WO2009110472A1 - ポリエステル系樹脂、その製造方法およびその用途 - Google Patents

ポリエステル系樹脂、その製造方法およびその用途 Download PDF

Info

Publication number
WO2009110472A1
WO2009110472A1 PCT/JP2009/053973 JP2009053973W WO2009110472A1 WO 2009110472 A1 WO2009110472 A1 WO 2009110472A1 JP 2009053973 W JP2009053973 W JP 2009053973W WO 2009110472 A1 WO2009110472 A1 WO 2009110472A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
resin
hydrocarbon group
molecular weight
acid
Prior art date
Application number
PCT/JP2009/053973
Other languages
English (en)
French (fr)
Inventor
真一 宇杉
亮平 小川
秀史 堀
加賀山 陽史
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN2009801049703A priority Critical patent/CN101945914B/zh
Priority to EP09716218.4A priority patent/EP2251368B1/en
Priority to JP2010501919A priority patent/JP5391189B2/ja
Priority to KR1020107022025A priority patent/KR101284931B1/ko
Priority to US12/920,804 priority patent/US8552138B2/en
Priority to BRPI0908279A priority patent/BRPI0908279A2/pt
Publication of WO2009110472A1 publication Critical patent/WO2009110472A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0895Manufacture of polymers by continuous processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4263Polycondensates having carboxylic or carbonic ester groups in the main chain containing carboxylic acid groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/428Lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6852Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides

Definitions

  • the present invention relates to a polyester-based resin, a production method thereof, and an application thereof.
  • Aliphatic polyesters particularly aliphatic polyesters obtained from hydroxycarboxylic acids such as polylactic acid, polyglycolic acid or copolymers thereof, are attracting attention as biodegradable polymer compounds.
  • Biodegradable polymer compounds are used as various materials such as medical materials such as sutures, sustained-release materials such as pharmaceuticals, agricultural chemicals, and fertilizers.
  • the polymer compound In order to be used as the material, the polymer compound is generally required to have high mechanical properties. Therefore, the polymer compound needs to have a high molecular weight.
  • a method of producing lactide and glycolide from lactic acid and glycolic acid and then ring-opening polymerization thereof to produce high molecular weight polylactide and polyglycolide is used.
  • a high molecular weight polymer can be obtained, but since it is a two-stage reaction, a great deal of labor is required and it cannot be said that it is economical.
  • the method of directly polycondensing lactic acid and glycolic acid is economical, but has the disadvantage that a high molecular weight polymer cannot be obtained.
  • Non-Patent Document 1 a method of increasing the molecular weight of low molecular weight polylactic acid to a molecular weight more than twice has been proposed (for example, see Non-Patent Document 1).
  • This method is a method in which telechelic polylactic acid of both terminal diols is reacted with diisocyanate, and a newly formed bond is only a urethane bond having low thermal stability.
  • An object of the present invention is to provide a polyester resin having a high molecular weight and high crystallinity amide bond in a molecular chain, a method for producing the same, and a use thereof. Furthermore, it aims at providing the polyester-type resin which has biodegradability and has an amide bond in a molecular chain, its manufacturing method, and its use.
  • the present inventors have obtained a polyester-based resin (C) having an amide bond in the molecular chain obtained through a specific reaction step, which has a high molecular weight and high crystallinity.
  • the present invention has been reached.
  • the present inventors have found that a biodegradable polyester resin (C) having a high molecular weight and excellent thermal stability can be produced at a low cost by passing through a specific reaction step.
  • the polyester resin (C) of the present invention is obtained by reacting an aliphatic polyester resin (A) and a polyisocyanate compound (B) in the presence of an amidation catalyst, and is represented by the following formula (1).
  • the structural unit is included.
  • R represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a hydrocarbon group containing an alicyclic structure, or a hydrocarbon group containing an aromatic ring.
  • the aliphatic polyester resin (A) is preferably obtained from hydroxycarboxylic acid, and more preferably polylactic acid.
  • the polylactic acid is obtained from lactic acid, and the content of L-form or D-form in the lactic acid is preferably 90% or more.
  • the polyester resin (C) preferably has a crystallinity of 10 to 70% and a weight average molecular weight of 100,000 to 1,000,000.
  • the polyisocyanate compound (B) is preferably an aliphatic diisocyanate compound.
  • Hexamethylene diisocyanate, isophorone diisocyanate, 1,3- (bisisocyanatomethyl) cyclohexane, bis (isocyanatomethyl) bicyclo- [2,2 , 1] -heptane and bis (4-isocyanatocyclohexyl) methane are more preferably one compound selected from the group consisting of.
  • the polyester resin (C) of the present invention is a polyester resin having as a main component a constituent unit represented by at least one formula selected from the group consisting of the following formulas (2) to (4). Also good.
  • the “main component” as used herein means that 60% by weight or more, more preferably 90% by weight of a structural unit represented by at least one selected from the group consisting of the following formulas (2) to (4) in all resins. It means to contain more than%.
  • each R 1 independently represents a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, and n represents an integer of 20 to 1500.
  • each R 1 independently represents a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 20 carbon atoms
  • R 2 represents a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • n represents an integer of 20 to 1500.
  • each R 1 independently represents a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 20 carbon atoms
  • R 2 represents a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • the aliphatic polyester resin (A) has a weight average molecular weight of 5,000 to 100,000
  • the resulting polyester resin (C) has a weight average molecular weight of 100,000 to 1,000,000
  • the weight average molecular weight of the aliphatic polyester resin (A) is preferably 3 to 200 times.
  • the method for producing the polyester resin (C) includes a step of reacting the aliphatic polyester resin (A) and the polyisocyanate compound (B) in the presence of an amidation catalyst.
  • the polyisocyanate compound (B) is preferably a diisocyanate compound.
  • the aliphatic polyester resin (A) is an aliphatic polyester resin in which a terminal hydroxyl group is converted to a carboxyl group.
  • the amount of the polyisocyanate compound (B) added is preferably 0.8 to 2.0 times the mol of the aliphatic polyester resin (A).
  • the aliphatic polyester resin (A) preferably has a weight average molecular weight of 5,000 to 100,000.
  • the Sn content of the aliphatic polyester resin (A) is preferably 300 ppm or less.
  • the amidation catalyst preferably contains at least one metal selected from the group of metals in Groups 1, 2 and 3 of the periodic table, and more preferably contains magnesium or calcium.
  • the production method of the polyester resin (C) is preferably performed by a twin-screw extruder.
  • the film of the present invention is characterized by containing a polyester resin (C).
  • the molded product of the present invention is characterized by containing a polyester resin (C).
  • the polyester resin (C) of the present invention has an amide bond in the molecular chain, has a practically sufficient high molecular weight, and has a high degree of crystallinity, so it is suitable for fields requiring biodegradability such as films. Used for.
  • FIG. 1 is a 13 C-NMR spectrum of the resin obtained in Example 1.
  • the polyester resin (C) of the present invention is obtained by reacting an aliphatic polyester resin (A) and a polyisocyanate compound (B) in the presence of an amidation catalyst, and is represented by the following formula (1). It includes a structural unit.
  • the polyisocyanate compound (B) is preferably a diisocyanate compound.
  • R represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a hydrocarbon group containing an alicyclic structure, or a hydrocarbon group containing an aromatic ring.
  • Specific examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms include methylene, ethylene, propylene, methylethylene, butylene, 1-methylpropylene, 2-methylpropylene, 1,2-dimethylpropylene, 1,3- Dimethylpropylene, 1-methylbutylene, 2-methylbutylene, 3-methylbutylene, 4-methylbutylene, 2,4-dimethylbutylene, 1,3-dimethylbutylene, pentylene, hexylene, heptylene, octylene, decylene, dodecylene, Examples include ethane-1,1-diyl, propane-2,2-diyl, tridecylene, tetradecylene, pentadecylene, hexadecylene,
  • hydrocarbon group containing the alicyclic structure examples include cyclopropylene, 1,3-cyclobutylene, 1,3-cyclopentylene, 1,4-cyclohexylene, 1,5-cyclooctylene, Norbonylene, 1,3-cyclopentylene, 1,2-cyclohexylene, 1,4-cyclohexylene, 1,4-dimethylcyclohexylene, 1,3-dimethylcyclohexylene, 1-methyl-2,4-cyclohexylene 4,4'-methylene-biscyclohexylene, and 3-methylene-3,5,5-trimethyl-cyclohexylene.
  • hydrocarbon group containing an aromatic ring examples include m-phenylene, p-phenylene, 4,4′-diphenylene, 1,4-naphthalene and 1,5-naphthalene, 4,4′-methylenedi.
  • examples include phenylene, 2,4-tolylene, 2,6-tolylene, m-xylylene, p-xylylene, m-tetramethylxylylene, 4,4'-oxydiphenylene and chlorodiphenylene.
  • 1 to 200 units preferably 1 to 100 units, more preferably 1 to 50 units of the structural unit represented by the formula (1) are contained per molecule of the polyester resin (C).
  • the crystallinity of the polyester resin (C) is preferably 10 to 70%, more preferably 10 to 60%, and further preferably 10 to 50%.
  • the degree of crystallinity is a value measured by the method described in Examples described later.
  • the polyester resin (C) preferably has a weight average molecular weight of 100,000 to 1,000,000, more preferably 100,000 to 700,000, and 100,000 to 500,000. More preferably. It is preferable in terms of moldability and mechanical strength that the weight average molecular weight of the polyester resin (C) is within the above range.
  • the method for producing the polyester resin (C) includes a step of reacting the aliphatic polyester resin (A) and the polyisocyanate compound (B) in the presence of an amidation catalyst.
  • the polyisocyanate compound (B) is preferably a diisocyanate compound.
  • the aliphatic polyester resin (A) is not particularly limited as long as it does not impair the object of the present invention.
  • an existing aliphatic polyester resin may be used, but an aliphatic polyester resin obtained from hydroxycarboxylic acid is preferable.
  • Examples of the method for obtaining the aliphatic polyester resin (A) from the hydroxycarboxylic acid include the following two methods. That is, there are a direct method of directly dehydrating and condensing hydroxycarboxylic acid and a method of once synthesizing a cyclic dimer from hydroxycarboxylic acid and ring-opening polymerization of the dimer.
  • the polycondensation reaction may be performed in the presence of a catalyst.
  • the catalyst examples include metals of Groups 2, 12, 13, 14, or 15 of the periodic table, or oxides or salts thereof.
  • metals such as zinc powder, tin powder, aluminum or magnesium, metal oxides such as antimony oxide, zinc oxide, tin oxide, aluminum oxide, magnesium oxide or titanium oxide, stannous chloride, stannic chloride , Stannous bromide, stannic bromide, antimony fluoride, zinc chloride, magnesium chloride or aluminum chloride, etc., carbonates such as magnesium carbonate or zinc carbonate, tin acetate, tin octoate, tin lactate , Organic carboxylates such as zinc acetate or aluminum acetate, or organic sulfonates such as tin trifluoromethanesulfonate, zinc trifluoromethanesulfonate, magnesium trifluoromethanesulfonate, tin methanesulfonate or tin p-toluenesulfonate Can be given
  • organometallic oxides of the above metals such as dibutyltin oxide, metal alkoxides of the above metals such as titanium isopropoxide, alkyl metals of the above metals such as diethyl zinc, ion exchange resins such as dowex or amberlite, or the like
  • a protonic acid such as sulfuric acid, methanesulfonic acid, or p-toluenesulfonic acid, and a tin or zinc metal or a metal compound thereof, which can obtain a high molecular weight polymer at a high polymerization rate, is preferable.
  • metal tin or a tin compound is particularly preferable.
  • the aliphatic polyester resin (A) thus obtained may be used in the above step as it is, or the terminal hydroxyl group of the resin (A) may be converted into a carboxyl group and then used in the above step. Good.
  • Examples of the method for converting the terminal hydroxyl group of the resin (A) into a carboxyl group include a method of adding an acid anhydride.
  • Examples of the acid anhydride include succinic anhydride, phthalic anhydride, maleic anhydride, tetrabromophthalic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride or dodecyl succinic anhydride, and succinic anhydride is particularly preferable.
  • the addition amount of the acid anhydride is 0.1 to 10 parts by weight, preferably 0.5 to 8 parts by weight, based on 100 parts by weight of the aliphatic polyester resin (A) before conversion. The amount is preferably 0.5 to 5 parts by weight.
  • a resin obtained by further hydrolyzing the aliphatic polyester resin (A) obtained by any of the above methods may be used in the above step.
  • the hydroxycarboxylic acid is not particularly limited as long as it does not impair the object of the present invention.
  • lactic acid, glycolic acid, or an aqueous solution thereof is particularly preferable because the increase in polymerization rate during use is particularly remarkable, and lactic acid is particularly preferable.
  • the hydroxycarboxylic acid is lactic acid.
  • polylactic acid is obtained as the aliphatic polyester resin (A).
  • Lactic acid has an L-form and a D-form, and a larger L-form content or D-form content is preferable.
  • the L-form content or the D-form content is preferably 90% or more, more preferably 95% or more, and particularly preferably 98% or more.
  • the resulting resin tends to exhibit high crystallinity.
  • aliphatic polyester resin (A) examples include polylactic acid, polyglycolic acid, poly (3-hydroxybutyric acid), poly (4-hydroxybutyric acid), and poly (2-hydroxy-butyric acid), depending on the raw hydroxycarboxylic acid.
  • n-butyric acid poly (2-hydroxy-3,3-dimethylbutyric acid), poly (2-hydroxy-3-methylbutyric acid), poly (2-methyllactic acid), poly (2-hydroxycaproic acid), poly ( 2-hydroxy-3-methylbutyric acid), poly (2-cyclohexyl-2-hydroxyacetic acid), poly (mandelic acid) or polycaprolactone, or a copolymer or mixture thereof.
  • the weight average molecular weight of the aliphatic polyester resin (A) is preferably 5,000 to 100,000, more preferably 10,000 to 80,000, and 10,000 to 50,000. It is particularly preferred that When the weight average molecular weight of the aliphatic polyester resin (A) is within the above range, it is preferable in that the polymerization time of the aliphatic polyester resin is shortened and the process time can be shortened.
  • the content of the heavy metal derived from the catalyst in the aliphatic polyester resin (A) is preferably 300 ppm or less, more preferably 100 ppm or less, and most preferably 30 ppm or less.
  • the lower limit of the content is not particularly limited.
  • a high molecular weight polyester resin (C) tends to be obtained.
  • the Sn content of the aliphatic polyester resin (A) is preferably 300 ppm or less, more preferably 100 ppm or less, and particularly preferably 30 ppm or less.
  • a high molecular weight polyester resin (C) can be obtained.
  • the lower limit of the Sn content is not particularly limited.
  • a high molecular weight polyester resin (C) tends to be obtained.
  • a known method can be used, for example, a method of treating with hydrochloric acid / 2-propanol.
  • the measuring method of content of heavy metals, such as Sn is as follows.
  • the production method according to the present invention includes a step of reacting the aliphatic polyester resin (A) and the polyisocyanate compound (B) in the presence of an amidation catalyst.
  • the aliphatic polyester resin (A) and a solvent are mixed, and the mixture is heated to a predetermined temperature under normal pressure and nitrogen atmosphere.
  • a polyisocyanate compound (B) is further added and reacted at a predetermined temperature.
  • the polyester resin (C) can be obtained by decarboxylating the obtained reaction product.
  • the polyisocyanate compound (B) is preferably a diisocyanate compound.
  • the reaction temperature in this step is preferably 40 to 180 ° C, more preferably 60 to 160 ° C, and particularly preferably 80 to 150 ° C. It is preferable that the reaction temperature in the step is in the above-mentioned range because the reaction rate is high and gelation hardly occurs. Moreover, when the reaction temperature in the said process exceeds the said upper limit, a crosslinking reaction may advance and gelatinization may occur easily, and when it is less than the said lower limit, reaction rate may become slow and time may be required for molecular weight increase.
  • Solvents used in this step include aromatic hydrocarbons such as toluene, xylene, ethylbenzene, mesitylene and cumene; aliphatic hydrocarbons such as propane, hexane, heptane and cyclohexane; methylene chloride, chloroform, 1, 2 -Halogenated hydrocarbons such as dichloroethane and 1,2-dichlorobenzene.
  • aromatic hydrocarbons such as toluene, xylene, ethylbenzene, mesitylene and cumene
  • aliphatic hydrocarbons such as propane, hexane, heptane and cyclohexane
  • methylene chloride, chloroform, 1, 2 -Halogenated hydrocarbons such as dichloroethane and 1,2-dichlorobenzene.
  • the polyisocyanate compound used in the step is a compound having two or more isocyanate groups, and is not particularly limited as long as the object of the present invention is not impaired.
  • Examples of the polyisocyanate compound having 3 or more isocyanate groups include triisocyanates such as 1,6,11-undecane triisocyanate and polyisocyanate substituted compounds such as polyphenylmethane polyisocyanate.
  • the polyisocyanate compound (B) is preferably a diisocyanate compound.
  • Diisocyanate compounds include 2,4-tolylene diisocyanate, a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthylene diisocyanate, xylylene diisocyanate, hexamethylene Diisocyanate, isophorone diisocyanate, 1,3- (bisisocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, bis (isocyanatomethyl) bicyclo- [2,2,1] -heptane or bis (4 -Isocyanatocyclohexyl) methane, and more preferred examples include 1,3-xylylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 1,3- (bisisocyanatomethyl) silane.
  • Rohekisan 1,4-bis (isocyanatomethyl) cyclohexane, bis (isocyanatomethyl) bicyclo - [2,2,1] - heptane, or bis (4-isocyanatocyclohexyl) methane, and the like.
  • hexamethylene diisocyanate isophorone diisocyanate, 1,3- (bisisocyanatomethyl) cyclohexane, bis (isocyanatomethyl) bicyclo- [2,2,1] -heptane and bis (4-isocyanatocyclohexyl) methane
  • it is 1 type of compound chosen from the group which consists of, It is preferable that it is an aliphatic diisocyanate compound, and it is especially preferable that it is a hexamethylene diisocyanate.
  • the polyisocyanate compound (B) is the compound.
  • the amount of the polyisocyanate compound (B) added is determined based on the number average molecular weight (hereinafter also referred to as “Mn”) obtained from the carboxylic acid value of the aliphatic polyester resin (A).
  • Mn number average molecular weight obtained from the carboxylic acid value of the aliphatic polyester resin (A).
  • the method for obtaining the number average molecular weight of the aliphatic polyester resin (A) from the carboxylic acid value is calculated on the assumption that one or two carboxyl groups exist at the end of one molecule of the aliphatic polyester resin (A). In addition, a carboxylic acid value is measured by the method described in the Example mentioned later.
  • the addition amount of the polyisocyanate compound (B) is preferably 0.8 to 2.0 times mol, and 0.8 to 1.5 times mol for the aliphatic polyester resin (A). Is more preferable, and 0.8 to 1.3 times mole is particularly preferable.
  • “fold mole” is a unit of a value calculated by “number of moles of target substance / 1 mole of reference substance”.
  • the addition amount of the polyisocyanate compound (B) is less than the lower limit, the addition effect of the polyisocyanate compound (B) is small and it is difficult to obtain a high molecular weight polyester resin (C).
  • the upper limit is exceeded, side reactions such as a crosslinking reaction may occur in the isocyanate, and a gel-like polyester resin (C) may be generated.
  • amidation catalyst refers to a catalyst that preferentially reacts the terminal carboxyl group portion of the aliphatic polyester resin (A) with the polyisocyanate compound (B) to form an amide bond.
  • the amidation catalyst used in the step preferably contains at least one metal selected from the group of metals in Groups 1, 2 and 3 of the periodic table, and is selected from the group of potassium, magnesium, calcium and ytterbium. More preferably, it contains at least one metal, and particularly preferably contains magnesium or calcium. The inclusion of such a metal is preferable in terms of catalytic effect and color tone.
  • amidation catalyst containing Group 1 metal of the periodic table examples include organic metal compounds such as organic acid salts, metal alkoxides or metal complexes (acetylacetonate, etc.) of lithium, sodium, potassium, rubidium or cesium; Inorganic metal compounds such as compounds, metal hydroxides, carbonates, phosphates, sulfates, nitrates, chlorides or fluorides, and as amidation catalysts containing Group 2 metals of the above periodic table, Organometallic compounds such as organic acid salts, metal alkoxides or metal complexes (such as acetylacetonate) of beryllium, magnesium, calcium, strontium or barium; metal oxides, metal hydroxides, carbonates, phosphates, sulfates Inorganic metal compounds such as nitrates, chlorides and fluorides.
  • organic metal compounds such as organic acid salts, metal alkoxides or metal complexes (acetylacetonate, etc.) of lithium, sodium,
  • amidation catalyst containing the Group 3 metal of the periodic table organometallic compounds such as scandium, ytterbium, yttrium or other rare earth organic acid salts, metal alkoxides or metal complexes (acetylacetonate, etc.)
  • organometallic compounds such as scandium, ytterbium, yttrium or other rare earth organic acid salts, metal alkoxides or metal complexes (acetylacetonate, etc.
  • Inorganic metal compounds such as metal oxides, metal hydroxides, carbonates, phosphates, sulfates, nitrates, chlorides or fluorides; These may be used alone or in combination.
  • metal compound catalysts bis (acetylacetonato) magnesium, magnesium stearate, calcium stearate, magnesium chloride, ytterbium triflate and the like are preferable, and magnesium compounds, particularly bis (acetylacetonato) magnesium, magnesium stearate. Is preferred. Two or more of these catalysts can be used in combination.
  • the amount of the amidation catalyst added is 0.01 to 2 parts by weight, preferably 0.01 to 1 part by weight, more preferably 0.01 to 0 parts by weight with respect to 100 parts by weight of the aliphatic polyester resin (A). .5 parts by mass.
  • the polyisocyanate compound (B) is preferably a diisocyanate compound.
  • Catalysts for forming such urethane bonds include dibutyltin dilaurate, dibutyltin dichloride, dibutyltin oxide, dibutyltin dibromide, dibutyltin dimaleate, dibutyltin diacetate, dibutyltin sulfide, tributyltin sulfide, tributyltin oxide, Tributyltin acetate, triethyltin ethoxide, tributyltin ethoxide, dioctyltin oxide, tributyltin chloride, tributyltin trichloroacetate, tin 2-ethylhexanoate, dibutyltitanium dichloride, tetrabutyltitanate, butoxytitanium trichloride, olein Lead such as lead acid, lead 2-ethylhexanoate,
  • the addition amount of the catalyst for forming the urethane bond is 0.01 to 2 parts by mass, preferably 0.01 to 1 part by mass, more preferably 0.001 parts by mass with respect to 100 parts by mass of the aliphatic polyester resin (A). 01 to 0.5 parts by mass.
  • the viscosity rapidly increases as the molecular weight of the reaction product increases. Therefore, in addition to the method of reacting while stirring with a solution as described above, the method of extruding the product by kneading and reacting without a solvent using an extruder, particularly a twin-screw kneading extruder, is produced without using a solvent. Post-treatment of the product is simple and effective.
  • the polyester resin (C) of the present invention is a polyester resin having as a main component a constituent unit represented by at least one formula selected from the group consisting of the following formulas (2) to (4). Also good. Such a polyester resin has biodegradability.
  • the “main component” means that 60% by weight or more, more preferably 90% by weight of the structural unit represented by at least one selected from the group consisting of the following formulas (2) to (4) in all resins. It means to contain more than%.
  • each R 1 independently represents a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, and n is 20 to 1500, preferably 25 to 1500, more preferably 30 to An integer of 1500 is represented.
