WO2009099143A1 - 導電粒子及び導電粒子の製造方法 - Google Patents

導電粒子及び導電粒子の製造方法 Download PDF

Info

Publication number
WO2009099143A1
WO2009099143A1 PCT/JP2009/051964 JP2009051964W WO2009099143A1 WO 2009099143 A1 WO2009099143 A1 WO 2009099143A1 JP 2009051964 W JP2009051964 W JP 2009051964W WO 2009099143 A1 WO2009099143 A1 WO 2009099143A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
layer
conductive
palladium layer
palladium
Prior art date
Application number
PCT/JP2009/051964
Other languages
English (en)
French (fr)
Inventor
Kenji Takai
Mitsuharu Matsuzawa
Yuuko Nagahara
Kunihiko Akai
Original Assignee
Hitachi Chemical Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/866,353 priority Critical patent/US20100327237A1/en
Application filed by Hitachi Chemical Company, Ltd. filed Critical Hitachi Chemical Company, Ltd.
Priority to KR1020127008288A priority patent/KR101268234B1/ko
Priority to EP09707515A priority patent/EP2242065A1/en
Priority to KR1020107017450A priority patent/KR101240127B1/ko
Priority to CN2009801017219A priority patent/CN101911214A/zh
Publication of WO2009099143A1 publication Critical patent/WO2009099143A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0221Insulating particles having an electrically conductive coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0224Conductive particles having an insulating coating

