WO2014010048A1 - バイオマスの水熱分解システム、バイオマス原料を用いた糖液生産方法及びアルコール製造方法 - Google Patents

バイオマスの水熱分解システム、バイオマス原料を用いた糖液生産方法及びアルコール製造方法 Download PDF

Info

Publication number
WO2014010048A1
WO2014010048A1 PCT/JP2012/067726 JP2012067726W WO2014010048A1 WO 2014010048 A1 WO2014010048 A1 WO 2014010048A1 JP 2012067726 W JP2012067726 W JP 2012067726W WO 2014010048 A1 WO2014010048 A1 WO 2014010048A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
hydrothermal decomposition
hot water
enzyme
saccharification
Prior art date
Application number
PCT/JP2012/067726
Other languages
English (en)
French (fr)
Inventor
稔 源田
寺倉 誠一
良介 上原
小林 誠司
Original Assignee
三菱重工メカトロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工メカトロシステムズ株式会社 filed Critical 三菱重工メカトロシステムズ株式会社
Priority to CA2876108A priority Critical patent/CA2876108C/en
Priority to PCT/JP2012/067726 priority patent/WO2014010048A1/ja
Priority to AU2012385156A priority patent/AU2012385156B2/en
Priority to BR112015000255-2A priority patent/BR112015000255B1/pt
Priority to JP2014524541A priority patent/JP5911154B2/ja
Priority to US14/411,473 priority patent/US9982283B2/en
Publication of WO2014010048A1 publication Critical patent/WO2014010048A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/18Apparatus specially designed for the use of free, immobilized or carrier-bound enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/14Pressurized fluid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/06Means for pre-treatment of biological substances by chemical means or hydrolysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/09Means for pre-treatment of biological substances by enzymatic treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/20Heating; Cooling
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/10Separation or concentration of fermentation products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B20/00Purification of sugar juices
    • C13B20/16Purification of sugar juices by physical means, e.g. osmosis or filtration
    • C13B20/165Purification of sugar juices by physical means, e.g. osmosis or filtration using membranes, e.g. osmosis, ultrafiltration
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2203/00Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a biomass hydrothermal decomposition system capable of efficiently decomposing biomass raw materials, a method for producing a sugar solution using the biomass raw materials, and a method for producing alcohol.
  • Patent Document 1 and Patent Document 2 Conventionally, after saccharification treatment of biomass such as wood with dilute sulfuric acid and concentrated sulfuric acid, solid-liquid separation, neutralization of the liquid phase, and production technology such as ethanol used as a raw material for ethanol fermentation have been put into practical use ( Patent Document 1 and Patent Document 2). Moreover, chemical industrial raw material production (for example, lactic acid fermentation etc.) is also considered using sugar as a starting material.
  • the biomass refers to the accumulation of organisms incorporated into the material circulation system of the earth biosphere or organic substances derived from the organisms (see JIS K 3600 1258).
  • sugarcane, corn, etc. which are currently used as alcohol raw materials, are originally provided for food.
  • it is effective food products to make these edible resources long-term and stable for industrial use. From the viewpoint of life cycle, it is not preferable.
  • Cellulose resources vary from 38 to 50% for cellulose, 23 to 32% for hemicellulose components, and 15 to 22% for lignin components that do not become fermentation raw materials.
  • the raw materials are assumed to be fixed, and there is no disclosure of production system technology considering the versatility of raw materials.
  • Patent Documents 1 to 3 a phenomenon occurs in which the side reaction product causes enzyme saccharification inhibition and the saccharide yield decreases. Therefore, the enzyme saccharification inhibitor is removed and enzyme saccharification mainly by cellulose is performed.
  • the proposal of the hydrothermal decomposition apparatus which improves property was made first (patent documents 4 thru
  • JP-T 9-507386 Japanese National Patent Publication No. 11-506934 JP 2005-168335 A JP 2009-183805 A JP 2009-183154 A Japanese Patent No. 4764527
  • the present invention provides a biomass hydrothermal decomposition system with improved plant efficiency, a method for producing a sugar solution using a biomass material, and a method for producing alcohol.
  • the first invention of the present invention for solving the above-mentioned problems is a biomass supply section for supplying a biomass material having cellulose, hemicellulose, and lignin under normal pressure to pressurized pressure, and hydrothermally heating the biomass material with pressurized hot water.
  • a hydrothermal decomposition unit for decomposing and dissolving a lignin component and a hemicellulose component in pressurized hot water, a biomass solid content extraction unit for extracting biomass solid content from the hydrothermal decomposition unit, and a biomass solid content extraction unit
  • the biomass hydrothermal decomposition system is characterized by having an enzyme liquefaction tank that communicates with the biomass solids and supplies the extracted biomass solids and supplies enzymes to the biomass solids to liquefy the biomass solids. .
  • the hydrothermal decomposition unit conveys the biomass raw material supplied from one end side of the apparatus main body to the other end side of the apparatus main body by a conveying means inside the apparatus main body.
  • pressurized hot water is supplied to the inside of the apparatus main body from the other end side different from the biomass raw material supply location, hydrothermally decomposed and discharged while the biomass raw material and the pressurized hot water are opposed to each other.
  • the biomass hydrothermal decomposition system is characterized in that a hot water-dissolved component is transferred into a hot water discharge liquid that is pressurized hot water, and a lignin component and a hemicellulose component are separated from the biomass raw material.
  • the third invention is the biomass hydrothermal decomposition system according to the first or second invention, further comprising a first saccharification tank for saccharifying the liquefied biomass solids.
  • a fourth aspect of the present invention is the biomass hydrothermal decomposition system according to any one of the first to third aspects, further comprising a second saccharification tank for saccharifying the hot water discharge liquid from the hydrothermal decomposition section. It is in.
  • a fifth invention in the third invention, in the first saccharification tank, water is separated from the first solid-liquid separation device for separating the solid from the sugar solution after saccharification, and the sugar solution after the solid separation.
  • a biomass hydrothermal decomposition system having a first water separation device to be removed.
  • the second solid-liquid separation device for separating the solid content from the sugar solution after saccharification in the second saccharification tank, and water from the sugar solution after the solid separation.
  • a biomass hydrothermal decomposition system comprising a second water separation device to be removed.
  • the 7th invention has the waste liquid introduction line which introduce
  • the biomass hydrothermal decomposition system is characterized in that the liquefied biomass solid is mixed with a hot water discharge liquid to obtain a mixed liquefaction product.
  • the eighth invention is the biomass hydrothermal decomposition system according to the seventh invention, wherein a filter is interposed in the discharge liquid introduction line.
  • a ninth invention is the biomass hydrothermal decomposition system according to the seventh invention, wherein a cooling means is interposed in the discharge liquid introduction line.
  • a tenth aspect of the invention is the biomass hydrothermal decomposition system according to the seventh aspect of the invention, further comprising a saccharification tank that saccharifies using the mixed liquefaction product liquefied by the enzyme saccharification.
  • An eleventh aspect of the invention is the tenth aspect of the invention, in which a solid-liquid separation device that separates solids from the sugar solution after saccharification in the saccharification tank, and a water separation device that removes water from the sugar solution after solid separation And a hydrothermal decomposition system for biomass.
  • a biomass material having cellulose, hemicellulose, and lignin is supplied under normal pressure to pressurized pressure, and the biomass material is hydrothermally decomposed with pressurized hot water by a hydrothermal decomposition unit, Then, the lignin component and the hemicellulose component are dissolved in the biomass, and then the enzyme is added to the biomass solids extracted from the hydrothermal decomposition unit, and the biomass solids are liquefied in an enzyme liquefaction tank communicating with the hydrothermal decomposition unit. Then, the liquefied biomass solid content is monosaccharided with an enzyme to produce a sugar solution of the monosaccharide, which is in a method for producing a sugar solution using a biomass raw material.
  • a thirteenth aspect of the invention is characterized in that, in the twelfth aspect of the invention, the liquefaction of the biomass solids is performed under pressure, the liquefied biomass solids are extracted, and the enzyme is saccharified under atmospheric pressure.
  • the liquefaction of the biomass solids is performed under pressure, the liquefied biomass solids are extracted, and the enzyme is saccharified under atmospheric pressure.
  • a mixed liquefied product is prepared by introducing into the enzyme liquefaction tank a hot water discharge liquid containing biomass hot water soluble matter discharged from the hydrothermal decomposition section. It is in the sugar-liquid production method using the biomass raw material characterized.
  • a fifteenth aspect of the invention is the sugar liquid production method using biomass raw material according to the fourteenth aspect of the invention, wherein the production of the sugar liquid of the monosaccharide is enzymatically saccharified under normal pressure conditions.
  • a sixteenth aspect of the invention is an alcohol production method characterized in that alcohol fermentation is performed using a sugar liquid obtained by the sugar liquid manufacturing method using any one of the twelfth to fifteenth biomass raw materials to produce an alcohol. It is in.
  • an enzyme is supplied to biomass solids in which the lignin component and hemicellulose component are dissolved in pressurized hot water, the biomass solids are liquefied, and a liquid seal is formed with the liquefied product.
  • the amount of water introduced during the slurrying process is reduced, and the plant efficiency can be improved.
  • FIG. 1 is a schematic diagram of a biomass hydrothermal decomposition system according to a first embodiment.
  • FIG. 2 is a schematic diagram of another biomass hydrothermal decomposition system according to the first embodiment.
  • FIG. 3 is a schematic diagram of another biomass hydrothermal decomposition system according to the first embodiment.
  • FIG. 4 is a schematic diagram of a biomass hydrothermal decomposition system according to a second embodiment.
  • FIG. 5 is a schematic diagram of another biomass hydrothermal decomposition system according to the second embodiment.
  • FIG. 6 is a schematic diagram of a biomass hydrothermal decomposition system according to a third embodiment.
  • FIG. 7 is a schematic diagram of another biomass hydrothermal decomposition system according to the third embodiment.
  • FIG. 1 is a schematic diagram of a biomass hydrothermal decomposition system according to a first embodiment.
  • FIG. 2 is a schematic diagram of another biomass hydrothermal decomposition system according to the first embodiment.
  • FIG. 3 is a schematic diagram of another biomass hydro
  • FIG. 8 is a schematic diagram of a biomass hydrothermal decomposition system according to a fourth embodiment.
  • FIG. 9 is a schematic diagram of a biomass hydrothermal decomposition system according to a fifth embodiment.
  • FIG. 10 is a schematic diagram of a biomass hydrothermal decomposition system according to a sixth embodiment.
  • FIG. 11 is a schematic diagram of a biomass hydrothermal decomposition system according to a seventh embodiment.
  • FIG. 12 is a schematic diagram of a vertical hydrothermal decomposition apparatus that hydrothermally decomposes biomass with hot water.
  • FIG. 13 is a diagram showing a state of decomposition of biomass by hot water.
  • FIG. 14 is a schematic diagram of a saccharification process of liquefaction and mono-saccharification with an enzyme of biomass solids.
  • FIG. 1 is a schematic diagram of a biomass hydrothermal decomposition system according to a first embodiment.
  • 2 and 3 are schematic views of another biomass hydrothermal decomposition system according to the first embodiment.
  • a biomass hydrothermal decomposition system 10 ⁇ / b> A according to this embodiment includes a biomass supply unit 12 that supplies a biomass material 11 having cellulose, hemicellulose, and lignin from normal pressure to pressure, and a biomass material.
  • the hydrothermal decomposition unit 17 a known hydrothermal treatment apparatus that decomposes the biomass raw material 11 under high temperature and high pressure conditions can be used. Although an example of a hydrothermal decomposition system is demonstrated using FIG. 1, this invention is not limited to this hydrothermal decomposition system. As shown in FIG. 1, in the hydrothermal decomposition system according to the present embodiment, the biomass raw material 11 supplied to the hydrothermal decomposition unit 17 is transferred from below to the inside of the apparatus main body 13 as a first screw serving as a conveying means.
  • pressurized hot water 15 is supplied into the apparatus main body 13 from an upper side different from the supply location of the biomass raw material 11, and the biomass raw material 11 and the pressurized hot water 15 are opposed to each other.
  • Hydrothermal decomposition while contacting and transferring hot water-dissolved components (lignin component and hemicellulose component) into hot water discharge liquid 16 which is pressurized hot water to be discharged, and lignin component and hemicellulose component from biomass raw material 11 It is a separate product.
  • the conveying means the screw means is exemplified in the present embodiment, but the conveying means is not limited to the screw means as long as the biomass solids 20 can be conveyed from below to above, For example, a method of gradually extruding by compaction filling may be used.
  • the biomass solids 20 is conveyed from the lower side of one end of the apparatus to the upper side of the other end by the conveying means and hot water is supplied from the upper side of the other end of the apparatus.
  • the invention is not limited to this, and the biomass solid content 20 may be supplied from the upper side, and hot water may be supplied from the lower side to be opposed to each other.
  • the extracted biomass solid content 20 is partially liquefied by the enzyme 30 introduced into the enzyme liquefaction tank 21 to form a liquid surface, thereby preventing leakage of pressurized nitrogen 25 for pressurization. As a result, a liquid seal can be achieved.
