WO2009087724A1 - 単結晶製造装置 - Google Patents

単結晶製造装置 Download PDF

Info

Publication number
WO2009087724A1
WO2009087724A1 PCT/JP2008/003829 JP2008003829W WO2009087724A1 WO 2009087724 A1 WO2009087724 A1 WO 2009087724A1 JP 2008003829 W JP2008003829 W JP 2008003829W WO 2009087724 A1 WO2009087724 A1 WO 2009087724A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
cooling
cylinder
cooling cylinder
raw material
Prior art date
Application number
PCT/JP2008/003829
Other languages
English (en)
French (fr)
Inventor
Ryoji Hoshi
Kiyotaka Takano
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Priority to DE112008003609.8T priority Critical patent/DE112008003609B4/de
Priority to US12/744,606 priority patent/US9217208B2/en
Priority to CN2008801240240A priority patent/CN101910474B/zh
Publication of WO2009087724A1 publication Critical patent/WO2009087724A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1068Seed pulling including heating or cooling details [e.g., shield configuration]

Definitions

  • the present invention relates to an apparatus for producing a silicon single crystal by a Czochralski method (hereinafter abbreviated as CZ method).
  • FIG. 4 is a schematic sectional view showing an example of a conventional single crystal manufacturing apparatus.
  • a single crystal production apparatus 101 used for producing a silicon single crystal by the CZ method generally encloses the crucibles 106 and 107 capable of moving up and down, which contains a raw material melt 105, and the crucibles 106 and 107.
  • the heater 108 arranged in the main chamber 102 is arranged in the main chamber 102 for growing the single crystal 104, and a pulling chamber 103 for accommodating and taking out the grown single crystal is connected to the upper portion of the main chamber 102.
  • the crucibles 106 and 107 are supported by a crucible rotating shaft 118 that can be rotated up and down by a rotation drive mechanism (not shown) attached to the lower part of the single crystal manufacturing apparatus 101.
  • a heat insulating member 109 for preventing heat from the heater 108 from being directly radiated to the main chamber 102 is provided outside the heater 108 so as to surround the periphery.
  • an inert gas such as argon gas is introduced into the chamber from a gas inlet 111 provided at the top of the pulling chamber 103 for the purpose of discharging impurities generated in the furnace to the outside of the furnace, and the like.
  • the single crystal 104 and the raw material melt 105 pass through the inside of the chamber and are discharged from the gas outlet 110.
  • a rectifying cylinder 114 is provided for rectifying the inert gas so as to flow downstream from the vicinity of the crystal from above the melt.
  • the cooling cylinder 112 extends from at least the ceiling portion of the main chamber 102 toward the surface of the raw material melt 105 so as to surround the single crystal 104 being pulled up.
  • a cooling medium is introduced into the cooling cylinder 112 from a cooling medium inlet 113, and the cooling medium circulates in the cooling cylinder 112 to forcibly cool the cooling cylinder 112 and is then discharged to the outside.
  • the seed crystal 116 is immersed in the raw material melt 105 and gently lifted upward while rotating to grow a rod-shaped single crystal.
  • the crucibles 106 and 107 are raised in accordance with the crystal growth so that the height of the melt surface is always maintained at a constant position.
  • the seed crystal 116 attached to the seed holder 117 is immersed in the raw material melt 105, and then the seed crystal 116 is gently rotated while being rotated in a desired direction by a pulling mechanism (not shown).
  • the wire 115 is wound up to grow a single crystal 104 at the tip of the seed crystal 116.
  • the crystal in the initial stage of growth is once narrowed to about 3 to 5 mm, and the diameter is expanded to a desired diameter when the dislocation is removed. Then, the single crystal 104 having the desired quality is grown.
  • the pulling speed of the constant diameter portion having a constant diameter of the single crystal 104 depends on the diameter of the single crystal to be pulled, but is very slow, about 0.4 to 2.0 mm / min.
  • the growing single crystal is deformed and a cylindrical product having a constant diameter cannot be obtained.
  • slip dislocation occurs in the single crystal 104 or problems such as the single crystal 104 being separated from the melt and becoming a product occur, and there is a limit to increasing the crystal growth rate. .
  • increasing the growth rate of the single crystal 104 is one of the major means for improving the productivity and reducing the cost.
  • many improvements have been made to increase the growth rate of the single crystal 104.
  • the growth rate of the single crystal 104 is determined by the heat balance of the growing single crystal 104, and it is known that heat released from the surface of the single crystal can be efficiently removed in order to increase the growth rate. Yes. At this time, if the cooling effect of the single crystal 104 can be enhanced, a more efficient single crystal can be manufactured. Furthermore, it is known that the quality of the crystal changes depending on the cooling rate of the single crystal 104. For example, a grown-in defect formed during single crystal growth in a silicon single crystal can be controlled by the ratio of the temperature gradient in the crystal and the pulling rate (growth rate) of the single crystal. A defect-free single crystal can also be grown (see JP-A-11-157996). Therefore, it is important to enhance the cooling effect of the growing single crystal both in manufacturing defect-free crystals and in increasing productivity by increasing the growth rate of the single crystal.
  • the outside of the cooling cylinder is protected by a cooling cylinder protective material such as a protective cover such as a graphite material, and the heat of the single crystal can be efficiently removed from the inside of the cooling cylinder.
  • a cooling cylinder protective material such as a protective cover such as a graphite material
  • the cooling cylinder was not extended close to the melt surface for safety, and the cooling effect of the single crystal up to the cooling cylinder was somewhat weak.
  • Japanese Patent Application Laid-Open No. 6-199590 discloses a method of drawing a graphite material or the like by fitting into a cooling cylinder.
  • the cooling cylinder and the extending graphite cannot receive a sufficient cooling effect due to heat from the outside, and contact between the cooling cylinder and the graphite material is difficult, and heat transfer from the graphite material to the cooling cylinder is efficiently performed. could not.
  • the present invention has been made in view of the above-described problems, and provides a single crystal manufacturing apparatus capable of increasing the growth rate of a single crystal by efficiently cooling the growing single crystal. With the goal.
  • At least a crucible for storing a raw material melt and a main chamber for storing a heater for heating the raw material melt, and an upper portion of the main chamber are connected and grown.
  • a pulling chamber in which the single crystal is pulled up and accommodated, and cooling that is forced from at least the ceiling portion of the main chamber toward the surface of the raw material melt so as to surround the single crystal being pulled and forcibly cooled by a cooling medium A single crystal manufacturing apparatus for growing a single crystal by a Czochralski method having a cylinder, comprising at least a cooling auxiliary cylinder fitted inside the cooling cylinder, the cooling auxiliary cylinder penetrating in an axial direction There is provided a single crystal manufacturing apparatus having a cut and extending toward the surface of the raw material melt.
  • the single crystal production apparatus of the present invention has at least a cooling auxiliary cylinder fitted inside the cooling cylinder, the cooling auxiliary cylinder has a cut extending in the axial direction, and the raw material melt Since it extends toward the surface, the auxiliary cooling cylinder does not break due to thermal expansion and is closely attached to the cooling cylinder, and the heat absorbed from the growing single crystal by the auxiliary cooling cylinder is fitted. , And can be efficiently transmitted from the fitted portion to the cooling cylinder. Thereby, the growing single crystal can be efficiently cooled, and the growth rate of the single crystal can be increased.
  • the material of the auxiliary cooling cylinder is preferably any one of graphite material, carbon composite material (CC material), stainless steel, molybdenum, and tungsten.