  • the substituted or unsubstituted aliphatic hydrocarbon group having 1 to 20 carbon atoms is a residue of the aliphatic polyester resin (A), and examples thereof include ethylidene and propylidene.
  • each R 1 independently represents a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 20 carbon atoms
  • R 2 represents a substituted or unsubstituted aliphatic group having 1 to 20 carbon atoms.
  • n represents an integer of 20 to 1500, preferably 25 to 1500, more preferably 30 to 1500.
  • the substituted or unsubstituted aliphatic hydrocarbon group having 1 to 20 carbon atoms is a residue of the above acid anhydride, and includes ethylene and the like.
  • the unsaturated hydrocarbon group having 2 to 20 carbon atoms is a residue of the above acid anhydride, and examples thereof include vinylene.
  • the aromatic hydrocarbon group is a residue of the above-mentioned acid anhydride, and examples thereof include 1,2-phenylene.
  • each R 1 independently represents a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 20 carbon atoms
  • R 2 represents a substituted or unsubstituted aliphatic group having 1 to 20 carbon atoms.
  • n and m are each independently an integer of 20 to 1500, preferably 25 to 1500, more preferably 30 to 1500.
  • the substituted or unsubstituted aliphatic hydrocarbon group having 1 to 20 carbon atoms is a residue of the above acid anhydride, and includes ethylene and the like.
  • the unsaturated hydrocarbon group having 2 to 20 carbon atoms is a residue of the above acid anhydride, and examples thereof include vinylene.
  • the aromatic hydrocarbon group is a residue of the above-mentioned acid anhydride, and examples thereof include 1,2-phenylene.
  • the polyester resin (C) having as a main component a constituent unit represented by at least one formula selected from the group consisting of the above formulas (2) to (4) is, for example, an aliphatic polyester resin (A) and / or
  • the aliphatic polyester resin (A) in which the terminal hydroxyl group is converted to a carboxylic acid and the polyisocyanate compound (B) are reacted in the presence of an amidation catalyst, and can be produced by the method described above.
  • Use of the amidation catalyst described above is preferable because the amidation reaction can be performed under mild conditions and side reactions can be suppressed, so that the target polyester resin (C) can be produced with high purity. It is an aspect.
  • the aliphatic polyester resin (A) and the aliphatic polyester resin (A) obtained by converting the terminal hydroxyl group into a carboxylic acid preferably have a weight average molecular weight of 5,000 to 100,000. More preferably, it is 000. Such a weight average molecular weight is preferable in terms of biodegradability, thermophysical properties, and process time.
  • the weight average molecular weight of the polyester resin (C) having as a main component at least one structural unit represented by the formula selected from the group consisting of the above formulas (2) to (4) is 100,000 to 1 It is preferably 1,000,000,000, more preferably 100,000 to 700,000, and even more preferably 100,000 to 500,000. It is preferable in terms of moldability and mechanical strength that the weight average molecular weight of the polyester resin (C) is within the above range. Further, the weight average molecular weight of the polyester resin (C) is within the above range, and is preferably 3 to 200 times the weight average molecular weight of the aliphatic polyester resin (A), preferably 4 times or more. It is more preferably 100 times or less, and particularly preferably 5 times or more and 50 times or less. Within such a range, the polyester resin (C) can be made higher in molecular weight, which is preferable in terms of the physical properties of the resin such as mechanical properties.
  • the Sn content of the aliphatic polyester resin (A) and the aliphatic polyester resin (A) obtained by converting the terminal hydroxyl group into a carboxylic acid is preferably 300 ppm or less, more preferably 100 ppm or less, and 30 ppm or less. It is particularly preferred. In particular, by controlling the Sn content within the above range, a high molecular weight polyester resin (C) can be obtained. Moreover, the lower limit of the Sn content is not particularly limited. When the Sn content of the aliphatic polyester resin (A) and the aliphatic polyester resin (A) obtained by converting the terminal hydroxyl group into a carboxylic acid is within the above range, a high molecular weight polyester resin (C) tends to be obtained.
  • the degree of crystallinity of the polyester resin (C) having as a main component a structural unit represented by at least one formula selected from the group consisting of the above formulas (2) to (4) is 10 to 70%. Is preferably 10 to 60%, more preferably 10 to 50%.
  • the polyester resin (C) having as a main component a structural unit represented by at least one type selected from the group consisting of the above formulas (2) to (4) has the following formula (a) and an amide bond biodegraded: Therefore, it is a biodegradable resin.
  • the polyester resin (C) of the present invention can be produced by various methods.
  • a polyester resin (C) is produced by extrusion reaction of the aliphatic polyester resin (A) and the polyisocyanate compound (B) in the presence of the amidation catalyst using a twin-screw extruder.
  • a method is mentioned.
  • an example of the method of performing reaction with a twin screw extruder will be described in detail.
  • a mixture of the aliphatic polyester resin (A) and the amidation catalyst is charged into a twin screw extruder. Furthermore, the polyisocyanate compound (B) is charged from the middle of the twin-screw extruder, and the aliphatic polyester resin (A) and the polyisocyanate compound (B) are subjected to an extrusion reaction to obtain a polyester resin (C ) Can be suitably produced.
  • the barrel temperature is preferably 160 to 200 ° C, more preferably 160 to 190 ° C, and further preferably 160 to 180 ° C.
  • the residence time from raw material feed to discharge is preferably 1 to 30 minutes, and more preferably 1 to 10 minutes.
  • the polyester-based resin (C) of the present invention can be molded by various molding methods. For example, after the extrusion reaction, the strand that has come out is air-cooled with a belt conveyor, and subsequently cut with a pelletizer. Pellets made of the polyester resin (C) can be obtained.
  • the film of the present invention contains the polyester resin (C).
  • C polyester resin
  • molding method examples thereof include a method of forming a film by a T-die molding method, an inflation molding method, a calendar molding method, and a hot press molding method. These films may be stretched in at least one direction.
  • the stretching method is not particularly limited, and examples thereof include a roll stretching method, a tenter method, and an inflation method.
  • the molded product of the present invention contains the polyester resin (C).
  • Specific examples of the molded body include trays, cups, transparent packs, housings for home appliances, and automobile members.
  • the polyester-based resin (C) of the present invention can be molded by various molding methods as described above, and can be suitably used for various applications without being particularly limited.
  • it can be used for automobile parts, home appliance material parts, electrical / electronic parts, building members, civil engineering members, agricultural materials, daily necessities, various films, breathable films or sheets.
  • it is used as a foam suitable for general industrial use and recreation use.
  • it can be used for various uses such as yarns, textiles, medical or hygiene products.
  • it can be suitably used for automobile material parts, home appliance material parts, or electric / electronic material parts that require heat resistance and impact resistance.
  • plastic parts such as front doors and foil caps
  • household appliance material parts applications it is a housing for products such as personal computers, headphone stereos, and mobile phones.
  • parts and electrical / electronic parts examples include the development of reflective material films and sheets and polarizing films and sheets.
  • the polyester resin (C) having as a main component a structural unit represented by at least one formula selected from the group consisting of the above formulas (2) to (4) has biodegradability and mechanical properties. Therefore, it is suitable for various fields where biodegradability is required.
  • ⁇ Crystallinity> It calculated
  • the crystal melting enthalpy ( ⁇ Hm) at the second temperature increase was measured, and [[( ⁇ Hm) / ( ⁇ H 0 )] ⁇ 100] was determined and used as the crystallinity.
  • ⁇ H 0 represents a perfect ideal crystal melting enthalpy, and a numerical value of 93 J / g of polylactic acid was used.
  • ⁇ Melting point> It calculated
  • TG-DTA DSC device TG-DTA-320 manufactured by SII. Weigh 5 to 6 mg of sample, weigh it in an aluminum pan, put it in a TG-DTA measuring part set at 30 ° C in advance under a nitrogen atmosphere, and then raise the temperature to 500 ° C at a rate of 10 ° C / min. did.
  • Terminal carboxylic acid ratio (%) terminal carboxylic acid number ⁇ 100 / (terminal carboxylic acid number + terminal hydroxyl group number) ⁇ Ratio of urethane bond and amide bond in the chain extension polymer>
  • a 13 C-NMR (device: ECA500 manufactured by JEOL Ltd., internal standard chloroform-d: ⁇ 77 ppm) of a sample (chain extension polymer) obtained by reacting polylactic acid and hexamethylene diisocyanate was measured.
  • LACEA H400 (Mitsui Chemicals, Mw; 240,000) was obtained by synthesizing a cyclic lactide (dimer) from lactic acid as a raw material and subjecting the lactide to ring-opening polymerization.
  • a 2 liter round bottom flask was charged with 300 g of LACEA H400 and 600 g of xylene. After the atmosphere in the flask was replaced with nitrogen, the temperature was raised to 140 ° C. under normal pressure and nitrogen atmosphere. Distilled water (30 g) was added to the flask using a dropping funnel over 5 hours, and the mixture was kept at 140 ° C. and normal pressure for 30 hours.
  • PLA polylactic acid
  • the weight average molecular weight was measured by the measurement method, and it was 40,000.
  • the carboxylic acid value determined by the above measurement method was 9.09 ⁇ 10 ⁇ 5 (mol / g).
  • the number average molecular weight Mn calculated from the carboxylic acid value was 11,000.
  • the method for obtaining the number average molecular weight (Mn) of PLA from the carboxylic acid value was calculated on the assumption that one carboxyl group and one hydroxyl group exist at the end of one molecule of PLA.
  • PLLA (1) transparent poly (L-lactic acid)
  • the weight average molecular weight was measured by the above measurement method. As a result, it was 22,000. Moreover, it was 1.25 * 10 ⁇ -4 > (mol / g) when the carboxylic acid value was calculated
  • the number average molecular weight Mn calculated from the carboxylic acid value was 8,000.
  • PLLA (2) poly (L-lactic acid)
  • succinic anhydride was added to the flask, and the mixture was stirred at 150 ° C. for 2 hours to convert poly (L-lactic acid) (hereinafter referred to as “PLLA (2) ) "). Thereafter, the inside of the flask was released to normal pressure, 160 g of xylene was added for dilution, the resulting solution was extracted, and xylene was air-dried under a nitrogen stream. The PLLA (2) was washed twice with 0.5 L of 2-propanol containing 1% of 33% hydrochloric acid, filtered, and further washed several times with methanol to obtain white PLLA (2).
  • the terminal carboxylic acid ratio was determined by the above measuring method and found to be 91%. Moreover, when the carboxylic acid value of the PLLA (2) was determined by the above measurement method, it was 2.27 ⁇ 10 ⁇ 4 (mol / g). The number average molecular weight Mn calculated from the carboxylic acid value and the terminal carboxylic acid ratio was 8,000. With respect to the PLLA (2), the Sn content was measured and found to be 5 ppm or less.
  • the weight average molecular weight was measured by the measurement method, and it was 20,000. Moreover, when the carboxylic acid value was calculated
  • the number average molecular weight Mn calculated from the carboxylic acid value was 7,500.
  • Example 1 6.00 g (5.45 ⁇ 10 ⁇ 4 mol) of PLA synthesized in Production Example 1 and 17.02 g of orthodichlorobenzene (hereinafter also referred to as “ODCB”) were charged into a 100 ml round bottom flask. After the atmosphere in the flask was replaced with nitrogen, the temperature was raised to 150 ° C. under normal pressure and nitrogen atmosphere. Next, 0.005 g of bis (acetylacetonato) magnesium and 0.005 g of dibutyltin dilaurate were added into the flask, and then 0.12 g (7.13 ⁇ 10 ⁇ 4 mol) of hexamethylene diisocyanate was added.
  • ODCB orthodichlorobenzene
  • the reaction was carried out at 150 ° C. for 6 hours. Thereafter, chloroform was added and a precipitation operation with methanol was performed to obtain a white powdery resin.
  • the resin was measured for 13 C-NMR by the above measurement method, and the ratio of urethane bond to amide bond (urethane bond / amide bond) was calculated to be 53/47.
  • the obtained spectrum data is shown in FIG. With respect to the resin, the weight average molecular weight was measured by the measurement method, and it was 140,000. The resin was allowed to stand in the atmosphere for 1 week, and the weight average molecular weight was measured again by the above measurement method. As a result, it was 140,000 and no change was observed.
  • Example 2 A white powder resin was obtained in the same manner as in Example 1 except that bis (acetylacetonato) magnesium was changed to magnesium stearate. The weight average molecular weight of the resin was measured by the above measurement method and found to be 130,000. The resin was allowed to stand in the atmosphere for 1 week, and then the weight average molecular weight was measured again by the measurement method. As a result, it was 130,000, and no change was observed.
  • Example 3 A white powder resin was obtained in the same manner as in Example 1 except that bis (acetylacetonato) magnesium was changed to calcium stearate. The weight average molecular weight of the resin was measured by the above measurement method and found to be 130,000. The resin was allowed to stand in the atmosphere for 1 week, and then the weight average molecular weight was measured again by the measurement method. As a result, it was 130,000, and no change was observed.
  • Example 4 6.00 g (5.45 ⁇ 10 ⁇ 4 mol) of PLA synthesized in Production Example 1 and 17.02 g of orthodichlorobenzene (hereinafter also referred to as “ODCB”) were charged into a 100 ml round bottom flask. After the atmosphere in the flask was replaced with nitrogen, the temperature was raised to 150 ° C. under normal pressure and nitrogen atmosphere. Next, 0.20 g of succinic anhydride was added to the flask and reacted at 150 ° C. for 5 hours to convert the terminal hydroxyl group of the PLA into a carboxyl group.
  • ODCB orthodichlorobenzene
  • the weight average molecular weight was measured by the measurement method, and it was 140,000. After being allowed to stand for 1 week in the atmosphere, the weight average molecular weight was measured again by the above measuring method. As a result, it was 140,000 and no change was observed.
  • Example 6 Transparent PLLA was obtained in the same manner as in Example 5.
  • the PLLA was measured to have a weight average molecular weight of 20,400 by the above measurement method. Further, 4,000 g of succinic anhydride was added and stirred at 150 ° C. for 4 hours to convert the terminal hydroxyl group of the PLLA into a carboxyl group.
  • the carboxylic acid value of the PLLA was determined by the above measurement method, it was 3.17 ⁇ 10 ⁇ 4 (mol / g).
  • the number average molecular weight Mn calculated from the carboxylic acid value was 6,300.
  • Example 7 PLLA (2) synthesized in Production Example 2 (15.00 g, 1.87 ⁇ 10 ⁇ 3 mol), bis (acetylacetonato) magnesium (0.0038 g) and xylene (5.22 g) were charged into a 50 ml round bottom flask. After the atmosphere in the flask was replaced with nitrogen, the temperature was raised to 160 ° C. under normal pressure and nitrogen atmosphere. Hexamethylene diisocyanate 0.43 g (2.6 ⁇ 10 ⁇ 3 mol, 1.3 equivalents) was added and reacted at 160 ° C. for 1 hour. Thereafter, xylene was added for crystallization, followed by filtration and washing with methanol to obtain a white powdery resin.
  • the 13 C-NMR of the resin was measured by the above measurement method, and the ratio of urethane bond to amide bond (urethane bond / amide bond) was calculated to be 9/91.
  • the ratio of the amide bond coincided with 91% of the terminal carboxylic acid ratio of PLLA (2) synthesized in Production Example 2.
  • the weight average molecular weight of the resin was measured by the above measuring method, and was 200,000.
  • the crystallinity of the resin was 15%, the melting point was 153 ° C., the glass transition temperature was 60 ° C., and the 5% weight loss temperature was 310 ° C.
  • Example 8 A white powdery resin was obtained in the same manner as in Example 7 except that bis (acetylacetonato) magnesium was changed to magnesium chloride. With respect to the resin, the weight average molecular weight was measured by the above measuring method, and it was 259,000. The resin had a crystallinity of 15%, a melting point of 153 ° C., a glass transition temperature of 60 ° C., and a 5% weight loss temperature of 306 ° C.
  • Example 9 A white powdery resin was obtained in the same manner as in Example 7 except that bis (acetylacetonato) magnesium was changed to ytterbium triflate. With respect to the resin, the weight average molecular weight was measured by the measurement method, and it was 180,000.
  • Example 10 Production Example 2 and a twin-screw segment extruder (2D30W2 manufactured by Toyo Seiki Seisakusho Co., Ltd., inner diameter: 25 mm, L / D; 40) connected to a lab plast mill (4C150-01 manufactured by Toyo Seiki Seisakusho) A mixture of 100 parts by weight of PLLA (2) ′ (1.79 ⁇ 10 ⁇ 4 mol / g) and 0.24 parts by weight of magnesium stearate obtained by the same method was charged at 1 kg / hour.
  • hexamethylene diisocyanate was charged at a rate of 0.6 ml / min from the middle of the extruder, and PLLA (2) ′ and hexamethylene diisocyanate were subjected to an extrusion reaction.
  • the residence time from feed to discharge was 12 minutes at a screw speed of 140 rpm and a barrel temperature of 180 ° C.
  • the strand that emerged was air-cooled with a belt conveyor and then cut with a pelletizer to obtain pellets.
  • the weight average molecular weight was measured by the measurement method, and it was 200,000. Further, the melting point by the above measurement method was 155 ° C., and the crystallization temperature was 115 ° C.
  • the pellets were preheated at 180 ° C. for 5 minutes and then hot pressed at 10 MPa for 5 minutes to obtain a film having a thickness of 100 ⁇ m. When the tensile strength and elongation of this film were measured, they were 74 MPa and 5%, respectively.
  • Example 11 In a round bottom flask, 12 g of xylene and then 0.0012 g of bis (acetylacetonato) magnesium are added to 30 g (5.36 ⁇ 10 ⁇ 3 mol) of PLLA (2) ′ obtained in the same manner as in Production Example 2. I was charged. Furthermore, 0.9018 g (5.36 ⁇ 10 ⁇ 3 mol) of hexamethylene diisocyanate was added and reacted at 130 ° C. for 3 hours. Thereafter, chloroform was added and a precipitation operation with methanol was performed to obtain a white powdery resin. The resin was measured for 13 C-NMR by the above measurement method to confirm the amide bond.
  • the weight average molecular weight was measured by the above measurement method, which was 185,000. After being allowed to stand in the atmosphere for 1 week, the weight average molecular weight was measured again by the above measurement method. As a result, it was 185,000 and no change was observed.
  • Example 12 Example 11 was repeated except that 0.9018 g (5.36 ⁇ 10 ⁇ 3 mol) of hexamethylene diisocyanate was changed to 1.0308 g (6.13 ⁇ 10 ⁇ 3 mol) of 1,3-xylylene diisocyanate. A white powdery resin was obtained. The resin was measured for 13 C-NMR by the above measurement method to confirm the amide bond. With respect to the resin, the weight average molecular weight was measured by the measurement method, and it was 280,000. The resin was allowed to stand in the atmosphere for 1 week, and then the weight average molecular weight was measured again by the measurement method. As a result, it was 280,000, and no change was observed.
  • Example 13 Example 11 except that 0.9018 g (5.36 ⁇ 10 ⁇ 3 mol) of hexamethylene diisocyanate was changed to 1.0357 g (5.33 ⁇ 10 ⁇ 3 mol) of 1,3-bis (isocyanatomethyl) cyclohexane.
  • a white powdery resin was obtained.
  • the resin was measured for 13 C-NMR by the above measurement method to confirm the amide bond.
  • the weight average molecular weight was measured by the measurement method, and it was 280,000.
  • the resin was allowed to stand in the atmosphere for 1 week, and then the weight average molecular weight was measured again by the measurement method. As a result, it was 280,000, and no change was observed.
  • Example 14 Example 11 except that 0.9018 g (5.36 ⁇ 10 ⁇ 3 mol) of hexamethylene diisocyanate was changed to 1.0297 g (5.30 ⁇ 10 ⁇ 3 mol) of 1,4-bis (isocyanatomethyl) cyclohexane.
  • a white powdery resin was obtained.
  • the resin was measured for 13 C-NMR by the above measurement method to confirm the amide bond.
  • the weight average molecular weight was measured by the measurement method, and it was 160,000.
  • the resin was allowed to stand in the atmosphere for 1 week, and then the weight average molecular weight was measured again by the measurement method. As a result, it was 160,000 and no change was observed.
  • Example 15 Example 11 except that 0.9018 g (5.36 ⁇ 10 ⁇ 3 mol) of hexamethylene diisocyanate was changed to 1.4117 g (5.38 ⁇ 10 ⁇ 3 mol) of bis (4-isocyanatocyclohexyl) methane.
  • a white powdery resin was obtained.
  • the resin was measured for 13 C-NMR by the above measurement method to confirm the amide bond.
  • the weight average molecular weight was measured by the measurement method, and it was 80,000.
  • the resin was allowed to stand in the atmosphere for 1 week, and then the weight average molecular weight was measured again by the measurement method. As a result, it was 80,000 and no change was observed.
  • Example 16 Hexamethylene diisocyanate 0.9018 g (5.36 ⁇ 10 ⁇ 3 mol) was changed to 1.1058 g (5.36 ⁇ 10 ⁇ 3 mol) bis (isocyanatomethyl) bicyclo- [2,2,1] -heptane
  • a white powder resin was obtained in the same manner as in Example 11 except that.
  • the resin was measured for 13 C-NMR by the above measurement method to confirm the amide bond. With respect to the resin, the weight average molecular weight was measured by the measurement method, and it was 140,000.
  • the resin was allowed to stand in the atmosphere for 1 week, and the weight average molecular weight was measured again by the above measurement method. As a result, it was 140,000 and no change was observed.
  • Example 17 To 30 g (3.95 ⁇ 10 ⁇ 3 mol) of PLLA (4) synthesized in Production Example 3, 12 g of xylene and then 0.0012 g of bis (acetylacetonato) magnesium were charged into a round bottom flask. Furthermore, 0.7651 g (4.55 ⁇ 10 ⁇ 3 mol) of hexamethylene diisocyanate was added and reacted at 130 ° C. for 3 hours. Thereafter, chloroform was added and a precipitation operation with methanol was performed to obtain a white powdery resin. The resin was measured for 13 C-NMR by the above measurement method to confirm the amide bond. The weight average molecular weight of the resin measured by the above measurement method was 330,000. After being allowed to stand for 1 week in the atmosphere, the weight average molecular weight was measured again by the above measuring method. As a result, it was 330,000 and no change was observed.
  • Example 1 A white powdery resin was obtained in the same manner as in Example 1 except that bis (acetylacetonato) magnesium was not used. With respect to the resin, the weight average molecular weight was measured by the measurement method, and it was 150,000. The resin was allowed to stand in the atmosphere for 1 week, and then the weight average molecular weight was measured again by the above measuring method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