  • a cooling means 26 may be provided in the enzyme liquefaction tank 21 as shown in the biomass hydrothermal decomposition system 10B according to the embodiment shown in FIG.
  • a cooling means may be unnecessary.
  • the inside of the enzyme liquefaction tank 21 may be cooled to a temperature at which the enzyme exhibits performance on either one or both of the external side and the internal side.
  • water 32 is separately supplied to the enzyme liquefaction tank 21, the inside is cooled, and the moisture of the liquefied biomass solids 24 is obtained. Adjustments may be made.
  • the water 32 to be supplied is usually cooled within a range of 0 ° C. to 60 ° C. (for example, pure water, industrial water, etc. or pure water, industrial water, etc. is cooled using cooling tower water, chiller water, etc.) Can be used.
  • the separated water in the system can be circulated and reused.
  • reference numeral 18 a is a passage that connects the biomass solids extraction unit 18 and the enzyme liquefaction tank 21, 22 is a stirring means that stirs the inside of the enzyme liquefaction tank 21, and 13 a is a gas in the hydrothermal decomposition unit 17.
  • liquid interface, 21a is gas-liquid interface
  • M 1 is a motor for driving the first screw means 14
  • M 2 is respectively illustrated a motor for driving the stirring means 22.
  • FIG. 12 is a schematic diagram of a vertical hydrothermal decomposition apparatus that hydrothermally decomposes biomass with hot water
  • FIG. 13 is a diagram illustrating a state of decomposition of biomass with hot water.
  • the biomass raw material 11 and the pressurized hot water 15 are supplied so as to face each other, and are subjected to a hydrothermal reaction by internal heat exchange.
  • an opposing contact area X and a non-facing contact area Y are shown, and the non-facing contact area Y remains in a high temperature / high pressure state. The decomposition reaction will proceed and sometimes it may become excessively decomposed.
  • the biomass raw material (solid) 11 is supplied into the apparatus main body 13 from the lower side and is moved upward by the first screw means 14 provided inside.
  • the biomass solid content (hot water insoluble content) 20 is dropped into the liquid 21b of the enzyme liquefaction tank 21 formed by supplying the enzyme 30 through the biomass solid content extraction section 18 from the upper side.
  • the biomass (cellulosic material) raw material 11 contains hemicellulose and lignin in addition to cellulose. Specifically, the cellulose has a structure in which hemicellulose is bundled and lignin is adhered.
  • Biomass is divided into a hot water insoluble part (solid part) and a hot water soluble part after hydrothermal decomposition.
  • the hot water insoluble content (biomass solid content 20) is mainly cellulose (C6 sugar raw material), and the hot water soluble content (hot water discharge liquid 16) is mainly hemicellulose (C5 sugar raw material).
  • Sugar can be obtained by saccharification.
  • the biomass raw material 11 is hydrothermally decomposed by the pressurized hot water 15 in a high temperature range (180 to 240 ° C.), and hemicellulose is decomposed and dissolved on the hot water side, and lignin is also decomposed and dissolved. As a result, hemicellulose and the like are dissolved on the hot water side. In the state of hot water-solubilized hemicellulose after being solubilized in hot water, excessive decomposition occurs in a temperature range of 140 ° C. or higher.
  • the biomass solid content extraction unit 18 is provided with second screw means (not shown), and the biomass solid content 20, which is hot water insoluble content conveyed from below to above by the first screw means 14, is obtained. , Gradually extracted to the enzyme liquefaction tank 21 side.
  • the extracted biomass solids 20 are sequentially dropped from the passage 18a into the liquid 21b, and liquefaction is promoted by stirring by the stirring means 22 provided in the enzyme liquefaction tank 21.
  • FIG. 14 is a schematic diagram of a saccharification process of liquefaction and mono-saccharification with an enzyme of biomass solids. 14, the outline of a saccharification process will be described.
  • the biomass solid content 20 extracted from the biomass solid content extraction unit 18 is in a state of a high molecular weight oligomer.
  • This polymer oligomer is hardly soluble.
  • an enzyme is added to the polymer oligomer, a part of the polymer oligomer is decomposed to become a low molecular weight oligomer, soluble in moisture accompanying the biomass solids 20, and in a biomass liquefied state. Become. Then, this low molecular weight oligomer is converted into a monosaccharide by further saccharifying the enzyme over time. Therefore, the saccharification process is a combination of the liquefaction process and the monosaccharification process.
  • the enzyme liquefaction tank 21 is a pressure vessel having a pressure resistance because it is under pressure. Since this pressure vessel is expensive to manufacture, it is expensive to make it a large-capacity pressure vessel required for saccharification. Therefore, in the pressure vessel, only the liquefaction process is used as a pressurizing condition, and the liquefaction process is completed in 1 to 3 hours. And after completion
  • saccharification treatment is carried out for 47 to 71 hours to perform saccharification, and 6 monosaccharides are obtained from cellulose in the biomass solids 20.
  • the time for the saccharification step is an example, and is appropriately set depending on the saccharification conditions (temperature, type of enzyme, etc.).
  • the biomass solid content 20 is dropped into the liquid 21 b in the enzyme liquefaction tank 21, thereby being cooled by direct heat exchange with the liquid 21 b, and as a result, residual hemicellulose due to the hot water accompanying the biomass solid content 20. In addition, excessive decomposition of residual lignin and main component cellulose is suppressed.
  • the biomass solids 20 is exposed above the hot water-liquid surface (gas-liquid interface 13a) by the first screw means 14. .
  • the reaction since the reaction is still in progress at a high temperature and high pressure due to the presence of the pressurized hot water 15 accompanying the biomass solids 20, the biomass solids 20 should be put into the liquid 21 b in the enzyme liquefaction tank 21.
  • the reaction can be stopped. By stopping the reaction, the excessive decomposition of residual hemicellulose, residual lignin and main component cellulose is suppressed, the excessive decomposition of cellulose is suppressed, the recovery rate is improved, and the generation of reaction inhibiting components on the wake side is generated. It is suppressed.
  • the enzyme 30 is supplied into the enzyme liquefaction tank 21 and the liquid 21b is present by liquefaction by the enzyme, the liquid is present at the gas-liquid interface 13a of the hydrothermal decomposition unit 17 and the gas-liquid interface 21a of the enzyme liquefaction tank 21. Sealing is performed, thereby preventing leakage of pressurized nitrogen 25, which is a pressurized gas (for example, pressurized nitrogen or pressurized air). Thereby, the loss accompanying gas leak is eliminated, and the running cost for the pressurizing gas can be greatly reduced.
  • the enzyme liquefaction tank 21 is provided with a safety valve (not shown) and an inflow passage for pressurized nitrogen 25.
  • a part of the oligomer is made into a low molecular weight oligomer, thereby enabling fluidization and simplifying a discharge mechanism when discharging from the enzyme liquefaction tank 21 to the outside. That is, when the biomass solid content 20 remains in a high temperature state, the material of the discharge mechanism needs to use an expensive material, for example, but since it is cooled in the enzyme liquefaction tank 21, the discharge unit 23 provided on the discharge side An inexpensive material such as stainless steel or resin can be used. As this discharge part 23, a rotary feeder, a flow regulating valve, etc. can be used, for example.
  • the biomass solid content 20 has a large porosity and a low bulk density, the handleability as a solid is complicated, but the volume can be reduced by liquefaction with an enzyme, and the handleability is also easy.
  • the biomass solid content 20 is in a so-called cake state or sponge state, the proportion of the pressurizing gas is large, the porosity is large, and the bulk density is as small as 0.5 g / cc or less. Met. When this becomes an enzyme liquefaction, the porosity decreases and volume reduction is achieved.
  • biomass solids 20 into an enzyme liquefied slurry, fluidization is possible, and handling in subsequent steps is facilitated.
  • the biomass solid content 20 is immediately liquefied by the enzyme 30 in the enzyme liquefaction tank 21 which is a pressure vessel, so that the amount of water required is about four times the biomass weight. And the concentration of the sugar solution can be increased accordingly.
  • Table 1 shows the comparison between the present product and the conventional product regarding the relationship between the biomass solid content, the amount of water and the sugar concentration.
  • this comparative example is an illustration and changes with the kind of biomass raw material, this invention is not limited to this.
  • the amount of water can be reduced to 1/5 (4/20) of the conventional one by liquefying the enzyme, and the sugar concentration can be 10%.
  • a sugar solution having a concentration 4 times as high as 2.5% can be obtained.
  • a thicker sugar solution can be obtained.
  • the amount of water separated by solid-liquid separation in the saccharification process is reduced, and plant efficiency is improved.
  • the amount of drainage can be greatly reduced.
  • the enzyme liquefaction tank 21 is provided with the agitation means 22, the present invention is not limited to this, and may be agitated by, for example, a circulation means using a pump.
  • the enzyme liquefaction tank 21 is provided with a pH meter 31.
  • the pH of the liquid in the enzyme liquefaction tank 21 can be measured, and acid or alkali is added to the enzyme liquefaction tank 21 to a pH at which the enzyme efficiently exhibits saccharification ability. pH can be adjusted and liquefaction can be performed efficiently.
  • the presence or absence of the organic acid which remains in the slurry-like biomass solid content 24 can be confirmed by providing the pH meter 31. Thereby, the generation
  • the organic acid for example, acetic acid etc.
  • the pH may be measured by the pH meter 31, the supply amount of pressurized hot water may be controlled, and the hydrothermal decomposition reaction may be controlled.
  • Other control of the hydrothermal decomposition unit 17 based on pH includes a method of controlling the hydrothermal decomposition reaction by controlling the supply amount (reaction time) of the biomass raw material 11, and a scratching by the first screw means 14 of the biomass raw material 11.
  • a method of controlling the hydrothermal decomposition reaction by controlling the frying speed (reaction time), a method of controlling the hydrothermal decomposition reaction by controlling the liquid level (reaction time) of the gas-liquid interface 13a of the apparatus body 13, and hot water discharge A method of controlling the hydrothermal decomposition reaction by controlling the discharge amount of the liquid 16 (reaction time) can be performed.
  • the biomass supplied to the hydrothermal decomposition unit 17 is not particularly limited, and refers to the accumulation of organisms incorporated into the material circulation system of the earth biosphere or organic matter derived from organisms (JIS).
  • K 3600 1258 it is particularly preferable to use woody materials such as cellulosic resources such as hardwoods and herbaceous materials, agricultural wastes, food wastes, and the like.
  • the biomass raw material 11 is not particularly limited in particle size, but is preferably pulverized to 5 mm or less.
  • the pretreatment device may be pretreated using, for example, a pulverizer. Moreover, you may make it wash
  • rice husk or the like as the biomass raw material 11 it can be supplied to the biomass supply unit 12 as it is without being pulverized.
  • the reaction temperature in the hydrothermal decomposition unit 17 is preferably in the range of 140 to 240 ° C. More preferably, the temperature is 180 to 230 ° C. This is because at a low temperature of less than 140 ° C., the hydrothermal decomposition rate is low and a long decomposition time is required, leading to an increase in the size of the apparatus, which is not preferable. On the other hand, when the temperature exceeds 240 ° C., the decomposition rate becomes excessive, the cellulose component increases the transition from the solid to the liquid side, and the excessive decomposition of the hemicellulose saccharide is promoted, which is not preferable.
  • the hemicellulose component dissolves from about 140 ° C., the cellulose from about 230 ° C., and the lignin component from about 140 ° C., but the cellulose remains on the solid side, and the hemicellulose component and the lignin component have a sufficient decomposition rate. It is preferable that the temperature be within the range of 180 ° C to 230 ° C.
  • the reaction pressure is preferably a pressure higher by 0.1 to 0.5 MPa than the saturated vapor pressure of water at each temperature of the reaction temperature (180 to 240 ° C.) of the apparatus body 13.
  • the reaction time is preferably 20 minutes or less and 3 to 10 minutes. This is because if the reaction is carried out too long, the proportion of the overdecomposed product increases, which is not preferable.
  • Examples of the biomass supply unit 12 that supplies from the normal pressure to the pressure may include means such as a screw, a piston pump, or a slurry pump.
  • the hydrothermal decomposition apparatus is a vertical apparatus, but the present invention is not limited to this, and may be an inclined hydrothermal decomposition apparatus having a gas-liquid interface 13a.
  • the reason why the hydrothermal decomposition apparatus is of the inclined type or vertical type is that gas generated in the hydrothermal decomposition reaction, gas introduced into the raw material, and the like can be quickly released from above, which is preferable. Moreover, since the decomposition product is extracted with the pressurized hot water 15, the concentration of the extract increases from the top to the bottom in terms of extraction efficiency, which is preferable.
  • the cellulose-based component and the hemicellulose component are decomposed from the biomass raw material in a solid-liquid contact state, and then the biomass solid content 20 as the decomposition product is put into the enzyme liquefaction tank 21.
  • the biomass solid content 20 is liquefied, and a liquid seal is made with the liquefied product, thereby preventing the pressurization gas from flowing out.
  • the amount of water introduced during the slurrying process is reduced, and the plant efficiency can be improved.
  • the hydrothermal decomposition apparatus has been described as the biomass processing section that performs the biomass decomposition process.
  • an alkali decomposition treatment biomass processing section for example, water Sodium oxide, decomposition using slaked lime and ammonia, etc.
  • acid decomposition treatment biomass treatment part decomposition with dilute sulfuric acid, etc.
  • an enzyme saccharification tank 21 to which the enzyme 30 is added is installed, and the processed biomass solid content 20 is slurried, and discharged to a system from under pressure to normal pressure through a discharge mechanism. Applicable.
