FIG. 12( a ) is a schematic diagram of transmitting a V2X message in a concurrent manner using the 2.4GHz Bluetooth technology and the 2.4GHz Wi-Fi technology according to an embodiment of the present application.
  • the specific implementation process of the concurrent mode of the 2.4GHz Bluetooth technology and the 2.4GHz Wi-Fi technology can be implemented in the concurrent mode using the 5.9GHz LTE-V technology and the 2.4GHz Wi-Fi technology as shown in Figure 11(a). description, which will not be repeated here.
  • the transmission mode of the V2X message shown in FIG. 12(a) can be applied to the application scenario shown in FIG. 12(b).
  • 2.4GHz Bluetooth and 2.4GHz Wi-Fi may share an RF antenna.
  • the signals can be received concurrently.
  • the vehicle cannot achieve concurrent signaling. Therefore, the concurrent communication between the two can be realized by transmitting signals by means of time-division transmission.
  • the time-division transmission method refers to a communication method in which multiple channels of signals alternately use a common antenna to form multiple periodic transmissions. For other descriptions in this application scenario, reference may be made to the description in FIG. 11( b ), which will not be repeated here.
  • FIG. 13( a ) is a schematic diagram of transmitting a V2X message in a concurrent manner using the 2.4 GHz Bluetooth technology and the 5.9 GHz LTE-V technology according to an embodiment of the present application.
  • the specific implementation process of the concurrent mode of the 2.4GHz Bluetooth technology and the 5.9GHz LTE-V technology can be as shown in Figure 11(a) using the concurrent mode of the 5.9GHz LTE-V technology and the 2.4GHz Wi-Fi technology. description, which will not be repeated here.
  • the transmission mode of the V2X message shown in Fig. 13(a) can be applied to the application scenario shown in Fig. 13(b).
  • FIG. 14( a ) is a schematic diagram of transmitting V2X messages in a concurrent manner using the 2.4GHz Bluetooth technology, the 2.4GHz Wi-Fi technology, and the 5.9GHz LTE-V technology according to an embodiment of the present application.
  • the specific implementation process of the concurrent mode of 2.4GHz Bluetooth technology, 2.4GHz Wi-Fi technology and 5.9GHz LTE-V technology can be as shown in Figure 11(a) using 5.9GHz LTE-V technology and 2.4GHz LTE-V technology.
  • the description of the concurrent manner of the Wi-Fi technology will not be repeated here.
  • the transmission mode of the V2X message shown in Fig. 14(a) can be applied to the application scenario shown in Fig. 14(b).
  • a single 2.4GHz communication technology may be adopted for the vehicle to transmit the safety V2X message, or a concurrent manner of multiple 2.4GHz communication technologies, or a 2.4GHz communication technology and 5.9GHz communication technology concurrently.
  • the 2.4GHz communication technology in the above-mentioned embodiment may also be other communication technologies lower than 5.9GHz.
  • the embodiments of the present application do not limit the specific communication technology.
  • the vehicle A enters a harsh environment (eg, under a bridge, a tunnel, etc.), and at this time, the GPS signal of the vehicle A is weak, or even no signal.
  • Vehicle B and vehicle C exist around vehicle A. Vehicle A also needs to measure the distance to Vehicle A and Vehicle B.
  • vehicle A can use the Wi-Fi-based FTM (fine timing measurement) detection technology for distance measurement, so as to obtain the first distance between vehicle A and vehicle B and the second distance between vehicle A and vehicle C
  • Wi-Fi-based FTM fine timing measurement
  • other communication technologies can also be used for distance measurement, for example, Bluetooth technology is used for distance measurement (for example, the distance is measured according to the signal strength of Bluetooth), and LTE-V technology is used for distance measurement (for example, through LTE -V technology transmits a message to measure the distance according to the transmission time of the message), and can even measure the distance through other devices (for example, radar) installed on the vehicle.
  • Bluetooth technology is used for distance measurement (for example, the distance is measured according to the signal strength of Bluetooth)
  • LTE-V technology is used for distance measurement (for example, through LTE -V technology transmits a message to measure the distance according to the transmission time of the message), and can even measure the distance through other devices (for example, radar) installed on the vehicle.
  • LTE-V technology for distance measurement
  • FIG. 15 is a schematic diagram of a method for vehicle A to perform ranging by using the Wi-Fi-based FTM detection technology in the above scenario.
  • vehicle A uses Wi-Fi technology to send a ranging request; after receiving the ranging request, vehicle B uses Wi-Fi technology to return first information, where the first information may be a ping message, where, The time when vehicle B sends the first information is t1; after receiving the first information, vehicle A uses Wi-Fi technology to send the second information, and the second information can be a pong message, wherein the time when vehicle A receives the first information is t2, the time when the second information is sent is t3, and vehicle A records the times t2 and t3; after receiving the second information, vehicle B uses Wi-Fi technology to return the third information, which carries t1 and vehicle B receives the second information.
  • Information time t4 after vehicle A receives the third information carrying t1 and t4, vehicle A obtains the first distance by calculating the following formula:
  • D is the first distance
  • c is the speed of light
  • vehicle A can obtain the first distance between vehicle A and vehicle B, and when there is still vehicle C on the road, vehicle A can also obtain the second distance between vehicle A and vehicle C according to the method shown in FIG. 15 . distance.
  • the first distance is within the first preset range, it means that the distance between vehicle A and vehicle B is too close, and there may be a risk of rear-end collision.
  • vehicle A recognizes that the current V2X scene is present, and the V2X message corresponding to the current V2X scene is a safety message.
  • Vehicle A can use Wi-Fi technology to broadcast the beacon frame, and the beacon frame carries the V2X message; of course, the beacon frame can also carry the unique identifier of vehicle B.
  • vehicle A recognizes that the current V2X scene is present, and the V2X message corresponding to the current V2X scene is a safety message.
  • Vehicle A can use Wi-Fi technology to broadcast the beacon frame, and the beacon frame carries the V2X message; of course, the beacon frame can also carry the unique identifier of vehicle C.
  • a distance threshold can be set in the vehicle, and the distance threshold can be used as the vehicle to select 5.9GHz LTE-V technology or 2.4GHz. Reference conditions for the transmission of V2X messages in GHz communication technology.
  • the vehicle to which the V2X message is delivered is greater than or equal to the first critical distance (for example, 200 meters)
  • the vehicle distance is relatively long, and there is no difference between the host vehicle and the target vehicle.
  • the vehicle may fail to transmit V2X messages to the target vehicle using 5.9GHz communication technology.
  • the vehicle needs to transmit the first V2X message, it can select the 2.4GHz communication technology supplementary package or select the 2.4GHz communication technology alone to transmit the first V2X message.
  • the vehicle distance between the host vehicle and the target vehicle is less than the first critical distance and greater than the second critical distance (for example, 100 meters)
  • the vehicle distance is moderate, there is no risk of rear-end collision between the host vehicle and the target vehicle, and the The target vehicle is within the coverage of the own vehicle's 5.9GHz communication technology.
  • the 5.9GHz communication technology can be selected to transmit the second V2X message.
  • the third V2X message is sent to the target vehicle.
  • the third V2X message is a safety message.
  • the vehicle can select the 2.4GHz communication technology supplementary package or select the 2.4GHz communication technology alone to transmit the V2X message.
  • 200 meters, 100 meters, and 10 meters in the above examples are all used to illustrate distance values when different communication modes are selected, and do not impose any limitations on the embodiments of the present application. In practical applications, other distance values are also possible.
  • the first critical distance and the second critical distance may be completely different or partially different for driving on a highway, driving on a viaduct and driving on a country road.
  • the first critical distance value can be determined according to the propagation distance of the 5.9 GHz LTE-V, and the safety distance can also be predicted according to the speed of the host vehicle, thereby obtaining the second critical distance value.
  • the vehicle uses 2.4GHz Wi-Fi technology for ranging, since the Wi-Fi module has been turned on, in order to avoid additional power consumption by turning on the LTE-V module, the 2.4GHz Wi-Fi technology can be used for ranging. During this period, choose to use 2.4GHz Wi-Fi technology to transmit V2X messages.
  • the communication method can be selected according to whether the obstacle is detected during the vehicle detection of the obstacle.
  • the 2.4GHz communication technology supplementary package can be selected or the 2.4GHz communication technology alone can be used to transmit the V2X message; otherwise, the 5.9 GHz communication technology can be used.
  • GHz LTE-V technology transmits V2X messages.
  • the distance between the vehicle and the existence of obstacles can be used as reference factors to select different communication methods, and this embodiment of the present application will not exemplify this. .
  • vehicle B and vehicle C may be in the same lane as vehicle A.
  • vehicle B and vehicle C are respectively in the front and rear positions of vehicle A in the same lane.
  • vehicle B and vehicle C may also be in the adjacent lanes of vehicle A. In this case, if vehicle A is too close to vehicle A and vehicle B (or vehicle C), there is a risk of rear-end collision. Such as V2X messages, false warnings may be issued, and the schematic diagram of vehicles located in adjacent lanes can be referred to as shown in Figure 16(a).
  • embodiments of the present application further provide a method for lane positioning.
  • Channel State Information can measure the state of the channel.
  • the magnitude and phase in the CSI can be used for position positioning.
  • CSI can simultaneously measure the respective frequency responses of multiple subcarriers from a single data packet, instead of the frequency responses of multiple subcarriers superimposed, so that frequency-selective channels can be accurately obtained.
  • CSI can also measure the magnitude of each subcarrier and the phase information of each subcarrier. Therefore, the vehicle A can use the CSI to distinguish the propagation paths of the received data packets from the time domain.
  • Fig. 16(a) illustrates the transmission path of the received data packets of vehicles in different lanes
  • Fig. 16(b) illustrates the received data packets of vehicles in the same lane transmission path.
  • the Wi-Fi modules on Vehicle A, Vehicle B, and Vehicle C When the Wi-Fi modules on Vehicle A, Vehicle B, and Vehicle C are turned on, the Wi-Fi modules on Vehicle A, Vehicle B, and Vehicle C send Wi-Fi signals. Vehicles within the coverage of the Wi-Fi signal can receive the Wi-Fi signal, and at the same time, the CSI information of the Wi-Fi signal can be obtained.
  • vehicle A receives the Wi-Fi signal sent by vehicle B, vehicle A obtains the first CSI information of the Wi-Fi signal, and vehicle A obtains each sub-carrier (each sub-carrier) in the first CSI information.
  • the transmission path corresponds to the phase and amplitude of a subcarrier).
  • vehicle A receives the Wi-Fi signal sent by vehicle C, vehicle A obtains the second CSI information of the Wi-Fi signal, and vehicle A obtains each sub-carrier (each sub-carrier in the second CSI information)
  • the transmission path corresponds to the phase and amplitude of a subcarrier).