Definitions

  • the present invention relates to conductive particles and a method for producing conductive particles.
  • the method of mounting a liquid crystal driving IC on a glass panel for liquid crystal display can be roughly divided into two types, COG (Chip-on-Glass) mounting and COF (Chip-on-Flex) mounting.
  • COG Chip-on-Glass
  • COF Chip-on-Flex
  • a liquid crystal IC is directly bonded onto a glass panel using an anisotropic conductive adhesive containing conductive particles.
  • a liquid crystal driving IC is bonded to a flexible tape having metal wiring, and these are bonded to a glass panel using an anisotropic conductive adhesive containing conductive particles.
  • Anisotropy here means conducting in the pressurizing direction and maintaining insulation in the non-pressurizing direction.
  • bumps which are circuit electrodes of liquid crystal driving ICs, have narrowed pitch and area, so that anisotropic conductive adhesive conductive particles are between adjacent circuit electrodes. It has become a problem to cause a short circuit.
  • Patent Document 1 As a method for solving these problems, as exemplified in the following Patent Document 1, by forming an insulating adhesive on at least one surface of the anisotropic conductive adhesive, the bonding quality in COG mounting or COF mounting There are a method for preventing the decrease in the thickness and a method for covering the entire surface of the conductive particles with an insulating film as exemplified in Patent Document 2 below.
  • Patent Documents 3 and 4 below show a method of coating polymer polymer core particles coated with a gold layer with insulating child particles. Further, Patent Document 4 below discloses a method of forming a functional group on the gold layer surface by treating the surface of the gold layer covering the core particles with a compound having any of a mercapto group, a sulfide group, or a disulfide group. Yes. Thereby, a strong functional group can be formed on the gold layer.
  • Patent Document 5 shows a method of performing copper / gold plating on resin fine particles as an attempt to improve the conductivity of conductive particles.
  • Patent Document 6 includes a non-metallic fine particle, a metal layer that covers the non-metallic fine particle and contains 50% by weight or more of copper, a nickel layer that covers the metal layer, and a gold layer that covers the nickel layer.
  • Conductive particles are shown, and there is a description that according to the conductive particles, the conductivity is improved as compared with general conductive particles made of nickel and gold.
  • Patent Document 7 discloses conductive particles having a base particle and a metal coating layer provided on the base particle, wherein the gold content in the metal coating layer is 90 wt% or more and 99 wt%. There is a description of conductive particles characterized in that it is not more than%.
  • Patent Document 1 in the method of forming an insulating adhesive on one side of the circuit connection member, when the bump area is narrowed to less than 3000 ⁇ m 2 , circuit connection is required to obtain a stable connection resistance. It is necessary to increase the number of conductive particles in the member. When the number of conductive particles is increased in this way, there is still room for improvement in insulation between adjacent electrodes.
  • Patent Document 2 in the method of covering the entire surface of the conductive particles with an insulating coating in order to improve the insulating property between adjacent electrodes, the insulating property between the circuit electrodes is increased. There is a problem that the conductivity of the conductive particles tends to be low.
  • Patent Document 4 exemplifies a method in which a silica surface is treated with 3-isocyanatopropyltriethoxysilane and silica having an isocyanate group on the surface is reacted with conductive particles having an amino group on the surface.
  • the reaction between the metal and the compound may occur if there is even a base metal such as nickel or an easily oxidizable metal such as copper. Is difficult to progress.
  • the conductive particles are coated with an inorganic substance such as silica
  • conductivity is developed by crushing the metal surface on the conductive particles with silica. Accordingly, since the silica is destroyed by the conductive metal, the migration characteristics tend to deteriorate if the conductive metal contains something other than the noble metal.
  • Patent Document 6 in recent years, conductive particles of a type in which gold plating is performed on a nickel layer are becoming mainstream. However, in such conductive particles, nickel is eluted and migration is caused. There is. Furthermore, the tendency becomes remarkable when the thickness of the gold plating is set to 400 mm or less.
  • Patent Document 7 conductive particles coated with a metal coating layer having a gold content of 90% by weight or more are good in terms of reliability, but cost is high. Therefore, it is difficult to say that conductive particles including a metal coating layer having a high gold content are practical, and in recent years, there is a tendency to reduce the gold content of the metal coating layer.
  • the electroconductive particle provided with copper plating is excellent on electroconductivity and cost.
  • the conductive particles provided with copper plating have a problem in terms of moisture absorption resistance because migration is likely to occur. Attempts have been made to compensate for the shortcomings of both (gold and copper), but none of them are perfect. For example, the method disclosed in Patent Document 5 cannot sufficiently compensate for the shortcomings of both (gold and copper).
  • the present invention has been made in view of the above problems, and provides a conductive particle and a method for producing the conductive particle that are low in cost, high in conductivity, and excellent in connection reliability between electrodes without causing migration. For the purpose.
  • the conductive particles according to the first aspect of the present invention include a core particle, a palladium layer covering the core particle and having a thickness of 200 mm or more, a surface of the palladium layer, and a particle size. Insulating particles larger than the thickness of the palladium layer.
  • anisotropic conductive adhesive anisotropic conductive film obtained by dispersing a plurality of conductive particles in an adhesive
  • the pair of electrodes are connected (thermocompression bonding)
  • the entire conductive particle is compressed by the pair of electrodes.
  • the insulating particles sink into the core particles from the surface of the palladium layer, and the exposed palladium layer can be brought into contact with the pair of electrodes. That is, the pair of electrodes are electrically connected through the palladium layer of the conductive particles.
  • the particle diameter of the insulating particles is larger than the thickness of the palladium layer, the insulating particles surely sink into the conductive particles during thermocompression bonding. As a result, high conductivity can be expressed between the pair of electrodes.
  • the palladium layer has ductility, when connecting a pair of electrodes using the anisotropic conductive adhesive provided with the conductive particles, the palladium layer is palladium even after the conductive particles are compressed. The layer is hard to break. Therefore, it is possible to improve the conductivity of the conductive particles after compression and the connection reliability between the electrodes, and it is possible to prevent migration of palladium due to cracking of the palladium layer.
  • Palladium is inexpensive and practical compared to noble metals such as gold and platinum. Therefore, the conductive particles according to the first aspect of the present invention including the palladium layer are less expensive than the conductive particles using only gold or platinum.
  • the palladium layer has a thickness of 200 mm or more, sufficient conductivity can be obtained.
  • the conductive particles according to the second aspect of the present invention are arranged on the surface of a core particle, a conductive layer covering the core particle, a palladium layer covering the conductive layer and having a thickness of 200 mm or more, and a palladium layer. Insulating particles having a diameter larger than the sum of the thicknesses of the conductive layer and the palladium layer.
  • the pair of electrodes are electrically connected through the palladium layer in the vertical direction.
  • insulation is maintained between the pair of electrodes and the electrodes adjacent thereto.
  • the particle diameter of the insulating particles is larger than the sum of the thicknesses of the conductive layer and the palladium layer, the insulating particles surely sink into the conductive particles during thermocompression bonding. As a result, high conductivity can be expressed between the pair of electrodes.
  • the palladium layer has ductility, it becomes possible to improve the conductivity of the conductive particles after compression and the connection reliability between the electrodes as in the case of the first aspect of the present invention. It becomes possible to prevent migration of palladium. Further, since the conductive layer is covered with the palladium layer, the migration of the conductive layer is also prevented by the palladium layer. Furthermore, palladium is cheaper and more practical than noble metals such as gold and platinum. Therefore, the conductive particles according to the second aspect of the present invention including the palladium layer are less expensive than the conductive particles using only gold or platinum.
  • the palladium layer has a thickness of 200 mm or more and is provided with a conductive layer, sufficient conductivity can be obtained. Further, since the thickness of the palladium layer is as thick as 200 mm or more, it becomes easy to prevent migration of the conductive layer.
  • the conductive layer is preferably made of nickel.
  • the conductive particles according to the third aspect of the present invention are arranged on the surface of the core particles, a palladium layer covering the core particles and having a thickness of 200 mm or more, a gold layer covering the palladium layer, and a gold layer. Insulating particles having a diameter larger than the sum of the thicknesses of the palladium layer and the gold layer.
  • the entire conductive particles are compressed by the pair of electrodes in the longitudinal direction.
  • the insulating particles sink into the core particle side from the gold layer surface, and the pair of electrodes conduct through the exposed gold layer.
  • insulating particles included in each conductive particle are interposed between adjacent conductive particles, and the insulating particles are in contact with each other. Therefore, in the lateral direction, insulation is maintained between the pair of electrodes and the electrodes adjacent thereto.
  • the particle diameter of the insulating particles is larger than the sum of the thicknesses of the palladium layer and the gold layer, the insulating particles surely sink into the conductive particles during thermocompression bonding. As a result, high conductivity can be expressed between the pair of electrodes.
  • the palladium layer and the gold layer have ductility, the palladium layer and the gold layer are not easily broken even after the conductive particles are compressed. Therefore, it becomes possible to improve the conductivity of the conductive particles after compression and the connection reliability between the electrodes, and it is possible to prevent the migration of palladium or gold due to the crack of the palladium layer or the gold layer.
  • Palladium is inexpensive and practical compared to noble metals such as gold and platinum. Therefore, the conductive particles according to the third aspect of the present invention including the palladium layer are less expensive than the conductive particles using only gold or platinum.
  • the palladium layer has a thickness of 200 mm or more, sufficient conductivity can be obtained.
  • the gold layer having excellent conductivity is located on the outermost surface, the surface resistance of the conductive particles can be lowered and the conductivity of the conductive particles can be improved.
  • the gold layer is preferably a reduction plating type gold layer.
  • the coverage of the gold layer with respect to the palladium layer is improved, and the surface resistance of the conductive particles is easily lowered.
  • the palladium layer is preferably a reduction plating type palladium layer.
  • the coverage of the palladium layer with respect to a core particle improves, and it becomes easy to improve the electroconductivity of an electroconductive particle.
  • the method for producing a conductive particle according to the first aspect of the present invention includes a step of forming a palladium layer on the surface of the core particle and a compound having a mercapto group, a sulfide group, or a disulfide group on the surface of the palladium layer. Treating and forming a functional group on the surface of the palladium layer; and immobilizing insulating particles on the surface of the palladium layer on which the functional group is formed by chemical adsorption.
  • the conductive particles according to the first aspect of the present invention can be obtained.
  • the method for producing a conductive particle according to the second aspect of the present invention includes a step of forming a conductive layer on the surface of the core particle, a step of forming a palladium layer on the surface of the conductive layer, a surface of the palladium layer, a mercapto group, Treating with a compound having either a sulfide group or a disulfide group to form a functional group on the surface of the palladium layer, and immobilizing the insulating particles on the surface of the palladium layer on which the functional group has been formed by chemical adsorption A process.
  • the conductive particles according to the second aspect of the present invention can be obtained.
  • the surface of the palladium layer is treated with a compound having any of a mercapto group, a sulfide group, or a disulfide group, so that these compounds are palladium. It becomes possible to form a functional group such as a hydroxyl group, a carboxyl group, an alkoxyl group, or an alkoxycarbonyl group on the surface of the palladium layer by coordination with the layer surface. Since these functional groups form covalent bonds or hydrogen bonds with the atoms on the surface of the insulating particles, the insulating particles can be firmly adsorbed on the surface of the palladium layer.
  • the surface of the palladium layer which is difficult to oxidize compared to the layer made of a base metal such as nickel or copper is treated with a compound.
  • the reactivity between the surface of the palladium layer and the compound is improved, and the functional group can be reliably formed on the surface of the palladium layer.
  • the insulating particles are fixed to the surface of the palladium layer by chemical adsorption. Is preferable.
  • the surface potential of the palladium layer on which the functional group is formed and the surface potential of the insulating particles are both positive or negative, the insulating particles are difficult to adsorb on the surface of the palladium layer. Therefore, the surface potential of the palladium layer is changed by treating the surface of the palladium layer on which the functional group is formed with the polymer electrolyte, so that the surface of the palladium layer is more insulative than when not treated with the polymer electrolyte. Particles are easily adsorbed.
  • the method for producing a conductive particle according to the third aspect of the present invention includes a step of forming a palladium layer on the surface of the core particle, a step of forming a gold layer on the surface of the palladium layer, a surface of the gold layer, a mercapto group, Treating with a compound having either a sulfide group or a disulfide group to form a functional group on the surface of the gold layer, and immobilizing insulating particles on the surface of the gold layer on which the functional group is formed by chemical adsorption A process.
  • the conductive particles according to the third aspect of the present invention can be obtained.
  • the surface of the gold layer is treated with a compound having any of a mercapto group, a sulfide group, or a disulfide group, so that these compounds are formed on the surface of the gold layer.
  • a functional group such as a hydroxyl group, a carboxyl group, an alkoxyl group, or an alkoxycarbonyl group on the surface of the gold layer by coordination bonding. Since these functional groups form covalent bonds or hydrogen bonds with the atoms on the surface of the insulating particles, the insulating particles can be strongly chemically adsorbed on the surface of the gold layer.
  • the surface of the gold layer that is difficult to oxidize compared with the layer made of a base metal such as nickel or copper is treated with a compound, and therefore the layer made of a base metal such as nickel or copper Compared with the case where is treated with a compound, the reactivity between the surface of the gold layer and the compound is improved, and the functional group can be reliably formed on the surface of the gold layer.
  • the insulating particles are immobilized on the surface of the gold layer by chemical adsorption. Is preferred.
  • the surface potential of the gold layer on which the functional group is formed and the surface potential of the insulating particles are both positive or negative, the insulating particles are difficult to adsorb on the gold layer surface. Therefore, since the surface potential of the gold layer is changed by treating the surface of the gold layer on which the functional group is formed with the polymer electrolyte, the surface of the gold layer is more insulative than when not treated with the polymer electrolyte. Particles are easily adsorbed.
  • the functional group is preferably any one of a hydroxyl group, a carboxyl group, an alkoxyl group, and an alkoxycarbonyl group.
  • the hydroxyl group, carboxyl group, alkoxyl group, or alkoxycarbonyl group forms a strong bond such as a covalent bond by dehydration condensation or a hydrogen bond with the hydroxyl group. Therefore, when the insulating particle has a hydroxyl group on its surface and the functional group formed on the surface of the palladium layer or the gold layer is a hydroxyl group, a carboxyl group, an alkoxyl group, or an alkoxycarbonyl group, Since the hydroxyl group and the functional group on the surface of the palladium layer or the gold layer are firmly bonded, the insulating particles can be firmly adsorbed on the surface of the palladium layer or the gold layer.
  • the polymer electrolyte is preferably a polyamine.
  • Polyamines are polymers that ionize in an aqueous solution and have a functional group having a charge in the main chain or side chain. Polyamines are strongly bonded to the surface of the palladium layer or gold layer treated with the aqueous solution containing polyamines, and the insulating particles are more strongly adsorbed to the surface of the palladium layer or gold layer via the polyamines. It becomes possible.
  • the polyamine is preferably polyethyleneimine.
  • polyethyleneimine Since polyethyleneimine has a particularly high charge density and a strong binding force, the use of polyethyleneimine makes it easier to more firmly adsorb the insulating particles to the surface of the palladium layer or the gold layer.
  • the insulating particles are preferably inorganic oxides. If fine particles made of an organic compound are used as the insulating particles, the insulating particles are more easily deformed in the anisotropic conductive adhesive preparation process than when fine particles made of an inorganic oxide are used. The effect tends to be small. In addition, when the insulating particles made of an organic compound melt and cover the surface of the conductive particles during thermocompression bonding of the electrode with the anisotropic conductive adhesive, the conductivity (surface resistance) of the conductive particles tends to decrease. is there. On the other hand, when insulating particles made of an inorganic oxide are used, these problems can be suppressed.
  • the inorganic oxide is preferably silica.
  • Insulating particles made of silica have excellent insulating properties, are easy to control the particle diameter, and are inexpensive. Further, when silica is dispersed in water to form water-dispersed colloidal silica, it has a hydroxyl group on its surface, and thus has excellent bonding properties with a palladium layer or a gold layer. Furthermore, the hydroxyl group on the surface of the silica is excellent also in the binding property with the functional group formed on the surface of the palladium layer or the gold layer. Therefore, the insulating particles made of silica can be firmly adsorbed on the surface of the palladium layer or the gold layer.
  • the present invention it is possible to provide a conductive particle and a method for manufacturing the conductive particle that are low in cost, high in conductivity, and excellent in connection reliability between electrodes without causing migration.
  • FIG. 1 is a schematic cross-sectional view of conductive particles according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of conductive particles according to the second embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of conductive particles according to the third embodiment of the present invention.
