WO2009047969A1 - フッ化ビニリデン系ポリマー粉体及びその利用 - Google Patents

フッ化ビニリデン系ポリマー粉体及びその利用 Download PDF

Info

Publication number
WO2009047969A1
WO2009047969A1 PCT/JP2008/066927 JP2008066927W WO2009047969A1 WO 2009047969 A1 WO2009047969 A1 WO 2009047969A1 JP 2008066927 W JP2008066927 W JP 2008066927W WO 2009047969 A1 WO2009047969 A1 WO 2009047969A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinylidene fluoride
polymer powder
fluoride polymer
polymerization
less
Prior art date
Application number
PCT/JP2008/066927
Other languages
English (en)
French (fr)
Inventor
Mitsuyasu Sakuma
Hiroshi Sato
Michihisa Miyahara
Katsuo Horie
Hiroshi Sakabe
Original Assignee
Kureha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corporation filed Critical Kureha Corporation
Priority to EP08837924A priority Critical patent/EP2196479B9/en
Priority to CN2008801107348A priority patent/CN101821298B/zh
Priority to JP2009536959A priority patent/JP5372765B2/ja
Priority to US12/682,451 priority patent/US8298446B2/en
Priority to AT08837924T priority patent/ATE540057T1/de
Publication of WO2009047969A1 publication Critical patent/WO2009047969A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/22Vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a vinylidene fluoride polymer powder used for an electrode forming binder solution for a non-aqueous battery such as a lithium battery and use thereof.
  • the vinylidene fluoride polymer is a crystalline polymer and is used in various molded articles as a polymer having good mechanical strength.
  • vinylidene fluoride polymer is used as a binder solution for electrode formation in non-aqueous batteries such as lithium batteries, its solubility becomes a problem.
  • a non-uniform solution in which a vinylidene fluoride polymer is not completely dissolved is used as a binder for forming an electrode of a non-aqueous battery, a powder electrode material
  • Patent Document 2 When a vinylidene fluoride-based polymer is used as a binder for a battery, those having an inherent viscosity exceeding 2.0 d 1 / g are excellent in binding properties (Patent Document 2). Inherent viscosity is one of the alternative indicators of polymer molecular weight (degree of polymerization). The higher the inherent viscosity, the lower the solubility of the polymer powder in the organic solvent and the longer it takes to dissolve.
  • One example is vinylidene fluoride with an inherent viscosity (logarithmic viscosity at 30 ⁇ of a solution of 4 g of resin in 1 liter of N, N-dimethylformamide) of 2.1 d 1 / g.
  • Solution of N-methyl-2-pyrrolidone to prepare a solution with a concentration of 10% by mass In order to produce it, it requires 2 hours of stirring at 70 to 2 days.
  • a method of adding a small amount of vinylidene fluoride polymer into the solvent was also considered, but it is not practical due to poor workability and efficiency.
  • the poor solubility of the vinylidene fluoride polymer is thought to be due to the fact that the organic solvent hardly penetrates into the powder particles because the particle surface of the vinylidene fluoride polymer powder is dense.
  • Known methods for preparing vinylidene fluoride polymers include solution polymerization, emulsion polymerization, and suspension polymerization.
  • the solution polymerization method is usually performed at a polymerization temperature of 20 ° (up to 80 ° C under a relatively low pressure (eg, 1.5 MPa or less), and a relatively low molecular weight (eg, a number average molecular weight of 10 million or less).
  • the emulsion polymerization method uses a chemically stable fluorine-based emulsifier and buffer to polymerize, and a 0.1 to 1 im small particle size latex. The resulting product is precipitated with a flocculant, etc., and granulated to form powder particles
  • the emulsion polymerization method uses expensive emulsifiers, powder separation by agglomeration and precipitation, There is a disadvantage that it is inferior in convenience and high in cost, such as removal of ionic substances from suspensions
  • the suspension polymerization method has been developed with the development of an initiator capable of initiating at a low temperature. (Critical temperature) or less is now possible.
  • a vinylidene fluoride monomer is dispersed in water together with a monomer or a copolymerizable monomer using a suspending agent, and polymerized in the presence of a polymerization initiator soluble in droplets of the produced monomer.
  • the present applicant first supplies a monomer mainly composed of vinylidene fluoride at a pressure lower than the critical pressure P cr and then supplies the monomer at a pressure higher than P cr.
  • Patent Document 1 In such a suspension polymerization method by split supply, it is possible to prevent an excessive increase in pressure in the polymerization system, and the resulting vinylidene fluoride polymer is obtained from a melt-molded product. It has high-temperature coloring resistance that is important for appearance.
  • the vinylidene fluoride polymer obtained by these improved polymerization methods is mainly used for the purpose of obtaining a melt-formed product having an inherent viscosity of 1.5 d 1 / g or less. There is no mention of any issues or solutions regarding solubility in organic solvents.