  • FIG. 4 is a schematic diagram illustrating a biomass hydrothermal decomposition system according to a second embodiment.
  • the biomass hydrothermal decomposition system 10 ⁇ / b> D is the same as the biomass hydrothermal decomposition system 10 ⁇ / b> A of Example 1 except that biomass solids 20 mainly containing a cellulose component is converted into hexose (C6 sugar) or the like.
  • a C6 saccharification / sugar concentration device 50A that saccharifies and concentrates sugar, and hydrothermal effluent 16 mainly containing hemicellulose components is enzymatically saccharified to pentose sugar (C5 sugar) and the like to concentrate the sugar.
  • Device 50B In FIG. 4, symbol M denotes a motor for driving the stirring means, and P denotes a liquid feed pump.
  • the C6 saccharification / sugar concentration apparatus 50A and the C5 saccharification / sugar concentration apparatus 50B include a first saccharification tank 52A that further enzymatically saccharifies the biomass solid content 20 liquefied in the enzyme liquefaction tank 21, and an hydrothermal decomposition unit. 17, a second saccharification tank 40B for enzymatic saccharification of the hot water discharge liquid 16 from the enzyme 17 and a first solid-liquid separation device 54A for separating solid components from the saccharified sugar liquids 53A and 42B.
  • Water 57a, 57b is removed from the sugar liquids 53A, 42B separated by the solid-liquid separator 54B, the first solid-liquid separator 54A, and the second solid-liquid separator 54B to obtain concentrated sugar liquids 55A, 55B.
  • water separators 56A and 56B having reverse osmosis (RO) membranes 56a and 56b.
  • a screw decanter, a sand filtration device, an MF membrane or the like can be used alone or in combination.
  • the films 56a and 56b are protected.
  • UF membrane ultrafiltration membrane
  • NF membrane nanofiltration membrane
  • the enzyme 30 is added with a necessary amount of enzyme in the enzyme liquefaction tank 21, the enzyme is not added in the first saccharification tank 52A at normal pressure for enzymatic saccharification.
  • the present invention is not limited to this.
  • the enzyme 30 is added, and monosaccharification is performed under normal pressure conditions. It may be promoted.
  • the biomass hydrothermal decomposition system 10D according to Example 2 shown in FIG. 4 the addition of the enzyme 30 can be performed at one place, so that the apparatus configuration is simpler than the system of FIG.
  • the sugar liquid 53A is stored in the first sugar liquid tank 61A, and then the solid residual liquid 62A such as lignin is separated by the first solid-liquid separator 54A, and then the sugar liquid 53A is the second sugar liquid. It is stored in the tank 63A.
  • ⁇ Sugar concentration process> the water 57A is removed from the sugar solution 53A by the water separator 56A provided with the RO membrane 56a to obtain a concentrated sugar solution 55A.
  • the concentrated sugar solution 55A becomes various organic raw materials in a post-process fermentation process (not shown).
  • the separated solid liquid 62A (62B) such as lignin is high in calories and can be used for fuel. Further, the solid residual liquid 62A (62B) such as lignin can be used for organic fertilizer use or chemical raw material use (use of lignin as an adhesive, etc.).
  • the method for producing a sugar liquid using the biomass raw material of the present invention supplies the biomass raw material 11 having cellulose, hemicellulose, and lignin from normal pressure to pressurized pressure.
  • 11 is hydrothermally decomposed by hydrothermal decomposition section 17 with pressurized hot water 15, lignin component and hemicellulose component are dissolved in the pressurized hot water 15, and then the biomass solid content extracted from the hydrothermal decomposition section 17 20 and the enzyme 30 are injected and put into an enzyme liquefaction tank 21 communicating with the hydrothermal decomposition unit 17, and a part thereof is liquefied by the enzyme to form a slurry biomass solids 24.
  • Enzymatic saccharification to obtain a sugar solution 53A, then separating the solids and then removing the water to efficiently produce the sugar solution from the biomass material It can be.
  • FIG. 6 is a schematic diagram illustrating a biomass hydrothermal decomposition system according to a third embodiment.
  • FIG. 7 is a schematic diagram illustrating another biomass hydrothermal decomposition system according to the third embodiment. As shown in FIG.
  • the biomass hydrothermal decomposition system 10 ⁇ / b> F is a hot water discharge including a biomass hot water soluble component discharged from the hydrothermal decomposition unit 17 in the biomass hydrothermal decomposition system 10 ⁇ / b> A of the first embodiment. It has a hot water discharge liquid introduction line L 11 for introducing the liquid 16 into the enzyme liquefaction tank 21 to which the enzyme 30 is added.
  • the saccharification / sugar concentration apparatus 50B shown in FIGS. 4 and 5 described in Embodiment 2 is not required, and the apparatus configuration can be simplified.
  • the biomass temperature is set so that the temperature of the enzyme liquefaction tank 21 is cooled to 140 ° C. or lower.
  • the temperature of the hot water discharge liquid 16 introduced according to the temperature of the solid content 20 and the capacity of the enzyme liquefaction tank 21 may be cooled by a cooling means (not shown) as necessary and set appropriately.
  • the cooling means 26 provided in the enzyme liquefaction tank 21 of the biomass hydrothermal decomposition system 10B shown in FIG. 2 described above may be installed as necessary.
  • biomass solids 20 that is insoluble in hot water which is a hexose raw material
  • an effluent 16 containing soluble components in biomass hot water, which is a pentose raw material is dropped into an effluent 16 containing soluble components in biomass hot water, which is a pentose raw material, and mixed in a slurry form.
  • a liquefied product 27 is obtained. Thereby, a saccharification process can be performed by a single line.
  • FIG. 7 is a schematic diagram illustrating a biomass hydrothermal decomposition system 10 ⁇ / b> G according to the third embodiment.
  • the biomass hydrothermal decomposition system 10G is a biomass hydrothermal decomposition system further including a saccharification / sugar concentration device 50 in the biomass hydrothermal decomposition system 10F.
  • This saccharification / sugar concentration apparatus 50 separates the solid liquefaction product 27 partially saccharified by the enzyme 30 from the saccharification tank 52 that further enzymatically saccharifies the enzyme 30 and the sugar solution 53 after saccharification.
  • RO reverse osmosis
  • the solid-liquid separation device 54 may be, for example, a screw decanter, a sand filtration device, an MF membrane or the like, which is used alone or in combination, thereby removing solids and protecting the RO membrane 56a. Further, by using an ultrafiltration membrane (UF membrane) on the upstream side of the RO membrane 56a, the RO membrane can be protected and the enzyme can be recovered, and the enzyme can be reused.
  • UF membrane ultrafiltration membrane
  • a loose RO membrane may be used for the water separation device 56.
  • NF membrane nanofiltration membrane
  • the mixed liquefied product 27 is a mixture of the biomass solids 20 that is insoluble in hot water that becomes the hexose raw material and the effluent 16 that contains the soluble components in biomass hot water that becomes the pentose raw material, C6 Saccharification and C5 saccharification proceed on the same line.
  • the separated solid residue 62 such as lignin has a high calorie and can be used for fuel.
  • the solid residue 62 such as lignin can be used for organic fertilizer use or chemical raw material use (use of lignin as an adhesive, etc.).
  • the method for producing a sugar solution using the biomass raw material of the present invention supplies the biomass raw material 11 having cellulose, hemicellulose and lignin from normal pressure to pressurized pressure.
  • the hydrothermal decomposition unit 17 communicates with the enzyme 30 and the effluent 16 introduced into the enzyme liquefaction tank 21 to form a mixed liquefied product 27 partially liquefied by the enzyme 30.
  • the enzymatic saccharification is completed in the saccharification tank 52 to obtain the sugar solution 53, the solid content is separated, and then the water is removed to remove the water.
  • the sugar solution 53 can be efficiently produced from mass raw material 11.
  • the discharge liquid 16 when slurried in the enzyme liquefaction tank 21, the discharge liquid 16 can be used to eliminate the introduction of water from the outside, so that the saccharification concentration can be increased from 1.5 wt% to 8 wt%, for example. it can.
  • the sugar concentration apparatus installed on the downstream side is unnecessary or the sugar concentration apparatus can be made compact.
  • the cellulose-based component and the hemicellulose component are decomposed from the biomass raw material in a solid-liquid contact state, and then the biomass solid content 20 as the decomposition product is put into the enzyme liquefaction tank 21.
  • the pressurization gas By throwing it into the injected liquid, it is made into a slurry and a liquid seal is made, and the pressurization gas can be prevented from flowing out.
  • pressurizing gas for example, pressurized nitrogen or pressurized air
  • the effluent 16 discharged from the hydrothermal decomposition unit 17 is introduced into the enzyme liquefaction tank 21, it is not necessary to make a slurry using water from the outside.
  • the enzyme 30 is put into the enzyme liquefaction tank 21 to be partially saccharified in a pressurized state, and the partially liquefied mixed liquefied product 27 is extracted from the pressurized state to the normal pressure state, so that a saccharification tank in a normal pressure state is obtained. Since saccharification is performed at 52, the efficiency of the saccharification treatment is improved.
  • the water in the entire plant is obtained by using the hot water discharge liquid 16 and the enzyme liquefaction using the enzyme 30 without supplying water from the outside during slurrying. Consumption can be greatly reduced, and the cost can be reduced. Moreover, since it saccharifies using the mixed liquefaction material 27 which mixed the slurry-like biomass solid content 20 used as the hexose raw material, and the hot water discharge
  • the saccharification is performed using the mixed liquefied product 27 obtained by mixing the slurry-like biomass solids 20 serving as the hexose raw material and the hot water discharge liquid 16 serving as the pentose raw material, the mixing ability of the enzyme and the biomass is good. Therefore, the enzyme works more efficiently, the amount of enzyme consumed in saccharification can be reduced, and as a result, the cost of using the enzyme can be reduced.
  • the saccharification line can be formed in the conventional 2 A single line of one system can be used instead of a system, the enzymatic saccharification process is simplified, and the equipment cost and running cost can be reduced.
  • the water consumption can be reduced, the amount of waste liquid generated can be reduced, and the waste liquid treatment cost can be reduced.
  • FIG. 8 is a schematic diagram illustrating a biomass hydrothermal decomposition system according to a fourth embodiment.
  • the biomass hydrothermal decomposition system 10 ⁇ / b> H is provided with a filter 71 in the hot water discharge liquid introduction line L 11 in the biomass hydrothermal decomposition system 10 ⁇ / b> G of the third embodiment.
  • this filter 71 solid components such as lignin in the hot water discharge liquid 16 are separated. This prevents glycation inhibition by lignin.
  • FIG. 9 is a schematic diagram illustrating a biomass hydrothermal decomposition system according to a fifth embodiment.
  • hydrothermal decomposition system 10I of biomass in the hydrothermal decomposition system 10G of the biomass of Example 3, the discharged hot water introduction line L 11, is provided an ion exchange membrane filter 72.
  • ion exchange membrane filter 72 By installing this ion exchange membrane filter 72, acidic substances that are soluble in the hot water discharge liquid 16 are removed by ion exchange. This prevents saccharification inhibition by acidic substances.
  • FIG. 10 is a schematic diagram illustrating a biomass hydrothermal decomposition system according to a sixth embodiment.
  • the biomass hydrothermal decomposition system 10 ⁇ / b> J is a water return line that returns the water 57 separated from the water separation device 56 to the enzyme liquefaction tank 21 in the biomass hydrothermal decomposition system 10 ⁇ / b> G of the third embodiment. it is those having the L 5.
  • a cooler 60 is interposed in the water return line L 5 so that the water 57 is cooled to a predetermined temperature and then returned to the enzyme liquefaction tank 21.
  • FIG. 11 is a schematic diagram illustrating a biomass hydrothermal decomposition system according to a seventh embodiment.
  • the biomass hydrothermal decomposition system 10J of Example 6 the biomass hydrothermal decomposition system 10K further provided a biological treatment device 61 in the water return line L 5 to biologically treat the water 57. Then, it returns to the enzyme liquefaction tank 21.
  • the water 57 separated by the RO membrane 56a in the sugar concentration step contains a reaction inhibitory substance (low molecular organic compound), it can be easily treated by the biological treatment device 61. Then, for example, by using a methane fermentation biological treatment apparatus as the biological treatment apparatus 61, methane can be recovered and used for fuel or the like.
  • a reaction inhibitory substance low molecular organic compound
  • the biomass solids 20 is easily handled by enzymatic saccharification, which is suitable for the subsequent saccharification step, and is efficient.
  • a sugar solution (C6 sugar, C5 sugar) can be produced.
  • sugar solution for example, LPG, fuel for aircraft, jet fuel for aircraft, kerosene, diesel oil, various heavy oils, fuel gas, naphtha, naphtha decomposition product ethylene glycol, lactic acid, alcohol (ethanol etc.), Various organic raw materials such as amine, alcohol ethoxylate, vinyl chloride polymer, alkylaluminum, PVA, vinyl acetate emulsion, polystyrene, polyethylene, polypropylene, polycarbonate, MMA resin, nylon, polyester, etc. (eg alcohols, petroleum substitutes, amino acids, etc.) ) Can be produced efficiently. Therefore, the sugar solution derived from biomass can be efficiently used as a substitute for a chemical product derived from crude oil, which is a depleted fuel, and as a raw material for producing the substitute.
  • the reaction can be efficiently stopped by cooling the biomass solids by direct heat exchange with the liquid, and residual hemicellulose due to the hot water accompanying the biomass solids, residual The excessive decomposition of lignin and main component cellulose is suppressed. As a result, it is possible to suppress the generation of reaction-inhibiting components and improve the recovery rate of cellulose.
  • Biothermal decomposition system of biomass 11 Biomass raw material 12 Biomass supply unit 13 Main body 14 First screw means 15 Pressurized hot water 16 Hot water discharge liquid 17 Hydrothermal decomposition unit 18 Biomass solid content extraction unit 20 Biomass solid content extraction unit 20 Minute 21 Enzyme liquefaction tank 22 Stirring means 23 Discharge part 24 Liquefied biomass solid content 25 Pressurized nitrogen 27 Mixed liquefied product 30 Enzyme