  • FIG. 4A is a schematic cross-sectional view of an anisotropic conductive adhesive provided with conductive particles according to the first embodiment of the present invention
  • FIGS. 4B and 4C are anisotropic conductive materials. It is a schematic sectional drawing for demonstrating the preparation method of the connection structure using an adhesive agent.
  • SYMBOLS 1 Insulating particle, 2, 2a, 2b, 2c ... Mother particle, 3 ... Adhesive, 4 ... 1st board
  • a conductive particle 8 a As shown in FIG. 1, a conductive particle 8 a according to the first embodiment of the present invention includes a core particle 11, a palladium layer 12 that covers the core particle 11 and has a thickness of 200 mm or more, and a surface of the palladium layer 12. And a plurality of insulating particles 1 having a particle size larger than the thickness of the palladium layer 12. That is, in the conductive particle 8a, a part of the surface of the mother particle 2a including the core particle 11 and the palladium layer 12 covering the core particle 11 is covered with the insulating particle 1 which is a child particle.
  • the particle diameter of the mother particle 2a used in the present invention is preferably smaller than the minimum distance between the first electrode 5 and the second electrode 7 shown in FIG.
  • the particle diameter of the mother particle 2a is preferably larger than the height variation when the height of the electrodes (electrode spacing) varies.
  • the particle diameter of the mother particle 2a is preferably 1 to 10 ⁇ m, more preferably 1 to 5 ⁇ m, and particularly preferably 2 to 3.5 ⁇ m.
  • the base particles in the conventional conductive particles are either particles made of only metal, or organic or inorganic core particles coated with metal by a method such as plating.
  • the base particles 2a in this embodiment are organic or inorganic.
  • the core particles 11 may be metal-coated by a method such as plating.
  • the mother particles 2a are preferably those obtained by metal-coating organic core particles by a method such as plating.
  • the organic core particles 11 are not particularly limited, but resin particles made of acrylic resins such as polymethyl methacrylate and polymethyl acrylate, and polyolefin resins such as polyethylene, polypropylene, polyisobutylene and polybutadiene are preferable.
  • the palladium layer 12 Since the palladium layer 12 has ductility, after the conductive particles 8a are compressed, it is difficult to cause metal cracking, and migration due to metal cracking is also difficult to occur. In addition, since the palladium layer 12 is superior in acid resistance and alkali resistance compared to base metals and copper, it is stably bonded to a functional group such as a mercapto group, sulfide group, or disulfide group described later. Furthermore, palladium, gold, and platinum have the same tendency in the bondability with these functional groups, but when these noble metals are compared in the same volume, palladium is the cheapest and practical. Further, the palladium layer 12 is excellent in conductivity. For these reasons, the palladium layer 12 is suitable as a metal layer that covers the core particles 11.
  • the palladium layer 12 may be composed of an alloy of palladium and phosphorus.
  • the content of palladium in the alloy is preferably 70% by weight or more, and more preferably 90% by weight or more and less than 100% by weight from the viewpoint of conductivity.
  • the palladium layer 12 is preferably a reduction plating type palladium layer. Thereby, the coverage of the palladium layer 12 with respect to the core particle 11 improves, and the electroconductivity of the electrically-conductive particle 8a improves more.
  • the thickness of the palladium layer 12 is preferably 200 to 1000 mm. If the thickness of the palladium layer is less than 200 mm, sufficient conductivity cannot be obtained. On the other hand, when the thickness of the palladium layer 12 exceeds 1000 mm, the elasticity of the whole mother particle 2a tends to be lowered. When the elasticity of the whole mother particle 2a is lowered, when the conductive particle 8a is sandwiched between a pair of electrodes and crushed in the vertical direction, the palladium layer 12 is not easily pressed against the electrode surface due to the elasticity of the mother particle 2a. .
  • the contact area between the palladium layer 12 and both electrodes tends to be small, and the effect of the present invention that improves the connection reliability between the electrodes tends to be small. Further, the thicker the palladium layer 12, the higher the cost and the less economical.
  • the insulating particle 1 is preferably an inorganic oxide. If the insulating particles 1 are an organic compound, the insulating particles 1 are deformed in the anisotropic conductive adhesive manufacturing process, and the properties of the anisotropic conductive adhesive obtained tend to change. .
  • an oxide containing at least one element selected from the group consisting of silicon, aluminum, zirconium, titanium, niobium, zinc, tin, cerium, and magnesium is preferable. These oxides can be used alone or in admixture of two or more.
  • water-dispersed colloidal silica (SiO 2 ) having excellent insulating properties and controlled particle diameter is most preferable among oxides containing the above-described elements.
  • inorganic oxide fine particles examples include, for example, Snowtex, Snowtex UP (manufactured by Nissan Chemical Industries, Ltd.), Quatron PL series. (Manufactured by Fuso Chemical Industry Co., Ltd.).
  • the particle diameter of the inorganic oxide fine particles is preferably 20 to 500 nm.
  • the particle diameter of the inorganic oxide fine particles is measured by the specific surface area conversion method by the BET method or the X-ray small angle scattering method. If the particle diameter is less than 20 nm, the inorganic oxide fine particles adsorbed on the mother particle 2a do not act as an insulating film and tend to cause a short circuit between a part of the electrodes. On the other hand, when the particle diameter exceeds 500 nm, there is a tendency that conductivity cannot be obtained between the electrodes.
  • the step (S1) of forming the palladium layer 12 on the surface of the core particle 11 and the surface of the palladium layer 12 are converted to a mercapto group, sulfide group, or disulfide.
  • the insulating particles 1 are inorganic oxide fine particles having hydroxyl groups formed on the surface will be described.
  • the palladium layer 12 is formed on the surface of the core particle 11 to obtain the mother particle 2a.
  • Specific examples of the method include plating with palladium. In this plating step, it is preferable to first apply a palladium catalyst and then perform reduced electroless palladium plating.
  • the composition of reduced electroless palladium plating is preferably (1) a water-soluble palladium salt such as palladium sulfate, (2) a reducing agent, (3) a complexing agent, and (4) a pH adjusting agent.
  • the surface of the palladium layer 12 is treated with a compound having any of a mercapto group, a sulfide group, or a disulfide group that forms a coordinate bond with palladium. Thereby, a functional group is formed on the surface of the palladium layer 12.
  • the compound used for the surface treatment of the palladium layer 12 include mercaptoacetic acid, 2-mercaptoethanol, methyl mercaptoacetate, mercaptosuccinic acid, thioglycerin, and cysteine.
  • the functional group formed on the surface of the palladium layer 12 treated with these compounds include a hydroxyl group, a carboxyl group, an alkoxyl group, or an alkoxycarbonyl group.
  • the palladium particles of the present embodiment (core particles 11 coated with the palladium layer 12) react with thiol groups compared to conventional nickel / gold particles (core particles coated with the nickel layer and the gold layer).
  • the nickel / gold particles tend to have a high nickel ratio on the particle surface when the gold thickness is 300 mm or less.
  • the surface potential (zeta potential) of the palladium layer 12 having a functional group such as a hydroxyl group, a carboxyl group, an alkoxyl group, or an alkoxycarbonyl group is usually negative when the pH is in a neutral region.
  • the surface of the insulating particle 1 to be adsorbed on the surface of the palladium layer 12 in the subsequent step is made of an inorganic oxide having a hydroxyl group, the surface potential of the insulating particle 1 is usually negative.
  • the insulating particles 1 having a negative surface potential tend not to be adsorbed around the palladium layer 12 having a negative surface potential. Therefore, the surface of the palladium layer 12 is easily coated with the insulating particles 1 by treating the surface of the palladium layer 12 with the polymer electrolyte.
  • a method for adsorbing the insulating particles 1 on the surface of the palladium layer 12 after the treatment with the polymer electrolyte a method of alternately laminating the polymer electrolyte and the inorganic oxide on the surface of the palladium layer 12 is preferable. More specifically, by performing the following steps (1) and (2) in sequence, a mother surface partially coated with an insulating coating film in which a polymer electrolyte and inorganic oxide fine particles are laminated.
  • the particles 2a that is, the conductive particles 8a can be manufactured.
  • Step (1) Step of rinsing the mother particle 2a after dispersing the mother particle 2a having a functional group on the surface of the palladium layer 12 in the polymer electrolyte solution and adsorbing the polymer electrolyte on the surface of the palladium layer 12.
  • Step (2) The mother particles 2a after rinsing are dispersed in a dispersion solution of inorganic oxide fine particles, the inorganic oxide fine particles are adsorbed on the surface (palladium layer 12) of the mother particles 2a, and then the mother particles 2a are rinsed. Process.
  • a polymer electrolyte thin film is formed on the surface of the mother particle 2a, and in the step (2), inorganic oxide fine particles are fixed to the surface of the mother particle 2a by chemical adsorption through the polymer electrolyte thin film.
  • the surface of the mother particle 2a can be uniformly coated with inorganic oxide fine particles without defects.
  • the method having the above steps (1) and (2) is called an alternating lamination method (Layer-by-Layer assembly).
  • the alternate lamination method is described in G.H. This is a method for forming an organic thin film published in 1992 by Decher et al. (See Thin Solid Films, 210/211, p831 (1992)).
  • a polymer adsorbed on a substrate by electrostatic attraction by alternately immersing the substrate in an aqueous solution of a polymer electrolyte having a positive charge (polycation) and a polymer electrolyte having a negative charge (polyanion).
  • a combination of a cation and a polyanion is laminated to obtain a composite film (alternate laminated film).
  • the film is grown by attracting the charge of the material formed on the substrate and the material having the opposite charge in the solution by electrostatic attraction, so that the adsorption proceeds and the charge is neutralized. When this occurs, no further adsorption occurs. Therefore, when reaching a certain saturation point, the film thickness does not increase any more.
  • the polymer electrolyte and inorganic oxide fine particles adsorbed on the mother particle 2a are electrostatically adsorbed on the surface of the mother particle 2a, they are not separated from the surface of the mother particle 2a in this rinsing step. However, if excessive polymer electrolyte or inorganic oxide fine particles that are not adsorbed on the mother particle 2a are brought into a solution having a charge opposite to them, cations and anions are mixed in the solution, and the polymer electrolyte and the inorganic oxide are mixed. Aggregation and precipitation of fine particles may occur. Such a malfunction can be prevented by rinsing.
  • Solvents used for rinsing include water, alcohol, acetone, etc. Usually, ions having a specific resistance value of 18 M ⁇ ⁇ cm or more are easy in that excessive polymer electrolyte solutions or inorganic oxide fine particle dispersions can be easily removed. Exchange water (so-called ultrapure water) is used.
  • the polymer electrolyte solution is obtained by dissolving a polymer electrolyte in water or a mixed solvent of water and a water-soluble organic solvent.
  • water-soluble organic solvent examples include methanol, ethanol, propanol, acetone, dimethylformamide, acetonitrile, and the like.
  • polymer electrolyte a polymer that is ionized in an aqueous solution and has a charged functional group in the main chain or side chain can be used.
  • a polycation is preferably used.
  • the polycation generally has a positively charged functional group such as polyamines such as polyethyleneimine (PEI), polyallylamine hydrochloride (PAH), polydiallyldimethylammonium chloride (PDDA). , Polyvinyl pyridine (PVP), polylysine, polyacrylamide, and a copolymer containing at least one of them can be used.
  • PEI polyethyleneimine
  • PAH polyallylamine hydrochloride
  • PDDA polydiallyldimethylammonium chloride
  • PVP Polyvinyl pyridine
  • polylysine polyacrylamide
  • copolymer containing at least one of them can be used.
  • polyethyleneimine has a high charge density and a strong binding force.
  • alkali metal (Li, Na, K, Rb, Cs) ions, alkaline earth metal (Ca, Sr, Ba, Ra) ions, halide ions are used to avoid electromigration and corrosion. Those not containing (fluorine ion, chloride ion, bromine ion, iodine ion) are preferred.
  • polymer electrolytes are either water-soluble or soluble in a mixture of water and an organic solvent, and the molecular weight of the polymer electrolyte is generally determined depending on the type of polymer electrolyte used. In general, it is preferably about 500 to 200,000. In general, the concentration of the polymer electrolyte in the solution is preferably about 0.01 to 10% by weight.
  • the pH of the polymer electrolyte solution is not particularly limited.
  • the coverage of the inorganic oxide fine particles can be controlled by adjusting the type, molecular weight, or concentration of the polymer electrolyte thin film covering the mother particle 2a.
  • the molecular weight of the polymer electrolyte when the molecular weight of the polymer electrolyte is large, the coverage of the inorganic oxide fine particles tends to increase, and the inorganic oxide fine particles can be firmly adsorbed to the palladium layer 12. From the viewpoint of bonding strength, the molecular weight of the polymer electrolyte is preferably 10,000 or more. On the other hand, when the molecular weight of the polymer electrolyte is small, the coverage of the inorganic oxide fine particles tends to be low.
  • the coverage of the inorganic oxide fine particles tends to be high, and when the polymer electrolyte is used at a low concentration, the coverage of the inorganic oxide fine particles tends to be low. is there.
  • the coverage of the inorganic oxide fine particles is high, the insulation tends to be high and the conductivity tends to be poor.
  • the conductivity tends to be high and the insulation is poor.
  • the coverage of the inorganic oxide fine particles is preferably in the range of 20 to 100%, more preferably in the range of 30 to 60%.
  • the alkali metal ion and alkaline earth metal ion concentration in the dispersion solution of the inorganic oxide fine particles is 100 ppm or less. Thereby, it becomes easy to improve the insulation reliability between adjacent electrodes. Further, as the inorganic oxide fine particles, inorganic oxide fine particles produced by a hydrolysis reaction of metal alkoxide, so-called sol-gel method, are suitable.
  • the inorganic oxide fine particles are preferably water-dispersed colloidal silica (SiO 2 ). Since the water-dispersed colloidal silica has a hydroxyl group on the surface, it is suitable for inorganic oxide fine particles in that it has excellent binding properties with the mother particles 2a, is easily aligned in particle diameter, and is inexpensive.
  • SiO 2 water-dispersed colloidal silica
  • hydroxyl groups are known to form strong bonds with hydroxyl groups, carboxyl groups, alkoxyl groups, and alkoxycarbonyl groups.
  • Specific examples of the bond between the hydroxyl group and these functional groups include covalent bond by dehydration condensation and hydrogen bond.
  • the inorganic oxide fine particles having a hydroxyl group on the surface thereof are strongly adsorbed to the palladium layer 12 (the surface of the mother particle 2a) on which a functional group such as a hydroxyl group, a carboxyl group, an alkoxyl group, or an alkoxycarbonyl group is formed. Is possible.
  • the hydroxyl group on the surface of the inorganic oxide fine particles can be modified to an amino group, a carboxyl group or an epoxy group with a silane coupling agent or the like, but it is difficult when the particle size of the inorganic oxide is 500 nm or less. is there. Therefore, it is desirable to coat the mother particles 2a with the inorganic oxide fine particles without modifying the functional group.
  • the bond between the insulating particles 1 and the mother particles 2a can be further strengthened.
  • the reason why the bonding force increases is, for example, a chemical bond between a functional group such as a carboxyl group on the surface of the palladium layer 12 and a hydroxyl group on the surface of the insulating particle 1, or a carboxyl group on the surface of the palladium layer 12 and the insulating particle 1. It is mentioned that the dehydration condensation of the amino group on the surface is promoted. In addition, it is preferable to perform heating in vacuum from the viewpoint of preventing rust of the metal. In addition, even when the resurface of the mother particle is a gold layer as in the third embodiment to be described later, as in the case of the palladium layer 12, the insulating particles and the mother particle are bonded by heating and drying. Can be further strengthened.
  • the temperature for heating and drying is preferably 60 to 200 ° C., and the heating time is preferably 10 to 180 minutes.
  • the temperature is less than 60 ° C. or when the heating time is less than 10 minutes, the insulating particles 1 are easily peeled off from the mother particles 2a, and when the temperature exceeds 200 ° C. or the heating time exceeds 180 minutes, It is not preferable because the particles 2a are easily deformed.
  • the anisotropic conductive adhesive 40 is obtained by dispersing the conductive particles 8 a produced as described above in the adhesive 3.
  • a method for producing the connection structure 42 using the anisotropic conductive adhesive 40 is shown in FIGS.
  • the palladium layer 12 included in the conductive particles 8 is omitted for simplification of the drawing.
  • the first substrate 4 and the second substrate 6 are prepared, and the anisotropic conductive adhesive 40 is disposed therebetween.
  • the first electrode 5 included in the first substrate 4 and the second electrode 7 included in the second substrate 6 are opposed to each other.
  • the first substrate 4 and the second substrate 6 are laminated while being heated under pressure in the direction in which the first electrode 5 and the second electrode 7 face each other, and the connection structure shown in FIG. A body 42 is obtained.
  • connection structure 42 When the connection structure 42 is produced in this way, in the longitudinal direction, the insulating particles 1 are embedded in the base particles 2, and the first electrode 5 and the second electrode 7 pass through the surface (palladium layer) of the base particles 2. Conductivity is maintained, and in the lateral direction, insulation is maintained by interposing the insulator particles 1 between the mother particles.
  • anisotropic conductive adhesives for COG are required to have insulation reliability at a narrow pitch of 10 ⁇ m level.
  • a narrow pitch of 10 ⁇ m level is used. It is possible to improve the insulation reliability in the case.
  • the adhesive used for the anisotropic conductive adhesive 40 a mixture of a heat-reactive resin and a curing agent is used, and specifically, a mixture of an epoxy resin and a latent curing agent is preferable.
  • Epoxy resins include bisphenol-type epoxy resins derived from epichlorohydrin and bisphenol A, F, AD, etc., epoxy novolac resins derived from epichlorohydrin and phenol novolac or cresol novolac, and naphthalene-based epoxy resins having a skeleton containing a naphthalene ring.
  • Various epoxy compounds having two or more glycidyl groups in one molecule such as glycidylamine, glycidyl ether, biphenyl, and alicyclic can be used alone or in admixture of two or more.
  • epoxy resins epoxy resins, impurity ions (Na +, Cl -, etc.) and, it is preferable to use a high purity which is reduced to 300ppm or less hydrolyzable chlorine and the like. This makes it easier to prevent electromigration.
  • latent curing agent examples include imidazole series, hydrazide series, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide, and the like.
  • an energy ray curable resin such as a mixture of a radical reactive resin and an organic peroxide or ultraviolet rays is used for the adhesive.
  • the adhesive 3 can be mixed with butadiene rubber, acrylic rubber, styrene-butadiene rubber, silicone rubber or the like in order to reduce the stress after adhesion or to improve the adhesion.