  • the vehicle in the same lane with vehicle A and the vehicle in the adjacent lane with vehicle B can be determined.
  • FIG. 16(a) and FIG. 16(b) It can be seen from FIG. 16(a) and FIG. 16(b) that the vehicle B and the vehicle A are not in the same lane, and the vehicle C and the vehicle A are in the same lane. After it is determined that the vehicle B and the vehicle A are not in the same lane, it can be determined that there is no risk of rear-end collision between the vehicle B and the vehicle A, and the first distance between the vehicle B and the vehicle A can no longer be calculated.
  • the second distance between the vehicle C and the vehicle A can be calculated, and when the second distance is within the first preset range, it is determined that the vehicle C and the vehicle A There is a risk of rear-end collision, that is, vehicle A recognizes that it is currently a V2X scene, and can send the corresponding V2X message.
  • the channel state information of signals of other communication technologies can also be used to obtain whether other vehicles and the vehicle are in the same lane, or other methods can be used to determine whether other vehicles and the vehicle are in the same lane. This is not limited.
  • FIG. 17 With reference to the embodiments shown in FIG. 15 , FIG. 16( a ) and FIG. 16 ( b ), the flowchart of the V2X message transmission method shown in FIG. 17 can be obtained.
  • Vehicle A extracts the CSI information of the Wi-Fi signals of other vehicles around it.
  • Vehicle A detects that vehicle C is in the same lane as vehicle A according to the CSI information of other vehicles. ;
  • Vehicle A uses the Wi-Fi technology-based ranging technology to measure the second distance between vehicle A and vehicle C; when the second distance is within the first preset range, vehicle A recognizes that it is currently a V2X scene, and vehicle A uses Wi-Fi technology transmits V2X messages to vehicle C.
  • the unique identifier of the vehicle C may be carried in the beacon frame where the V2X message is located.
  • vehicle A continuously (or at certain time intervals) extracts the CSI information of the Wi-Fi signals of surrounding vehicles; after it is determined that there are other vehicles and vehicle A in the same lane, vehicle A continues to The distance between other vehicles on the same lane and the vehicle A can also be acquired at a certain time interval; when the distance is within the first preset range, the vehicle A broadcasts a V2X message.
  • vehicle A Before or after vehicle A broadcasts the V2X message, vehicle A continues to extract the CSI information of the Wi-Fi channel of the periodic vehicle; similarly, before or after the broadcast of the V2X message, vehicle A determines that there are After other vehicles and vehicle A share the same lane, vehicle A continues to obtain the distance between other vehicles on the same lane and vehicle A, so that when the distance is within the first preset range, vehicle A broadcasts the next V2X message . That is, whether vehicle A extracts the CSI information of other vehicles, vehicle A obtains the distance between other vehicles on the same lane and vehicle A, or vehicle A broadcasts V2X messages, these three steps all use Wi-Fi technology. The three steps can be performed simultaneously.
  • the embodiments of the present application are described in the context of in-vehicle communication.
  • it can be any electronic device that has LTE-V transceiver capability and supports 2.4GHz WiFi or 2.4GHz Bluetooth communication.
  • LTE-V transceiver capability and supports 2.4GHz WiFi or 2.4GHz Bluetooth communication.
  • direct communication between mobile phones and mobile phones direct communication between mobile phones and wearable devices, etc.
  • the terminal may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following is an example of dividing each function module corresponding to each function to illustrate:
  • the terminal 1800 can be denoted as the first terminal, including:
  • a type determination module 1801 configured to determine the type of the sidelink service to be transmitted in a vehicle-to-everything scenario
  • the message sending module 1802 is configured to send the sidelink service using a first communication technology if the type of the sidelink service is the first type of service, wherein the working frequency band of the first communication technology is less than 5.9 GHz.
  • the message sending module 1802 is further configured to:
  • a second communication technology is used to transmit sidelink services, wherein the working frequency band of the second communication technology is greater than or equal to 5.9 GHz.
  • the first communication technology includes at least one of the following: Bluetooth technology with a working frequency band of 2.4 GHz, Wi-Fi technology with a working frequency band of 2.4 GHz, Wi-Fi technology with a working frequency band of 5.0 GHz, The long-term evolution technology for vehicles with the frequency band of 2.4GHz and the new air interface vehicle communication technology with the working frequency band of 2.4GHz.
  • the message sending module 1802 is further configured to:
  • the extended beacon frame is broadcast by using the Wi-Fi technology with a working frequency band of 2.4 GHz, wherein the extended field of the extended beacon frame carries sidelink services.
  • the message sending module 1802 is further configured to:
  • the extended Bluetooth broadcast message is broadcast by using the Bluetooth technology with a working frequency band of 2.4 GHz, wherein the extension field of the extended Bluetooth broadcast message carries the sidelink service.
  • the first communication technology includes a Wi-Fi technology with an operating frequency band of 2.4 GHz and a Bluetooth technology with an operating frequency band of 2.4 GHz, and the Wi-Fi technology with an operating frequency band of 2.4 GHz and a working frequency band of 2.4 GHz
  • the Bluetooth technology shared antenna; the message sending module 1802 is also used for:
  • the sidelink service is transmitted by using the Bluetooth technology whose working frequency band is 2.4 GHz, wherein the first time period and the second time period are alternately arranged.
  • the message sending module 1802 is further configured to:
  • the type of the sidelink service is the second type of service
  • the first communication technology or the second communication technology is used to transmit the sidelink service, wherein the priority of the second type of service is lower than that of the first type of service , the operating frequency band of the second communication technology is greater than or equal to 5.9 GHz.
  • the message sending module 1802 is further configured to:
  • the type of the sidelink service is the second type of service, acquiring the load parameter value of the channel corresponding to the first communication technology
  • the second communication technology is used to transmit the side link service.
  • the terminal 1800 further includes:
  • a forward collision warning message acquisition module is used to acquire a second terminal on the same lane as the first terminal; acquire the distance between the first terminal and the second terminal; if the distance between the first terminal and the second terminal is Within the first preset range, a forward collision warning message is obtained, and the forward collision warning message is a side link service.
  • the forward collision warning message acquisition module is further configured to:
  • the Wi-Fi signal in the environment where the first terminal is located includes the Wi-Fi signal sent by the third Wi-Fi module, and the third Wi-Fi module Including the Wi-Fi module set on the third terminal; and obtaining the second terminal on the same lane as the first terminal from the third terminal according to the channel state information.
  • the forward collision warning message acquisition module is further configured to:
  • the Wi-Fi module set on the second terminal includes the Wi-Fi module set on the second terminal.
  • each functional module in the embodiment may be integrated in one processing module, or each module may exist physically alone, or two or more modules may be integrated in one module, and the above-mentioned integrated modules may be implemented in the form of hardware. , can also be implemented in the form of software function modules.
  • the specific names of the functional modules are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application.
  • Embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps in the foregoing method embodiments can be implemented.
  • the embodiments of the present application further provide a computer program product, which enables the device to implement the steps in the foregoing method embodiments when the computer program product runs on the device.
  • the integrated unit if implemented as a software functional unit and sold or used as a stand-alone product, may be stored in a computer-readable storage medium.
  • the present application realizes all or part of the processes in the methods of the above-mentioned embodiments, which can be completed by instructing the relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium, and the computer program is stored in a computer-readable storage medium.
  • the steps of the foregoing method embodiments may be implemented.
  • the computer program includes computer program code
  • the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include at least: any entity or device capable of carrying the computer program code to the first device, a recording medium, a computer memory, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), electrical carrier signals, telecommunications signals, and software distribution media.
  • ROM read-only memory
  • RAM random access memory
  • electrical carrier signals telecommunications signals
  • software distribution media For example, U disk, mobile hard disk, disk or CD, etc.
  • computer readable media may not be electrical carrier signals and telecommunications signals.
  • An embodiment of the present application further provides a chip system, the chip system includes a processor, the processor is coupled to a memory, and the processor executes a computer program stored in the memory to implement the steps of any method embodiment of the present application.
