WO2009107240A1 - 潜熱蓄熱性能を有する包接水和物、その製造方法及び製造装置、潜熱蓄熱媒体ならびに、包接水和物の潜熱蓄熱量の増加方法及び包接水和物の潜熱蓄熱量を増加させる処理装置 - Google Patents

潜熱蓄熱性能を有する包接水和物、その製造方法及び製造装置、潜熱蓄熱媒体ならびに、包接水和物の潜熱蓄熱量の増加方法及び包接水和物の潜熱蓄熱量を増加させる処理装置 Download PDF

Info

Publication number
WO2009107240A1
WO2009107240A1 PCT/JP2008/053683 JP2008053683W WO2009107240A1 WO 2009107240 A1 WO2009107240 A1 WO 2009107240A1 JP 2008053683 W JP2008053683 W JP 2008053683W WO 2009107240 A1 WO2009107240 A1 WO 2009107240A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
clathrate hydrate
aqueous solution
heat storage
latent heat
Prior art date
Application number
PCT/JP2008/053683
Other languages
English (en)
French (fr)
Inventor
戸村 啓二
高雄 信吾
Original Assignee
Jfeエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeエンジニアリング株式会社 filed Critical Jfeエンジニアリング株式会社
Priority to PCT/JP2008/053683 priority Critical patent/WO2009107240A1/ja
Priority to EP08721103.3A priority patent/EP2246406A4/en
Priority to CN2008801275822A priority patent/CN101959991B/zh
Priority to JP2010500512A priority patent/JP5163738B2/ja
Priority to AU2008351793A priority patent/AU2008351793B2/en
Publication of WO2009107240A1 publication Critical patent/WO2009107240A1/ja
Priority to US12/807,044 priority patent/US7993544B2/en
Priority to US13/172,245 priority patent/US8419969B2/en
Priority to US13/734,362 priority patent/US20130119304A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]