  • the adhesive 3 a paste or film is used.
  • a thermoplastic resin such as a phenoxy resin, a polyester resin, or a polyamide resin.
  • These film-forming polymers are also effective in stress relaxation when the reactive resin is cured.
  • the film-forming polymer has a functional group such as a hydroxyl group, the adhesiveness is improved, which is more preferable.
  • the film is formed by dissolving or dispersing an adhesive composition composed of epoxy resin, acrylic rubber, latent curing agent, and film-forming polymer in an organic solvent, and applying it onto a peelable substrate. And by removing the solvent below the activation temperature of the curing agent.
  • the organic solvent used at this time is preferably an aromatic hydrocarbon-based and oxygen-containing mixed solvent in terms of improving the solubility of the material.
  • the thickness of the anisotropic conductive adhesive 40 is relatively determined in consideration of the particle diameter of the conductive particles 8 and the characteristics of the anisotropic conductive adhesive 40, but is preferably 1 to 100 ⁇ m. If it is less than 1 ⁇ m, sufficient adhesion cannot be obtained, and if it exceeds 100 ⁇ m, a large amount of conductive particles are required to obtain conductivity, which is not realistic. For these reasons, the thickness is more preferably 3 to 50 ⁇ m.
  • Examples of the first substrate 4 or the second substrate 6 include a glass substrate, a tape substrate such as polyimide, a bare chip such as a driver IC, and a rigid package substrate.
  • the conductive particle 8 b according to the second embodiment is different from the conductive particle 8 a according to the first embodiment in that a conductive layer 13 is further provided between the core particle 11 and the palladium layer 12. To do.
  • the conductive particle 8b includes a core particle 11, a conductive layer 13 that covers the core particle 11, a palladium layer 12 that covers the conductive layer 13 and has a thickness of 200 mm or more.
  • a plurality of insulating particles 1 disposed on the surface of the palladium layer 12 and having a particle size larger than the total thickness of the conductive layer 13 and the palladium layer 12.
  • the conductive particle 8b a part of the surface of the mother particle 2b including the core particle 11, the conductive layer 13 covering the core particle 11 and the palladium layer 12 is covered with the insulating particle 1 which is a child particle. ing.
  • the conductive particles 8b according to the second embodiment are low in cost, high in conductivity, and excellent in connection reliability between electrodes without causing migration.
  • the conductive layer 13 made of non-metal, copper, or the like that is inexpensive and excellent in conductivity, the cost of the conductive particles 8b can be reduced and the conductivity can be improved.
  • the palladium layer 12 functions as a migration stop layer with respect to the conductive layer 13.
  • the conductive layer 13 a layer made of a metal such as gold, silver, copper, platinum, zinc, iron, palladium, nickel, tin, chromium, titanium, aluminum, cobalt, germanium, cadmium, or a metal compound such as ITO or solder. Layer.
  • the conductive layer 13 is preferably a layer made of nickel.
  • the manufacturing method of the conductive particles 8b according to the second embodiment of the present invention includes a step of forming the conductive layer 13 on the surface of the core particle 11, a step of forming the palladium layer 12 on the surface of the conductive layer 13, and the palladium layer 12
  • the surface of the substrate is treated with a compound having either a mercapto group, a sulfide group or a disulfide group to form a functional group on the surface of the palladium layer 12, and the surface of the palladium layer 12 on which the functional group is formed is insulated.
  • the insulating particles 1 are adsorbed on the surface of the palladium layer 12. It is preferable.
  • the conductive particles 8 c according to the third embodiment are the conductive particles 8 a according to the first embodiment in that the gold layer 14 covers the surface of the palladium layer 12 that covers the core particles 11. Is different.
  • the conductive particle 8c according to the third embodiment of the present invention includes a core particle 11, a palladium layer 12 that covers the core particle 11 and has a thickness of 200 mm or more, and a gold layer 14 that covers the palladium layer 12.
  • the conductive particle 8c a part of the surface of the mother particle 2c including the core particle 11 and the palladium layer 12 and the gold layer 14 covering the core particle 11 is covered with the insulating particle 1 which is a child particle. ing.
  • the conductive particles 8c according to the third embodiment like the conductive particles 8a according to the first embodiment, do not cause migration, are low in cost, have high conductivity, and are excellent in connection reliability between electrodes.
  • the gold layer 14 is provided as the outermost layer of the mother particle 2c, the surface resistance of the mother particle 2c can be lowered and the conductivity of the entire conductive particle 8c can be improved.
  • the conductive particles 8c according to the third embodiment may further include a conductive layer similar to that of the second embodiment between the core particles 11 and the palladium layer 12.
  • the manufacturing method of the conductive particles 8c according to the third embodiment includes a step of forming the palladium layer 12 on the surface of the core particle 11, a step of forming the gold layer 14 on the surface of the palladium layer 12, and a surface of the gold layer 14. , A step of forming a functional group on the surface of the gold layer 14 by treatment with a compound having any of a mercapto group, a sulfide group, or a disulfide group, and insulating particles 1 on the surface of the gold layer 14 on which the functional group is formed. And a step of fixing by chemical adsorption.
  • the surface of the gold layer 14 on which the functional group is formed is treated with the polymer electrolyte, and then the insulating particles 1 are adsorbed on the surface of the gold layer 14. It is preferable.
  • a specific method for forming the gold layer 14 on the surface of the palladium layer 12 is, for example, plating with gold.
  • Gold plating is substitutional gold plating such as HGS-100 (trade name, manufactured by Hitachi Chemical Co., Ltd.) and reduction type electroless gold plating such as HGS-2000 (trade name, manufactured by Hitachi Chemical Co., Ltd.).
  • reduction-type electroless gold plating is preferable because it is easy to improve the coverage.
  • the gold particles of the present embodiment are thiol compared to conventional nickel / gold particles (core particles coated with the nickel layer and the gold layer). Easy to react with groups.
  • the nickel / gold particles tend to have a high nickel ratio on the particle surface when the gold thickness is 300 mm or less.
  • the thickness of the gold plating may be set according to the situation because there is a balance between the reduction in surface resistance and the cost, but is preferably 300 mm or less. Even if the thickness of the gold plating is 300 mm or more, there is no problem in characteristics.
  • Base particle 1 1 g of crosslinked polystyrene particles (resin fine particles) having an average particle size of 3.8 ⁇ m is added to 100 mL of a palladium-catalyzed solution containing 8% by weight of Atotech Neneogant 834 (trade name, manufactured by Atotech Japan Co., Ltd.), which is a palladium catalyst. The mixture was stirred at 30 ° C. for 30 minutes, filtered through a membrane filter (manufactured by Millipore) having a diameter of 3 ⁇ m, and washed with water.
  • a membrane filter manufactured by Millipore
  • resin fine particles after washing with water were added to a 0.5 wt% dimethylamine borane solution adjusted to pH 6.0 to obtain resin fine particles (resin core particles) whose surface was activated. Thereafter, resin fine particles whose surface was activated were immersed in distilled water and ultrasonically dispersed.
  • the above solution was filtered with a membrane filter having a diameter of 3 ⁇ m (manufactured by Millipore), and the surface was activated on APP (Ishihara Pharmaceutical Co., Ltd., trade name), an electroless palladium plating solution, at 50 ° C. Resin fine particles were immersed, and electroless Pd plating of 600 mm was performed on the resin surface.
  • APP Ishihara Pharmaceutical Co., Ltd., trade name
  • the mixture was filtered through a membrane filter having a diameter of 3 ⁇ m (manufactured by Millipore), and the particles were dried after washing with water, thereby producing mother particles 1 having a Pd layer of 600 mm on the resin core particles.
  • the nickel film thickness was adjusted by sampling and atomic absorption, and the addition of the electroless plating solution A was stopped when the nickel film thickness reached 300 mm. After filtration, washing with 100 ml pure water was performed for 60 seconds to produce particles having a 300 mm nickel film on the surface. Except for the above, mother particles 3 having a 300 ⁇ Ni layer and a 600 P Pd layer on the resin core particles were produced in the same manner as the mother particles 1.
  • Base particle 4 Except that the thickness of the Pd plating layer was 200 mm, a mother particle 4 having a 300 mm Ni layer and a 200 mm Pd layer on the resin core particle was produced in the same manner as the mother particle 3.
  • resin fine particles after washing with water were added to a 0.5 wt% dimethylamine borane solution adjusted to pH 6.0 to obtain resin fine particles whose surface was activated. Thereafter, resin fine particles whose surface was activated were immersed in distilled water and ultrasonically dispersed.
  • the above solution was filtered through a membrane filter (manufactured by Millipore) having a diameter of 3 ⁇ m. While stirring at 50 ° C., nickel sulfate hexahydrate 50 g / L, sodium hypophosphite monohydrate 20 g / L, dimethylamine Electroless plating solution A having a pH of 7.5 adjusted to 2.5 g / L of borane and 50 g / L of citric acid was gradually added to perform electroless nickel plating of resin fine particles.
  • the nickel film thickness was adjusted by sampling and atomic absorption, and the addition of electroless plating solution A was stopped when the nickel film thickness reached 700 mm. After filtration, washing with 100 ml of pure water was performed for 60 seconds to produce particles having a 700-mm nickel film on the surface.
  • HGS-2000 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a reduction type electroless gold plating, at a temperature of 65 ° C. to form a 300 mm gold layer by plating.
  • Base particle 6 After producing a nickel film on the surface of the resin fine particles, the resin fine particles whose surface is activated at 50 ° C. are immersed in APP (Ishihara Pharmaceutical Co., Ltd., trade name) which is an electroless palladium plating solution. Electroless Pd plating of 180 mm was performed on the resin surface. Through the above steps, mother particles 6 having a 700 ⁇ Ni layer and a 180 P Pd layer on the resin core particles were produced.
  • APP Ishihara Pharmaceutical Co., Ltd., trade name
  • conductive particles 1 to 6 were produced using the mother particles 1 to 6 obtained above.
  • reaction liquid was prepared by dissolving 8 mmol of mercaptoacetic acid in 200 ml of methanol.
  • the mother particles 1 was added to the above reaction solution, and the mixture was stirred with a three-one motor and a stirring blade having a diameter of 45 mm at room temperature (25 ° C.) for 2 hours. After washing with methanol, the mother particles 1 having a carboxyl group on the surface were obtained by filtering the mother particles 1 with a membrane filter (manufactured by Millipore) having a diameter of 3 ⁇ m.
  • a membrane filter manufactured by Millipore
  • a 30% polyethyleneimine aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) having a molecular weight of 70,000 was diluted with ultrapure water to obtain a 0.3 wt% polyethyleneimine aqueous solution.
  • 1 g of the mother particle 1 having a carboxyl group was added to a 0.3 wt% polyethyleneimine aqueous solution and stirred at room temperature for 15 minutes.
  • the mother particle 1 was filtered with a membrane filter (manufactured by Millipore) having a diameter of 3 ⁇ m, placed in 200 g of ultrapure water, and stirred at room temperature for 5 minutes. Further, the mother particle 1 is filtered through a membrane filter (made by Millipore) having a diameter of 3 ⁇ m, and washed twice with 200 g of ultrapure water on the membrane filter, so that polyethyleneimine not adsorbed on the mother particle 1 is obtained. Removed.
  • a membrane filter manufactured by Millipore
  • a dispersion of colloidal silica which is insulating particles (mass concentration 20%, manufactured by Fuso Chemical Industry Co., Ltd., product name: Quatron PL-10, average particle size 100 nm) is diluted with ultrapure water to give a solution of 0. A 1% by weight silica dispersion was obtained.
  • the mother particles 1 after the treatment with polyethyleneimine were placed in a 0.1 wt% silica dispersion solution and stirred at room temperature for 15 minutes.
  • the mother particle 1 was filtered with a membrane filter (manufactured by Millipore) having a diameter of 3 ⁇ m, and the mixture was placed in 200 g of ultrapure water and stirred at room temperature for 5 minutes. Further, the base particle 1 is filtered through a membrane filter (Millipore) having a diameter of 3 ⁇ m, and the silica not adsorbed on the base particle 1 is removed by washing twice with 200 g of ultrapure water on the membrane filter. did. Thereafter, drying was performed at 80 ° C. for 30 minutes, and heating drying was performed at 120 ° C. for 1 hour, whereby conductive particles 1 in which silica (child particles) were adsorbed on the surfaces of the mother particles 1 were produced.
  • a membrane filter manufactured by Millipore
  • Conductive particles 2 were produced in the same manner as the conductive particles 1 except that the mother particles 2 were used instead of the mother particles 1.
  • Conductive particles 3 were produced in the same manner as the conductive particles 1 except that the mother particles 3 were used instead of the mother particles 1.
  • Conductive particles 4 were produced in the same manner as the conductive particles 1 except that the mother particles 4 were used instead of the mother particles 1.
  • the mother particle 4 is used in place of the mother particle 1, and PL-13 (mass concentration 20%, manufactured by Fuso Chemical Industry Co., Ltd., product name: Quatron PL-13, average particle diameter instead of the colloidal silica dispersion PL-10.
  • the conductive particles 5 were produced in the same manner as the conductive particles 1 except that 130 nm) was used.
  • Conductive particles 6 were produced in the same manner as the conductive particles 1 except that the mother particles 5 were used instead of the mother particles 1.
  • Conductive particles 7 were produced in the same manner as the conductive particles 5 except that the mother particles 6 were used instead of the mother particles 4.
  • Example 1 Preparation of adhesive solution> 100 g of phenoxy resin (Union Carbide, trade name: PKHC) and 75 g of acrylic rubber (40 parts of butyl acrylate, 30 parts of ethyl acrylate, 30 parts of acrylonitrile, 3 parts of glycidyl methacrylate, molecular weight: 850,000) Dissolved in 300 g, a 30 wt% solution was obtained.
  • phenoxy resin Union Carbide, trade name: PKHC
  • acrylic rubber 40 parts of butyl acrylate, 30 parts of ethyl acrylate, 30 parts of acrylonitrile, 3 parts of glycidyl methacrylate, molecular weight: 850,000
  • the conditions for ultrasonic dispersion were a sample immersed in a beaker in 38 kHz 400W20L (test apparatus, manufactured by Fujimoto Kagaku Co., Ltd., trade name: US107), and stirred for 1 minute.
  • the particle dispersion is dispersed in an adhesive solution (so that the conductive particles 1 are 21% by volume with respect to the adhesive), and this solution is applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 ⁇ m) with a roll coater. And dried at 90 ° C. for 10 minutes to produce an anisotropic conductive adhesive film having a thickness of 25 ⁇ m.
  • a chip (1.7 ⁇ 17 mm, thickness: 0.5 ⁇ m) with gold bumps (area: 30 ⁇ 90 ⁇ m, space: 10 ⁇ m, height: 15 ⁇ m, bump number: 362)
  • a connection structure sample of an Al circuit-equipped glass substrate (thickness: 0.7 mm) was produced by the following method.
  • an anisotropic conductive adhesive film (2 ⁇ 19 mm) was attached to a glass substrate with an Al circuit at 80 ° C. and 0.98 MPa (10 kgf / cm 2 ), the separator was peeled off, and the chip bump and the Al circuit glass The substrate was aligned. Next, heating and pressurization were performed from above the chip under the conditions of 190 ° C., 40 g / bump, and 10 seconds, and this connection was performed to obtain a sample.
  • Example 2 A sample was prepared in the same manner as in Example 1 except that the conductive particles 2 were used instead of the conductive particles 1.
  • Example 3 A sample was prepared in the same manner as in Example 1 except that the conductive particles 3 were used instead of the conductive particles 1.
  • Example 4 A sample was prepared in the same manner as in Example 1 except that the conductive particles 4 were used instead of the conductive particles 1.
  • Example 5 A sample was prepared in the same manner as in Example 1 except that the conductive particles 5 were used instead of the conductive particles 1.
  • Example 1 A sample was prepared in the same manner as in Example 1 except that the conductive particles 6 were used instead of the conductive particles 1.
  • Example 2 A sample was prepared in the same manner as in Example 1 except that the conductive particles 7 were used instead of the conductive particles 1.
  • the coverage of the child particles was calculated by taking an electron micrograph of each conductive particle and analyzing the image.
  • the samples produced in Examples 1 to 5 and Comparative Examples 1 and 2 were subjected to an insulation resistance test and a conduction resistance test. It is important that the anisotropic conductive adhesive film has high insulation resistance between the chip electrodes and low conduction resistance between the chip electrode / glass electrode.
  • the insulation resistance between the chip electrodes was measured for 20 samples, and the minimum value was measured. Regarding the insulation resistance, the minimum value of the result before and after the bias test (durability test with humidity 60%, 90 ° C., 20V DC voltage) is shown.
  • the average value of 14 samples was measured regarding the conduction
  • an initial value and a value after a hygroscopic heat resistance test were measured.
  • Example 3 uses nickel, but the outer layer. Since the palladium layer is thick, the elution of nickel is small. In Example 4, it is clear that the elution of nickel is slightly more because the outer palladium layer is thin.
  • Comparative Example 1 using gold plating as the outer layer and Comparative Example 2 using a thin palladium layer of 180 mm or less tend to elute a large amount of nickel as compared with the Examples. Therefore, it is safer not to use nickel in a narrow pitch COG substrate.
  • nickel it is preferable to cover the nickel layer with a palladium layer having a thickness of 200 mm or more.
  • Comparative Example 2 When a cross-sectional ion beam image of each sample was photographed and confirmed, conduction was obtained in a manner in which the child particles were recessed into the Pd and Au portions except for Comparative Example 2, whereas Comparative Example 2 had a thickness of the insulating layer ( It was found that the Pd layer (metal layer) was hardly in contact with the electrode because the Pd layer was too thin relative to the diameter of the silica adsorbed on the mother particles. For this reason, it is desirable that the thickness of the insulating layer (the diameter of silica adsorbed on the mother particles) is larger than the thickness of the Pd layer or (Pd layer + Au layer).
  • the samples prepared according to the present invention have a high ratio of Pd (Au) on the surface, so that thiol is easily chemically adsorbed on the particle surface. Therefore, it was found that almost no peeling of the child particles (silica) occurred before and after the ultrasonic dispersion.
  • the samples produced according to the present invention had good yield because the child particles were difficult to peel off.
  • the samples prepared in Comparative Examples 1 and 2 have a high percentage of nickel on the surface. Therefore, it was found that the thiol is difficult to be chemically adsorbed on the particle surface, the bonding force between the silica and the mother particle is weak, and the silica is easily separated from the mother particle by ultrasonic dispersion. In addition, regarding the insulation resistance during the mounting test, it was found that the samples produced in Comparative Examples 1 and 2 are likely to cause insulation failure. The blended particles were eluted with methyl ethyl ketone and observed by SEM, and it was found that the child particles were peeled off.
  • the present invention it is possible to provide a conductive particle and a method for manufacturing the conductive particle that are low in cost, high in conductivity, and excellent in connection reliability between electrodes without causing migration. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Chemically Coating (AREA)