  • the chip system may be a single chip, or a chip module composed of multiple chips.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种消息传输方法、终端及芯片系统,涉及通信技术领域,可以提高消息的传输成功率。该方法包括:在V2X场景下,第一终端确定待传输的V2X消息的类型;若待传输的V2X消息的类型为安全类消息,则第一终端采用第一通信技术传输待传输的V2X消息,其中,第一通信技术的工作频段小于5.9GHz。

Description

一种消息传输方法、终端及芯片系统
本申请要求于2021年03月31日提交国家知识产权局、申请号为202110359650.5、申请名称为“一种消息传输方法、终端及芯片系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种消息传输方法、终端及芯片系统。
背景技术
随着社会的发展,道路上行驶的车辆越来越多。为实现车辆与其他设备(例如,其他车辆、其他车辆上的电子设备等)之间的信息互通,减少交通事故的发生,车对一切(Vehicle to everything,V2X)技术应运而生。V2X消息是基于V2X技术定义的车辆和其他设备之间的通信消息。
目前,V2X消息基于车辆长期演进技术(Long Term Evolution-Vehicle,LTE-V)技术传输。LTE-V技术是基于4G长期演进技术(Long Term Evolution,LTE)系统的演进技术。LTE-V技术的工作频段在5905-5925MHz之间。在一些复杂场景中,例如,车距较远、车辆之间存在障碍物,基于LTE-V技术传输V2X消息时,常常出现V2X消息传输失败的问题。
发明内容
本申请实施例提供一种消息传输方法、终端及存储介质,可以提高V2X消息的传输成功率。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请实施例提供一种消息传输方法,包括:
在车对一切场景下,第一终端确定待传输的侧行链路业务的类型;
若侧行链路业务的类型为第一类业务,第一终端采用第一通信技术发送侧行链路业务,其中,第一通信技术的工作频段小于5.9GHz。
第一类业务可以是规定的安全类业务(例如,安全类消息),还可以是根据紧急程度划分的紧急类业务(例如,紧急程度较高的消息)。在车对一切(V2X)场景中,采用工作频段低于5.9GHz的第一通信技术传输第一类业务时,工作频段低于5.9GHz的第一通信技术相比于车联网领域的LTE-V和NR-V通信技术的工作频段低,工作频段低于5.9GHz的第一通信技术能够传输的距离更远、障碍物的绕射能力更强,因此,采用工作频段低于5.9GHz的第一通信技术传输第一类业务时,传输成功率更高。
在第一方面的一种可能的实现方式中,若侧行链路业务的类型为第一类业务,该方法还包括:
第一终端采用第二通信技术传输侧行链路业务,其中,第二通信技术的工作频段大于或等于5.9GHz。
在第一方面的一种可能的实现方式中,第一通信技术包括以下至少一种:工作频段为2.4GHz的蓝牙技术、工作频段为2.4GHz的Wi-Fi技术、工作频段为5.0GHz的 Wi-Fi技术、工作频段为2.4GHz的车辆长期演进技术和工作频段为2.4GHz的新空口车用通信技术。
在第一方面的一种可能的实现方式中,第一通信技术包括工作频段为2.4GHz的Wi-Fi技术时,第一终端采用第一通信技术传输侧行链路业务包括:
第一终端采用工作频段为2.4GHz的Wi-Fi技术广播扩展后的beacon帧,其中,扩展后的beacon帧的扩展字段中携带侧行链路业务。
在第一方面的一种可能的实现方式中,第一通信技术包括工作频段为2.4GHz的蓝牙技术时,第一终端采用第一通信技术传输侧行链路业务包括:
第一终端采用工作频段为2.4GHz的蓝牙技术广播扩展后的蓝牙广播报文,其中,扩展后的蓝牙广播报文的扩展字段中携带侧行链路业务。
在第一方面的一种可能的实现方式中,第一通信技术包括工作频段为2.4GHz的Wi-Fi技术和工作频段为2.4GHz的蓝牙技术,且工作频段在2.4GHz的Wi-Fi技术和工作频段在2.4GHz的蓝牙技术共用天线;
第一终端采用第一通信技术传输侧行链路业务包括:
在第一时间周期,第一终端采用工作频段在2.4GHz的Wi-Fi技术传输侧行链路业务;
在第二时间周期,第一终端采用工作频段在2.4GHz的蓝牙技术传输侧行链路业务,其中,第一时间周期和第二时间周期交替排布。
在第一方面的一种可能的实现方式中,在第一终端确定待传输的侧行链路业务的类型之后,该方法还包括:
若侧行链路业务的类型为第二类业务,则第一终端采用第一通信技术或第二通信技术传输侧行链路业务,其中,第二类业务的优先级低于第一类业务的优先级,第二通信技术的工作频段大于或等于5.9GHz。
在第一方面的一种可能的实现方式中,若侧行链路业务的类型为第二类业务,则第一终端采用第一通信技术或第二通信技术传输侧行链路业务,包括:
若侧行链路业务的类型为第二类业务,则第一终端获取第一通信技术对应的信道的负载参数值;
在负载参数值小于或等于负载阈值时,第一终端采用第一通信技术传输侧行链路业务;
在负载参数值大于负载阈值时,第一终端采用第二通信技术传输侧行链路业务。
在第一方面的一种可能的实现方式中,该方法还包括:
第一终端获取与第一终端在相同车道上的第二终端;
第一终端获取第一终端和第二终端之间的距离;
若第一终端和第二终端之间的距离在第一预设范围内,第一终端获取前向碰撞预警消息,前向碰撞预警消息为侧行链路业务。
在第一方面的一种可能的实现方式中,第一终端获取与第一终端在相同车道上的第二终端包括:
第一终端获取第一终端所在环境中的Wi-Fi信号的信道状态信息,其中,第一终端所在环境中的Wi-Fi信号包括第三Wi-Fi模块发出的Wi-Fi信号,第三Wi-Fi模块包 括第三终端上设置的Wi-Fi模块;
第一终端根据信道状态信息,从第三终端中得到与第一终端在相同车道上的第二终端。
在第一方面的一种可能的实现方式中,第一终端获取第一终端和第二终端之间的距离包括:
第一终端根据第一Wi-Fi模块和第二Wi-Fi模块之间传输信息的发送时间和接收时间,计算第一终端和第二终端之间的距离,其中,第一Wi-Fi模块包括第一终端上设置的Wi-Fi模块,第二Wi-Fi模块包括第二终端上设置的Wi-Fi模块。
第二方面,本申请实施例提供一种终端,包括:
类型确定模块,用于在车对一切场景下,确定待传输的侧行链路业务的类型;
消息发送模块,用于若侧行链路业务的类型为第一类业务,采用第一通信技术发送侧行链路业务,其中,第一通信技术的工作频段小于5.9GHz。
第三方面,提供一种终端,包括处理器,处理器用于运行存储器中存储的计算机程序,实现本申请第一方面任一项的方法。
第四方面,提供一种芯片系统,包括处理器,处理器与存储器耦合,处理器执行存储器中存储的计算机程序,以实现本申请第一方面任一项的方法。
第五方面,提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被一个或多个处理器执行时实现本申请第一方面任一项的方法。
第六方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在设备上运行时,使得设备执行上述第一方面中任一项方法。
可以理解的是,上述第二方面至第六方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。
附图说明
图1为本申请实施例提供的一种消息传输方法的应用场景示意图;
图2为本申请实施例提供的一种执行消息传输方法的终端的硬件结构示意图;
图3为本申请实施例提供的多种传输V2X消息的通信技术示意图;
图4(a)为本申请实施例提供的一种采用Wi-Fi技术传输V2X消息的示意图;
图4(b)为本申请实施例提供的一种采用Wi-Fi技术传输V2X消息的场景示意图;
图5为本申请实施例提供的一种V2X消息的传输方法的流程示意图;
图6为本申请实施例提供的一种Beacon帧的数据格式示意图;
图7为本申请实施例提供的V2X消息的分类示意图;
图8(a)为本申请实施例提供的一种采用蓝牙技术传输V2X消息的示意图;
图8(b)为本申请实施例提供的一种采用蓝牙技术传输V2X消息的场景示意图;
图9为本申请实施例提供的蓝牙的广播报文的数据格式示意图;
图10(a)为本申请实施例提供的一种采用2.4GHz的LTE-V技术传输V2X消息的示意图;
图10(b)为本申请实施例提供的一种采用2.4GHz的LTE-V技术传输V2X消息的场景示意图;
图11(a)为本申请实施例提供的一种采用5.9GHz的LTE-V和2.4GHz的Wi-Fi 并发的方式传输V2X消息的示意图;
图11(b)为本申请实施例提供的一种采用5.9GHz的LTE-V和2.4GHz的Wi-Fi并发的方式传输V2X消息的场景示意图;
图12(a)为本申请实施例提供的一种采用2.4GHz的蓝牙和2.4GHz的Wi-Fi并发的方式传输V2X消息的示意图;
图12(b)为本申请实施例提供的一种采用2.4GHz的蓝牙和2.4GHz的Wi-Fi并发的方式传输V2X消息的场景示意图;
图13(a)为本申请实施例提供的一种采用2.4GHz的蓝牙和5.9GHz的LTE-V并发的方式传输V2X消息的示意图;
图13(b)为本申请实施例提供的一种采用2.4GHz的蓝牙和5.9GHz的LTE-V并发的方式传输V2X消息的场景示意图;
图14(a)为本申请实施例提供的一种采用2.4GHz的蓝牙、2.4GHz的Wi-Fi和5.9GHz的LTE-V并发的方式传输V2X消息的示意图;
图14(b)为本申请实施例提供的一种采用2.4GHz的蓝牙、2.4GHz的Wi-Fi和5.9GHz的LTE-V并发的方式传输V2X消息的场景示意图;
图15为本申请实施例提供的一种测量车距的方法的示意图;
图16(a)和图16(b)为本申请实施例提供的一种检测车辆是否在同一车道内的方法的示意图;
图17为本申请实施例提供的一种车辆在隧道内传输V2X消息以发出预警的流程示意图;
图18为本申请实施例提供的执行消息传输方法的终端的功能架构模块的示意框图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请实施例中,“一个或多个”是指一个、两个或两个以上;“和/或”,描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个 或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请的技术方案可以应用于各种通信系统,例如:长期演进(long time evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、公共陆地移动网络(public land mobile network,PLMN)系统、设备对设备(device to device,D2D)网络系统或者机器对机器(machine to machine,M2M)网络系统以及5G通信系统等。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。本申请实施例中以提供的方法应用于NR系统或5G网络中为例进行说明。