Definitions

  • the present invention relates to a clathrate hydrate having a latent heat storage effect and a technique related thereto, and more particularly to a clathrate hydrate having an enhanced latent heat storage effect, a method and an apparatus for producing such clathrate hydrate
  • the present invention relates to a latent heat storage medium containing the clathrate hydrate as a composition, a method for increasing the latent heat storage amount of the clathrate hydrate, and a processing device for increasing the latent heat storage amount of the clathrate hydrate.
  • the latent heat storage medium is used for efficient use of thermal energy, and there are many practical examples such as a heat storage material and a heat transport medium used for an air conditioner, and a cold storage material used for maintaining the quality of fresh food products.
  • a heat storage / storage medium or a composition thereof a clathrate hydrate having a quaternary ammonium compound as a guest (or guest molecule) and a water molecule as a host (or host molecule) is known (substantially It disperse
  • clathrate hydrate with quaternary ammonium compound as guest and water molecule as host is simply “clathrate hydrate of quaternary ammonium compound” or “quaternary ammonium compound as guest It may be referred to as “clathrate hydrate”.
  • the latent heat storage medium is preferable because the larger the heat storage amount (heat storage density) per unit weight is, the higher the heat storage efficiency and the heat transport efficiency. This does not change even when the latent heat storage medium or the composition thereof is a clathrate hydrate of a quaternary ammonium compound. In this sense, it can be said that the clathrate hydrate having a higher heat storage density is required.
  • the weight ratio of the hydrate particles in water or the solid phase can be increased by increasing the rate, but if the rate is increased excessively, the viscosity of the slurry increases and the flowability decreases, which causes a problem in transportability.
  • the present invention is a clathrate hydrate having a quaternary ammonium compound as a guest and having an enhanced latent heat storage performance, a method and an apparatus for manufacturing such clathrate hydrate, It is an object of the present invention to provide a latent heat storage medium containing the clathrate hydrate as a composition, a method for increasing the latent heat storage amount of the clathrate hydrate, and a processing device for increasing the latent heat storage amount of the clathrate hydrate.
  • a clathrate hydration using a quaternary ammonium compound as a guest which is formed by blowing a gas into an aqueous solution of a quaternary ammonium compound and cooling or bubbling a solution into an aqueous solution of a quaternary ammonium compound, and then forming the guest as a guest
  • (1a) gas is not blown in, and the new knowledge that not only the heat storage amount increases but also melting
  • clathrate hydrate formed by cooling while blowing a suitable gas into an aqueous solution of quaternary ammonium compound, or by blowing after a suitable gas is blown into an aqueous solution of quaternary ammonium compound Can be explained without contradiction by considering it as at least one of the following three.
  • a clathrate hydrate formed by incorporating a suitable gas into a clathrate hydrate having a quaternary ammonium compound as a guest (A) Clathrate hydrate formed by inclusion of the appropriate gas together with the quaternary ammonium compound as a guest molecule, (C) A mixture of a clathrate hydrate having a quaternary ammonium compound as a guest and a clathrate hydrate having an appropriate gas as a guest.
  • the clathrate hydrate according to the first aspect of the present invention is a clathrate hydrate having a latent heat storage capability with a quaternary ammonium compound as a guest, and further including a gas supplied from the outside as a guest Thus, the latent heat storage performance is enhanced.
  • the clathrate hydrate according to the second aspect of the present invention is a clathrate hydrate having a latent heat storage performance, and cools the aqueous solution containing a quaternary ammonium compound while supplying a gas from the outside to the aqueous solution. Or, after mixing a gas supplied from the outside into an aqueous solution containing a quaternary ammonium compound, both the quaternary ammonium compound and the gas produced by cooling the aqueous solution are used as a guest.
  • the latent heat storage medium according to the third aspect of the present invention includes the clathrate hydrate according to the first or second aspect as a composition.
  • the latent heat storage medium according to the fourth aspect of the present invention is supplied from the outside to an aqueous solution containing a quaternary ammonium compound by cooling the aqueous solution while supplying a gas from the outside to the aqueous solution containing a quaternary ammonium compound After mixing the gas, the composition contains a clathrate hydrate having a latent heat storage performance generated by cooling the aqueous solution.
  • a method of producing a clathrate hydrate according to a fifth aspect of the present invention is a method of producing a clathrate hydrate having a latent heat storage performance, wherein a gas is supplied from the outside to an aqueous solution containing a quaternary ammonium compound. While cooling the aqueous solution or after mixing a gas supplied from the outside with the aqueous solution containing a quaternary ammonium compound, the process has the step of enhancing the latent heat storage performance by cooling the aqueous solution.
  • the method for producing clathrate hydrate according to the sixth aspect of the present invention is the method for producing clathrate hydrate according to the fifth aspect, wherein a gas supplied from the outside is for deoxygenation of the aqueous solution. It is a gas.
  • the method for producing a clathrate hydrate according to a seventh aspect of the present invention is the method for producing a clathrate hydrate according to the fifth aspect, wherein the temperature of the gas supplied from the outside is the clathrate water The temperature is lower than the melting point of the solvate.
  • the method for producing clathrate hydrate according to the eighth aspect of the present invention is the method for producing clathrate hydrate according to the fifth aspect, wherein a gas supplied from the outside is supplied to the ice heat storage tank. And the temperature is a temperature lower than the melting point of the clathrate hydrate.
  • a latent heat storage medium includes, as a composition, a clathrate hydrate produced by the method for producing a clathrate hydrate according to any of the fifth to eighth aspects.
  • the method for increasing the latent heat storage amount of the clathrate hydrate according to the tenth aspect of the present invention is a method for increasing the latent heat storage amount of the clathrate hydrate having a quaternary ammonium compound as a guest, A process of cooling the aqueous solution while supplying a gas from the outside to an aqueous solution containing an ammonium compound, or a process of cooling the aqueous solution after mixing a gas supplied from the outside to the aqueous solution containing the quaternary ammonium compound It is.
  • the method of increasing the latent heat storage amount of the clathrate hydrate according to the eleventh aspect of the present invention is a method of increasing the latent heat storage amount of the clathrate hydrate according to the tenth aspect, which comprises: Is a gas for deoxygenation of the aqueous solution.
  • An apparatus for producing clathrate hydrate according to a twelfth aspect of the present invention is a apparatus for producing clathrate hydrate having latent heat storage performance, wherein gas is supplied to an aqueous solution containing a quaternary ammonium compound for mixing. And a generator that cools the aqueous solution in which the gas is mixed to generate a clathrate hydrate whose thermal storage performance is enhanced.
  • the apparatus for producing clathrate hydrate according to the twelfth aspect of the present invention may further include a separator that separates the remaining gas that did not contribute to the formation of clathrate hydrate.
  • An apparatus for producing a clathrate hydrate according to a thirteenth aspect of the present invention is a apparatus for producing a clathrate hydrate having a latent heat storage performance, which supplies a gas to an aqueous solution containing a quaternary ammonium compound.
  • the processing apparatus for increasing the latent heat storage amount of the clathrate hydrate according to the fourteenth aspect of the present invention is a processing apparatus for increasing the latent heat storage amount of the clathrate hydrate having a quaternary ammonium compound as a guest And a mixer for supplying and mixing a gas to an aqueous solution containing a quaternary ammonium compound, and a generator for cooling the aqueous solution mixed with the gas to generate the clathrate hydrate. .
  • the processing apparatus for increasing the latent heat storage amount of the clathrate hydrate according to the fifteenth aspect of the present invention is a processing apparatus for increasing the latent heat storage amount of the clathrate hydrate having a quaternary ammonium compound as a guest
  • Representative examples of the quaternary ammonium compound in the present invention are tetra-n-butylammonium salt, tetra-iso-pentylammonium salt, tri-n-butyl-n-pentylammonium salt and the like.
  • the latent heat storage medium in the present invention may be the clathrate hydrate itself in the present invention, and the clathrate hydrate is used as an essential composition, and it is constituted by adding or adding other compositions. It may be one that is dispersed or contained in another substance, or the like. Further, the properties of the latent heat storage medium may be solid, liquid, gel, slurry, microcapsule (in the state of being filled in the microcapsules), etc. According to the properties of the latent heat storage medium in the present invention There is no particular restriction.
  • the clathrate hydrate according to the present invention may be a composition even though it is a solid state at first, or a latent heat storage medium formed by processing into a liquid or gel by adding a surfactant and a gelling agent.
  • a latent heat storage medium formed by processing into a liquid or gel by adding a surfactant and a gelling agent.
  • the mode of use is not limited, and the latent heat storage medium used for heat utilization at a fixed position is also subjected to heat utilization at the moving destination because movement is accompanied by driving force or natural convection.
  • a latent heat storage medium is also not excluded from the present invention in terms of modes of use.
  • the supply of the gas to the aqueous solution containing the quaternary ammonium compound (hereinafter simply referred to as the aqueous solution) is relative, and in the case of releasing the gas toward the aqueous solution, it is a matter of course This is also the case when releasing.
  • a typical example of the former is bubbling of gas from the outside of the region where the aqueous solution is present, in which case the smaller the bubble particle size, the better.
  • a typical example of the latter is the spraying of the aqueous solution from the outside of the area where the gas is present, in which case the smaller the aqueous solution droplet size, the better.
  • the supply of the gas to the aqueous solution is preferably performed by a method to further increase the contact area between the gas and the aqueous solution.
  • the present invention is a new production in which the technical matter of supplying a gas to the aqueous solution from the outside is added to the conventional production method of the clathrate hydrate that cools the aqueous solution containing the quaternary ammonium compound. It is a technical idea based on the method, and thus there is a technical feature in supplying gas from the outside itself.
  • the gas to be supplied from the outside does not contain hydrogen or helium.
  • the amount of latent heat storage is There was no increase.
  • the gas to be supplied from the outside includes a gas incorporated into a clathrate compound having a quaternary ammonium compound as a guest or a clathrate hydrate which is clathrated with water molecules together with a quaternary ammonium compound. It contains a gas that can be a component. Specifically, it contains a gas of a larger molecule than hydrogen or helium such as air, nitrogen, oxygen, carbon dioxide, argon, krypton, xenon, hydrogen sulfide, methane, ethane, propylene, trimethylene oxide, propane, butane, various fluorocarbons, etc.
  • the technical feature of the present invention is to supply the gas from the outside itself, the gas is a gas of a molecule larger than hydrogen and helium, and a clathrate compound having a quaternary ammonium compound as a guest Or a gas that can be included in a water molecule together with a quaternary ammonium compound and can be a component of clathrate hydrate.
  • the pressure for producing or producing a clathrate hydrate having a higher latent heat storage performance or latent heat storage effect is not particularly limited, and a target clathrate hydrate can be produced or produced. As long as this is done, it may be done under pressure, under normal pressure, or under reduced pressure. In addition, focusing on the dissolution rate of the gas in the aqueous solution and the maximum dissolution concentration, under pressure is more preferable than under normal pressure in order to produce or produce clathrate hydrate having a large latent heat storage amount more efficiently. Normal pressure is more preferable than reduced pressure. On the other hand, focusing on the cost of equipment and operation, normal pressure is more preferable.
  • the amount of quaternary ammonium compound as a guest compound of the clathrate hydrate required to store the necessary amount of latent heat can be reduced. While being able to reduce material costs, it is possible to make smaller containers needed to contain the clathrate hydrate and to miniaturize the equipment comprising the containers. Reduce the amount of clathrate hydrate required to transport the same amount of latent heat storage, especially when using clathrate hydrate for heat transport (for example in a fluid, low viscosity slurry) As a result, it is possible not only to reduce the material cost but also to miniaturize the transport piping and reduce the transport power.
  • a clathrate hydrate having a latent heat storage performance higher than a clathrate hydrate which does not take in or do not clasp gas supplied from the outside Can be realized.
  • a clathrate hydrate having a latent heat storage performance higher than that of a clathrate hydrate which does not take in or does not clasp gas supplied from the outside is produced. be able to.
  • the aqueous solution or the applied aqueous solution is deoxygenated by supplying a gas (for example, nitrogen gas) for deoxygenation to an aqueous solution containing a quaternary ammonium compound.
  • a gas for example, nitrogen gas
  • a clathrate hydrate having higher latent heat storage performance or latent heat storage effect can be produced from an aqueous solution.
  • the clathrate hydrate particles are dispersed in water or an aqueous solution to form a slurry, which is used as a latent heat storage medium. That is, in order to suppress that corrosion of inner surface materials, such as a container and piping, occurs with the said slurry, the deoxidation type corrosion inhibitor which reduces the amount of dissolved oxygen in the slurry may be thrown into a slurry.
  • the temperature of the gas itself is lower than the melting point of the clathrate hydrate, it can be used as cold heat for cooling the aqueous solution by supplying it to the aqueous solution, and the heat with the refrigerant Since it can be added to cooling by exchange and can be cooled more efficiently, it is possible to produce a clathrate hydrate having higher latent heat storage performance or latent heat storage effect or a slurry thereof.
  • the melting point of the clathrate hydrate having a quaternary ammonium compound as a guest is 0 ° C. or higher
  • the gas supplied to the ice thermal storage tank and cooled has a temperature close to 0 ° C. Therefore, by supplying this to the aqueous solution, it can be used as cold for cooling the aqueous solution, and can be further added to cooling by heat exchange with the refrigerant, so that it can be cooled more efficiently, so higher latent heat storage performance or A clathrate hydrate having a latent heat storage effect or a slurry thereof can be produced.
  • a gas (especially air) may be supplied to the ice heat storage tank, for example, for the purpose of stirring the cold water inside (for example, see Japanese Utility Model Application Laid-Open No. 62-117435).
  • the gas extracted from the ice storage tank is at a temperature close to 0 ° C., so it is a temperature lower than the melting point of the clathrate hydrate, so by supplying it to the aqueous solution, it is used as cold heat to cool the aqueous solution Since it can be further added to cooling by heat exchange with a refrigerant, cooling can be performed more efficiently, and therefore clathrate hydrate having a higher latent heat storage performance or latent heat storage effect or a slurry thereof can be produced. Then, the cold heat released through the gas from the ice thermal storage tank can be used for the production of the clathrate hydrate or its slurry by the gas supplied for the purpose of stirring, which is rational and saves energy .
  • the ninth aspect of the present invention it is possible to realize a latent heat storage medium containing as a composition a clathrate hydrate having higher latent heat storage performance or higher latent heat storage capacity.
  • the tenth aspect of the present invention it is possible to increase the latent heat storage amount of the clathrate hydrate in which the quaternary ammonium compound formed by cooling the aqueous solution containing the quaternary ammonium compound is a guest.
  • the latent heat storage amount of the clathrate hydrate having as a guest the quaternary ammonium compound generated by cooling the aqueous solution containing the quaternary ammonium compound is deoxygenated to the aqueous solution It can be increased along with the treatment. This is because, in the case where the clathrate hydrate particles are dispersed in water or an aqueous solution to form a slurry, and this slurry is used as a latent heat storage medium, particularly for the same reason as the sixth aspect of the present invention, It is useful.
  • the process of cooling the aqueous solution after mixing the gas supplied from the outside with the aqueous solution containing the quaternary ammonium compound can be embodied in the form of an apparatus, thereby further storing heat.
  • An apparatus for producing clathrate hydrate with enhanced performance can be realized.
  • the clathrate hydrate having a higher heat storage performance according to the form further including a separator for separating the remaining gas that did not contribute to the formation of the clathrate hydrate. It is possible to realize an apparatus for producing clathrate hydrate that can separate the remaining gas that did not contribute to the formation of The separated residual gas can be reused for the production of clathrate hydrate or for other purposes.
  • the step of cooling the aqueous solution while supplying the gas from the outside to the aqueous solution containing the quaternary ammonium compound can be embodied in the form of an apparatus, and the heat storage performance is enhanced.
  • An apparatus for producing a clathrate hydrate can be realized.
  • the process of cooling the aqueous solution after mixing the externally supplied gas with the aqueous solution containing the quaternary ammonium compound can be embodied in the form of an apparatus, and It is possible to realize the processing device which increases the latent heat storage amount of the hydrate.
  • the step of cooling the aqueous solution while supplying a gas from the outside to the aqueous solution containing the quaternary ammonium compound can be embodied in the form of an apparatus, and the clathrate hydrate A processing apparatus can be realized that increases the latent heat storage amount of
  • the gas incorporated in the clathrate hydrate is released, but the gas can be reused for production of the clathrate hydrate or for other purposes. .
  • FIG. 1 is an explanatory view of a clathrate hydrate production apparatus according to an embodiment of the present invention.