  • the material of the auxiliary cooling cylinder is any one of a carbon material such as a graphite material and a carbon composite material (CC material), and a metal material such as stainless steel, molybdenum and tungsten, the heat from the single crystal is generated. It can be absorbed more efficiently. Moreover, the heat can be efficiently transmitted by the cooling cylinder. Moreover, heat resistance can also be made high.
  • a protective member is provided outside the cooling cylinder.
  • the protective member is provided outside the cooling cylinder, it is possible to reduce the radiant heat from the heater and the raw material melt directly hitting the outside of the cooling cylinder. Further, it is possible to prevent the raw material melt from scattering and adhering to the cooling cylinder. Thereby, the deterioration of the cooling cylinder can be prevented, the growing single crystal inside the cooling cylinder can be cooled more efficiently, and the effect of increasing the growth rate of the single crystal can be enhanced.
  • the material of the protective member is preferably any of graphite material, carbon fiber material, carbon composite material (CC material), stainless steel, molybdenum, and tungsten.
  • the material of the protective member is any one of a carbon material such as a graphite material, a carbon fiber material, and a carbon composite material (CC material), and a metal material such as stainless steel, molybdenum, and tungsten.
  • the emissivity can be increased, and the effect of reducing the radiant heat from the heater and the raw material melt directly hitting the cooling cylinder can be further enhanced.
  • heat resistance can also be made high.
  • a flow straightening cylinder extending below the cooling cylinder is provided.
  • the single crystal can be cooled by blocking the radiant heat from the heater and the raw material melt.
  • the cooling cylinder is prevented from approaching directly above the melt surface, ensuring safety and rectifying the inert gas downstream from the vicinity of the crystal from above the raw material melt.
  • the cooling effect of the single crystal by an inert gas can also be expected.
  • the growing single crystal can be cooled more efficiently, and the effect of increasing the growth rate of the single crystal can be enhanced.
  • the single crystal production apparatus of the present invention has at least a cooling auxiliary cylinder fitted inside the cooling cylinder, the cooling auxiliary cylinder has a cut extending in the axial direction, and faces the raw material melt surface. Since the cooling auxiliary cylinder is stretched, the cooling auxiliary cylinder does not break due to thermal expansion and fits tightly into the cooling cylinder, and the heat absorbed from the single crystal growing in the auxiliary cooling cylinder is fitted into the fitting. It is possible to efficiently transmit from the formed portion to the cooling cylinder. Thereby, the growing single crystal can be efficiently cooled, and the growth rate of the single crystal can be increased.
  • the present invention is not limited to this.
  • increasing the growth rate of the single crystal is one of the major means. Is known to efficiently remove the heat released from the surface of the single crystal. Also in the production of defect-free crystals, it is important to increase the cooling effect of the single crystal being grown.
  • the present inventor conducted intensive studies in order to enhance the cooling effect of the growing single crystal.
  • heat can be efficiently absorbed from the growing single crystal by the cooling auxiliary cylinder that fits inside the cooling cylinder and extends downward from the cooling cylinder toward the raw material melt surface.
  • the auxiliary cooling cylinder has a cut extending in the axial direction, so that when the auxiliary cooling cylinder expands due to heat, it is tightly fitted to the cooling cylinder without being damaged, and the contact area of both surfaces increases, The inventors have conceived that the heat absorbed from the single crystal can be efficiently transferred to the forcibly cooled cooling cylinder by sufficiently adhering, and thus the present invention has been completed.
  • the single crystal production apparatus of the present invention has at least a cooling auxiliary cylinder fitted inside a cooling cylinder that has been forcibly cooled, the cooling auxiliary cylinder having a cut extending in the axial direction, and Since it extends toward the liquid surface, the growing single crystal can be efficiently cooled, and the growth rate of the single crystal can be increased.
  • FIG. 1 is a schematic cross-sectional view showing an example of the single crystal production apparatus of the present invention.
  • a single crystal manufacturing apparatus 1 includes a crucible 6 and 7 for storing a raw material melt 5, a heater 8 for heating and melting a polycrystalline silicon raw material, and the like stored in a main chamber 2.
  • a pulling mechanism (not shown) for pulling up the grown single crystal 4 is provided on the upper portion of the pulling chamber 3 connected to the chamber 2.
  • a pulling wire 15 is unwound from a pulling mechanism attached to the upper part of the pulling chamber 3, and a seed holder 17 for attaching a seed crystal 16 is connected to the tip of the pulling wire 15 and attached to the tip of the seed holder 17.
  • the single crystal 4 is formed below the seed crystal 16 by immersing the seed crystal 16 in the raw material melt 5 and winding the pulling wire 15 by a pulling mechanism.
  • the crucibles 6 and 7 are composed of a quartz crucible 6 that directly accommodates the raw material melt 5 inside, and a graphite crucible 7 for supporting the crucible outside.
  • the crucibles 6 and 7 are supported by a crucible rotating shaft 18 that can be rotated and moved up and down by a rotation drive mechanism (not shown) attached to the lower part of the single crystal manufacturing apparatus 1, and the melt surface in the single crystal manufacturing apparatus 1.
  • a rotation drive mechanism (not shown) attached to the lower part of the single crystal manufacturing apparatus 1, and the melt surface in the single crystal manufacturing apparatus 1.
  • the crucible 6 is reduced by the amount of the melt reduced as the single crystal 4 is pulled while rotating in the opposite direction to the crystal. , 7 is raised.
  • a heater 8 is disposed so as to surround the crucibles 6 and 7, and a heat insulating member 9 for preventing heat from the heater 8 from being directly radiated to the main chamber 2 is provided outside the heater 8. It is provided so as to surround the periphery. Further, an inert gas such as argon gas is introduced into the chamber from the gas inlet 11 provided at the upper part of the pulling chamber 3 for the purpose of discharging impurities generated in the furnace to the outside of the furnace, and the like. The single crystal 4 and the raw material melt 5 are passed through the inside of the chamber and discharged from the gas outlet 10.
  • the main chamber 2 and the pulling chamber 3 are made of a metal having excellent heat resistance and thermal conductivity, such as stainless steel, and are water-cooled through a cooling pipe (not shown). Further, the cooling cylinder 12 extends from at least the ceiling portion of the main chamber 2 toward the surface of the raw material melt 5 so as to surround the single crystal 4 being pulled up. A cooling medium is introduced into the cooling cylinder 12 from a cooling medium introduction port 13, and the cooling medium circulates in the cooling cylinder 12 to forcibly cool the cooling cylinder 12 and is then discharged to the outside. When growing the single crystal, after immersing the seed crystal 16 attached to the seed holder 17 in the raw material melt 5, the seed crystal 16 is gently rotated while being rotated in a desired direction by a pulling mechanism (not shown).
  • the wire 15 is wound up to grow a single crystal 4 at the tip of the seed crystal 16.
  • the crystal in the initial stage of growth is once narrowed to about 3 to 5 mm, and the diameter is expanded to a desired diameter when the dislocations are removed. Then, the single crystal 4 having the desired quality is grown.
  • a dislocation-free seeding method in which the seed crystal 16 is gently brought into contact with the raw material melt 5 and immersed to a predetermined diameter using the seed crystal 16 having a sharp tip without performing the above-described seed squeezing is applied.
  • the single crystal 4 can be grown.