Abstract

 セルロース、ヘミセルロース及びリグニンを有するバイオマス原料11を常圧下から加圧下に供給するバイオマス供給部12と、バイオマス原料11を加圧熱水(以下、「熱水」ともいう)15により水熱分解し、加圧熱水15中にリグニン成分及びヘミセルロース成分を溶解する水熱分解部17と、前記水熱分解部17からバイオマス固形分20を抜出するバイオマス固形分抜出部18と、バイオマス固形分抜出部18と連通すると共に、抜出したバイオマス固形分20が投入されると共に、バイオマス固形分20に酵素30を供給してバイオマス固形分20を液化する酵素液化槽21と、液化されたバイオマス固形分24を加圧下から常圧下へ排出する排出部23とを有する。

Description

バイオマスの水熱分解システム、バイオマス原料を用いた糖液生産方法及びアルコール製造方法
 本発明は、バイオマス原料を効率よく分解することができるバイオマスの水熱分解システム、バイオマス原料を用いた糖液生産方法及びアルコール製造方法に関する。
 従来、希硫酸、濃硫酸による木材等のバイオマスの糖化処理後、固液分離し、液相を中和処理し、エタノール発酵等の原料として利用するエタノール等の製造技術が実用化されている(特許文献1、特許文献2)。
 また、糖を出発原料として、化学工業原料生産(例えば乳酸発酵等)も考えられる。
 ここで、バイオマスとは、地球生物圏の物質循環系に組み込まれた生物体又は生物体から派生する有機物の集積をいう(JIS K 3600 1258参照)。
 ここで、現在アルコール原料として用いられているサトウキビ、トウモロコシ等は本来食用に供されるものであるが、これらの食用資源を長期的、安定的に工業用利用資源とすることは、有効食料品のライフサイクルの観点から、好ましくない。
 このため、将来的に有用な資源と考えられる草本系バイオマスや木質系バイオマスのようなセルロース系資源を有効活用するのは、重要な課題である。
 また、セルロース系資源では、セルロースは38~50%、ヘミセルロース成分が23~32%と様々で、発酵原料にならないリグニン成分も15~22%とそれぞれ異なっている。多くの課題を抱えたままの工業化研究のため、原料は固定的に想定されており、原料の汎用性を考慮した生産システムの技術の開示は未だないのが現状である。
 さらに、元来、澱粉原料に較べて発酵原料に不利な原料で、ごみ問題、地球温暖化防止対応などを目標に考えるのであるから、原料を固定的に考えた生産システムでは意味が薄れる。広く一般の廃棄物に適用できなければならない。酵素糖化法そのものも、効率が悪く、将来課題とされているのが現状である。酸処理による糖化率も、過剰反応による糖の過分解などで、およそ75%(糖化可能成分基準)前後とかなり小さい値となっている。従って、セルロース系資源に対して、エタノール生産収率はおよそ25%に止まっている(特許文献3)。
 なお、特許文献1乃至3の従来の技術では、副反応生成物が酵素糖化阻害を引起し糖収率が減少する現象が起きていたので、酵素糖化阻害物質を除去し、セルロース主体による酵素糖化性を高める水熱分解装置の提案を先にした(特許文献4乃至7)。
特表平9-507386号公報 特表平11-506934号公報 特開2005-168335号公報 特開2009-183805号公報 特開2009-183154号公報 特許第4764527号公報
 前述した特許文献6における水熱分解装置の提案では、酵素液化槽でスラリー化する場合には、外部から水を供給するので、プラント全体における水使用量が嵩み、プラントの経済性が悪化するという、問題がある。
 本発明は、前記課題に鑑み、プラント効率の向上したバイオマスの水熱分解システム、バイオマス原料を用いた糖液生産方法及びアルコール製造方法を提供する。
 上述した課題を解決するための本発明の第1の発明は、セルロース、ヘミセルロース及びリグニンを有するバイオマス原料を常圧下から加圧下に供給するバイオマス供給部と、バイオマス原料を加圧熱水により水熱分解し、加圧熱水中にリグニン成分及びヘミセルロース成分を溶解する水熱分解部と、前記水熱分解部からバイオマス固形分を抜出するバイオマス固形分抜出部と、バイオマス固形分抜出部と連通すると共に、抜出したバイオマス固形分が投入されると共に、バイオマス固形分に酵素を供給してバイオマス固形分を液化する酵素液化槽とを有することを特徴とするバイオマスの水熱分解システムにある。
 第2の発明は、第1の発明において、前記水熱分解部が、装置本体の一端側から供給されたバイオマス原料を、該装置本体の内部にて搬送手段により装置本体の他端側へ搬送すると共に、前記バイオマス原料の供給箇所と異なる他端側から加圧熱水を装置本体の内部に供給し、前記バイオマス原料と加圧熱水とを対向接触させつつ水熱分解し、排出する加圧熱水である熱水排出液中に熱水溶解成分を移行し、前記バイオマス原料中からリグニン成分及びヘミセルロース成分を分離してなることを特徴とするバイオマスの水熱分解システムにある。
 第3の発明は、第1又は2の発明において、前記液化されたバイオマス固形分を糖化する第1の糖化槽を有することを特徴とするバイオマスの水熱分解システムにある。
 第4の発明は、第1乃至3のいずれか一つの発明において、前記水熱分解部からの熱水排出液を糖化する第2の糖化槽を有することを特徴とするバイオマスの水熱分解システムにある。
 第5の発明は、第3の発明において、前記第1の糖化槽で糖化後の糖液から、固体分を分離する第1の固液分離装置と、固体分離後の糖液から、水を除去する第1の水分分離装置とを有することを特徴とするバイオマスの水熱分解システムにある。
 第6の発明は、第4の発明において、前記第2の糖化槽で糖化後の糖液から、固体分を分離する第2の固液分離装置と、固体分離後の糖液から、水を除去する第2の水分分離装置とを有することを特徴とするバイオマスの水熱分解システムにある。
 第7の発明は、第1の発明において、前記水熱分解部から排出されるバイオマス熱水可溶分を含む熱水排出液を、前記酵素液化槽へ導入する排出液導入ラインを有してなり、
 前記液化されたバイオマス固形分を熱水排出液で混合して混合液化物とすることを特徴とするバイオマスの水熱分解システムにある。
 第8の発明は、第7の発明において、前記排出液導入ラインに、フィルタを介装してなることを特徴とするバイオマスの水熱分解システムにある。
 第9の発明は、第7の発明において、前記排出液導入ラインに、冷却手段を介装することを特徴とするバイオマスの水熱分解システムにある。
 第10の発明は、第7の発明において、前記酵素糖化で液化した混合液化物を用いて糖化する糖化槽を有することを特徴とするバイオマスの水熱分解システムにある。
 第11の発明は、第10の発明において、前記糖化槽で糖化した後の糖液から、固体分を分離する固液分離装置と、固体分離後の糖液から、水を除去する水分分離装置とを有することを特徴とするバイオマスの水熱分解システムにある。
 第12の発明は、セルロース、ヘミセルロース及びリグニンを有するバイオマス原料を常圧下から加圧下に供給し、前記バイオマス原料を加圧熱水により水熱分解部により水熱分解し、前記加圧熱水中にリグニン成分及びヘミセルロース成分を溶解させ、その後、前記水熱分解部から抜出したバイオマス固形分に、酵素が投入され、前記水熱分解部と連通する酵素液化槽にて、バイオマス固形分を液化し、次いで、液化されたバイオマス固形分を酵素により単糖化し、単糖の糖液を生産することを特徴とするバイオマス原料を用いた糖液生産方法にある。
 第13の発明は、第12の発明において、前記バイオマス固形分の酵素液化を加圧条件下で行うと共に、前記液化されたバイオマス固形分を抜出し、常圧条件下で酵素単糖化することを特徴とするバイオマス原料を用いた糖液生産方法にある。
 第14の発明は、第12の発明において、前記酵素液化槽に、前記水熱分解部から排出されるバイオマス熱水可溶分を含む熱水排出液を投入しつつ混合液化物とすることを特徴とするバイオマス原料を用いた糖液生産方法にある。
 第15の発明は、第14の発明において、前記単糖の糖液の生産を常圧条件下で酵素糖化することを特徴とするバイオマス原料を用いた糖液生産方法にある。
 第16の発明は、第12乃至15のいずれか一つのバイオマス原料を用いた糖液製造方法により得られた糖液を用いてアルコール発酵を行い、アルコールを製造することを特徴とするアルコール製造方法にある。
 本発明によれば、水熱分解部で、加圧熱水中にリグニン成分及びヘミセルロース成分を溶解させたバイオマス固形分に酵素を供給し、該バイオマス固形分を液化させ、該液化物で液体シールがなされ、水熱分解部の加圧気体の流出を防止することができる。
 また、外部より水を供給して、スラリー化させる必要がなくなるので、スラリー化処理する際の水の導入量を低減することとなり、プラント効率の向上を図ることができる。
図1は、実施例1に係るバイオマスの水熱分解システムの概略図である。 図2は、実施例1に係る他のバイオマスの水熱分解システムの概略図である。 図3は、実施例1に係る他のバイオマスの水熱分解システムの概略図である。 図4は、実施例2に係るバイオマスの水熱分解システムの概略図である。 図5は、実施例2に係る他のバイオマスの水熱分解システムの概略図である。 図6は、実施例3に係るバイオマスの水熱分解システムの概略図である。 図7は、実施例3に係る他のバイオマスの水熱分解システムの概略図である。 図8は、実施例4に係るバイオマスの水熱分解システムの概略図である。 図9は、実施例5に係るバイオマスの水熱分解システムの概略図である。 図10は、実施例6に係るバイオマスの水熱分解システムの概略図である。 図11は、実施例7に係るバイオマスの水熱分解システムの概略図である。 図12は、バイオマスを熱水で水熱分解する垂直型の水熱分解装置の模式図である。 図13は、バイオマスの熱水による分解の様子を示す図である。 図14は、バイオマス固形分の酵素による液化及び単糖化の糖化工程の模式図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 本発明に係るバイオマスの水熱分解システムについて、図面を参照して説明する。
 図1は、実施例1に係るバイオマスの水熱分解システムの概略図である。図2及び3は、実施例1に係る他のバイオマスの水熱分解システムの概略図である。
 先ず、図1に示すように、本実施例に係るバイオマスの水熱分解システム10Aは、セルロース、ヘミセルロース及びリグニンを有するバイオマス原料11を常圧下から加圧下に供給するバイオマス供給部12と、バイオマス原料11を加圧熱水(以下、「熱水」ともいう)15により水熱分解し、加圧熱水15中にリグニン成分及びヘミセルロース成分を溶解する水熱分解部17と、前記水熱分解部17からバイオマス固形分20を抜出するバイオマス固形分抜出部18と、バイオマス固形分抜出部18と連通すると共に、抜出したバイオマス固形分20が投入されると共に、バイオマス固形分20に酵素30を供給してバイオマス固形分20を液化する酵素液化槽21と、液化されたバイオマス固形分24を加圧下から常圧下へ排出する排出部23とを有するものである。
 前記水熱分解部17としては、バイオマス原料11を高温・高圧条件で分解処理する公知の水熱処理装置を用いることができる。図1を用いて水熱分解システムの一例を説明するが、本発明はこの水熱分解システムに限定されるものではない。