Abstract

 コア粒子11と、コア粒子11を被覆し、厚さが200Å以上であるパラジウム層12と、パラジウム層12の表面に配置され、粒径がパラジウム層12の厚さより大きい絶縁性粒子1と、を備える導電粒子8a。

Description

導電粒子及び導電粒子の製造方法
 本発明は、導電粒子及び導電粒子の製造方法に関する。
 液晶表示用ガラスパネルに液晶駆動用ICを実装する方式は、COG(Chip-on-Glass)実装とCOF(Chip-on-Flex)実装の2種類に大別することが出来る。
 COG実装では、導電粒子を含む異方導電性接着剤を用いて液晶用ICを直接ガラスパネル上に接合する。一方COF実装では、金属配線を有するフレキシブルテープに液晶駆動用ICを接合し、導電粒子を含む異方導電性接着剤を用いてそれらをガラスパネルに接合する。ここでいう異方性とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。
 ところで、近年の液晶表示の高精細化に伴い、液晶駆動用ICの回路電極であるバンプでは狭ピッチ化、狭面積化しているため、異方導電性接着剤の導電粒子が隣接する回路電極間に流出してショートを発生させることが問題となってきていた。
 また、隣接する回路電極間に導電粒子が流出すると、バンプとガラスパネルとの間に補足される異方導電性接着剤中の導電粒子数が減少し、対抗する回路電極間の接続抵抗が上昇し、接続不良を起こすといった問題があった。
 これらの問題を解決する方法としては、下記特許文献1に例示されるように、異方導電性接着剤の少なくとも片面に絶縁性の接着剤を形成することで、COG実装又はCOF実装における接合品質の低下を防ぐ方法や、下記特許文献2に例示されるように、導電粒子の全表面を絶縁性の被膜で被覆する方法がある。
 下記特許文献3、4には、金層で被覆された高分子重合体の核粒子を絶縁性の子粒子で被覆する方法が示されている。さらに下記特許文献4では、核粒子を被覆する金層の表面を、メルカプト基、スルフィド基、ジスルフィド基のいずれかを有する化合物で処理し、金層表面に官能基を形成する方法が示されている。これにより金層上に強固な官能基を形成することが出来る。
 下記特許文献5には、導電粒子の導電性を向上させる試みとして、樹脂微粒子上に銅/金めっきを行なう方法が示されている。
 下記特許文献6には、非金属微粒子と、非金属微粒子を被覆し、銅を50重量%以上含む金属層と、金属層を被覆するニッケル層と、ニッケル層を被覆する金層と、を備える導電粒子が示されており、この導電粒子によれば、一般的なニッケルと金からなる導電粒子に比べて導電性が良くなるとの記載がある。
 下記特許文献7には、基材微粒子、および前記基材微粒子上に設けられた金属被覆層を有する導電性粒子であって、前記金属被覆層中の金の含有率が90重量%以上99重量%以下であることを特徴とする導電性粒子の記載がある。
特開平08-279371号公報 特許第2794009号公報 特許第2748705号公報 国際公開第03/02955号パンフレット 特開2006-028438号公報 特開2001-155539号公報 特開2005-036265号公報
 しかしながら、上記特許文献1に示すように、回路接続部材の片面に絶縁性の接着剤を形成する方法では、バンプ面積が3000μm未満に狭小化した場合、安定した接続抵抗を得るために回路接続部材中の導電粒子を増やす必要がある。このように導電粒子を増した際には、隣り合う電極間の絶縁性について未だ改良の余地がある。
 また、上記特許文献2に示すように、隣り合う電極間の絶縁性を改良するために導電粒子の全表面を絶縁性の被膜で被覆する方法では、回路電極間の絶縁性が高くなるものの、導電粒子の導電性が低くなりやすいといった課題がある。
 また、上記特許文献3、4に示すように、絶縁性の子粒子で導電粒子表面を被覆する方法では、子粒子と導電粒子との接着性の問題から、アクリルなど樹脂製の子粒子を用いる必要がある。この場合、樹脂製の子粒子を回路同士の熱圧着時に溶融させ、導電粒子を両回路へ接触させることによって、回路間で導通をとることになる。このとき、溶融した子粒子の樹脂が導電粒子の表面を被覆してしまうと、導電粒子の全表面を絶縁性の被膜で被覆する方法と同様に、導電粒子の導電性が低くなり易いことが分かってきた。このような理由により、絶縁性の子粒子としては無機酸化物等のように比較的高硬度で溶融温度が高いものが適している。例えば、上記特許文献4では、シリカ表面を3-イソシアネートプロピルトリエトキシシランで処理し、表面にイソシアネート基を有するシリカと、表面にアミノ基を有する導電粒子とを反応させる方法が例示されている。
 しかしながら、粒子径が500nm以下の粒子表面を官能基で修飾するのは一般的に難しく、また官能基で修飾した後に行う遠心分離や濾過の際に、シリカなどの無機酸化物が凝集してしまう不具合が発生し易い。さらに、上記特許文献4に例示される方法では、絶縁性の子粒子の被覆率をコントロールするのが難しい。
 また、金属表面をメルカプト基、スルフィド基、ジスルフィド基のいずれかを有する化合物で処理する場合、金属上に僅かでもニッケル等の卑金属や銅といった酸化し易い金属が存在すると、金属と化合物との反応が進行しにくい。
 さらに、本発明者らの研究により明らかになったことであるが、導電粒子上にシリカ等の無機物を被覆させた場合、導電粒子上の金属表面をシリカが押しつぶすことで導電性が発現する。従って導電金属をシリカが破壊することになるので、導電金属に貴金属以外の物が入っているとマイグレーション特性が悪化する傾向がある。
 また、上記特許文献6に示すように、近年、ニッケル層上に金めっきを行うタイプの導電粒子が主流になりつつあるが、このような導電粒子では、ニッケルが溶出し、マイグレーションを起こすといった課題がある。さらに、金めっきの厚みを400Å以下に設定するとその傾向が顕著となる。
 また、上記特許文献7に示すように、金の含有量が90重量%以上である金属被覆層で被覆された導電粒子は、信頼性の面では良好であるが、コストが高い。したがって、金の含有量が高い金属被覆層を備える導電粒子は実用的とは言い難く、近年は金属被覆層の金含有量を下げる傾向にある。これに対して、銅めっきを備える導電粒子は、導電性、コストの上で優れてはいる。しかし、銅めっきを備える導電粒子では、マイグレーションが発生しやすいため、耐吸湿性の観点で問題がある。そこで、両者(金と銅)の短所を補う為の試みがなされているが、何れも完全ではない。例えば、上記特許文献5に示す方法では、両者(金と銅)の短所を十分に補うことができない。
 本発明は、上記課題に鑑みてなされたものであり、マイグレーションを起こすことなく、コストが安く、かつ導電性が高く、電極間の接続信頼性に優れる導電粒子及び導電粒子の製造方法を提供することを目的とする。
 上記目的を達成するため、第一の本発明に係る導電粒子は、コア粒子と、コア粒子を被覆し、厚さが200Å以上であるパラジウム層と、パラジウム層の表面に配置され、粒径がパラジウム層の厚さより大きい絶縁性粒子と、を備える。
 接着剤中に複数の上記導電粒子を分散させて得た異方導電性接着剤(異方導電フィルム)を一対の電極間に配置させ、一対の電極を接続(熱圧着)する際に、縦方向(一対の電極が対向する方向)では、導電粒子全体が一対の電極によって圧縮される。その結果、絶縁性粒子がパラジウム層表面からコア粒子側へめり込み、それに伴って露出したパラジウム層が一対の電極と接触することが可能となる。すなわち、導電粒子のパラジウム層を介して一対の電極間が導通する。一方、横方向(一対の電極が対向する方向に垂直な方向)では、隣接する導電粒子間に、それぞれの導電粒子が備える絶縁性粒子が介在し、絶縁性粒子同士が接触する。そのため、横方向では上記一対の電極とそれらに隣接する電極との間で絶縁性が維持される。
 上記第一の本発明では、絶縁性粒子の粒径がパラジウム層の厚さより大きいため、熱圧着の際に、絶縁性粒子が導電粒子の内部へ確実にめり込む。その結果、一対の電極間で高い導電性を発現することが可能となる。
 上記第一の本発明では、パラジウム層が延性を有するため、上記導電粒子を備える異方導電性接着剤を用いて一対の電極を接続する際に、導電粒子を圧縮した後であってもパラジウム層が割れ難い。そのため、圧縮後の導電粒子の導電性及び電極間の接続信頼性を向上させることが可能となると共に、パラジウム層の割れに起因するパラジウムのマイグレーションを防止することが可能となる。また、パラジウムは、金、白金等の貴金属と比較して安価であり、実用的である。したがって、パラジウム層を備える上記第一の本発明に係る導電粒子は、金又は白金のみを用いた導電粒子に比べて低コストである。
 上記第一の本発明では、パラジウム層の厚みが200Å以上であるため、十分な導電性を得ることが可能となる。
 第二の本発明に係る導電粒子は、コア粒子と、コア粒子を被覆する導電層と、導電層を被覆し、厚さが200Å以上であるパラジウム層と、パラジウム層の表面に配置され、粒径が導電層及びパラジウム層の厚さの合計より大きい絶縁性粒子と、を備える。
 上記第二の本発明に係る導電粒子を異方導電性接着剤に用いた場合であっても、上記第一の本発明と同様に、縦方向ではパラジウム層を介して一対の電極間が導通すると共に、横方向では上記一対の電極とそれらに隣接する電極との間で絶縁性が維持される。
 上記第二に係る本発明では、絶縁性粒子の粒径が導電層及びパラジウム層の厚さの合計より大きいため、熱圧着の際に、絶縁性粒子が導電粒子の内部へ確実にめり込む。その結果、一対の電極間で高い導電性を発現することが可能となる。
 上記第二の本発明では、パラジウム層が延性を有するため、上記第一の本発明と同様に、圧縮後の導電粒子の導電性及び電極間の接続信頼性を向上させることが可能となると共にパラジウムのマイグレーションを防止することが可能となる。また、導電層がパラジウム層で被覆されているため、パラジウム層によって導電層のマイグレーションも防止される。さらに、パラジウムは、金、白金等の貴金属と比較して安価であり、実用的である。したがって、パラジウム層を備える上記第二の本発明に係る導電粒子は、金又は白金のみを用いた導電粒子に比べて低コストである。
 上記第二の本発明では、パラジウム層の厚みが200Å以上であり、且つ導電層を備えるため、十分な導電性を得ることが可能となる。また、パラジウム層の厚みが200Å以上と厚いため、導電層のマイグレーションを防止し易くなる。
 第二の本発明に係る導電粒子では、導電層がニッケルからなることが好ましい。安価で且つ導電性に優れるニッケルからなる導電層を備えることにより、導電粒子が更に低コスト化することともに、その導電性が向上する。
 第三の本発明に係る導電粒子は、コア粒子と、コア粒子を被覆し、厚さが200Å以上であるパラジウム層と、パラジウム層を被覆する金層と、金層の表面に配置され、粒径がパラジウム層及び金層の厚さの合計より大きい絶縁性粒子と、を備える。
 上記第三の本発明に係る導電粒子を用いた異方導電性接着剤で一対の電極を接続する場合、縦方向では、導電粒子全体が一対の電極によって圧縮される。その結果、絶縁性粒子が金層表面からコア粒子側へめり込み、それに伴って露出した金層を介して一対の電極間が導通する。一方、横方向では、隣接する導電粒子間に、それぞれの導電粒子が備える絶縁性粒子が介在し、絶縁性粒子同士が接触する。そのため、横方向では上記一対の電極とそれらに隣接する電極との間で絶縁性が維持される。
 上記第三に係る本発明では、絶縁性粒子の粒径がパラジウム層及び金層の厚さの合計より大きいため、熱圧着の際に、絶縁性粒子が導電粒子の内部へ確実にめり込む。その結果、一対の電極間で高い導電性を発現することが可能となる。
 上記第三の本発明では、パラジウム層及び金層が延性を有するため、導電粒子を圧縮した後であっても、パラジウム層及び金層が割れ難い。そのため、圧縮後の導電粒子の導電性及び電極間の接続信頼性を向上させることが可能となると共に、パラジウム層又は金層の割れに起因するパラジウム又は金のマイグレーションを防止することが可能となる。また、パラジウムは、金、白金等の貴金属と比較して安価であり、実用的である。したがって、パラジウム層を備える上記第三の本発明に係る導電粒子は、金又は白金のみを用いた導電粒子に比べて低コストである。
 上記第三の本発明では、パラジウム層の厚みが200Å以上であるため、十分な導電性を得ることが可能となる。また、上記第三の本発明では、導電性に優れる金層が最表面に位置するため、導電粒子の表面抵抗を下がり、導電粒子の導電性を向上させることが可能となる。
 上記第三の本発明では、金層が還元めっき型の金層であることが好ましい。これにより、パラジウム層に対する金層の被覆率が向上し、導電粒子の表面抵抗を低下させ易くなる。
 上記第一、第二又は第三の本発明では、パラジウム層が還元めっき型のパラジウム層であることが好ましい。これにより、コア粒子に対するパラジウム層の被覆率が向上し、導電粒子の導電性を向上させ易くなる。
 上記第一の本発明に係る導電粒子の製造方法は、コア粒子の表面にパラジウム層を形成する工程と、パラジウム層の表面を、メルカプト基、スルフィド基、又はジスルフィド基のいずれかを有する化合物で処理し、パラジウム層の表面に官能基を形成する工程と、官能基が形成されたパラジウム層の表面に絶縁性粒子を化学吸着により固定化する工程と、を備える。
 上記第一の本発明に係る導電粒子の製造方法によれば、上記第一の本発明に係る導電粒子を得ることが可能となる。
 上記第二の本発明に係る導電粒子の製造方法は、コア粒子の表面に導電層を形成する工程と、導電層の表面にパラジウム層を形成する工程と、パラジウム層の表面を、メルカプト基、スルフィド基、又はジスルフィド基のいずれかを有する化合物で処理し、パラジウム層の表面に官能基を形成する工程と、官能基が形成されたパラジウム層の表面に絶縁性粒子を化学吸着により固定化する工程と、を備える。
 上記第二の本発明に係る導電粒子の製造方法によれば、上記第二の本発明に係る導電粒子を得ることが可能となる。
 上記第一又は第二の本発明に係る導電粒子の製造方法では、パラジウム層の表面を、メルカプト基、スルフィド基、又はジスルフィド基のいずれかを有する化合物で処理することによって、これらの化合物がパラジウム層表面に配位結合し、パラジウム層の表面に水酸基、カルボキシル基、アルコキシル基、又はアルコキシカルボニル基のような官能基を形成することが可能となる。これらの官能基は絶縁性粒子の表面の原子と共有結合又は水素結合を形成するため、パラジウム層の表面に絶縁性粒子が強固に化学吸着することが可能となる。
 上記第一又は第二の本発明に係る導電粒子の製造方法では、ニッケル等の卑金属や銅からなる層に比べて酸化し難いパラジウム層の表面を化合物で処理するため、ニッケル等の卑金属や銅からなる層を化合物で処理する場合に比べて、パラジウム層の表面と化合物との反応性が向上し、上記の官能基をパラジウム層の表面に確実に形成することが可能となる。
 上記第一又は第二の本発明に係る導電粒子の製造方法では、官能基が形成されたパラジウム層の表面を高分子電解質で処理した後に、パラジウム層の表面に絶縁性粒子を化学吸着により固定化することが好ましい。
 官能基が形成されたパラジウム層の表面電位と、絶縁性粒子の表面電位が共に正又は負である場合、パラジウム層の表面に絶縁性粒子が吸着し難くなる。そこで、官能基が形成されたパラジウム層の表面を高分子電解質で処理することにより、パラジウム層の表面電位が変化するため、高分子電解質で処理しない場合に比べて、パラジウム層の表面に絶縁性粒子が吸着し易くなる。
 上記第三の本発明に係る導電粒子の製造方法は、コア粒子の表面にパラジウム層を形成する工程と、パラジウム層の表面に金層を形成する工程と、金層の表面を、メルカプト基、スルフィド基、又はジスルフィド基のいずれかを有する化合物で処理し、金層の表面に官能基を形成する工程と、官能基が形成された金層の表面に絶縁性粒子を化学吸着により固定化する工程と、を備える。
 上記第三の本発明に係る導電粒子の製造方法によれば、上記第三の本発明に係る導電粒子を得ることが可能となる。
 上記第三の本発明に係る導電粒子の製造方法では、金層の表面を、メルカプト基、スルフィド基、又はジスルフィド基のいずれかを有する化合物で処理することによって、これらの化合物が金層表面に配位結合し、金層の表面に水酸基、カルボキシル基、アルコキシル基、又はアルコキシカルボニル基のような官能基を形成することが可能となる。これらの官能基は絶縁性粒子の表面の原子と共有結合又は水素結合を形成するため、金層の表面に絶縁性粒子が強固に化学吸着することが可能となる。
 上記第三の本発明に係る導電粒子の製造方法では、ニッケル等の卑金属や銅からなる層に比べて酸化しにくい金層の表面を化合物で処理するため、ニッケル等の卑金属や銅からなる層を化合物で処理する場合に比べて、金層の表面と化合物との反応性が向上し、上記の官能基を金層の表面に確実に形成することが可能となる。
 上記第三の本発明に係る導電粒子の製造方法では、官能基が形成された金層の表面を高分子電解質で処理した後に、金層の表面に絶縁性粒子を化学吸着により固定化することが好ましい。
 官能基が形成された金層の表面電位と、絶縁性粒子の表面電位が共に正又は負である場合、金層表面に絶縁性粒子が吸着し難くなる。そこで、官能基が形成された金層の表面を高分子電解質で処理することにより、金層の表面電位が変化するため、高分子電解質で処理しない場合に比べて、金層の表面に絶縁性粒子が吸着し易くなる。
 上記第一、第二又は第三の本発明に係る導電粒子の製造方法では、官能基が、水酸基、カルボキシル基、アルコキシル基、又はアルコキシカルボニル基のいずれかであることが好ましい。
 水酸基、カルボキシル基、アルコキシル基、又はアルコキシカルボニル基は、水酸基との間で、脱水縮合による共有結合、又は水素結合のような強固な結合を形成する。したがって、絶縁性粒子がその表面に水酸基を有し、且つパラジウム層又は金層の表面に形成された官能基が水酸基、カルボキシル基、アルコキシル基、又はアルコキシカルボニル基である場合、絶縁性粒子表面の水酸基とパラジウム層又は金層の表面の官能基とが強固に結合するため、絶縁性粒子がパラジウム層又は金層の表面に強固に吸着することが可能となる。
 上記第一、第二又は第三の本発明に係る導電粒子の製造方法では、高分子電解質がポリアミン類であることが好ましい。
 ポリアミン類は、水溶液中で電離し、且つ荷電を有する官能基を主鎖または側鎖に備える高分子である。このポリアミン類を含む水溶液で処理したパラジウム層又は金層の表面には、ポリアミン類が強固に結合すると共に、ポリアミン類を介して絶縁性粒子をパラジウム層又は金層の表面へより強固に吸着させることが可能となる。
 上記第一、第二又は第三の本発明に係る導電粒子の製造方法では、ポリアミン類がポリエチレンイミンであることが好ましい。
 ポリエチレンイミンは特に電荷密度が高く、結合力が強いため、ポリエチレンイミンを用いることにより、絶縁性粒子をパラジウム層又は金層の表面へより強固に吸着させ易くなる。
 上記第一、第二又は第三の本発明では、絶縁性粒子が無機酸化物であることが好ましい。仮に絶縁性粒子として有機化合物からなる微粒子を用いた場合、無機酸化物からなる微粒子を用いた場合に比べて、異方導電性接着剤の作製工程で絶縁性粒子が変形し易く、本発明の効果が小さくなる傾向がある。また、異方導電性接着剤による電極の熱圧着の際に、有機化合物からなる絶縁性粒子が溶融して導電粒子の表面を被覆すると、導電粒子の導電性(表面抵抗)が低下する傾向がある。一方、無機酸化物からなる絶縁性粒子を用いた場合、これらの不具合を抑制することが可能となる。
 上記第一、第二又は第三の本発明では、無機酸化物がシリカであることが好ましい。シリカからなる絶縁性粒子は、絶縁性に優れ、粒子径を制御し易く、且つ安価である。また、シリカは水中に分散させて水分散コロイダルシリカとした際に、その表面に水酸基を有するため、パラジウム層又は金層との結合性に優れている。さらに、シリカ表面の水酸基は、パラジウム層又は金層の表面に形成された官能基との結合性にも優れている。したがって、シリカからなる絶縁性粒子は、パラジウム層又は金層の表面に強固に吸着することが可能となる。
 本発明によれば、マイグレーションを起こすことなく、コストが安く、かつ導電性が高く、電極間の接続信頼性に優れる導電粒子及び導電粒子の製造方法を提供することができる。
図1は、本発明の第一実施形態に係る導電粒子の概略断面図である。 図2は、本発明の第二実施形態に係る導電粒子の概略断面図である。 図3は、本発明の第三実施形態に係る導電粒子の概略断面図である。 図4(a)は、本発明の第一実施形態に係る導電粒子を備える異方導電性接着剤の概略断面図であり、図4(b)及び図4(c)は、異方導電性接着剤を用いた接続構造体の作製方法を説明するための概略断面図である。
符号の説明
 1・・・絶縁性粒子、2、2a、2b、2c・・・母粒子、3・・・接着剤、4・・・第一の基板、5・・・第一の電極、6・・・第二の基板、7・・・第二の電極、8、8a、8b、8c・・・導電粒子、11・・・コア粒子、12・・・パラジウム層、13・・・導電層、14・・・金層、40・・・異方導電性接着剤、42・・・接続構造体。