  • the single crystal manufacturing apparatus is provided with a cooling auxiliary cylinder 19 that is fitted inside the cooling cylinder 12, and the cooling auxiliary cylinder 19 is more than the cooling cylinder 12 toward the surface of the raw material melt 5. It extends downward. In this way, if the cooling auxiliary cylinder 12 that fits inside the cooling cylinder 12 and extends downward from the cooling cylinder 12 toward the surface of the raw material melt 5 is installed, the cooling auxiliary cylinder 19 is growing.
  • the single crystal 4 can be surrounded to the lower side, and heat can be efficiently absorbed from the single crystal 4.
  • FIG. 2 shows an example of a cooling auxiliary cylinder that can be used in the present invention.
  • the auxiliary cooling cylinder 19 has a cut 20 that penetrates in the axial direction.
  • the cooling auxiliary cylinder 19 can be attached and detached simply by making the inner diameter of the cooling cylinder 12 and the outer diameter of the cooling auxiliary cylinder 19 substantially the same.
  • the cooling auxiliary cylinder 19 can be easily attached and detached by having the slit 20 penetrating in the axial direction. Further, it is possible to prevent the cooling auxiliary cylinder 19 from being broken due to a difference in thermal expansion between the cooling cylinder 12 and the cooling auxiliary cylinder 19 during the growth of the single crystal 4.
  • the cooling cylinder 12 since the cooling cylinder 12 is forcibly cooled by the cooling medium, it does not expand so much even when heat is applied during crystal growth, but the cooling auxiliary cylinder 19 expands. Furthermore, since the cooling auxiliary cylinder 19 is thermally expanded by the thermal expansion of the cooling auxiliary cylinder 19, the contact area of both surfaces is increased and the both surfaces are in close contact with each other. Heat can be transferred efficiently.
  • the width of the cut 20 is less than 180 °, the cooling auxiliary cylinder 19 comes into close contact with the cooling cylinder 12 by thermal expansion, and the efficiency of heat transfer from the cooling auxiliary cylinder 19 to the cooling cylinder 12 is increased. An effect can be obtained. Furthermore, it is more preferable that the width of the cut 20 is small, and it is sufficient if the width of the cut 20 is equal to or larger than the width that can prevent the cooling auxiliary cylinder 19 from being broken by thermal expansion.
  • the material of the auxiliary cooling cylinder 19 is preferably any of graphite material, carbon composite material (CC material), stainless steel, molybdenum, and tungsten.
  • the material of the auxiliary cooling cylinder 19 is any one of a carbon material such as a graphite material and a carbon composite material (CC material) and a metal material such as stainless steel, molybdenum and tungsten, the material from the single crystal 4 is used. It can absorb heat more efficiently. Further, the heat can be efficiently transmitted by the cooling cylinder 12 that is forcibly cooled. Moreover, heat resistance can also be made high.
  • the material of the auxiliary cooling cylinder 19 is not limited to this, and any material having high thermal conductivity and high emissivity can be applied.
  • FIG. 3 shows an example of the single crystal manufacturing apparatus of the present invention provided with the protective member. As shown in FIG.
  • the protective member 21 is provided outside the cooling cylinder 12, the radiant heat from the heater 8 and the raw material melt 5 directly flows into the cooling cylinder 12. It can reduce hitting the outside. As a result, the inner growing single crystal 4 can be cooled more efficiently, and the effect of increasing the growth rate of the single crystal 4 can be enhanced. Further, it is possible to prevent the raw material melt 5 that is scattered when the raw material is melted from adhering to the outside of the cooling cylinder 12 and causing the cooling cylinder 12 to be damaged or melted.
  • the protective member 21 is preferably not in contact with the cooling cylinder 12 so that heat is not transmitted to the cooling cylinder 12, but is not limited thereto.
  • the material of the protective member 21 is preferably any of graphite material, carbon fiber material, carbon composite material (CC material), stainless steel, molybdenum, and tungsten.
  • the material of the protection member 21 is any one of carbon materials such as graphite, carbon fiber material, and carbon composite material (CC material), and metal materials such as stainless steel, molybdenum, and tungsten, the protection member The radiation rate of 21 can be increased, and the effect of reducing the radiant heat from the heater 8 and the raw material melt 5 directly hitting the cooling cylinder 12 can be further enhanced. Moreover, heat resistance can also be made high.
  • a flow straightening cylinder 14 extending below the cooling cylinder 12 is provided.
  • the single crystal 4 can be cooled by blocking the radiant heat from the heater 8 and the raw material melt 5. Further, the cooling cylinder 12 is prevented from approaching directly above the melt surface, and safety is ensured.
  • the inert gas for preventing fouling due to the oxidizing gas generated during pulling of the single crystal can exert the effect of rectifying so that the vicinity of the crystal is downstream from above the melt.
  • the cooling effect of the single crystal 4 can also be expected. Thereby, the growing single crystal 4 can be cooled more efficiently, and the effect of increasing the growth rate of the single crystal 4 can be enhanced.
  • the cooling cylinder 12 can be sufficiently separated from the melt surface of a very high temperature, and the raw material melt 5 scattered when the raw material is melted adheres to the cooling cylinder 12, and the cooling cylinder 12 is damaged or melted. Without any problem, the single crystal 4 can be grown extremely safely.
  • the single crystal manufacturing apparatus of the present invention has at least the cooling auxiliary cylinder 19 fitted inside the cooling cylinder 12, and the cooling auxiliary cylinder 19 has the cut 20 penetrating in the axial direction.
  • the single crystal 4 being grown can be cooled efficiently, and the growth rate of the single crystal 4 can be increased. It has become something that can be. Similarly, in growing a defect-free crystal, the growth rate can be increased.
  • Example 1 Using a single crystal manufacturing apparatus as shown in FIG. 1, a silicon single crystal having a diameter of 12 inches (300 mm) was manufactured by a magnetic field application Czochralski method (MCZ method). The diameter of the crucible 6 was 32 inches (800 mm). Further, a cooling auxiliary cylinder 19 as shown in FIG. 2 having a cut width 20 of 1.5 ° was used. The material used was a graphite material having a thermal conductivity equivalent to that of metal and a higher emissivity than that of metal. The single crystal 4 was grown using such a single crystal manufacturing apparatus 1, and the growth rate at which all became defect-free crystals was determined. Since the margin for the growth rate for obtaining defect-free crystals is very narrow, it is easy to determine an appropriate growth rate.
  • MZ method magnetic field application Czochralski method
  • the single crystal manufacturing apparatus 1 of the present invention can efficiently cool the growing single crystal and can increase the growth rate of the single crystal. It was.
  • Example 2 A single crystal was manufactured under the same conditions as in Example 1 except that a single crystal manufacturing apparatus 1 ′ provided with a protective member 21 made of graphite was provided outside the cooling cylinder 12 as shown in FIG. Evaluation similar to 1 was performed. As a result, the growth rate was increased by about 4% compared to Example 1. As described above, the single crystal manufacturing apparatus 1 ′ of the present invention can cool the growing single crystal more efficiently, and can enhance the effect of increasing the growth rate of the single crystal. I was able to confirm.
  • Example 1 A single crystal was manufactured under the same conditions as in Example 1 except that a conventional single crystal manufacturing apparatus as shown in FIG. 4 was used, and the same evaluation as in Example 1 was performed. As a result, it was found that the growth rate was about 5.5% slower than that of Example 1.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 本発明は、少なくとも、原料融液を収容するルツボ及び前記原料融液を加熱するヒータを格納するメインチャンバと、該メインチャンバの上部に連設され、成長した単結晶が引き上げられて収容される引上げチャンバと、前記引上げ中の単結晶を取り囲むように前記メインチャンバの少なくとも天井部から原料融液表面に向かって延伸し、冷却媒体で強制冷却される冷却筒を有したチョクラルスキー法によって単結晶を育成する単結晶製造装置であって、少なくとも、前記冷却筒の内側に嵌合される冷却補助筒を有し、該冷却補助筒は軸方向に貫く切れ目を有し、前記原料融液表面に向かって延伸しているものであることを特徴とする単結晶製造装置である。これにより、育成中の単結晶を効率良く冷却することによって、単結晶の成長速度の高速化を図ることができる単結晶製造装置が提供される。  