  • FIG. 2 is an explanatory view of a cooling air conditioner according to an embodiment of the present invention.
  • FIG. 3 is an explanatory view of a cooling air conditioner according to another embodiment of the present invention.
  • FIG. 4 is an explanatory view of an ice thermal storage tank for an ice thermal storage type cooling system used in a cooling air conditioning facility according to another embodiment of the present invention.
  • Experiment 1 In Experiment 1, tetra-n-butylammonium bromide (TBAB) was used as a quaternary ammonium compound, and in the process of forming a clathrate hydrate slurry, two cases were used: no gas blowing and no gas blowing. An experiment was conducted to compare the thermal storage and melting point of the clathrate hydrate slurry produced.
  • TBAB tetra-n-butylammonium bromide
  • a 14.3 wt% aqueous solution of TBAB at room temperature is placed in a glass beaker, and while the gas (air, nitrogen, carbon dioxide) is blown through the bubbler into the glass beaker, the glass beaker is immersed in cooling liquid at 0 ° C and cooled.
  • a clathrate hydrate of TBAB containing gas was formed to form a clathrate hydrate slurry. During the cooling, the stirring in the beaker was continued.
  • the generated clathrate hydrate slurry was placed in a heat insulation container, and was stirred and heated by the immersed electric heater to dissolve the clathrate hydrate slurry.
  • the amount of heat given at that time and the clathrate hydrate slurry temperature were measured, and the heat storage amount in the temperature range of 7 ° C. to 10 ° C. was measured. Also, the temperature (melting point) at which the solid clathrate hydrate in the clathrate hydrate slurry was completely dissolved was measured.
  • the measurement results are shown in Table 1.
  • the increase in heat storage amount is called heat increase, and Table 1 shows the heat increase ratio calculated assuming that the heat storage amount when gas is not blown as 1 in order to represent the increase in heat storage amount (heat increase) due to gas blowing. It shows.
  • the heat storage amount is increased as compared with the case where the gas is not blown by blowing in air, nitrogen or carbon dioxide. It was confirmed that an increase of about 20% can be achieved by blowing air or nitrogen, and an increase of about 40% can be achieved by blowing carbon dioxide.
  • the measurement results when the concentration of the TBAB aqueous solution is 8 wt% are shown in Table 2.
  • the heat storage amount was measured in the temperature range of 5 ° C. to 8 ° C.
  • the heat can be increased by about 10% as compared with the case where the air is not blown, and the heat can be increased by about 30% by the carbon dioxide blowing. It was confirmed.
  • the heat can be increased by about 10% as compared to the case where the air is not blown, and the heat can be increased by about 60% by the carbon dioxide blowing. It was confirmed.
  • the temperature of the blown gas was room temperature, but as another experiment, the temperature of the gas was previously lower than the melting point of the clathrate hydrate of tetra-n-butylammonium bromide. It was cooled to a certain temperature of 8 ° C. or lower, and it was confirmed that the heat could be further increased by conducting the experiment in the same manner as the other experimental conditions.
  • TBAB tetra-n-butylammonium bromide
  • alkyl ammonium salts such as tetra-n-butyl ammonium salts, tetra-iso-pentyl ammonium salts, tri-n-butyl-n-pentyl ammonium salts and the like.
  • the 10 wt% TiPAB aqueous solution can increase heat by about 10% as compared to the case where the air is not blown by blowing the air.
  • a gas generating agent for example, a carbonate or a bicarbonate is added to an aqueous solution of a quaternary ammonium compound, and then generated while generating or generating carbon dioxide from the carbonate or a bicarbonate in an aqueous solution and then cooled to form
  • a gas generating agent for example, a carbonate or a bicarbonate is added to an aqueous solution of a quaternary ammonium compound, and then generated while generating or generating carbon dioxide from the carbonate or a bicarbonate in an aqueous solution and then cooled to form
  • the clathrate hydrate having the quaternary ammonium compound as a guest is collected to measure the heat storage amount, it is possible to confirm the phenomenon that the heat storage amount increases and the melting point also changes as compared with the case where the gas is not generated. Further, when the generated clathrate hydrate is melted, the phenomenon of release of carbon dioxide can be confirmed.
  • the pH of the aqueous solution can be lowered, and the pH may be lowered by addition of an acid or electrochemical method by electrode reaction. Good.
  • TBAB tetra-n-butylammonium bromide
  • a raw material aqueous solution was prepared by dissolving 15.0 wt% of TBAB and 4.0 wt% of sodium hydrogen carbonate in water.
  • the pH of the raw material aqueous solution after preparation was 8.3.
  • the raw material aqueous solution was placed in a glass beaker, and the glass beaker was immersed in a 0 ° C. cooling liquid to be cooled to form a hydrate, thereby forming a hydrate slurry.
  • the stirring in the beaker was continued.
  • a small amount of sulfuric acid was added during the process of cooling to lower the pH of the aqueous solution to 6.8 and carbon dioxide was generated from sodium hydrogen carbonate, and carbon dioxide was not generated without the addition of sulfuric acid.
  • Two types of experiments were performed.
  • the generated hydrate slurry was placed in a heat insulation container and heated with an electric heater immersed with stirring to dissolve the hydrate slurry.
  • the heat storage amount in the temperature range of 7 ° C. to 10 ° C. was measured from the heat quantity and the hydrate slurry temperature given at that time.
  • the melting point at which the solid hydrate in the hydrate slurry completely dissolves was measured.
  • FIG. 1 is an explanatory view of a clathrate hydrate production apparatus according to the first embodiment.
  • the manufacturing apparatus of the clathrate hydrate which concerns on this Embodiment 1 based on FIG. 1 is demonstrated.
  • the manufacturing apparatus of the clathrate hydrate which concerns on this Embodiment 1 stores the aqueous solution which stores the aqueous solution containing a quaternary-ammonium compound, stores the clathrate hydrate produced
  • the heat storage tank 1 stores an aqueous solution containing a quaternary ammonium compound and stores generated clathrate hydrate.
  • the aqueous solution containing the quaternary ammonium compound stored in the heat storage tank 1 is pumped out by the pump 3 and supplied to the mixer 5.
  • the mixer 5 supplies and mixes gas to the aqueous solution containing the quaternary ammonium compound. After the gas is mixed with the aqueous solution containing the quaternary ammonium compound by the mixer 5, the mixed fluid is sent to the generator 9 by the pump 7.
  • the mixer 5 is a tank filled with an aqueous solution and the gas is dispersed as a fine bubble in the aqueous solution.
  • the bubble diameter be small so that the gas-liquid contact area can be large.
  • an aqueous solution may be sprayed by a spray nozzle in a gas-filled container and brought into contact with the gas to dissolve the gas in the aqueous solution.
  • aqueous solution and the gas may be mixed by omitting the mixer 5 and supplying the gas to the aqueous solution in the generator 9.
  • the generator 9 has a cooling function, and cools the aqueous solution containing the quaternary ammonium compound and the gas mixed in the mixer 5 to form a clathrate hydrate containing the gas and the quaternary ammonium compound as a guest.
  • the generator 9 is preferably provided with a stirring mechanism.
  • the clathrate hydrate is generated, and agitation is performed in the generator 9 to generate a hydrate slurry in which clathrate hydrate particles are dispersed in an aqueous solution.
  • the separator 11 receives the supply of clathrate hydrate and unreacted gas from the generator 9 to separate the unreacted gas.
  • the type of the separator 11 is arbitrary, for example, a cyclone separator or the like can be used, for example, in order to minimize the mixture of slurry droplets in the separated gas, for example, a collision separation type mist separator may be combined. It is desirable to use.
  • the gas separated by the separator 11 is returned to the gas tank 13 and sent again to the mixer 5 by the pump 15 to be mixed with the aqueous solution.
  • the gas is an inexpensive gas that does not affect the environment, such as air, for example, the gas may be dissipated without being circulated.
  • the heat storage tank 1 is filled with an aqueous solution containing a quaternary ammonium compound, and this aqueous solution is pumped out by a pump 3 and supplied to a mixer 5.
  • a gas is supplied from the gas tank 13 to the supplied aqueous solution to mix the aqueous solution and the gas, and the gas is dissolved in the aqueous solution.
  • the aqueous solution containing the quaternary ammonium compound and the gas mixed in the mixer 5 is supplied to the generator 9 by the pump 7.
  • the supplied aqueous solution is cooled to generate a clathrate hydrate containing a gas and a quaternary ammonium compound as a guest, and the clathrate hydrate particles are produced by stirring in the generator 9.
  • the clathrate hydrate slurry generated in the generator 9 and the unreacted gas are supplied to the separator 11, and the clathrate hydrate slurry and the unreacted gas are separated.
  • the clathrate hydrate slurry separated is stored in the heat storage tank 1.
  • the gas separated by the separator 11 is returned to the gas tank 13 and supplied again to the mixer 5 to be used.
  • the clathrate hydrate containing the gas stored in the heat storage tank 1 and the quaternary ammonium compound as a guest has an increased heat storage amount as compared with the case where it does not contain a gas, as shown in the above experimental results. There is.
  • a clathrate hydrate slurry having a large heat storage can be generated by a simple device.
  • the gas and the aqueous solution are mixed by the mixer 5 provided separately, but the gas may be dispersed and mixed in the aqueous solution in the generator 9 without providing the mixer 5.
  • FIG. 2 is an explanatory view of a cooling air conditioner according to a second embodiment of the present invention.
  • the cooling air conditioning system of the present embodiment includes the clathrate hydrate manufacturing apparatus of the first embodiment, and the clathrate hydrate slurry generated by the manufacturing apparatus is used as a heat transport medium.
  • FIG. 2 the same parts as in FIG. 1 are given the same reference numerals.
  • the cooling air conditioning system receives the supply of the clathrate hydrate slurry stored in the heat storage tank 1 and is performed indoors.
  • a cold utilization device 17 having an indoor air conditioner for cooling, and a second separator 19 for receiving a clathrate hydrate slurry supplied after cold utilization by the cold utilization device 17 and separating a gas and an aqueous solution Have.
  • the aqueous solution in the heat storage tank 1 is extracted at night and supplied to the mixer 5, and the clathrate hydrate slurry is generated by the generator 9 for daytime cooling
  • a clathrate hydrate slurry is stored in the heat storage tank 1 as a heat transport medium used during operation.
  • the clathrate hydrate slurry in the heat storage tank 1 is sent by the pump 21 as a heat transport medium to the cold utilization device 17 (indoor air conditioner).
  • the clathrate hydrate slurry exchanges heat with air to supply cold to cool the room.
  • the hydrate of the clathrate hydrate slurry is melted into a mixed fluid of an aqueous solution and a gas, and is returned to the second separator 19.
  • the mixed fluid returned to the second separator 19 is separated into an aqueous solution and a gas, the aqueous solution is returned to the heat storage tank 1, and a portion thereof is sent directly to the mixer 5. Further, the gas separated by the second separator 19 is stored in the gas tank 13 and then sent to the mixer 5 to be mixed with the aqueous solution.
  • a clathrate hydrate slurry having a large heat storage capacity can be manufactured and used with a simple configuration. Further, since the gas supplied from the gas tank 13 can be circulated and used, the cost can be suppressed when the gas is expensive. In addition, even if the gas affects the environment, it does not release it to the outside, so it does not affect the environment.
  • the gas supplied from the gas tank 13 is a cheap gas that does not affect the environment, such as air, for example, the gas may be dissipated without being circulated.
  • the clathrate hydrate slurry generated by the generator 9 may be supplied to the cold heat utilization device 17 without providing the heat storage tank 1. In this case, it is preferable to increase the volume of the mixer 5.
  • the cold utilization device 17 does not have to be integrated with the indoor air conditioner, and for example, the cold utilization device 17 cools the water, guides the cooled water to the indoor air conditioner, and utilizes the cold energy. I don't care.
  • the aqueous solution and the gas are mixed in the mixer 5 and the generator 9 is cooled, but instead of the gas supplied to the mixer 5, the liquid refrigerant is used.
  • the liquid refrigerant may be mixed with the aqueous solution to cool the aqueous solution by the heat of evaporation of the liquid refrigerant, and to generate clathrate hydrate including the vaporized gaseous refrigerant.
  • the aqueous solution and the condensed liquid refrigerant are supplied to the mixer 5 and mixed.
  • the pressure reducing valve provided in the middle of the pipe for sending the mixed solution to the generator 9 reduces the pressure of the mixed solution to a pressure at which the liquid refrigerant evaporates at a temperature equal to or lower than the temperature at which clathrate hydrate is formed.
  • the liquid refrigerant is vaporized and the aqueous solution is cooled by the heat of evaporation, and a clathrate hydrate containing a gaseous refrigerant and a quaternary ammonium compound as a guest is generated.
  • the heat storage of the clathrate hydrate is achieved by directly cooling the aqueous solution by the heat of vaporization of the liquid refrigerant.
  • the following further effects are obtained.
  • the condensed liquid refrigerant When the condensed liquid refrigerant is depressurized, its surroundings are surrounded by the aqueous solution, and the direct effect of the cooling (temperature reduction) by evaporation of the liquid refrigerant accompanying the depressurization mainly extends to the aqueous solution present around the liquid refrigerant . For this reason, solid surfaces such as piping and container walls are not excessively cooled, and the effect of cooling is directly and effectively on hydrate formation, and hydrate formation is effectively performed. And, since the formation of the clathrate hydrate mainly proceeds in the aqueous solution, the clathrate hydrate does not adhere to the piping, the container wall and the like.
  • refrigerant natural refrigerant and various fluorocarbons can be used.
  • FIG. 3 is an explanatory diagram of a cooling air conditioner according to Embodiment 3 of the present invention.
  • the cooling air conditioning system of the third embodiment is the embodiment of the present invention except that the gas supplied to the aqueous solution is a gas which is supplied to the ice thermal storage tank for the ice thermal storage type cooling system and is cooled. Same as 2).
  • a well-known ice thermal storage tank for an ice thermal storage type cooling system is sufficient (see Japanese Utility Model Laid-Open No. 62-117435).
  • the cooling air conditioning system according to the third embodiment is an ice heat storage tank for an ice storage type cooling system that receives gas supply from the gas tank 13 and cools the gas. It has 23
  • FIG. 4 is an explanatory view of the ice storage tank 23 for the ice storage type cooling system.
  • the ice storage tank for the ice storage type cooling system will be described based on FIG.
  • the ice thermal storage tank for the ice thermal storage type cooling system stores the water and stores the generated ice in the water tank 24, and the cold water pipe for guiding the cold water in the water tank 24 to the cold energy utilizing equipment outside the water tank 24.
  • a return water pipe 26 for returning the return water returned from the cold energy utilization device to the water tank 24 a refrigerant pipe 27 disposed in the water tank 24 for circulating a heat exchange with water in the water tank 24, a gas for the water tank 24
  • An air supply pipe 28 for supplying to the bottom portion, and a cooling gas extraction pipe 29 for extracting the cooled gas accumulated at the top of the water tank 24 are provided.
  • the water in the water tank 24 is cooled by heat exchange with the refrigerant supplied to the refrigerant pipe 27 to generate and store ice for storage.
  • the stored cold water or ice slurry is led from the cold water pipe 25 to the cold utilization equipment to utilize cold heat, and the return water returned from the cold utilization equipment is returned from the return water pipe 26 to the water tank 24.
  • the gas is introduced from the air supply pipe 28 to the bottom of the water tank 24 to generate the bubbles 30 and stir the water in the water tank 24, thereby improving the cooling efficiency and the heat storage efficiency.
  • the gas is cooled while moving through the water in the water tank 24, and the cooled gas accumulates in the upper part of the water tank 24.
  • the cooled gas is withdrawn from the cooling gas outlet tube 29 and introduced to the mixer 5.
  • the melting point of the clathrate hydrate having a quaternary ammonium compound as a guest is 0 ° C. or higher, and the gas supplied and cooled to the ice storage tank has a temperature close to 0 ° C.
  • a clathrate hydrate having a heat storage effect or a slurry thereof can be produced.
  • the gas is supplied to the ice storage tank 23 for the ice storage cooling system, and the cooled gas is mixed with the aqueous solution of the quaternary ammonium compound in the mixer 5 to stir the water in the water tank 24 It is possible to improve the cooling efficiency and to produce a clathrate hydrate or a slurry thereof having higher latent heat storage performance or latent heat storage effect. Then, the cold heat released through the gas from the ice thermal storage tank can be used for the production of the clathrate hydrate or its slurry by the gas supplied for the purpose of stirring, which is rational and saves energy .
  • the heat storage amount increasing effect is described when the clathrate hydrate containing the gas and the quaternary ammonium compound as a guest is used as the heat storage agent, the gas and the quaternary ammonium are described.
  • the clathrate hydrate containing the compound as a guest can be used in other applications to obtain different effects.
  • a latent heat storage medium containing a clathrate hydrate containing a gas as a guest is used as a cold insulating material such as food
  • a more preferable storage state can be maintained by selecting the gas according to the object to be cooled. That is, in the case of producing clathrate hydrate which is a cold-storage material component, when fish and shellfish or vegetables which are desired to be stored at low temperature or oxygen demand is required like a cold-storage object such as floriculture living at cellular level. Include oxygen as a guest. In this way, since oxygen is released when the clathrate hydrate melts, it becomes possible to cool while supplying oxygen to the material to be chilled, and a state more suitable for storage can be realized .
  • a bag or the like using a gas-permeable material without leaking the aqueous solution may be used as the cold storage container.
  • a latent heat storage medium containing a clathrate hydrate containing a gas and a quaternary ammonium compound as a guest can be used as a heat / gas transport medium capable of simultaneously transporting heat and gas.
  • a latent heat storage medium containing a clathrate hydrate containing a gas and a quaternary ammonium compound as a guest can be used as a heat transport medium in a slurry state. In that case, it is possible to produce a hydrate slurry containing the desired gas, send it to where it needs heat and use it, and use the gas generated when the clathrate hydrate dissolves .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

