WO2009096060A1 - バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム - Google Patents

バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム Download PDF

Info

Publication number
WO2009096060A1
WO2009096060A1 PCT/JP2008/067038 JP2008067038W WO2009096060A1 WO 2009096060 A1 WO2009096060 A1 WO 2009096060A1 JP 2008067038 W JP2008067038 W JP 2008067038W WO 2009096060 A1 WO2009096060 A1 WO 2009096060A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
hot water
raw material
main body
hydrothermal decomposition
Prior art date
Application number
PCT/JP2008/067038
Other languages
English (en)
French (fr)
Inventor
Isao Ishida
Seiichi Terakura
Hideo Suzuki
Seiji Kobayashi
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to CA2660990A priority Critical patent/CA2660990C/en
Priority to US12/443,515 priority patent/US8980060B2/en
Publication of WO2009096060A1 publication Critical patent/WO2009096060A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0215Solid material in other stationary receptacles
    • B01D11/0223Moving bed of solid material
    • B01D11/0226Moving bed of solid material with the general transport direction of the solids parallel to the rotation axis of the conveyor, e.g. worm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0057Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Xylans, i.e. xylosaccharide, e.g. arabinoxylan, arabinofuronan, pentosans; (beta-1,3)(beta-1,4)-D-Xylans, e.g. rhodymenans; Hemicellulose; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • C10L9/086Hydrothermal carbonization
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/20Heating; Cooling
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention is a biomass hydrothermal decomposition apparatus and method capable of efficiently hydrothermally decomposing biomass raw materials, and efficiently producing organic raw materials such as alcohols, petroleum substitutes or amino acids using the same.
  • the present invention relates to an organic raw material manufacturing system using a biomass raw material.
  • Patent Document 1 Korean Patent Document 1
  • chemical industrial raw material production for example, lactic acid fermentation etc.
  • the biomass refers to the accumulation of organisms incorporated into the material circulation system of the earth biosphere or organic substances derived from the organisms (see JIS K 3600 1258).
  • sugarcane, corn, etc. which are currently used as alcohol raw materials, are originally provided for food.
  • it is effective food products to make these edible resources long-term and stable for industrial use. From the viewpoint of life cycle, it is not preferable.
  • Cellulose resources vary from 38 to 50% for cellulose, 23 to 32% for hemicellulose components, and 15 to 22% for lignin components that do not become fermentation raw materials.
  • the raw materials are assumed to be fixed, and there is no disclosure of production system technology considering the versatility of raw materials.
  • the resulting sugar solution is a 6-carbon sugar solution from cellulose and a 5-carbon sugar solution from the hemicellulose component.
  • a suitable yeast is required for alcohol fermentation, and both a 6-carbon solution and a 5-carbon solution are mixed.
  • the present invention performs biomass hydrothermal decomposition apparatus and method capable of separating a cellulose-based component from a biomass raw material, and an efficient production of a sugar solution using the same, and the sugar solution. It is an object of the present invention to provide an organic raw material production system using a biomass raw material that can efficiently produce various organic raw materials (for example, alcohols, petroleum substitutes, or amino acids).
  • the first invention of the present invention for solving the above-described problem is a biomass supply device that supplies a biomass raw material from under normal pressure to a pressurized pressure, and the supplied biomass raw material from either end side of the device main body. While gradually moving the inside in a compacted state, the hot water is supplied from the end side different from the supply of the biomass raw material to the inside of the apparatus main body, and the biomass raw material and the pressurized hot water are brought into contact with each other in a hydrothermal manner.
  • a biomass hydrothermal decomposition apparatus characterized by comprising a biomass extraction apparatus for extracting biomass solids from under pressure to normal pressure.
  • the second invention is the biomass hydrothermal decomposition apparatus according to the first invention, further comprising a fixed stirring means or a rotating stirring means for stirring the biomass material inside the apparatus main body.
  • a third invention is the biomass hydrothermal decomposition apparatus according to the first or second invention, wherein the biomass supply device is a pressing means for pressing biomass.
  • a fourth aspect of the present invention is the hydrothermal decomposition of biomass according to any one of the first to third aspects, further comprising a surplus water discharge line for discharging surplus water from the pulverized biomass supplied into the apparatus main body. In the device.
  • the apparatus in any one of the first to fourth aspects, includes a plurality of pressurized hot water supply units that supply the apparatus main body, and a plurality of hot water discharge liquid discharge units that discharge from the apparatus main body. It is in the hydrothermal decomposition apparatus of the biomass characterized by having.
  • the sixth invention is the biomass hydrothermal decomposition apparatus according to any one of the first to fifth inventions, further comprising a filter section for filtering the hot water discharge liquid discharged from the apparatus main body.
  • the seventh invention is a biomass hydrothermal decomposition apparatus according to any one of the first to sixth inventions, characterized by having a biomass solids density monitoring means in the apparatus main body.
  • the eighth invention is the biomass hydrothermal decomposition apparatus according to the second invention, wherein the rotary stirring means is provided with a scraper for preventing clogging of the discharge hole of the hot water discharge liquid.
  • a ninth invention is characterized in that, in any one of the first to eighth inventions, the reaction temperature of the hydrothermal decomposition apparatus is 180 to 240 ° C. and is in the state of pressurized hot water. Located in hydrothermal cracker.
  • a tenth aspect of the present invention is the biomass water according to any one of the first to ninth aspects, wherein the weight ratio of the biomass raw material to be supplied and the pressurized hot water is 1: 1 to 1:10. Located in the pyrolysis unit.
  • the eleventh aspect of the invention is a biomass supply step of supplying a biomass raw material from under normal pressure to pressurized pressure, and gradually moving the supplied biomass raw material in the compacted state from either end side to the inside of the apparatus body.
  • Pressurized hot water is supplied to the inside of the apparatus body from the end side different from the supply of the biomass raw material, hydrothermally decomposed while the biomass raw material and the pressurized hot water face each other, and the lignin component in the pressurized hot water And the hemicellulose component is transferred and the lignin component and the hemicellulose component are separated from the biomass raw material, and the biomass solids from the pressurized hot water supply part side of the apparatus main body from under pressure to normal pressure
  • a biomass hydrothermal decomposition method comprising a biomass extracting step of extracting.
  • a pretreatment device for pretreating a biomass raw material, any one of the first to ten hydrothermal decomposition devices, and cellulose in biomass solids discharged from the hydrothermal decomposition device are enzymatically treated.
  • the first enzyme decomposing apparatus for enzymatic decomposition into a sugar solution containing 6 carbon sugars and the sugar solution obtained by the first enzyme decomposing apparatus alcohols, petroleum substitutes or amino acids are obtained by fermentation treatment. It is in the manufacturing system of the organic raw material using the biomass raw material characterized by comprising the fermentation apparatus which manufactures any one of these.
  • a thirteenth invention is the twelfth invention according to the twelfth invention, wherein the hemicellulose component in the hot water effluent is enzymatically treated to enzymatically decompose it into a saccharide liquid containing pentose, and the second enzymatic decomposition
  • a hydrothermal decomposition apparatus in which a biomass raw material and pressurized hot water are brought into contact with each other in a compacted state, a reaction that produces cellulose (which becomes a hexose solution by enzymatic saccharification) as a target component is produced.
  • a biomass solid content mainly composed of cellulose can be obtained.
  • FIG. 1 is a schematic diagram of a hydrothermal decomposition apparatus according to a first embodiment.
  • FIG. 2 is a schematic diagram of another hydrothermal decomposition apparatus according to the first embodiment.
  • FIG. 3 is a schematic diagram of another hydrothermal decomposition apparatus according to the first embodiment.
  • FIG. 4 is a schematic diagram of another hydrothermal decomposition apparatus according to the first embodiment.
  • FIG. 5 is a schematic diagram of another hydrothermal decomposition apparatus according to the first embodiment.
  • FIG. 6 is a schematic diagram of another hydrothermal decomposition apparatus according to the first embodiment.
  • FIG. 7 is a schematic diagram of the biomass supply apparatus according to the first embodiment.
  • FIG. 8 is a schematic diagram of another biomass supply apparatus according to the first embodiment.
  • FIG. 9 is a temperature distribution diagram of the reactor.
  • FIG. 10 is a schematic diagram of an alcohol production system according to the second embodiment.
  • FIG. 11 is a schematic diagram of an alcohol production system according to the third embodiment.
  • FIG. 1 is a conceptual diagram illustrating a biomass hydrothermal decomposition apparatus according to an embodiment.
  • a biomass hydrothermal decomposition apparatus 41-1A according to the present embodiment includes a biomass supply apparatus 31 that supplies a biomass raw material (eg, straw in the present embodiment) 11 from under normal pressure to under pressure.
  • a biomass raw material eg, straw in the present embodiment
  • the biomass raw material 11 that has been supplied is gradually moved from the left or right end side (left side in this embodiment) to the inside of a horizontal apparatus main body (hereinafter referred to as “apparatus main body”) 42A in a consolidated state,
  • Appatus main body a horizontal apparatus main body
  • Pressurized hot water 15 is supplied to the inside of the apparatus main body 42A from the end side (right side in the present embodiment) different from the supply of the biomass material 11, and the biomass material 11 and the pressurized hot water 15 are brought into contact with each other while facing the water.
  • the biomass supply device 31 that supplies from the normal pressure to the pressurization include pump means such as a piston pump or a slurry pump.
  • fixed stirring means 61-1 for stirring the biomass raw material 11 in a so-called plug flow compaction state is provided inside the apparatus main body 42A, and the biomass raw material 11 fed into the device main body 42A is moved in the axial direction.
  • stirring is performed by a stirring action.
  • the solid surface and the pressurized hot water in the solid are mixed in the apparatus main body 42A to promote the reaction.
  • the flow of the pressurized hot water 15 and the biomass raw material 11 in the apparatus main body 42A of the hydrothermal decomposition apparatus 41-1A brings the biomass raw material 11 and the pressurized hot water 15 into opposing contact with each other. It is preferable to stir and flow with a counter flow.
  • the hydrothermal decomposition apparatus 41-1A is a plug flow type decomposition, the structure is simple, and the biomass raw material 11 which is a solid moves in parallel with the tube center axis while being stirred perpendicularly to the tube center axis. It becomes.
  • the pressurized hot water 15 hot water, a solution in which a decomposition product is dissolved moves while oozing between solid particles in a counter flow with respect to the solid.
  • a uniform flow of the pressurized hot water 15 can be realized. This is because when the solid biomass raw material 11 is decomposed by the pressurized hot water 15, the decomposition product is dissolved on the hot water side. In the vicinity of the decomposition part, the viscosity is high, and hot water moves preferentially to the vicinity of the undecomposed part, and the undecomposed part is subsequently decomposed, resulting in a uniform hot water flow and uniform decomposition. Become.
  • the solid density on the outlet side of the biomass raw material 11 is reduced in the apparatus main body 42A compared to the inlet side of the biomass raw material 11. Since the biomass solid content 17 decreases due to decomposition, the proportion of the pressurized hot water 15 increases and the liquid residence time increases, so that the decomposition components in the liquid are excessively decomposed, so at least the fixed stirring means Is provided.
  • the fixed stirring means 61-1 may be provided with a groove or a pitch. Furthermore, the screws of the fixed stirring means 61-1 may be multi-staged in series and stirred individually. Further, the shape of the apparatus main body 42A of the hydrothermal decomposition apparatus 41-1A is tapered, that is, the cross-sectional area on the outlet side is made smaller than the inlet side of the raw material 11 of the apparatus main body 42A, so that the raw material 11 in the apparatus main body 42A. The solid density may be improved.
  • a loosening function for preventing the blockage of the solid content in the apparatus main body 42A may be provided.
  • the weight ratio of the solid liquid in the apparatus main body 42A can be determined by the torque management of the rotary stirring means, the electrostatic capacity management in the apparatus main body 42A, the ultrasonic management in the apparatus main body 42A, the weight management in the apparatus main body 42A, etc. What is necessary is just to adjust suitably according to a condition.
  • the biomass supplied to the hydrothermal decomposition apparatus 41-1A is not particularly limited, and refers to the accumulation of organisms incorporated in the material circulation system of the earth biosphere or organic substances derived from organisms. (Refer to JIS K3600-1258) However, in the present invention, it is particularly preferable to use a woody material such as hardwood, herbaceous cellulosic resources, agricultural waste, food waste, or the like.
  • the biomass raw material 11 is not particularly limited in particle size, but is preferably pulverized to 5 mm or less.
  • the pretreatment device may be pretreated using, for example, a pulverizer. Moreover, you may make it wash
  • the reaction temperature in the hydrothermal decomposition apparatus 41-1A is preferably in the range of 180 to 240 ° C. More preferably, the temperature is 200 to 230 ° C. This is because at a low temperature of less than 180 ° C., the hydrothermal decomposition rate is low, a long decomposition time is required, leading to an increase in the size of the apparatus, which is not preferable. On the other hand, when the temperature exceeds 240 ° C., the decomposition rate becomes excessive, and the cellulose component increases from the solid to the liquid side, and the excessive decomposition of the hemicellulose saccharide is promoted, which is not preferable.
  • the hemicellulose component dissolves from about 140 ° C., the cellulose from about 230 ° C., and the lignin component from about 140 ° C., but the cellulose remains on the solid content side, and the hemicellulose component and the lignin component have a sufficient decomposition rate. It should be in the range of 180 ° C to 240 ° C.
  • the reaction pressure is preferably set to a pressure higher by 0.1 to 0.5 MPa than the saturated vapor pressure of water at each temperature at which the inside of the apparatus main body is in the state of pressurized hot water.
  • the reaction time is preferably 20 minutes or less and 3 to 10 minutes. This is because if the reaction is carried out too long, the proportion of the overdecomposed product increases, which is not preferable.
  • the hydrothermal decomposition apparatus 41-1A has a uniform pressurized hot water flow when the biomass raw material 11 and the pressurized hot water 15 are brought into contact with each other.