Description

単結晶製造装置
 本発明は、チョクラルスキー法(Czochralski Method、以下CZ法と略する)によるシリコン単結晶の製造装置に関する。
 
 以下、従来のチョクラルスキー法による単結晶製造装置について、シリコン単結晶の育成を例にとって説明する。
 図4に従来の単結晶製造装置の一例を示す概略断面図を示す。
 CZ法でシリコン単結晶を製造する際に使用される単結晶製造装置101は、一般的に原料融液105が収容された昇降動可能なルツボ106、107と、該ルツボ106、107を取り囲むように配置されたヒータ108が単結晶104を育成するメインチャンバ102内に配置されており、該メインチャンバ102の上部には育成した単結晶を収容し取り出すための引上げチャンバ103が連設されている。ルツボ106、107は、単結晶製造装置101の下部に取り付けられた回転駆動機構(不図示)によって回転昇降動自在なルツボ回転軸118に支持されている。
 また、ヒータ108の外側には、ヒータ108からの熱がメインチャンバ102に直接輻射されるのを防止するための断熱部材109が周囲を取り囲むように設けられている。
 また、チャンバ内部には、炉内に発生した不純物を炉外に排出する等を目的とし、引上げチャンバ103上部に設けられたガス導入口111からアルゴンガス等の不活性ガスが導入され、引上げ中の単結晶104、原料融液105表面を通過してチャンバ内部を流通し、ガス流出口110から排出される。また、この不活性ガスが融液上方から結晶近傍を下流するように整流するための整流筒114が設けられている。
 また、冷却筒112が引上げ中の単結晶104を取り囲むようにメインチャンバ102の少なくとも天井部から原料融液105の表面に向かって延伸している。冷却筒112内には、冷却媒体導入口113から冷却媒体が導入され、該冷却媒体は冷却筒112内を循環して冷却筒112を強制冷却した後、外部へ排出される。
 このような単結晶製造装置101を用いて単結晶を製造する際には、種結晶116を原料融液105に浸漬し、回転させながら静かに上方に引き上げて棒状の単結晶を成長させる一方、所望の直径と結晶品質を得るため融液面の高さが常に一定の位置に保たれるように結晶の成長に合わせルツボ106、107を上昇させている。
 そして、単結晶を育成する際には、種ホルダ117に取り付けられた種結晶116を原料融液105に浸漬した後、引上げ機構(不図示)により種結晶116を所望の方向に回転させながら静かにワイヤ115を巻き上げ、種結晶116の先端部に単結晶104を成長させる。ここで、種結晶116を融液に着液させた際に生じる転位を消滅させるため、一旦、成長初期の結晶を3~5mm程度まで細く絞り、転位が抜けたところで径を所望の直径まで拡大して、目的とする品質の単結晶104を成長させていく。
 このとき、単結晶104の一定の直径を有する定径部の引き上げ速度は、引き上げられる単結晶の直径に依存するが、0.4~2.0mm/min程度の非常にゆっくりとしたものであり、無理に早く引上げようとすると、育成中の単結晶が変形して定径を有する円柱状製品が得られなくなる。あるいは単結晶104にスリップ転位が発生したり、単結晶104が融液から切り離されて製品とならなくなってしまうなどの問題が生じてしまい、結晶成長速度の高速化を図るには限界があった。
 しかし、前記CZ法による単結晶104の製造において、生産性の向上を図り、コストを低減させるためには、単結晶104の成長速度を高速化することが一つの大きな手段であり、これまでにも単結晶104の成長速度の高速化を達成させるために多くの改良がなされてきた。
 単結晶104の成長速度は、成長中の単結晶104の熱収支によって決定され、これを高速化するには、単結晶表面から放出される熱を効率的に除去すれば良いことが知られている。この際、単結晶104の冷却効果を高めることができれば更に効率の良い単結晶の製造が可能である。さらに、単結晶104の冷却速度によって、結晶の品質が変わることが知られている。例えば、シリコン単結晶で単結晶育成中に形成されるグローンイン(Grown-in)欠陥は結晶内温度勾配と単結晶の引上げ速度(成長速度)の比で制御可能であり、これをコントロールすることで無欠陥の単結晶を育成することもできる(特開平11-157996号公報参照)。したがって無欠陥結晶を製造する上でも、単結晶の成長速度を高速化して生産性の向上を図る上でも、育成中の単結晶の冷却効果を高めることが重要である。
 CZ法において単結晶104を効率よく冷却するには、ヒータ108からの輻射を結晶に直接当てずにかつ単結晶104からの輻射熱をチャンバー等強制冷却された物体に吸収させる方法が有効である。これを実現可能な装置の構造としてスクリーン構造が挙げられる(特公昭57-40119号公報参照)。しかしこの構造ではルツボの上昇による接触を回避するほどのスクリーン形状にすると、スクリーン上部の内径を小さくする必要があり、その結果、結晶が冷え難くなるという欠点がある。
 また結晶引き上げ中は酸化性ガスによる汚れ防止のため不活性ガスを流すが、これによる単結晶の冷却効果を活用できないという問題もある。
 そこで不活性ガスを整流するための整流筒と該整流筒にヒータや原料融液からの直接輻射をさえぎるための断熱リングを有した構造が提案されている(特開昭64-65086号公報参照)。この方法では不活性ガスによる単結晶の冷却効果は期待できるが、単結晶からの輻射熱を冷却チャンバーに吸収させるという点において、その冷却能力は高いとは言えない。
 そこで前記のスクリーンや整流筒の問題点を解決し効率よく冷却する方法として、結晶回りに水冷された冷却筒を配する方法が提案されている(国際公開第WO01/57293号パンフレット参照)。この方法では冷却筒の外側が黒鉛材等の保護カバーなど冷却筒保護材により保護され、冷却筒の内側から単結晶の熱を効率よく除去できる。しかし、安全のため冷却筒を融液面近くまで伸ばしておらず、冷却筒に至るまでの単結晶の冷却効果がやや弱かった。
 また、特開平6-199590号公報に冷却筒に嵌合して黒鉛材等を延伸する方法が挙げられている。しかしこの方法では、冷却筒及び延伸する黒鉛が外側からの熱を受けて十分な冷却効果が出せない上、冷却筒と黒鉛材の接触が難しく、効率よく黒鉛材から冷却筒への伝熱ができなかった。
 