  • Patent Document 1 a monomer having vinylidene fluoride as a main component is added afterwards. Although no polymerization examples are described as comparative examples, the inherent viscosity of the polymer obtained by this polymerization method was 1. ld lZg. So far, vinylidene fluoride polymer powders having an inherent viscosity of 2.0 dlZg or more and excellent solubility have not been known.
  • Patent Document 1 International Patent Application Publication Pamphlet WO 2006/06 1988
  • Patent Document 2 Japanese Patent No. 3703582
  • the present invention provides a high-polymerization vinylidene fluoride polymer powder useful as a non-aqueous battery electrode binder having excellent solubility in an organic solvent, a battery binder using the powder, and a use thereof.
  • the object is to provide a method for producing a battery electrode mixture.
  • the inventors measured a pore diameter of 0.03 111 or more measured with a mercury porosimeter 1.
  • the following pore volume is 77 V o 1% or more and 93 V o 1% or less of the total pore volume, and the vinyl hermetic viscosity is 2.0 d lZg or more and 5.0 d lZg or less.
  • One powder was found to be excellent in solubility in an organic solvent, and the present invention was completed.
  • the pore volume of 0.03 / m or more and 1.0 / xm or less of the pore diameter measured with a mercury porosimeter is 77 vol% or more and 93 vol% or less of the total pore volume, Preferably, it is 82 V o 1% or more and 90 V o 1% or less, and has an inherent viscosity (30 ° C of a solution of 4 g of polymer powder dissolved in 1 liter of N, N-dimethylformamide. Logarithmic viscosity at 2. O d lZg or more 5. O d lZg or less, preferably 2.0 d 1 / g or more, 4.0 d lZg or less, more preferably 2. ldl / g or more 3.5 d 1 / g or less vinylidene fluoride polymer powder is provided.
  • the vinylidene fluoride polymer powder of the present invention is (the above 03 m or more 1.
  • the range of pore volume of 0 or less and the above-mentioned range of inherent viscosity The pore volume measured by mercury porosimetry is not less than 0.003 / m but not more than 1.0 ⁇ m. 85 V 0 1% or more of pore volume, preferably 89 vo 1% or more, more preferably 93 vo 1% The above is desirable.
  • the vinylidene fluoride polymer powder of the present invention has a total pore volume measured by a mercury porosimeter of 1.7 ml / g or more and 2.2 mlZg or less, preferably 1.8 mlZg or more and 2. lml / g or less. Preferably it is 1.8 mlZg or more and 2. Oml / g or less.
  • the vinylidene fluoride polymer powder of the present invention has a powder bulk density of 0.2 Og / ml or more and 0.3 OmgZ 1 or less, preferably 0.22 gZml or more and 0.27 mg Zl or less, more preferably It is desirable that it is not less than 0.23 g / m 1 and not more than 0.25 mg / 1.
  • the density of the vinylidene fluoride polymer is usually 1.78 gZml. At a temperature lower than the critical temperature of vinylidene fluoride monomer, the vinylidene fluoride monomer exists in the form of droplets, and the density is about 0.7 gZml.
  • the vinylidene fluoride monomer when the vinylidene fluoride monomer is in a supercritical state, the vinylidene fluoride monomer exists in the form of droplets, but the density is 0.4 gZ: ml, which is almost 1Z2.
  • pores are formed as a dense polymer is formed. Suspension polymerization in the supercritical state is thought to form more porous particles due to the low density of monomers in the system.
  • the resulting powder has improved solubility in organic solvents.
  • the vinylidene fluoride polymer powder of the present invention dissolves within 260 seconds, preferably within 200 seconds, when 2 parts by weight of powder is added to 70 parts by weight of N-methyl-2-pyrrolidone at room temperature. .
  • the vinylidene fluoride monomer, the suspending agent, the chain transfer agent, and the polymerization initiator are added to the aqueous dispersion medium and stirred, and the suspended particulate monomer liquid droplet having a diameter of about 200 m is stirred. And then a supercritical polymerization step in which the suspension containing the suspended particulate monomer droplets is polymerized at a temperature exceeding 30.1 ° C and a pressure exceeding 4.38 MPa.
  • a supercritical suspension polymerization method for producing the above-mentioned vinylidene fluoride polymer powder is also provided.
  • Emulsion polymerization is not preferred. This is because in emulsion polymerization, when the polymer is taken out from the emulsion after polymerization, the polymer is precipitated by a flocculant and then granulated, and then powdered, or the emulsion is sprayed to evaporate the aqueous medium. This is because the internal structure of the particles is strongly influenced by the subsequent process for removing the particles rather than the formation of the particles by polymerization.
  • the temperature in the supercritical polymerization process is such that the highest temperature is in the range of 31 ° C. to 100 ° C., preferably in the range of 45 T: to 65 ° C.