 図1に示すように、本実施例に係る水熱分解システムでは、水熱分解部17に供給されたバイオマス原料11を、下方から装置本体13の内部にて、搬送手段である第1のスクリュー手段14により上方へ搬送すると共に、前記バイオマス原料11の供給箇所と異なる上方の側から加圧熱水15を装置本体13の内部に供給し、前記バイオマス原料11と加圧熱水15とを対向接触させつつ水熱分解し、排出する加圧熱水である熱水排出液16中に熱水溶解成分(リグニン成分及びヘミセルロース成分)を移行し、前記バイオマス原料11中からリグニン成分及びヘミセルロース成分を分離してなるものである。
 ここで、搬送手段としては、本実施例ではスクリュー手段を例示しているが、バイオマス固形分20を下方から上方に搬送することができるものであれば、スクリュー手段に限定されるものではなく、例えば圧密充填により徐々に押し出す方法としてもよい。
 また、本実施例では、バイオマス固形分20を、装置の一端の下方側から他端の上方側に搬送手段により搬送すると共に熱水を装置の他端の上方側から供給しているが、本発明はこれに限定されず、バイオマス固形分20を上方側から供給し、熱水を下方側から供給して対向接触させるようにしてもよい。
 本実施例では、酵素液化槽21に投入される酵素30により、抜出されたバイオマス固形分20が一部液化され、液面が形成されるので、加圧用の加圧窒素25のリークを防止する目的としての液体シールが可能となる。
 また、酵素反応を円滑に行うためには、図2に示す実施例に係るバイオマスの水熱分解システム10Bに示すように、酵素液化槽21に冷却手段26を設けるようにしても良い。なお、高温耐性酵素を用いる場合には、冷却手段を不要としてもよい。冷却手段26としては、外部側又は内部側のいずれか一方又は両方で酵素が性能を示す温度に酵素液化槽21内を冷却するようにすればよい。
 また、冷却手段26で冷却することで、バイオマス固形分20に同伴する水分中に含まれるヘミセルロースの過分解(分解開始温度約140℃~180℃)を抑制することが可能となる。
 このため、図3に示す実施例に係るバイオマスの水熱分解システム10Cに示すように、水32を酵素液化槽21に別途供給し、内部を冷却するとともに、液化されたバイオマス固形分24の水分調整を実施してもよい。この場合、供給する水32は、例えば0℃~60℃の範囲内で通常用いられる水(例えば純水、工業用水等又は純水、工業用水等をクーリングタワー水やチラー水等を利用して冷却したもの)等を用いることができる。また、システムにおける分離した水を循環して再利用することもできる。
 ここで、図1中、符号18aはバイオマス固形分抜出部18と酵素液化槽21とを連通する通路、22は酵素液化槽21内部を攪拌する撹拌手段、13aは水熱分解部17の気液界面、21aは酵素液化槽21の気液界面、L1は抜出しライン、M1は第1のスクリュー手段14を駆動するモータ、M2は撹拌手段22を駆動するモータを各々図示する。
 次に、バイオマス原料11を水熱分解部17により水熱分解する概要を説明する。図12は、バイオマスを熱水で水熱分解する垂直型の水熱分解装置の模式図であり、図13は、バイオマスの熱水による分解の様子を示す図である。
 水熱分解部17では、バイオマス原料11と加圧熱水15とを対向接触するように供給して、内部熱交換で水熱反応させている。図12において、対向接触領域Xと、非対向接触領域Yとを示し、非対向接触領域Yでも高温・高圧状態のままであり、前記非対向接触領域Yにてもバイオマス固形分20の水熱分解反応は進行することとなり、時に過分解となることもある。
 図12に示すように、垂直型の水熱分解装置では、バイオマス原料(固体)11を下部側から装置本体13内部に供給し、内部に設けた第1のスクリュー手段14により上方側に移動させ、上部側からバイオマス固形分(熱水不可溶分)20をバイオマス固形分抜出部18を介して、酵素30が供給されて形成される酵素液化槽21の液体21b中に落下させている。
 図13に示すように、バイオマス(セルロース系原料)原料11には、セルロース以外にヘミセルロースやリグニンが含まれている。具体的にはセルロースをヘミセルロースが束ね、リグニンが接着している構造を有している。
 バイオマスは水熱分解後には、熱水不溶分(固形分)と熱水可溶分とに分けられることとなる。熱水不溶分(バイオマス固形分20)は主にセルロース(C6糖の原料)であり、熱水可溶分(熱水排出液16)は主にヘミセルロース(C5糖の原料)であり、各々酵素により糖化することで糖を得ることができる。
 よって、バイオマス原料11が加圧熱水15により高温(180~240℃)の温度域で水熱分解され、熱水側にヘミセルロースを分解・溶解させると共に、リグニンも分解・溶解させており、その結果熱水側にはヘミセルロース等が溶解されることとなる。
 熱水に可溶化された後の熱水可溶化ヘミセルロースの状態では、140℃以上の温度域では過分解が生じる。
 このヘミセルロースの過分解は、C5糖の原料となるヘミセルロースの収率が低下するので、熱水可溶化分のヘミセルロースの過分解を抑制する必要がある。
 また、熱水中への過分解物の混入は、後流側設備における酵素による糖化工程及びアルコール発酵等の発酵工程での反応阻害要因となるので、この阻害物の発生を阻止することも必要となる。
 図1において、バイオマス固形分抜出部18には、図示しない第2のスクリュー手段が設けられ、第1のスクリュー手段14により下方から上方に搬送された熱水不溶分であるバイオマス固形分20を、酵素液化槽21側へ徐々に抜出している。そして、抜出されたバイオマス固形分20は通路18aから液体21b中に順次落下し、酵素液化槽21内に設けた攪拌手段22の攪拌により、液化が促進される。
 図14は、バイオマス固形分の酵素による液化及び単糖化の糖化工程の模式図である。14に基づき、糖化工程の概略について、説明する。
 図14に示すように、バイオマス固形分抜出部18から抜出されるバイオマス固形分20は、高分子量のオリゴマーの状態である。この高分子オリゴマーは難溶性である。
 この高分子オリゴマーに酵素が添加されると、該高分子オリゴマーの一部が分解し、低分子量のオリゴマーとなり、バイオマス固形分20に同伴する水分に可溶し、バイオマス液化状態となり、スラリー状となる。
 そして、この低分子量のオリゴマーをさらに時間をかけて酵素糖化させることで、単糖となる。
 よって、糖化工程は、この液化工程と単糖化工程とを併せたものとなる。
 ここで、本実施例では、酵素液化槽21は、加圧条件であるので、耐圧の圧力容器としている。
 この圧力容器は、製造コストがかかるので、糖化のために必要とする大容量の圧力容器とするのは費用がかかる。よって、圧力容器においては、液化工程のみを加圧条件としており、1~3時間で液化工程を終了している。そして、液化工程終了後に、酵素液化槽21の底部近傍に設けた排出部23を介して加圧条件から常圧条件へ排出している。
 そして、常圧条件下の糖化槽を用い、例えば47~71時間の糖化処理を実施し、単糖化を行い、バイオマス固形分20中のセルロースから6単糖を得るようにしている。
 なお、糖化工程の時間は、一例であり、糖化条件(温度、酵素の種類等)により、適宜設定される。
 また、酵素液化槽21内の液体21b中に、バイオマス固形分20が落下されることで、液体21bとの直接熱交換により冷却され、この結果、バイオマス固形分20に同伴した熱水による残留ヘミセルロース、残留リグニン及び主成分セルロースの過分解が抑制される。
 これは、水熱分解部17の気液界面13aの上方側のガス雰囲気内では、第1のスクリュー手段14によりバイオマス固形分20が熱水液面(気液界面13a)より上に露出される。しかしながら、バイオマス固形分20に同伴する加圧熱水15の存在により、高温・高圧状態で未だ反応が進行しているので、バイオマス固形分20を酵素液化槽21内の液体21b中に投入することで、反応停止させることができる。
 この反応停止によって、残留ヘミセルロース、残留リグニン及び主成分セルロースの過分解が抑制されることとなり、セルロース分の過分解が抑制されその回収率が向上すると共に、後流側における反応阻害成分の生成が抑制される。
 また、酵素液化槽21内に酵素30を供給し、酵素により液化により液体21bが存在するため、水熱分解部17の気液界面13aと、酵素液化槽21の気液界面21aとにおいて、液封止がなされることとなり、これにより加圧用気体(例えば、加圧窒素や加圧空気等)である加圧窒素25のリークが防止される。これにより、ガスリークに伴うロスがなくなり、加圧用気体にかかるランニングコストの大幅な削減を図ることができる。なお、酵素液化槽21には図示しない安全弁や加圧窒素25の流入通路が形成されている。
 また、バイオマス固形分20を酵素液化させることにより、一部低分子量のオリゴマーとすることで、流動化が可能となり、酵素液化槽21から外部へ排出する際の排出機構が簡易となる。すなわち、バイオマス固形分20が高温状態のままであると、排出機構の材質も例えば高価な材料を使用する必要があるが、酵素液化槽21で冷却するので、その排出側に設ける排出部23の材質を安価なステンレスや樹脂等を使用することができる。この排出部23としては、例えばロータリーフィーダ、流量調整弁等を用いることができる。
 また、バイオマス固形分20は空隙率が大きく、かさ密度が小さいので、固体のままでの取り扱い性が煩雑であったが、酵素液化により減容化を図ることができることとなり、取り扱い性も容易となる。
 すなわち、液体21bに添加する前では、バイオマス固形分20は、いわゆるケーキ状態又はスポンジ状態であり、加圧用気体の占める割合が多く空隙率が大きく、かさ密度が0.5g/cc以下と小さいものであった。これが酵素液化することで、空隙率が減少し、減容化を図ることとなる。
 さらに、バイオマス固形分20を酵素液化スラリー化させることにより、流動化が可能となり、その後の工程での取り扱いが容易となる。
 また、従来での流動性向上のためのスラリー化を行う場合には、多量の水を外部から投入する必要があり、その投入する水の量は、バイオマス重量の20倍程度となり、その得られる糖液濃度が小さいものであった。
 これに対し、本発明では、圧力容器である酵素液化槽21内で、バイオマス固形分20を直ちに酵素30により一部を液化することで、その必要とする水の量はバイオマス重量の4倍程度と抑えることができ、その分糖液濃度を高くすることができる。
 下記「表1」に、バイオマス固形分と水の量及び糖濃度の関係について、本発明品と従来品との比較について示す。なお、この比較例は例示であり、バイオマス原料の種類により変動するので、本発明はこれに限定されるものではない。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明品においては、酵素液化することで、水分量が従来の1/5(4/20)で済み、糖濃度を10%とすることができる。これは、従来のスラリー化の場合2.5%の4倍も濃度が濃い糖液を得ることができるものとなる。また、バイオマス固形分20に同伴する水分量を低減すれば更に濃い糖液を得ることも可能となる。
 この結果、糖化工程における固液分離によって分離される水の量も少ないものとなり、プラント効率が向上する。また、分離した水を別途排水処理する場合における排水量の大幅な低減を図ることができる。
 また、酵素液化槽21は攪拌手段22を設けているが、本発明はこれに限定されず、例えばポンプによる循環手段等で攪拌させるようにしてもよい。
 また、本実施例では、酵素液化槽21にはpH計31を設けている。
 このpH計31を設けることにより、酵素液化槽21の液体のpHを測定でき、酵素が効率的に糖化能力を示すpHに酸やアルカリを酵素液化槽21に加え、酵素液化槽21の液体のpHを調整し液化を効率的に行うことができる。
 また、pH計31を設けることで、スラリー状バイオマス固形分24中に残存する有機酸の有無を確認することができる。