  • the weight of the pressurized hot water 15 with respect to the biomass raw material 11 supplied into the apparatus main body 42A is smaller because the amount of steam for heating for hydrothermal decomposition can be reduced.
  • the weight ratio of the biomass raw material 11 to be supplied and the pressurized hot water 15 varies depending on the apparatus configuration, but is, for example, 1: 1 to 1:10, more preferably 1: 1 to 1: 5. preferable.
  • it is composed of a solid component and a liquid component of the biomass raw material 11 and the pressurized hot water 15 and is configured as a plug flow, and therefore moves inside the apparatus main body 42A in a compacted state. It can be 1: 1 to 1: 5. In this way, by reducing the weight ratio of the biomass raw material 11 to be supplied into the apparatus main body 42A and the pressurized hot water 15 to 1: 1 to 1:10, the amount of heat necessary for the hydrothermal decomposition apparatus can be reduced. Can do.
  • the biomass raw material 11 and the pressurized hot water 15 in the hydrothermal decomposition apparatus 41-1A are brought into contact with each other, solid-liquid separation is achieved, so that overdecomposition and generation into cellulose on the solid side is achieved. Bringing things in is reduced. This is because lignin components and the like are precipitated at low temperatures, and are difficult to separate at low temperatures. That is, when hydrothermal decomposition is performed and the product is taken out of the reaction system and separated, the heat loss at the time of flashing when shifting from the high temperature pressurization condition to the normal temperature and normal pressure is reduced, and the decomposition product extract The separability can be improved. This is because the hydrothermal decomposition product is a polysaccharide and precipitates at low temperatures, which makes it difficult to separate at low temperatures.
  • the weight of the biomass raw material 11 supplied into the hydrothermal decomposition apparatus 41-1A can be increased relative to the weight of the pressurized hot water 15, and the apparatus can be downsized. It will contribute to the improvement of economy.
  • the temperature increase of the biomass raw material 11 in the hydrothermal decomposition apparatus 41-1A can be performed by direct heat exchange by bringing it into contact with the pressurized hot water 15 in the apparatus main body 42A.
  • saturated water vapor may be directly supplied into the apparatus main body 42 instead of hot water.
  • the biomass supply device 31 As the biomass supply device 31, a supply mechanism of the biomass raw material 11 having the piston pump 31a is adopted, and the solid biomass raw material 11 is supplied from normal pressure to pressure. That is, since it presses with a piston using the piston pump 31a, the biomass raw material 11 will be reliably supplied inside the apparatus main body 42A.
  • biomass that is solid content in the solid-liquid counterflow is generated by the power of the piston pump 31a without providing a rotary moving means for moving the solid content in the apparatus main body 42A.
  • the raw material 11 can be moved.
  • the piston pump 31a it is possible to adjust the density (solid-liquid weight ratio) in the apparatus main body 42A. That is, the residence time of the pressurized hot water in the apparatus main body 42A can be adjusted.
  • the biomass extraction device 51 is an extrusion mechanism composed of a screw feeder 52a and a hydraulic cylinder 52b, so that the solid content reacted in the hydrothermal decomposition device 41-1A is compressed to form a biomass plug 53.
  • the biomass plug 53 itself performs a material seal that cuts off the pressure in the hydrothermal decomposition apparatus 41-1A.
  • the biomass is gradually pushed by the screw feeder 52a and gradually discharged from the tip of the hydraulic cylinder 52b under pressure to normal pressure. At this time, water remaining from the biomass plug 53 is dehydrated.
  • the dehydrating liquid 54 contains a pressurized hot water soluble component (lignin component and hemicellulose component), it is separately treated together with the hot water discharge liquid 16.
  • either one or both of the volatile enzyme saccharification inhibiting component and the ethanol fermentation inhibiting component which are reduced in molecular weight can be removed.
  • the pressurized hot water is taken out in the vicinity of the inlet of the biomass supply unit.
  • a pressurized hot water drainage is provided in the middle, and the withdrawal is performed. Either or both of heating and cooling of the liquid may be performed and injected again into the apparatus main body 42A.
  • the concentration of an inhibitory substance such as furfural in the liquid is monitored, and the supply amount of the pressurized hot water 15 is controlled by the measured value, or the biomass extraction device In the vicinity of 51, the sugar concentration may be measured, and the supply amount of the pressurized hot water 15 may be controlled by the measured value.
  • the supply location of the pressurized hot water 15 is one, but the present invention is not limited to this, and temperature control may be performed at a plurality of locations.
  • the biomass raw material and the pressurized hot water are brought into contact with each other so that the components that are easily solubilized in the hot water are sequentially discharged, and the concentration gradient from the biomass raw material charging portion to the hot water charging portion.
  • the temperature gradient is generated, the excessive decomposition of the hemicellulose component is suppressed, and as a result, the pentose component can be efficiently recovered.
  • heat recovery can be achieved by making the opposite contact, which is preferable in terms of system efficiency.
  • FIG. 2 shows a modification of this embodiment.
  • the hydrothermal decomposition apparatus 41-1B is obtained by converting the horizontal type as shown in FIG. 1 into a vertical type.
  • the biomass supply apparatus 31 is provided on the lower end side of the apparatus main body 42A, the biomass raw material 11 is supplied from the lower end side, while the pressurized hot water 15 is supplied from the upper end side, and both are opposed to each other. It is made to contact and it is made to discharge
  • the present invention is not limited to this, and a tilted apparatus main body may be used.
  • the inclined type or the vertical type is preferable because the gas generated in the hydrothermal decomposition reaction, the gas brought into the raw material, and the like can quickly escape from above.
  • the concentration of the extract increases from the upper side to the lower side in terms of extraction efficiency, which is preferable.
  • FIG. 3 shows a modification of this embodiment.
  • the hydrothermal decomposition apparatus 41-1C is separated by the biomass extraction apparatus 51 and supplies the dehydrating liquid 54 again into the apparatus main body 42A. Thereby, the amount of pressurized hot water supplied to the inside of the apparatus can be reduced. In addition, an ideal counter flow can be realized.
  • FIG. 4 shows another modification of the present embodiment.
  • the hydrothermal decomposition apparatus 41-1D is provided with a surplus water removal line 32 so as to remove surplus water 33 contained in biomass at a portion where the biomass raw material 11 of the apparatus main body 42A is supplied. I have to.
  • This surplus water may be used to wet the biomass material 11. That is, the excess water liquid outlet part 32a is separated from the liquid outlet part 16a of the hot water discharge liquid 16-1, so that the pressure of the excess water liquid outlet part 32a (P 1 )> the pressure of the liquid outlet part 16a (P 2 ). By doing so, the amount of liquid extraction can be controlled. In addition, it is possible to prevent backflow, reduce heat loss, and suppress excessive decomposition.
  • the liquid outlet of the hot water discharge liquid is made into a plurality of places (in this embodiment, two places 16a and 16b), the liquid outlet characteristics of the hot water discharge liquid and / or the properties of the biomass solids are measured.
  • the decomposition time can be controlled by appropriately changing the liquid outlet of the discharged liquid.
  • the hot water inlet of the pressurized hot water is made into a plurality of locations (in this embodiment, two locations 15a and 15b), and either or both of the liquid outlet property and the solid outlet property of the hot water discharge liquid are measured, and the measured value
  • the decomposition time can be controlled by changing the liquid outlet of the hot water discharge liquid.
  • the supply amount of the biomass raw material 11 and the liquid outlet amount of the hot water discharge liquid may be managed so that the required solid-liquid weight ratio is obtained.
  • FIG. 5 shows another modification of this embodiment.
  • a rotary stirring means 61-2 is provided in the apparatus main body 42-2 so that the biomass raw material 11 and the pressurized hot water 15 are positively stirred and mixed when facing each other. Also good.
  • the rotary stirring means 61-2 may be provided with a groove or a pitch. Further, the screw of the rotary stirring means 61-2 may be multistaged in series and stirred individually.
  • a filter unit 71 is provided when discharging the hot water discharge liquid 16 from the apparatus main body 42-2.
  • biomass such as straw
  • material sealing is possible with a biomass compaction layer of several centimeters, but since the liquid is passed at a thickness less than that, it becomes a self-filter and solid-liquid separation at the liquid outlet becomes possible.
  • a scraper mechanism (not shown) that maintains a predetermined thickness may be provided.
  • a sand filtration filter may be used.
  • a scraper mechanism controlled by the liquid outlet pressure may be used.
  • FIG. 6 shows another modification of this embodiment.
  • the weight is detected by the load cells 61a and 61b installed in the apparatus main body 42-3 of the hydrothermal decomposition apparatus 41-3.
  • the density is controlled by changing the number of rotations and the direction of rotation to improve the reaction efficiency.
  • a charging method using a piston pump which is a pressing means, when the biomass material 11 is charged into the apparatus main body 42-3 will be described with reference to FIGS. Note that.
  • a pressing means a slurry pump, a screw feeder, etc. can be used suitably other than a piston pump, for example.
  • the biomass raw material 11 that has been wetted in advance is consolidated in a cylinder, and below the set compaction force, air and surplus water are discharged from the open air / surplus moisture discharge valve V 1 , and the set compaction force is set.
  • the air / surplus water discharge valve V 1 may be closed, and the biomass raw material 11 may be filled into the apparatus main body 42 A of the hydrothermal decomposition apparatus via the gate valve 34.
  • FIG. 10 is a conceptual diagram illustrating an organic raw material manufacturing system using a biomass raw material according to an example.
  • the alcohol production system 10-1 using the biomass raw material according to the present embodiment pressurizes the pretreated apparatus 12 for pulverizing the biomass raw material 11, for example, and the pretreated biomass crushed material 13
  • Hydrothermal decomposition as shown in FIG. 1 is performed by hydrothermal decomposition while facing the hot water 15, transferring the lignin component and hemicellulose component into the pressurized hot water 15, and separating the lignin component and hemicellulose component from the biomass solid.
  • the apparatus 41-1A and the cellulose in the biomass solids 17 discharged from the hydrothermal decomposition apparatus 41-1A are enzymatically treated to enzymatically decompose them into a sugar solution containing hexose with an enzyme (cellulase) 18-1.
  • 1 purification apparatus 25-1 are provided.
  • the hydrothermal decomposition apparatus 41-1A as shown in FIG. 1, by adopting the counter flow, the lignin component and the hemicellulose component are transferred into the pressurized hot water 15 on the liquid side, and the solid side Cellulose remains in the biomass solids 17 of this, and the first sugar solution (hexose) 20-1 is obtained by the first enzymatic decomposition apparatus 19-1 for enzymatic saccharification.
  • a fermentation process according to hexose (fermentation according to the final product: in this embodiment, the ethanol 23 is obtained by fermentation using the first alcohol fermentation apparatus 21-1) can be constructed.
  • ethanol as an alcohol was exemplified as what is obtained by fermentation treatment.
  • the present invention is not limited to this, and petroleum substitutes or foods and feeds that are raw materials for chemical products other than alcohols.
  • Amino acids as raw materials can be obtained by a fermentation apparatus.
  • sugar solution derived from biomass can be efficiently used as a substitute for a chemical product derived from crude oil, which is a depleted fuel, and as a raw material for producing the substitute.
  • FIG. 11 is a conceptual diagram showing an organic raw material alcohol production system using a biomass raw material according to the present embodiment.
  • the alcohol production system 10-2 using the biomass raw material according to the present embodiment is the same as the heat produced from the hydrothermal decomposition apparatus 41-1A in the alcohol production system 10-1 shown in FIG.
  • a second enzymatic decomposition device 19-2 is provided for enzymatically decomposing the hemicellulose component transferred into the water discharge liquid 16 into a sugar liquid 20-2 containing pentose.
  • the enzyme decomposing apparatus, the alcohol fermentation apparatus, and the refining apparatus are separately provided in two units (the first enzyme decomposing apparatus 19-1, the second enzyme decomposing apparatus 19-2, the first alcohol fermenting apparatus 21-1, and the first decomposing apparatus). 2 alcohol fermentation apparatus 21-2, first purification apparatus 25-1, and second purification apparatus 25-2). Then, an ethanol degradation process, an alcohol fermentation process and a purification process corresponding to the first sugar liquid (hexose sugar) 20-1 and the second sugar liquid (pentose sugar) 20-2 are performed, and ethanol 23 Like to get.
  • ethanol 23 can be produced by fermentation using the second sugar solution (pentose) 20-2 obtained by the second enzymatic decomposition apparatus 19-2.
  • the hot water discharge liquid is not necessarily processed in a separate system.
  • the subsequent steps of the enzymatic decomposition apparatus are shared, the processes after the alcohol fermentation apparatus are shared, or the purification apparatus is shared. Changes can be made as appropriate.
  • cellulose remains in the solid biomass solids 17 on the solid side, and the first enzymatic decomposition apparatus 19-1 for enzymatic saccharification
  • the first sugar liquid (hexose) 20-1 and separate the hemicellulose component soluble in the pressurized hot water as the hot water discharge liquid 16 in the pressurized hot water 15 on the liquid side.
  • the second sugar solution (pentose) 20-2 is obtained by the second enzymatic decomposition apparatus 19-2 for enzymatic saccharification, both can be efficiently separated and saccharified.
  • the fermentation Fermentation according to the final product: example: ethanol fermentation
  • process according to hexose and pentose can be constructed.
  • the hemicellulose component contained in the separated hot water discharge liquid 16 is then saccharified in the second enzymatic decomposition apparatus 19-2 to obtain a sugar liquid containing pentose.
  • yeast suitable for each of hexose and pentose ethanol can be obtained efficiently and individually by fermentation.
  • the side reaction product causes the enzyme saccharification inhibition and the sugar yield is reduced.
  • the cellulose-based component and the hemicellulose component from the biomass material are used. Is converted into pressurized hot water to separate the two, and an efficient sugar solution (6-carbon sugar solution, 5-carbon sugar solution) suitable for each is manufactured, and various organic raw materials are used based on the sugar solution. It is possible to provide a biomass hydrothermal decomposition apparatus and method capable of efficiently producing (for example, alcohols, petroleum substitutes, amino acids, etc.), and an organic raw material production system using biomass raw materials. .
  • a cellulose-based component is separated from a biomass raw material by a hydrothermal decomposition apparatus to efficiently produce a sugar liquid, and various organic raw materials (for example, alcohols, petroleum substitutes, amino acids, etc.) can be produced efficiently.
  • various organic raw materials For example, alcohols, petroleum substitutes, amino acids, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