 4級アンモニウム化合物を含む水溶液に気体を供給する気体供給手段と、前記水溶液を冷却する冷却手段とを備え、該冷却手段による冷却の過程で前記水溶液に前記気体供給手段により前記気体を供給することにより、前記4級アンモニウム化合物と前記気体の両方をゲストとし、前記蓄熱性能が高められた包接水和物を製造する包接水和物の製造装置。

Description

潜熱蓄熱性能を有する包接水和物、その製造方法及び製造装置、潜熱蓄熱媒体ならびに、包接水和物の潜熱蓄熱量の増加方法及び包接水和物の潜熱蓄熱量を増加させる処理装置
 本発明は、潜熱蓄熱効果を有する包接水和物及びこれに関連する技術に関し、詳しくは当該潜熱蓄熱効果が高められた包接水和物、かかる包接水和物の製造方法及び製造装置、かかる包接水和物を組成物として含む潜熱蓄熱媒体、包接水和物の潜熱蓄熱量の増加方法及び包接水和物の潜熱蓄熱量を増加させる処理装置に関する。
 潜熱蓄熱媒体は、熱エネルギーの効率的利用に供され、空調設備に用いられる蓄熱材や熱輸送媒体、生鮮食料品の品質保持に用いられる保冷材といった実用例も多い。このような蓄熱蓄熱媒体又はその組成物として、4級アンモニウム化合物をゲスト(又はゲスト分子)とし、水分子をホスト(又はホスト分子)とする包接水和物が知られている(実質的に固体状のもの及び水に分散させてスラリー状のものとしてそれぞれ特許文献1及び特許文献2参照)。
 なお、以下において、「4級アンモニウム化合物をゲストとし、水分子をホストとする包接水和物」を単に「4級アンモニウム化合物の包接水和物」又は「4級アンモニウム化合物をゲストとする包接水和物」という場合がある。
 一般に、潜熱蓄熱媒体は、単位重量あたりの蓄熱量(蓄熱密度)は大きいものほど蓄熱効率や熱輸送効率が高くなるので好ましい。このことは、潜熱蓄熱媒体又はその組成物が4級アンモニウム化合物の包接水和物である場合であっても変わらない。この意味から、より蓄熱密度が高い当該包接水和物が求められているといえる。
特公昭57-35224号公報 特許第3309760号公報
 蓄熱密度を大きくするためには、4級アンモニウム化合物の水溶液の濃度を高くすることによって生成する水和物粒子の固相率を高くして蓄熱密度を大きくすることができる。しかし、蓄熱密度を高めるために4級アンモニウム化合物の濃度又は密度を高めるとすると潜熱蓄熱媒体の材料コストが嵩むという問題が生じる。また、特に4級アンモニウム化合物の包接水和物を水又は水溶液に分散させたスラリーを潜熱蓄熱媒体又はその組成物とする場合には、水和物粒子の水中での存在重量比率又は固相率を高めることで蓄熱密度を高めることができるが、この比率を過度に高めるとスラリーの粘度が増加し流動性が低下して輸送性に支障が生じるという問題が生じる。
 本発明は上記の問題を解決するために、4級アンモニウム化合物をゲストとする包接水和物であって潜熱蓄熱性能が高められたもの、かかる包接水和物の製造方法及び製造装置、かかる包接水和物を組成物として含む潜熱蓄熱媒体、包接水和物の潜熱蓄熱量の増加方法及び包接水和物の潜熱蓄熱量を増加させる処理装置を得ることを目的としている。
 発明者らは、上記課題を解決するべく鋭意検討した結果、
(1)4級アンモニウム化合物の水溶液に気体を吹き込みながら冷却して生成、又は4級アンモニウム化合物の水溶液に気体を吹き込んだ後に冷却して生成した当該4級アンモニウム化合物をゲストとする包接水和物を採取して蓄熱量を測定すると、
(1a)気体を吹き込まない場合に比べ蓄熱量が増加する、そして
(1b)蓄熱量が増加するだけでなく融点も変化するという新たな知見を得た。
また、以下の新たな知見も得た。
(2)上記(1)の操作により生成した包接水和物を融解すると、その生成時に吹き込んだものと同種の気体が放出する。
(3)上記(1)の操作により生成した包接水和物を融解した後、上記(1)の操作を繰り返して包接水和物を生成させても、(1a)、(1b)及び(2)の各現象が現われる。
(4)上記(1a)、(1b)及び(2)の各現象の発現の程度は気体の種類に依存する。
 これらの現象については、4級アンモニウム化合物の水溶液に適当な気体を吹き込みながら冷却することにより、又は4級アンモニウム化合物の水溶液に適当な気体を吹き込んだ後に冷却することにより生成する包接水和物が、以下の三つのうち少なくとも一つであると考察することで矛盾なく説明することができる。
(ア)4級アンモニウム化合物をゲストとする包接水和物が当該適当な気体を内部に取り込んで形成される包接水和物、
(イ)当該適当な気体が当該4級アンモニウム化合物とともにゲスト分子として包接されて形成される包接水和物、
(ウ)4級アンモニウム化合物をゲストとする包接水和物と適当な気体をゲストとする包接水和物の混合物
 本発明は上記の知見に基づいてなされたものであり、具体的には以下の構成を有するものである。
 本発明の第1の形態に係る包接水和物は、4級アンモニウム化合物をゲストとし潜熱蓄熱性能を有する包接水和物であって、外部から供給された気体をゲストとしてさらに包接することにより前記潜熱蓄熱性能が高められているものである。
 本発明の第2の形態に係る包接水和物は、潜熱蓄熱性能を有する包接水和物であって、4級アンモニウム化合物を含む水溶液に外部から気体を供給しながら前記水溶液を冷却することにより、又は4級アンモニウム化合物を含む水溶液に外部から供給した気体を混合した後、前記水溶液を冷却することによって生成される前記4級アンモニウム化合物と前記気体の両方をゲストとするものである。
 本発明の第3の形態に係る潜熱蓄熱媒体は、第1または第2の形態に係る包接水和物を組成物として含むものである。
 本発明の第4の形態に係る潜熱蓄熱媒体は、4級アンモニウム化合物を含む水溶液に外部から気体を供給しながら前記水溶液を冷却することにより、又は4級アンモニウム化合物を含む水溶液に外部から供給した気体を混合した後、前記水溶液を冷却することにより生成される潜熱蓄熱性能を有する包接水和物を組成物として含むものである。
 本発明の第5の形態に係る包接水和物の製造方法は、潜熱蓄熱性能を有する包接水和物の製造方法であって、4級アンモニウム化合物を含む水溶液に外部から気体を供給しながら前記水溶液を冷却することにより、又は4級アンモニウム化合物を含む水溶液に外部から供給した気体を混合した後、前記水溶液を冷却することにより前記潜熱蓄熱性能を高める工程を有するものである。
 本発明の第6の形態に係る包接水和物の製造方法は、第5の形態に係る包接水和物の製造方法であって、外部から供給する気体が前記水溶液の脱酸素用の気体であるものである。
 本発明の第7の形態に係る包接水和物の製造方法は、第5の形態に係る包接水和物の製造方法であって、外部から供給する気体の温度は、前記包接水和物の融点より低い温度であるものである。
 本発明の第8の形態に係る包接水和物の製造方法は、第5の形態に係る包接水和物の製造方法であって、外部から供給する気体が、氷蓄熱槽に供給されることで冷却された気体であり、その温度は前記包接水和物の融点よりも低い温度であるものである。
 本発明の第9の形態に係る潜熱蓄熱媒体は、第5乃至第8のいずれかの形態に係る包接水和物の製造方法により製造された包接水和物を組成物として含むものである。
 本発明の第10の形態に係る包接水和物の潜熱蓄熱量の増加方法は、4級アンモニウム化合物をゲストとする包接水和物の潜熱蓄熱量の増加方法であって、前記4級アンモニウム化合物を含む水溶液に外部から気体を供給しながら前記水溶液を冷却する工程、又は前記4級アンモニウム化合物を含む水溶液に外部から供給された気体を混合した後、前記水溶液を冷却する工程を有するものである。
 本発明の第11の形態に係る包接水和物の潜熱蓄熱量の増加方法は、第10の形態に係る包接水和物の潜熱蓄熱量の増加方法であって、外部から供給する気体が前記水溶液の脱酸素用の気体であるものである。
 本発明の第12の形態に係る包接水和物の製造装置は、潜熱蓄熱性能を有する包接水和物の製造装置であって、4級アンモニウム化合物を含む水溶液に気体を供給して混合する混合器と、前記気体が混合された前記水溶液を冷却して前記蓄熱性能が高められた包接水和物を生成する生成器と、を備えるものである。
 本発明の第12の形態に係る包接水和物の製造装置において、包接水和物の生成に寄与しなかった残余の気体を分離する分離器を更に備えてもよい。
 本発明の第13の形態に係る包接水和物の製造装置は、潜熱蓄熱性能を有する包接水和物の製造装置であって、4級アンモニウム化合物を含む水溶液に気体を供給する気体供給手段と、前記水溶液を冷却する冷却手段とを備え、該冷却手段による冷却の過程で前記水溶液に前記気体供給手段により前記気体を供給することにより前記蓄熱性能が高められた包接水和物を製造するものである。
 本発明の第14の形態に係る包接水和物の潜熱蓄熱量を増加させる処理装置は、4級アンモニウム化合物をゲストとする包接水和物の潜熱蓄熱量を増加させる処理装置であって、4級アンモニウム化合物を含む水溶液に気体を供給して混合する混合器と、前記気体が混合された前記水溶液を冷却して前記包接水和物を生成する生成器と、を備えるものである。
 本発明の第15の形態に係る包接水和物の潜熱蓄熱量を増加させる処理装置は、4級アンモニウム化合物をゲストとする包接水和物の潜熱蓄熱量を増加させる処理装置であって、4級アンモニウム化合物を含む水溶液に気体を供給する気体供給手段と、前記水溶液を冷却する冷却手段とを備え、該冷却手段による冷却の過程で前記水溶液に前記気体供給手段により前記気体を供給するものである。
 なお、以下に掲げる事項(1)乃至(6)に基づき、本発明が理解・解釈され、その技術的範囲が画定されるものとする。
(1)本発明における4級アンモニウム化合物の代表例は、テトラ-n-ブチルアンモニウム塩、テトラ-iso-ペンチルアンモニウム塩、トリ-n-ブチル-n-ペンチルアンモニウム塩などである。
(2)本発明における潜熱蓄熱媒体は、本発明における包接水和物そのものであってもよく、当該包接水和物を必須組成物として、他の組成物を追加又は添加して構成されるものであってもよく、他の物質中に分散、内包、懸濁等して構成されるものであってもよい。また、潜熱蓄熱媒体の性状としては、固形状、液状、ゲル状、スラリー状、微小カプセル状(微小カプセル内に充填されている状態)等があり得るが、本発明における潜熱蓄熱媒体の性状には特に制限はない。例えば当初は固形状であっても、界面活性剤やゲル化剤を添加することで液状やゲル状に加工されてできる潜熱蓄熱媒体であっても、本発明における包接水和物を組成物として含む限り、本発明における潜熱蓄熱媒体に含まれる。本発明における潜熱蓄熱媒体ではその使用の態様に制限はなく、定位置で熱利用に供される潜熱蓄熱媒体も、駆動力又は自然対流による移動が伴うが故に移動先で熱利用に供される潜熱蓄熱媒体も、使用の態様という観点から本発明から排除されるものではない。
(3)本発明において、4級アンモニウム化合物を含む水溶液(以下単に水溶液という)への気体の供給は相対的なものであり、水溶液に向けて気体を放出する場合は勿論、気体に向けて水溶液を放出する場合もこれに該当する。前者の典型例は、水溶液が存在する領域への当該領域外からの気体のバブリングであり、その場合気泡粒径は小さいほど好ましい。後者の典型例は、気体が存在する領域への当該領域外からの水溶液の噴霧であり、その場合水溶液滴径は小さいほど好ましい。いずれにせよ、水溶液への気体の供給は、気体と水溶液との接触面積をより高める手法により行われることが好ましい。
(4)本発明は、4級アンモニウム化合物を含む水溶液を冷却するという包接水和物の従来の生成手法に、外部から前記水溶液に気体を供給するという技術的事項が加味された新たな生成手法を基礎とする技術的思想であり、従って、外部から気体を供給すること自体に技術的特徴がある。
 しかし、本発明において、外部から供給すべき気体には水素やヘリウムは含まれない。水素やヘリウムのような小さな分子の気体を4級アンモニウム化合物を含む水溶液に外部から供給しながら又は外部から供給し混合した後、冷却することによって生成した包接水和物では、潜熱蓄熱量の増加が起こらなかった。
 他方、本発明において、外部から供給すべき気体には、4級アンモニウム化合物をゲストとする包接化合物に取り込まれる気体又は、4級アンモニウム化合物とともに水分子に包接されて包接水和物の構成要素となり得る気体が含まれる。具体的には空気、窒素、酸素、二酸化炭素、アルゴン、クリプトン、キセノン、硫化水素、メタン、エタン、プロピレン、トリメチレンオキシド、プロパン、ブタン、各種フロンといった水素やヘリウムよりも大きな分子の気体が含まれる。
 従って、本発明の技術的特徴が外部から気体を供給すること自体にあるものの、当該気体としては、水素やヘリウムよりも大きな分子の気体であって、4級アンモニウム化合物をゲストとする包接化合物に取り込まれる気体又は、4級アンモニウム化合物とともに水分子に包接されて包接水和物の構成要素となり得る気体であると特定することができる。
(5)本発明において、潜熱蓄熱性能又は潜熱蓄熱効果のより高い包接水和物を生成又は製造する際の圧力については特に制限がなく、目的とする包接水和物が生成又は製造できる限りにおいて、加圧下や常圧下で、更には減圧下でこれを行って構わない。なお、気体の水溶液への溶解速度や最大溶解濃度に着目すると、潜熱蓄熱量が多い包接水和物をより効率的に生成又は製造するためには加圧下の方が常圧下より好ましく、又常圧下の方が減圧下より好ましい。他方、設備や運転のコストに着目すると、常圧下がより好ましい。
 (6)本発明の第12又は第13の形態に係る製造装置には、包接水和物を含む潜熱蓄熱媒体を用いる熱利用システムの一部に、潜熱蓄熱量を増加させるための一手段として組み込まれる、いわば包接水和物の処理装置といった意味で使用されるものが含まれる。
 本発明によれば、包接水和物の潜熱蓄熱性能が高まるので、潜熱の必要量を蓄熱するために要する包接水和物のゲスト化合物としての4級アンモニウム化合物の量を低減することができ、材料コストを低減できるとともに、当該包接水和物を収容するために必要な容器をより小さく、そして当該容器を含む設備を小型にすることができる。特に包接水和物を用いて(例えば流動性が高く粘性の低いスラリーにして)熱輸送を行う場合には、同じ潜熱蓄熱量を輸送するために必要な包接水和物の量を低減できるので、材料コストの低減のみならず、輸送配管の小型化、輸送動力の低減が可能になる。
 本発明を多面的に眺めた場合、その各形態が奏する作用効果は以下のとおりである。