 本発明は前述のような問題に鑑みてなされたもので、育成中の単結晶を効率良く冷却することによって、単結晶の成長速度の高速化を図ることができる単結晶製造装置を提供することを目的とする。
 上記目的を達成するために、本発明によれば、少なくとも、原料融液を収容するルツボ及び前記原料融液を加熱するヒータを格納するメインチャンバと、該メインチャンバの上部に連設され、成長した単結晶が引き上げられて収容される引上げチャンバと、前記引上げ中の単結晶を取り囲むように前記メインチャンバの少なくとも天井部から原料融液表面に向かって延伸し、冷却媒体で強制冷却される冷却筒を有したチョクラルスキー法によって単結晶を育成する単結晶製造装置であって、少なくとも、前記冷却筒の内側に嵌合される冷却補助筒を有し、該冷却補助筒は軸方向に貫く切れ目を有し、前記原料融液表面に向かって延伸しているものであることを特徴とする単結晶製造装置が提供される。
 このように、本発明の単結晶製造装置は、少なくとも、前記冷却筒の内側に嵌合される冷却補助筒を有し、該冷却補助筒は軸方向に貫く切れ目を有し、前記原料融液表面に向かって延伸しているので、前記冷却補助筒は熱膨張により割れてしまうこともなく冷却筒にかたく密着して嵌合し、該冷却補助筒で育成中の単結晶から吸収した熱を、前記嵌合された部分から冷却筒に効率よく伝達することができる。これによって、育成中の単結晶を効率良く冷却することができ、単結晶の成長速度の高速化を図ることができる。
 このとき、前記冷却補助筒の材質は、黒鉛材、炭素複合材(CC材)、ステンレス、モリブデン、タングステンのいずれかであることが好ましい。
 このように、前記冷却補助筒の材質が、黒鉛材、炭素複合材(CC材)等の炭素材、およびステンレス、モリブデン、タングステン等の金属材のいずれかであれば、単結晶からの熱をより効率良く吸収することができる。また、その熱を冷却筒により効率良く伝達することができる。また、耐熱性も高いものとすることができる。
 またこのとき、前記冷却筒の外側に保護部材が設けられていることが好ましい。
 このように、前記冷却筒の外側に保護部材が設けられていれば、ヒータおよび原料融液からの輻射熱が直接冷却筒の外側にあたるのを軽減できる。また、原料融液が飛散し冷却筒に付着することを防ぐことができる。これによって、冷却筒の劣化を防止できるとともに、冷却筒の内側にある育成中の単結晶をより効率良く冷却することができ、単結晶の成長速度の高速化の効果を高めることができる。
 このとき、前記保護部材の材質は、黒鉛材、炭素繊維材、炭素複合材(CC材)、ステンレス、モリブデン、タングステンのいずれかであることが好ましい。
 このように、前記保護部材の材質が、黒鉛材、炭素繊維材、炭素複合材(CC材)等の炭素材、およびステンレス、モリブデン、タングステン等の金属材のいずれかであれば、保護部材の輻射率を高くすることができ、ヒータおよび原料融液からの輻射熱が直接冷却筒にあたるのを軽減する効果をより高めることができる。また、耐熱性も高いものとすることができる。
 またこのとき、前記冷却筒の下方に延伸する整流筒が設けられていることが好ましい。
 このように、前記冷却筒の下方に延伸する整流筒が設けられていれば、ヒータおよび原料融液からの輻射熱を遮って単結晶を冷却することができる。また、冷却筒が融液面の直上まで近づくことが防がれ安全性が確保されるとともに、原料融液上方から結晶近傍を下流する不活性ガスの整流効果を発揮することができる。これにより、不活性ガスによる単結晶の冷却効果も期待できる。これによって、育成中の単結晶をより効率良く冷却することができ、単結晶の成長速度の高速化の効果を高めることができる。
 本発明の単結晶製造装置は、少なくとも、前記冷却筒の内側に嵌合される冷却補助筒を有し、該冷却補助筒は軸方向に貫く切れ目を有し、前記原料融液表面に向かって延伸しているので、前記冷却補助筒は熱膨張により割れてしまうこともなく冷却筒にかたく密着して嵌合し、該冷却補助筒で育成中の単結晶から吸収した熱を、前記嵌合された部分から冷却筒に効率よく伝達することができる。これによって、育成中の単結晶を効率良く冷却することができ、単結晶の成長速度の高速化を図ることができる。
 