 バイオマス原料(11)を常圧下から加圧下に供給するバイオマス供給装置(31)と、供給されたバイオマス原料(11)を、いずれかの端部側から装置本体(42A)の内部を圧密状態で徐々に移動させると共に、前記バイオマス原料(11)の供給とは異なる端部側から加圧熱水(15)を装置本体(42A)内部に供給し、バイオマス原料(11)と加圧熱水(15)とを対向接触させつつ水熱分解し、加圧熱水(15)中にリグニン成分及びヘミセルロース成分を移行し、バイオマス原料(11)中からリグニン成分及びヘミセルロース成分を分離してなる水熱分解装置本体(42A)と、装置本体(42A)の加圧熱水(15)の供給部側からバイオマス固形分(17)を加圧下から常圧下に抜出すバイオマス抜出装置(51)とを具備する。

Description

バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
 本発明は、バイオマス原料を効率よく水熱分解することができるバイオマスの水熱分解装置及び方法、並びにそれを用いた例えばアルコール類、石油代替品類、又はアミノ酸類等の有機原料を効率よく製造することができるバイオマス原料を用いた有機原料の製造システムに関する。
 従来より、希硫酸、濃硫酸による木材等のバイオマスの糖化処理後、固液分離し、液相を中和処理し、エタノール発酵等の原料として利用するエタノール等の製造技術が実用化されている(特許文献1、特許文献2)。
 また、糖を出発原料として、化学工業原料生産(例えば乳酸発酵等)も考えられる。
 ここで、バイオマスとは、地球生物圏の物質循環系に組み込まれた生物体又は生物体から派生する有機物の集積をいう(JIS K 3600 1258参照)。
 ここで、現在アルコール原料として用いられているサトウキビ、トウモロコシ等は本来食用に供されるものであるが、これらの食用資源を長期的、安定的に工業用利用資源とすることは、有効食料品のライフサイクルの観点から、好ましくない。
 このため、将来的に有用な資源と考えられる草本系バイオマスや木質系バイオマスのようなセルロース系資源を有効活用するのは、重要な課題である。
 また、セルロース系資源では、セルロースは38~50%、ヘミセルロース成分が23~32%と様々で、発酵原料にならないリグニン成分も15~22%とそれぞれ異なっている。多くの課題を抱えたままの工業化研究のため、原料は固定的に想定されており、原料の汎用性を考慮した生産システムの技術の開示は未だないのが現状である。
 さらに、元来、澱粉原料に較べて発酵原料に不利な方法で、ごみ問題、地球温暖化防止対応などを目標に考えるのであるから、原料を固定的に考えた生産システムでは意味が薄れる。広く一般の廃棄物に適用できなければならない。酵素糖化法そのものも、効率が悪すぎて、将来課題とされているのが現状である。酸処理による糖化率も、過剰反応による糖の過分解などで、およそ75%(糖化可能成分基準)前後とかなり小さい値となっている。従って、セルロース系資源に対して、エタノール生産収率はおよそ25%に止まっている(非特許文献1、特許文献3)。
特表平9-507386号公報 特表平11-506934号公報 特開2005-168335号公報 日経バイオビジネス、p.52、2002年9月 バイオマス―生物資源の高度利用 日本農芸化学会編 朝倉書店発行 1985年9月
 前記特許文献1及び2にかかる提案においては、反応に必要な硫酸を常に反応系外から供給する必要があり、製造規模の増大と共に、耐酸性の設備及び多量の硫酸の購入コストが増大すると共に、用いた硫酸の廃棄コスト(例えば石膏法による処理のコスト)及び硫酸回収コストが増大するという、問題がある。
 前記特許文献3にかかる提案においては、各種セルロース系資源を熱水処理して、酵素法により糖化を行うものであるが、熱水処理する際に、セルロースを糖化する際のリグニン成分等のセルラーゼ阻害物質(非特許文献2)が除去されずにセルロースと混在することとなるので、セルロースの糖化効率が低下する、という問題がある。
 また、セルロース以外のヘミセルロース成分を含むものであるので、糖化に際しては、セルロース及びヘミセルロース成分に各々適した酵素を用いる必要がある、という問題がある。
 また得られる糖液もセルロースからは6炭糖液、ヘミセルロース成分からは5炭糖液となり、例えばアルコール発酵においても各々適した酵母が必要になり、6炭糖液と5炭糖液とが混在した状態におけるアルコール発酵効率においてもその向上が求められている。
 このように、従来の技術では、副反応生成物が酵素糖化阻害を引起し糖収率が減少する現象が起きていたので、酵素糖化阻害物質を除去し、セルロース主体による酵素糖化性を高める水熱分解装置の出現が切望されている。
 本発明は、前記課題に鑑み、バイオマス原料からセルロース主体の成分を分離することができるバイオマスの水熱分解装置及び方法、並びにそれを用いた効率的な糖液の製造を行うと共に、該糖液を基点として、各種有機原料(例えばアルコール類、石油代替品類、又はアミノ酸類等)を効率よく製造することができるバイオマス原料を用いた有機原料の製造システムを提供することを目的とする。
 上述した課題を解決するための本発明の第1の発明は、バイオマス原料を常圧下から加圧下に供給するバイオマス供給装置と、供給されたバイオマス原料を、いずれかの端部側から装置本体の内部を圧密状態で徐々に移動させると共に、前記バイオマス原料の供給とは異なる端部側から加圧熱水を装置本体内部に供給し、バイオマス原料と加圧熱水とを対向接触させつつ水熱分解し、加圧熱水中にリグニン成分及びヘミセルロース成分を移行し、バイオマス原料中からリグニン成分及びヘミセルロース成分を分離してなる水熱分解装置と、装置本体の加圧熱水の供給部側からバイオマス固形分を加圧下から常圧下に抜出すバイオマス抜出装置とを具備することを特徴とするバイオマスの水熱分解装置にある。
 第2の発明は、第1の発明において、前記装置本体内部でバイオマス原料を撹拌する固定撹拌手段又は回転撹拌手段を有することを特徴とするバイオマスの水熱分解装置にある。
 第3の発明は、第1又は2の発明において、前記バイオマス供給装置が、バイオマスを押圧する押圧手段であることを特徴とするバイオマスの水熱分解装置にある。
 第4の発明は、第1乃至3のいずれか一つの発明において、前記装置本体内に供給するバイオマス粉砕物から余剰水を排出する余剰水排出ラインを有することを特徴とするバイオマスの水熱分解装置にある。
 第5の発明は、第1乃至4のいずれか一つの発明において、前記装置本体に供給する加圧熱水の供給部を複数有すると共に、装置本体から排出する熱水排出液の排出部を複数有することを特徴とするバイオマスの水熱分解装置にある。
 第6の発明は、第1乃至5のいずれか一つの発明において、前記装置本体から排出する熱水排出液を濾過するフィルター部を有することを特徴とするバイオマスの水熱分解装置にある。
 第7の発明は、第1乃至6のいずれか一つの発明において、前記装置本体内におけるバイオマス固形分の密度監視手段を有することを特徴とするバイオマスの水熱分解装置にある。
 第8の発明は、第2の発明において、前記回転撹拌手段に熱水排出液の抜出し孔の閉塞を防止するスクレーパーを設けたことを特徴とするバイオマスの水熱分解装置にある。
 第9の発明は、第1乃至8のいずれか一つの発明において、前記水熱分解装置の反応温度が180~240℃であると共に、加圧熱水の状態であることを特徴とするバイオマスの水熱分解装置にある。
 第10の発明は、第1乃至9のいずれか一つの発明において、供給するバイオマス原料と加圧熱水との重量比は、1:1~1:10であることを特徴とするバイオマスの水熱分解装置にある。
 第11の発明は、バイオマス原料を常圧下から加圧下に供給するバイオマス供給工程と、供給されたバイオマス原料を、いずれかの端部側から装置本体の内部を圧密状態で徐々に移動させると共に、前記バイオマス原料の供給とは異なる端部側から加圧熱水を装置本体内部に供給し、バイオマス原料と加圧熱水とを対向接触させつつ水熱分解し、加圧熱水中にリグニン成分及びヘミセルロース成分を移行し、バイオマス原料中からリグニン成分及びヘミセルロース成分を分離してなる水熱分解工程と、前記装置本体の加圧熱水の供給部側からバイオマス固形分を加圧下から常圧下に抜出すバイオマス抜出工程とを具備することを特徴とするバイオマスの水熱分解方法にある。
 第12の発明は、バイオマス原料を前処理する前処理装置と、第1乃至10のいずれか一つの水熱分解装置と、前記水熱分解装置から排出されるバイオマス固形分中のセルロースを酵素処理して6炭糖を含む糖液に酵素分解する第1の酵素分解装置と、前記第1の酵素分解装置で得られた糖液を用いて、発酵処理によりアルコール類、石油代替品類又はアミノ酸類のいずれか一つを製造する発酵装置とを具備することを特徴とするバイオマス原料を用いた有機原料の製造システムにある。
 第13の発明は、第12の発明において、熱水排出液中のヘミセルロース成分を酵素処理して5炭糖を含む糖液に酵素分解する第2の酵素分解装置と、前記第2の酵素分解装置で得られた糖液を用いて、発酵処理によりアルコール類、石油代替品類又はアミノ酸類のいずれか一つを製造する発酵装置とを具備することを特徴とするバイオマス原料を用いた有機原料の製造システムにある。
 本発明によれば、バイオマス原料と加圧熱水とを圧密状態で対向接触させる水熱分解装置を用いることにより、目的成分であるセルロース(酵素糖化により6炭糖液となる)を生成する反応以外の副反応物(リグニン成分、ヘミセルロース成分)を加圧熱水中に移行させることにより、セルロース主体のバイオマス固形分を得ることができる。その結果、6炭糖液を効率よく糖化させて、該糖液を基点として、各種有機原料(例えばアルコール類、石油代替品類、又はアミノ酸類等)を効率よく製造することができる。
 また、対向接触させることにより、熱水に可溶化され易い成分から順次反応系外へ排出されると共に、バイオマスの投入部から熱水投入部まで温度勾配が生じる為、ヘミセルロース成分の過分解が抑制され、結果的に5炭糖成分を効率よく回収することができる。
図1は、実施例1に係る水熱分解装置の概略図である。 図2は、実施例1に係る他の水熱分解装置の概略図である。 図3は、実施例1に係る他の水熱分解装置の概略図である。 図4は、実施例1に係る他の水熱分解装置の概略図である。 図5は、実施例1に係る他の水熱分解装置の概略図である。 図6は、実施例1に係る他の水熱分解装置の概略図である。 図7は、実施例1に係るバイオマス供給装置の模式図である。 図8は、実施例1に係る他のバイオマス供給装置の模式図である。 図9は、反応装置の温度分布図である。 図10は、実施例2に係るアルコール製造システムの概略図である。 図11は、実施例3に係るアルコール製造システムの概略図である。
符号の説明
 10-1、10-2 アルコール製造システム
 11 バイオマス原料
 12 前処理装置
 13 バイオマス粉砕物
 41-1A~C、41-2、41-3 水熱分解装置
 15 加圧熱水
 16 熱水排出液
 17 バイオマス固形分
 18 酵素
 19 酵素分解装置
 19-1 第1の酵素分解装置
 19-2 第2の酵素分解装置
 20-1 第1の糖液(6炭糖)
 20-2 第2の糖液(5炭糖)
 23 エタノール
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 本発明による実施例に係るバイオマスの水熱分解装置について、図面を参照して説明する。
 図1は、実施例に係るバイオマスの水熱分解装置を示す概念図である。