 本発明の第1及び第2の形態によれば、外部から供給された気体を取り込んでいない又は当該気体を包接していない包接水和物よりも高い潜熱蓄熱性能を有する包接水和物を実現することができる。
 本発明の第3及び第4の形態によれば、より高い潜熱蓄熱性能又はより高い潜熱蓄熱量を有する包接水和物を組成物として含む潜熱蓄熱媒体を実現することができる。
 本発明の第5の形態によれば、外部から供給された気体を取り込んでいない又は当該気体を包接していない包接水和物よりも高い潜熱蓄熱性能を有する包接水和物を製造することができる。
 本発明の第6の形態によれば、4級アンモニウム化合物を含む水溶液への脱酸素用の気体(例えば窒素ガス)を供給することにより脱酸素処理が施されている当該水溶液又は施された当該水溶液からより高い潜熱蓄熱性能又は潜熱蓄熱効果を有する包接水和物を製造することができる。
 これは、包接水和物の粒子が水又は水溶液中に分散してスラリーとなり、このスラリーを潜熱蓄熱媒体として使用する場合において特に有益である。即ち、当該スラリーにより容器、配管等の内面材料の腐食が発生することを抑制するために、そのスラリー中の溶存酸素量を減らす脱酸素型腐食抑制剤をスラリーに投入する場合がある。その場合に、スラリーの原料液に相当する前記水溶液に脱酸素用気体を供給して脱酸素処理を施せば、腐食抑制剤の投入量を低減もしくは腐食抑制剤投入を不要にできるとともに、そのスラリーの潜熱蓄熱量を増加させることができるという二つの効果を奏する。
 本発明の第7の形態によれば、気体そのものの温度が包接水和物の融点より低い温度なので、これを水溶液に供給することにより、水溶液を冷却する冷熱として利用でき、冷媒との熱交換による冷却にさらに加えることができるので、より効率よく冷却できるため、より高い潜熱蓄熱性能又は潜熱蓄熱効果を有する包接水和物又はそのスラリーを製造することができる。
 本発明の第8の形態によれば、4級アンモニウム化合物をゲストとする包接水和物の融点が0℃以上であり、氷蓄熱槽に供給されて冷却された気体は0℃に近い温度であるので、これを水溶液に供給することにより、水溶液を冷却する冷熱として利用でき、冷媒との熱交換による冷却にさらに加えることができるので、より効率よく冷却できるため、より高い潜熱蓄熱性能又は潜熱蓄熱効果を有する包接水和物又はそのスラリーを製造することができる。
 なお、氷蓄熱槽には、例えばその内部の冷水を攪拌することを目的として気体(特に空気)が供給される場合がある(例えば実開昭62-117435号公報参照)。氷蓄熱槽から抜出された気体は、0℃近い温度であるので、包接水和物の融点よりも低い温度であるため、これを水溶液に供給することにより、水溶液を冷却する冷熱として利用でき、冷媒との熱交換による冷却にさらに加えることができるので、より効率よく冷却できるため、より高い潜熱蓄熱性能又は潜熱蓄熱効果を有する包接水和物又はそのスラリーを製造することができる。そして、攪拌することを目的として供給された気体により氷蓄熱槽から当該気体を通じて放出される冷熱を包接水和物又はそのスラリーの製造に役立てることができ、合理的でありエネルギーの節約になる。
 本発明の第9の形態によれば、より高い潜熱蓄熱性能又はより高い潜熱蓄熱量を有する包接水和物を組成物として含む潜熱蓄熱媒体を実現することができる。
 本発明の第10の形態によれば、4級アンモニウム化合物を含む水溶液を冷却することで生成する当該4級アンモニウム化合物をゲストとする包接水和物の潜熱蓄熱量を増加させることができる。
 本発明の第11の形態によれば、4級アンモニウム化合物を含む水溶液を冷却することで生成する当該4級アンモニウム化合物をゲストとする包接水和物の潜熱蓄熱量を、当該水溶液に対する脱酸素処理に併せて増加させることができる。これは、包接水和物の粒子が水又は水溶液中に分散してスラリーとなり、このスラリーを潜熱蓄熱媒体として使用する場合において、本発明の第6の形態の場合と同様の理由から、特に有益である。
 本発明の第12の形態によれば、4級アンモニウム化合物を含む水溶液に外部から供給した気体を混合した後、その水溶液を冷却するという工程を装置の形で具現化することができ、より蓄熱性能が高められた包接水和物の製造装置を実現することができる。
 本発明の第12の形態に、包接水和物の生成に寄与しなかった残余の気体を分離する分離器を更に備えた形態によれば、より蓄熱性能が高められた包接水和物の生成に寄与しなかった残余の気体を分離することができる包接水和物の製造装置を実現することができる。分離された残余の気体は、包接水和物の製造への再利用又はその他の目的に供することができる。
 本発明の第13の形態によれば、4級アンモニウム化合物を含む水溶液に外部から気体を供給しながらその水溶液を冷却するという工程を装置の形で具現化することができ、より蓄熱性能が高められた包接水和物の製造装置を実現することができる。
 本発明の第14の形態によれば、4級アンモニウム化合物を含む水溶液に外部から供給した気体を混合した後、その水溶液を冷却するという工程を装置の形で具現化することができ、包接水和物の潜熱蓄熱量を増加させる処理装置を実現することができる。
 本発明の第15の形態によれば、4級アンモニウム化合物を含む水溶液に外部から気体を供給しながらその水溶液を冷却するという工程を装置の形で具現化することができ、包接水和物の潜熱蓄熱量を増加させる処理装置を実現することができる。
 なお、包接水和物が融解する際にその包接水和物に取込まれた気体が放出されるが、包接水和物の製造への再利用又はその他の目的に供することができる。
図1は、本発明の一実施の形態に係る包接水和物の製造装置の説明図である。 図2は、本発明の一実施の形態に係る冷房空調設備の説明図である。 図3は、本発明の他の実施の形態に係る冷房空調設備の説明図である。 図4は、本発明の他の実施の形態に係る冷房空調設備に用いる氷蓄熱式冷却システム用の氷蓄熱槽の説明図である。
 本発明の効果を確認するための実験結果について説明し、その後、具体的な実施の形態を説明する。
 [実験1]
 実験1では、4級アンモニウム化合物として臭化テトラ-n-ブチルアンモニウム(TBAB)を用い、包接水和物スラリーの生成過程において、気体を吹き込まない場合と、気体を吹き込んだ場合との二つの場合の実験を行い、生成された包接水和物スラリーの蓄熱量と融点を比較した。
 実験内容は以下に示す通りである。
 常圧下、室温の14.4wt%濃度のTBAB水溶液をガラスビーカーに入れ、ガラスビーカーに気体(空気、窒素、二酸化炭素)をバブラーを通して吹き込みつつ、ガラスビーカーを0℃の冷却液に浸けて冷却し、気体を含むTBABの包接水和物を生成させて、包接水和物スラリーを生成させた。なお、冷却している間、ビーカー内部の攪拌を続けた。
 生成した包接水和物スラリーを断熱容器に入れ、攪拌しながら、浸漬した電気ヒータにより加熱し、包接水和物スラリーを溶解した。そのときに与えた熱量と包接水和物スラリー温度を計測して、7℃~10℃の温度範囲における蓄熱量を計測した。また、包接水和物スラリー中の固体包接水和物が完全に溶けきる温度(融点)を計測した。
 計測結果を表1に示す。蓄熱量が増加することを増熱といい、表1には、気体吹き込みによる蓄熱量の増加(増熱)を表すために、気体を吹き込まない場合の蓄熱量を1として算出した増熱比率を示している。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、14.4wt%濃度のTBAB水溶液では、空気、窒素または二酸化炭素を吹き込むことにより気体を吹き込まない場合に比べ、蓄熱量が増大している。空気または窒素を吹き込むことにより約20%の増熱ができ、二酸化炭素を吹き込むことにより約40%の増熱ができることを確認した。
 [実験2]
 次に、実験2では、TBAB水溶液の濃度を変えて実験1の手順と同様の手順で実験を行い生成された包接水和物スラリーの蓄熱量と融点を計測した。
 TBAB水溶液の濃度が8wt%の場合の計測結果を表2に示す。蓄熱量は、5℃~8℃の温度範囲にて測定した。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、8wt%濃度のTBAB水溶液では、空気を吹き込むことにより吹き込まない場合に比べ、約10%の増熱ができ、二酸化炭素を吹き込むことにより約30%の増熱ができることを確認した。
 次に、TBAB水溶液の濃度が25wt%の場合の計測結果を表3に示す。蓄熱量は、9℃~12℃の温度範囲にて測定した。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、25%濃度のTBAB水溶液では、空気を吹き込むことにより吹き込まない場合に比べ、約10%の増熱ができ、二酸化炭素を吹き込むことにより約60%の増熱ができることを確認した。
 また、実験1、2において、気体を吹き込んで製造した包接水和物スラリーは、気体を吹き込まない場合のものと同様に熱輸送媒体として十分な流動性を有していることを確認した。
 また、包接水和物スラリーが加熱され水和物固体が融解する間、微細な気泡が発生した。気泡から捕集した気体の成分は吹き込んだ気体であることを確認した。
 上記の実験1、2では、吹き込んだ気体の温度は室温であったが、別の実験として、気体の温度を予め臭化テトラ-n-ブチルアンモニウムの包接水和物の融点より低い温度である8℃以下に冷却して吹き込んで、他の実験条件は同じようにして実験を行うと、さらに増熱できることを確認した。
 上記の実験1、2では、4級アンモニウム化合物として臭化テトラ-n-ブチルアンモニウム(TBAB)を用いたが、TBAB以外の4級アンモニウム化合物についても同様の効果が得られる。4級アンモニウム化合物の他の例としては、テトラ-n-ブチルアンモニウム塩、テトラ-iso-ペンチルアンモニウム塩、トリ-n-ブチル-n-ペンチルアンモニウム塩などのアルキルアンモニウム塩がある。
 [実験3]
 テトラ-iso-ペンチルアンモニウム塩として臭化テトラ-iso-ペンチルアンモニウム(TiPAB)を用いて、気体を吹き込むことによる蓄熱量の増加を測定した。10wt%濃度のTiPAB水溶液を用いて、実験1の手順と同様の手順で実験を行い生成された包接水和物スラリーの蓄熱量と融点を計測した。計測結果を表4に示す。蓄熱量は、27℃~30℃の温度範囲にて測定した。
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、10wt%濃度のTiPAB水溶液では、空気を吹き込むことにより吹き込まない場合に比べ、約10%の増熱ができることを確認した。
 [実験4]
 トリ-n-ブチル-n-ペンチルアンモニウム塩として臭化トリ-n-ブチル-n-ペンチルアンモニウム(TBPAB)を用いて、気体を吹き込むことによる蓄熱量の増加を測定した。17wt%濃度のTBPAB水溶液を用いて、実験1の手順と同様の手順で実験を行い生成された包接水和物スラリーの蓄熱量と融点を計測した。計測結果を表5に示す。蓄熱量は、5℃~8℃の温度範囲にて測定した。
Figure JPOXMLDOC01-appb-T000005
 表5に示されるように、17wt%濃度のTBPAB水溶液では、空気を吹き込むことにより吹き込まない場合に比べ、約10%の増熱ができることを確認した。
 実験1~4に示されるように、4級アンモニウム化合物として臭化テトラ-n-ブチルアンモニウム(TBAB)、臭化テトラ-iso-ペンチルアンモニウム(TiPAB)、臭化トリ-n-ブチル-n-ペンチルアンモニウム(TBPAB)の水溶液に、気体を吹き込んで冷却して包接水和物スラリーを生成すると、気体を吹き込まない場合に比べて増熱が可能であることが確認された。このように、生成した包接水和物スラリーが潜熱蓄熱媒体として有用であることが判明した。
 また、実験1~4において、気体を吹き込んで製造した包接水和物スラリーは、気体を吹き込まない場合のものと同様に熱輸送媒体として十分な流動性を有していることを確認した。
 上記の実験1~4においては、4級アンモニウム化合物を含む水溶液に気体を外部から供給し混合して、冷却し気体と4級アンモニウム化合物をゲストとして含む包接水和物を生成することを確認したが、気体を発生させる気体発生剤をあらかじめ4級アンモニウム化合物の水溶液に添加しておき、気体発生剤から気体を水溶液中に発生させながら又は発生させた後に冷却して、気体と4級アンモニウム化合物をゲストとして含む包接水和物を生成することもできる。
 気体発生剤として、例えば炭酸塩もしくは炭酸水素塩を4級アンモニウム化合物の水溶液に添加しておき、炭酸塩もしくは炭酸水素塩から二酸化炭素を水溶液中に発生させながら又は発生させた後に冷却して生成した当該4級アンモニウム化合物をゲストとする包接水和物を採取して蓄熱量を測定すると、気体を発生させない場合に比べ蓄熱量が増加し、融点も変化する現象が確認できる。さらに生成した包接水和物を融解すると、二酸化炭素が放出する現象が確認できる。
 水溶液中の炭酸塩もしくは炭酸水素塩から二酸化炭素を発生させるには、水溶液のpHを低下させることにより行え、pHの低下は、酸の添加によってもよいし、電極反応による電気化学的方法によってもよい。
 また、包接水和物を融解して包接水和物に取り込まれた二酸化炭素が放出された場合に、炭酸塩もしくは炭酸水素塩を再度生成させる反応に放出された二酸化炭素を利用することができる。
 [実験5]
 4級アンモニウム化合物の水溶液に炭酸塩もしくは炭酸水素塩を添加しておき、炭酸塩もしくは炭酸水素塩から二酸化炭素を水溶液中に発生させながら冷却して生成した4級アンモニウム化合物をゲストとする包接水和物の蓄熱量を測定する実験を行った。4級アンモニウム化合物として臭化テトラ-n-ブチルアンモニウム(TBAB)を用い、水和物スラリーの生成過程において、炭酸塩または炭酸水素塩を添加して二酸化炭素を発生させた場合と、二酸化炭素を発生させない場合との実験を行い、生成された水和物スラリーの蓄熱量と融点を比較した。
 実験内容は以下に示す通りである。
 水に対してTBABを15.0wt%、炭酸水素ナトリウムを4.0wt%を溶解して原料水溶液を調製した。調製後の原料水溶液のpHは8.3であった。
 常圧下、原料水溶液をガラスビーカーに入れ、ガラスビーカーを0℃の冷却液に浸けて冷却し水和物を生成させ水和物スラリーを生成させた。なお、冷却している間、ビーカー内部の攪拌を続けた。このとき、冷却している過程において硫酸を微量添加して原料水溶液のpHを6.8まで下げて炭酸水素ナトリウムから二酸化炭素を発生させた場合と、硫酸を添加することなく二酸化炭素を発生させなかった場合の2種類の実験を行った。