本発明に係る単結晶製造装置の一つの形態を示した概略断面図である。 本発明で使用することができる冷却補助筒の一例を示した概略図である。 本発明に係る単結晶製造装置の別の形態を示した概略断面図である。 従来の単結晶製造装置の一例を示した概略断面図である。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 従来のCZ法による単結晶の製造において、生産性の向上を図り、コストを低減させるためには、単結晶の成長速度を高速化することが一つの大きな手段であり、これを高速化するには、単結晶表面から放出される熱を効率的に除去すれば良いことが知られている。また、無欠陥結晶の製造においても、育成中の単結晶の冷却効果を高めることが重要である。
 そこで、本発明者は、育成中の単結晶の冷却効果を高めるために鋭意検討を重ねた。その結果、冷却筒の内側に嵌合し、原料融液表面に向かって冷却筒よりも下方に延伸している冷却補助筒によって、育成中の単結晶から熱を効率的に吸収することができることを見出した。さらに、前記冷却補助筒は軸方向に貫く切れ目を有することによって、該冷却補助筒が熱によって膨張した際、破損することなく前記冷却筒にかたく嵌合し、双方の表面の接触面積が増え、十分に密着することによって、前記単結晶から吸収した熱を強制冷却された冷却筒へ効率的に伝達することができることに想到し、本発明を完成させた。
 すなわち、本発明の単結晶製造装置は、少なくとも、強制冷却された冷却筒の内側に嵌合される冷却補助筒を有し、該冷却補助筒は軸方向に貫く切れ目を有し、前記原料融液表面に向かって延伸しているので、育成中の単結晶を効率良く冷却することができ、単結晶の成長速度の高速化を図ることができるものとなっている。
 図1は本発明の単結晶製造装置の一例を示す概略断面図である。
 図1に示すように、単結晶製造装置1は、原料融液5を収容するルツボ6、7、多結晶シリコン原料を加熱、融解するためのヒータ8などがメインチャンバ2内に格納され、メインチャンバ2上に連接された引上げチャンバ3の上部には、育成された単結晶4を引上げる引上げ機構(不図示)が設けられている。
 引き上げチャンバ3の上部に取り付けられた引上げ機構からは引上げワイヤ15が巻き出されており、その先端には、種結晶16を取り付けるための種ホルダ17が接続され、種ホルダ17の先に取り付けられた種結晶16を原料融液5に浸漬し、引上げワイヤ15を引上げ機構によって巻き取ることで種結晶16の下方に単結晶4を形成する。
 なお、上記ルツボ6、7は、内側に原料融液5を直接収容する石英ルツボ6と、外側に該ルツボを支持するための黒鉛ルツボ7とから構成されている。ルツボ6、7は、単結晶製造装置1の下部に取り付けられた回転駆動機構(不図示)によって回転昇降動自在なルツボ回転軸18に支持されており、単結晶製造装置1中の融液面の変化によって結晶直径や結晶品質が変わることのないよう、融液面を一定位置に保つため、結晶と逆方向に回転させながら単結晶4の引上げに応じて融液が減少した分だけルツボ6、7を上昇させている。
 また、ルツボ6、7を取り囲むようにヒータ8が配置されており、このヒータ8の外側には、ヒータ8からの熱がメインチャンバ2に直接輻射されるのを防止するための断熱部材9が周囲を取り囲むように設けられている。
 また、チャンバ内部には、炉内に発生した不純物を炉外に排出する等を目的とし、引上げチャンバ3上部に設けられたガス導入口11からアルゴンガス等の不活性ガスが導入され、引上げ中の単結晶4、原料融液5表面を通過してチャンバ内部を流通し、ガス流出口10から排出される。
 なお、メインチャンバ2及び引上げチャンバ3は、ステンレス等の耐熱性、熱伝導性に優れた金属により形成されており、冷却管(不図示)を通して水冷されている。
 また、冷却筒12が引上げ中の単結晶4を取り囲むようにメインチャンバ2の少なくとも天井部から原料融液5の表面に向かって延伸している。冷却筒12内には、冷却媒体導入口13から冷却媒体が導入され、該冷却媒体は冷却筒12内を循環して冷却筒12を強制冷却した後、外部へ排出される。
 そして、単結晶を育成する際には、種ホルダ17に取り付けられた種結晶16を原料融液5に浸漬した後、引上げ機構(不図示)により種結晶16を所望の方向に回転させながら静かにワイヤ15を巻き上げ、種結晶16の先端部に単結晶4を成長させる。ここで、種結晶16を融液に着液させた際に生じる転位を消滅させるため、一旦、成長初期の結晶を3~5mm程度まで細く絞り、転位が抜けたところで径を所望の直径まで拡大して、目的とする品質の単結晶4を成長させていく。あるいは、前記種絞りを行わず、先端が尖った種結晶16を用いて種結晶16を原料融液5に静かに接触して所定径まで浸漬させてから引上げを行う無転位種付け法を適用して単結晶4を育成することもできる。
 本発明に係る単結晶製造装置は、冷却筒12の内側に嵌合される冷却補助筒19が設けられており、前記冷却補助筒19は原料融液5の表面に向かって冷却筒12よりも下方に延伸している。
 このように、冷却筒12の内側に嵌合し、原料融液5の表面に向かって冷却筒12よりも下方に延伸している冷却補助筒12を設置すれば、冷却補助筒19によって育成中の単結晶4の下方まで取り囲むことができ、単結晶4から熱を効率的に吸収することができる。
 図2に本発明で使用することができる冷却補助筒の一例を示す。
 図2に示すように、冷却補助筒19は軸方向に貫く切れ目20を有している。
 冷却筒12の内側に冷却補助筒19を嵌合させるために、単に冷却筒12の内径と冷却補助筒19の外径を概略同じにしただけでは、冷却補助筒19を装着および脱着するのが困難であるが、冷却補助筒19は軸方向に貫く切れ目20を有することで、冷却補助筒19を容易に装脱着することができる。また、単結晶4の育成中に冷却筒12と冷却補助筒19の熱膨張差により冷却補助筒19が割れてしまうことを防ぐことができる。すなわち、冷却筒12は冷却媒体で強制冷却されているので、結晶育成時に熱がかかってもそれほど膨張しないが冷却補助筒19は膨張する。さらに、冷却補助筒19が熱膨張することによって、冷却補助筒19は冷却筒12にかたく嵌合し、双方の表面の接触面積が増え、十分に密着するので、冷却補助筒19から冷却筒12へ熱を効率よく伝達することができる。
 ここで、切れ目20の幅が180°未満であれば、冷却補助筒19が熱膨張により冷却筒12に密着するようになり、前記冷却補助筒19から冷却筒12への熱伝達の効率が高まる効果を得ることができる。さらに、切れ目20の幅は小さい方がより好ましく、熱膨張により冷却補助筒19が割れない効果を奏する幅以上を有していれば良い。
 このとき、前記冷却補助筒19の材質は、黒鉛材、炭素複合材(CC材)、ステンレス、モリブデン、タングステンのいずれかであることが好ましい。
 このように、前記冷却補助筒19の材質は、黒鉛材、炭素複合材(CC材)等の炭素材、およびステンレス、モリブデン、タングステン等の金属材のいずれかであれば、単結晶4からの熱をより効率良く吸収するとができる。また、その熱を強制冷却された冷却筒12により効率良く伝達することができる。また、耐熱性も高いものとすることができる。冷却補助筒19の材質は、これに限定されるわけではなく、熱伝導率及び輻射率が高い材質であれば適用し得る。
 従来の単結晶製造装置において、冷却筒12はヒータ8や原料融液5などの輻射で外側から熱を受けてしまうと、その内側で単結晶4からの熱を吸収する能力が低下するという問題があった。そこで、前記冷却筒12の外側に、該冷却筒12を熱などから保護し、該冷却筒の冷却効果を低下させないようにするための保護部材が設けられていれば、内側にある結晶の冷却効果をより高めることができる。
 図3に前記保護部材を設けた本発明の単結晶製造装置の一例を示す。
 図3に示すように、本発明の単結晶製造装置1’は、冷却筒12の外側に保護部材21が設けられているので、ヒータ8および原料融液5からの輻射熱が直接冷却筒12の外側にあたるのを軽減できる。これによって、内側の育成中の単結晶4をより効率良く冷却することができ、単結晶4の成長速度の高速化の効果を高めることができる。また、原料融解時などに飛散する原料融液5が冷却筒12の外側に付着し、冷却筒12が破損、溶損等するのを防ぐことができる。
 前記保護部材21は、熱が冷却筒12に伝達しないように冷却筒12と接触していないことが好ましいが、これに限定されるわけではない。
 このとき、前記保護部材21の材質は、黒鉛材、炭素繊維材、炭素複合材(CC材)、ステンレス、モリブデン、タングステンのいずれかであることが好ましい。
 このように、前記保護部材21の材質は、黒鉛材、炭素繊維材、炭素複合材(CC材)等の炭素材、およびステンレス、モリブデン、タングステン等の金属材のいずれかであれば、保護部材21の輻射率を高くすることができ、ヒータ8および原料融液5からの輻射熱が直接冷却筒12にあたるのを軽減する効果をより高めることができる。また、耐熱性も高いものとすることができる。
 またこのとき、前記冷却筒12の下方に延伸する整流筒14が設けられていることが好ましい。
 このように、前記冷却筒12の下方に延伸する整流筒14が設けられていれば、ヒータ8および原料融液5からの輻射熱を遮って単結晶4を冷却することができる。また、冷却筒12が融液面の直上まで近づくことが防がれ安全性が確保される。また、単結晶の引上げ中に発生する酸化性ガスによる汚れ防止のための不活性ガスが融液上方から結晶近傍を下流するように整流する効果を発揮することができ、また、不活性ガスによる単結晶4の冷却効果も期待できる。これによって、育成中の単結晶4をより効率良く冷却することができ、単結晶4の成長速度の高速化の効果を高めることができる。
 また、冷却筒12を非常に高温の融液面と十分離すことができ、原料融解時などに飛散する原料融液5が冷却筒12に付着し、冷却筒12の破損、溶損等が生じることもなく、極めて安全に単結晶4の育成を行うことができる。
 以上説明したように、本発明の単結晶製造装置は、少なくとも、前記冷却筒12の内側に嵌合される冷却補助筒19を有し、該冷却補助筒19は軸方向に貫く切れ目20を有し、前記原料融液表面に向かって延伸しているものであることを特徴としているので、育成中の単結晶4を効率良く冷却することができ、単結晶4の成長速度の高速化を図ることができるものとなっている。
 また、同様に無欠陥結晶の育成においても、その成長速度の高速化を図ることができるものとなっている。
 