 図1に示すように、本実施例に係るバイオマスの水熱分解装置41-1Aは、バイオマス原料(本実施例では、例えば麦わら等)11を常圧下から加圧下に供給するバイオマス供給装置31と、供給されたバイオマス原料11を、左右のいずれかの端部側(本実施例では左側)から水平型装置本体(以下「装置本体」という)42Aの内部を圧密状態で徐々に移動させると共に、前記バイオマス原料11の供給とは異なる端部側(本実施例では右側)から加圧熱水15を装置本体42A内部に供給し、バイオマス原料11と加圧熱水15とを対向接触させつつ水熱分解し、加圧熱水15中にリグニン成分及びヘミセルロース成分を移行し、バイオマス原料11中からリグニン成分及びヘミセルロース成分を分離してなる装置本体42Aと、該装置本体42Aの加圧熱水15の供給部側からバイオマス固形分17を加圧下から常圧下に抜出すバイオマス抜出装置51とを具備するものである。
 前記常圧下から加圧下に供給するバイオマス供給装置31としては、例えばピストンポンプ又はスラリーポンプ等のポンプ手段を挙げることができる。
 本実施例では、前記装置本体42A内部にバイオマス原料11をいわゆるプラグフローの圧密状態で撹拌する固定撹拌手段61-1を設けており、内部に送込まれるバイオマス原料11を軸方向に移動する際に、撹拌作用により撹拌するようにしている。
 この固定撹拌手段61-1を設けることにより、装置本体42A内で固体表面、固体中の加圧熱水の混合が進み反応が促進される。
 ここで、本発明では、水熱分解装置41-1Aの装置本体42A内の加圧熱水15とバイオマス原料11との流動は、バイオマス原料11と加圧熱水15とを対向接触させる、いわゆるカウンターフローで撹拌・流動するようにすることが好ましい。
 水熱分解装置41-1Aは、プラグフロー型分解であるので、構造が簡易であり、固体であるバイオマス原料11は、管中心軸と垂直に攪拌されながら、管中心軸と平行に移動することとなる。一方加圧熱水15(熱水、分解物が溶解した液)は、固体に対しカウンターフローにて固体粒子間に滲みながら移動する。
 また、プラグフローでは、加圧熱水15の均一な流れを実現することができる。なぜならば、固体のバイオマス原料11が加圧熱水15により分解すると、分解物が熱水側に溶解する。分解部近傍は高粘度となり、未分解部近傍へ優先的に熱水が移動し、未分解部が続いて分解することとなり、均一な熱水の流れになり、均一な分解が実現することとなる。
 また、水熱分解装置41-1Aにおける装置本体42A内面の管壁の抵抗により、装置本体42A内において、バイオマス原料11の入口側に比べ、バイオマス原料11の出口側の固体密度が減少し、加えて分解によりバイオマス固体分17が減少するため、加圧熱水15の占める割合が増加し、液滞留時間が増加することにより、液中の分解成分が過分解するので、少なくとも固定式の撹拌手段を設けるようにしている。
 そして、この固定撹拌手段61-1には、溝を刻むようにしたり、ピッチを変えるようにしたりしてもよい。さらに、固定撹拌手段61-1のスクリューを直列に多段にし、個別に攪拌するようにしてもよい。
 また、水熱分解装置41-1Aの装置本体42Aの形状をテーパー状にして、すなわち装置本体42Aの原料11の入口側に対して出口側の断面積を小さくして装置本体42A内における原料11の固体密度を向上させるようにしてもよい。
 また、装置本体42A内における固形分の閉塞防止のほぐし機能を設けるようにしてもよい。
 また、例えば回転撹拌手段のトルク管理、装置本体42A内の静電容量管理、装置本体42A内の超音波管理、装置本体42A内の重量管理等により、装置本体42A内の固液の重量比を状況に応じて適宜調整するようにすればよい。
 ここで、前記水熱分解装置41-1Aに供給するバイオマスとしては、特に限定されるものではなく、地球生物圏の物質循環系に組み込まれた生物体又は生物体から派生する有機物の集積をいう(JIS K 3600 1258参照)が、本発明では特に木質系の例えば広葉樹、草本系等のセルロース系資源や農業系廃棄物、食品廃棄物等を用いるのが好ましい。
 また、前記バイオマス原料11としては、粒径は特に限定されるものではないが、5mm以下に粉砕することが好ましい。
 本実施例では、バイオマスの供給前において、前処理装置として、例えば粉砕装置を用いて前処理するようにしてもよい。また、洗浄装置により洗浄するようにしてもよい。
 なお、バイオマス原料11として、例えば籾殻等の場合には、粉砕処理することなく、そのまま水熱分解装置41-1Aに供給することができるものとなる。
 また、水熱分解装置41-1Aにおける、反応温度は180~240℃の範囲とするのが好ましい。さらに好ましくは200~230℃とするのがよい。
 これは、180℃未満の低温では、水熱分解速度が小さく、長い分解時間が必要となり、装置の大型化につながり、好ましくないからである。一方240℃を超える温度では、分解速度が過大となり、セルロース成分が固体から液体側へ移行を増大すると共に、ヘミセルロース系糖類の過分解が促進され、好ましくないからである。
 また、ヘミセルロース成分は約140℃付近から、セルロースは約230℃付近から、リグニン成分は140℃付近から溶解するが、セルロースを固形分側に残し、且つヘミセルロース成分及びリグニン成分が十分な分解速度を持つ180℃~240℃の範囲とするのがよい。
 また、反応圧力は装置本体内部が加圧熱水の状態となる、各温度の水の飽和蒸気圧に更に0.1~0.5MPaの高い圧力とするのが好ましい。
 また、反応時間は20分以下、3分~10分とするのが好ましい。これはあまり長く反応を行うと過分解物の割合が増大し、好ましくないからである。
 よって、水熱分解装置41-1Aは、バイオマス原料11と加圧熱水15とを対向接触する際に、均一な加圧熱水流れとすることが好ましい。
 また、加圧熱水15をカウンターフローで流し、直接熱交換するので、図9に示すような温度分布になり、分解して液に抽出された分解物(リグニン成分等)が過分解しにくいものとなる。
 また、装置本体42A内に供給するバイオマス原料11に対する加圧熱水15の重量が少ないほど水熱分解のための加温のスチーム量を減らすことができるので好ましい。
 ここで、供給するバイオマス原料11と加圧熱水15との重量比は、装置構成により適宜異なるが、例えば1:1~1:10、より好ましくは1:1~1:5とするのが好ましい。
 特に、本実施例では、バイオマス原料11と加圧熱水15との固体分と液体分とから構成され、プラグフローとしているので、圧密状態で装置本体42A内部を移動するので、固液比を1:1~1:5とすることが可能となる。
 このように、装置本体42A内に供給するバイオマス原料11と加圧熱水15との重量比を1:1~1:10とすることにより、水熱分解装置での必要熱量の削減を図ることができる。
 さらに、装置本体42A内における固液重量比の管理をすることにより、水熱分解条件の安定化、バイオマス抜出装置51からのバイオマス固形分17の排出の安定化を図ることができる。
 また、水熱分解装置41-1A内でのバイオマス原料11と加圧熱水15とを対向接触することにより、固液分離を図ることになるので、固体側であるセルロース中への過分解生成物の持ち込みが削減される。これは、リグニン成分等は低温では析出するため、低温では分離困難である。すなわち、水熱分解を行った後に、反応系外に出して、分離しようとすると、高温加圧条件から常温常圧に移行する際のフラッシュ時の熱ロスが削減されると共に、分解物抽出液の分離性の向上を図ることができる。これは、水熱分解生成物は多糖類であり、低温では析出するため、低温における分離困難となるからである。
 本実施例によれば、水熱分解装置41-1A内に供給するバイオマス原料11の重量を加圧熱水15の重量に対して大きくすることができ、装置を小型化することができるため、経済性の向上に寄与することとなる。
 また、水熱分解装置41-1A内におけるバイオマス原料11の昇温は、装置本体42A内で加圧熱水15と接触させることによる直接熱交換で実施可能である。なお、必要に応じて、外部から水蒸気等を用いて加温するようにしてもよい。または、熱水に代えて飽和水蒸気を装置本体42内に直接供給するようにしてもよい。
 ここで、本実施例では、バイオマス供給装置31としては、ピストンポンプ31aを有するバイオマス原料11の供給機構を採用しており、固形のバイオマス原料11を常圧下から加圧下へ供給するものである。
 すなわち、ピストンポンプ31aを用いてピストンで押圧するので、装置本体42A内部に確実にバイオマス原料11を供給することとなる。
 すなわち、ピストンポンプ31aを採用することにより、装置本体42A内で固形分を移動させる回転式の移動手段等を設けることなく、ピストンポンプ31aの動力により、固液カウンターフローでの固形分であるバイオマス原料11の移動が可能となる。
 さらに、ピストンポンプ31aを採用することにより、装置本体42A内の密度(固液の重量比)調整が可能となる。すなわち、装置本体42A内の加圧熱水の滞留時間を調整できる。
 また、バイオマス抜出装置51は、スクリューフィーダー52aと油圧シリンダー52bとからなる押出機構とすることで、水熱分解装置41-1Aで反応した固形分が圧縮され、バイオマスプラグ53を形成し、このバイオマスプラグ53自身で水熱分解装置41-1A内の圧力を遮断するマテリアルシールを行うようにしている。スクリューフィーダー52aにより徐々に押されて、油圧シリンダー52bの先端部分から徐々にバイオマスが加圧下から常圧下への排出を可能とするものである。この際、バイオマスプラグ53から残留された水分が脱水される。
 この脱水液54は、加圧熱水可溶分(リグニン成分及びヘミセルロース成分)を含むものであるので、熱水排出液16と共に別途処理される。
 この結果、バイオマス固形分17に本来であれば同伴する加圧熱水可溶分を含む加圧熱水を脱水することが可能となり、後述するヘミセルロース成分を用いた5炭糖収率が向上すると共に、6炭糖酵素阻害成分(例えばリグニン成分等)の同伴の低減に寄与することとなる。
 また、バイオマス抜出装置51内では、加圧状態から常圧状態に変化するので、排出されるバイオマス固形分17は、爆砕されることとなり、繊維が破壊され、後の工程である酵素糖化における糖化効率が向上することとなる。
 また、バイオマス抜出装置51においては、低分子化した揮発性の酵素糖化阻害成分又はエタノール発酵阻害成分のいずれか一方又は両方を除去することができる。
 また、本実施例では、加圧熱水の取り出しは、バイオマス供給部入口近傍としているが、理想的な温度分布となるように、中間に加圧熱水の液抜出を設け、その抜出液の加熱又は冷却のいずれか一方又は両方を行い、再度装置本体42A内に注入するようにしてもよい。
 また、加圧熱水の排出部近傍において、液中の例えばフルフラール等の阻害物質の濃度を監視し、その測定値により加圧熱水15の供給量を制御するようにしたり、バイオマス抜出装置51近傍において、糖濃度を測定し、その測定値により加圧熱水15の供給量を制御するようにしたりするようにしてもよい。
 さらに、本実施例では、加圧熱水15の供給箇所を一カ所としているが、本発明はこれに限定されるものではなく、複数箇所として温度制御を行うようにしてもよい。
 また、本発明においては、バイオマス原料と加圧熱水とを対向接触させることにより、熱水に可溶化され易い成分から順次排出されると共に、バイオマス原料の投入部から熱水投入部まで濃度勾配及び温度勾配が生じる為、ヘミセルロース成分の過分解が抑制され、結果的に5炭糖成分が効率よく回収することができる。
 さらに、対向接触させることで、熱回収ができシステム効率から好ましいものとなる。