 これにより、水熱分解により生じる有機酸(例えば酢酸等)の発生状況を監視することができる。
 また、酵素液化槽21の液体のpHが著しく小さくなる場合には、水熱分解により有機酸(酢酸等)が発生していることが判定でき、水熱分解部17の加圧熱水の温度制御を行うようにすればよい。
 また、pH計31によりpHを計測し、加圧熱水の供給量の制御を行い、水熱分解反応の制御を行うようにしてもよい。
 その他のpHに基づく水熱分解部17の制御としては、バイオマス原料11の供給量の制御(反応時間)によって水熱分解反応を制御する方法や、バイオマス原料11の第1のスクリュー手段14による掻揚げ速度(反応時間)の制御によって水熱分解反応を制御する方法や、装置本体13の気液界面13aの液レベル(反応時間)の制御によって水熱分解反応を制御する方法や、熱水排出液16の排出量の制御(反応時間)によって水熱分解反応を制御する方法等を行うことができる。
 ここで、前記水熱分解部17に供給するバイオマスとしては、特に限定されるものではなく、地球生物圏の物質循環系に組み込まれた生物体又は生物体から派生する有機物の集積をいう(JIS K 3600 1258参照)が、本発明では特に木質系の例えば広葉樹、草本系等のセルロース系資源や農業系廃棄物、食品廃棄物等を用いるのが好ましい。
 また、前記バイオマス原料11としては、粒径は特に限定されるものではないが、5mm以下に粉砕することが好ましい。
 本実施例では、バイオマスの供給前において、前処理装置として、例えば粉砕装置を用いて前処理するようにしてもよい。また、洗浄装置により洗浄するようにしてもよい。
 なお、バイオマス原料11として、例えば籾殻等の場合には、粉砕処理することなく、そのままバイオマス供給部12に供給することができるものとなる。
 また、水熱分解部17における、反応温度は140~240℃の範囲とするのが好ましい。さらに好ましくは180~230℃とするのがよい。
 これは、140℃未満の低温では、水熱分解速度が小さく、長い分解時間が必要となり、装置の大型化につながり、好ましくないからである。一方240℃を超える温度では、分解速度が過大となり、セルロース成分が固体から液体側への移行を増大すると共に、ヘミセルロース系糖類の過分解が促進され、好ましくないからである。
 また、ヘミセルロース成分は約140℃付近から、セルロースは約230℃付近から、リグニン成分は140℃付近から溶解するが、セルロースを固形分側に残し、且つヘミセルロース成分及びリグニン成分が十分な分解速度を持つ180℃~230℃の範囲とするのが良い。
 反応圧力は、装置本体13の反応温度(180~240℃)の各温度の水の飽和蒸気圧に、更に0.1~0.5MPaだけ高い圧力を加えることとするのが好ましい。
 また、反応時間は20分以下、3分~10分とするのが好ましい。これはあまり長く反応を行うと過分解物の割合が増大し、好ましくないからである。
 前記常圧下から加圧下に供給するバイオマス供給部12としては、例えば、スクリュー、ピストンポンプ又はスラリーポンプ等の手段を挙げることができる。
 また、水熱分解装置は、本実施例では、垂直型の装置としているが、本発明はこれに限定されるものではなく、気液界面13aを有する傾斜型の水熱分解装置としてもよい。
 ここで、水熱分解装置を傾斜型又は垂直型とするのは、水熱分解反応において発生したガスや原料中に持ち込まれたガス等が上方から速やかに抜けることができ好ましいからである。また、加圧熱水15で分解生成物を抽出するので、抽出効率の点において上方から下方に向かって抽出物の濃度が高まることとなり、好ましいものとなる。
 以上のように、本実施例によれば、バイオマス原料からセルロース主体の成分とヘミセルロース成分を固液接触状態で分解処理した後、その分解物であるバイオマス固形分20を酵素液化槽21の内部に供給して酵素液化することで、該バイオマス固形分20を液化させ、該液化物で液体シールがなされ、加圧用気体の流出を防止することができる。
 また、外部より多量の水を供給して、スラリー化させる必要がなくなるので、スラリー化処理する際の水の導入量を低減することとなり、プラント効率の向上を図ることができる。
 本実施例では、バイオマスの分解処理を行うバイオマス処理部として、水熱分解装置を用いて説明したが、本発明は、これに限定されるものではなく、例えばアルカリ分解処理バイオマス処理部(例えば水酸化ナトリウム、消石灰やアンモニアの利用による分解等)、酸分解処理バイオマス処理部(希硫酸による分解等)であっても、気液界面を有し、その処理の後のバイオマス固形分20を固体状態でバイオマス処理部より抜き出す際に、酵素30を添加する酵素糖化槽21を設置して、その処理したバイオマス固形分20をスラリー化させ、排出機構を介して加圧下から常圧へ排出するシステムに適用できる。
 次に、本発明に係るバイオマスの水熱分解システムの他の実施例について、図面を参照して説明する。なお、実施例1のバイオマスの水熱分解システムと同一部材については同一符号を付してその説明は省略する。
 図4は、実施例2に係るバイオマスの水熱分解システムを示す概略図である。
 図4に示すように、バイオマスの水熱分解システム10Dは、実施例1のバイオマスの水熱分解システム10Aにおいて、主にセルロース成分を含むバイオマス固形分20を六炭糖(C6糖)等に酵素糖化し、糖を濃縮するC6糖化・糖濃縮装置50Aと、主にヘミセルロース成分を含む熱水排出液16を五炭糖(C5糖)等に酵素糖化し、糖を濃縮するC5糖化・糖濃縮装置50Bとを有している。図4中、符号Mは撹拌手段を駆動するモータ、Pは送液ポンプを各々図示する。
 このC6糖化・糖濃縮装置50A、C5糖化・糖濃縮装置50Bは、酵素液化槽21において液化されたバイオマス固形分20を、酵素30によりさらに酵素糖化する第1の糖化槽52A、水熱分解部17からの熱水排出液16を酵素41により酵素糖化する第2の糖化槽40Bと、糖化後の糖液53A、42Bから、固体分を分離する第1の固液分離装置54A、第2の固液分離装置54Bと、第1の固液分離装置54A、第2の固液分離装置54Bで分離した糖液53A、42Bから水57a、57bを除去して、濃縮糖液55A、55Bを得る逆浸透(Reverse Osmosis:RO)膜56a、56bを備えた水分分離装置56A、56Bとを有するものである。
 前記第1の固液分離装置54A、第2の固液分離装置54Bは、例えばスクリューデカンタ、砂濾過装置、MF膜等を単独又は組合せて用いることができ、これにより固形物を除去してRO膜56a、56bの保護を図るようにしている。さらに、RO膜56a、56bの前段側において、限外濾過膜(Ultrafiltration Membrane:UF膜)を用いることで、RO膜56a、56bの保護を図ると共に酵素の回収が可能となり、酵素を再利用することができる。
 また、水分分離装置56A、56Bには、ルーズRO膜、ナノ濾過膜(Nanofiltration Membrane:NF膜)等を用いてもよい。
 本実施例では、酵素30は酵素液化槽21において、必要量の酵素を添加するようにしているので、酵素糖化する常圧の第1の糖化槽52Aにおいては、酵素添加をしていないが、本発明はこれに限定されるものではない。
 例えば、図5に示す実施例2に係る他のバイオマスの水熱分解システム10Eに示すように、第1の糖化槽52Aにおいて、酵素30を添加し、常圧条件のもとで、単糖化を促進するようにしてもよい。
 これに対し、図4に示す実施例2に係るバイオマスの水熱分解システム10Dでは、酵素30の添加を一箇所で行うことができるので、装置構成は図5のシステムよりも簡易となる。
 次に、このC6糖化・糖濃縮装置50A、C5糖化・糖濃縮装置50Bの処理工程の手順について説明する。
<酵素糖化工程>
 先ず、第1の糖化槽52Aにおいて、一部低分子量のオリゴマーを含む液化されたバイオマス固形分24が抜出しラインL1を介して導入され、酵素30がさらに添加され、酵素糖化工程における酵素反応による糖化がなされる。
 一方、前記第2の糖化槽40Bにおいては、熱水排出液供給ラインL6を介して熱水排出液16が導入され、酵素41が添加され、酵素糖化工程における酵素反応による糖化がなされる。
 なお、以下の工程は、C6糖及びC5糖の固液分離処理工程も同様であるので、C6糖化・糖濃縮装置50Aの処理工程について説明する。
<固液分離工程>
 次に、糖液53Aは第1の糖液タンク61Aに貯留され、その後、第1の固液分離装置54Aによりリグニン等の固形残液62Aが分離され、その後糖液53Aは第2の糖液タンク63Aに貯留される。
<糖濃縮工程>
 次に、糖液53Aは、RO膜56aを備えた水分分離装置56Aにより水57Aが除去され、濃縮糖液55Aを得る。
 この濃縮糖液55Aは図示しない後工程の発酵処理において、各種有機原料となる。
 酵素により液化されたバイオマス固形分24は、スラリー状であるため、撹拌・移送などを操作性よく行うことができる。 
 また、各種膜を用いた膜処理により、糖の濃縮を効率よく行うことができる。
 また、分離したリグニン等固形残液62A(62B)は、高カロリーであるので、燃料用に用いることができる。また、リグニン等固形残液62A(62B)は、有機肥料利用や化学原料利用(リグニンの接着剤としての利用等)に用いることができる。
 このように、本発明のバイオマス原料を用いた糖液生産方法は、図4及び5に示すように、セルロース、ヘミセルロース及びリグニンを有するバイオマス原料11を常圧下から加圧下に供給し、前記バイオマス原料11を加圧熱水15により水熱分解部17により水熱分解し、前記加圧熱水15中にリグニン成分及びヘミセルロース成分を溶解させ、その後、前記水熱分解部17から抜出したバイオマス固形分20と、酵素30が注入され、前記水熱分解部17と連通する酵素液化槽21に投入し、一部が酵素により液化してスラリー状バイオマス固形分24とし、前記スラリー状バイオマス固形分24を酵素糖化して糖液53Aを得た後、固形分を分離し、次いで水を除去することによりバイオマス原料から糖液を効率よく生産することができる。
 次に、本発明に係るバイオマスの水熱分解システムの他の実施例について、図面を参照して説明する。なお、実施例1乃至3のバイオマスの水熱分解システムと同一部材については同一符号を付してその説明は省略する。
 図6は、実施例3に係るバイオマスの水熱分解システムを示す概略図である。
 図7は、実施例3に係る他のバイオマスの水熱分解システムを示す概略図である。
 図6に示すように、バイオマスの水熱分解システム10Fは、実施例1のバイオマスの水熱分解システム10Aにおいて、前記水熱分解部17から排出されるバイオマス熱水可溶分を含む熱水排出液16を、酵素30を添加する酵素液化槽21へ導入する熱水排出液導入ラインL11を有するものである。
 本実施例によれば、実施例2で説明した図4、図5に示す糖化・糖濃縮装置50Bが不要となり、装置構成が簡素化できる。
 バイオマス固形分20が含有する水分中に含まれるヘミセルロースの過分解(分解開始温度約140℃~180℃)を抑制するためには酵素液化槽21の液温を140℃以下に冷却するよう、バイオマス固形分20の温度や酵素液化槽21の容量に応じて導入する熱水排出液16の温度を必要に応じて図示しない冷却手段により冷却し、適宜設定するようにすればよい。
 また、本実施例においても、前述した図2に示すバイオマスの水熱分解システム10Bの酵素液化槽21に設けた冷却手段26を、必要に応じて、設置するようにしてもよい。