 生成した水和物スラリーを、断熱容器に入れ、攪拌しながら浸漬した電気ヒータにより加熱し、水和物スラリーを溶解した。そのときに与えた熱量と水和物スラリー温度から、7℃~10℃の温度範囲における蓄熱量を計測した。また、水和物スラリー中の固体水和物が完全に溶けきる融点を計測した。
 計測結果を下記の表6に示す。なお、表6には、二酸化炭素発生による蓄熱量の増加比率について、二酸化炭素を発生させない場合を1として算出した増熱比率を示している。表6に示されるように、炭酸水素ナトリウムから二酸化炭素を発生させた場合は発生させない場合に比べ、約20%の増熱ができることを確認した。
Figure JPOXMLDOC01-appb-T000006
 以下の実施形態はかかる実験による結果を基になされたものである。
 [実施の形態1]
 図1は本実施の形態1に係る包接水和物の製造装置の説明図である。以下、図1に基づいて本実施の形態1に係る包接水和物の製造装置を説明する。
 本実施の形態1に係る包接水和物の製造装置は、4級アンモニウム化合物を含む水溶液を貯留すると共に生成された包接水和物を貯留する蓄熱槽1と、蓄熱槽1から前記水溶液の供給を受けて該水溶液に気体を供給して混合する混合器5と、混合器5で混合された4級アンモニウム化合物と気体を含む水溶液を冷却して前記気体と4級アンモニウム化合物をゲストとして含む包接水和物を生成する生成器9と、該生成器9から前記包接水和物と未反応の気体の供給を受けて前記未反応の気体を分離する分離器11と、を備えている。
 以下、各構成を詳細に説明する。
 <蓄熱槽>
 蓄熱槽1は、4級アンモニウム化合物を含む水溶液を貯留すると共に生成された包接水和物を貯留する。蓄熱槽1に貯留された4級アンモニウム化合物を含む水溶液はポンプ3によって汲み出されて混合器5に供給される。
 <混合器>
 混合器5は、4級アンモニウム化合物を含む水溶液に気体を供給して混合する。混合器5によって4級アンモニウム化合物を含む水溶液に気体が混合された後、混合流体はポンプ7によって生成器9に送られる。
 混合器5の一つの態様としては、混合器5が水溶液を充填したタンクからなり気体が微細な気泡として水溶液中に分散されるようなものがある。この場合、気液接触面積が大きく取れるように気泡径は小さいほうが好ましい。
 混合器5の別の態様として、気体を充填した容器内に水溶液をスプレーノズルにより噴霧し気体と接触させ水溶液に気体を溶解させるようなものでもよい。
 なお、混合器5を省略して生成器9内の水溶液に気体を供給することにより、水溶液と気体を混合するようにしてもよい。
 <生成器>
 生成器9は冷却機能を備えており、混合器5で混合された4級アンモニウム化合物と気体を含む水溶液を冷却して気体と4級アンモニウム化合物をゲストとして含む包接水和物を生成する。生成器9には攪拌機構を設けるのが好ましい。
 包接水和物が生成され、生成器9内で攪拌が行われることにより、包接水和物粒子が水溶液に分散した水和物スラリーが生成される。
 生成器9においては、上記の包接水和物と共に未反応の気体が存在する。
 <分離器>
 分離器11は、生成器9から包接水和物と未反応の気体の供給を受けて前記未反応の気体を分離する。
 分離器11の形式は任意であり、例えばサイクロンセパレータなどを利用することができるが、分離した気体中へのスラリー液滴混入を可能な限り少なくするため、例えば衝突分離式のミストセパレータを併せて用いることが望ましい。
 分離器11で分離された気体は、気体タンク13に戻され、ポンプ15によって再び混合器5に送られ水溶液に混合される。もっとも、気体が例えば空気のように安価で環境に影響を与えない気体である場合、気体は循環使用せず放散するようにしてもよい。
 以上のように構成された包接水和物の製造装置によって包接水和物を製造する方法を以下に説明する。
 蓄熱槽1に4級アンモニウム化合物を含む水溶液を充填し、この水溶液をポンプ3で汲み出して混合器5に供給する。混合器5では、供給された水溶液に気体タンク13から気体を供給して水溶液と気体を混合し、気体を水溶液に溶解させる。混合器5で混合された4級アンモニウム化合物と気体を含む水溶液をポンプ7によって生成器9に供給する。生成器9では、供給された水溶液を冷却して気体と4級アンモニウム化合物をゲストとして含む包接水和物が生成され、生成器9内で攪拌が行われることにより、包接水和物粒子が水溶液に分散した包接水和物スラリーが生成される。生成器9で生成された包接水和物スラリーと未反応気体が分離器11に供給され、包接水和物スラリーと未反応の気体が分離される。分離された包接水和物スラリーは蓄熱槽1に貯留される。他方、分離器11で分離された気体は、気体タンク13に戻されて再度混合器5に供給されて利用される。
 蓄熱槽1に貯留された気体と4級アンモニウム化合物をゲストとして含む包接水和物は、上記の実験結果にも示されるように、気体を含まない場合に比較して蓄熱量が増大している。このように本実施の形態によれば、蓄熱量の大きな包接水和物スラリーを簡易な装置で生成できる。
 なお、混合器5内の水溶液に分散混合させる気体をあらかじめ冷却しておくことにより、生成器9での水溶液の冷却を助け、包接水和物を効率的に生成させることが出来る。
 上記の例では別途設けた混合器5によって気体と水溶液を混合するようにしたが、混合器5を設けないで、生成器9内の水溶液に気体を分散混合させるようにしてもよい。
 [実施の形態2]
 図2は本発明の実施の形態2に係る冷房空調設備の説明図である。
 本実施の形態の冷房空調設備は、実施の形態1の包接水和物の製造装置を含み、該製造装置で生成される包接水和物スラリーを熱輸送媒体として用いたものである。図2において、図1と同一部分には同一の符号を付してある。
 本実施の形態2の冷房空調設備は、実施の形態1の包接水和物の製造装置の構成に加えて、蓄熱槽1に貯留された包接水和物スラリーの供給を受けて室内の冷房を行う室内空調機を備えた冷熱利用装置17、冷熱利用装置17で冷熱利用された後の包接水和物スラリーの供給を受けて気体と水溶液とを分離する第2分離器19とを備えている。
 上記のように構成された冷房空調設備においては、例えば夜間に蓄熱槽1内の水溶液を抜き出し混合器5に供給して、生成器9により包接水和物スラリーを生成して、昼間の冷房運転時に使用する熱輸送媒体として包接水和物スラリーを蓄熱槽1に貯留する。
 昼間の冷房運転時において、蓄熱槽1内の包接水和物スラリーをポンプ21によって熱輸送媒体として冷熱利用装置17(室内空調機)に流送する。室内空調機において、包接水和物スラリーは空気と熱交換して冷熱を供給し室内を冷房する。この熱交換により、包接水和物スラリーの水和物は融解して水溶液と気体の混合流体となり、第2分離器19に戻される。
 第2分離器19に戻された混合流体は水溶液と気体とに分離され、水溶液は蓄熱槽1に戻され、その一部は直接混合器5に送られる。また、第2分離器19で分離された気体は、気体タンク13に貯留され、その後、混合器5に送られ水溶液に混合される。
 以上のように、本実施の形態2によれば、簡易な構成により、蓄熱量の大きな包接水和物スラリーを製造でき、かつ利用できる。また、気体タンク13から供給する気体は循環して利用できるので、気体が高価なものの場合にはコストを抑えることができる。また、気体が環境に影響を与えるものであっても、外部に放出しないので環境に影響を与えることがない。
 なお、気体タンク13から供給する気体が例えば空気のように安価で環境に影響を与えない気体である場合、気体は循環使用せず放散するようにしてもよい。
 また、蓄熱槽1を設けずに生成器9で生成した包接水和物スラリーを冷熱利用装置17へ供給するようにしてもよい。この場合には、混合器5の容量を大きくするのが好ましい。
 また、冷熱利用装置17は、室内空調機と一体化している必要は無く、たとえば冷熱利用装置17で水を冷却し、その冷却された水を室内空調機に導き冷熱を利用する形態であってもかまわない。
 また、上記の実施の形態1又は2では、混合器5で水溶液と気体を混合して生成器9で冷却するようにしたが、混合器5に供給する気体に代えて液体冷媒を用いることにより、液体冷媒を水溶液に混合して、液体冷媒の蒸発熱によって水溶液を冷却すると共に、気化した気体冷媒を含む包接水和物を生成するようにしてもよい。
 具体的には次のようにする。混合器5に水溶液と凝縮した液体冷媒を供給し混合する。混合液を生成器9に送る配管途中に設けた減圧弁により、液体冷媒が包接水和物を生成する温度以下の温度で蒸発する圧力まで混合液を減圧する。これによって、液体冷媒が気化して蒸発熱により水溶液を冷却し、気体冷媒と4級アンモニウム化合物をゲストとして含む包接水和物が生成される。
 このように、包接水和物に4級アンモニウム化合物とともにゲストとして含まれる気体として気体冷媒を用いて、液体冷媒が気化する蒸発熱により水溶液を直接冷却することにより、包接水和物の蓄熱量を増大させることに加えて、さらに下記の効果が得られる。
 凝縮した液体冷媒が減圧される際にはその周囲は水溶液で囲まれており、減圧に伴う液体冷媒の気化による冷却(温度低下)の直接的効果は主として液体冷媒の周囲に存在する水溶液に及ぶ。このため、配管や容器壁等の固体面が過度に冷却されることがなく、冷却の効果が水和物生成に直接かつ効果的に及び、水和物の生成が効果的に行われる。そして、包接水和物の生成が主として水溶液中で進行するため、配管や容器壁等に包接水和物が付着することもない。
 なお、冷媒としては自然冷媒、各種フロンを用いることができる。
 [実施の形態3]
 図3は本発明の実施の形態3に係る冷房空調設備の説明図である。
 本実施の形態3の冷房空調設備は、水溶液に供給される気体が氷蓄熱式冷却システム用の氷蓄熱槽に供給され、冷却された気体である点を除き、上記の本発明の実施の形態2に係るものと同じである。氷蓄熱式冷却システム用の氷蓄熱槽としては公知のもので足りる(実開昭62-117435号公報参照)。
 本実施の形態3の冷房空調設備は、実施の形態2に係る冷房空調設備の構成に加えて、気体タンク13から気体の供給を受けて気体を冷却する氷蓄熱式冷却システム用の氷蓄熱槽23を備えている。
 図4は氷蓄熱式冷却システム用の氷蓄熱槽23の説明図である。以下、図4に基づいて氷蓄熱式冷却システム用の氷蓄熱槽を説明する。
 本実施の形態に係る氷蓄熱式冷却システム用の氷蓄熱槽は、水を貯留すると共に生成された氷を貯留する水槽24、水槽24内の冷水を水槽24外の冷熱利用機器へ導く冷水管25、冷熱利用機器から戻る還水を水槽24へ導く還水管26、水槽24内に配設されて水槽24内の水と熱交換するための冷媒を循環させる冷媒管27、気体を水槽24の底部へ供給する給気管28、水槽24の上部に溜まった冷却された気体を抜出す冷却気体抜出管29と、を備えている。
 上記のように構成された氷蓄熱式冷却システム用の氷蓄熱槽においては、水槽24内の水を冷媒管27に供給される冷媒との熱交換により冷却して氷を生成し貯留して蓄熱する。冷熱を利用する場合には、貯留されている冷水または氷スラリーを、冷水管25から冷熱利用機器に導き冷熱を利用し、冷熱利用機器から戻る還水を還水管26から水槽24へ戻す。蓄熱する時に、水槽24の底部へ給気管28から気体を導き、気泡30を発生させ水槽24内の水を攪拌することにより、冷却効率を高め蓄熱効率を向上させることができる。この気体は水槽24内の水中を移動する間に冷却され、冷却された気体が水槽24の上部に溜まる。この冷却された気体を冷却気体抜出管29から抜出し混合器5へ導く。
 4級アンモニウム化合物をゲストとする包接水和物の融点が0℃以上であり、氷蓄熱槽に供給されて冷却された気体は0℃に近い温度であるので、これを混合器5で水溶液に供給し混合することにより、水溶液を冷却する冷熱として利用でき、生成器9における冷媒との熱交換による冷却にさらに加えることができるので、より効率よく冷却できるため、より高い潜熱蓄熱性能又は潜熱蓄熱効果を有する包接水和物又はそのスラリーを製造することができる。このように氷蓄熱式冷却システム用の氷蓄熱槽23へ気体を供給し、冷却された気体を混合器5で4級アンモニウム化合物の水溶液に混合することにより、水槽24内の水を攪拌して冷却効率を向上させることができると共に、より高い潜熱蓄熱性能又は潜熱蓄熱効果を有する包接水和物又はそのスラリーを製造することができる。そして、攪拌することを目的として供給された気体により氷蓄熱槽から当該気体を通じて放出される冷熱を包接水和物又はそのスラリーの製造に役立てることができ、合理的でありエネルギーの節約になる。
 上記の実施の形態のそれぞれにおいては、気体と4級アンモニウム化合物をゲストとして含む包接水和物を蓄熱剤としての用途に用いた場合の蓄熱量増大効果について説明したが、気体と4級アンモニウム化合物をゲストとして含む包接水和物は他の用途に用いることで異なる効果を得られる。
 例えば、気体をゲストとして含む包接水和物を含む潜熱蓄熱媒体を食品等の保冷材に使う場合、保冷する対象物に応じて気体を選べば、より好ましい保存状態が保てる。すなわち、低温で保存したい魚介類や野菜類、或いは花卉類が細胞レベルで生きているような保冷対象物のように酸素を要求する場合、保冷材成分である包接水和物を生成する際に酸素をゲストとして含むようにする。このようにすれば、包接水和物が融解する際に酸素を放出するので、保冷対象物に酸素を供給しながら保冷することが可能となり、より保存に適した状態を実現することが出来る。
 逆に、酸素による酸化を抑制する場合はゲストとして含まれる気体として窒素などを利用すれば、酸化を抑制しながら低温で保存できる。また、保冷雰囲気をその他の気体雰囲気とする場合も同様に対応できる。
 なお、保冷容器としては、水溶液は漏洩せず気体透過性のある素材を用いた袋体などを利用すればよい。
 また、気体と4級アンモニウム化合物をゲストとして含む包接水和物を含む潜熱蓄熱媒体は、熱と気体の同時輸送ができる熱・気体輸送媒体として利用することができる。
 気体と4級アンモニウム化合物をゲストとして含む包接水和物を含む潜熱蓄熱媒体は、スラリー状態にして熱輸送媒体として利用できる。その場合、所望の気体を含む水和物スラリーを製造し、熱を必要とするところに送って利用するとともに、包接水和物が溶解する際に発生する気体を利用することが可能である。