 図2に本実施例の変形例を示す。図2に示すように、水熱分解装置41-1Bは、図1のような水平型のものを垂直型にしたものである。
 図2に示すように、バイオマス供給装置31を装置本体42Aの下端側に設け、バイオマス原料11を下端側から供給するようにし、一方加圧熱水15を上端側から供給して、両者を対向接触させて、加圧熱水15に可溶化され易い成分から熱水排出液16により順次排出されるようにすると共に、バイオマス固形分17を上端側に設置したバイオマス抜出装置51から抜き出すようにしている。
 本実施例では垂直型としているが、本発明はこれに限定されるものではなく、傾斜型の装置本体としてもよい。
 ここで、傾斜型又は垂直型とするのは、水熱分解反応において発生したガスや原料中に持ち込まれたガス等が上方から速やかに抜けることができ好ましいからである。また、加圧熱水15で抽出するので、抽出効率の点から上方から下方に向かって抽出物の濃度が高まることとなり、好ましいものとなる。
 図3に本実施例の変形例を示す。図3に示すように、水熱分解装置41-1Cは、バイオマス抜出装置51で分離され脱水液54を再度装置本体42A内に供給している。これにより、装置内部に供給する加圧熱水量の削減を図ることができる。また、理想的なカウンターフローの実現が可能となる。
 図4に本実施例の他の変形例を示す。図4に示すように、水熱分解装置41-1Dは、装置本体42Aのバイオマス原料11が供給される部分でバイオマスに含まれる余剰水33を除去するように、余剰水除去ライン32を設けるようにしている。この余剰水はバイオマス原料11を湿潤状態にするのに用いてもよい。
 すなわち、余剰水液出口部32aと熱水排出液16-1の液出口部16aを離し、余剰水液出口部32aの圧力(P1)>液出口部16aの圧力(P2)となるようにすることで、液抜出し量を制御することができる。また、逆流の防止を図り、熱ロスの削減、過分解の抑制を図ることができる。
 また、熱水排出液の液出口を複数箇所(本実施例では二カ所16a、16b)とし、熱水排出液の液出口性状及び又はバイオマス固形分の性状を測定し、測定値により、熱水排出液の液出口を適宜替えることで、分解時間を制御することができる。
 また、加圧熱水の熱水入口を複数箇所(本実施例では二カ所15a、15b)とし、熱水排出液の液出口性状及び固出口性状のいずれか一方又は両方を測定し、測定値により、熱水排出液の液出口を替えることで、分解時間を制御することができる。
 また、水熱分解装置41-1D内において、所要の固液の重量比となるように、バイオマス原料11の供給量と熱水排出液の液出口の量を管理するようにしてもよい。
 図5に本実施例の他の変形例を示す。図5に示すように、装置本体42―2内に回転式の撹拌手段61-2を設け、積極的にバイオマス原料11と加圧熱水15とを対向接触させる際に撹拌混合させるようにしてもよい。
 また、この際、この回転式の撹拌手段61-2には、溝を刻むようにしたり、ピッチを変えるようにしたりしてもよい。さらに、回転式の撹拌手段61-2のスクリューを直列に多段にし、個別に攪拌するようにしてもよい。
 また、図5に示すように、装置本体42-2の熱水排出液16を排出する際に、フィルター部71を設けている。
 例えばワラ等バイオマスでは数cmのバイオマス圧密層でマテリアルシールが可能であるが、それ以下の厚みでは通液するため、自己フィルターとなり、液出口での固液分離が可能となる。所定の厚みに保つスクレーパー機構(図示せず)を設けるようにしてもよい。また、自己フィルターに加えて砂濾過フィルターを用いるようにしてもよい。
 また、液出口圧で制御したスクレーパー機構としてもよい。
 図6に本実施例の他の変形例を示す。図6に示すように、装置本体42-3内における固形分の密度監視手段として、水熱分解装置41-3の装置本体42-3に設置したロードセル61a、61bにより重量を検知し、パドルの回転数、回転方向を変化させて密度制御を行い反応効率の向上を図るようにしている。
 ここで、バイオマス原料11を装置本体42-3内への投入に際して、押圧手段であるピストンポンプを用いた投入方法について、図7及び図8を参照して説明する。なお。押圧手段としては、ピストンポンプ以外に、例えばスラリーポンプ、スクリューフィーダー等を適宜用いることができる。
 図7に示すように、予め湿潤状態としたバイオマス原料11をシリンダー内で圧密し、設定圧密力以下では開状態の空気・余剰水分排出バルブV1より空気、余剰水を排出し、設定圧密力となった状態で該空気・余剰水分排出バルブV1を閉とし、水熱分解装置の装置本体42A内へゲードバルブ34を介してバイオマス原料11を充填するようにしてもよい。
 また、乾燥状態(水分ほどんど含まない)の原料の場合には、シリンダー内で圧密し、設定圧密力以下では開状態の空気・余剰水分排出バルブV1より空気を排出し、設定圧密力となった状態で水注入バルブV2より水を注入し、余剰水分は空気・余剰水分排出バルブV1より排出し、両バルブを閉とし、水熱分解装置の装置本体42A内へゲードバルブ34を介してバイオマス原料11を充填するようにしてもよい。
 実施例1のバイオマスの水熱分解装置においては、図1~図8において個々に構成部材について説明しているが、これらの構成を適宜組み合わせるようにしてもよい。
 本発明による実施例に係るバイオマス原料を用いた有機原料であるアルコールの製造システムについて、図面を参照して説明する。図10は、実施例に係るバイオマス原料を用いた有機原料の製造システムを示す概念図である。
 図10に示すように、本実施例に係るバイオマス原料を用いたアルコールの製造システム10-1は、バイオマス原料11を例えば粉砕処理する前処理装置12と、前処理したバイオマス粉砕物13を加圧熱水15と対向接触させつつ水熱分解し、加圧熱水15中にリグニン成分及びヘミセルロース成分を移行し、バイオマス固体中からリグニン成分及びヘミセルロース成分を分離してなる図1に示す水熱分解装置41-1Aと、前記水熱分解装置41-1Aから排出されるバイオマス固形分17中のセルロースを酵素処理して6炭糖を含む糖液に酵素(セルラーゼ)18-1で酵素分解する第1の酵素分解装置19-1と、第1の酵素分解装置19-1で得られた第1の糖液(6炭糖)20-1を用いて、発酵処理によりアルコール類(本実施の形態ではエタノール)を製造する第1のアルコール発酵装置21-1と、第1のアルコール発酵液22-1を精製して目的生成物のエタノール23と残渣24-1とに分離処理する第1の精製装置25-1とを具備するものである。
 本発明によれば、図1に示すような水熱分解装置41-1Aにおいて、カウンターフローを採用することにより、液体側の加圧熱水15中にリグニン成分及びヘミセルロース成分を移行させ、固体側のバイオマス固形分17にはセルロースがとどまることとなり、酵素糖化の第1の酵素分解装置19-1により第1の糖液(6炭糖)20-1を得ることとなる。
 そして、6炭糖に応じた発酵(最終製品に応じた発酵:本実施例では第1のアルコール発酵装置21-1を用いてエタノール23を発酵により求める)プロセスを構築することができる。
 本実施例では、発酵処理により求めるものとして、アルコール類のエタノールを例示したが、本発明はこれに限定されるものではなく、アルコール類以外の、化成品原料となる石油代替品類又は食品・飼料原料となるアミノ酸類を発酵装置により得ることができる。
 ここで、糖液を基点とした化成品としては、例えばLPG、自動用燃料、航空機用ジェット燃料、灯油、ディーゼル油、各種重油、燃料ガス、ナフサ、ナフサ分解物であるエチレングリコール、エタノールアミン、アルコールエトキシレート、塩ビポリマー、アルキルアルミニウム、PVA、酢酸ビニルエマルジョン、ポリスチレン、ポリエチレン、ポリプロピレン、ポリカーボネート、MMA樹脂、ナイロン、ポリエステル等を挙げることができる。よって、枯渇燃料である原油由来の化成品の代替品及びその代替品製造原料としてバイオマス由来の糖液を効率的に利用することができる。
 本発明による実施例に係るバイオマス原料を用いた有機原料であるアルコール製造システムについて、図面を参照して説明する。
 図11は、本実施例に係るバイオマス原料を用いた有機原料のアルコール製造システムを示す概念図である。
 図11に示すように、本実施例に係るバイオマス原料を用いたアルコールの製造システム10-2は、図10に示すアルコール製造システム10-1において、水熱分解装置41-1Aから排出される熱水排出液16中に移行されたヘミセルロース成分を酵素処理して5炭糖を含む糖液20-2に酵素分解する第2の酵素分解装置19-2を設けてなるものである。
 なお、酵素分解装置、アルコール発酵装置、精製装置は、それぞれ別途2機(第1の酵素分解装置19-1、第2の酵素分解装置19-2、第1のアルコール発酵装置21-1、第2のアルコール発酵装置21-2、第1の精製装置25-1、第2の精製装置25-2)設置している。そして、第1の糖液(6炭糖)20-1、第2の糖液(5炭糖)20-2に応じた酵素分解工程、アルコール発酵工程及び精製工程を行うようにして、エタノール23を得るようにしている。
 そして、本実施例では、第2の酵素分解装置19-2で得られた第2の糖液(5炭糖)20-2を用いて、発酵処理によりエタノール23を製造することができる。
 なお、熱水排出液は必ずしも別系統において処理するものではなく、例えば酵素分解装置を以降の工程を共通化したり、アルコール発酵装置以降の工程を共通化したり、あるいは精製装置以降を共通化する等適宜変更を行うことができる。
 本発明によれば、水熱分解装置41-1Aにおいて、カウンターフローを採用することにより、固体側のバイオマス固形分17では、セルロースがとどまることとなり、酵素糖化の第1の酵素分解装置19-1により第1の糖液(6炭糖)20-1を得ると共に、液体側の加圧熱水15では、その加圧熱水に可溶したヘミセルロース成分を熱水排出液16として分離し、別途酵素糖化の第2の酵素分解装置19-2により第2の糖液(5炭糖)20-2を得るので、両者を効率よく分離して各々糖化することが可能となる。そして、6炭糖、5炭糖に応じた発酵(最終製品に応じた発酵:例:エタノール発酵)プロセスを構築することができる。
 このように、水熱分解装置41-1Aにおけるカウンターフローを採用することによって6炭糖を得る酵素糖化反応において阻害物質となる副反応成分や加圧熱水に可溶なリグニン成分を加圧熱水15側に移行させるため、セルロース主体のバイオマス固形分17となり、その後の糖化反応における6炭糖の糖化反応収率が向上する。
 一方、分離された熱水排出液16に含まれるヘミセルロース成分は、その後第2の酵素分解装置19-2において糖化され、5炭糖を含む糖液を得ることができる。
 そして、6炭糖、5炭糖の各々に適した酵母等を用いることでエタノールを効率的に個別に発酵により求めることができるものとなる。
 このように、従来の技術では、副反応生成物が、酵素糖化阻害を引起し糖収率が減少する現象が起きていたが、本発明によれば、バイオマス原料からセルロース主体の成分とヘミセルロース成分を加圧熱水に移行させて両者を分離し、各々に適した効率的な糖液(6炭糖液、5炭糖液)の製造を行うと共に、該糖液を基点として、各種有機原料(例えばアルコール類、石油代替品類、又はアミノ酸類等)を効率よく製造することができるバイオマスの水熱分解装置及び方法、並びにバイオマス原料を用いた有機原料の製造システムを提供することが可能となる。
 以上のように、本発明によれば、水熱分解装置により、バイオマス原料からセルロース主体の成分を分離し、効率的な糖液の製造を行うと共に、該糖液を基点として、各種有機原料(例えばアルコール類、石油代替品類、又はアミノ酸類等)を効率よく製造することができる。