  本発明は、実用上充分な高分子量を持ち、かつ高結晶化度を有するアミド基を分子鎖に有するポリエステル系樹脂(C)およびその製造方法を提供する。更には、実用上充分な高分子量を持ち、高結晶化度を有し、かつ生分解性を有するアミド基を分子鎖に有するポリエステル系樹脂(C)およびその製造方法を提供する。  本発明のポリエステル系樹脂(C)は、脂肪族ポリエステル樹脂(A)とポリイソシアネート化合物(B)とをアミド化触媒の存在下で反応させることにより得られ、特定の構成単位を含むことを特徴とする。

Description

ポリエステル系樹脂、その製造方法およびその用途
 本発明は、ポリエステル系樹脂、その製造方法およびその用途に関する。
 脂肪族ポリエステル、特にポリ乳酸、ポリグリコール酸あるいはこれらの共重合体などのヒドロキシカルボン酸から得られる脂肪族ポリエステルは、生分解性の高分子化合物として注目されている。生分解性の高分子化合物は、例えば縫合糸等の医用材料、医薬、農薬、肥料等の徐放性材料等多様な材料として利用されている。
 前記材料として利用するためには、該高分子化合物は一般的に高い機械的物性が求められる。そのため、該高分子化合物は高分子量とする必要がある。高分子量のポリマーを得るために、従来は乳酸、グリコール酸からラクチド、グリコリドを製造し、これらを開環重合して高分子量のポリラクチド、ポリグリコリドを製造する方法が用いられている。しかしながら、この方法では、高分子量のポリマーを得ることができるが、2段反応であるため多大の労力がかかり、経済的とは言えなかった。一方、乳酸、グリコール酸を直接重縮合させる方法は経済的であるが、その反面、高分子量のポリマーを得ることできないという欠点がある。
 そこで、直接重縮合させて得られた低分子量のポリ乳酸を、ジイソシアネートと反応させて鎖延長する方法が提案されている(例えば、特許文献1参照)。しかしながら、この方法は、ポリ乳酸の融点以上の温度、例えば210~215℃でジイソシアネートを反応させなければならいため、ジイソシアネートの蒸発または副反応を生じる場合があり、反応制御が非常に困難であった。さらにこの方法では低分子量ポリ乳酸の鎖延長後の分子量は2倍程度に伸長されているのみであり、2倍より大きい分子量に高分子量化することは困難であった。
 また、低分子量ポリ乳酸を2倍以上の分子量に高分子量化する方法が提案されている(例えば、非特許文献1参照)。この方法は両末端ジオールのテレケリックポリ乳酸とジイソシアネートを反応させる方法であり、新たに形成する結合は熱安定性の低いウレタン結合のみであった。
 上記の方法に対し、両末端ジカルボン酸の低分子量テレケリックポリ乳酸とビスオキサゾリン化合物とを反応させる方法が提案されている(例えば、非特許文献1参照)。この方法は高価なビスオキサゾリン化合物を用いる必要があり、工業的に用いるには問題があった。
 その他にも、高分子量を有するポリ乳酸系樹脂の製造方法が提案されている(例えば、特許文献2、3および非特許文献1参照)が、いずれも高温で反応させなければならず、上記と同様の問題があった。また、得られるポリ乳酸系樹脂は、結晶化度が低かったり、着色する場合がある等の問題点があった。
特開平5-148352号公報 特開2002-155197号公報 特開2004-285121号公報 Jukka Tuominen,CHAIN LINKED LACTIC ACID POLYMERS:PORYMERIZATION AND BIODEGRADATION STUDIES,Polymer Technology Publication Series Espoo 2003,Finland,Helsinki University of Tecnology,2003.2.28,No.25
 本発明は、高分子量で高結晶化度であるアミド結合を分子鎖に有するポリエステル系樹脂、その製造方法およびその用途を提供することを目的とする。更には、生分解性を有し、アミド結合を分子鎖に有するポリエステル系樹脂、その製造方法およびその用途を提供することを目的とする。
 本発明者らは上記課題を解決するため、鋭意検討した結果、特定の反応工程を経ることにより得られ、アミド結合を分子鎖に有するポリエステル系樹脂(C)が、高分子量および高結晶化度を有していることを見出し、本発明に到達した。更には、特定の反応工程を経ることにより、高分子量で熱安定性に優れた生分解性ポリエステル系樹脂(C)を安価に製造できることを見出し、本発明に到達した。
 すなわち、本発明のポリエステル系樹脂(C)は、脂肪族ポリエステル樹脂(A)とポリイソシアネート化合物(B)とをアミド化触媒の存在下で反応させることにより得られ、下記式(1)で表される構成単位を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000005
(式(1)において、Rは、炭素数1~20の脂肪族炭化水素基、脂環構造を含む炭化水素基または芳香環を含む炭化水素基を表す。)
 また、前記脂肪族ポリエステル樹脂(A)は、ヒドロキシカルボン酸から得られることが好ましく、ポリ乳酸であることがより好ましい。前記ポリ乳酸は、乳酸から得られ、該乳酸におけるL体またはD体の含有率が90%以上であることが好ましい。
 前記ポリエステル系樹脂(C)は、結晶化度が10~70%であることが好ましく、重量平均分子量が100,000~1,000,000であることが好ましい。
 前記ポリイソシアネート化合物(B)は、脂肪族ジイソシアネート化合物であることが好ましく、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、1,3-(ビスイソシアナトメチル)シクロヘキサン、ビス(イソシアナトメチル)ビシクロ-[2,2,1]-ヘプタンおよびビス(4-イソシアナトシクロヘキシル)メタンからなる群より選ばれる1種の化合物であることがより好ましい。
 また、本発明のポリエステル系樹脂(C)は、下記式(2)~(4)からなる群より選ばれる少なくとも1種の式で表される構成単位を主成分として有するポリエステル系樹脂であってもよい。
 ここで「主成分」とは全樹脂中に、下記式(2)~(4)からなる群より選ばれる少なくとも1種の式で表される構成単位を60重量%以上、更に好ましくは90重量%以上含むことを意味する。
Figure JPOXMLDOC01-appb-C000006
(式(2)中、R1は、それぞれ独立に、置換または無置換の炭素数1~20の脂肪族炭化水素基を表し、nは20~1500の整数を表す。)
Figure JPOXMLDOC01-appb-C000007
(式(3)中、R1は、それぞれ独立に、置換または無置換の炭素数1~20の脂肪族炭化水素基を表し、R2は、置換または無置換の炭素数1~20の脂肪族炭化水素基、炭素数2~20の不飽和炭化水素基または芳香族炭化水素基を表し、nは20~1500の整数を表わす。)
Figure JPOXMLDOC01-appb-C000008
(式(4)中、R1は、それぞれ独立に、置換または無置換の炭素数1~20の脂肪族炭化水素基を表し、R2は、置換または無置換の炭素数1~20の脂肪族炭化水素基、炭素数2~20の不飽和炭化水素基または芳香族炭化水素基を表し、nおよびmは、それぞれ独立に20~1500の整数を表わす。)
 前記脂肪族ポリエステル樹脂(A)の重量平均分子量が5,000~100,000であり、得られるポリエステル系樹脂(C)の重量平均分子量が、100,000~1,000,000であり、かつ前記脂肪族ポリエステル樹脂(A)の重量平均分子量の3倍以上200倍以下であることが好ましい。
 前記ポリエステル系樹脂(C)の製造方法は、脂肪族ポリエステル樹脂(A)およびポリイソシアネート化合物(B)をアミド化触媒の存在下で反応させる工程を含むことを特徴とする。
 前記ポリイソシアネート化合物(B)は、ジイソシアネート化合物であることが好ましい。
 前記脂肪族ポリエステル樹脂(A)が、末端ヒドロキシル基をカルボキシル基に変換した脂肪族ポリエステル樹脂であることが好ましい。
 前記ポリイソシアネート化合物(B)の添加量は、前記脂肪族ポリエステル樹脂(A)に対して0.8~2.0倍モルであることが好ましい。
 前記脂肪族ポリエステル樹脂(A)の重量平均分子量が5,000~100,000であることが好ましい。
 前記脂肪族ポリエステル樹脂(A)のSn含有量が300ppm以下であることが好ましい。
 前記アミド化触媒は、周期律表第1族、2族および3族における金属群より選ばれる少なくとも1種の金属を含むことが好ましく、マグネシウムまたはカルシウムを含むことがより好ましい。
 前記ポリエステル系樹脂(C)の製造方法は、2軸押出機で反応を行うことが好ましい。
 本発明のフィルムはポリエステル系樹脂(C)を含有することを特徴としている。
 本発明の成型体はポリエステル系樹脂(C)を含有することを特徴としている。
 本発明のポリエステル系樹脂(C)は、アミド結合を分子鎖中に有し、実用上充分な高分子量を持ち、かつ結晶化度が高いので、フィルムなど生分解性を要求される分野で好適に用いられる。
図1は、実施例1で得られた樹脂の13C-NMRスペクトルである。
 本発明のポリエステル系樹脂(C)は、脂肪族ポリエステル樹脂(A)とポリイソシアネート化合物(B)とをアミド化触媒の存在下で反応させることにより得られ、下記式(1)で表される構成単位を含むことを特徴とする。前記ポリイソシアネート化合物(B)は、ジイソシアネート化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 式(1)において、Rは、炭素数1~20の脂肪族炭化水素基、脂環構造を含む炭化水素基または芳香環を含む炭化水素基を表す。前記炭素数1~20の脂肪族炭化水素基の具体例としては、メチレン、エチレン、プロピレン、メチルエチレン、ブチレン、1-メチルプロピレン、2-メチルプロピレン、1,2-ジメチルプロピレン、1,3-ジメチルプロピレン、1-メチルブチレン、2-メチルブチレン、3-メチルブチレン、4-メチルブチレン、2,4-ジメチルブチレン、1,3-ジメチルブチレン、ペンチレン、へキシレン、ヘプチレン、オクチレン、デシレン、ドデシレン、エタン-1,1-ジイル、プロパン-2,2-ジイル、トリデシレン、テトラデシレン、ペンタデシレン、ヘキサデシレン、ヘプタデシレン、オクタデシレン、ノナデシレン等が挙げられるが、かかるアルキル基中の任意の-CH2-は-O-、-CO-、-COO-または-SiH2-で置換されていてもよい。また、前記脂環構造を含む炭化水素基の具体例としては、シクロプロピレン、1,3-シクロブチレン、1,3-シクロペンチレン、1,4-シクロヘキシレン、1,5-シクロオクチレン、ノルボニレン、1,3-シクロペンチレン、1,2-シクロヘキシレン、1,4-シクロヘキシレン、1,4-ジメチルシクロヘキシレン、1,3-ジメチルシクロヘキシレン、1-メチル-2,4-シクロヘキシレン、4,4′-メチレン-ビスシクロヘキシレン、および3-メチレン-3,5,5-トリメチル-シクロヘキシレンが挙げられる。また、前記芳香環を含む炭化水素基の具体例としては、m-フェニレン、p-フェニレン、4,4′-ジフェニレン、1,4-ナフタレンおよび1,5-ナフタレン、4,4′-メチレンジフェニレン、2,4-トリレン、2,6-トリレン、m-キシリレン、p-キシリレン、m-テトラメチルキシリレン、4,4′-オキシジフェニレンおよびクロロジフェニレンが挙げられる。
 また、上記ポリエステル樹脂(C)1分子あたりに、上記式(1)で表される構成単位を1~200ユニット、好ましくは1~100ユニット、さらに好ましくは1~50ユニット含んでいる。
 また、上記ポリエステル系樹脂(C)の結晶化度は10~70%であることが好ましく、10~60%であることがより好ましく、10~50%であることがさらに好ましい。
 なお、本発明において結晶化度は、後述する実施例に記載された方法で測定された値である。
 また、上記ポリエステル系樹脂(C)の重量平均分子量は100,000~1,000,000であることが好ましく、100,000~700,000であることがより好ましく、100,000~500,000であることがさらに好ましい。上記ポリエステル系樹脂(C)の重量平均分子量が前記範囲内であると成型性および機械強度の点で好ましい。
 前記ポリエステル系樹脂(C)の製造方法は、脂肪族ポリエステル樹脂(A)およびポリイソシアネート化合物(B)をアミド化触媒の存在下で反応させる工程を含むことを特徴としている。前記ポリイソシアネート化合物(B)は、ジイソシアネート化合物であることが好ましい。
 前記脂肪族ポリエステル樹脂(A)としては、本発明の目的を損なわないものであれば特に限定されないが、例えば、ポリ乳酸、ポリグリコール酸、ポリ(3-ヒドロキシ酪酸)、ポリ(4-ヒドロキシ酪酸)、ポリ(2-ヒドロキシ-n-酪酸)、ポリ(2-ヒドロキシ-3,3-ジメチル酪酸)、ポリ(2-ヒドロキシ-3-メチル酪酸)、ポリ(2-メチル乳酸)、ポリ(2-ヒドロキシ吉草酸)、ポリ(2-ヒドロキシカプロン酸)、ポリ(2-ヒドロキシラウリン酸)、ポリ(2-ヒドロキシミリスチン酸)、ポリ(2-ヒドロキシパルミチン酸)、ポリ(2-ヒドロキシステアリン酸)、ポリリンゴ酸、ポリクエン酸、ポリ酒石酸、ポリ(2-ヒドロキシ-3-メチル酪酸)、ポリ(2-シクロヘキシル-2-ヒドロキシ酢酸)、ポリマンデル酸、ポリサリチル酸、ポリブチロラクトン、ポリカプロラクトン、ポリバレロラクトン、ポリメチルバレロラクトン、ポリエチルバレロラクトン等のポリラクトン、ポリエチレンサクシネート、ポリエチレンアジペート、ポリエチレンセバケート、ポリジエチレンサクシネート、ポリジエチレンアジペート、ポリジエチレンセバケート、ポリブチレンサクシネート、ポリブチレンアジペート、ポリブチレンセバケート等のジオールとジカルボン酸からなる脂肪族ポリエステル樹脂などが挙げられる。これらの中でも、ポリ乳酸、ポリグリコール酸、ポリ(3-ヒドロキシ酪酸)、ポリ(4-ヒドロキシ酪酸)、ポリ(2-ヒドロキシ-n-酪酸)が好ましい。
 また、既存の脂肪族ポリエステル樹脂を用いてもよいが、ヒドロキシカルボン酸から得られる脂肪族ポリエステル樹脂が好ましい。ヒドロキシカルボン酸から脂肪族ポリエステル樹脂(A)を得る方法としては、例えば以下の二通りの方法が挙げられる。すなわち、ヒドロキシカルボン酸を直接脱水縮合する直接法と、ヒドロキシカルボン酸から一旦環状二量体を合成し、該二量体を開環重合する方法とがある。
 具体例としては、原料のヒドロキシカルボン酸を不活性ガス雰囲気中において加熱し、圧力を降下させて重縮合反応させ、最終的に所定の温度および圧力の条件下で重縮合反応を行うことにより、脂肪族ポリエステル樹脂(A)を得る方法がある。該重縮合反応は触媒存在下に行ってもよい。
 該触媒としては、周期律表第2族、12族、13族、14族もしくは15族の金属、またはその酸化物もしくはその塩等があげられる。具体的には、亜鉛末、錫末、アルミニウムもしくはマグネシウム等の金属、酸化アンチモン、酸化亜鉛、酸化錫、酸化アルミニウム、酸化マグネシウムもしくは酸化チタン等の金属酸化物、塩化第一錫、塩化第二錫、臭化第一錫、臭化第二錫、フッ化アンチモン、塩化亜鉛、塩化マグネシウムもしくは塩化アルミニウム等の金属ハロゲン化物、炭酸マグネシウムもしくは炭酸亜鉛等の炭酸塩、酢酸錫、オクタン酸錫、乳酸錫、酢酸亜鉛もしくは酢酸アルミニウム等の有機カルボン酸塩、またはトリフルオロメタンスルホン酸錫、トリフルオロメタンスルホン酸亜鉛、トリフルオロメタンスルホン酸マグネシウム、メタンスルホン酸錫もしくはp-トルエンスルホン酸錫等の有機スルホン酸塩等があげられる。その他、ジブチルチンオキサイド等の上記金属の有機金属酸化物、チタニウムイソプロポキサイド等の上記金属の金属アルコキサイド、ジエチル亜鉛等の上記金属のアルキル金属、ダウエックスもしくはアンバーライト等のイオン交換樹脂等、または、硫酸、メタンスルホン酸もしくはp-トルエンスルホン酸等のプロトン酸などが挙げられ、重合速度が速く高分子量のポリマーが得られる錫もしくは亜鉛の金属またはその金属化合物が好ましい。さらには、金属錫または錫化合物が特に好ましい。
 このようにして得られた脂肪族ポリエステル樹脂(A)を、そのまま前記工程に用いてもよいし、該樹脂(A)の末端ヒドロキシル基をカルボキシル基に変換してから、前記工程に用いてもよい。該樹脂(A)の末端ヒドロキシル基をカルボキシル基に変換する方法としては、酸無水物を添加する方法が挙げられる。該酸無水物としては、無水コハク酸、無水フタル酸、無水マレイン酸、テトラブロム無水フタル酸、テトラヒドロ無水フタル酸、無水トリメリット酸またはドデシル無水コハク酸などが挙げられ、無水コハク酸が特に好ましい。該酸無水物の添加量は、上記変換前の脂肪族ポリエステル樹脂(A)100質量部に対して、0.1~10重量部であり、好ましくは0.5~8重量部であり、さらに好ましくは0.5~5重量部である。
 また、上記いずれかの方法により得られた脂肪族ポリエステル樹脂(A)をさらに加水分解した樹脂を、前記工程に用いてもよい。
 (ヒドロキシカルボン酸)
 前記ヒドロキシカルボン酸としては、本発明の目的を損なわないものであれば特に限定されないが、例えば、乳酸、グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、2-ヒドロキシ-n-酪酸、2-ヒドロキシ-3,3-ジメチル酪酸、2-ヒドロキシ-3-メチル酪酸、2-メチル乳酸、2-ヒドロキシ吉草酸、2-ヒドロキシカプロン酸、2-ヒドロキシラウリン酸、2-ヒドロキシミリスチン酸、2-ヒドロキシパルミチン酸、2-ヒドロキシステアリン酸、リンゴ酸、クエン酸、酒石酸、2-ヒドロキシ-3-メチル酪酸、2-シクロヘキシル-2-ヒドロキシ酢酸、マンデル酸、サリチル酸もしくはカプロラクトン等のラクトン類を開環させたもの、またはこれらの混合物などが挙げられる。これらの中でも、使用時の重合速度の増大が特に顕著で、なおかつ入手容易な乳酸、もしくはグリコール酸またはこれらの水溶液が好ましく、乳酸が特に好ましい。前記ヒドロキシカルボン酸が乳酸であると操作性の点で好ましい。また、上記ヒドロキシカルボン酸が乳酸である場合、上記脂肪族ポリエステル樹脂(A)としてポリ乳酸が得られる。また、乳酸にはL体とD体とが存在するが、L体含有率またはD体含有率が大きい方が好ましい。具体的には、L体含有率またはD体含有率は、好ましくは90%以上、より好ましくは95%以上、特に好ましくは98%以上である。L体含有率またはD体含有率が前記範囲内であると、得られる樹脂は高い結晶性を発現する傾向がある。
 (脂肪族ポリエステル樹脂(A))
 前記脂肪族ポリエステル樹脂(A)としては、原料の上記ヒドロキシカルボン酸に応じて、ポリ乳酸、ポリグリコール酸、ポリ(3-ヒドロキシ酪酸)、ポリ(4-ヒドロキシ酪酸)、ポリ(2-ヒドロキシ-n-酪酸)、ポリ(2-ヒドロキシ-3,3-ジメチル酪酸)、ポリ(2-ヒドロキシ-3-メチル酪酸)、ポリ(2-メチル乳酸)、ポリ(2-ヒドロキシカプロン酸)、ポリ(2-ヒドロキシ-3-メチル酪酸)、ポリ(2-シクロヘキシル-2-ヒドロキシ酢酸)、ポリ(マンデル酸)もしくはポリカプロラクトン、またはこれらの共重合体もしくは混合物などが挙げられる。
 また、上記脂肪族ポリエステル樹脂(A)の重量平均分子量は、5,000~100,000であることが好ましく、10,000~80,000であることがさらに好ましく、10,000~50,000であることが特に好ましい。上記脂肪族ポリエステル樹脂(A)の重量平均分子量が前記範囲内であると、脂肪族ポリエステル樹脂の重合時間が短くなり、工程時間の短縮が可能である点で好ましい。
 なお、本発明において、重量平均分子量(以下「Mw」とも記す。)は、後述する実施例に記載した測定方法で求める。
 前記脂肪族ポリエステル樹脂(A)中の触媒に由来する重金属の含有量は、300ppm以下であることが好ましく、100ppm以下であることがより好ましく、30ppm以下であることが最も好ましい。当該含有量の下限値は特に限定されない。前記脂肪族ポリエステル樹脂(A)中の触媒に由来する重金属の含有量が前記範囲内であると、高分子量のポリエステル系樹脂(C)が得られる傾向がある。
 前記脂肪族ポリエステル樹脂(A)のSn含有量は300ppm以下であることが好ましく、100ppm以下であることがより好ましく、30ppm以下であることが特に好ましい。特にSnの含有量を前記範囲に制御することにより高分子量のポリエステル系樹脂(C)が得られる。また、当該Sn含有量の下限値は特に限定されない。前記脂肪族ポリエステル樹脂(A)のSn含有量が前記範囲内であると、高分子量のポリエステル系樹脂(C)が得られる傾向がある。前記脂肪族ポリエステル樹脂(A)に含有するSnの除去方法としては、公知の方法を用いることができ、例えば、塩酸/2-プロパノールにより処理する方法が挙げられる。なお、Sn等の重金属の含有量の測定方法は以下のとおりである。
 〈測定方法〉
 試料を硫酸および過酸化水素により湿式分解後、得られた分解物を1ml定容し、塩酸で40倍に希釈したものを検液として、ICP発光分光分析装置(SHIMADZU社製 ICPS-8100型)によりSn等の重金属の含有量を測定する。該測定方法によるSn等の重金属の含有量の検出限界は、4ppm未満である。
 本発明に係る製造方法は、前記脂肪族ポリエステル樹脂(A)およびポリイソシアネート化合物(B)をアミド化触媒の存在下で反応させる工程を含む。該工程の具体例として以下の方法が挙げられるが、本発明の目的を損なわない限り、何らこれに限定されない。
 まず、前記脂肪族ポリエステル樹脂(A)と溶媒とを混合し、常圧、窒素雰囲気下で、該混合物を所定の温度まで昇温する。次に、該混合物に触媒を加えた後、さらにポリイソシアネート化合物(B)を加え、所定の温度で反応させる。最後に、得られた反応生成物を脱炭酸することによりポリエステル系樹脂(C)を得ることができる。前記ポリイソシアネート化合物(B)は、ジイソシアネート化合物であることが好ましい。