Claims (15)

  1.  4級アンモニウム化合物をゲストとし潜熱蓄熱性能を有する包接水和物であって、外部から供給された気体をゲストとしてさらに包接することにより前記潜熱蓄熱性能が高められていることを特徴とする包接水和物。
  2.  4級アンモニウム化合物を含む水溶液に外部から気体を供給しながら前記水溶液を冷却することにより、又は4級アンモニウム化合物を含む水溶液に外部から供給した気体を混合した後、前記水溶液を冷却することにより生成される前記4級アンモニウム化合物と前記気体の両方をゲストとすることを特徴とする潜熱蓄熱性能を有する包接水和物。
  3.  請求項1または2に記載の包接水和物を組成物として含むことを特徴とする潜熱蓄熱媒体。
  4.  4級アンモニウム化合物を含む水溶液に外部から気体を供給しながら前記水溶液を冷却することにより、又は4級アンモニウム化合物を含む水溶液に外部から供給した気体を混合した後、前記水溶液を冷却することにより生成され潜熱蓄熱性能を高められた包接水和物を組成物として含むことを特徴とする潜熱蓄熱媒体。
  5.  潜熱蓄熱性能を有する包接水和物の製造方法であって、
     4級アンモニウム化合物を含む水溶液に外部から気体を供給しながら前記水溶液を冷却することにより、又は4級アンモニウム化合物を含む水溶液に外部から供給した気体を混合した後、前記水溶液を冷却することにより前記潜熱蓄熱性能を高める工程を有することを特徴とする包接水和物の製造方法。
  6.  前記外部から供給する気体は、前記水溶液の脱酸素用の気体であることを特徴とする請求項5に記載の包接水和物の製造方法。
  7.  前記外部から供給する気体の温度は、前記包接水和物の融点より低い温度であることを特徴とする請求項5に記載の包接水和物の製造方法。
  8.  前記外部から供給する気体は、氷蓄熱槽に供給されることで冷却された気体であり、その温度は前記包接水和物の融点よりも低い温度であることを特徴とする請求項5に記載の包接水和物の製造方法。
  9.  請求項5乃至8のいずれかに記載の製造方法により製造された包接水和物を組成物として含むことを特徴とする潜熱蓄熱媒体。
  10.  4級アンモニウム化合物をゲストとする包接水和物の潜熱蓄熱量の増加方法であって、
    前記4級アンモニウム化合物を含む水溶液に外部から気体を供給しながら前記水溶液を冷却する工程、又は前記4級アンモニウム化合物を含む水溶液に外部から供給された気体を混合した後、前記水溶液を冷却する工程を有することを特徴とする包接水和物の潜熱蓄熱量の増加方法。
  11.  前記気体は、前記水溶液の脱酸素用の気体であることを特徴とする請求項10に記載の包接水和物の潜熱蓄熱量の増加方法。
  12.  潜熱蓄熱性能を有する包接水和物の製造装置であって、
     4級アンモニウム化合物を含む水溶液に気体を供給して混合する混合器と、前記気体が混合された前記水溶液を冷却して前記蓄熱性能が高められた包接水和物を生成する生成器と、を備えることを特徴とする包接水和物の製造装置。
  13.  潜熱蓄熱性能を有する包接水和物の製造装置であって、
     4級アンモニウム化合物を含む水溶液に気体を供給する気体供給手段と、前記水溶液を冷却する冷却手段とを備え、該冷却手段による冷却の過程で前記水溶液に前記気体供給手段により前記気体を供給することにより前記蓄熱性能が高められた包接水和物を製造することを特徴とする包接水和物の製造装置。
  14.  4級アンモニウム化合物をゲストとする包接水和物の潜熱蓄熱量を増加させる処理装置であって、4級アンモニウム化合物を含む水溶液に気体を供給して混合する混合器と、前記気体が混合された前記水溶液を冷却して前記包接水和物を生成する生成器と、を備えることを特徴とする処理装置。
  15.  4級アンモニウム化合物をゲストとする包接水和物の潜熱蓄熱量を増加させる処理装置であって、
     4級アンモニウム化合物を含む水溶液に気体を供給する気体供給手段と、前記水溶液を冷却する冷却手段とを備え、該冷却手段による冷却の過程で前記水溶液に前記気体供給手段により前記気体を供給することを特徴とする処理装置。
PCT/JP2008/053683 2008-02-29 2008-02-29 潜熱蓄熱性能を有する包接水和物、その製造方法及び製造装置、潜熱蓄熱媒体ならびに、包接水和物の潜熱蓄熱量の増加方法及び包接水和物の潜熱蓄熱量を増加させる処理装置 WO2009107240A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2008/053683 WO2009107240A1 (ja) 2008-02-29 2008-02-29 潜熱蓄熱性能を有する包接水和物、その製造方法及び製造装置、潜熱蓄熱媒体ならびに、包接水和物の潜熱蓄熱量の増加方法及び包接水和物の潜熱蓄熱量を増加させる処理装置
EP08721103.3A EP2246406A4 (en) 2008-02-29 2008-02-29 CLATHRATE HYDRATE WITH LATENT HEAT STORAGE CAPACITY, METHOD OF MANUFACTURING THEREOF, DEVICE THEREFOR, LATENT HEAT STORAGE MEDIUM, METHOD FOR INCREASING THE LATEN HEAT TEMPERATURE LOCATED BY CLATHRAT HYDRATE AND TREATMENT DEVICE FOR MAGNIFYING THE LATEN HEAT TEMPERATURE LOCATED BY CLATHRAT HYDRATE
CN2008801275822A CN101959991B (zh) 2008-02-29 2008-02-29 具有潜热蓄热能力的笼形水合物、其制备方法及装置、潜热蓄热介质、增加笼形水合物的潜热量的方法、以及增加笼形水合物的潜热量的处理装置
JP2010500512A JP5163738B2 (ja) 2008-02-29 2008-02-29 潜熱蓄熱性能を有する包接水和物、その製造方法及び製造装置、潜熱蓄熱媒体ならびに、包接水和物の潜熱蓄熱量の増加方法及び包接水和物の潜熱蓄熱量を増加させる処理装置
AU2008351793A AU2008351793B2 (en) 2008-02-29 2008-02-29 Clathrate hydrate with latent heat storing capability, process for producing the same, and apparatus therefor, latent heat storing medium, and method of increasing amount of latent heat of clathrate hydrate and processing apparatus for increasing amount of latent heat stored of clathrate hydrate
US12/807,044 US7993544B2 (en) 2008-02-29 2010-08-25 Clathrate hydrate with latent heat storing capability, process for producing the same, and apparatus therefor, latent heat storing medium, and method of increasing amount of latent heat of clathrate hydrate and processing apparatus for increasing amount of latent heat of clathrate hydrate
US13/172,245 US8419969B2 (en) 2008-02-29 2011-06-29 Clathrate hydrate with latent heat storing capability, process for producing the same, and apparatus therefor, latent heat storing medium, and method of increasing amount of latent heat of clathrate hydrate and processing apparatus for increasing amount of latent heat of clathrate hydrate
US13/734,362 US20130119304A1 (en) 2008-02-29 2013-01-04 Clathrate hydrate with latent heat storing capability, process for producing the same, and apparatus therefor, latent heat storing medium, and method of increasing amount of latent heat of clathrate hydrate and processing apparatus for increasing amount of latent heat of clathrate hydrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053683 WO2009107240A1 (ja) 2008-02-29 2008-02-29 潜熱蓄熱性能を有する包接水和物、その製造方法及び製造装置、潜熱蓄熱媒体ならびに、包接水和物の潜熱蓄熱量の増加方法及び包接水和物の潜熱蓄熱量を増加させる処理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/807,044 Continuation US7993544B2 (en) 2008-02-29 2010-08-25 Clathrate hydrate with latent heat storing capability, process for producing the same, and apparatus therefor, latent heat storing medium, and method of increasing amount of latent heat of clathrate hydrate and processing apparatus for increasing amount of latent heat of clathrate hydrate