Claims (13)

  1.  バイオマス原料を常圧下から加圧下に供給するバイオマス供給装置と、
     供給されたバイオマス原料を、いずれかの端部側から装置本体の内部を圧密状態で徐々に移動させると共に、前記バイオマス原料の供給とは異なる端部側から加圧熱水を装置本体内部に供給し、バイオマス原料と加圧熱水とを対向接触させつつ水熱分解し、加圧熱水中にリグニン成分及びヘミセルロース成分を移行し、バイオマス原料中からリグニン成分及びヘミセルロース成分を分離してなる水熱分解装置と、
     装置本体の加圧熱水の供給部側からバイオマス固形分を加圧下から常圧下に抜出すバイオマス抜出装置とを具備することを特徴とするバイオマスの水熱分解装置。
  2.  請求項1において、
     前記装置本体内部でバイオマス原料を撹拌する固定撹拌手段又は回転撹拌手段を有することを特徴とするバイオマスの水熱分解装置。
  3.  請求項1又は2において、
     前記バイオマス供給装置が、バイオマスを押圧する押圧手段であることを特徴とするバイオマスの水熱分解装置。
  4.  請求項1乃至3のいずれか一つにおいて、
     前記装置本体内に供給するバイオマス粉砕物から余剰水を排出する余剰水排出ラインを有することを特徴とするバイオマスの水熱分解装置。
  5.  請求項1乃至4のいずれか一つにおいて、
     前記装置本体に供給する加圧熱水の供給部を複数有すると共に、装置本体から排出する熱水排出液の排出部を複数有することを特徴とするバイオマスの水熱分解装置。
  6.  請求項1乃至5のいずれか一つにおいて、
     前記装置本体から排出する熱水排出液を濾過するフィルター部を有することを特徴とするバイオマスの水熱分解装置。
  7.  請求項1乃至6のいずれか一つにおいて、
     前記装置本体内におけるバイオマス固形分の密度監視手段を有することを特徴とするバイオマスの水熱分解装置。
  8.  請求項2において、
     前記回転撹拌手段に熱水排出液の抜出し孔の閉塞を防止するスクレーパーを設けたことを特徴とするバイオマスの水熱分解装置。
  9.  請求項1乃至8のいずれか一つにおいて、
     前記水熱分解装置の反応温度が180~240℃であると共に、加圧熱水の状態であることを特徴とするバイオマスの水熱分解装置。
  10.  請求項1乃至9のいずれか一つにおいて、
     供給するバイオマス原料と加圧熱水との重量比は、1:1~1:10であることを特徴とするバイオマスの水熱分解装置。
  11.  バイオマス原料を常圧下から加圧下に供給するバイオマス供給工程と、
     供給されたバイオマス原料を、いずれかの端部側から装置本体の内部を圧密状態で徐々に移動させると共に、前記バイオマス原料の供給とは異なる端部側から加圧熱水を装置本体内部に供給し、バイオマス原料と加圧熱水とを対向接触させつつ水熱分解し、加圧熱水中にリグニン成分及びヘミセルロース成分を移行し、バイオマス原料中からリグニン成分及びヘミセルロース成分を分離してなる水熱分解工程と、
     前記装置本体の加圧熱水の供給部側からバイオマス固形分を加圧下から常圧下に抜出すバイオマス抜出工程とを具備することを特徴とするバイオマスの水熱分解方法。
  12.  バイオマス原料を前処理する前処理装置と、
     請求項1乃至10のいずれか一つの水熱分解装置と、
     前記水熱分解装置から排出されるバイオマス固形分中のセルロースを酵素処理して6炭糖を含む糖液に酵素分解する第1の酵素分解装置と、
     前記第1の酵素分解装置で得られた糖液を用いて、発酵処理によりアルコール類、石油代替品類又はアミノ酸類のいずれか一つを製造する発酵装置とを具備することを特徴とするバイオマス原料を用いた有機原料の製造システム。
  13.  請求項12において、
     熱水排出液中のヘミセルロース成分を酵素処理して5炭糖を含む糖液に酵素分解する第2の酵素分解装置と、
     前記第2の酵素分解装置で得られた糖液を用いて、発酵処理によりアルコール類、石油代替品類又はアミノ酸類のいずれか一つを製造する発酵装置とを具備することを特徴とするバイオマス原料を用いた有機原料の製造システム。
PCT/JP2008/067038 2008-02-01 2008-09-19 バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム WO2009096060A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2660990A CA2660990C (en) 2008-02-01 2008-09-19 Biomass hydrothermal decomposition apparatus, method thereof, and organic material production system using biomass material
US12/443,515 US8980060B2 (en) 2008-02-01 2008-09-19 Biomass hydrothermal decomposition apparatus, method thereof, and organic material production system using biomass material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008023188A JP4427584B2 (ja) 2008-02-01 2008-02-01 バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
JP2008-023188 2008-02-01

Publications (1)

Publication Number Publication Date
WO2009096060A1 true WO2009096060A1 (ja) 2009-08-06

Family

ID=40912424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/067038 WO2009096060A1 (ja) 2008-02-01 2008-09-19 バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム

Country Status (3)