参见图1,为本申请实施例提供的一种消息传输方法的应用场景示意图。如图1所示,该场景包括:多个终端(比如,终端10、终端20以及终端30),该多个终端之间可以互相通信,比如,该多个终端之间的终端10可以不经过基站而直接向终端20或终端30发送业务。本申请实施例中可以将终端之间未经过基站而直接进行通信的场景称之为V2X场景,相应的,将终端之间在V2X场景下传输的业务称之为侧行链路(Sidelink)业务或V2X业务,该V2X业务可以包括信令或者数据包(比如,以终端10为车辆为例,终端10向其他终端发送的业务可以是终端10的当前车速、是否刹车、转弯等数据包)。值得说明的是,图1中以终端为车辆为例。
终端,是一种具有无线通信功能的设备,可以部署在陆地上,包括室内或室外、手持或车载。也可以部署在水面上(如轮船等)。还可以部署在空中(例如飞机、气球和卫星上等)。终端又称之为用户设备(user equipment,UE),移动台(mobile station,MS)、移动终端(mobile terminal,MT)以及终端设备等,是一种向用户提供语音和/或数据连通性的设备。例如,终端包括具有无线连接功能的手持式设备、车载设备等。目前,终端可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。本申请一种可能的应用的场景中终端设备为经常工作在地面的终端设备,例如车载设备。在本申请中,为了便于叙述,部署在上述设备中的芯片,例如片上系统(System-On-a-Chip,SOC)、基带芯片等,或者其他具备通信功能的芯片 也可以称为终端。
终端可以是具有相应通信功能的车辆,或者车载通信装置,或者其它嵌入式通信装置,也可以是用户手持通信设备,包括手机,平板电脑等。
以终端为车辆为例,目前车辆可以通过车辆与车辆之间通信(vehicle to vehicle,V2V)或者车辆与路边基础设施通信(vehicle to infrastructure,V2I)(例如,基础设施为路侧单元(road side unit,RSU))或者车辆与行人之间的通信(vehicle to pedestrian,V2P)或者车辆与网络通信(vehicle to network,V2N)来及时获取路况信息或接收信息服务,这些通信方式可以统称为V2X通信(其中,X代表任何事物)。上述通信通常将V2X通信所使用的网络称为车联网。
本申请实施例描述的各个方案应用于V2X场景时,可以适用于如下领域:无人驾驶(unmanned driving)、自动驾驶(automated driving/ADS)、辅助驾驶(driver assistance/ADAS)、智能驾驶(intelligent driving)、网联驾驶(connected driving)、智能网联驾驶(Intelligent network driving)、汽车共享(car sharing)。
作为示例,在本申请实施例中,该终端还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
如图1所示,以终端10为标识为A的车辆(简称:车辆A)为例,如果车辆A决定执行超车操作,则车辆A可以向位于其前方的终端20(例如,标识为B的车辆(简称:车辆B))以及终端30(比如,标识为C的车辆(简称:车辆C))发送侧行链路业务(例如,侧行链路业务可以为超车指示、车辆A的当前车速(例如,75km/h)),以便车辆B以及车辆C接收到车辆A的当前车速以及超车指示后,减速行驶,以使得车辆A安全超车。在4G通信系统中,LTE-V作为V2X技术领域的一种通信标准,规定了V2X消息的通信协议。目前,LTE-V技术基于5.9GHz的频段进行通信。5.9GHz频段为超高频厘米波,波长在10mm和100mm之间。通常,波长越长衰减越小,也更容易绕过障碍物继续传播。所以,5.9GHz频段的电磁波相对于2.4GHz频段的电磁波,穿过障碍物时衰减更大,信号覆盖范围更小。即基于5.9GHz的LTE-V技术比基于2.4GHz的通信技术的信号覆盖范围更小、存在障碍物遮挡时衰减更大。
继续结合图1所述应用场景为例,车辆A基于5.9GHz的LTE-V技术广播侧行链路业务,车辆A和车辆B之间距离较近、且不存在障碍物,车辆B可以接收到车辆A广播的侧行链路业务。车辆A和车辆C之间距离较远、且存在障碍物车辆B。因此,车辆C可能无法成功接收到车辆A广播的侧行链路业务。
当然,实际应用中,若存在其他车辆,例如车辆D,车辆D与车辆A的距离较远,但是无障碍物遮挡的情况下,车辆D可能也无法成功接收到车辆A广播的侧行链路业务。或者车辆D与车辆A的距离较近,但是有障碍物遮挡的情况下,车辆D可能也 无法成功接收到车辆A广播的侧行链路业务。
为解决上述问题,车辆A可以借助基于其他频段的通信技术传输V2X消息(该V2X消息为一种侧行链路业务)。例如,2.4GHz的蓝牙、2.4GHz的Wi-Fi(Wireless Fidelity)、5.0GHz的Wi-Fi等。使得在复杂场景(例如,与广播V2X消息的车辆的车距较远、与广播V2X消息的车辆之间存在障碍物等)下车辆C能够成功接收到来自车辆A的V2X消息。
需要说明,本申请实施例以解决5.9GHz的LTE-V技术传输V2X消息时成功率低的问题为例进行说明。在实际应用中,还可以解决新空口车用无线通信(New Radio-V2X,NR-V2X)技术传输V2X消息时成功率低的问题。即本申请实施例中的基于5.9GHz的LTE-V技术也可以为NR-V2X技术。关于NR-V2X技术的相关内容,可以参照NR-V2X技术标准。图1所示应用场景中,车辆之间相互通信时,可以是车辆上设置的通信模块之间进行通信;也可以是车辆上的用户携带的电子设备上的通信模块之间进行通信;还可以是一个车辆上的通信模块和另一车辆上用户携带的电子设备上的通信模块之间进行通信。为了便于描述,后续均以车辆作为主体进行描述,实际上,还可以是车辆上用户携带的电子设备。
当车辆上用户携带的电子设备为主体时,用户携带电子设备进入车辆后,用户携带的电子设备上的蓝牙模块可以和车辆上的蓝牙模块建立连接,在用户携带的电子设备上的蓝牙模块和车辆上的蓝牙模块建立连接后,用户携带的电子设备进入本申请实施例提供的V2X消息的传输场景,以执行本申请实施例提供的消息传输方法。
在实际应用中,用户携带的电子设备上也可以设置虚拟按钮,用户点击该虚拟按钮,用户携带的电子设备进入本申请实施例提供的V2X消息的传输场景,以执行本申请实施例提供的消息传输方法。
本申请实施例对用户携带的电子设备进入本申请实施例提供的V2X消息的传输场景,以执行本申请实施例提供的消息传输方法的方式不做限制。
图2示出了本申请实施例提供一种终端的硬件结构示意图。本申请实施例中的终端10、终端20以及终端30的硬件结构可以参考如图2所示的结构。本申请实施例提供的终端包括处理器21,通信线路24以及至少一个收发器(图2中仅是示例性的以包括收发器23为例进行说明)。
处理器21可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路24可包括一通路,在上述组件之间传送信息。
收发器23,使用任何收发器一类的装置,用于与其他终端或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
可选的,该终端还可以包括存储器22。
存储器22可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器 (electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路34与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器22用于存储执行本申请方案的计算机执行指令,并由处理器21来控制执行。处理器21用于执行存储器22中存储的计算机执行指令,从而实现本申请下述实施例提供的消息传输方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器21可以包括一个或多个CPU,例如图2中的CPU0和CPU1。
在具体实现中,作为一种实施例,终端可以包括多个处理器,例如图2中的处理器21和处理器25。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
本申请实施例并未特别限定一种消息传输方法的执行主体的具体结构,只要可以通过运行记录有本申请实施例提供的一种消息传输方法的程序,以根据本申请实施例的一种消息传输方法进行通信即可。例如,本申请实施例提供的一种消息传输方法的执行主体可以是车辆上设置的电子设备中或车辆上人员携带的电子设备中能够调用程序并执行程序的功能模块;或者为应用于车辆上设置的电子设备中或车辆上人员携带的电子设备中的处理装置,例如,芯片。
参见图3,为本申请实施例提供的V2X消息的多种传输方式。如图3所示,车辆A识别到当前为V2X场景的情况下,车辆A需要向其他车辆广播V2X消息。车辆A除了可以通过5.9GHz的LTE-V技术传输V2X消息给其他车辆,还可以通过以下几种方式传输V2X消息给其他车辆:
车辆A可以通过2.4GHz的Wi-Fi技术传输V2X消息给其他车辆;
车辆A可以通过2.4GHz的蓝牙技术传输V2X消息给其他车辆;
车辆A可以通过2.4GHz的LTE-V技术传输V2X消息给其他车辆;
车辆A可以通过2.4GHz的Wi-Fi技术和2.4GHz蓝牙技术并发的方式传输V2X消息给其他车辆;
车辆A可以通过2.4GHz的Wi-Fi技术和5.9GHz的LTE-V技术并发的方式传输V2X消息给其他车辆;
车辆A可以通过2.4GHz的蓝牙技术和5.9GHz的LTE-V技术并发的方式传输V2X消息给其他车辆;
车辆A可以通过2.4GHz的蓝牙技术、2.4GHz的Wi-Fi技术和5.9GHz的LTE-V技术并发的方式传输V2X消息给其他车辆。
车辆A无论采用何种通信技术传输V2X消息,均需要车辆A上设置对应的通信 模块或者车辆A上的用户携带的电子设备上设置相应的通信模块。
下面将分别描述上述列举的多种传输V2X消息的方式。
参见图4(a),图4(a)为本申请实施例提供的通过2.4GHz的Wi-Fi技术传输V2X消息的示意图。
本申请实施例中,车辆A中具有一个或多个V2X场景,例如,异常车辆提醒、前向碰撞预警、紧急制动预警、限速预警等。该一个或多个V2X场景可以是用户自定义设置的,也可以是车辆A出厂时厂家配置的,本申请实施例对此不做限定。车辆A中具有每种V2X场景的判断条件。当车辆A检测到当前满足判断条件时,车辆A识别当前为V2X场景。当车辆A识别到V2X场景、且确定需要向其他车辆传输V2X消息的情况(例如,紧急制动预警需要向其他车辆传输V2X消息)下,需要向其他车辆传输与当前V2X场景相关的V2X消息。
作为示例,判断条件可以为:车辆A发生故障。车辆A检测到车辆A发生故障,即车辆A识别到当前为V2X场景,车辆A可以广播V2X消息(异常车辆提醒)以提示周围车辆本车辆为异常车辆。
在实际应用中,不同车辆针对同一V2X场景可以设置不同的判断条件。
针对2.4GHz的通信技术,可以采用较短的帧间间隔(Inter-frame space,IFS)传输V2X消息,并且传输V2X消息时遵循802.11b协议,使得传输的距离更远。