 当該工程における反応温度は40~180℃であることが好ましく、60~160℃であることがさらに好ましく、80~150℃であることが特に好ましい。当該工程における反応温度が前記範囲内であると、反応速度が速く、ゲル化が起こりにくい点で好ましい。また、当該工程における反応温度が、前記上限を超えると架橋反応が進行しゲル化が起こりやすくなる場合があり、前記下限未満であると反応速度が遅くなり分子量増大に時間を要することがある。
 当該工程に用いる溶媒としては、トルエン、キシレン、エチルベンゼン、メシチレン、クメンなどの芳香族系炭化水素類;プロパン、ヘキサン、ヘプタン、シクロヘキサンなどの脂肪族系炭化水素類;塩化メチレン、クロロホルム、1,2-ジクロロエタン、1,2-ジクロロベンゼンなどのハロゲン系炭化水素類が挙げられる。
 (ポリイソシアネート化合物(B))
 当該工程に用いるポリイソシアネート化合物は、イソシアネート基を2個以上有している化合物であり、本発明の目的を阻害しなければ特に限定されない。イソシアネート基を3個以上有するポリイソシアネート化合物としては、1,6,11-ウンデカントリイソシアネートなどのトリイソシアネート類やポリフェニルメタンポリイソシアネート等の多イソシアネート置換化合物類が挙げられる。前記ポリイソシアネート化合物(B)は、ジイソシアネート化合物であることが好ましい。
 ジイソシアネート化合物としては、2,4-トリレンジイソシアネート、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートとの混合体、ジフェニルメタンジイソシアネート、1,5-ナフチレンジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、1,3-(ビスイソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、ビス(イソシアナトメチル)ビシクロ-[2,2,1]-ヘプタンまたはビス(4-イソシアナトシクロヘキシル)メタンなどが挙げられ、より好適な例として、1,3-キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、1,3-(ビスイソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、ビス(イソシアナトメチル)ビシクロ-[2,2,1]-ヘプタンまたはビス(4-イソシアナトシクロヘキシル)メタンなどが挙げられる。
 これらの中でも、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、1,3-(ビスイソシアナトメチル)シクロヘキサン、ビス(イソシアナトメチル)ビシクロ-[2,2,1]-ヘプタンおよびビス(4-イソシアナトシクロヘキシル)メタンからなる群より選ばれる1種の化合物であることが好ましく、また、脂肪族ジイソシアネート化合物であることが好ましく、ヘキサメチレンジイソシアネートであることが特に好ましい。上記ポリイソシアネート化合物(B)が、前記化合物であると、色調の点で好ましい。
 上記ポリイソシアネート化合物(B)の添加量は、上記脂肪族ポリエステル樹脂(A)のカルボン酸価から求めた数平均分子量(以下「Mn」とも記す。)に基づいて決定する。カルボン酸価から脂肪族ポリエステル樹脂(A)の数平均分子量を求める方法は、1分子の脂肪族ポリエステル樹脂(A)末端に、一つまたは二つのカルボキシル基があるとして計算する。なお、カルボン酸価は、後述する実施例に記載した方法で測定する。
 上記ポリイソシアネート化合物(B)の添加量は、上記脂肪族ポリエステル樹脂(A)に対して0.8~2.0倍モルであることが好ましく、0.8~1.5倍モルであることがさらに好ましく、0.8~1.3倍モルであることが特に好ましい。ここで「倍モル」とは、「対象物質のモル数/基準物質1モル」により算出される値の単位である。
 上記ポリイソシアネート化合物(B)の添加量が前記下限値未満であると、ポリイソシアネート化合物(B)の添加効果が小さく、高分子量のポリエステル系樹脂(C)を得ることが困難となる。一方、前記上限値を超えると、イソシアネートが架橋反応などの副反応を引き起こし、ゲル状のポリエステル系樹脂(C)が生成することがある。
 (アミド化触媒)
 本発明においてアミド化触媒とは、上記脂肪族ポリエステル樹脂(A)の末端カルボキシル基部分を優先的に上記ポリイソシアネート化合物(B)と反応させて、アミド結合を形成させる触媒をいう。
 前記工程に用いるアミド化触媒は、周期律表第1族、2族および3族における金属群より選ばれる少なくとも1種の金属を含むことが好ましく、カリウム、マグネシウム、カルシウムおよびイッテルビウムの群より選ばれる少なくとも1種の金属を含むことがより好ましく、マグネシウムまたはカルシウムを含むことが特に好ましい。このような金属を含んでいると触媒効果と色調の点で好ましい。
 上記周期律表第1族金属を含むアミド化触媒としては、リチウム、ナトリウム、カリウム、ルビジウムもしくはセシウムの、有機酸塩、金属アルコキシドもしくは金属錯体(アセチルアセトナートなど)等の有機金属化合物;金属酸化物、金属水酸化物、炭酸塩、リン酸塩、硫酸塩、硝酸塩、塩化物もしくはフッ化物などの無機金属化合物が挙げられ、また上記周期律表第2族金属を含むアミド化触媒としては、ベリリウム、マグネシウム、カルシウム、ストロンチウムもしくはバリウムの、有機酸塩、金属アルコキシドもしくは金属錯体(アセチルアセトナートなど)等の有機金属化合物;金属酸化物、金属水酸化物、炭酸塩、リン酸塩、硫酸塩、硝酸塩、塩化物もしくはフッ化物などの無機金属化合物が挙げられる。さらには、上記周期律表第3族金属を含むアミド化触媒としては、スカンジウム、イッテルビウム、イットリウムもしくは他の希土類の、有機酸塩、金属アルコキシドもしくは金属錯体(アセチルアセトナートなど)等の有機金属化合物;金属酸化物、金属水酸化物、炭酸塩、リン酸塩、硫酸塩、硝酸塩、塩化物もしくはフッ化物などの無機金属化合物が挙げられる。これらは単独で使用しても、また併用してもよい。これらの金属化合物触媒の中でも、ビス(アセチルアセトナト)マグネシウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、塩化マグネシウム、イッテルビウムトリフラートなどが好ましく、さらにはマグネシウム化合物、特に、ビス(アセチルアセトナト)マグネシウム、ステアリン酸マグネシウムが好ましい。これらの触媒は2種以上併用することもできる。
 上記アミド化触媒の添加量は、上記脂肪族ポリエステル樹脂(A)100質量部に対して、0.01~2質量部、好ましくは0.01~1質量部、より好ましくは0.01~0.5質量部である。
 上記脂肪族ポリエステル樹脂(A)における一方の末端がヒドロキシル基の場合、該ヒドロキシ部分を上記ポリイソシアネート化合物(B)と反応させて、ウレタン結合を形成させる必要がある。前記ポリイソシアネート化合物(B)は、ジイソシアネート化合物であることが好ましい。
 このようなウレタン結合を形成させる触媒としては、ジブチル錫ジラウリレート、ジブチル錫ジクロライド、ジブチル錫オキサイド、ジブチル錫ジブロマイド、ジブチル錫ジマレエート、ジブチル錫ジアセテート、ジブチル錫スルファイド、トリブチル錫スルファイド、トリブチル錫オキサイド、トリブチル錫アセテート、トリエチル錫エトキサイド、トリブチル錫エトキサイド、ジオクチル錫オキサイド、トリブチル錫クロライド、トリブチル錫トリクロロアセテート、2-エチルヘキサン酸錫、ジブチルチタニウムジクロライド、テトラブチルチタネート、ブトキシチタニウムトリクロライドなどのチタン系、オレイン酸鉛、2-エチルヘキサン酸鉛、安息香酸鉛、ナフテン酸鉛などの鉛系、2-エチルヘキサン酸鉄、鉄アセチルアセトネートなどの鉄系、安息香酸コバルト、2-エチルヘキサン酸コバルトなどのコバルト系、ナフテン酸亜鉛、2-エチルヘキサン酸亜鉛などの亜鉛系、ナフテン酸ジルコニウム、トリエチルアミン、トリエチレンジアミン、N,N-ジメチルベンジルアミン、N-メチルモルホリン、ジアザビシクロウンデセン(DBU)などが挙げられる。このウレタン結合を形成させる触媒の添加量は、上記脂肪族ポリエステル樹脂(A)100質量部に対して、0.01~2質量部、好ましくは0.01~1質量部、より好ましくは0.01~0.5質量部である。
 脂肪族ポリエステル樹脂(A)およびポリイソシアネート化合物(B)をアミド化触媒の存在下で反応させてポリエステル系樹脂(C)を得る工程では、反応物の分子量の増加とともに粘度が急激に上昇する。そのため、前述のように溶液で攪拌しながら反応させる方法のほかに、押出機、特に二軸混練押出機を用い、無溶媒で混練、反応させて生成物を押し出す方法も、溶媒が不要で生成物の後処理が簡便になり効果的である。
 また、本発明のポリエステル系樹脂(C)は、下記式(2)~(4)からなる群より選ばれる少なくとも1種の式で表される構成単位を主成分として有するポリエステル系樹脂であってもよい。このようなポリエステル系樹脂は生分解性を有する。
 ここで「主成分」とは全樹脂中に、下記式(2)~(4)からなる群より選ばれる少なくとも1種の式で表される構成単位を60重量%以上、より好ましくは90重量%以上含むことを意味する。
Figure JPOXMLDOC01-appb-C000010
 式(2)中、R1は、それぞれ独立に、置換または無置換の炭素数1~20の脂肪族炭化水素基を表し、nは20~1500、好ましくは25~1500、より好ましくは30~1500の整数を表す。置換または無置変の炭素数1~20の脂肪族炭化水素基は、前記脂肪族ポリエステル樹脂(A)の残基であり、エチリデン、プロピリデン等が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 式(3)中、R1は、それぞれ独立に、置換または無置換の炭素数1~20の脂肪族炭化水素基を表し、R2は、置換または無置換の炭素数1~20の脂肪族炭化水素基、炭素数2~20の不飽和炭化水素基または芳香族炭化水素基を表し、nは20~1500、好ましくは25~1500、より好ましくは30~1500の整数を表す。前記置換または無置換の炭素数1~20の脂肪族炭化水素基は、上述した酸無水物の残基であり、エチレン等が挙げられる。前記炭素数2~20の不飽和炭化水素基は、上述した酸無水物の残基であり、ビニレン等が挙げられる。前記芳香族炭化水素基は、上述した酸無水物の残基であり、1,2-フェニレン等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 式(4)中、R1は、それぞれ独立に、置換または無置換の炭素数1~20の脂肪族炭化水素基を表し、R2は、置換または無置換の炭素数1~20の脂肪族炭化水素基、炭素数2~20の不飽和炭化水素基または芳香族炭化水素基を表し、nおよびmは、それぞれ独立に20~1500、好ましくは25~1500、より好ましくは30~1500の整数を表す。前記置換または無置換の炭素数1~20の脂肪族炭化水素基は、上述した酸無水物の残基であり、エチレン等が挙げられる。前記炭素数2~20の不飽和炭化水素基は、上述した酸無水物の残基であり、ビニレン等が挙げられる。前記芳香族炭化水素基は、上述した酸無水物の残基であり、1,2-フェニレン等が挙げられる。
 上記式(2)~(4)からなる群より選ばれる少なくとも1種の式で表される構成単位を主成分として有するポリエステル系樹脂(C)は、例えば脂肪族ポリエステル樹脂(A)および/または末端ヒドロキシル基をカルボン酸に変換した脂肪族ポリエステル樹脂(A)と、ポリイソシアネート化合物(B)とをアミド化触媒の存在下で反応させて、前記記載の方法で製造することができる。前記のアミド化触媒を使用することは、マイルドな条件でアミド化反応を行うことができ副反応を抑制できるので、目的とするポリエステル系樹脂(C)を高純度で製造することが可能となり好ましい態様である。
 上記脂肪族ポリエステル樹脂(A)および末端ヒドロキシル基をカルボン酸に変換した脂肪族ポリエステル樹脂(A)の重量平均分子量は、5,000~100,000であることが好ましく、10,000~50,000であることがさらに好ましい。このような重量平均分子量であると、生分解性、熱物性および工程時間の点から好ましい。
 また、上記式(2)~(4)からなる群より選ばれる少なくとも1種の式で表される構成単位を主成分として有するポリエステル系樹脂(C)の重量平均分子量は、100,000~1,000,000であることが好ましく、100,000~700,000であることがより好ましく、100,000~500,000であることがさらに好ましい。上記ポリエステル系樹脂(C)の重量平均分子量が前記範囲内であると成型性および機械強度の点で好ましい。また、上記ポリエステル系樹脂(C)の重量平均分子量は、前記範囲内であり、かつ上記脂肪族ポリエステル樹脂(A)の重量平均分子量の3倍以上200倍以下であることが好ましく、4倍以上100倍以下であることがより好ましく、5倍以上50倍以下であることが特に好ましい。このような範囲であると、ポリエステル系樹脂(C)をより高分子量化できるため、機械的物性等樹脂の物性の点で好ましい。
 上記脂肪族ポリエステル樹脂(A)および末端ヒドロキシル基をカルボン酸に変換した脂肪族ポリエステル樹脂(A)のSn含有量は300ppm以下であることが好ましく、100ppm以下であることがより好ましく、30ppm以下であることが特に好ましい。特にSnの含有量を前記範囲に制御することにより高分子量のポリエステル系樹脂(C)が得られる。また、当該Sn含有量の下限値は特に限定されない。上記脂肪族ポリエステル樹脂(A)および末端ヒドロキシル基をカルボン酸に変換した脂肪族ポリエステル樹脂(A)のSn含有量が前記範囲内であると、高分子量のポリエステル系樹脂(C)が得られる傾向がある。上記脂肪族ポリエステル樹脂(A)および末端ヒドロキシル基をカルボン酸に変換した脂肪族ポリエステル樹脂(A)に含有するSnの除去方法としては、公知の方法を用いることができ、例えば、塩酸/2-プロパノールにより処理する方法が挙げられる。なお、Sn等の重金属の含有量の測定方法は上述したとおりである。
 上記式(2)~(4)からなる群より選ばれる少なくとも1種の式で表される構成単位を主成分として有するポリエステル系樹脂(C)の結晶化度は、10~70%であることが好ましく、10~60%であることがより好ましく、10~50%であることがさらに好ましい。
 上記式(2)~(4)からなる群より選ばれる少なくとも1種の式で表される構成単位を主成分として有するポリエステル系樹脂(C)は、下記式(a)およびアミド結合が生分解性を有するため、生分解性を有する樹脂である。
Figure JPOXMLDOC01-appb-C000013
 上記式(2)で表される構成単位を主成分として有するポリエステル樹脂を得る方法の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000014
 上記式(3)で表される構成単位を主成分として有するポリエステル樹脂を得る方法の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000015
 上記式(4)で表される構成単位を主成分として有するポリエステル樹脂を得る方法の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000016
 本発明のポリエステル系樹脂(C)は、種々の方法により製造することができる。例えば、2軸押出機を用い、上記脂肪族ポリエステル樹脂(A)と上記ポリイソシアネート化合物(B)とを上記アミド化触媒の存在下で押出反応することにより、ポリエステル系樹脂(C)を製造する方法が挙げられる。以下、2軸押出機で反応を行う方法の一例について詳細に説明する。
 2軸押出機に、上記脂肪族ポリエステル樹脂(A)と、上記アミド化触媒との混合物を装入する。さらに、前記2軸押出機の途中より上記ポリイソシアネート化合物(B)で装入し、上記脂肪族ポリエステル樹脂(A)と上記ポリイソシアネート化合物(B)とを押出反応させて、ポリエステル系樹脂(C)を好適に製造することができる。
 2軸押出機において、バレル温度は160~200℃であることが好ましく、160~190℃であることがより好ましく、160~180℃であることがさらに好ましい。原料フィードから吐出までの滞留時間は1~30分であることが好ましく、1~10分であることが好ましい。
 本発明のポリエステル系樹脂(C)は、種々の成形加工方法により成形することができ、例えば、上記押出反応後、出てきたストランドをベルトコンベアーで空冷し、続けてペレタイザーでカッティングすることで、ポリエステル系樹脂(C)からなるペレットを得ることができる。
 また、本発明のフィルムは、上記ポリエステル系樹脂(C)を含有している。当該フィルムを得る方法としては特に制限がなく、公知の成型方法によりフィルム用に成形される。例えば、T-ダイ成形法、インフレーション成形法、カレンダー成形法、熱プレス成形法によりフィルム状に成形する方法が挙げられる。またこれらのフィルムは少なくとも一方向に延伸されていてもよい。延伸方法としては特に制限はなく、ロール延伸法、テンター法、インフレーション法などが挙げられる。
 本発明の成型体は、上記ポリエステル系樹脂(C)を含有している。当該成型体の具体例としては、トレー、カップ、透明パック、家電製品用筐体、自動車部材が挙げられる。
 <用途>
 本発明のポリエステル系樹脂(C)は、上述のとおり種々の成形加工方法により成形することができ、特に限定されることなく様々な用途に好適に使用することができる。例えば、自動車部品、家電材料部品、電気・電子部品、建築部材、土木部材、農業資材、日用品、各種フィルム、通気性フィルムまたはシートなどに使用することができる。また、一般産業用途及びレクリエーション用途に好適な発泡体として用いられる。さらに、糸やテキスタイル、医療又は衛生用品などの各種用途にも使用することができる。中でも、耐熱性、耐衝撃性が必要とされる自動車材料部品、家電材料部品または電気・電子材料部品に好適に使用することができる。具体的には、自動車部品材料用途では、フロントドア、ホイルキャップなどのこれまで樹脂部品が用いられている部品への展開、家電材料部品用途ではパソコン、ヘッドホンステレオ、携帯電話などの製品の筐体部品への展開、電気・電子部品では、反射材料フィルム・シート、偏光フィルム・シートへの展開が挙げられる。
 特に、上記式(2)~(4)からなる群より選ばれる少なくとも1種の式で表される構成単位を主成分として有するポリエステル系樹脂(C)は、生分解性を有し機械的特性にも優れるので、生分解性が要求される種々の分野に適している。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。
 本実施例における各測定方法を以下に示す。
 <重量平均分子量(Mw)>
 ゲルパーミエーションクロマトグラフィー(GPC、SHODEX社製GPC-100、カラム:SHODEX社製LF-G、LF-804)(カラム温度40℃、流速1mL/min、クロロホルム溶媒)により、ポリスチレン標準サンプルとの比較で求めた。
 <結晶化度>
 DSC(SII社製DSC装置RDC220)により求めた。試料を5~6mg秤量し、窒素シールしたパンに計り込み、窒素シールされた予め30℃に設定されたDSC測定部に装入した後、10℃/minの昇温速度で200℃まで昇温した。その後、99℃/minの降温速度で10℃まで降温した。さらに、10℃/minの昇温速度で200℃まで昇温した。2回目の昇温時の結晶融解エンタルピー(ΔHm)を測定し、[[(ΔHm)/(ΔH0)]×100]を求め、結晶化度とした。ここでΔH0は完全理想結晶融解エンタルピーを表し、ポリ乳酸の数値93J/gを使用した。
 <融点>
 DSC(SII社製DSC装置RDC220)により求めた。試料を5~6mg秤量し、窒素シールしたパンに計り込み、窒素シールされた予め30℃に設定されたDSC測定部に装入した後、10℃/minの昇温速度で200℃まで昇温した。
 <ガラス転移温度>
 DSC(SII社製DSC装置RDC220)により求めた。試料を5~6mg秤量し、窒素シールしたパンに計り込み、窒素シールされた予め30℃に設定されたDSC測定部に装入した後、10℃/minの昇温速度で200℃まで昇温した。
 <分解温度>
 TG-DTA(SII社製DSC装置TG-DTA-320)により求めた。試料を5~6mg秤量し、アルミパンに計り込み、窒素雰囲気下で予め30℃に設定されたTG-DTA測定部に装入した後、10℃/minの昇温速度で500℃まで昇温した。
 <カルボン酸価>
 測定対象ポリマー0.5gに対してクロロホルム/メタノール=7/3の混合溶媒を20mL加え、完全にポリマーを溶解させた。その後、指示薬としてブロムチモールブルー/フェノールレッド混合のエタノール溶液を2滴加えると、黄色を呈した。0.1Nアルコール性水酸化カリウム溶液で滴定を行い、色が黄色から薄紫色に変化した点を終点とし、ポリマーのカルボン酸価を求めた。
 <末端カルボン酸率>
 ポリ乳酸と無水コハク酸とを反応させて得られた試料の1H-NMR(装置:日本電子製ECA500、内部標準テトラメチルシラン:δ=0ppm)を測定した。このスペクトルにおいて、
 δ=2.2ppm(マルチプレット):
    ポリ乳酸末端に反応したコハク酸ユニットのメチレン鎖水素由来(4H)
 δ=4.5ppm(カルテット):
    ポリ乳酸鎖末端ヒドロキシル基のα位のメチン水素由来(1H)
 δ=4.9ppm(マルチプレット):
    ポリ乳酸鎖内部のメチン水素由来(重合乳酸数H)
 以上3種の積分値の比率より、末端カルボン酸数(=ポリ乳酸カルボキシル基数+コハク酸化された末端カルボキシル基数)と末端ヒドロキシル基数(未反応のポリ乳酸末端ヒドロキシル基数)から、末端カルボン酸率を計算した。
 末端カルボン酸率(%)=末端カルボン酸数×100/(末端カルボン酸数+末端ヒドロキシル基数)