Country Link
US (1) US8980060B2 (ja)
JP (1) JP4427584B2 (ja)
WO (1) WO2009096060A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226095A (zh) * 2011-05-27 2011-10-26 中国科学院过程工程研究所 生物质梯度热解、分步收集制备燃料和化学品的装置和方法
EP2522409A1 (en) * 2010-01-04 2012-11-14 Natural Response S.A. Device and method for extracting active principles from natural sources, using a counter-flow extractor assisted by a sound transduction system
JP2013517134A (ja) * 2010-01-20 2013-05-16 ザイレコ,インコーポレイテッド 原料の分散および材料の加工方法
WO2014103148A1 (ja) * 2012-12-27 2014-07-03 川崎重工業株式会社 糖化反応設備
US9102965B2 (en) 2011-01-13 2015-08-11 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Saccharide-solution producing apparatus, fermentation system, saccharide-solution producing method, and fermentation method
US9102956B2 (en) 2010-03-10 2015-08-11 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass material
US9238827B2 (en) 2008-02-01 2016-01-19 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass hydrothermal decomposition apparatus and method
US9404135B2 (en) 2010-09-03 2016-08-02 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass decomposition apparatus and method thereof, and sugar-solution production system using biomass material
US9422519B2 (en) 2010-07-09 2016-08-23 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Biomass hydrothermal decomposition system and saccharide-solution production method using biomass material
CN107243374A (zh) * 2017-06-27 2017-10-13 诸暨市领跑管理咨询事务所 一种化工用抗震物料破碎设备
US9850511B2 (en) 2010-07-09 2017-12-26 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Biomass processing system and saccharide-solution production method using biomass material
US9868932B2 (en) 2010-03-10 2018-01-16 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass material
US10792588B2 (en) 2008-02-01 2020-10-06 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Organic material production system using biomass material and method
US11236369B2 (en) 2010-07-06 2022-02-01 Mitsubishi Heavy Industries Power Environmental Solutions, Ltd. Fermentation system and fermentation method using saccharide solution

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4427584B2 (ja) 2008-02-01 2010-03-10 三菱重工業株式会社 バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
JP2011068578A (ja) * 2009-09-24 2011-04-07 Ihi Corp バイオマス処理装置及び方法
JP5517565B2 (ja) * 2009-11-02 2014-06-11 三菱重工メカトロシステムズ株式会社 バイオマス原料を用いた有機原料の製造システム
JP5503282B2 (ja) * 2009-12-25 2014-05-28 株式会社日本製鋼所 バイオマス材料の連続加圧熱水処理方法
JP2011142895A (ja) * 2010-01-18 2011-07-28 Ihi Corp バイオマス処理装置及びバイオマス処理方法
JP2011142893A (ja) * 2010-01-18 2011-07-28 Ihi Corp 熱水流通式糖化装置
WO2011161685A2 (en) 2010-06-26 2011-12-29 Hcl Cleantech Ltd. Sugar mixtures and methods for production and use thereof
IL206678A0 (en) 2010-06-28 2010-12-30 Hcl Cleantech Ltd A method for the production of fermentable sugars
IL207329A0 (en) 2010-08-01 2010-12-30 Robert Jansen A method for refining a recycle extractant and for processing a lignocellulosic material and for the production of a carbohydrate composition
IL207945A0 (en) 2010-09-02 2010-12-30 Robert Jansen Method for the production of carbohydrates
CA2816250C (en) * 2010-11-01 2020-01-14 Reac Fuel Ab Process for controlled liquefaction of a biomass feedstock by treatment in hot compressed water
US10377954B2 (en) 2010-11-09 2019-08-13 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno Method for wet torrefaction of a biomass
PT106039A (pt) 2010-12-09 2012-10-26 Hcl Cleantech Ltd Processos e sistemas para o processamento de materiais lenhocelulósicos e composições relacionadas
KR101775683B1 (ko) * 2010-12-10 2017-09-06 대우조선해양 주식회사 해조류 바이오 매스의 연속 당화 장치
PL2484434T3 (pl) * 2011-02-05 2020-04-30 Grenol Ip Gmbh Ciągły reaktor hydrotermicznego uwęglania
JP2012170442A (ja) * 2011-02-24 2012-09-10 Tsukishima Kikai Co Ltd 糖化方法、エタノール製造方法、及びセルロース前処理方法
JP5901128B2 (ja) * 2011-03-24 2016-04-06 東レ株式会社 バイオマスを原料とする糖液製造装置
JP6021300B2 (ja) 2011-03-24 2016-11-09 東レ株式会社 バイオマスを原料とする発酵装置
US9512495B2 (en) 2011-04-07 2016-12-06 Virdia, Inc. Lignocellulose conversion processes and products
EP2554638B1 (de) * 2011-08-01 2019-05-08 Zweckverband Abfallbehandlung Kahlenberg Verfahren und vorrichtung zur mechanischen oder mechanisch-biologischen behandlung von abfällen
US9617608B2 (en) 2011-10-10 2017-04-11 Virdia, Inc. Sugar compositions
RU2617758C2 (ru) 2011-11-08 2017-04-26 Ренматикс, Инк. ОЖИЖЕНИЕ БИОМАССЫ ПРИ НИЗКОМ pH
WO2013103138A1 (ja) * 2012-01-06 2013-07-11 株式会社Ihi バイオマスの糖化方法及び糖化装置、糖の製造方法及び糖製造装置並びにエタノールの製造方法及びエタノール製造装置
JP6004313B2 (ja) * 2012-02-13 2016-10-05 国立研究開発法人産業技術総合研究所 リグノセルロース系バイオマスからの樹脂原料の製造方法及びその装置における反応器出口ラインの固形物による閉塞を回避する方法
CA2868572C (en) 2012-03-29 2015-04-28 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass processing system, saccharide solution production method using biomass feedstock, alcohol production method
KR101926193B1 (ko) * 2012-04-10 2018-12-07 에스케이이노베이션 주식회사 바이오매스로부터 유기산의 제조 방법
BR112014025714A8 (pt) * 2012-04-30 2018-02-06 Renmatix Inc Processo que envolve a liquefação de uma calda de biomassa por meio de tratamento em água comprimida quente (hcw)
US9493851B2 (en) 2012-05-03 2016-11-15 Virdia, Inc. Methods for treating lignocellulosic materials
CN104411712A (zh) 2012-05-03 2015-03-11 威尔迪亚有限公司 用于处理木质纤维素材料的方法
EP2867333A2 (en) * 2012-06-28 2015-05-06 Shell Internationale Research Maatschappij B.V. Biomass conversion systems providing integrated stabilization of a hydrolysate using a slurry catalyst following biomass pretreatment and methods for use thereof
CA2877497A1 (en) * 2012-06-28 2014-01-03 Shell Internationale Research Maatschappij B.V. Biomass conversion systems providing integrated stabilization of a hydrolysate using a slurry catalyst and methods for use thereof
WO2014010048A1 (ja) 2012-07-11 2014-01-16 三菱重工メカトロシステムズ株式会社 バイオマスの水熱分解システム、バイオマス原料を用いた糖液生産方法及びアルコール製造方法
WO2014132409A1 (ja) 2013-02-28 2014-09-04 三菱重工メカトロシステムズ株式会社 バイオマスの処理システム、バイオマス原料を用いた糖液生産方法、有機原料の製造方法
US20140273105A1 (en) 2013-03-12 2014-09-18 E I Du Pont De Nemours And Company Gradient pretreatment of lignocellulosic biomass
WO2014145731A1 (en) * 2013-03-15 2014-09-18 Gas Technology Institute Rapid production of hydrothermally carbonized biomass via reactive twin-screw extrusion
BR112015029553A2 (pt) * 2013-05-30 2017-07-25 Showa Denko Kk método para pré-tratamento de biomassa contendo celulose, método para produzir composição de biomassa para uso de sacarificação, e método para produzir açúcar
US20160251690A1 (en) * 2013-10-07 2016-09-01 Showa Denko K.K. Method for treating cellulose-containing biomass
US11078548B2 (en) 2015-01-07 2021-08-03 Virdia, Llc Method for producing xylitol by fermentation
BR112017025322A8 (pt) 2015-05-27 2022-08-23 Virdia Inc Processos integrados para recuperação de hidrolisato celulósico após hidrólise de polpa de celulose
CN105625075B (zh) * 2016-03-09 2018-07-27 中国科学院青岛生物能源与过程研究所 一种预处理分离木质纤维素类生物质的方法
JP6666894B2 (ja) * 2017-12-01 2020-03-18 保 横尾 有機性廃棄物の処理装置
US11667862B2 (en) * 2019-11-13 2023-06-06 Prairiechar, Inc. Reactor for biomass processing
CN113789193B (zh) * 2021-08-31 2022-05-31 华中科技大学 一种秸秆进料系统
CN115109271B (zh) * 2022-08-10 2023-07-25 广州楹鼎生物科技有限公司 一种植物纤维原料生物炼制的方法及其所用装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059118A (ja) * 2000-08-23 2002-02-26 Nobuyuki Hayashi 植物系バイオマスの加圧熱水分解方法とそのシステム
JP2005168335A (ja) * 2003-12-09 2005-06-30 National Institute Of Advanced Industrial & Technology 各種リグノセルロース資源からのエタノール生産システム
JP2006136263A (ja) * 2004-11-12 2006-06-01 National Institute Of Advanced Industrial & Technology リグノセルロース系バイオマス処理方法
JP2007301472A (ja) * 2006-05-11 2007-11-22 Oji Paper Co Ltd バイオマス連続的加圧熱水処理方法