 以下、発明を実施するための最良の形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 [第一実施形態]
 (導電粒子)
 図1に示すように、本発明の第一実施形態に係る導電粒子8aは、コア粒子11と、コア粒子11を被覆し、厚さが200Å以上であるパラジウム層12と、パラジウム層12の表面に配置され、粒径がパラジウム層12の厚さより大きい複数の絶縁性粒子1と、を備える。すなわち、導電粒子8aでは、コア粒子11とコア粒子11を被覆するパラジウム層12とを備える母粒子2aの表面の一部が、子粒子である絶縁性粒子1で被覆されている。
 <母粒子2a>
 本発明で用いる母粒子2aの粒径は、後述する図4の第一の電極5と第二の電極7との最小の間隔よりも小さいことが好ましい。また、母粒子2aの粒径は、電極の高さ(電極の間隔)にばらつきがある場合、高さのばらつきよりも大きいことが好ましい。これらの理由から、母粒子2aの粒径は、1~10μmであることが好ましく、1~5μmであることがより好ましく、2~3.5μmであることが特に好ましい。
 従来の導電粒子における母粒子は、金属のみからなる粒子、又は有機物若しくは無機物のコア粒子をめっきなどの方法で金属被覆したもののいずれかであるが、本実施形態における母粒子2aは、有機物又は無機物のコア粒子11をめっきなどの方法で金属被覆したものを用いることが出来る。また、本実施形態では、母粒子2aとして、有機物のコア粒子をめっきなどの方法で金属被覆したものが好ましい。
 有機物のコア粒子11としては、特に制限はないが、ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂などからなる樹脂粒子が好ましい。
 パラジウム層12は延性を有するため、導電粒子8aを圧縮した後において金属割れを起こし難く、金属割れに伴うマイグレーションも起こし難い。また、パラジウム層12は卑金属や銅に比べて耐酸性及び耐アルカリ性に優れるため、後述するメルカプト基、スルフィド基、又はジスルフィド基等の官能基と安定して結合する。さらに、これらの官能基との結合性においてパラジウムと金及び白金とは同様の傾向を有するが、これらの貴金属を同体積で比較した場合、パラジウムが最も安価であり、実用的である。また、パラジウム層12は導電性に優れている。これらの理由から、パラジウム層12は、コア粒子11を被覆する金属層として好適である。
 パラジウム層12は、パラジウムとリンとの合金から構成されてもよい。パラジウム層12が合金である場合、導電性の観点から、合金中のパラジウムの含有率は70重量%以上であることが好ましく、90重量%以上100重量%未満であることがさらに好ましい。
 パラジウム層12は、還元めっき型のパラジウム層であることが好ましい。これにより、コア粒子11に対するパラジウム層12の被覆率が向上し、導電粒子8aの導電性がより向上する。
 パラジウム層12の厚みは、200Å以上1000Å以下であることが好ましい。パラジウム層の厚みが200Å未満であると、十分な導電性を得られない。一方、パラジウム層12の厚みが1000Åを超えると、母粒子2a全体の弾性が低下する傾向がある。母粒子2a全体の弾性が低下すると、導電粒子8aが一対の電極で挟まれ、縦方向に潰された際に、母粒子2aの弾性によってパラジウム層12が電極表面に十分に押し当てられ難くなる。そのため、パラジウム層12と両電極との接触面積が小さくなり、電極間の接続信頼性を向上させる本発明の効果が小さくなる傾向がある。また、パラジウム層12が厚いほど、コストが高くなり、経済的に芳しくない。
 <絶縁性粒子1>
 絶縁性粒子1は無機酸化物であることが好ましい。仮に、絶縁性粒子1が有機化合物である場合、異方導電性接着剤の作製工程で絶縁性粒子1が変形してしまい、得られる異方導電性接着剤の特性が変化しやすい傾向がある。
 絶縁性粒子1を構成する無機酸化物としては、ケイ素、アルミニウム、ジルコニウム、チタン、ニオブ、亜鉛、錫、セリウム、及びマグネシウムの群からなるより選ばれる少なくとも一種の元素を含む酸化物が好ましい。これらの酸化物は単独で又は2種類以上を混合して使用することができる。また、無機酸化物としては、上述の元素を含む酸化物の中でも、絶縁性に優れ、粒子径を制御した水分散コロイダルシリカ(SiO)が最も好ましい。
 このような無機酸化物からなる絶縁性粒子(以下、「無機酸化物微粒子」という。)の市販品としては、例えば、スノーテックス、スノーテックスUP(日産化学工業(株)製)、クオートロンPLシリーズ(扶桑化学工業(株)製)等が挙げられる。
 無機酸化物微粒子の粒子径は、20~500nmであることが好ましい。なお、無機酸化物微粒子の粒子径は、BET法による比表面積換算法またはX線小角散乱法で測定される。粒子径が20nm未満であると、母粒子2aに吸着した無機酸化物微粒子が絶縁膜として作用せずに、電極間の一部にショートを発生させる傾向がある。一方、粒子径が500nmを超えると、電極間で導電性が得られない傾向がある。
 (導電粒子8aの製造方法)
 本発明の第一実施形態に係る導電粒子8aの製造方法は、コア粒子11の表面にパラジウム層12を形成する工程(S1)と、パラジウム層12の表面を、メルカプト基、スルフィド基、又はジスルフィド基のいずれかを有する化合物で処理し、パラジウム層12の表面に官能基を形成する工程(S2)と、官能基が形成されたパラジウム層の表面を高分子電解質で処理する工程(S3)、官能基が形成され、且つ高分子電解質で処理されたパラジウム層12の表面に絶縁性粒子1を化学吸着により固定化する工程(S4)と、を備える。なお、以下では、絶縁性粒子1が、表面に水酸基が形成された無機酸化物微粒子である場合について説明する。
 <S1>
 まず、コア粒子11の表面にパラジウム層12を形成して、母粒子2aを得る。その具体的な方法としては、例えば、パラジウムによるめっきが挙げられる。このめっき工程では、まずパラジウム触媒を付与し、その後に還元型無電解パラジウムめっきを行うのが良い。還元型無電解パラジウムめっきの組成としては、(1)硫酸パラジウムのような水溶性パラジウム塩、(2)還元剤、(3)錯化剤及び(4)pH調整剤を加えたものが好ましい。
 <S2>
 次に、パラジウム層12の表面を、パラジウムに対して配位結合を形成するメルカプト基、スルフィド基、又はジスルフィド基のいずれかを有する化合物で処理する。これにより、パラジウム層12の表面に官能基を形成する。
 パラジウム層12の表面処理に用いる化合物としては、具体的には、メルカプト酢酸、2-メルカプトエタノール、メルカプト酢酸メチル、メルカプトコハク酸、チオグリセリン、システイン等が挙げられる。これらの化合物で処理されたパラジウム層12の表面に形成される官能基としては、水酸基、カルボキシル基、アルコキシル基、又はアルコキシカルボニル基が挙げられる。
 パラジウムはチオール基(メルカプト基)と反応し易いことに対して、ニッケルのような卑金属はチオール基と反応し難い。従って、本実施形態のパラジウム粒子(パラジウム層12で被覆されたコア粒子11)は、従来型のニッケル/金粒子(ニッケル層及び金層で被覆されたコア粒子)に比べてチオール基と反応しやすい。特にニッケル/金粒子は金の厚みが300Å以下であると粒子表面のニッケル割合が高くなる傾向がある。
 パラジウム層12の表面を上記化合物で処理する具体的な方法としては、例えば、メタノール、エタノール等の有機溶媒中にメルカプト酢酸などの化合物を10~100mmol/l程度分散させて得た液体中に、パラジウム粒子を分散させる方法が挙げられる。
 <S3、S4>
 次に、官能基が形成されたパラジウム層12の表面を高分子電解質で処理した後に、パラジウム層12の表面に絶縁性粒子1を化学吸着させる。
 水酸基、カルボキシル基、アルコキシル基、又はアルコキシカルボニル基のような官能基を有するパラジウム層12の表面電位(ゼータ電位)は、通常、pHが中性領域であればマイナスである。一方で、後工程でパラジウム層12の表面に吸着させる絶縁性粒子1の表面は、水酸基を有する無機酸化物からなるため、絶縁性粒子1の表面電位も通常マイナスである。このように、表面電位がマイナスであるパラジウム層12の周囲には、表面電位がマイナスである絶縁性粒子1が吸着し難い傾向がある。そこで、パラジウム層12の表面を高分子電解質で処理することにより、パラジウム層12の表面を絶縁性粒子1で被覆し易くなる。
 高分子電解質で処理した後のパラジウム層12の表面に絶縁性粒子1を吸着させる方法としては、高分子電解質と無機酸化物を、パラジウム層12の表面に交互に積層する方法が好ましい。より具体的には、以下の工程(1)、(2)を順次行うことで、高分子電解質と無機酸化物微粒子とが積層された絶縁性被覆膜で表面の一部が被覆された母粒子2a、すなわち導電粒子8aを製造できる。
工程(1):パラジウム層12の表面に官能基を有する母粒子2aを、高分子電解質溶液に分散させ、パラジウム層12の表面に高分子電解質を吸着させた後、母粒子2aをリンスする工程。
工程(2):リンス後の母粒子2aを無機酸化物微粒子の分散溶液に分散し、母粒子2aの表面(パラジウム層12)に無機酸化物微粒子を吸着させた後、母粒子2aをリンスする工程。
 すなわち、工程(1)において、母粒子2aの表面に高分子電解質薄膜を形成し、工程(2)において、高分子電解質薄膜を介して母粒子2aの表面に無機酸化物微粒子を化学吸着により固定化する。この高分子電解質薄膜を用いることにより、母粒子2aの表面を、欠陥なく均一に無機酸化物微粒子で被覆することができる。このような工程(1)、(2)を経て得られた導電粒子を用いた異方導電性接着剤を用いて回路電極を接続すると、回路電極間隔が狭ピッチでも絶縁性が確保され、電気的に接続する電極間では接続抵抗が低く良好となる。
 上記の工程(1)、(2)を有する方法は、交互積層法(Layer-by-Layer assembly)と呼ばれる。交互積層法は、G.Decherらによって1992年に発表された有機薄膜を形成する方法である(Thin Solid Films, 210/211, p831(1992) 参照)。
 この交互積層方法では、正電荷を有するポリマー電解質(ポリカチオン)と負電荷を有するポリマー電解質(ポリアニオン)の水溶液に、基材を交互に浸漬することで基板上に静電的引力によって吸着したポリカチオンとポリアニオンの組が積層して複合膜(交互積層膜)が得られる。
 交互積層法では、静電的な引力によって、基材上に形成された材料の電荷と、溶液中の反対電荷を有する材料が引き合うことにより膜成長するので、吸着が進行して電荷の中和が起こるとそれ以上の吸着が起こらなくなる。したがって、ある飽和点までに至れば、それ以上膜厚が増加することはない。
 Lvovらは交互積層法を、微粒子に応用し、シリカやチタニア、セリアの各微粒子分散液を用いて、微粒子の表面電荷と反対電荷を有する高分子電解質を交互積層法で積層する方法を報告している(Langmuir、Vol.13、(1997)p6195-6203 参照)。
 この方法を用いると、負の表面電荷を有するシリカの微粒子と、その反対電荷を持つポリカチオンであるポリジアリルジメチルアンモニウムクロライド(PDDA)又はポリエチレンイミン(PEI)などとを交互に積層することで、シリカ微粒子と高分子電解質が交互に積層された微粒子積層薄膜を形成することが可能である。
 本実施形態では、母粒子2aを、高分子電解質溶液又は無機酸化物微粒子の分散液に浸漬後、反対電荷を有する微粒子分散液又は高分子電解質溶液に浸漬する前に、溶媒のみのリンスによって余剰の高分子電解質溶液若しくは無機酸化物微粒子の分散液を母粒子2aから洗い流すことが好ましい。
 母粒子2aに吸着した高分子電解質及び無機酸化物微粒子は母粒子2a表面に静電的に吸着しているために、このリンスの工程で母粒子2a表面から剥離することはない。しかし、母粒子2a吸着していない余剰の高分子電解質または無機酸化物微粒子が、それらと反対電荷を有する溶液中に持ち込まれると、溶液内でカチオン、アニオンが混ざり、高分子電解質と無機酸化物微粒子の凝集や沈殿を起きることがある。このような不具合をリンスによって防止することができる。
 リンスに用いる溶媒としては、水、アルコール、アセトン等があるが、通常、過剰な高分子電解質溶液又は無機酸化物微粒子の分散液を除去し易い点において、比抵抗値が18MΩ・cm以上のイオン交換水(いわゆる超純水)が用いられる。
 高分子電解質溶液は、水、又は水と水溶性の有機溶媒との混合溶媒に高分子電解質を溶解したものである。使用できる水溶性の有機溶媒としては、例えば、メタノール、エタノール、プロパノール、アセトン、ジメチルホルムアミド、アセトニトリル等が挙げられる。
 高分子電解質としては、水溶液中で電離し、荷電を有する官能基を主鎖または側鎖に持つ高分子を用いることができる。この場合はポリカチオンを用いるのが良い。
 ポリカチオンとしては、一般に、ポリアミン類等のように正荷電を帯びることのできる官能基を有するもの、例えば、ポリエチレンイミン(PEI)、ポリアリルアミン塩酸塩(PAH)、ポリジアリルジメチルアンモニウムクロリド(PDDA)、ポリビニルピリジン(PVP)、ポリリジン、ポリアクリルアミド及びそれらを少なくとも1種以上を含む共重合体などを用いることができる。
 高分子電解質の中でもポリエチレンイミンは電荷密度が高く、結合力が強い。これらの高分子電解質の中でも、エレクトロマイグレーションや腐食を避けるために、アルカリ金属(Li、Na、K、Rb、Cs)イオン及びアルカリ土類金属(Ca、Sr、Ba、Ra)イオン、ハロゲン化物イオン(フッ素イオン、クロライドイオン、臭素イオン、ヨウ素イオン)を含まないものが好ましい。
 これらの高分子電解質は、いずれも水溶性であるもの、又は水と有機溶媒との混合液に可溶なものであり、高分子電解質の分子量としては、用いる高分子電解質の種類により一概には定めることができないが、一般に、500~200,000程度のものが好ましい。なお、溶液中の高分子電解質の濃度は、一般に、0.01~10重量%程度が好ましい。また高分子電解質溶液のpHは、特に制限はない。
 母粒子2aを被覆する高分子電解質薄膜の種類、分子量、又は濃度を調整することにより、無機酸化物微粒子の被覆率をコントロールすることが出来る。
 具体的には、ポリエチレンイミンなど、電荷密度の高い高分子電解質薄膜を用いた場合、無機酸化物微粒子の被覆率が高くなる傾向があり、ポリジアリルジメチルアンモニウムクロリド等、電荷密度の低い高分子電解質薄膜を用いた場合、無機酸化物微粒子の被覆率が低くなる傾向がある。
 また、高分子電解質の分子量が大きい場合、無機酸化物微粒子の被覆率が高くなる傾向があるとともに、無機酸化物微粒子をパラジウム層12に強固に吸着させることができる。結合力という観点で見た場合、高分子電解質の分子量は10,000以上であることが好ましい。一方、高分子電解質の分子量が小さい場合、無機酸化物微粒子の被覆率が低くなる傾向がある。
 さらに、高分子電解質を高濃度で用いた場合、無機酸化物微粒子の被覆率が高くなる傾向があり、高分子電解質を低濃度で用いた場合、無機酸化物微粒子の被覆率が低くなる傾向がある。無機酸化物微粒子の被覆率が高い場合は絶縁性が高く導電性が悪い傾向があり、無機酸化物微粒子の被覆率が低い場合は導電性が高く絶縁性が悪い傾向がある。
 無機酸化物微粒子は一層のみ被覆されているのが良い。複層積層すると積層量のコントロールが困難になる。また、無機酸化物微粒子の被覆率は、20~100%の範囲であることが好ましく、30~60%の範囲であることがさらに好ましい。
 無機酸化物微粒子の分散溶液中のアルカリ金属イオン及びアルカリ土類金属イオン濃度が100ppm以下であることが好ましい。これにより、隣接する電極間の絶縁信頼性を向上させ易くなる。また、無機酸化物微粒子としては、金属アルコキシドの加水分解反応、いわゆるゾルゲル法により製造される無機酸化物微粒子が好適である。
 特に、無機酸化物微粒子としては、水分散コロイダルシリカ(SiO)が好ましい。水分散コロイダルシリカは表面に水酸基を有するため、母粒子2aとの結合性に優れ、粒子径を揃えやすく、安価である点において、無機酸化物微粒子に好適である。
 一般的に水酸基は、水酸基、カルボキシル基、アルコキシル基、アルコキシカルボニル基と強固な結合を形成することで知られる。水酸基とこれら官能基の結合の具体的な様式としては、脱水縮合による共有結合や水素結合が挙げられる。従って、水酸基、カルボキシル基、アルコキシル基、アルコキシカルボニル基などの官能基が形成されたパラジウム層12(母粒子2a表面)に対して、表面に水酸基を有する無機酸化物微粒子は、強固に吸着することが可能となる。
 なお、無機酸化物微粒子の表面の水酸基は、シランカップリング剤などでアミノ基やカルボキシル基、エポキシ基に変性することが可能であるが、無機酸化物の粒子径が500nm以下の場合、困難である。従って、官能基の変性を行わずに母粒子2aを無機酸化物微粒子で被覆することが望ましい。
 以上のようにして完成した導電粒子8aを加熱乾燥することで、絶縁性粒子1と母粒子2aとの結合を更に強化することが出来る。結合力が増す理由としては、例えば、パラジウム層12の表面のカルボキシル基等の官能基と絶縁性粒子1の表面の水酸基との化学結合、又はパラジウム層12の表面のカルボキシル基と絶縁性粒子1の表面のアミノ基の脱水縮合が促進されることが挙げられる。また加熱を真空で行なうと、金属のさび防止の観点から好ましい。なお、後述する第三実施形態のように、母粒子の再表面が金層である場合においても、パラジウム層12の場合と同様に、加熱乾燥することで、絶縁性粒子と母粒子との結合を更に強化することが出来る。
 加熱乾燥の温度は60~200℃であることが好ましく、加熱時間は10~180分であることが好ましい。温度が60℃未満の場合や加熱時間が10分未満の場合は、絶縁性粒子1が母粒子2aから剥離しやすく、温度が200℃を超える場合や加熱時間が180分を超える場合は、母粒子2aが変形しやすいので好ましくない。
 (異方導電性接着剤)
 以上のようにして作製した導電粒子8aを、図4(a)に示すように、接着剤3に分散させることにより、異方導電性接着剤40が得られる。この異方導電性接着剤40を用いた接続構造体42の作製方法を、図4(b)、(c)に示す。なお、図4では、図の簡略化のため、導電粒子8が備えるパラジウム層12は省略する。
 図4(b)に示すように第一の基板4と第二の基板6を準備し、異方導電性接着剤40をその間に配置する。このとき、第一の基板4が備える第一の電極5と第二の基板6が備える第二の電極7が対向するようにする。その後、第一の基板4と第二の基板6を、第一の電極5と第二の電極7とが対向する方向で加圧加熱しつつ積層して、図4(c)に示す接続構造体42を得る。
 このようにして接続構造体42を作製すると、縦方向は絶縁性粒子1が母粒子2にめり込んで第一の電極5と第二の電極7は母粒子2の表面(パラジウム層)を介して導通し、横方向は母粒子間に絶縁性子粒子1が介在することで絶縁性が維持される。
 COG用の異方導電性接着剤は、近年10μmレベルの狭ピッチでの絶縁信頼性が求められているが、本実施形態に係る異方導電性接着剤40を用いれば、10μmレベルの狭ピッチでの絶縁信頼性を向上させることが可能となる。
 異方導電性接着剤40に用いられる接着剤としては、熱反応性樹脂と硬化剤の混合物が用いられ、具体的には、エポキシ樹脂と潜在性硬化剤との混合物が好ましい。
 エポキシ樹脂としては、エピクロルヒドリンとビスフェノールAやF、AD等から誘導されるビスフェノール型エポキシ樹脂、エピクロルヒドリンとフェノールノボラックやクレゾールノボラックから誘導されるエポキシノボラック樹脂やナフタレン環を含んだ骨格を有するナフタレン系エポキシ樹脂、グリシジルアミン、グリシジルエーテル、ビフェニル、脂環式等の1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物等を単独に又は2種以上を混合して用いることが可能である。
 これらのエポキシ樹脂は、不純物イオン(Na、Cl等)や、加水分解性塩素等を300ppm以下に低減した高純度品を用いることが好ましい。これによりエレクトロマイグレーションを防止し易くなる。
 潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素-アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等が挙げられる。この他、接着剤には、ラジカル反応性樹脂と有機過酸化物の混合物や紫外線などのエネルギー線硬化性樹脂が用いられる。
 接着剤3には、接着後の応力を低減するため、又は接着性を向上するために、ブタジエンゴム、アクリルゴム、スチレン-ブタジエンゴム、シリコーンゴム等を混合することができる。