 <鎖延長ポリマーにおけるウレタン結合とアミド結合との比率>
 ポリ乳酸とヘキサメチレンジイソシアネートとを反応させて得られた試料(鎖延長ポリマー)の13C-NMR(装置:日本電子製ECA500、内部標準クロロホルム-d:δ=77ppm)を測定した。このスペクトルにおいて、
 δ=39ppm:
    アミド結合に隣接したヘキサメチレンユニットのα位の炭素由来
 δ=41ppm:
    ウレタン結合に隣接するヘキサメチレンユニットのα位の炭素由来
 以上2種の積分値の比率より、鎖延長ポリマーにおけるウレタン結合とアミド結合との比率(ウレタン結合/アミド結合)を求めた。この比率は、鎖延長ポリマーにおける末端ヒドロキシル基数と末端カルボン酸数との比率とほぼ一致した。
 [製造例1]
 原料の乳酸から環状ラクチド(二量体)を合成し、該ラクチドを開環重合することにより、LACEA H400(三井化学社製、Mw;240,000)が得られた。2リットルの丸底フラスコにLACEA H400を300gとキシレンを600g装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、140℃まで昇温した。該フラスコ内に蒸留水30gを、滴下漏斗を用いて5時間かけて加え、140℃、常圧で30時間保持した。その後、クロロホルムを加え、メタノールで沈殿操作を行うことで白色粉末のポリ乳酸(以下「PLA」とも記す。)が得られた。該PLAについて、上記測定方法により重量平均分子量を測定したところ、40,000であった。また、上記測定方法によりカルボン酸価を求めたところ、9.09×10-5(mol/g)であった。カルボン酸価から計算した数平均分子量Mnは11,000であった。カルボン酸価からPLAの数平均分子量(Mn)を求める方法は、1分子のPLAの末端に、カルボキシル基とヒドロキシル基が一つずつあるとして計算した。すなわち、カルボン酸価が9.09×10-5(mol/g)の場合、1gのPLA中には、9.09×10-5(mol)のPLA分子があることになるので、Mnは、1/(9.09×10-5)=11,000となった。
 [製造例2]
 Purac社の90%L-乳酸(L体が99.5%の乳酸)333.00g(3.327mol)と試薬の塩化スズ(II)二水和物(和光純薬社製)1.82gをディーンスタークトラップが備え付けられた500mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、140℃まで昇温した。140℃、常圧、窒素雰囲気下で1時間保持した後、該フラスコ内を減圧し、140℃、50mmHgで2時間保持した。次に、該フラスコ内を常圧まで放圧した後、該フラスコ内にキシレンを17.02g加えた。次に、ディーンスタークトラップを、キシレンが充満されたディーンスタークトラップに交換した。次に該フラスコ内を500mmHgに減圧してから昇温し、155℃、500mmHgで10時間保持し、透明なポリ(L-乳酸)(以下「PLLA(1)」とも記す。)が得られた。該PLLA(1)について、上記測定方法により重量平均分子量を測定したところ、22,000であった。また、上記測定方法によりカルボン酸価を求めたところ、1.25×10-4(mol/g)であった。カルボン酸価から計算した数平均分子量Mnは8,000であった。
 さらに、前記フラスコ内に無水コハク酸5.992gを加え、150℃で2時間攪拌し、前記PLLA(1)の末端ヒドロキシル基をカルボキシル基に変換したポリ(L-乳酸)(以下「PLLA(2)」とも記す。)を得た。その後、該フラスコ内を常圧に放圧し、キシレン160gを加えて希釈後、得られた溶液を抜き出し窒素気流下でキシレンを風乾した。該PLLA(2)を、33%塩酸を1%含有した2-プロパノール0.5Lにて2回洗浄し、ろ過した後、さらにメタノールで数回洗浄して白色のPLLA(2)を得た。該PLLA(2)について、上記測定方法により末端カルボン酸率を求めたところ91%であった。また、該PLLA(2)について、上記測定方法によりカルボン酸価を求めたところ、2.27×10-4(mol/g)であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは8,000であった。該PLLA(2)について、Sn含有量を測定したところ5ppm以下であった。
 [製造例3]
 Purac社のL-ラクチド500.00g(3.469mol)を1000mlの丸底フラスコに装入し窒素置換した。その後、キシレン200mlを装入し、常圧、窒素雰囲気下で、140℃まで昇温した。Purac社の90%L-乳酸(L体が99.8%の乳酸)3.15g(0.032mol)、ついでオクタン酸スズ0.1300g(0.32mmol)を加え、140℃で2時間保持することで透明なポリ(L-乳酸)(以下「PLLA(3)」とも記す。)が得られた。該PLLA(3)について、上記測定方法により重量平均分子量を測定したところ、20,000であった。また、上記測定方法によりカルボン酸価を求めたところ、1.31×10-4(mol/g)であった。カルボン酸価から計算した数平均分子量Mnは7,600であった。
 さらに、無水コハク酸8.000gを加え、140℃で1時間攪拌し、前記PLLA(3)の末端ヒドロキシル基をカルボキシル基に変換したポリ(L-乳酸)(以下「PLLA(4)」とも記す。)を得た。その後、該フラスコ内を常圧に放圧し、該PLLA(4)をバットに移し、固化させた。さらに、塩化水素/アセトン溶液で洗浄することによりスズ触媒の除去を行い、PLLA(4)480gを得た。該PLLA(4)について、上記測定方法によりカルボン酸価を求めたところ、2.68×10-4(mol/g)であった。カルボン酸価から計算した数平均分子量Mnは7,500であった。カルボン酸価からPLLA(4)の数平均分子量(Mn)を求める方法は、末端ヒドロキシル基をカルボキシル基に変換した場合、1分子のPLLA(4)の末端に、二つのカルボキシル基があるとして計算した。すなわち、カルボン酸価が2.68×10-4(mol/g)の場合、1gのPLLA(4)中には、2.68×10-4(mol)の半分量のPLLA(4)分子があることになるので、Mnは、1/(2.68×10-4)×2=7,500となった。該PLLA(4)について、Sn含有量を測定したところ5ppm以下であった。
 [実施例1]
 製造例1で合成したPLA6.00g(5.45×10-4mol)とオルトジクロロベンゼン(以下「ODCB」とも記す。)17.02gとを100mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、150℃まで昇温した。次に、該フラスコ内に、ビス(アセチルアセトナト)マグネシウム0.005g、ジブチルスズジラウリレート0.005gを加えた後、ヘキサメチレンジイソシアネート0.12g(7.13×10-4 mol)を加え、150℃で6時間反応させた。その後、クロロホルムを加え、メタノールで沈殿操作を行うことで白色粉末の樹脂が得られた。上記測定方法により該樹脂の13C-NMRを測定し、ウレタン結合とアミド結合との比率(ウレタン結合/アミド結合)を算出したところ、53/47であった。得られたスペクトルデータを図1に示す。該樹脂について、上記測定方法により重量平均分子量を測定したところ、140,000であった。該樹脂について、大気下で1週間放置した後、再度上記測定方法により重量平均分子量を測定したところ、140,000であり変化が見られなかった。
 また、上記測定方法により、該樹脂の結晶化度、融点、ガラス転移温度および分解温度を測定した結果を表1に示す。
 [実施例2]
 ビス(アセチルアセトナト)マグネシウムを、ステアリン酸マグネシウムに変更した以外は実施例1と同様にして白色粉末の樹脂が得られた。該樹脂について、上記測定方法により重量平均分子量を測定したところ、130,000であった。該樹脂について、大気下で1週間放置した後、再度上記測定方法により重量平均分子量を測定したところ、130,000であり変化が見られなかった。
 また、上記測定方法により、該樹脂の結晶化度、融点、ガラス転移温度および分解温度を測定した結果を表1に示す。
 [実施例3]
 ビス(アセチルアセトナト)マグネシウムを、ステアリン酸カルシウムに変更した以外は実施例1と同様にして白色粉末の樹脂が得られた。該樹脂について、上記測定方法により重量平均分子量を測定したところ、130,000であった。該樹脂について、大気下で1週間放置した後、再度上記測定方法により重量平均分子量を測定したところ、130,000であり変化が見られなかった。
 また、上記測定方法により、該樹脂の結晶化度、融点、ガラス転移温度および分解温度を測定した結果を表1に示す。
 [実施例4]
 製造例1で合成したPLA6.00g(5.45×10-4mol)とオルトジクロロベンゼン(以下「ODCB」とも記す。)17.02gとを100mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、150℃まで昇温した。次に、該フラスコ内に無水コハク酸を0.20g加え、150℃で5時間反応を行い、前記PLAの末端ヒドロキシル基をカルボキシル基に変換した。次に、該フラスコ内に、ビス(アセチルアセトナト)マグネシウム0.005g、ジブチルスズジラウリレート0.005gを加えた後、ヘキサメチレンジイソシアネート0.12g(7.13×10-4 mol)を加え、150℃で4時間反応させた。その後、クロロホルムを加え、メタノールで沈殿操作を行うことで白色粉末の樹脂が得られた。該樹脂について、上記測定方法により重量平均分子量を測定したところ、100,000であった。該樹脂について、大気下で1週間放置した後、再度上記測定方法により重量平均分子量を測定したところ、100,000であり変化が見られなかった。
 また、上記測定方法により、該樹脂の結晶化度、融点、ガラス転移温度および分解温度を測定した結果を表1に示す。
 [実施例5]
 Purac社の90%L-乳酸(L体が99.9%の乳酸)333.00g(3.327mol)と試薬の塩化スズ(II)二水和物(和光純薬社製)0.137gをディーンスタークトラップが備え付けられた500mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、140℃まで昇温した。140℃、常圧、窒素雰囲気下で1時間保持した後、該フラスコ内を減圧し、140℃、50mmHgで2時間保持した。次に、該フラスコ内を常圧まで放圧した後、該フラスコ内にODCBを17.02g加えた。次に、ディーンスタークトラップを、モレキュラーシーブ3A(和光純薬社製)30g入りのODCBが充満されたディーンスタークトラップに交換した。次に該フラスコ内を10mmHgに減圧してから昇温し、160℃、10mmHgで17時間保持し、透明なポリ(L-乳酸)(以下「PLLA」とも記す。)が得られた。該PLLAについて、上記測定方法により重量平均分子量を測定したところ、23,000であった。また、上記測定方法によりカルボン酸価を求めたところ、1.50×10-4(mol/g)であった。カルボン酸価から計算した数平均分子量Mnは6,700であった。
 その後、該フラスコ内を常圧に放圧し、150℃まで降温した。次に、PLLA(3.58×10-2 mol)に対して、ODCB260g、次いでビス(アセチルアセトナト)マグネシウム0.050g、ジブチルスズジラウリレート0.050gを加えた後、ヘキサメチレンジイソシアネート7.00g(4.16×10-2 mol)を加えて150℃で4時間反応させた。その後、クロロホルムを加え、メタノールで沈殿操作を行うことで白色粉末の樹脂が得られた。該樹脂について、上記測定方法により重量平均分子量を測定したところ、140,000であった。大気下で1週間放置した後、再度上記測定方法により重量平均分子量を測定したところ、140,000であり変化が見られなかった。
 また、上記測定方法により、該樹脂の結晶化度、融点、ガラス転移温度および分解温度を測定した結果を表1に示す。
 [実施例6]
 実施例5と同様にして透明なPLLAを得た。該PLLAについて、上記測定方法により重量平均分子量を測定したところ、20,400であった。さらに、無水コハク酸4.000gを加え、150℃で4時間攪拌し、前記PLLAの末端ヒドロキシル基をカルボキシル基に変換した。該PLLAについて、上記測定方法によりカルボン酸価を求めたところ、3.17×10-4(mol/g)であった。カルボン酸価から計算した数平均分子量Mnは6,300であった。カルボン酸価からPLLAの数平均分子量(Mn)を求める方法は、末端ヒドロキシル基をカルボキシル基に変換した場合、1分子のPLLAの末端に、二つのカルボキシル基があるとして計算した。すなわち、カルボン酸価が3.17×10-4(mol/g)の場合、1gのPLLA中には、3.17×10-4(mol)の半分量のPLLA分子があることになるので、Mnは、1/(3.17×10-4)×2=6300となった。
 その後、該フラスコ内を常圧に放圧し、150℃まで降温した。次に、PLLA(3.81×10-2mol)に対して、ODCB260g、次いでビス(アセチルアセトナト)マグネシウム0.050gを加えた後、ヘキサメチレンジイソシアネート7.00g(4.16×10-2mol)を加え150℃で4時間反応させた。その後、クロロホルムを加え、メタノールで沈殿操作を行うことで白色粉末の樹脂が得られた。該樹脂について、上記測定方法により重量平均分子量を測定したところ、130,000であった。大気下で1週間放置した後、再度上記測定方法により重量平均分子量を測定したところ、130,000であり変化が見られなかった。
 また、上記測定方法により、該樹脂の結晶化度、融点、ガラス転移温度および分解温度を測定した結果を表1に示す。
 [実施例7]
 製造例2で合成したPLLA(2)15.00g(1.87×10-3mol)、ビス(アセチルアセトナト)マグネシウム0.0038gおよびキシレン5.22gを50mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、160℃まで昇温した。ヘキサメチレンジイソシアネート0.43g(2.6×10-3 mol、1.3当量)を加え、160℃で1時間反応させた。その後、キシレンを加え晶析させ、ろ過後、メタノールで洗浄することで白色粉末の樹脂が得られた。上記測定方法により該樹脂の13C-NMRを測定し、ウレタン結合とアミド結合との比率(ウレタン結合/アミド結合)を算出したところ、9/91であった。アミド結合の比率は製造例2で合成したPLLA(2)の末端カルボン酸率の91%と一致した。
 該樹脂について、上記測定方法により重量平均分子量を測定したところ、200,000であった。該樹脂の結晶化度は15%、融点は153℃、ガラス転移温度は60℃、5%重量減少温度は310℃であった。
 [実施例8]
 ビス(アセチルアセトナト)マグネシウムを、塩化マグネシウムに変更した以外は実施例7と同様にして白色粉末の樹脂が得られた。該樹脂について、上記測定方法により重量平均分子量を測定したところ、259,000であった。該樹脂の結晶化度は15%、融点は153℃、ガラス転移温度は60℃、5%重量減少温度は306℃であった。
 [実施例9]
 ビス(アセチルアセトナト)マグネシウムを、イッテルビウムトリフラートに変更した以外は実施例7と同様にして白色粉末の樹脂が得られた。該樹脂について、上記測定方法により重量平均分子量を測定したところ、180,000であった。
 [実施例10]
 ラボプラストミル((株)東洋精機製作所製 4C150-01)に連結された二軸セグメント押出機((株)東洋精機製作所製2D30W2、内径;25mm、L/D;40)に、製造例2と同様の方法で得られたPLLA(2)'(1.79×10-4mol/g)100重量部とステアリン酸マグネシウム0.24重量部との混合物を、1kg/時間で装入した。さらに、前記押出機の途中よりヘキサメチレンジイソシアネートを0.6ml/分で装入し、PLLA(2)'とヘキサメチレンジイソシアネートとを押出反応させた。スクリューの回転数140rpm、バレル温度180℃で、原料フィードから吐出までの滞留時間は12分だった。出てきたストランドをベルトコンベアーで空冷し、続けてペレタイザーでカッティングすることでペレットを得た。該ペレットについて、上記測定方法により重量平均分子量を測定したところ、200,000であった。また、上記測定方法による融点は155℃、結晶化温度は115℃だった。また該ペレットを、180℃で5分間予熱した後、10MPaで5分間熱プレスすることにより、厚さ100μmのフィルムが得られた。このフィルムの引張強度、伸びを測定したところ、それぞれ74MPa、5%であった。
 [実施例11]
 製造例2と同様の方法で得られたPLLA(2)'30g(5.36×10-3mol)に対して、キシレン12g、次いでビス(アセチルアセトナト)マグネシウム0.0012gを丸底フラスコに装入した。さらに、ヘキサメチレンジイソシアネート0.9018g(5.36×10-3mol)を加え130℃で3時間反応させた。その後、クロロホルムを加え、メタノールで沈殿操作を行うことで白色粉末の樹脂が得られた。上記測定方法により該樹脂の13C-NMRを測定し、アミド結合を確認した。該樹脂について、上記測定方法により重量平均分子量を測定したところ、185,000であった。大気下で1週間放置した後、再度上記測定方法により重量平均分子量を測定したところ、185,000であり変化が見られなかった。
 [実施例12]
 ヘキサメチレンジイソシアネート0.9018g(5.36×10-3mol)を、1,3-キシリレンジイソシアネート1.0308g(6.13×10-3mol)に変更した以外は実施例11と同様にして白色粉末の樹脂が得られた。上記測定方法により該樹脂の13C-NMRを測定し、アミド結合を確認した。該樹脂について、上記測定方法により重量平均分子量を測定したところ、280,000であった。該樹脂について、大気下で1週間放置した後、再度上記測定方法により重量平均分子量を測定したところ、280,000であり変化が見られなかった。
 [実施例13]
 ヘキサメチレンジイソシアネート0.9018g(5.36×10-3mol)を、1,3-ビス(イソシアナトメチル)シクロヘキサン1.0357g(5.33×10-3mol)に変更した以外は実施例11と同様にして白色粉末の樹脂が得られた。上記測定方法により該樹脂の13C-NMRを測定し、アミド結合を確認した。該樹脂について、上記測定方法により重量平均分子量を測定したところ、280,000であった。該樹脂について、大気下で1週間放置した後、再度上記測定方法により重量平均分子量を測定したところ、280,000であり変化が見られなかった。
 [実施例14]
 ヘキサメチレンジイソシアネート0.9018g(5.36×10-3mol)を、1,4-ビス(イソシアナトメチル)シクロヘキサン1.0297g(5.30×10-3mol)に変更した以外は実施例11と同様にして白色粉末の樹脂が得られた。上記測定方法により該樹脂の13C-NMRを測定し、アミド結合を確認した。該樹脂について、上記測定方法により重量平均分子量を測定したところ、160,000であった。該樹脂について、大気下で1週間放置した後、再度上記測定方法により重量平均分子量を測定したところ、160,000であり変化が見られなかった。
 [実施例15]
 ヘキサメチレンジイソシアネート0.9018g(5.36×10-3mol)を、ビス(4-イソシアナトシクロヘキシル)メタン1.4117g(5.38×10-3mol)に変更した以外は実施例11と同様にして白色粉末の樹脂が得られた。上記測定方法により該樹脂の13C-NMRを測定し、アミド結合を確認した。該樹脂について、上記測定方法により重量平均分子量を測定したところ、80,000であった。該樹脂について、大気下で1週間放置した後、再度上記測定方法により重量平均分子量を測定したところ、80,000であり変化が見られなかった。
 [実施例16]
 ヘキサメチレンジイソシアネート0.9018g(5.36×10-3mol)を、ビス(イソシアナトメチル)ビシクロ-[2,2,1]-ヘプタン1.1058g(5.36×10-3mol)に変更した以外は実施例11と同様にして白色粉末の樹脂が得られた。上記測定方法により該樹脂の13C-NMRを測定し、アミド結合を確認した。該樹脂について、上記測定方法により重量平均分子量を測定したところ、140,000であった。該樹脂について、大気下で1週間放置した後、再度上記測定方法により重量平均分子量を測定したところ、140,000であり変化が見られなかった。
 [実施例17]
 製造例3で合成したPLLA(4)30g(3.95×10-3mol)に対して、キシレン12g、次いでビス(アセチルアセトナト)マグネシウム0.0012gを丸底フラスコに装入した。さらに、ヘキサメチレンジイソシアネート0.7651g(4.55×10-3mol)を加え130℃で3時間反応させた。その後、クロロホルムを加え、メタノールで沈殿操作を行うことで白色粉末の樹脂が得られた。上記測定方法により該樹脂の13C-NMRを測定し、アミド結合を確認した。該樹脂について、上記測定方法により重量平均分子量を測定したところ、330,000であった。大気下で1週間放置した後、再度上記測定方法により重量平均分子量を測定したところ、330,000であり変化が見られなかった。
 [比較例1]
 ビス(アセチルアセトナト)マグネシウムを用いなかったこと以外は実施例1と同様にして、白色粉末の樹脂が得られた。該樹脂について、上記測定方法により重量平均分子量を測定したところ、150,000であった。該樹脂について、大気下で1週間放置した後、再度上記測定方法により重量平均分子量を測定したところ、80,000まで低下していた。
 また、上記測定方法により、該樹脂の結晶化度、融点、ガラス転移温度および分解温度を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000017