图4(a)所示的V2X消息的传输方式可以应用在图4(b)所示的应用场景中。如图4(b)所示,车辆A在需要传输V2X消息给其他车辆时,若通过5.9GHz的LTE-V技术广播该V2X消息,车辆B与车辆A之间距离较近、且不存在障碍物遮挡,车辆B能够成功接收到车辆A广播的V2X消息。然而,车辆C和车辆A之间车距较大且存在障碍物车辆B,导致车辆C可能无法成功接收到车辆A广播的V2X消息。因此,车辆A可以基于2.4GHz的Wi-Fi技术广播该V2X消息。当车辆A基于2.4GHz的Wi-Fi技术广播V2X消息时,车辆B和车辆C均能够成功接收到车辆A广播的V2X消息。
在实际应用中,车辆A需要向车辆B定向传输V2X消息时,若车辆A已经检测到车辆B与车辆A之间的距离较近、且不存在障碍物,车辆A也可以采用5.9GHz的LTE-V技术广播该V2X消息。
需要说明,车辆A采用5.9GHz的LTE-V技术广播V2X消息时,车辆C并不是完全不能接收到车辆A广播的V2X消息。只是在车辆C和车辆A的距离较远、存在障碍物遮挡的情况下,车辆C接收车辆A基于2.4GHz的Wi-Fi技术广播的V2X消息比接收车辆A基于5.9GHz的LTE-V技术广播的V2X消息的成功率更高。因此,车辆A基于2.4GHz的Wi-Fi技术广播V2X消息至其他车辆时,成功率更高。
为了更清晰的理解基于2.4GHz的Wi-Fi技术传输V2X消息的方式,通过图5描述车辆A基于2.4GHz的Wi-Fi技术传输V2X消息的技术实现过程。
参见图5,当车辆A识别到V2X场景,车辆A基于当前V2X场景确定向其他车辆发送的V2X消息;车辆A判断该V2X消息是否为安全类消息,当V2X消息为安全类消息时,车辆A采用2.4GHz的Wi-Fi技术广播该V2X消息。当V2X消息为非安全类消息时,车辆A判断2.4GHz的Wi-Fi技术对应的信道的负载情况。在2.4GHz的 Wi-Fi信道良好时,车辆A使用2.4GHz的Wi-Fi技术广播该V2X消息。在2.4GHz的Wi-Fi信道拥堵时,车辆A使用5.9GHz的LTE-V技术广播该V2X消息。
车辆A中可以设置负载阈值,车辆A在检测到通过2.4GHz的Wi-Fi信道传输的数据大于负载阈值时,表示2.4GHz的Wi-Fi信道拥堵;车辆A在检测到通过2.4GHz的Wi-Fi信道传输的数据小于或等于负载阈值时,表示2.4GHz的Wi-Fi信道良好。
当然,上述判断2.4GHz的Wi-Fi信道的负载情况的方法仅用于举例,在实际应用中,还可以采用其他方式,例如测量获得信道的信道负载率,信道负载率大于负载阈值时,表示信道拥堵,信道负载率小于或等于负载阈值时,表示信道良好。在实际应用中,选择不同的负载参数值,可以设置不同的负载阈值。例如,负载参数值为信道传输的数据时,则负载阈值为以数据量为单位的值;负载参数值为信道负载率时,则负载阈值为比例值。
在图5所示实施例中,由于在实际过程中,车辆A不仅可以向其他车辆发送安全类消息,也可以向其他车辆发送非安全类消息,因此,如果车辆A需要向其他车辆既发送安全类消息又发送非安全类消息的情况下,车辆A为了将安全类消息成功传输给其他车辆,采用2.4GHz的Wi-Fi技术广播安全类的V2X消息,同时为了避免造成2.4GHz的Wi-Fi信道的拥堵,在2.4GHz的Wi-Fi信道良好的情况下,通过2.4GHz的Wi-Fi技术广播非安全类的V2X消息。而在2.4GHz的Wi-Fi信道拥堵的情况下,通过5.9GHz的LTE-V技术广播非安全类的V2X消息。
本申请实施例中,车辆A采用的Wi-Fi技术使用2.4GHz上的三个独立信道:信道1、信道6和信道11。车辆A采用2.4GHz的Wi-Fi技术广播消息时采用信标(Beacon)帧。Beacon帧为遵循Wi-Fi协议的数据帧。V2X消息为遵循LTE-V协议的数据集。在采用2.4GHz的Wi-Fi技术广播V2X消息时,可以将beacon帧扩展,通过扩展字段携带V2X消息。
参见图6所示,图6中有802.11协议定义的beacon帧的数据格式以及本申请实施例采用的扩展字段后的beacon帧的数据格式。由图6可以理解,本申请采用的beacon帧的数据格式遵循无线局域网通用的802.11协议规定,只是对其中某些字段进行扩展。
如图6所示,802.11协议规定的beacon帧中字段0为元素标识(Element ID),在本申请实施例提供的beacon帧中为特定供应(vender Specific IE);802.11协议规定的beacon帧中字段1为长度(Length),在本申请实施例提供的beacon帧中也为长度(Length);802.11协议规定的beacon帧中字段2至字段4为分配标识(Organization Identifier),在本申请实施例提供的beacon帧中未示出;802.11协议规定的beacon帧中字段5至字段9为特定供应(Vender Specific),在本申请实施例提供的beacon帧中字段5为特征ID(Feature ID),字段6为TLV类型(TLV Type),字段7为TLV长度(TLV length),字段8和字段9为内容(content)。本申请实施例中可以通过特征ID(Feature ID)确定当前beacon帧是否用于传输V2X消息;可以将安全类V2X消息放在扩展字段后的beacon帧的内容(content)字段中。
通过图6可以理解,本申请实施例中对beacon帧作出扩展,并不是增加额外的字段,而是将现有的一些字段扩展功能,该扩展的功能包括承载V2X消息。
由于Beacon帧为广播帧,当车辆A通过beacon帧广播安全类V2X消息时,不仅 车辆B能够接收到该安全类V2X消息,车辆C也可能接收到该安全类V2X消息。
当然,在实际应用中,车辆A也可以定向传输V2X消息至指定的车辆。作为示例,车辆A可以获取车辆A附近的其他车辆的唯一标识。在车辆A广播V2X消息至指定的车辆时,在beacon帧中携带上指定的车辆的唯一标识。接收到beacon帧的车辆首先确定beacon帧中携带的唯一标识是否与本车辆的唯一标识一致;一致的情况下,接收到beacon帧的车辆解析beacon帧,得到V2X消息;不一致的情况下,接收到beacon帧的车辆丢弃接收到的beacon帧。车辆A也可以与指定的车辆建立通信连接,通过建立的通信连接定向传输V2X消息至指定的车辆。本申请实施例对采用广播的方式传输V2X消息还是采用建立的通信连接传输V2X消息不做限定。
参见图7,图7为V2X消息的分类。V2X消息分为三大类:安全类V2X消息、效率类V2X消息和信息服务类V2X消息。如图7所示,安全类V2X消息包括:1、前向碰撞预警,2、交叉路口碰撞预警,3、左转辅助,4、盲区预警/变道辅助,5、逆向超过预警,6、紧急制动预警,7、异常车辆提醒,8、车辆失控预警,9、道路危险状态提示,10、限速预警,11、闯红灯预警,12、弱势交通参与者碰撞预警。在实际应用中,也可以按照其他方式(例如重要程度、紧急程度等)划分消息的类型,即本申请实施例中将重要程度更高、紧急程度更急的消息采用低于5.9GHz的通信技术传输。
通过4(a)至图7的描述可以理解,本申请实施例重点考虑安全类V2X消息在2.4GHz的Wi-Fi信道上的传输。实际应用中,安全类V2X消息也可以在5.0GHz的Wi-Fi信道上传输。针对非安全类V2X消息,可以选择5.9GHz的LTE-V技术传输,也可以选择2.4GHz的Wi-Fi技术传输,还可以选择5.0GHz的Wi-Fi信道上传输。但是,为避免Wi-Fi信道堵塞,可以在2.4GHz的Wi-Fi技术的信道良好的情况下选择2.4GHz的Wi-Fi技术传输,或者在5.0GHz信道良好的情况下选择5.0GHz的Wi-Fi技术传输。这样,就可以提高车辆之间的安全类V2X消息的传输成功率。
参见图8(a),图8(a)为本申请实施例提供的通过2.4GHz的蓝牙技术传输V2X消息的示意图。图8(a)所示的V2X消息的传输方式可以应用在图8(b)所示的应用场景中。如图8(b)所示,车辆A可以基于2.4GHz的蓝牙技术广播该V2X消息。当车辆A基于2.4GHz的蓝牙技术广播V2X消息时,车辆B和车辆C均能够成功接收到车辆A广播的V2X消息。
需要说明,在车辆C和车辆A的距离较远、存在障碍物遮挡的情况下,车辆C接收车辆A基于2.4GHz的蓝牙技术广播的V2X消息比接收车辆A基于5.9GHz的LTE-V技术广播的V2X消息的成功率更高。因此,车辆A基于2.4GHz的蓝牙技术广播V2X消息至其他车辆时,成功率更高。
参照图5所示的采用Wi-Fi技术传输V2X消息的流程示意图,可以得到车辆A采用2.4GHz的蓝牙技术传输V2X消息的技术实现过程:当车辆A识别到V2X场景,车辆A基于当前V2X场景确定向其他车辆发送的V2X消息;车辆A判断该V2X消息是否为安全类消息,当V2X消息为安全类消息时,车辆A采用2.4GHz的蓝牙技术广播该V2X消息,当V2X消息为非安全类消息时,车辆A判断2.4GHz的蓝牙技术对应的信道的负载情况,在2.4GHz的蓝牙信道良好时,使用2.4GHz的蓝牙技术广播 该V2X消息,在2.4GHz的蓝牙信道拥堵时,使用5.9GHz的LTE-V技术广播该V2X消息。
本申请实施例中,车辆A采用的蓝牙技术可以为低功耗蓝牙,低功耗蓝牙使用2.4GHz上的三个独立信道:信道37、信道38和信道39进行广播。车辆A采用2.4GHz的蓝牙技术传输消息时也可以采用广播的形式。即使两个车辆之间不存在蓝牙连接,其中一个车辆可以通过广播携带V2X消息的蓝牙信息传输该V2X消息至另一车辆。当车辆采用2.4GHz的蓝牙广播携带V2X消息的蓝牙信息时,可以在三个信道上广播相同的报文。
参见图9所示,为低功耗蓝牙的广播报文的数据格式。如图9所示,本申请实施例采用的蓝牙广播报文的数据格式中包括标头(Header)和有效载荷(Payload),其中,标头(Header)包括PDU类型(PDU Type)、保留位(RFU)、发送地址类型(TxAdd)、接收地址类型(RxAdd)、长度(Length)和保留位(RFU),有效载荷(Payload)包括广播地址(AdvA)和广播数据(AdvData)。V2X消息可以作为广播数据存放在广播数据对应的字段中。
通过图9可以理解,本申请实施例中对蓝牙广播报文作出扩展,并不是增加额外的字段,而是将现有的一些字段扩展功能,该扩展的功能包括承载V2X消息。例如,将蓝牙的广播报文中的有效载荷中的一些字段的功能扩展为可以承载V2X消息。
以蓝牙5.0为例,蓝牙5.0定义的广播报文有255个用户字节,相对于蓝牙4.2有8倍的扩展,然而,蓝牙5.0定义的最大广播字节有1650,通过主广播包和辅助广播包发送(即分片广播)。因此,蓝牙5.0可以满足大数据广播需求。然而,分片广播传输消息不太可靠,对于接收方,可能容易接收不到完整的信息。因此,可以在蓝牙广播报文中填充V2X消息的关键内容。
上述实施例均以低功耗蓝牙为例说明可以采用2.4GHz的蓝牙技术广播V2X消息,实际应用中,还可以采用2.4GHz的经典蓝牙广播V2X消息,在采用2.4GHz的经典蓝牙广播V2X消息时,也需要对数据报文进行扩展,本申请实施例在此不再一一举例说明。
参见图10(a),图10(a)为本申请实施例提供的通过2.4GHz的LTE-V技术传输V2X消息的示意图。图10(a)所示的V2X消息的传输方式可以应用在图10(b)所示的应用场景中,如图10(b)所示,车辆A可以基于2.4GHz的LTE-V技术广播该V2X消息。当车辆A基于2.4GHz的LTE-V技术广播V2X消息时,车辆B和车辆C均能够成功接收到车辆A广播的V2X消息。
需要说明,在车辆C和车辆A的距离较远、存在障碍物遮挡的情况下,车辆C接收车辆A基于2.4GHz的LTE-V技术广播的V2X消息比接收车辆A基于5.9GHz的LTE-V技术广播的V2X消息的成功率更高。因此,车辆A基于2.4GHz的LTE-V技术广播V2X消息至其他车辆时,成功率更高。