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 図1に示すような単結晶製造装置を用い、直径12インチ(300mm)のシリコン単結晶を磁場印加チョクラルスキー法(MCZ法)により製造した。ルツボ6の直径は32インチ(800mm)とした。
 また、切れ目の幅20が1.5°である図2に示すような冷却補助筒19を使用した。また、その材質は、熱伝導率が金属に比較して同等であり、かつ輻射率が金属より高い黒鉛材を使用した。
 このような単結晶製造装置1を用いて単結晶4を育成し、全てが無欠陥結晶となる成長速度を求めた。無欠陥結晶を得るための成長速度はそのマージンが非常に狭いため、適正な成長速度が判断しやすい。このとき、単結晶からサンプルを切り出し、無欠陥結晶になったかどうかを、選択エッチングにより確認した。
 その結果、従来の単結晶製造装置を用いた場合と比較して約5.5%の成長速度の高速化が図れた。
 このように、本発明の単結晶製造装置1は、育成中の単結晶を効率良く冷却することができ、単結晶の成長速度の高速化を図ることができるものとなっていることが確認できた。
 
(実施例2)
 図3に示すような、冷却筒12の外側に黒鉛材の保護部材21を設けた単結晶製造装置1’を用いたこと以外は実施例1と同様な条件で単結晶を製造し、実施例1と同様の評価を行った。
 その結果、実施例1に比べて約4%の成長速度の高速化を図ることができた。
 このように、本発明の単結晶製造装置1’は、育成中の単結晶をより効率良く冷却することができ、単結晶の成長速度の高速化の効果を高めることができるものとなっていることが確認できた。
 
(比較例)
 図4に示すような従来の単結晶製造装置を用いたこと以外は実施例1と同じ条件で単結晶を製造し、実施例1と同様の評価を行った。その結果、実施例1に比べ約5.5%成長速度が遅いことが分かった。
 
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1.  少なくとも、原料融液を収容するルツボ及び前記原料融液を加熱するヒータを格納するメインチャンバと、該メインチャンバの上部に連設され、成長した単結晶が引き上げられて収容される引上げチャンバと、前記引上げ中の単結晶を取り囲むように前記メインチャンバの少なくとも天井部から原料融液表面に向かって延伸し、冷却媒体で強制冷却される冷却筒を有したチョクラルスキー法によって単結晶を育成する単結晶製造装置であって、少なくとも、前記冷却筒の内側に嵌合される冷却補助筒を有し、該冷却補助筒は軸方向に貫く切れ目を有し、前記原料融液表面に向かって延伸しているものであることを特徴とする単結晶製造装置。
     
  2.  前記冷却補助筒の材質は、黒鉛材、炭素複合材、ステンレス、モリブデン、タングステンのいずれかであることを特徴とする請求項1に記載の単結晶製造装置。
     
  3.  前記冷却筒の外側に保護部材が設けられていることを特徴とする請求項1または請求項2に記載の単結晶製造装置。
     
  4.  前記保護部材の材質は、黒鉛材、炭素繊維材、炭素複合材、ステンレス、モリブデン、タングステンのいずれかであることを特徴とする請求項3に記載の単結晶製造装置。
     
  5.  前記冷却筒の下方に延伸する整流筒が設けられていることを特徴とする請求項1ないし請求項4のいずれか1項に記載の単結晶製造装置。
PCT/JP2008/003829 2008-01-10 2008-12-18 単結晶製造装置 WO2009087724A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112008003609.8T DE112008003609B4 (de) 2008-01-10 2008-12-18 Vorrichtung zur Herstellung eines Einkristalls
US12/744,606 US9217208B2 (en) 2008-01-10 2008-12-18 Apparatus for producing single crystal
CN2008801240240A CN101910474B (zh) 2008-01-10 2008-12-18 单晶制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008003164A JP4582149B2 (ja) 2008-01-10 2008-01-10 単結晶製造装置
JP2008-003164 2008-01-10

Publications (1)

Publication Number Publication Date
WO2009087724A1 true WO2009087724A1 (ja) 2009-07-16

Family

ID=40852848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003829 WO2009087724A1 (ja) 2008-01-10 2008-12-18 単結晶製造装置

Country Status (6)