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833461A (en) * 1971-05-17 1974-09-03 Bauer Bros Co Cyclonic digester system and process
US3985728A (en) 1974-01-02 1976-10-12 Westvaco Corporation Carboxymethylated materials derived from wood molasses and process for making same
US4152197A (en) 1974-09-23 1979-05-01 Mo Och Domsjo Ab Process for preparing high-yield cellulose pulps by vapor phase pulping an unpulped portion of lignocellulosic material and a partially chemically pulped portion
US4443540A (en) * 1980-05-09 1984-04-17 University Of Illinois Foundation Protein hydrolysis
EP0098490B1 (de) 1982-07-05 1989-01-25 Erne-Fittings Gesellschaft M.B.H. & Co. Verfahren und Vorrichtung zur Gewinnung von Cellulose, einfachen Zuckern und löslichen Ligninen aus pflanzlicher Biomasse
HU197774B (en) 1983-02-16 1989-05-29 Laszlo Paszner Organic solvent process for the hydrolytic saccharification of vegetable materials of starch type
US4746401A (en) 1983-09-29 1988-05-24 Georgia Tech Research Corp. Process for extracting lignin from lignocellulosic material using an aqueous organic solvent and an acid neutralizing agent
JP3042076B2 (ja) 1990-09-08 2000-05-15 株式会社神戸製鋼所 天然又は合成高分子化合物の選択的加水分解方法
SE469536B (sv) * 1991-12-05 1993-07-19 Vattenfall Energisyst Ab Saett och anordning foer inmatning av fragmenterat material till behaallare under tryck
US5348871A (en) 1992-05-15 1994-09-20 Martin Marietta Energy Systems, Inc. Process for converting cellulosic materials into fuels and chemicals
JPH09507386A (ja) 1993-12-23 1997-07-29 コントロールド・エンヴァイロンメンタル・システムズ・コーポレーション 工業用エタノールの製造方法
US5589599A (en) * 1994-06-07 1996-12-31 Mcmullen; Frederick G. Pyrolytic conversion of organic feedstock and waste
US5846787A (en) * 1994-07-11 1998-12-08 Purdue Research Foundation Office Of Technology Transfer Processes for treating cellulosic material
WO1996018590A1 (de) * 1994-12-12 1996-06-20 Weiss Bio Anlagen Gmbh Vorrichtung zum kompostieren von biologisch abbaubarem material
WO1996040970A1 (en) 1995-06-07 1996-12-19 Arkenol, Inc. Method of strong acid hydrolysis
US6022419A (en) 1996-09-30 2000-02-08 Midwest Research Institute Hydrolysis and fractionation of lignocellulosic biomass
JP2961247B2 (ja) 1997-12-10 1999-10-12 工業技術院長 セルロース系バイオマスのガス化方法
US7223575B2 (en) 2000-05-01 2007-05-29 Midwest Research Institute Zymomonas pentose-sugar fermenting strains and uses thereof
US7354755B2 (en) 2000-05-01 2008-04-08 Midwest Research Institute Stable zymomonas mobilis xylose and arabinose fermenting strains
US6419788B1 (en) 2000-08-16 2002-07-16 Purevision Technology, Inc. Method of treating lignocellulosic biomass to produce cellulose
JP2002105466A (ja) 2000-09-29 2002-04-10 Osaka Gas Co Ltd 燃料ガスの製造方法
DE10109502A1 (de) 2001-02-28 2002-09-12 Rhodia Acetow Gmbh Verfahren zum Abtrennen von Hemicellulosen aus hemicellulosehaltiger Biomasse sowie die mit dem Verfahren erhältliche Biomasse und Hemicellulose
JP3808781B2 (ja) 2002-01-30 2006-08-16 株式会社神戸製鋼所 セルロース含有材から加水分解生成物を製造する方法
MY138555A (en) * 2003-06-02 2009-06-30 Jgc Corp High-pressure treatment apparatus and method for operating high-pressure treatment apparatus
JP2005027541A (ja) 2003-07-09 2005-02-03 Toshiba Corp 単糖類及び/又はオリゴ糖類の製造方法及び木質成分の分離方法
US7504245B2 (en) 2003-10-03 2009-03-17 Fcstone Carbon, Llc Biomass conversion to alcohol using ultrasonic energy
CA2545981A1 (en) 2003-12-01 2005-06-16 Swetree Technologies Ab Fermentation process, starter culture and growth medium
JP2005205252A (ja) 2004-01-20 2005-08-04 Kobe Steel Ltd バイオマスを含む高濃度スラリー、および高濃度スラリーの製造方法、並びにバイオマス燃料の製造方法
JP2005229821A (ja) 2004-02-17 2005-09-02 Jgc Corp バイオマスから単糖を製造する方法及び単糖製造装置
JP2006036977A (ja) 2004-07-28 2006-02-09 Jgc Corp バイオマスの改質方法および改質装置
JP2006223152A (ja) 2005-02-16 2006-08-31 Hitachi Zosen Corp セルロース溶剤による溶解と加水分解の組合せによるバイオマス処理方法
JP2006289164A (ja) 2005-04-06 2006-10-26 Agri Future Joetsu Co Ltd バイオマス由来成分が分散した液状組成物、その製造方法及びこの液状組成物から製造される製品
US20080028675A1 (en) * 2005-05-10 2008-02-07 Nbe,Llc Biomass treatment of organic waste materials in fuel production processes to increase energy efficiency
JP2007112880A (ja) 2005-10-19 2007-05-10 National Univ Corp Shizuoka Univ 燃料化装置及び燃料の製造方法
US7985847B2 (en) 2006-05-08 2011-07-26 Biojoule Ltd. Recovery of lignin and water soluble sugars from plant materials
CN101522760A (zh) * 2006-08-07 2009-09-02 艾米塞莱克斯能源公司 从生物质中回收全纤维素和近天然木质素的方法
JP4565164B2 (ja) 2006-08-31 2010-10-20 独立行政法人産業技術総合研究所 糖製造方法、エタノール製造方法及び乳酸製造方法
EP1990106A1 (en) * 2006-09-28 2008-11-12 Eco Material Co.Ltd. Organic waste disposal system
JP2008104452A (ja) 2006-09-29 2008-05-08 Kumamoto Univ アルコール生産システムおよびアルコール生産方法
US20080299628A1 (en) 2007-05-31 2008-12-04 Lignol Energy Corporation Continuous counter-current organosolv processing of lignocellulosic feedstocks
JP2008278825A (ja) 2007-05-11 2008-11-20 Chuo Kakoki Kk バイオエタノールの製造方法
US20090077729A1 (en) * 2007-09-25 2009-03-26 Mcleod Christopher Adam Discontinuous helical auger contained within a heated vessel filled with sawdust for the purpose of high efficiency breakdown of toilet and other organic wastes
JP4524351B2 (ja) 2008-02-01 2010-08-18 三菱重工業株式会社 バイオマス原料を用いた有機原料の製造システム及び方法
JP4427584B2 (ja) 2008-02-01 2010-03-10 三菱重工業株式会社 バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
JP4427583B2 (ja) 2008-02-01 2010-03-10 三菱重工業株式会社 バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
CA2654306C (en) 2008-02-01 2013-10-15 Mitsubishi Heavy Industries, Ltd. Biomass hydrothermal decomposition apparatus and method
US8617851B2 (en) 2008-04-03 2013-12-31 Cellulose Sciences International, Inc. Highly disordered cellulose
JP5233452B2 (ja) 2008-07-08 2013-07-10 王子ホールディングス株式会社 糖化発酵システム
BRPI0822998B8 (pt) 2008-10-02 2022-10-18 Mitsubishi Heavy Ind Ltd Sistema e método para produção de material orgânico utilizando material de biomassa
WO2010060052A2 (en) 2008-11-21 2010-05-27 North Carolina State University Production of ethanol from lignocellulosic biomass using green liquor pretreatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059118A (ja) * 2000-08-23 2002-02-26 Nobuyuki Hayashi 植物系バイオマスの加圧熱水分解方法とそのシステム
JP2005168335A (ja) * 2003-12-09 2005-06-30 National Institute Of Advanced Industrial & Technology 各種リグノセルロース資源からのエタノール生産システム
JP2006136263A (ja) * 2004-11-12 2006-06-01 National Institute Of Advanced Industrial & Technology リグノセルロース系バイオマス処理方法
JP2007301472A (ja) * 2006-05-11 2007-11-22 Oji Paper Co Ltd バイオマス連続的加圧熱水処理方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10792588B2 (en) 2008-02-01 2020-10-06 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Organic material production system using biomass material and method
US9238827B2 (en) 2008-02-01 2016-01-19 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass hydrothermal decomposition apparatus and method
EP2522409A4 (en) * 2010-01-04 2013-11-27 Natural Response S A APPARATUS AND METHOD FOR EXTRACTING ACTIVE PRINCIPLES FROM NATURAL SOURCES USING A COUNTERCURRENT EXTRACTOR ASSISTED BY AN ACOUSTIC TRANSDUCTION SYSTEM
EP2522409A1 (en) * 2010-01-04 2012-11-14 Natural Response S.A. Device and method for extracting active principles from natural sources, using a counter-flow extractor assisted by a sound transduction system
US9428722B2 (en) 2010-01-20 2016-08-30 Xyleco, Inc. Dispersing feedstocks and processing materials
JP2013517134A (ja) * 2010-01-20 2013-05-16 ザイレコ,インコーポレイテッド 原料の分散および材料の加工方法
US10053662B2 (en) 2010-01-20 2018-08-21 Xyleco, Inc. Dispersing feedstocks and processing materials
US9260735B2 (en) 2010-01-20 2016-02-16 Xyleco, Inc. Dispersing feedstocks and processing materials
JP2017212997A (ja) * 2010-01-20 2017-12-07 ザイレコ,インコーポレイテッド 原料の分散および材料の加工方法
JP2016154547A (ja) * 2010-01-20 2016-09-01 ザイレコ,インコーポレイテッド 原料の分散および材料の加工方法
US9868932B2 (en) 2010-03-10 2018-01-16 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass material
US9102956B2 (en) 2010-03-10 2015-08-11 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass material
US11236369B2 (en) 2010-07-06 2022-02-01 Mitsubishi Heavy Industries Power Environmental Solutions, Ltd. Fermentation system and fermentation method using saccharide solution
US9422519B2 (en) 2010-07-09 2016-08-23 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Biomass hydrothermal decomposition system and saccharide-solution production method using biomass material
US9567558B2 (en) 2010-07-09 2017-02-14 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Biomass hydrothermal decomposition system and saccharide-solution production method using biomass material
US9850511B2 (en) 2010-07-09 2017-12-26 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Biomass processing system and saccharide-solution production method using biomass material
US9404135B2 (en) 2010-09-03 2016-08-02 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Biomass decomposition apparatus and method thereof, and sugar-solution production system using biomass material
US9434971B2 (en) 2011-01-13 2016-09-06 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Saccharide-solution producing apparatus, fermentation system, saccharide-solution producing method, and fermentation method
US9102965B2 (en) 2011-01-13 2015-08-11 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Saccharide-solution producing apparatus, fermentation system, saccharide-solution producing method, and fermentation method
CN102226095A (zh) * 2011-05-27 2011-10-26 中国科学院过程工程研究所 生物质梯度热解、分步收集制备燃料和化学品的装置和方法
CN102226095B (zh) * 2011-05-27 2014-01-15 中国科学院过程工程研究所 生物质梯度热解、分步收集制备燃料和化学品的装置和方法
US9920293B2 (en) 2012-12-27 2018-03-20 Kawasaki Jukogyo Kabushiki Kaisha Saccharification reaction apparatus
JP2014124159A (ja) * 2012-12-27 2014-07-07 Kawasaki Heavy Ind Ltd 糖化反応設備
WO2014103148A1 (ja) * 2012-12-27 2014-07-03 川崎重工業株式会社 糖化反応設備
CN107243374A (zh) * 2017-06-27 2017-10-13 诸暨市领跑管理咨询事务所 一种化工用抗震物料破碎设备

Also Published As

Publication number Publication date
US8980060B2 (en) 2015-03-17
JP4427584B2 (ja) 2010-03-10
JP2009183154A (ja) 2009-08-20
US20100184176A1 (en) 2010-07-22

Similar Documents

Publication Publication Date Title
JP4427584B2 (ja) バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
JP4436429B1 (ja) バイオマス原料を用いた有機原料の製造システム及び方法
JP4427583B2 (ja) バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
CA2660990C (en) Biomass hydrothermal decomposition apparatus, method thereof, and organic material production system using biomass material
JP4524351B2 (ja) バイオマス原料を用いた有機原料の製造システム及び方法
JP4699567B1 (ja) バイオマスの水熱分解装置及びその温度制御方法、バイオマス原料を用いた有機原料の製造システム
EP3293267B1 (en) Method for processing a biomass containing lignocellulose
JP4764527B1 (ja) バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法
WO2011111189A1 (ja) バイオマスの水熱分解装置及びその温度制御方法、バイオマス原料を用いた有機原料の製造システム
CA2654306C (en) Biomass hydrothermal decomposition apparatus and method
EP2172568A1 (en) Method and apparatus for conversion of cellulosic material to enthanol
JP5517565B2 (ja) バイオマス原料を用いた有機原料の製造システム
JP2010082620A5 (ja)
JP5517560B2 (ja) バイオマス原料を用いた有機原料の製造システム
JP2010029862A5 (ja)
WO2012005246A1 (ja) 糖液を用いた発酵システム及び方法
AU2012202325B2 (en) Method and apparatus for conversion of cellulosic material to ethanol
AU2013273692A1 (en) Method and apparatus for conversion of cellulosic material to ethanol

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2660990

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12443515

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08871907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08871907

Country of ref document: EP

Kind code of ref document: A1