参照图5所示的采用Wi-Fi技术传输V2X消息的流程示意图,可以得到车辆A采用2.4GHz的LTE-V技术传输V2X消息的技术实现过程:当车辆A识别到V2X场景,车辆A基于当前V2X场景确定向其他车辆发送的V2X消息;车辆A判断该V2X消息是否为安全类消息,当V2X消息为安全类消息时,车辆A采用2.4GHz的LTE-V 技术广播该V2X消息,当V2X消息为非安全类消息时,车辆A判断2.4GHz的LTE-V技术对应的信道的负载情况,在2.4GHz的LTE-V信道良好时,使用2.4GHz的LTE-V技术广播该V2X消息,在2.4GHz的LTE-V信道拥堵时,使用5.9GHz的LTE-V技术广播该V2X消息。
在本申请实施例中,LTE-V技术对应的LTE-V模块中设置了发射频率的范围,通常是在5.9GHz对应的频段范围。在实际应用中,可以修改车辆A上设置的LTE-V模块,同时修改LTE-V模块内置的软件程序,使得修改后的LTE-V模块的发射和接收频率的范围均在2.4GHz对应的频段范围。
另外,需要说明,在车辆A上设置一个LTE-V模块或车辆A上的用户携带的电子设备上设置一个LTE-V模块的情况下,若该LTE-V模块已经被设置为2.4GHz的发射频率,则需要采用2.4GHz的LTE-V技术发送非安全类V2X消息。在实际应用中,可以根据2.4GHz的LTE-V技术使用的信道的负载情况选择是否延迟广播。作为示例,在2.4GHz的LTE-V技术使用的信道良好的情况下广播非安全类的V2X消息;在2.4GHz的LTE-V技术使用的信道拥堵的情况下不广播该非安全类的V2X消息,而是等待2.4GHz的LTE-V技术使用的信道良好的情况下再广播该非安全类的V2X消息。
若车辆A上设置至少两个LTE-V模块或车辆A上的用户携带的电子设备上设置至少两个LTE-V模块、且同时存在2.4GHz的LTE-V模块和5.9GHz的LTE-V模块的情况下,仍然可以参照图5所示的采用Wi-Fi技术传输V2X消息的流程示意图传输V2X消息。
参见图11(a),图11(a)为本申请实施例提供的采用5.9GHz的LTE-V技术和2.4GHz的Wi-Fi技术并发的方式传输V2X消息的示意图。如图11(a)所示,车辆A采用5.9GHz的LTE-V技术和2.4GHz的Wi-Fi技术并发的方式传输V2X消息时,车辆A即采用5.9GHz的LTE-V技术传输V2X消息,车辆A还采用2.4GHz的Wi-Fi技术传输同一V2X消息。也可以理解为车辆A在采用5.9GHz的LTE-V技术传输V2X消息的同时,采用2.4GHz的Wi-Fi技术对同一V2X消息进行补包。图11(a)所示的V2X消息的传输方式可以应用在图11(b)所示的应用场景中。如图11(b)所示,车辆A在需要传输V2X消息给其他车辆时,若通过5.9GHz的LTE-V技术广播该V2X消息,车辆B与车辆A之间距离较近、且不存在障碍物遮挡,车辆B能够成功接收到车辆A广播的V2X消息。然而,车辆C和车辆A之间车距较大且存在障碍物车辆B,导致车辆C可能无法成功接收车辆A广播的V2X消息。因此,车辆A可以采用2.4GHz的Wi-Fi技术对同一V2X消息进行补包。当车辆A基于2.4GHz的Wi-Fi技术对同一V2X消息补包时,即使车辆C为能成功接收到车辆A采用5.9GHz的LTE-V技术广播的该V2X消息,也能成功接收到车辆A基于2.4GHz的Wi-Fi技术补包发送的同一V2X消息。
基于上述关于车辆A采用2.4GHz的Wi-Fi技术广播V2X消息相比于采用5.9GHz的LTE-V技术广播V2X消息至其他车辆时成功率更高的描述可以理解,车辆A采用2.4GHz的Wi-Fi技术和5.9GHz的LTE-V技术并发的方式比单独采用5.9GHz的LTE-V技术广播V2X消息的成功率更高。
参照图5所示的采用2.4GHz的Wi-Fi技术传输V2X消息的流程示意图,可以得 到车辆A采用2.4GHz的Wi-Fi技术和5.9GHz的LTE-V技术并发的方式传输V2X消息的技术实现过程:当车辆A识别到V2X场景,车辆A基于当前V2X场景确定向其他车辆发送的V2X消息;车辆A判断该V2X消息是否为安全类消息,当V2X消息为安全类消息时,车辆A采用2.4GHz的Wi-Fi技术和5.9GHz的LTE-V技术并发的方式广播该V2X消息,当V2X消息为非安全类消息时,车辆A判断2.4GHz的LTE-V技术对应的信道的负载情况,在2.4GHz的LTE-V信道良好时,使用2.4GHz的LTE-V技术或采用2.4GHz的Wi-Fi技术和5.9GHz的LTE-V技术并发的方式广播该V2X消息,在2.4GHz的LTE-V信道拥堵时,使用5.9GHz的LTE-V技术广播该V2X消息。
图12(a)为本申请实施例提供的采用2.4GHz的蓝牙技术和2.4GHz的Wi-Fi技术并发的方式传输V2X消息的示意图。2.4GHz的蓝牙技术和2.4GHz的Wi-Fi技术并发的方式的具体实现过程可以按照图11(a)所示的采用5.9GHz的LTE-V技术和2.4GHz的Wi-Fi技术并发的方式的描述,在此不再赘述。
图12(a)所示的V2X消息的传输方式可以应用在图12(b)所示的应用场景中。
在某些车辆中,2.4GHz的蓝牙和2.4GHz的Wi-Fi可能共用一条射频天线。在这种情况下,可以并发接收信号。然而,车辆无法实现并发发送信号。因此,可以通过时分发送的方式发射信号实现二者的并发通信。时分发送的方式表示多路信号轮流使用共有天线从而形成多个周期性的传输的通信方式。该应用场景中的其他描述可以参照图11(b)中的描述,在此不再赘述。
图13(a)为本申请实施例提供的采用2.4GHz的蓝牙技术和5.9GHz的LTE-V技术并发的方式传输V2X消息的示意图。2.4GHz的蓝牙技术和5.9GHz的LTE-V技术并发的方式的具体实现过程可以按照图11(a)所示的采用5.9GHz的LTE-V技术和2.4GHz的Wi-Fi技术并发的方式的描述,在此不再赘述。
图13(a)所示的V2X消息的传输方式可以应用在图13(b)所示的应用场景中。该应用场景中的描述可以参照图11(b)中的描述,在此不再赘述。
图14(a)为本申请实施例提供的采用2.4GHz的蓝牙技术、2.4GHz的Wi-Fi技术和5.9GHz的LTE-V技术并发的方式传输V2X消息的示意图。2.4GHz的蓝牙技术、2.4GHz的Wi-Fi技术和5.9GHz的LTE-V技术并发的方式的具体实现过程可以按照图11(a)所示的采用5.9GHz的LTE-V技术和2.4GHz的Wi-Fi技术并发的方式的描述,在此不再赘述。
图14(a)所示的V2X消息的传输方式可以应用在图14(b)所示的应用场景中。该应用场景中的描述可以参照图11(b)中的描述,在此不再赘述。
通过上述实施例的描述可以理解,车辆传输安全类V2X消息的方式可以采用单一的2.4GHz的通信技术,也可以采用多个2.4GHz的通信技术并发的方式,还可以采用2.4GHz的通信技术和5.9GHz的通信技术并发的方式。当然,上述实施例中的2.4GHz的通信技术还可以是其他低于5.9GHz的通信技术。本申请实施例对具体的通信技术不做限定。
为了对上述实施例描述的V2X消息的传输方法具有更清晰的理解,通过具体的V2X场景进行举例。
在实际行车过程中,车辆A进入恶劣环境(例如,桥下、隧道等),此时车辆A 的GPS的信号较弱、甚至出现无信号的情况。车辆A的周围存在车辆B和车辆C。车辆A还需要测量与车辆A和车辆B之间的距离。作为一种示例,车辆A可以采用基于Wi-Fi的FTM(fine timing measurement)探测技术进行测距,从而得到车辆A与车辆B之间的第一距离和车辆A与车辆C之间的第二距离,在实际应用中,还可以采用其他通信技术进行测距,例如,采用蓝牙技术测距(例如,根据蓝牙的信号强度进行测距),采用LTE-V技术进行测距(例如,通过LTE-V技术传输消息,以根据该消息的传输时间进行测距),甚至还可以通过车辆上安装的其他装置(例如,雷达)进行测距,本申请实施例对采用的测距方式不做限制。
参见图15,图15为上述场景中车辆A采用基于Wi-Fi的FTM探测技术进行测距的方法示意图。
以获得第一距离为例,车辆A采用Wi-Fi技术发出测距请求;车辆B接收到该测距请求后采用Wi-Fi技术返回第一信息,该第一信息可以是ping消息,其中,车辆B发送第一信息的时刻为t1;车辆A接收到第一信息后采用Wi-Fi技术发送第二信息,该第二信息可以为pong消息,其中,车辆A接收到第一信息的时刻为t2,发送第二信息的时刻为t3,车辆A记录时刻t2和t3;车辆B接收到第二信息后采用Wi-Fi技术返回第三信息,该第三信息携带t1和车辆B接收到第二信息的时刻t4;车辆A接收到携带t1和t4的第三信息后车辆A通过以下公式计算获得第一距离:
Figure PCTCN2022083363-appb-000001
其中,D为第一距离,c表示光速。
按照上述方式,车辆A可以得到车辆A和车辆B之间的第一距离,当道路上还存在车辆C时,车辆A还可以按照图15所示方式得到车辆A和车辆C之间的第二距离。
当第一距离在第一预设范围内时,说明车辆A与车辆B的距离过近,可能有追尾的风险。此时,车辆A识别到当前为V2X场景,且当前V2X场景对应的V2X消息为安全类消息。车辆A可以采用Wi-Fi技术广播该beacon帧,该beacon帧中携带该V2X消息;当然,该beacon帧还可以携带车辆B的唯一标识。
同理,当第二距离在第一预设范围内时,说明车辆A与车辆C的距离过近,可能有追尾的风险。此时,车辆A识别到当前为V2X场景,且当前V2X场景对应的V2X消息为安全类消息。车辆A可以采用Wi-Fi技术广播该beacon帧,该beacon帧中携带该V2X消息;当然,该beacon帧还可以携带车辆C的唯一标识。
由于本申请实施例中作为主体的车辆会获得本车辆和其他车辆之间的距离,因此,本车辆中可以设置距离阈值,该距离阈值可以作为本车辆选择5.9GHz的LTE-V技术还是选择2.4GHz的通信技术传输V2X消息的参考条件。
作为示例,当本车辆和目标车辆(V2X消息送达的车辆)之间的距离大于或等于第一临界距离(例如,200米)时,车距较远,本车辆和该目标车辆之间不存在追尾的风险、且本车辆采用5.9GHz的通信技术传输V2X消息至该目标车辆时可能传输失败。此时,若本车辆需要传输第一V2X消息,可以选择2.4GHz的通信技术补包或者单独选择2.4GHz的通信技术传输第一V2X消息。
当本车辆和目标车辆之间的距离小于第一临界距离、且大于第二临界距离(例如, 100米)时,车距适中,本车辆和该目标车辆之间不存在追尾的风险,且该目标车辆在本车辆的5.9GHz的通信技术的覆盖范围内。此时,若本车辆需要传输第二V2X消息,可以选择5.9GHz的通信技术传输第二V2X消息。
当本车辆和目标车辆之间的距离小于或等于第二临界距离(例如,10米)时,车距较近,本车辆和该目标车辆之间存在追尾的风险,且当前场景本车辆需要传输第三V2X消息至该目标车辆,该第三V2X消息为安全类消息,本车辆可以选择2.4GHz的通信技术补包或单独选择2,4GHz的通信技术传输V2X消息。
上述示例中的200米、100米和10米均用于举例说明选择不同通信方式时的距离值,不对本申请实施例造成任何限定。在实际应用中,还可以是其他距离值。
作为示例,在不同路况下,可以采用不同的临界距离,例如,高速路上行驶、高架桥上行驶和乡间小路行驶采用的第一临界距离值和第二临界距离值可能完全不同或部分不同。