Country Link
US (1) US9217208B2 (ja)
JP (1) JP4582149B2 (ja)
KR (1) KR101473789B1 (ja)
CN (1) CN101910474B (ja)
DE (1) DE112008003609B4 (ja)
WO (1) WO2009087724A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236104B2 (en) * 2008-07-01 2012-08-07 Shin-Etsu Handotai Co., Ltd. Single-crystal manufacturing apparatus and single-crystal manufacturing method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5733245B2 (ja) * 2012-03-16 2015-06-10 信越半導体株式会社 シリコン単結晶ウェーハの製造方法
JP5880353B2 (ja) 2012-08-28 2016-03-09 信越半導体株式会社 シリコン単結晶の育成方法
JP5904079B2 (ja) 2012-10-03 2016-04-13 信越半導体株式会社 シリコン単結晶育成装置及びシリコン単結晶育成方法
KR101532265B1 (ko) * 2013-12-03 2015-06-29 주식회사 엘지실트론 단결정 성장 장치
TWI567253B (zh) * 2015-10-07 2017-01-21 環球晶圓股份有限公司 長晶裝置
JP6414135B2 (ja) * 2015-12-07 2018-10-31 信越半導体株式会社 シリコン単結晶の製造方法及びシリコン単結晶製造装置
US10487418B2 (en) * 2016-01-06 2019-11-26 Globalwafers Co., Ltd. Seed chuck assemblies and crystal pulling systems for reducing deposit build-up during crystal growth process
CN107227488B (zh) * 2016-03-25 2019-10-25 隆基绿能科技股份有限公司 单晶炉用热场及单晶炉
JP6614380B1 (ja) * 2019-03-20 2019-12-04 信越半導体株式会社 単結晶製造装置
DE102019107929A1 (de) * 2019-03-27 2020-10-01 Pva Tepla Ag Kristallziehanlage mit einem Tiegel und einem Kühlkörper
CN110438560A (zh) * 2019-09-16 2019-11-12 西安格美金属材料有限公司 一种钼导流筒及材料加工方法
JP6825728B1 (ja) 2020-01-10 2021-02-03 信越半導体株式会社 単結晶製造装置
CN111763985B (zh) * 2020-07-01 2021-10-19 中国科学院上海微系统与信息技术研究所 一种用于单晶生产炉的热屏结构及单晶生产炉
JP7115592B1 (ja) 2021-05-28 2022-08-09 信越半導体株式会社 単結晶製造装置
CN115404540B (zh) * 2022-08-09 2024-05-03 隆基绿能科技股份有限公司 一种单晶炉及单晶炉的拉晶温度控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364990A (ja) * 1986-09-05 1988-03-23 Sumitomo Heavy Ind Ltd 単結晶引上げ装置におけるルツボ駆動軸
JPH04321584A (ja) * 1991-04-22 1992-11-11 Kawasaki Steel Corp 単結晶引上装置用カーボン坩堝
JPH06199590A (ja) * 1993-01-06 1994-07-19 Nippon Steel Corp 半導体単結晶棒製造装置
WO2001057293A1 (en) * 2000-01-31 2001-08-09 Shin-Etsu Handotai Co., Ltd. Single crystal growing device and production method of single crystal using the device and single crystal
JP2005231969A (ja) * 2004-02-23 2005-09-02 Sumitomo Mitsubishi Silicon Corp シリコン単結晶の育成装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2821481C2 (de) 1978-05-17 1985-12-05 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Vorrichtung zum Ziehen von hochreinen Halbleiterstäben aus der Schmelze
DE3027262A1 (de) 1980-07-18 1982-02-11 Skf Kugellagerfabriken Gmbh, 8720 Schweinfurt Im ziehverfahren hergestellte, duennwandige lagerbuechse
JPH0639351B2 (ja) 1987-09-05 1994-05-25 信越半導体株式会社 単結晶棒の製造装置及び方法
EP0591525B1 (en) * 1991-06-24 1997-09-03 Komatsu Electronic Metals Co., Ltd Device for pulling up single crystal
JP3203353B2 (ja) * 1993-03-31 2001-08-27 ワッカー・エヌエスシーイー株式会社 単結晶引上げ用装置
US5954911A (en) * 1995-10-12 1999-09-21 Semitool, Inc. Semiconductor processing using vapor mixtures
US7404863B2 (en) * 1997-05-09 2008-07-29 Semitool, Inc. Methods of thinning a silicon wafer using HF and ozone
JP3992800B2 (ja) * 1997-09-22 2007-10-17 Sumco Techxiv株式会社 単結晶製造装置および単結晶の製造方法
JP3747123B2 (ja) 1997-11-21 2006-02-22 信越半導体株式会社 結晶欠陥の少ないシリコン単結晶の製造方法及びシリコン単結晶ウエーハ
JP2000291752A (ja) * 1999-04-01 2000-10-20 Ntn Corp ベルト張力調整装置
US6733585B2 (en) * 2000-02-01 2004-05-11 Komatsu Denshi Kinzoku Kabushiki Kaisha Apparatus for pulling single crystal by CZ method
DE10058329A1 (de) 2000-11-24 2002-05-29 Georg Mueller Verfahren und Vorrichtung zur Züchtung von Einkristallen
JP2002226299A (ja) * 2000-12-01 2002-08-14 Toshiba Corp 単結晶製造装置及び単結晶製造方法
JP4055362B2 (ja) * 2000-12-28 2008-03-05 信越半導体株式会社 単結晶育成方法および単結晶育成装置
US7211141B2 (en) * 2003-08-12 2007-05-01 Shin-Etsu Handotai Co., Ltd. Method for producing a wafer
DE102006020823B4 (de) * 2006-05-04 2008-04-03 Siltronic Ag Verfahren zur Herstellung einer polierten Halbleiterscheibe
JP5740119B2 (ja) 2010-09-13 2015-06-24 昭和電工株式会社 冷却装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364990A (ja) * 1986-09-05 1988-03-23 Sumitomo Heavy Ind Ltd 単結晶引上げ装置におけるルツボ駆動軸
JPH04321584A (ja) * 1991-04-22 1992-11-11 Kawasaki Steel Corp 単結晶引上装置用カーボン坩堝
JPH06199590A (ja) * 1993-01-06 1994-07-19 Nippon Steel Corp 半導体単結晶棒製造装置
WO2001057293A1 (en) * 2000-01-31 2001-08-09 Shin-Etsu Handotai Co., Ltd. Single crystal growing device and production method of single crystal using the device and single crystal
JP2005231969A (ja) * 2004-02-23 2005-09-02 Sumitomo Mitsubishi Silicon Corp シリコン単結晶の育成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236104B2 (en) * 2008-07-01 2012-08-07 Shin-Etsu Handotai Co., Ltd. Single-crystal manufacturing apparatus and single-crystal manufacturing method

Also Published As

Publication number Publication date
CN101910474A (zh) 2010-12-08
JP2009161416A (ja) 2009-07-23
JP4582149B2 (ja) 2010-11-17
US20100258050A1 (en) 2010-10-14
KR20100113510A (ko) 2010-10-21
DE112008003609T5 (de) 2011-02-17
DE112008003609B4 (de) 2018-12-20
KR101473789B1 (ko) 2014-12-17
CN101910474B (zh) 2013-03-13
US9217208B2 (en) 2015-12-22

Similar Documents

Publication Publication Date Title
JP4582149B2 (ja) 単結晶製造装置
US6632280B2 (en) Apparatus for growing single crystal, method for producing single crystal utilizing the apparatus and single crystal
KR100825997B1 (ko) 단결정 육성방법 및 단결정 육성장치
KR101105950B1 (ko) 단결정 잉곳 제조장치
JP6614380B1 (ja) 単結晶製造装置
TWI632257B (zh) 單晶矽的製造方法
JP5092940B2 (ja) 単結晶製造装置及び単結晶の製造方法
JP4862836B2 (ja) 単結晶製造装置及び単結晶製造方法
JP5392040B2 (ja) 単結晶製造装置及び単結晶製造方法
WO2002027079A1 (fr) Procede de tirage de cristaux
WO2021140758A1 (ja) 単結晶製造装置
JP2007261868A (ja) 単結晶育成装置および単結晶育成方法
JP2005132665A (ja) 単結晶の製造方法
JP2020138887A (ja) 単結晶育成装置及び単結晶育成方法
JPH09278581A (ja) 単結晶製造装置および単結晶製造方法
JP3812573B2 (ja) 半導体結晶の成長方法
WO2021162046A1 (ja) シリコン単結晶の製造方法
WO2022249614A1 (ja) 単結晶製造装置
JP2009126738A (ja) シリコン単結晶の製造方法
JP2009292682A (ja) シリコン単結晶の引上げ装置及び引上げ方法
TWI567253B (zh) 長晶裝置
JP2005112692A (ja) 単結晶の製造方法及び単結晶、並びに単結晶の製造装置
KR20100086322A (ko) 석영 도가니의 변형을 방지하는 구조를 가진 잉곳 성장장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880124024.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869598

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12744606

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107015315

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 08869598

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112008003609

Country of ref document: DE

Date of ref document: 20110217

Kind code of ref document: P