 また、接着剤3としてはペースト状又はフィルム状のものが用いられる。接着剤をフィルム状にするためには、フェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂等の熱可塑性樹脂を配合することが効果的である。これらのフィルム形成性高分子は、反応性樹脂の硬化時の応力緩和にも効果がある。特に、フィルム形成性高分子が、水酸基などの官能基を有する場合、接着性が向上するためより好ましい。
 フィルムの形成は、エポキシ樹脂、アクリルゴム、潜在性硬化剤、及びフィルム形成性高分子からなる接着組成物を、有機溶剤に溶解又は分散させることにより、液状化して、剥離性基材上に塗布し、硬化剤の活性温度以下で溶剤を除去することにより行われる。このとき用いる有機溶剤としては、材料の溶解性を向上させる点において、芳香族炭化水素系と含酸素系の混合溶剤が好ましい。
 異方導電性接着剤40の厚みは、導電粒子8の粒径及び異方導電性接着剤40の特性を考慮して相対的に決定されるが、1~100μmであることが好ましい。1μm未満では充分な接着性が得られず、100μmを超えると導電性を得るために多量の導電粒子を必要とするために現実的ではない。こうした理由から、厚みは3~50μmであることがより好ましい。
 第一の基板4又は第二の基板6としては、ガラス基板、ポリイミド等のテープ基板、ドライバーICなどのベアチップ、リジット型のパッケージ基板などが挙げられる。
 [第二実施形態]
 次に、本発明の第二実施形態に係る導電粒子、及び導電粒子の製造方法について説明する。なお、以下では、上述した第一実施形態と第二実施形態との相違点についてのみ説明し、両者に共通する事項については説明を省略する。
 (導電粒子)
 図2に示すように、第二実施形態に係る導電粒子8bは、コア粒子11とパラジウム層12との間に、更に導電層13を備える点において、第一実施形態に係る導電粒子8aと相違する。
 すなわち、本発明の第二実施形態に係る導電粒子8bは、コア粒子11と、コア粒子11を被覆する導電層13と、導電層13を被覆し、厚さが200Å以上であるパラジウム層12と、パラジウム層12の表面に配置され、粒径が導電層13及びパラジウム層12の厚さの合計より大きい複数の絶縁性粒子1と、を備える。換言すれば、導電粒子8bでは、コア粒子11とコア粒子11を被覆する導電層13及びパラジウム層12とを備える母粒子2bの表面の一部が、子粒子である絶縁性粒子1で被覆されている。
 第二実施形態に係る導電粒子8bも、第一実施形態に係る導電粒子8aと同様に、マイグレーションを起こすことなく、コストが安く、かつ導電性が高く、電極間の接続信頼性に優れる。また、第二実施形態では、安価で導電性に優れた非金属や銅等からなる導電層13を具備することにより、導電粒子8bの低コスト化、導電性の向上が可能となる。さらに、第二実施形態では、導電層13がパラジウム層12で被覆されているため、パラジウム層12が導電層13に対してマイグレーションストップ層として機能する。
 導電層13としては、金、銀、銅、白金、亜鉛、鉄、パラジウム、ニッケル、錫、クロム、チタン、アルミニウム、コバルト、ゲルマニウム、カドミウム等の金属からなる層、又はITO、はんだといった金属化合物からなる層が挙げられる。これらの中でも、導電層13としては、ニッケルからなる層が好ましい。安価で且つ導電性に優れるニッケルからなる導電層を備えることにより、導電粒子が更に低コスト化することともに、その導電性が向上する。
 (導電粒子8bの製造方法)
 本発明の第二実施形態に係る導電粒子8bの製造方法は、コア粒子11の表面に導電層13を形成する工程と、導電層13の表面にパラジウム層12を形成する工程と、パラジウム層12の表面を、メルカプト基、スルフィド基、又はジスルフィド基のいずれかを有する化合物で処理し、パラジウム層12の表面に官能基を形成する工程と、官能基が形成されたパラジウム層12の表面に絶縁性粒子1を化学吸着により固定化する工程と、を備える。
 また、第二実施形態においても、第一実施形態と同様に、官能基が形成されたパラジウム層12の表面を高分子電解質で処理した後に、パラジウム層12の表面に絶縁性粒子1を吸着させることが好ましい。
 [第三実施形態]
 次に、本発明の第三実施形態に係る導電粒子、及び導電粒子の製造方法について説明する。なお、以下では、上述した第一実施形態と第三実施形態との相違点についてのみ説明し、両者に共通する事項については説明を省略する。
 (導電粒子)
 図3に示すように、第三実施形態に係る導電粒子8cは、コア粒子11を被覆するパラジウム層12の表面を金層14が被覆している点において、第一実施形態に係る導電粒子8aと相違する。
 すなわち、本発明の第三実施形態に係る導電粒子8cは、コア粒子11と、コア粒子11を被覆し、厚さが200Å以上であるパラジウム層12と、パラジウム層12を被覆する金層14と、金層14の表面に配置され、粒径がパラジウム層12及び金層14の厚さの合計より大きい複数の絶縁性粒子1と、を備える。換言すれば、導電粒子8cでは、コア粒子11とコア粒子11を被覆するパラジウム層12及び金層14とを備える母粒子2cの表面の一部が、子粒子である絶縁性粒子1で被覆されている。
 第三実施形態に係る導電粒子8cも、第一実施形態に係る導電粒子8aと同様に、マイグレーションを起こすことなく、コストが安く、かつ導電性が高く、電極間の接続信頼性に優れる。また、第三実施形態では、母粒子2cの最外層として金層14を具備するため、母粒子2cの表面抵抗を下げ、導電粒子8c全体の導電性を向上させることが出来る。なお、第三実施形態に係る導電粒子8cは、コア粒子11とパラジウム層12との間に、第二実施形態と同様な導電層を更に備えてもよい。
 (導電粒子8cの製造方法)
 第三実施形態に係る導電粒子8cの製造方法は、コア粒子11の表面にパラジウム層12を形成する工程と、パラジウム層12の表面に金層14を形成する工程と、金層14の表面を、メルカプト基、スルフィド基、又はジスルフィド基のいずれかを有する化合物で処理し、金層14の表面に官能基を形成する工程と、官能基が形成された金層14の表面に絶縁性粒子1を化学吸着により固定化する工程と、を備える。
 また、第三実施形態においても、第一実施形態と同様に、官能基が形成された金層14の表面を高分子電解質で処理した後に、金層14の表面に絶縁性粒子1を吸着させることが好ましい。
 パラジウム層12の表面に金層14を形成する具体的な方法としては、例えば、金によるめっきが挙げられる。金めっきはHGS-100(日立化成工業(株)製、商品名)のような置換型金めっきやHGS-2000(日立化成工業(株)製、商品名)のような還元型無電解金めっきを用いることができるが、被覆率を向上させ易いことから、還元型無電解金めっきが好ましい。
 金はチオール基(メルカプト基)と反応し易いことに対して、ニッケルのような卑金属はチオールと反応し難い。従って、本実施形態の金粒子(パラジウム層12及び金層14で被覆されたコア粒子11)は、従来型のニッケル/金粒子(ニッケル層及び金層で被覆されたコア粒子)に比べてチオール基と反応しやすい。特にニッケル/金粒子は金の厚みが300Å以下であると粒子表面のニッケル割合が高くなる傾向がある。
 金めっきの厚さは、表面抵抗の低下とコストとの兼ね合いもあるため、状況に応じて設定すればよいが、300Å以下であることが好ましい。なお、金めっきの厚さの厚さが300Å以上であっても特性上は問題ない。
 以下、実施例により本発明を説明する。
 (母粒子1)
 平均粒径3.8μmの架橋ポリスチレン粒子(樹脂微粒子)1gを、パラジウム触媒であるアトテックネネオガント834(アトテックジャパン(株)製、商品名)を8重量%含有するパラジウム触媒化液100mLに添加し、30℃で30分攪拌した後、直径3μmのメンブレンフィルタ(ミリポア社製)で濾過し、水洗を行った。
 次に、水洗後の樹脂微粒子をpH6.0に調整した0.5重量%ジメチルアミンボラン液に添加し、表面が活性化された樹脂微粒子(樹脂コア粒子)を得た。その後、蒸留水に表面が活性化された樹脂微粒子を浸漬し、超音波分散した。
 上記の液を直径3μmのメンブレンフィルタ(ミリポア社製)で濾過し、無電解パラジウムめっき液であるAPP(石原薬品工業(株)製、商品名)に50℃の条件で表面が活性化された樹脂微粒子を浸漬し、樹脂表面に600Åの無電解Pdめっきを行った。
 その後、直径3μmのメンブレンフィルタ(ミリポア社製)で濾過し、水洗後に粒子を乾燥させることで樹脂コア粒子上に600ÅのPd層を有する母粒子1を作製した。
 (母粒子2)
 母粒子1を還元型無電解金めっきであるHGS-2000(日立化成工業(株)製、商品名)に65℃の条件で浸漬し、100Åの金層を追加したこと以外は、母粒子1と同様の方法で、樹脂コア粒子上に600ÅのPd層と100ÅのAu層を有する母粒子2を作製した。
 (母粒子3)
 無電解パラジウムめっき液処理前の微粒子懸濁液を50℃で攪拌しながら、硫酸ニッケル6水和物50g/L、次亜リン酸ナトリウム一水和物20g/L、ジメチルアミンボラン2.5g/L、クエン酸50g/LからなるpHを7.5に調整した無電解めっき液Aを徐々に添加し、樹脂微粒子の無電解ニッケルめっきを行った。
 サンプリングと原子吸光によって、ニッケルの膜厚を調整し、ニッケル膜厚が300Åになった時点で無電解めっき液Aの添加を中止した。濾過後、100ml純水洗浄60秒を行い、表面に300Åのニッケル膜を有する粒子を作製した。以上の事項以外は、母粒子1と同様の方法で、樹脂コア粒子上に300ÅのNi層と600ÅのPd層を有する母粒子3を作製した。
 (母粒子4)
 Pdめっき層の厚みを200Åにしたこと以外は、母粒子3と同様の方法で、樹脂コア粒子上に300ÅのNi層と200ÅのPd層を有する母粒子4を作製した。
 (母粒子5)
 平均粒径3.8μmの架橋ポリスチレン粒子(樹脂微粒子)1gをパラジウム触媒であるアトテックネネオガント834(アトテックジャパン(株)製、商品名)を8重量%含有するパラジウム触媒化液100mLに添加し、30℃で30分攪拌した後、直径3μmのメンブレンフィルタ(ミリポア社製)で濾過し、水洗を行った。
 次に、水洗後の樹脂微粒子を、pH6.0に調整した0.5重量%ジメチルアミンボラン液に添加し、表面が活性化された樹脂微粒子を得た。その後、蒸留水に表面が活性化された樹脂微粒子を浸漬し、超音波分散した。
 上記の液を直径3μmのメンブレンフィルタ(ミリポア社製)で濾過し、50℃で攪拌しながら、硫酸ニッケル6水和物50g/L、次亜リン酸ナトリウム一水和物20g/L、ジメチルアミンボラン2.5g/L、クエン酸50g/LからなるpHを7.5に調整した無電解めっき液Aを徐々に添加し、樹脂微粒子の無電解ニッケルめっきを行った。
 サンプリングと原子吸光によって、ニッケルの膜厚を調整し、ニッケル膜厚が700Åになった時点で無電解めっき液Aの添加を中止した。濾過後、100ml純水洗浄60秒を行い、表面に700Åのニッケル膜を有する粒子を作製した。
 次に、還元型無電解金めっきであるHGS-2000(日立化成工業(株)製、商品名)に65℃の条件で浸漬し、300Åの金層をめっきにより形成した。以上の工程により、樹脂コア粒子上に700ÅのNi層と300ÅのAu層を有する母粒子5を作製した。
 (母粒子6)
 樹脂微粒子の表面にニッケル膜を作製した後、無電解パラジウムめっき液であるAPP(石原薬品工業(株)製、商品名)に50℃の条件で表面が活性化された樹脂微粒子を浸漬し、樹脂表面に180Åの無電解Pdめっきを行った。以上の工程により、樹脂コア粒子上に700ÅのNi層と180ÅのPd層を有する母粒子6を作製した。
 次に、上記で得た母粒子1~6を用いて導電粒子1~6を作製した。
 (導電粒子1)
 メルカプト酢酸8mmolをメタノール200mlに溶解させて反応液を作製した。
 次に、母粒子1を1g上記反応液に加え、室温(25℃)で2時間スリーワンモーターと直径45mmの攪拌羽で攪拌した。メタノールで洗浄後、直径3μmのメンブレンフィルタ(ミリポア社製)で母粒子1を濾過することで表面にカルボキシル基を有する母粒子1を得た。
 次に、分子量70000の30%ポリエチレンイミン水溶液(和光純薬工業(株)製)を超純水で希釈し、0.3重量%ポリエチレンイミン水溶液を得た。前記カルボキシル基を有する母粒子1を0.3重量%ポリエチレンイミン水溶液に1g加え、室温で15分攪拌した。
 その後、直径3μmのメンブレンフィルタ(ミリポア社製)で母粒子1をろ過し、超純水200gに入れて室温で5分攪拌した。さらに直径3μmのメンブレンフィルタ(ミリポア社製)で母粒子1をろ過し、前記メンブレンフィルタ上にて200gの超純水で2回洗浄を行うことで、母粒子1に吸着していないポリエチレンイミンを除去した。
 次に、絶縁性粒子であるコロイダルシリカの分散液(質量濃度20%、扶桑化学工業(株)製、製品名:クオートロンPL-10、平均粒子径100nm)を超純水で希釈して0.1重量%シリカ分散溶液を得た。前記ポリエチレンイミンでの処理後の母粒子1を0.1重量%シリカ分散溶液に入れて室温で15分攪拌した。
 次に、直径3μmのメンブレンフィルタ(ミリポア社製)で母粒子1をろ過し、超純水200gに入れて室温で5分攪拌した。さらに直径3μmのメンブレンフィルタ(ミリポア社製)で母粒子1をろ過し、前記メンブレンフィルタ上にて200gの超純水で2回洗浄を行うことで、母粒子1に吸着していないシリカを除去した。その後80℃で30分の条件で乾燥を行い、120℃で1時間加熱乾燥行うことで、母粒子1の表面にシリカ(子粒子)が吸着した導電粒子1を作製した。
 (導電粒子2)
 母粒子1の代わりに母粒子2を用いたこと以外は導電粒子1と同様の方法で導電粒子2を作製した。
 (導電粒子3)
 母粒子1の代わりに母粒子3を用いたこと以外は導電粒子1と同様の方法で導電粒子3を作製した。
 (導電粒子4)
 母粒子1の代わりに母粒子4を用いたこと以外は導電粒子1と同様の方法で導電粒子4を作製した。
 (導電粒子5)
 母粒子1の代わりに母粒子4を用い、コロイダルシリカ分散液PL-10の代わりにPL-13(質量濃度20%、扶桑化学工業(株)製、製品名:クオートロンPL-13、平均粒子径130nm)を用いたこと以外は導電粒子1と同様の方法で導電粒子5を作製した。
 (導電粒子6)
 母粒子1の代わりに母粒子5を用いた以外は導電粒子1と同様の方法導電粒子6を作製した。
 (導電粒子7)
 母粒子4の代わりに母粒子6を用いた以外は導電粒子5と同様の方法で導電粒子7を作製した。
 (実施例1)
 <接着剤溶液の作製>
 フェノキシ樹脂(ユニオンカーバイド社製、商品名:PKHC)100g及びアクリルゴム(ブチルアクリレート40部、エチルアクリレート30部、アクリロニトリル30部、グリシジルメタクリレート3部の共重合体、分子量:85万)75gを酢酸エチル300gに溶解し、30重量%溶液を得た。
 次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量185、旭化成エポキシ(株)製、商品名:ノバキュアHX-3941)300gをこの溶液に加え、撹拌して接着剤溶液を作製した。
 <導電粒子の超音波分散>
 上記で作製した4gの導電粒子1を酢酸エチル10g中に超音波分散した。超音波分散の条件は38kHz400W20L(試験装置、藤本科学(株)製、商品名:US107)にビーカー浸漬したサンプルを入れて1分攪拌した。
 上記粒子分散液を接着剤溶液に分散(導電粒子1が接着剤に対して21体積%となるように)し、この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフイルム、厚み40μm)にロールコータで塗布し、90℃、10分乾燥し、厚み25μmの異方導電接着剤フィルムを作製した。
 次に、作製した異方導電接着フィルムを用いて、金バンプ(面積:30×90μm、スペース10μm、高さ:15μm、バンブ数362)付きチップ(1.7×17mm、厚み:0.5μm)とAl回路付きガラス基板(厚み:0.7mm)の接続構造体サンプルを、以下の方法で作製した。
 まず、異方導電接着フィルム(2×19mm)をAl回路付きガラス基板に80℃、0.98MPa(10kgf/cm)で貼り付けた後、セパレータを剥離し、チップのバンプとAl回路付きガラス基板の位置合わせを行った。次いで、190℃、40g/バンプ、10秒の条件でチップ上方から加熱、加圧を行い、本接続を行って、サンプルを得た。
 (実施例2)
 導電粒子1の代わりに導電粒子2を用いた以外は実施例1と同様にサンプルを作製した。
 (実施例3)
 導電粒子1の代わりに導電粒子3を用いた以外は実施例1と同様にサンプルを作製した。
 (実施例4)
 導電粒子1の代わりに導電粒子4を用いた以外は実施例1と同様にサンプルを作製した。
 (実施例5)
 導電粒子1の代わりに導電粒子5を用いた以外は実施例1と同様にサンプルを作製した。
 (比較例1)
 導電粒子1の代わりに導電粒子6を用いた以外は実施例1と同様にサンプルを作製した。
 (比較例2)
 導電粒子1の代わりに導電粒子7を用いた以外は実施例1と同様にサンプルを作製した。
 (金属の膜厚測定)
 Pd、Ni、Auの各膜厚の測定は、試料を50体積%王水に溶解させた後、樹脂を直径3μmのメンブレンフィルタ(ミリポア社製)で濾別して取り除き、原子吸光で測定した後に厚み換算した。
 (子粒子の被覆率)
 子粒子(絶縁性粒子)の被覆率は、各導電粒子の電子顕微鏡写真を撮影し、画像を解析することで算出した。
 (粒子の煮出試験)
 導電粒子1~7を各1g採取し、純水50gに分散させた。次に、60mlの圧力容器にサンプルを投入し、100℃で10時間放置した。
 その後、導電粒子分散溶媒を0.2μmフィルターで濾過し、ろ液中の各金属イオンを原子吸光で測定した。煮出し量は次式により求めた。
Figure JPOXMLDOC01-appb-M000001
 (絶縁抵抗試験及び導通抵抗試験)
 実施例1~5、比較例1~2で作製したサンプルの絶縁抵抗試験及び導通抵抗試験を行った。異方導電接着フィルムはチップ電極間の絶縁抵抗が高く、チップ電極/ガラス電極間の導通抵抗が低いことが重要である。
 チップ電極間の絶縁抵抗は20サンプルを測定し、その最小値を測定した。絶縁抵抗に関してはバイアス試験(湿度60%、90℃、20V直流電圧による耐久試験)前後の結果の最小値を示す。
 また、チップ電極/ガラス電極間の導通抵抗に関しては14サンプルの平均値を測定した。導通抵抗は初期値と吸湿耐熱試験(温度85℃、湿度85%の条件で1000時間放置)後の値を測定した。
 (結果)
 上記の各々の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、実施例1、2、5に示すニッケルを全く用いない粒子は、煮出し試験結果に示すように金属の溶出が殆どない、実施例3はニッケルを用いているものの外層のパラジウム層が厚いため、ニッケルの溶出が少ない、実施例4は外層のパラジウム層が薄いため、ニッケルの溶出がやや多いことが明らかである。
 これに対し、外層に金めっきを用いた比較例1、及び180Å以下の薄層のパラジウム層を用いた比較例2では、何れも実施例に比べて、多量のニッケルが溶出する傾向がある。従って、狭ピッチのCOG基板においてはニッケルを用いない方が無難であり、ニッケルを用いた場合は、厚みが200Å以上のパラジウム層でニッケル層を被覆することが好ましい。
 なお、貴金属であるパラジウムは溶出が殆どない。絶縁信頼性試験結果は殆どニッケルの溶出量に依存しており、ニッケルの溶出の少ない実施例は良好な結果を示し、ニッケルの溶出の多い比較例は絶縁信頼性が低いことが明らかである。
 導通に関しては、比較例2以外は良好な結果を示した。各サンプルの断面イオンビーム像を撮影し、確認したところ、比較例2以外は子粒子がPdやAu部分にめり込む形で導通が得られていたのに対し、比較例2は絶縁層の厚み(母粒子に吸着したシリカの径)に対しPd層が薄すぎるため、Pd層(金属層)が電極に殆ど接触していないことが分かった。このことから、絶縁層の厚み(母粒子に吸着したシリカの径)はPd層や(Pd層+Au層)の厚みよりも大きいことが望ましい。
 表1及び図4に示すように本発明により作製したサンプル(実施例1~5)は、表面のPd(Au)の比率が高いため、粒子表面にチオールが化学吸着しやすい。従って、超音波分散の前後で殆ど子粒子(シリカ)の剥離が発生しないことが分かった。また実装試験の際の絶縁抵抗に関しても本発明により作製したサンプル(実施例1~5)は子粒子が剥離しにくいため、歩留まりが良好であった。
 一方、比較例1、2で作製したサンプルは表面のニッケルの割合が高い。従って粒子表面にチオールが化学吸着しにくく、シリカと母粒子の結合力が弱くなり、超音波分散でシリカが母粒子から剥離しやすいことが分かった。また実装試験の際の絶縁抵抗に関しても比較例1、2で作製したサンプルは絶縁不良が発生しやすいことが分かった。配合後の粒子をメチルエチルケトンで溶出し、SEM観察したところ子粒子が剥離していることが分かった。
 以上説明したように、上記本発明によれば、マイグレーションを起こすことなく、コストが安く、かつ導電性が高く、電極間の接続信頼性に優れる導電粒子及び導電粒子の製造方法を提供することができる。