 本実施例では、6炭糖原料となる熱水不可溶分であるバイオマス固形分20を、5炭糖原料となるバイオマス熱水可溶分を含む排出液16中に落下させてスラリー状の混合液化物27としている。これにより、糖化工程を単一のラインで行うことができる。
 次に、混合液化物27を用いて、酵素糖化し、糖を濃縮する糖化・糖濃縮装置50について、図7を用いて説明する。
 図7は、実施例3に係るバイオマスの水熱分解システム10Gを示す概略図である。
 図7に示すように、バイオマスの水熱分解システム10Gは、バイオマスの水熱分解システム10Fにおいて、さらに糖化・糖濃縮装置50を備えたバイオマスの水熱分解システムである。この糖化・糖濃縮装置50は、酵素30により一部が糖化されている混合液化物27を、酵素30によりさらに酵素糖化する糖化槽52、糖化後の糖液53から、固体分を分離する固液分離装置54と、固液分離装置54で分離した糖液53から水57を除去して、濃縮糖液55を得る逆浸透(Reverse Osmosis:RO)膜56aを備えた水分分離装置56とを有するものである。
 前記固液分離装置54は、例えばスクリューデカンタ、砂濾過装置、MF膜等を単独又は組合せて用いることができ、これにより固形物を除去してRO膜56aの保護を図るようにしている。さらに、RO膜56aの前段側において、限外濾過膜(Ultrafiltration Membrane:UF膜)を用いることで、RO膜の保護を図ると共に酵素の回収が可能となり、酵素を再利用することができる。
 また、水分分離装置56には、ルーズRO膜、ナノ濾過膜(Nanofiltration Membrane:NF膜)等を用いてもよい。
 次に、この糖化・糖濃縮装置50の処理工程の手順について説明する。
 混合液化物27は、6炭糖原料となる熱水不可溶分であるバイオマス固形分20と、5炭糖原料となるバイオマス熱水可溶分を含む排出液16との混合物であるので、C6糖化と、C5糖化とが同一ラインで進行することとなる。
<酵素糖化工程>
 先ず、糖化槽52において、酵素30により一部糖化された混合液化物27が抜出しラインL1を介して導入され、酵素30がさらに添加され、酵素糖化工程における酵素反応による糖化がなされる。
 なお、酵素30は、前述したように、酵素液化槽21において必要量添加している場合には、糖化槽52においては、添加する必要はない。
<固液分離工程>
 次に、糖液53は第1の糖液タンク61に貯留され、その後、固液分離装置54によりリグニン等の固形残液62が分離され、その後糖液53は第2の糖液タンク63に貯留される。図中、符号L3及びL4は糖液53を供給する糖液供給ラインを図示する。
<糖濃縮工程>
 次に、糖液53は、RO膜56aを備えた水分分離装置56により水57が除去され、濃縮糖液55を得る。
 この濃縮糖液55は図示しない後工程の発酵処理における各種有機原料となる。
 本実施例では、混合液化物27を用いて糖化しているので、低基質濃度での糖化となり、高速糖化が可能となる。
 また、スラリー状であるため、撹拌・移送などを操作性よく行うことができる。
 また、低基質濃度での糖化となるので、酵素使用量の削減を図ることができる。
 また、各種膜を用いた膜処理により、糖の濃縮を効率よく行うことができる。
 また、分離したリグニン等固形残液62は、高カロリであるので、燃料用に用いることができる。また、リグニン等固形残液62は、有機肥料利用や化学原料利用(リグニンの接着剤としての利用等)に用いることができる。
 このように、本発明のバイオマス原料を用いた糖液生産方法は、図7に示すように、セルロース、ヘミセルロース及びリグニンを有するバイオマス原料11を常圧下から加圧下に供給し、前記バイオマス原料11を加圧熱水15により水熱分解部17により水熱分解し、前記加圧熱水15中にリグニン成分及びヘミセルロース成分を溶解させ、その後、前記水熱分解部17から抜出したバイオマス固形分20を、前記水熱分解部17と連通すると共に、酵素30及び排出液16が導入された酵素液化槽21に投入し、酵素30により一部が液化された混合液化物27とし、この混合液化物27を加圧状態から常圧状態に抜出して、糖化槽52で酵素糖化を完了させ、糖液53を得た後、固形分を分離し、次いで水を除去することによりバイオマス原料11から糖液53を効率よく生産することができる。
 本実施例では、酵素液化槽21におけるスラリー化の際、排出液16を用いて、外部からの水の導入を無くすことができるので、糖化濃度を例えば1.5wt%から8wt%まで上げることができる。この結果、後流側において設置する糖液濃縮装置が不要又は糖液濃縮装置のコンパクト化を図ることができる。
 以上のように、本実施例によれば、バイオマス原料からセルロース主体の成分とヘミセルロース成分を固液接触状態で分解処理した後、その分解物であるバイオマス固形分20を酵素液化槽21の内部に注入した液体中に、投入することで、スラリー化させると共に、液体シールがなされ、加圧用気体の流出を防止することができる。これにより加圧用気体(例えば加圧窒素や加圧空気等)の流出が防止され、ランニングコストの大幅な削減を図ることができる。
 この際、酵素液化槽21には、水熱分解部17から排出される排出液16が導入されているので、外部からの水を用いてスラリー化することが不要となる。
 また、酵素液化槽21に酵素30を投入して、加圧状態で一部糖化させると共に、一部糖化された混合液化物27を加圧状態から常圧状態に抜出し、常圧状態の糖化槽52で糖化しているので、糖化処理の効率が向上する。
 以上、本実施例によれば、スラリー化の際に、外部からの水を供給することなく、熱水排出液16を用いると共に、酵素30を用いて酵素液化させることにより、プラント全体での水の消費量の大幅な低減が可能となり、コストダウンを図ることができる。
 また、6炭糖原料となるスラリー状バイオマス固形分20と、5炭糖原料となる熱水排出液16とを混合した混合液化物27を用いて糖化するので、1つの酵素糖化槽21から回収される糖の絶対量の増加を図ることができる。
 また、6炭糖原料となるスラリー状バイオマス固形分20と、5炭糖原料となる熱水排出液16とを混合した混合液化物27を用いて糖化するので、酵素とバイオマスの混合性が良くなるために酵素がより効率的に働き、糖化における酵素消費量が低減でき、結果的に酵素使用コストの低減を図ることができる。
 また、6炭糖原料となるスラリー状バイオマス固形分20と、5炭糖原料となる熱水排出液16とを混合した混合液化物27を用いて糖化するので、糖化ラインを従来のような2系統とせずに1系統の単一ラインとすることができ、酵素糖化工程が単純となり、設備費及びランニングコストの低減を図ることができる。
 また、水の消費量が低減できるので、廃液の発生量が低減でき、廃液処理コストの低減を図ることができる。
 次に、本発明に係るバイオマスの水熱分解システムの他の実施例について、図面を参照して説明する。なお、実施例3のバイオマスの水熱分解システムと同一部材については同一符号を付してその説明は省略する。
 図8は、実施例4に係るバイオマスの水熱分解システムを示す概略図である。
 図8に示すように、バイオマスの水熱分解システム10Hは、実施例3のバイオマスの水熱分解システム10Gにおいて、熱水排出液導入ラインL11に、フィルタ71を設けている。このフィルタ71を設置することにより、熱水排出液16中のリグニン等の固形分を分離するようにしている。これにより、リグニンによる糖化阻害を防止するようにしている。
 次に、本発明に係るバイオマスの水熱分解システムの他の実施例について、図面を参照して説明する。なお、実施例3のバイオマスの水熱分解システムと同一部材については同一符号を付してその説明は省略する。
 図9は、実施例5に係るバイオマスの水熱分解システムを示す概略図である。
 図9に示すように、バイオマスの水熱分解システム10Iは、実施例3のバイオマスの水熱分解システム10Gにおいて、熱水排出液導入ラインL11に、イオン交換膜フィルタ72を設けている。このイオン交換膜フィルタ72を設置することにより、熱水排出液16中に可溶している酸性物質をイオン交換により除去するようにしている。これにより、酸性物質による糖化阻害を防止するようにしている。
 次に、本発明に係るバイオマスの水熱分解システムの他の実施例について、図面を参照して説明する。なお、実施例3のバイオマスの水熱分解システムと同一部材については同一符号を付してその説明は省略する。
 図10は、実施例6に係るバイオマスの水熱分解システムを示す概略図である。
 図10に示すように、バイオマスの水熱分解システム10Jは、実施例3のバイオマスの水熱分解システム10Gにおいて、さらに前記水分分離装置56から分離した水57を酵素液化槽21に戻す水戻しラインL5を有するものである。
 また、この水戻しラインL5には冷却器60が介装されており、水57を所定温度まで冷却した後、酵素液化槽21に戻すようにしている。
 これにより、分離した水57を再利用することができる。
 次に、本発明に係るバイオマスの水熱分解システムの他の実施例について、図面を参照して説明する。なお、実施例1のバイオマスの水熱分解システムと同一部材については同一符号を付してその説明は省略する。
 図11は、実施例7に係るバイオマスの水熱分解システムを示す概略図である。
 図11に示すように、バイオマスの水熱分解システム10Kは、実施例6のバイオマスの水熱分解システム10Jにおいて、さらに、水戻しラインL5に生物処理装置61を設け、水57を生物処理した後、酵素液化槽21に戻すようにしている。
 糖濃縮工程でのRO膜56aで分離した水57には、反応阻害物質(低分子有機化合物)を含むので、生物処理装置61により容易に処理が可能となる。そして、生物処理装置61として、例えばメタン発酵生物処理装置を用いることにより、メタンを回収し、燃料等に利用が可能となる。
 以上、説明したように、本発明にかかるバイオマスの水熱分解システムによれば、バイオマス固形分20を酵素糖化させることでその取り扱いを容易とし、その後の糖化工程に適したものとなり、効率的な糖液(C6糖、C5糖)の製造を行うことができる。また、この糖液を基点として、例えばLPG、自動用燃料、航空機用ジェット燃料、灯油、ディーゼル油、各種重油、燃料ガス、ナフサ、ナフサ分解物であるエチレングリコール、乳酸、アルコール(エタノール等)、アミン、アルコールエトキシレート、塩ビポリマー、アルキルアルミニウム、PVA、酢酸ビニルエマルジョン、ポリスチレン、ポリエチレン、ポリプロピレン、ポリカーボネート、MMA樹脂、ナイロン、ポリエステル等の各種有機原料(例えばアルコール類、石油代替品類、又はアミノ酸類等)を効率よく製造することができる。よって、枯渇燃料である原油由来の化成品の代替品及びその代替品製造原料としてバイオマス由来の糖液を効率的に利用することができる。
 さらに、液体中にバイオマス固形分を投入するので、液体による直接熱交換によりバイオマス固形分を冷却することで反応停止を効率良く行うことができ、バイオマス固形分に同伴する熱水による残留ヘミセルロース、残留リグニン及び主成分セルロースの過分解が抑制される。この結果、反応阻害成分の生成抑制を図ると共に、セルロース分の回収率の向上を図ることができる。
 10A~10K バイオマスの水熱分解システム
 11 バイオマス原料
 12 バイオマス供給部
 13 装置本体
 14 第1のスクリュー手段
 15 加圧熱水
 16 熱水排出液
 17 水熱分解部
 18 バイオマス固形分抜出部
 20 バイオマス固形分
 21 酵素液化槽
 22 撹拌手段
 23 排出部
 24 液化されたバイオマス固形分
 25 加圧窒素
 27 混合液化物
 30 酵素