Claims (21)

  1.  脂肪族ポリエステル樹脂(A)とポリイソシアネート化合物(B)とをアミド化触媒の存在下で反応させることにより得られ、下記式(1)で表される構成単位を含むことを特徴とするポリエステル系樹脂(C)。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、Rは、炭素数1~20の脂肪族炭化水素基、脂環構造を含む炭化水素基または芳香環を含む炭化水素基を表す。)
  2.  前記脂肪族ポリエステル樹脂(A)が、ヒドロキシカルボン酸から得られることを特徴とする請求項1に記載のポリエステル系樹脂(C)。
  3.  前記脂肪族ポリエステル樹脂(A)がポリ乳酸であることを特徴とする請求項1または2に記載のポリエステル系樹脂(C)。
  4.  前記ポリ乳酸が乳酸から得られ、該乳酸におけるL体またはD体の含有率が90%以上であることを特徴とする請求項3に記載のポリエステル系樹脂(C)。
  5.  結晶化度が10~70%であることを特徴とする請求項1~4のいずれか1項に記載のポリエステル系樹脂(C)。
  6.  前記ポリイソシアネート化合物(B)が、脂肪族ジイソシアネート化合物であることを特徴とする請求項1~5のいずれか1項に記載のポリエステル系樹脂(C)。
  7.  前記ポリイソシアネート化合物(B)が、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、1,3-(ビスイソシアナトメチル)シクロヘキサン、ビス(イソシアナトメチル)ビシクロ-[2,2,1]-ヘプタンおよびビス(4-イソシアナトシクロヘキシル)メタンからなる群より選ばれる1種の化合物であることを特徴とする請求項1~6のいずれか1項に記載のポリエステル系樹脂(C)。
  8.  重量平均分子量が100,000~1,000,000であることを特徴とする請求項1~7のいずれか1項に記載のポリエステル系樹脂(C)。
  9.  下記式(2)~(4)からなる群より選ばれる少なくとも1種の式で表される構成単位を主成分として有することを特徴とする請求項1~8のいずれか1項に記載のポリエステル系樹脂(C)。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R1は、それぞれ独立に、置換または無置換の炭素数1~20の脂肪族炭化水素基を表し、nは20~1500の整数を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R1は、それぞれ独立に、置換または無置換の炭素数1~20の脂肪族炭化水素基を表し、R2は、置換または無置換の炭素数1~20の脂肪族炭化水素基、炭素数2~20の不飽和炭化水素基または芳香族炭化水素基を表し、nは20~1500の整数を表わす。)
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、R1は、それぞれ独立に、置換または無置換の炭素数1~20の脂肪族炭化水素基を表し、R2は、置換または無置換の炭素数1~20の脂肪族炭化水素基、炭素数2~20の不飽和炭化水素基または芳香族炭化水素基を表し、nおよびmは、それぞれ独立に20~1500の整数を表わす。)
  10.  前記脂肪族ポリエステル樹脂(A)の重量平均分子量が5,000~100,000であり、
     得られるポリエステル系樹脂(C)の重量平均分子量が、100,000~1,000,000であり、かつ前記脂肪族ポリエステル樹脂(A)の重量平均分子量の3倍以上200倍以下であることを特徴とする請求項1~9のいずれか1項に記載のポリエステル系樹脂(C)。
  11.  脂肪族ポリエステル樹脂(A)およびポリイソシアネート化合物(B)をアミド化触媒の存在下で反応させる工程を含むことを特徴とする請求項1に記載のポリエステル系樹脂(C)の製造方法。
  12.  前記ポリイソシアネート化合物(B)が、ジイソシアネート化合物であることを特徴とする請求項11に記載のポリエステル系樹脂(C)の製造方法。
  13.  前記脂肪族ポリエステル樹脂(A)が、末端ヒドロキシル基をカルボキシル基に変換した脂肪族ポリエステル樹脂であることを特徴とする請求項11または12に記載のポリエステル系樹脂(C)の製造方法。
  14.  前記ポリイソシアネート化合物(B)の添加量が、前記脂肪族ポリエステル樹脂(A)に対して0.8~2.0倍モルであることを特徴とする請求項11~13のいずれか1項に記載のポリエステル系樹脂(C)の製造方法。
  15.  前記脂肪族ポリエステル樹脂(A)の重量平均分子量が5,000~100,000であることを特徴とする請求項11~14のいずれか1項に記載のポリエステル系樹脂(C)の製造方法。
  16.  前記脂肪族ポリエステル樹脂(A)のSn含有量が300ppm以下であることを特徴とする請求項11~15のいずれか1項に記載のポリエステル系樹脂(C)の製造方法。
  17.  前記アミド化触媒が、周期律表第1族、2族および3族における金属群より選ばれる少なくとも1種の金属を含むことを特徴とする請求項11~16のいずれか1項に記載のポリエステル系樹脂(C)の製造方法。
  18.  前記アミド化触媒が、マグネシウムまたはカルシウムを含むことを特徴とする請求項11~17のいずれか1項に記載のポリエステル系樹脂(C)の製造方法。
  19.  2軸押出機で反応を行うことを特徴とする請求項11~18いずれか1項に記載のポリエステル系樹脂(C)の製造方法。
  20.  請求請1~10のいずれか1項に記載のポリエステル系樹脂(C)を含有することを特徴とするフィルム。
  21.  請求項1~10のいずれか1項に記載のポリエステル系樹脂(C)を含有することを特徴とする成型体。
PCT/JP2009/053973 2008-03-04 2009-03-03 ポリエステル系樹脂、その製造方法およびその用途 WO2009110472A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2009801049703A CN101945914B (zh) 2008-03-04 2009-03-03 聚酯类树脂、其制备方法及其用途
EP09716218.4A EP2251368B1 (en) 2008-03-04 2009-03-03 Polyester resin, a manufacturing method thereof and uses therefor
JP2010501919A JP5391189B2 (ja) 2008-03-04 2009-03-03 ポリエステル系樹脂、その製造方法およびその用途
KR1020107022025A KR101284931B1 (ko) 2008-03-04 2009-03-03 폴리에스터계 수지, 그의 제조방법 및 그의 용도
US12/920,804 US8552138B2 (en) 2008-03-04 2009-03-03 Polyester resin, production process therefor and use thereof
BRPI0908279A BRPI0908279A2 (pt) 2008-03-04 2009-03-03 resina de poliéster, processo para a produção da resina de poliéster, película e artigo moldado