另外,可以根据5.9GHz的LTE-V的传播距离确定第一临界距离值,还可以根据本车辆的速度预判安全距离,从而得到第二临界距离值。
当然,若车辆采用2.4GHz的Wi-Fi技术进行测距时,由于已经开启Wi-Fi模块,为了避免开启LTE-V模块额外增加功耗,可以在采用2.4GHz的Wi-Fi技术进行测距期间,选择采用2.4GHz的Wi-Fi技术传输V2X消息。
若在车辆行驶过程中,车辆有检测障碍物的需求,在车辆检测障碍物期间可以根据是否检测到障碍物选择通信方式。作为示例,当本车辆检测到与目标车辆(V2X消息送达的车辆)之间存在障碍物时,可以选择2.4GHz的通信技术补包或单独采用2.4GHz的通信技术传输V2X消息,否则采用5.9GHz的LTE-V技术传输V2X消息。
若在车辆行驶过程中,车辆有检测障碍物的需求,同时有测距的需求,车距和是否存在障碍物均可以作为参考因素以选择不同的通信方式,本申请实施例对此不再举例。
实际应用中,车辆B和车辆C可能和车辆A在同一车道上,例如,车辆B和车辆C分别在车辆A同车道的前后位置,位于同一车道上的车辆示意图可参照图16(b)所示;车辆B和车辆C还可能在车辆A的相邻车道上,这种情况下,若车辆A由于车辆A和车辆B(或车辆C)之间的距离过近,而发出有追尾的风险之类的V2X消息,则可能发出错误的预警,位于相邻车道上的车辆的示意图可参照图16(a)所示。
鉴于上述原因,本申请实施例还提供一种车道定位的方法。
信道状态信息(Channel State Information,CSI)可以衡量信道的状态。可以利用CSI中的幅度和相位来进行位置定位。CSI可以从单个数据包中同时测量多个子载波分别的频率响应,而不是多个子载波叠加的频率响应,从而能够精确的获得频率选择性信道。CSI还可以测量每个子载波的幅度以及每个子载波的相位信息。因此,车辆A可以利用CSI从时域上区分接收到的数据包的传播路径。
以车辆A、车辆B和车辆C为例,通过图16(a)说明接收的不同车道上的车辆的数据包的传输路径,通过图16(b)说明接收的相同车道上的车辆的数据包的传输路径。
车辆A、车辆B和车辆C上的Wi-Fi模块开启状态下,车辆A、车辆B和车辆C 上的Wi-Fi模块会发出Wi-Fi信号。在该Wi-Fi信号的覆盖范围内的车辆可以接收到该Wi-Fi信号,同时,可以得到该Wi-Fi信号的CSI信息。
参照图16(a)所示,车辆A接收到车辆B发出的Wi-Fi信号,车辆A得到该Wi-Fi信号的第一CSI信息,车辆A得到第一CSI信息中每个子载波(每个传输路径对应一个子载波)的相位和幅度。
参照图16(b)所示,车辆A接收到车辆C发出的Wi-Fi信号,车辆A得到该Wi-Fi信号的第二CSI信息,车辆A得到第二CSI信息中每个子载波(每个传输路径对应一个子载波)的相位和幅度。
通过对比第一CSI信息中子载波的相位和幅度和第二CSI信息中子载波的相位和幅度就可以确定与车辆A在同一车道上的车辆和与车辆B相邻车道上的车辆。
通过图16(a)和图16(b)可以得到,车辆B和车辆A不在同一车道上,车辆C和车辆A在同一车道上。在确定了车辆B和车辆A不在同一车道上后,就可以确定车辆B和车辆A不存在追尾的风险,可以不再计算车辆B和车辆A之间的第一距离。在确定车辆C和车辆A在同一车道上后,就可以计算车辆C和车辆A之间的第二距离,在第二距离在第一预设范围内时,确定车辆C和车辆A由于距离过近有追尾的风险,即车辆A识别当前为V2X场景,就可以发送对应的V2X消息。
在实际应用中,也可以采用其他通信技术的信号的信道状态信息得到其他车辆与本车辆是否在同一车道上,或者采用其他方法以确定其他车辆与本车辆是否在同一车道,本申请实施例对此不做限定。
结合图15、图16(a)和图16(b)所示实施例,可以得到图17所示的V2X消息的传输方法的流程图。
如图15所示,车辆A进入隧道后,车辆A的GPS失效,车辆A提取周围其他车辆的Wi-Fi信号的CSI信息,车辆A根据其他车辆的CSI信息检测到车辆C与车辆A同一车道;车辆A采用基于Wi-Fi技术的测距技术测量车辆A和车辆C之间的第二距离;在第二距离在第一预设范围内时,车辆A识别当前为V2X场景,车辆A采用Wi-Fi技术向车辆C传输V2X消息。当然,为了定向传输V2X消息至车辆C,可以在V2X消息所在的beacon帧中携带车辆C的唯一标识。
需要说明,车辆A进入隧道后,车辆A持续的(也可以以一定时间间隔)提取周围车辆的Wi-Fi信号的CSI信息;在确定有其他车辆和车辆A在同一车道上后,车辆A持续(也可以以一定的时间间隔)获取同车道上的其他车辆与车辆A之间的距离;在该距离在第一预设范围内时,车辆A广播V2X消息。车辆A在广播V2X消息前或者广播V2X消息后,车辆A还在持续的提取周期车辆的Wi-Fi信道的CSI信息;同理,车辆A在广播V2X消息前或者广播V2X消息后,在确定有其他车辆和车辆A同车道后,车辆A还在持续的获取同车道上的其他车辆与车辆A之间的距离,从而在该距离在第一预设范围内时,车辆A广播下一V2X消息。即无论是车辆A提取其他车辆的CSI信息,还是车辆A获取同车道上其他车辆与车辆A之间的距离,还是车辆A广播V2X消息,这三个步骤均采用Wi-Fi技术,然而,这三个步骤可以是同时在执行。
本申请实施例均以车载通信为背景描述本申请的实施例,实际应用中,可以是任意具有LTE-V收发能力,且支持2.4GHz的WiFi或者2.4GHz蓝牙通信的电子设备。 例如,手机和手机之间的直连通信、手机和穿戴设备之间的直连通信等。
应理解,上述实施例中各步骤的描写顺序并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请实施例可以根据上述方法示例对终端进行功能模块的划分,例如,可以对应每一个功能划分每一个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应每一个功能划分每一个功能模块为例进行说明:
参照图18,该终端1800可以记为第一终端,包括:
类型确定模块1801,用于在车对一切场景下,确定待传输的侧行链路业务的类型;
消息发送模块1802,用于若侧行链路业务的类型为第一类业务,采用第一通信技术发送侧行链路业务,其中,第一通信技术的工作频段小于5.9GHz。
作为本申请另一实施例,消息发送模块1802还用于:
采用第二通信技术传输侧行链路业务,其中,第二通信技术的工作频段大于或等于5.9GHz。
作为本申请另一实施例,第一通信技术包括以下至少一种:工作频段为2.4GHz的蓝牙技术、工作频段为2.4GHz的Wi-Fi技术、工作频段为5.0GHz的Wi-Fi技术、工作频段为2.4GHz的车辆长期演进技术和工作频段为2.4GHz的新空口车用通信技术。
作为本申请另一实施例,第一通信技术包括工作频段为2.4GHz的Wi-Fi技术时,消息发送模块1802还用于:
采用工作频段为2.4GHz的Wi-Fi技术广播扩展后的beacon帧,其中,扩展后的beacon帧的扩展字段中携带侧行链路业务。
作为本申请另一实施例,第一通信技术包括工作频段为2.4GHz的蓝牙技术时,消息发送模块1802还用于:
采用工作频段为2.4GHz的蓝牙技术广播扩展后的蓝牙广播报文,其中,扩展后的蓝牙广播报文的扩展字段中携带侧行链路业务。
作为本申请另一实施例,第一通信技术包括工作频段为2.4GHz的Wi-Fi技术和工作频段为2.4GHz的蓝牙技术,且工作频段在2.4GHz的Wi-Fi技术和工作频段在2.4GHz的蓝牙技术共用天线;消息发送模块1802还用于:
在第一时间周期,采用工作频段在2.4GHz的Wi-Fi技术传输侧行链路业务;
在第二时间周期,采用工作频段在2.4GHz的蓝牙技术传输侧行链路业务,其中,第一时间周期和第二时间周期交替排布。
作为本申请另一实施例,消息发送模块1802还用于:
若侧行链路业务的类型为第二类业务,则采用第一通信技术或第二通信技术传输侧行链路业务,其中,第二类业务的优先级低于第一类业务的优先级,第二通信技术的工作频段大于或等于5.9GHz。
作为本申请另一实施例,消息发送模块1802还用于:
若侧行链路业务的类型为第二类业务,则获取第一通信技术对应的信道的负载参数值;
在负载参数值小于或等于负载阈值时,采用第一通信技术传输侧行链路业务;
在负载参数值大于负载阈值时,采用第二通信技术传输侧行链路业务。
作为本申请另一实施例,该终端1800还包括:
前向碰撞预警消息获取模块,用于获取与第一终端在相同车道上的第二终端;获取第一终端和第二终端之间的距离;若第一终端和第二终端之间的距离在第一预设范围内,获取前向碰撞预警消息,前向碰撞预警消息为侧行链路业务。
作为本申请另一实施例,前向碰撞预警消息获取模块还用于:
获取第一终端所在环境中的Wi-Fi信号的信道状态信息,其中,第一终端所在环境中的Wi-Fi信号包括第三Wi-Fi模块发出的Wi-Fi信号,第三Wi-Fi模块包括第三终端上设置的Wi-Fi模块;根据信道状态信息,从第三终端中得到与第一终端在相同车道上的第二终端。
作为本申请另一实施例,前向碰撞预警消息获取模块还用于:
根据第一Wi-Fi模块和第二Wi-Fi模块之间传输信息的发送时间和接收时间,计算第一终端和第二终端之间的距离,其中,第一Wi-Fi模块包括第一终端上设置的Wi-Fi模块,第二Wi-Fi模块包括第二终端上设置的Wi-Fi模块。
需要说明的是,上述终端/模块之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将终端的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中,上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。另外,各功能模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述终端中模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时可实现上述各个方法实施例中的步骤。
本申请实施例还提供了一种计算机程序产品,当计算机程序产品在设备上运行时,使得设备可实现上述各个方法实施例中的步骤。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读介质至少可以包括:能够将计算机程序代码携带到第一设备的任何实体或装置、记录介质、 计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
本申请实施例还提供了一种芯片系统,芯片系统包括处理器,处理器与存储器耦合,处理器执行存储器中存储的计算机程序,以实现本申请任一方法实施例的步骤。芯片系统可以为单个芯片,或者多个芯片组成的芯片模组。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及方法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种消息传输方法,其特征在于,包括:
    在车对一切场景下,第一终端确定待传输的侧行链路业务的类型;
    若所述侧行链路业务的类型为第一类业务,所述第一终端采用第一通信技术发送所述侧行链路业务,其中,所述第一通信技术的工作频段小于5.9GHz。
  2. 如权利要求1所述的方法,其特征在于,若所述侧行链路业务的类型为第一类业务,还包括:
    所述第一终端采用第二通信技术传输所述侧行链路业务,其中,所述第二通信技术的工作频段大于或等于5.9GHz。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一通信技术包括以下至少一种:工作频段为2.4GHz的蓝牙技术、工作频段为2.4GHz的Wi-Fi技术、工作频段为5.0GHz的Wi-Fi技术、工作频段为2.4GHz的车辆长期演进技术和工作频段为2.4GHz的新空口车用通信技术。
  4. 如权利要求3所述的方法,其特征在于,所述第一通信技术包括工作频段为2.4GHz的Wi-Fi技术时,所述第一终端采用第一通信技术传输所述侧行链路业务包括:
    所述第一终端采用工作频段为2.4GHz的Wi-Fi技术广播扩展后的beacon帧,其中,扩展后的beacon帧的扩展字段中携带所述侧行链路业务。
  5. 如权利要求3所述的方法,其特征在于,所述第一通信技术包括工作频段为2.4GHz的蓝牙技术时,所述第一终端采用第一通信技术传输所述侧行链路业务包括:
    所述第一终端采用工作频段为2.4GHz的蓝牙技术广播扩展后的蓝牙广播报文,其中,扩展后的蓝牙广播报文的扩展字段中携带所述侧行链路业务。
  6. 如权利要求3至5任一项所述的方法,其特征在于,所述第一通信技术包括工作频段为2.4GHz的Wi-Fi技术和工作频段为2.4GHz的蓝牙技术,且所述工作频段在2.4GHz的Wi-Fi技术和工作频段在2.4GHz的蓝牙技术共用天线;
    所述第一终端采用第一通信技术传输所述侧行链路业务包括:
    在第一时间周期,所述第一终端采用工作频段在2.4GHz的Wi-Fi技术传输所述侧行链路业务;
    在第二时间周期,所述第一终端采用工作频段在2.4GHz的蓝牙技术传输所述侧行链路业务,其中,所述第一时间周期和所述第二时间周期交替排布。
  7. 如权利要求1至6任一项所述的方法,其特征在于,在所述第一终端确定待传输的侧行链路业务的类型之后,还包括:
    若所述侧行链路业务的类型为第二类业务,则所述第一终端采用所述第一通信技术或第二通信技术传输所述侧行链路业务,其中,所述第二类业务的优先级低于所述第一类业务的优先级,所述第二通信技术的工作频段大于或等于5.9GHz。
  8. 如权利要求7所述的方法,其特征在于,所述若所述侧行链路业务的类型为第二类业务,则所述第一终端采用第一通信技术或第二通信技术传输所述侧行链路业务,包括:
    若所述侧行链路业务的类型为第二类业务,则所述第一终端获取所述第一通信技术对应的信道的负载参数值;
    在所述负载参数值小于或等于负载阈值时,所述第一终端采用所述第一通信技术传输所述侧行链路业务;
    在所述负载参数值大于所述负载阈值时,所述第一终端采用所述第二通信技术传输所述侧行链路业务。
  9. 如权利要求1至8任一项所述的方法,其特征在于,还包括:
    所述第一终端获取与所述第一终端在相同车道上的第二终端;
    所述第一终端获取所述第一终端和所述第二终端之间的距离;
    若所述第一终端和所述第二终端之间的距离在第一预设范围内,所述第一终端获取前向碰撞预警消息,所述前向碰撞预警消息为侧行链路业务。
  10. 如权利要求9所述的方法,其特征在于,所述第一终端获取与所述第一终端在相同车道上的第二终端包括:
    所述第一终端获取所述第一终端所在环境中的Wi-Fi信号的信道状态信息,其中,所述第一终端所在环境中的Wi-Fi信号包括第三Wi-Fi模块发出的Wi-Fi信号,所述第三Wi-Fi模块包括第三终端上设置的Wi-Fi模块;
    所述第一终端根据所述信道状态信息,从所述第三终端中得到与所述第一终端在相同车道上的第二终端。
  11. 如权利要求9或10所述的方法,其特征在于,所述第一终端获取所述第一终端和所述第二终端之间的距离包括:
    所述第一终端根据第一Wi-Fi模块和第二Wi-Fi模块之间传输信息的发送时间和接收时间,计算所述第一终端和所述第二终端之间的距离,其中,所述第一Wi-Fi模块包括所述第一终端上设置的Wi-Fi模块,所述第二Wi-Fi模块包括所述第二终端上设置的Wi-Fi模块。
  12. 一种终端,其特征在于,所述终端包括处理器,所述处理器用于运行存储器中存储的计算机程序,以实现如权利要求1至11任一项所述的方法。
  13. 一种芯片系统,其特征在于,包括处理器,处理器与存储器耦合,处理器执行存储器中存储的计算机程序,以实现如权利要求1至11任一项所述的方法。
PCT/CN2022/083363 2021-03-31 2022-03-28 一种消息传输方法、终端及芯片系统 WO2022206671A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110359650.5A CN115150771A (zh) 2021-03-31 2021-03-31 一种消息传输方法、终端及芯片系统
CN202110359650.5 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022206671A1 true WO2022206671A1 (zh) 2022-10-06

Family

ID=83405618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083363 WO2022206671A1 (zh) 2021-03-31 2022-03-28 一种消息传输方法、终端及芯片系统

Country Status (2)

Country Link
CN (1) CN115150771A (zh)
WO (1) WO2022206671A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102638768A (zh) * 2012-03-15 2012-08-15 华为终端有限公司 一种消息发送、获取、处理方法及相关装置及系统
EP3422321A1 (en) * 2017-06-30 2019-01-02 Advanced Digital Broadcast S.A. A road accident warning system and method
CN110089086A (zh) * 2016-12-27 2019-08-02 华为技术有限公司 一种中继传输的方法、相关设备及系统
CN111771415A (zh) * 2018-02-27 2020-10-13 高通股份有限公司 用于侧行链路资源调度的机制

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102638768A (zh) * 2012-03-15 2012-08-15 华为终端有限公司 一种消息发送、获取、处理方法及相关装置及系统
CN110089086A (zh) * 2016-12-27 2019-08-02 华为技术有限公司 一种中继传输的方法、相关设备及系统
EP3422321A1 (en) * 2017-06-30 2019-01-02 Advanced Digital Broadcast S.A. A road accident warning system and method
CN111771415A (zh) * 2018-02-27 2020-10-13 高通股份有限公司 用于侧行链路资源调度的机制

Also Published As

Publication number Publication date
CN115150771A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2018157611A1 (zh) 无线资源配置的方法、装置和存储介质
CN112153558B (zh) 一种通信方法及装置
US11659354B2 (en) Ranging assisted pedestrian localization
Sewalkar et al. Towards 802.11 p-based vehicle-to-pedestrian communication for crash prevention systems
EP4309166A1 (en) Automated assessment of a towed object dimensions
WO2020147916A1 (en) Vehicle-to-vehicle and vehicle-to-network communication
CN210016640U (zh) 一种基于多模通信的车路协同rsu设备
KR20230148157A (ko) 사이드링크 포지셔닝이 가능한 ue에서의 레인징 세션들의동적 병합 및 분리
WO2019028649A1 (zh) 业务数据传输方法及装置
US20240244408A1 (en) Communication method and apparatus, and related device
WO2022206671A1 (zh) 一种消息传输方法、终端及芯片系统
US11683702B2 (en) Combined distributed ranging sessions including common devices
Lal et al. A road monitoring approach with real-time capturing of events for efficient vehicles safety in smart city
CN118742935A (zh) 针对通信系统的基于网络的传感器共享
KR20230134492A (ko) 분산형 레인징 시스템에서의 포지셔닝 기준 신호 적응
WO2021127967A1 (zh) 用于信号同步的方法、装置和系统
CN108476469B (zh) 数据传输方法和装置
WO2023185860A1 (zh) 用于无线通信的电子设备、方法和存储介质
KR102711653B1 (ko) 교통 안전 서비스를 위한 유무선 통신 네트워크 시스템 및 메시지 처리 방법
WO2022022339A1 (zh) 信息配置方法、装置及系统
US20240233521A1 (en) Automotive traffic flow control in the absence of smart infrastructure
TWI730162B (zh) 傳輸資料的方法和裝置
US20220076567A1 (en) Vehicles, methods, computer programs, and apparatuses for resolving a deadlock traffic situation of an automatically operated vehicle
WO2023247149A1 (en) Method of enabling communication in a second communication channel through location information
KR20230147065A (ko) 차량 및 보행자 ue들에 의해 개시되는 레인징 세션들의최적화

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778853

Country of ref document: EP

Kind code of ref document: A1