Claims (16)

  1.  セルロース、ヘミセルロース及びリグニンを有するバイオマス原料を常圧下から加圧下に供給するバイオマス供給部と、
     バイオマス原料を加圧熱水により水熱分解し、加圧熱水中にリグニン成分及びヘミセルロース成分を溶解する水熱分解部と、
     前記水熱分解部からバイオマス固形分を抜出するバイオマス固形分抜出部と、
     バイオマス固形分抜出部と連通すると共に、抜出したバイオマス固形分が投入されると共に、バイオマス固形分に酵素を供給してバイオマス固形分を液化する酵素液化槽とを有することを特徴とするバイオマスの水熱分解システム。
  2.  請求項1において、
     前記水熱分解部が、装置本体の一端側から供給されたバイオマス原料を、該装置本体の内部にて搬送手段により装置本体の他端側へ搬送すると共に、前記バイオマス原料の供給箇所と異なる他端側から加圧熱水を装置本体の内部に供給し、前記バイオマス原料と加圧熱水とを対向接触させつつ水熱分解し、排出する加圧熱水である熱水排出液中に熱水溶解成分を移行し、前記バイオマス原料中からリグニン成分及びヘミセルロース成分を分離してなることを特徴とするバイオマスの水熱分解システム。
  3.  請求項1又は2において、
     前記酵素液化槽で液化されたバイオマス固形分を糖化する第1の糖化槽を有することを特徴とするバイオマスの水熱分解システム。
  4.  請求項1乃至3のいずれか一つにおいて、
     前記水熱分解部からの熱水排出液を糖化する第2の糖化槽を有することを特徴とするバイオマスの水熱分解システム。
  5.  請求項3において、
     前記第1の糖化槽で糖化後の糖液から、固体分を分離する第1の固液分離装置と、
     固体分離後の糖液から、水を除去する第1の水分分離装置とを有することを特徴とするバイオマスの水熱分解システム。
  6.  請求項4において、
     前記第2の糖化槽で糖化後の糖液から、固体分を分離する第2の固液分離装置と、
     固体分離後の糖液から、水を除去する第2の水分分離装置とを有することを特徴とするバイオマスの水熱分解システム。
  7.  請求項1において、
     前記水熱分解部から排出されるバイオマス熱水可溶分を含む熱水排出液を、前記酵素液化槽へ導入する熱水排出液導入ラインを有してなり、
     前記液化されたバイオマス固形分を熱水排出液で混合して混合液化物とすることを特徴とするバイオマスの水熱分解システム。
  8.  請求項7において、
     前記熱水排出液導入ラインに、フィルタを介装してなることを特徴とするバイオマスの水熱分解システム。
  9.  請求項7において、
     前記排出液導入ラインに、冷却手段を介装することを特徴とするバイオマスの水熱分解システム。
  10.  請求項7において、
     前記酵素糖化槽で液化した混合液化物を用いて糖化する糖化槽を有することを特徴とするバイオマスの水熱分解システム。
  11.  請求項10において、
     前記糖化槽で糖化した後の糖液から、固体分を分離する固液分離装置と、
     固体分離後の糖液から、水を除去する水分分離装置とを有することを特徴とするバイオマスの水熱分解システム。
  12.  セルロース、ヘミセルロース及びリグニンを有するバイオマス原料を常圧下から加圧下に供給し、前記バイオマス原料を加圧熱水により水熱分解部により水熱分解し、前記加圧熱水中にリグニン成分及びヘミセルロース成分を溶解させ、その後、前記水熱分解部から抜出したバイオマス固形分に、酵素が投入され、前記水熱分解部と連通する酵素液化槽にて、バイオマス固形分を液化し、次いで、液化されたバイオマス固形分を酵素により単糖化し、単糖の糖液を生産することを特徴とするバイオマス原料を用いた糖液生産方法。
  13.  請求項12において、
     前記バイオマス固形分の酵素液化を加圧条件下で行うと共に、
     前記液化されたバイオマス固形分を抜出し、常圧条件下で酵素単糖化することを特徴とするバイオマス原料を用いた糖液生産方法。
  14.  請求項12において、
     前記酵素液化槽に、前記水熱分解部から排出されるバイオマス熱水可溶分を含む熱水排出液を投入しつつ混合液化物とすることを特徴とするバイオマス原料を用いた糖液生産方法。
  15.  請求項14において、
     前記単糖の糖液の生産を常圧条件下で酵素糖化することを特徴とするバイオマス原料を用いた糖液生産方法。
  16.  請求項12乃至15のいずれか一つのバイオマス原料を用いた糖液生産方法により得られた糖液を用いてアルコール発酵を行い、アルコールを製造することを特徴とするアルコール製造方法。
PCT/JP2012/067726 2012-07-11 2012-07-11 バイオマスの水熱分解システム、バイオマス原料を用いた糖液生産方法及びアルコール製造方法 WO2014010048A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2876108A CA2876108C (en) 2012-07-11 2012-07-11 Biomass hydrothermal decomposition system, saccharide solution production method using biomass raw material, and alcohol production method using biomass raw material
PCT/JP2012/067726 WO2014010048A1 (ja) 2012-07-11 2012-07-11 バイオマスの水熱分解システム、バイオマス原料を用いた糖液生産方法及びアルコール製造方法
AU2012385156A AU2012385156B2 (en) 2012-07-11 2012-07-11 Biomass hydrothermal decomposition system, sugar solution production method using biomass starting material, and alcohol production method using biomass starting material
BR112015000255-2A BR112015000255B1 (pt) 2012-07-11 2012-07-11 Sistema de produção de solução de sacarídeo utilizando uma matéria-prima de biomassa e método para produzir uma solução de sacarídeo usando uma matéria-prima de biomassa
JP2014524541A JP5911154B2 (ja) 2012-07-11 2012-07-11 バイオマス原料を用いた糖液生産システム及びバイオマス原料を用いた糖液生産方法
US14/411,473 US9982283B2 (en) 2012-07-11 2012-07-11 Saccharide solution production system, saccharide solution production method using biomass raw material, and alcohol production method using biomass raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/067726 WO2014010048A1 (ja) 2012-07-11 2012-07-11 バイオマスの水熱分解システム、バイオマス原料を用いた糖液生産方法及びアルコール製造方法

Publications (1)

Publication Number Publication Date
WO2014010048A1 true WO2014010048A1 (ja) 2014-01-16

Family

ID=49915550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067726 WO2014010048A1 (ja) 2012-07-11 2012-07-11 バイオマスの水熱分解システム、バイオマス原料を用いた糖液生産方法及びアルコール製造方法

Country Status (6)

Country Link
US (1) US9982283B2 (ja)
JP (1) JP5911154B2 (ja)
AU (1) AU2012385156B2 (ja)
BR (1) BR112015000255B1 (ja)
CA (1) CA2876108C (ja)
WO (1) WO2014010048A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042170A (ja) * 2013-07-26 2015-03-05 三協立山株式会社 エタノールの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096062A1 (ja) * 2008-02-01 2009-08-06 Mitsubishi Heavy Industries, Ltd. バイオマスの水熱分解装置及び方法
WO2009110374A1 (ja) * 2008-03-05 2009-09-11 東レ株式会社 多糖類系バイオマス由来化合物の製造方法
WO2012004894A1 (ja) * 2010-07-09 2012-01-12 三菱重工業株式会社 バイオマスの水熱分解システム及びバイオマス原料を用いた糖液生産方法
WO2012004895A1 (ja) * 2010-07-09 2012-01-12 三菱重工業株式会社 バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法
JP4875785B1 (ja) * 2011-01-13 2012-02-15 三菱重工業株式会社 糖液製造装置、発酵システム、糖液製造方法及び発酵方法
WO2012029182A1 (ja) * 2010-09-03 2012-03-08 三菱重工業株式会社 バイオマスの分解装置及び方法、バイオマス原料を用いた糖液製造システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348871A (en) 1992-05-15 1994-09-20 Martin Marietta Energy Systems, Inc. Process for converting cellulosic materials into fuels and chemicals
RU2159816C2 (ru) 1993-12-23 2000-11-27 Кэнтроулд Инвайерэнментл Систэмс Копэрейшн Способ производства этанола из целлюлозосодержащих отходов (варианты) и способ получения глюкозы из целлюлозосодержащих отходов
DE69634402D1 (de) 1995-06-07 2005-04-07 Arkenol Inc Verfahren zur hydrolyse mit hilfe einer starken säure
JP3802325B2 (ja) 2000-08-23 2006-07-26 信行 林 植物系バイオマスの加圧熱水分解方法とそのシステム
JP2005027541A (ja) 2003-07-09 2005-02-03 Toshiba Corp 単糖類及び/又はオリゴ糖類の製造方法及び木質成分の分離方法
US7504245B2 (en) 2003-10-03 2009-03-17 Fcstone Carbon, Llc Biomass conversion to alcohol using ultrasonic energy
JP2005168335A (ja) 2003-12-09 2005-06-30 National Institute Of Advanced Industrial & Technology 各種リグノセルロース資源からのエタノール生産システム
JP2005229821A (ja) 2004-02-17 2005-09-02 Jgc Corp バイオマスから単糖を製造する方法及び単糖製造装置
CA2654306C (en) 2008-02-01 2013-10-15 Mitsubishi Heavy Industries, Ltd. Biomass hydrothermal decomposition apparatus and method
JP4427584B2 (ja) 2008-02-01 2010-03-10 三菱重工業株式会社 バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
JP4524351B2 (ja) 2008-02-01 2010-08-18 三菱重工業株式会社 バイオマス原料を用いた有機原料の製造システム及び方法
WO2010038302A1 (ja) 2008-10-02 2010-04-08 三菱重工業株式会社 バイオマス原料を用いた有機原料の製造システム及び方法
JP4699566B1 (ja) 2010-03-10 2011-06-15 三菱重工業株式会社 バイオマスの水熱分解装置及びその温度制御方法、バイオマス原料を用いた有機原料の製造システム
CA2741598C (en) 2010-03-10 2013-04-30 Mitsubishi Heavy Industries, Ltd. Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass material
JP5854586B2 (ja) 2010-07-06 2016-02-09 三菱重工メカトロシステムズ株式会社 糖液を用いた発酵システム及び方法
JP5425348B1 (ja) 2012-03-29 2014-02-26 三菱重工メカトロシステムズ株式会社 バイオマスの処理システム、バイオマス原料を用いた糖液生産方法、アルコール製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096062A1 (ja) * 2008-02-01 2009-08-06 Mitsubishi Heavy Industries, Ltd. バイオマスの水熱分解装置及び方法
WO2009110374A1 (ja) * 2008-03-05 2009-09-11 東レ株式会社 多糖類系バイオマス由来化合物の製造方法
WO2012004894A1 (ja) * 2010-07-09 2012-01-12 三菱重工業株式会社 バイオマスの水熱分解システム及びバイオマス原料を用いた糖液生産方法
WO2012004895A1 (ja) * 2010-07-09 2012-01-12 三菱重工業株式会社 バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法
WO2012029182A1 (ja) * 2010-09-03 2012-03-08 三菱重工業株式会社 バイオマスの分解装置及び方法、バイオマス原料を用いた糖液製造システム
JP4875785B1 (ja) * 2011-01-13 2012-02-15 三菱重工業株式会社 糖液製造装置、発酵システム、糖液製造方法及び発酵方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042170A (ja) * 2013-07-26 2015-03-05 三協立山株式会社 エタノールの製造方法

Also Published As

Publication number Publication date
CA2876108C (en) 2016-11-22
JPWO2014010048A1 (ja) 2016-06-20
AU2012385156B2 (en) 2016-04-21
BR112015000255A2 (pt) 2017-06-27
JP5911154B2 (ja) 2016-04-27
US20150211038A1 (en) 2015-07-30
CA2876108A1 (en) 2014-01-16
AU2012385156A1 (en) 2015-01-22
BR112015000255B1 (pt) 2019-09-17
US9982283B2 (en) 2018-05-29

Similar Documents

Publication Publication Date Title
JP4764527B1 (ja) バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法
JP4764528B1 (ja) バイオマスの水熱分解システム及びバイオマス原料を用いた糖液生産方法
US9238827B2 (en) Biomass hydrothermal decomposition apparatus and method
JP6203815B2 (ja) バイオマスの処理システム
JP5425348B1 (ja) バイオマスの処理システム、バイオマス原料を用いた糖液生産方法、アルコール製造方法
JP6246876B2 (ja) バイオマス原料の処理方法、バイオマス原料を用いた糖液生産方法、アルコールの製造方法及び有機原料の製造方法
JP5911154B2 (ja) バイオマス原料を用いた糖液生産システム及びバイオマス原料を用いた糖液生産方法
JP5517560B2 (ja) バイオマス原料を用いた有機原料の製造システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524541

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2876108

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: IDP00201408219

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 14411473

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012385156

Country of ref document: AU

Date of ref document: 20120711

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015000255

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12880928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015000255

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150106