Claims (15)

  1.  コア粒子と、
     前記コア粒子を被覆し、厚さが200Å以上であるパラジウム層と、
     前記パラジウム層の表面に配置され、粒径が前記パラジウム層の厚さより大きい絶縁性粒子と、
     を備える導電粒子。
  2.  コア粒子と、
     前記コア粒子を被覆する導電層と、
     前記導電層を被覆し、厚さが200Å以上であるパラジウム層と、
     前記パラジウム層の表面に配置され、粒径が前記導電層及びパラジウム層の厚さの合計より大きい絶縁性粒子と、
     を備える導電粒子。
  3.  コア粒子と、
     前記コア粒子を被覆し、厚さが200Å以上であるパラジウム層と、
     前記パラジウム層を被覆する金層と、
     前記金層の表面に配置され、粒径が前記パラジウム層及び前記金層の厚さの合計より大きい絶縁性粒子と、
     を備える導電粒子。
  4.  前記金層が還元めっき型の金層である、請求項3に記載の導電粒子。
  5.  前記パラジウム層が還元めっき型のパラジウム層である、請求項1~4のいずれか一項に記載の導電粒子。
  6.  コア粒子の表面にパラジウム層を形成する工程と、
     前記パラジウム層の表面を、メルカプト基、スルフィド基、又はジスルフィド基のいずれかを有する化合物で処理し、前記パラジウム層の表面に官能基を形成する工程と、
     前記官能基が形成された前記パラジウム層の表面に絶縁性粒子を化学吸着により固定化する工程と、
    を備える導電粒子の製造方法。
  7.  コア粒子の表面に導電層を形成する工程と、
     前記導電層の表面にパラジウム層を形成する工程と、
     前記パラジウム層の表面を、メルカプト基、スルフィド基、又はジスルフィド基のいずれかを有する化合物で処理し、前記パラジウム層の表面に官能基を形成する工程と、
     前記官能基が形成された前記パラジウム層の表面に絶縁性粒子を化学吸着により固定化する工程と、
    を備える導電粒子の製造方法。
  8.  前記官能基が形成された前記パラジウム層の表面を高分子電解質で処理した後に、前記パラジウム層の表面に前記絶縁性粒子を化学吸着により固定化する、請求項6又は7に記載の導電粒子の製造方法。
  9.  コア粒子の表面にパラジウム層を形成する工程と、
     前記パラジウム層の表面に金層を形成する工程と、
     前記金層の表面を、メルカプト基、スルフィド基、又はジスルフィド基のいずれかを有する化合物で処理し、前記金層の表面に官能基を形成する工程と、
     前記官能基が形成された前記金層の表面に絶縁性粒子を化学吸着により固定化する工程と、
    を備える導電粒子の製造方法。
  10.  前記官能基が形成された前記金層の表面を高分子電解質で処理した後に、前記金層の表面に絶縁性粒子を化学吸着により固定化する、請求項9に記載の導電粒子の製造方法。
  11.  前記官能基が、水酸基、カルボキシル基、アルコキシル基、又はアルコキシカルボニル基のいずれかである、請求項6~10のいずれか一項に記載の導電粒子の製造方法。
  12.  前記高分子電解質がポリアミン類である、請求項8又は10に記載の導電粒子の製造方法。
  13.  前記ポリアミン類がポリエチレンイミンである、請求項12に記載の導電粒子の製造方法。
  14.  前記絶縁性粒子が無機酸化物である、請求項6~13のいずれか一項に記載の導電粒子の製造方法。
  15.  前記無機酸化物がシリカである、請求項14に記載の導電粒子の製造方法。
PCT/JP2009/051964 2008-02-05 2009-02-05 導電粒子及び導電粒子の製造方法 WO2009099143A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/866,353 US20100327237A1 (en) 2008-02-05 2009-02-02 Conductive particle and method for producing conductive particle
KR1020127008288A KR101268234B1 (ko) 2008-02-05 2009-02-05 도전 입자 및 도전 입자의 제조 방법
EP09707515A EP2242065A1 (en) 2008-02-05 2009-02-05 Conductive particle and method for producing conductive particle
KR1020107017450A KR101240127B1 (ko) 2008-02-05 2009-02-05 도전 입자 및 도전 입자의 제조 방법
CN2009801017219A CN101911214A (zh) 2008-02-05 2009-02-05 导电粒子及导电粒子的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-025103 2008-02-05
JP2008025103 2008-02-05
JP2008-291272 2008-11-13
JP2008291272A JP5151920B2 (ja) 2008-02-05 2008-11-13 導電粒子及び導電粒子の製造方法

Publications (1)

Publication Number Publication Date
WO2009099143A1 true WO2009099143A1 (ja) 2009-08-13

Family

ID=40952216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051964 WO2009099143A1 (ja) 2008-02-05 2009-02-05 導電粒子及び導電粒子の製造方法

Country Status (6)

Country Link
US (1) US20100327237A1 (ja)
EP (1) EP2242065A1 (ja)
JP (1) JP5151920B2 (ja)
KR (2) KR101268234B1 (ja)
CN (2) CN101911214A (ja)
WO (1) WO2009099143A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016524A1 (ja) * 2009-08-06 2011-02-10 日立化成工業株式会社 導電粒子
CN102959641A (zh) * 2010-07-02 2013-03-06 积水化学工业株式会社 带有绝缘性粒子的导电性粒子、各向异性导电材料及连接结构体

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101704856B1 (ko) * 2010-03-08 2017-02-08 세키스이가가쿠 고교가부시키가이샤 도전성 입자, 이방성 도전 재료 및 접속 구조체
JP5549352B2 (ja) * 2010-04-26 2014-07-16 日立化成株式会社 導電粒子、接着剤組成物、回路接続材料及び接続構造体
JP2012003917A (ja) * 2010-06-16 2012-01-05 Sekisui Chem Co Ltd 導電性粒子、異方性導電材料及び接続構造体
JP5643623B2 (ja) * 2010-12-02 2014-12-17 デクセリアルズ株式会社 異方性導電材料及びその製造方法
CN103636068B (zh) * 2011-07-07 2017-09-08 日立化成株式会社 电路连接材料和电路基板的连接结构体
US9475963B2 (en) 2011-09-15 2016-10-25 Trillion Science, Inc. Fixed array ACFs with multi-tier partially embedded particle morphology and their manufacturing processes
KR101151366B1 (ko) * 2011-11-24 2012-06-08 한화케미칼 주식회사 도전성 입자 및 이의 제조방법
JP6094076B2 (ja) * 2012-07-11 2017-03-15 日立化成株式会社 半円型粒子の製造方法及び複合粒子の製造方法
JP6438186B2 (ja) * 2012-09-06 2018-12-12 積水化学工業株式会社 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
WO2014054572A1 (ja) * 2012-10-02 2014-04-10 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
US9617643B2 (en) * 2012-10-26 2017-04-11 Board Of Trustees Of Michigan State University Methods for coating metals on hydrophobic surfaces
JP6200318B2 (ja) * 2013-01-10 2017-09-20 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
JP5943019B2 (ja) * 2014-02-26 2016-06-29 日立金属株式会社 導電性粒子、導電性粉体、導電性高分子組成物および異方性導電シート
JP2015195178A (ja) * 2014-03-26 2015-11-05 デクセリアルズ株式会社 導電性粒子、導電性接着剤、接続体の製造方法、電子部品の接続方法、及び接続体
US9646854B2 (en) * 2014-03-28 2017-05-09 Intel Corporation Embedded circuit patterning feature selective electroless copper plating
US10569330B2 (en) 2014-04-01 2020-02-25 Forge Nano, Inc. Energy storage devices having coated passive components
JP6186019B2 (ja) * 2016-01-13 2017-08-23 株式会社山王 導電性微粒子及び導電性微粒子の製造方法
KR101795336B1 (ko) 2017-01-13 2017-11-08 김용환 파손 방지수단이 구비된 시스템창호
CN110214353B (zh) * 2017-01-27 2021-04-02 昭和电工材料株式会社 绝缘被覆导电粒子、各向异性导电膜、各向异性导电膜的制造方法、连接结构体和连接结构体的制造方法
WO2018163921A1 (ja) * 2017-03-06 2018-09-13 デクセリアルズ株式会社 樹脂組成物、樹脂組成物の製造方法、及び構造体
JP7046351B2 (ja) 2018-01-31 2022-04-04 三国電子有限会社 接続構造体の作製方法
JP7185252B2 (ja) 2018-01-31 2022-12-07 三国電子有限会社 接続構造体の作製方法
JP7160302B2 (ja) * 2018-01-31 2022-10-25 三国電子有限会社 接続構造体および接続構造体の作製方法
WO2019194134A1 (ja) * 2018-04-04 2019-10-10 積水化学工業株式会社 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
WO2019194133A1 (ja) * 2018-04-04 2019-10-10 積水化学工業株式会社 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
CN111383793B (zh) * 2018-12-31 2021-10-26 德山金属株式会社 导电粒子、导电材料以及接触结构体
DE102019107633A1 (de) 2019-03-25 2020-10-29 Sphera Technology Gmbh Mehrkomponentensystem und Verfahren zur Herstellung eines Mehrkomponentensystems
KR102598343B1 (ko) * 2020-10-06 2023-11-06 덕산네오룩스 주식회사 도전입자, 도전재료 및 접속 구조체
WO2022075663A1 (ko) * 2020-10-06 2022-04-14 덕산하이메탈(주) 도전입자, 도전재료 및 접속 구조체
CN114307883B (zh) * 2021-12-29 2023-01-31 苏州纳微科技股份有限公司 一种适于各向异性导电的镀镍微球的制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259766A (ja) * 1991-02-14 1992-09-16 Hitachi Chem Co Ltd 回路の接続部材
JPH08279371A (ja) 1995-02-07 1996-10-22 Hitachi Chem Co Ltd 接続部材および該接続部材を用いた電極の接続構造並びに接続方法
JP2794009B2 (ja) 1996-01-29 1998-09-03 富士ゼロックス株式会社 電気接続用異方導電性粒子の製造方法および電気接続用異方導電材料の製造方法
JP2001155539A (ja) 1999-11-29 2001-06-08 Sekisui Chem Co Ltd 導電性微粒子、異方性導電接着剤及び導電接続構造体
WO2003002955A1 (en) 2001-06-28 2003-01-09 Kkdk A/S Method and system for modification of an acoustic environment
WO2003025955A1 (fr) * 2001-09-14 2003-03-27 Sekisui Chemical Co., Ltd. Particule conductrice revetue, procede de fabrication d'une particule conductrice revetue, materiau conducteur anisotrope et structure de connexion electrique
JP2005036265A (ja) 2003-07-18 2005-02-10 Natoko Kk 導電性粒子、導電性材料および異方性導電膜
JP2005044773A (ja) * 2003-07-07 2005-02-17 Sekisui Chem Co Ltd 被覆導電性粒子、異方性導電材料及び導電接続構造体
JP2006028438A (ja) 2004-07-21 2006-02-02 Natoko Kk 導電性微粒子、導電材料、異方性導電膜、及び、重合体微粒子
JP2007258141A (ja) * 2006-02-27 2007-10-04 Hitachi Chem Co Ltd 導電粒子、接着剤組成物、回路接続材料及び接続構造、並びに回路部材の接続方法
JP2007537570A (ja) * 2004-05-12 2007-12-20 チェイル インダストリーズ インコーポレイテッド 絶縁導電性微粒子及びこれを含有する異方導電性接着フィルム
WO2008047600A1 (fr) * 2006-10-17 2008-04-24 Hitachi Chemical Company, Ltd. particule revêtue et son procédé de fabrication, composition adhésive conductrice anisotrope utilisant la particule revêtue et film adhésif conducteur anisotrope

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100437838C (zh) * 2003-07-07 2008-11-26 积水化学工业株式会社 包覆导电性粒子、各向异性导电材料以及导电连接结构体
KR100719802B1 (ko) * 2005-12-28 2007-05-18 제일모직주식회사 이방 전도 접속용 고신뢰성 전도성 미립자

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259766A (ja) * 1991-02-14 1992-09-16 Hitachi Chem Co Ltd 回路の接続部材
JP2748705B2 (ja) 1991-02-14 1998-05-13 日立化成工業株式会社 回路の接続部材
JPH08279371A (ja) 1995-02-07 1996-10-22 Hitachi Chem Co Ltd 接続部材および該接続部材を用いた電極の接続構造並びに接続方法
JP2794009B2 (ja) 1996-01-29 1998-09-03 富士ゼロックス株式会社 電気接続用異方導電性粒子の製造方法および電気接続用異方導電材料の製造方法
JP2001155539A (ja) 1999-11-29 2001-06-08 Sekisui Chem Co Ltd 導電性微粒子、異方性導電接着剤及び導電接続構造体
WO2003002955A1 (en) 2001-06-28 2003-01-09 Kkdk A/S Method and system for modification of an acoustic environment
WO2003025955A1 (fr) * 2001-09-14 2003-03-27 Sekisui Chemical Co., Ltd. Particule conductrice revetue, procede de fabrication d'une particule conductrice revetue, materiau conducteur anisotrope et structure de connexion electrique
JP2005044773A (ja) * 2003-07-07 2005-02-17 Sekisui Chem Co Ltd 被覆導電性粒子、異方性導電材料及び導電接続構造体
JP2005036265A (ja) 2003-07-18 2005-02-10 Natoko Kk 導電性粒子、導電性材料および異方性導電膜
JP2007537570A (ja) * 2004-05-12 2007-12-20 チェイル インダストリーズ インコーポレイテッド 絶縁導電性微粒子及びこれを含有する異方導電性接着フィルム
JP2006028438A (ja) 2004-07-21 2006-02-02 Natoko Kk 導電性微粒子、導電材料、異方性導電膜、及び、重合体微粒子
JP2007258141A (ja) * 2006-02-27 2007-10-04 Hitachi Chem Co Ltd 導電粒子、接着剤組成物、回路接続材料及び接続構造、並びに回路部材の接続方法
WO2008047600A1 (fr) * 2006-10-17 2008-04-24 Hitachi Chemical Company, Ltd. particule revêtue et son procédé de fabrication, composition adhésive conductrice anisotrope utilisant la particule revêtue et film adhésif conducteur anisotrope

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LANGMUIR, vol. 13, 1997, pages 6195 - 6203
THIN SOLID FILMS, vol. 210/211, 1992, pages 831

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016524A1 (ja) * 2009-08-06 2011-02-10 日立化成工業株式会社 導電粒子
JP2011175956A (ja) * 2009-08-06 2011-09-08 Hitachi Chem Co Ltd 導電粒子
CN102292780A (zh) * 2009-08-06 2011-12-21 日立化成工业株式会社 导电粒子
CN102959641A (zh) * 2010-07-02 2013-03-06 积水化学工业株式会社 带有绝缘性粒子的导电性粒子、各向异性导电材料及连接结构体

Also Published As

Publication number Publication date
KR101268234B1 (ko) 2013-05-31
CN103594146A (zh) 2014-02-19
JP5151920B2 (ja) 2013-02-27
KR101240127B1 (ko) 2013-03-11
JP2009212077A (ja) 2009-09-17
US20100327237A1 (en) 2010-12-30
CN103594146B (zh) 2017-01-04
CN101911214A (zh) 2010-12-08
KR20100110354A (ko) 2010-10-12
KR20120049386A (ko) 2012-05-16
EP2242065A1 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP5151920B2 (ja) 導電粒子及び導電粒子の製造方法
JP4780197B2 (ja) 被覆粒子及びその製造方法、並びに、被覆粒子を用いた異方導電性接着剤組成物及び異方導電性接着剤フィルム
JP5472369B2 (ja) 導電粒子、絶縁被覆導電粒子及びその製造方法、異方導電性接着剤
KR101261184B1 (ko) 피복 도전 입자 및 그의 제조 방법
JP4640532B2 (ja) 被覆導電粒子
JP5549069B2 (ja) 異方性導電接着剤用粒子状導電材料及びその製造方法、並びに異方性導電接着剤
JP4957695B2 (ja) 導電粒子、その製造方法及び絶縁被覆導電粒子の製造方法、並びに異方導電性接着剤フィルム
JP4640531B2 (ja) 導電粒子
WO2011002084A1 (ja) 導電粒子
JP4715969B1 (ja) 導電粒子
JP5589361B2 (ja) 導電粒子及びその製造方法
KR101151072B1 (ko) 도전 입자, 절연 피복 도전 입자 및 그의 제조 방법, 및 이방 도전성 접착제
JP5549352B2 (ja) 導電粒子、接着剤組成物、回路接続材料及び接続構造体
JP5626288B2 (ja) 導電粒子、異方導電性接着剤、接続構造体、及び接続構造体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101721.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107017450

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12866353

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009707515

Country of ref document: EP