Publications (1)

Publication Number Publication Date
WO2009107240A1 true WO2009107240A1 (ja) 2009-09-03

Family

ID=41015653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053683 WO2009107240A1 (ja) 2008-02-29 2008-02-29 潜熱蓄熱性能を有する包接水和物、その製造方法及び製造装置、潜熱蓄熱媒体ならびに、包接水和物の潜熱蓄熱量の増加方法及び包接水和物の潜熱蓄熱量を増加させる処理装置

Country Status (6)

Country Link
US (3) US7993544B2 (ja)
EP (1) EP2246406A4 (ja)
JP (1) JP5163738B2 (ja)
CN (1) CN101959991B (ja)
AU (1) AU2008351793B2 (ja)
WO (1) WO2009107240A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103189692A (zh) * 2010-09-14 2013-07-03 弥通雅贸易有限公司 冻结方法及冻结装置
JP2017078143A (ja) * 2015-10-22 2017-04-27 国立研究開発法人産業技術総合研究所 蓄熱媒体、蓄熱方法、蓄熱装置及び気体分子を包接させた水和数26のテトラブチルアンモニウムブロマイド水和物の製造方法
JP2022087404A (ja) * 2020-12-01 2022-06-13 株式会社豊田中央研究所 ヒートポンプシステム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3008709B1 (fr) * 2013-07-22 2016-07-01 Inst Nat De Rech En Sciences Et Tech Pour L'environnement Et L'agriculture (Irstea) Hydrate semi-clathrate mixte, son procede de preparation et dispositif de stockage d'energie thermique
JP6601145B2 (ja) * 2014-11-14 2019-11-06 株式会社デンソー 過冷却解除物質およびその製造方法
US11130896B2 (en) * 2015-12-25 2021-09-28 Sharp Kabushiki Kaisha Heat-storage material and refrigerator and cooling container that include the heat-storage material
CN105647483B (zh) * 2016-01-21 2019-04-09 华南理工大学 一种负载型半笼形水合物相变蓄热材料及其制法与应用
CN108031138A (zh) * 2017-12-14 2018-05-15 浙江新锐空分设备有限公司 一种氪氙浓缩塔底部蒸发热源系统
CN111841460B (zh) * 2019-04-25 2022-05-24 中国石油化工股份有限公司 水合物可视化实验装置及方法
CN112844275B (zh) * 2020-11-05 2022-06-14 东北石油大学 一种用于分层多级水合物浆制备的反应釜以及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735224B2 (ja) 1973-05-18 1982-07-28
JP3309760B2 (ja) 1997-01-20 2002-07-29 日本鋼管株式会社 冷熱輸送媒体、冷熱輸送方法、冷熱輸送システム及び準包接水和物の融点変更方法
JP2004331935A (ja) * 2003-03-10 2004-11-25 Jfe Engineering Kk 冷熱輸送媒体
JP2005036060A (ja) * 2003-07-17 2005-02-10 Jfe Engineering Kk 冷熱輸送媒体
JP2006176674A (ja) * 2004-12-22 2006-07-06 Jfe Engineering Kk 冷熱輸送媒体
JP2008106123A (ja) * 2006-10-25 2008-05-08 Jfe Engineering Kk 潜熱蓄熱性能を有する包接水和物、その製造方法及び製造装置、潜熱蓄熱媒体ならびに、包接水和物の潜熱蓄熱量の増加方法及び増加させる処理装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735224A (en) 1980-08-12 1982-02-25 Matsushita Electric Ind Co Ltd Control apparatus for heat-cooking appliance
US5473904A (en) * 1993-11-12 1995-12-12 New Mexico Tech Research Foundation Method and apparatus for generating, transporting and dissociating gas hydrates
US6028234A (en) * 1996-12-17 2000-02-22 Mobil Oil Corporation Process for making gas hydrates
JP3407658B2 (ja) * 1998-06-11 2003-05-19 日本鋼管株式会社 水和物の製造方法および装置
JP3508549B2 (ja) * 1998-06-11 2004-03-22 Jfeエンジニアリング株式会社 蓄熱装置
JP4385506B2 (ja) * 2000-04-10 2009-12-16 Jfeエンジニアリング株式会社 水和物蓄熱方法および装置
JP3826176B2 (ja) 2001-08-23 2006-09-27 独立行政法人産業技術総合研究所 気体の分離剤及び気体を分離濃縮するための方法と装置
JP2003232496A (ja) 2002-02-06 2003-08-22 National Institute Of Advanced Industrial & Technology 昇圧方法、調圧方法及び昇圧ガスの形成方法
CN1248589C (zh) * 2003-12-22 2006-04-05 江南大学 一种水分结构化处理和气调包装联合保鲜鲜切果蔬的方法
JP4613578B2 (ja) 2004-10-22 2011-01-19 Jfeエンジニアリング株式会社 酸素富化空気の製造方法およびその装置
GB0511546D0 (en) * 2005-06-07 2005-07-13 Univ Heriot Watt A method for gas storage, transport, peak-shaving, and energy conversion
WO2006132322A1 (ja) * 2005-06-08 2006-12-14 Jfe Engineering Corporation 蓄熱性物質、蓄熱剤、蓄熱材、熱輸送媒体、保冷剤、保冷材、蓄熱剤用融点調整剤、蓄熱剤用過冷却防止剤、及び蓄熱剤と熱輸送媒体と保冷剤のうちいずれかの主剤の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735224B2 (ja) 1973-05-18 1982-07-28
JP3309760B2 (ja) 1997-01-20 2002-07-29 日本鋼管株式会社 冷熱輸送媒体、冷熱輸送方法、冷熱輸送システム及び準包接水和物の融点変更方法
JP2004331935A (ja) * 2003-03-10 2004-11-25 Jfe Engineering Kk 冷熱輸送媒体
JP2005036060A (ja) * 2003-07-17 2005-02-10 Jfe Engineering Kk 冷熱輸送媒体
JP2006176674A (ja) * 2004-12-22 2006-07-06 Jfe Engineering Kk 冷熱輸送媒体
JP2008106123A (ja) * 2006-10-25 2008-05-08 Jfe Engineering Kk 潜熱蓄熱性能を有する包接水和物、その製造方法及び製造装置、潜熱蓄熱媒体ならびに、包接水和物の潜熱蓄熱量の増加方法及び増加させる処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2246406A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103189692A (zh) * 2010-09-14 2013-07-03 弥通雅贸易有限公司 冻结方法及冻结装置
JP2017078143A (ja) * 2015-10-22 2017-04-27 国立研究開発法人産業技術総合研究所 蓄熱媒体、蓄熱方法、蓄熱装置及び気体分子を包接させた水和数26のテトラブチルアンモニウムブロマイド水和物の製造方法
JP2022087404A (ja) * 2020-12-01 2022-06-13 株式会社豊田中央研究所 ヒートポンプシステム
JP7327366B2 (ja) 2020-12-01 2023-08-16 株式会社豊田中央研究所 ヒートポンプシステム

Also Published As

Publication number Publication date
AU2008351793B2 (en) 2014-04-03
US20130119304A1 (en) 2013-05-16
CN101959991B (zh) 2013-09-11
CN101959991A (zh) 2011-01-26
US8419969B2 (en) 2013-04-16
US20100327217A1 (en) 2010-12-30
JP5163738B2 (ja) 2013-03-13
US7993544B2 (en) 2011-08-09
AU2008351793A1 (en) 2009-09-03
EP2246406A4 (en) 2013-11-27
US20110256035A1 (en) 2011-10-20
JPWO2009107240A1 (ja) 2011-06-30
EP2246406A1 (en) 2010-11-03

Similar Documents

Publication Publication Date Title
WO2009107240A1 (ja) 潜熱蓄熱性能を有する包接水和物、その製造方法及び製造装置、潜熱蓄熱媒体ならびに、包接水和物の潜熱蓄熱量の増加方法及び包接水和物の潜熱蓄熱量を増加させる処理装置
JP5003213B2 (ja) 蓄熱剤、包接水和物の蓄熱速度を増加させる方法
JP2011025201A (ja) 二酸化炭素の吸収方法、並びに、その吸収方法を利用したクラスレートハイドレートの製造方法
JP5136121B2 (ja) 潜熱蓄熱性能を有する包接水和物、その製造方法及び製造装置、潜熱蓄熱媒体ならびに、包接水和物の潜熱蓄熱量の増加方法及び増加させる処理装置
JP5034441B2 (ja) 潜熱蓄熱媒体の製造方法、潜熱蓄熱媒体
KR100218063B1 (ko) 클라드레이트 형성 혼합물, 이를 이용한 열에너지 저장 시스템과 열에너지의 저장 및 전달방법
JP5482769B2 (ja) 包接水和物の潜熱蓄熱性能を変化させる装置及び方法
US11198074B2 (en) Method for assisting thermally-induced changes
JP5482768B2 (ja) 潜熱蓄熱性能を有する包接水和物、その製造装置、潜熱蓄熱媒体ならびに、包接水和物の潜熱蓄熱量を増加させる処理装置
JPH11351775A (ja) 蓄熱装置
JP4915399B2 (ja) 第四級アンモニウム塩をゲスト分子として含む水和物を用いて気体を捕集し放出する方法及びそのための装置
JPH1135933A (ja) 潜熱蓄冷材
JP2010127505A (ja) 水和物生成方法と蓄熱材及び蓄熱装置
JP5104159B2 (ja) 包接水和物生成用の水溶液、蓄熱剤、包接水和物又はそのスラリーの製造方法、蓄放熱方法並びに潜熱蓄熱剤又はその主成分を生成するための水溶液の調製方法
JP4895007B2 (ja) 蓄熱剤の調製方法
JP5489150B2 (ja) クラスレートハイドレートの製造方法
JP2009051905A (ja) 包接水和物を生成する性質を有する水溶液、第四級アンモニウム塩をゲスト化合物とする包接水和物及び当該包接水和物のスラリ並びに、包接水和物の生成方法、包接水和物が生成又は成長する速度を増加させる方法及び包接水和物が生成又は成長する際に起こる過冷却現象を防止又は抑制する方法
JP5477364B2 (ja) 第四級アンモニウム塩をゲスト分子として含む水和物を用いて気体を捕集し放出する方法及びそのための装置
JP2010037446A (ja) 包接水和物生成用の水溶液、蓄熱剤、包接水和物又はそのスラリーの製造方法、蓄放熱方法並びに潜熱蓄熱剤又はその主成分を生成するための水溶液の調製方法
JPH1135930A (ja) 潜熱蓄冷材
JPS63202687A (ja) 蓄熱剤及び蓄熱方法
JP2013060603A (ja) 包接水和物の蓄熱速度の増加方法、包接水和物の製造方法、包接水和物を生成する原料水溶液、包接水和物及び包接水和物のスラリ
JPH11209748A (ja) 蓄冷材
JP2002243206A (ja) 冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127582.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721103

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010500512

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008721103

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 6031/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008351793

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008351793

Country of ref document: AU

Date of ref document: 20080229

Kind code of ref document: A