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-053622 2008-03-04
JP2008053622 2008-03-04

Publications (1)

Publication Number Publication Date
WO2009110472A1 true WO2009110472A1 (ja) 2009-09-11

Family

ID=41056026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053973 WO2009110472A1 (ja) 2008-03-04 2009-03-03 ポリエステル系樹脂、その製造方法およびその用途

Country Status (8)

Country Link
US (1) US8552138B2 (ja)
EP (1) EP2251368B1 (ja)
JP (1) JP5391189B2 (ja)
KR (1) KR101284931B1 (ja)
CN (1) CN101945914B (ja)
BR (1) BRPI0908279A2 (ja)
TW (1) TWI457365B (ja)
WO (1) WO2009110472A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011002004A1 (ja) 2009-06-30 2011-01-06 三井化学株式会社 ポリ乳酸系樹脂、ポリ乳酸系樹脂の製造方法、ポリ乳酸樹脂組成物、ステレオコンプレックスポリ乳酸樹脂組成物およびステレオコンプレックスポリ乳酸樹脂組成物の製造方法
JP2013189656A (ja) * 2013-07-05 2013-09-26 Mitsui Chemicals Inc 熱成形品
JP2014088579A (ja) * 2014-02-03 2014-05-15 Mitsui Chemicals Inc ブロー成型品
EP2944663A2 (en) 2014-05-13 2015-11-18 Ricoh Company, Ltd. Aliphatic polyester, method of preparing the same, and polymer organizer
JP2018532853A (ja) * 2015-10-13 2018-11-08 中国石油化工股▲ふん▼有限公司 選択的レーザー焼結に好適な脂肪族ポリエステル樹脂粉末及びその調製方法
JP2019172756A (ja) * 2018-03-27 2019-10-10 三菱ケミカル株式会社 ポリエステル系樹脂組成物の製造方法及びポリエステル系樹脂組成物並びに成形体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5697048B2 (ja) * 2012-06-15 2015-04-08 古河電気工業株式会社 有機エレクトロルミネッセンス素子封止用樹脂組成物、有機エレクトロルミネッセンス素子用封止フィルム、有機エレクトロルミネッセンス素子用ガスバリアフィルムおよびこれを用いた有機エレクトロルミネッセンス素子
CN109666132B (zh) * 2017-10-17 2021-09-21 中国石油化工股份有限公司 一种线性无规可生物降解共聚酯以及制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148352A (ja) 1991-11-26 1993-06-15 Showa Highpolymer Co Ltd ウレタン結合を含むポリラクタイドの製造方法
JPH07228656A (ja) * 1994-02-22 1995-08-29 Hitachi Chem Co Ltd 感光性ポリアミド系樹脂の製造法、その製造法により得られる感光性ポリアミド系樹脂及び感光性ポリアミド系樹脂組成物
JPH08193119A (ja) * 1995-01-17 1996-07-30 Hitachi Chem Co Ltd エポキシ変性ポリアミド系樹脂中間体の製造法、エポキシ変性ポリアミド系樹脂中間体及びエポキシ変性ポリアミド系樹脂の製造法
JPH11302374A (ja) * 1998-04-27 1999-11-02 Sharp Corp アミド結合を有するポリ乳酸ブロック共重合体
JP2002155197A (ja) 2000-09-11 2002-05-28 Unitika Ltd 生分解性耐熱樹脂組成物、及びそれから得られるシート、成形体、発泡体
JP2004285121A (ja) 2003-03-19 2004-10-14 Toyota Central Res & Dev Lab Inc ポリ乳酸系化合物及びその製造方法、ポリ乳酸系化合物複合材料並びに成形体
JP2006037055A (ja) * 2004-07-30 2006-02-09 Mitsui Chemicals Inc 共重合ポリヒドロキシカルボン酸
JP2007515543A (ja) * 2003-12-22 2007-06-14 イーストマン ケミカル カンパニー 改善されたノッチ付き衝撃強さを有するポリマーブレンド
JP2008527074A (ja) * 2004-12-30 2008-07-24 アボット・カーディオヴァスキュラー・システムズ・インコーポレーテッド ポリ(ヒドロキシアルカン酸エステル)及び薬剤を含む、医療用物品に使用するためのポリマー、並びにその作製方法
WO2008102576A1 (ja) * 2007-02-22 2008-08-28 Mitsui Chemicals, Inc. アルコキシシラン含有樹脂、変性アルコキシシラン含有樹脂およびそれらの製造方法、ホットメルト接着剤および樹脂硬化物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4420603A (en) * 1982-09-27 1983-12-13 The Upjohn Company Continuous, solvent-free process for preparing thermoplastic polyamides and polyesteramides
US4868277A (en) * 1988-08-18 1989-09-19 The Dow Chemical Company Polyamide resins with good toughness properties
JPH08120073A (ja) 1994-10-21 1996-05-14 Unitika Ltd ポリエステルアミド共重合体及びその製造法
JP2976847B2 (ja) * 1995-06-20 1999-11-10 昭和高分子株式会社 ブロックポリエステルの製造方法
US6037384A (en) * 1995-11-28 2000-03-14 Dainippon Ink And Chemicals, Inc. Expanded material and laminate
JPH10296834A (ja) * 1997-04-24 1998-11-10 Sekisui Chem Co Ltd ポリエステルアミド樹脂製管状成形体
JP2001525431A (ja) * 1997-12-01 2001-12-11 ミニステロ・デル・ウニヴェルシタ・エ・デッラ・リチェルカ・シエンティフィカ・エ・テクノロジカ ポリエステル樹脂の分子量を増加させる方法
US6255403B1 (en) * 1998-07-10 2001-07-03 S. C. Johnson Commercial Markets, Inc. Process for producing polymers by free radical polymerization and condensation reaction, and apparatus and products related thereto
EP1160269A3 (en) * 2000-05-30 2002-01-23 Nippon Shokubai Co., Ltd. Biodegradable recycled polyester resin and production process therefor
KR20030068162A (ko) * 2000-11-30 2003-08-19 다이셀 가가꾸 고교 가부시끼가이샤 지방족 폴리에스테르 공중합체 및 그 제조방법, 지방족폴리에스테르계 생분해성 수지 성형물, 및 락톤함유 수지
US7514503B2 (en) * 2003-10-08 2009-04-07 Asahi Kasei Chemicals Corporation Molded article produced from aliphatic polyester resin composition
JP4390273B2 (ja) * 2004-12-01 2009-12-24 多木化学株式会社 生分解性樹脂組成物
WO2007099397A2 (en) * 2005-06-16 2007-09-07 Dow Global Technologies Inc. Aliphatic polyester-amide compositions and a process for producing the same
DE102006048926A1 (de) * 2006-10-17 2008-04-24 Bayer Materialscience Ag Wässriges Beschichtungsmittel auf Basis eines Bindemittelgemisches als Basislack

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148352A (ja) 1991-11-26 1993-06-15 Showa Highpolymer Co Ltd ウレタン結合を含むポリラクタイドの製造方法
JPH07228656A (ja) * 1994-02-22 1995-08-29 Hitachi Chem Co Ltd 感光性ポリアミド系樹脂の製造法、その製造法により得られる感光性ポリアミド系樹脂及び感光性ポリアミド系樹脂組成物
JPH08193119A (ja) * 1995-01-17 1996-07-30 Hitachi Chem Co Ltd エポキシ変性ポリアミド系樹脂中間体の製造法、エポキシ変性ポリアミド系樹脂中間体及びエポキシ変性ポリアミド系樹脂の製造法
JPH11302374A (ja) * 1998-04-27 1999-11-02 Sharp Corp アミド結合を有するポリ乳酸ブロック共重合体
JP2002155197A (ja) 2000-09-11 2002-05-28 Unitika Ltd 生分解性耐熱樹脂組成物、及びそれから得られるシート、成形体、発泡体
JP2004285121A (ja) 2003-03-19 2004-10-14 Toyota Central Res & Dev Lab Inc ポリ乳酸系化合物及びその製造方法、ポリ乳酸系化合物複合材料並びに成形体
JP2007515543A (ja) * 2003-12-22 2007-06-14 イーストマン ケミカル カンパニー 改善されたノッチ付き衝撃強さを有するポリマーブレンド
JP2006037055A (ja) * 2004-07-30 2006-02-09 Mitsui Chemicals Inc 共重合ポリヒドロキシカルボン酸
JP2008527074A (ja) * 2004-12-30 2008-07-24 アボット・カーディオヴァスキュラー・システムズ・インコーポレーテッド ポリ(ヒドロキシアルカン酸エステル)及び薬剤を含む、医療用物品に使用するためのポリマー、並びにその作製方法
WO2008102576A1 (ja) * 2007-02-22 2008-08-28 Mitsui Chemicals, Inc. アルコキシシラン含有樹脂、変性アルコキシシラン含有樹脂およびそれらの製造方法、ホットメルト接着剤および樹脂硬化物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUKKA TUOMINEN, CHAIN LINKED LACTIC ACID POLYMERS, POLYMERIZATION AND BIODEGRADATION STUDIES, vol. 228, no. 25, 2003
See also references of EP2251368A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011002004A1 (ja) 2009-06-30 2011-01-06 三井化学株式会社 ポリ乳酸系樹脂、ポリ乳酸系樹脂の製造方法、ポリ乳酸樹脂組成物、ステレオコンプレックスポリ乳酸樹脂組成物およびステレオコンプレックスポリ乳酸樹脂組成物の製造方法
KR101427459B1 (ko) 2009-06-30 2014-08-08 미쓰이 가가쿠 가부시키가이샤 폴리락트산계 수지, 폴리락트산계 수지의 제조 방법, 폴리락트산 수지 조성물, 스테레오컴플렉스 폴리락트산 수지 조성물 및 스테레오컴플렉스 폴리락트산 수지 조성물의 제조 방법
JP2013189656A (ja) * 2013-07-05 2013-09-26 Mitsui Chemicals Inc 熱成形品
JP2014088579A (ja) * 2014-02-03 2014-05-15 Mitsui Chemicals Inc ブロー成型品
EP2944663A2 (en) 2014-05-13 2015-11-18 Ricoh Company, Ltd. Aliphatic polyester, method of preparing the same, and polymer organizer
JP2018532853A (ja) * 2015-10-13 2018-11-08 中国石油化工股▲ふん▼有限公司 選択的レーザー焼結に好適な脂肪族ポリエステル樹脂粉末及びその調製方法
JP2019172756A (ja) * 2018-03-27 2019-10-10 三菱ケミカル株式会社 ポリエステル系樹脂組成物の製造方法及びポリエステル系樹脂組成物並びに成形体
JP7151122B2 (ja) 2018-03-27 2022-10-12 三菱ケミカル株式会社 ポリエステル系樹脂組成物の製造方法及びポリエステル系樹脂組成物並びに成形体

Also Published As

Publication number Publication date
BRPI0908279A2 (pt) 2018-05-29
TWI457365B (zh) 2014-10-21
EP2251368A4 (en) 2014-08-27
CN101945914B (zh) 2012-12-26
KR101284931B1 (ko) 2013-07-10
US8552138B2 (en) 2013-10-08
EP2251368A1 (en) 2010-11-17
TW200951161A (en) 2009-12-16
JPWO2009110472A1 (ja) 2011-07-14
CN101945914A (zh) 2011-01-12
US20110040065A1 (en) 2011-02-17
EP2251368B1 (en) 2016-09-28
KR20100126780A (ko) 2010-12-02
JP5391189B2 (ja) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5391189B2 (ja) ポリエステル系樹脂、その製造方法およびその用途
WO1994025529A1 (en) Thermoplastic polyurethane composition
JP5223347B2 (ja) 樹脂組成物及びその製造方法、並びに共重合体
JP5345483B2 (ja) ポリグリコール酸系樹脂、その製造方法およびその用途
Yu et al. Synthesis and characterization of poly (lactic acid) and aliphatic polycarbonate copolymers
Gardella et al. Novel poly (l‐lactide)/poly (d‐lactide)/poly (tetrahydrofuran) multiblock copolymers with a controlled architecture: Synthesis and characterization
JPS63286431A (ja) ポリアミドイミドエラストマー
JP2003192778A (ja) 高分子量ポリエステルエラストマーおよびその製造方法
US5811495A (en) Esteramide copolymers and production thereof
JPH0827256A (ja) 高分子量ポリ乳酸共重合体及びその製造方法
JP2013047339A (ja) 透明共重合ポリエステル、透明共重合ポリエステルの調製方法、および、透明共重合ポリエステルを含んでなる物品
JP4390273B2 (ja) 生分解性樹脂組成物
JP3328145B2 (ja) 重縮合系重合体の製造方法
JP5812947B2 (ja) ポリ乳酸の製造方法およびその成形体
JP5050610B2 (ja) 低温特性に優れた樹脂組成物の成型体
JP3477824B2 (ja) ポリウレタンと脂肪族ポリエステルの共重合体およびその製造方法
JP5190002B2 (ja) ポリ乳酸ブロック共重合体の製造方法
JP6634823B2 (ja) 末端変性ポリエチレンテレフタレート樹脂の製造方法
JP5458293B2 (ja) ポリ乳酸マルチブロック共重合体の製造方法
JP3050963B2 (ja) ウレタン結合を含むポリエステルの製造方法
TW200530290A (en) Novel lactone polymer and the preparing method thereof
CN117946375A (zh) 聚合物及其制造方法
JPH0570579A (ja) ウレタン結合を含むポリエステルの製造方法
JPH0228215A (ja) ポリアミドイミドエラストマー
JP2004083882A (ja) 脂肪族ポリエステルポリエーテル共重合体及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104970.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09716218

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010501919

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12920804

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009716218

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009716218

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107022025

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0908279

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100826