  • the time required from 10 ° C. to the maximum temperature is not limited as long as the polymerization initiator is not decomposed and the activity is not lost, and is preferably 30 minutes to 300 minutes, more preferably 15 50. It is preferable to set the time to be between 1 minute and 180 minutes.
  • the pressure in the supercritical polymerization process is preferably in the range of 4.4 MPa to 12 MPa, and more preferably in the range of 6.0 to 8.0 MPa.
  • the polymerization is continued at the predetermined temperature.
  • the internal pressure force S decreases.
  • the polymerization is preferably terminated from the point of polymer yield when the polymerization of the charged monomer has progressed 70% or more. Specifically, for example, when the internal pressure is reduced to 2.5 MPa or less, the polymerization is terminated, the unreacted monomer gas is discharged, the polymer slurry is taken out, dehydrated, washed with water, dehydrated, dry.
  • the vinylidene fluoride monomer used in the supercritical suspension polymerization method of the present invention includes a homopolymer of vinylidene fluoride and vinylidene fluoride as main components, preferably 50% by mass or more, more preferably 65% by mass. % Of a copolymer of a monomer copolymerizable with vinylidene fluoride.
  • Monomers that can be copolymerized with vinylidene fluoride include vinyl fluoride, trifluoroethylene, tetrafluoroethylene, chlorofluoroethylene, hexafluoropropylene, perfluoroalkyl alkyl ether, Forces that can preferably include ethylene, monomethyl maleate, allylic glycidyl ether, and the like, but are not limited thereto.
  • the 10-hour half-life temperature T 1 () is about 30.1 ° C to 90 ° C, which is the critical temperature of vinylidene fluoride.
  • suspending agent used in the supercritical suspension polymerization method of the present invention methylcellulose, hydroxychetylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, partially-crosslinked polyvinyl acetate, acrylic acid-based polymer, etc. are preferable. Can be mentioned.
  • Preferable examples of the chain transfer agent used in the supercritical suspension polymerization method of the present invention include ethyl acetate, propyl acetate, acetone, and jetyl carbonate.
  • the chain transfer agent is used for the purpose of adjusting the molecular weight of the resulting polymer.
  • alkyl phosphate metal salts as rhodium adjusting agents for preventing corrosion such as sodium pyrophosphate and sodium acid pyrophosphate, may be added as necessary.
  • these soot and sand modifiers are effective in stabilizing the polymerized suspended particles, suppressing coalescence of the particles, and inhibiting monomer polymerization in the aqueous phase.
  • 100 parts by mass of an aqueous medium and 100 parts by mass of a polymerization initiator for 100 parts by mass of vinylidene fluoride monomer it is preferable to add 1 to 2 parts by mass of a suspending agent.
  • a suspending agent such as sodium pyrophosphate and sodium acid pyrophosphate
  • the aqueous medium is less than 100 parts by weight or more than 500 parts by weight, the formation of suspension polymerized particles becomes unstable and the powder properties deteriorate.
  • the amount of the polymerization initiator is more than 0.5 parts by mass, low molecular weight components are easily formed during the polymerization reaction, and when used in a battery binder, a component that dissolves in a non-aqueous liquid electrolyte is generated. There is a concern that the characteristics deteriorate.
  • the suspending agent is outside this range, the formation of suspended particles is poor and the powder properties deteriorate.
  • the chain transfer agent is more than 5 parts by mass In such a case, the polymerization time becomes too long due to the chain transfer, or a polymer having a desired molecular weight cannot be obtained.
  • the supercritical suspension polymerization method of the present invention is significantly different from the supercritical suspension polymerization method described in Patent Document 1 in that no post-addition of monomers is performed.
  • the added monomer is polymerized in the voids in the powder particles to block the pores, resulting in an increase in the bulk density of the powder, and the vinylidene fluoride polymer powder powder of the present invention.
  • the polymer polymerized by the supercritical suspension polymerization method of the present invention is dehydrated by a centrifugal dehydrator, a press dehydrator, or the like, and further dried by evaporating water by a normal method using a heated air flow or reduced pressure. It can be obtained as a powder of a vinylidene fluoride polymer.
  • the vinylidene fluoride polymer thus obtained can be used as a battery binder as it is in the form of a powder, but a solution type battery binder dissolved in the above organic solvent is also preferably used. Is done.
  • a battery binder and a method for producing a battery electrode mixture using the vinylidene fluoride polymer powder having improved solubility in the organic solvent described above are provided.
  • the solution type battery binder is produced by adding the above-mentioned organic solvent to a dissolution tank equipped with a stirrer, gradually adding the polymer powder of the present invention while stirring, and continuing stirring at room temperature.
  • a method to dissolve Also preferred is a method in which the mixture is heated to a temperature of about 30 to 70 after the powder is added and stirred continuously for dissolution.
  • the polymer powder of the present invention is 1 to 20 parts by weight, preferably 1.5 to 15 parts by weight, more preferably 2 to 10 parts by weight with respect to 100 parts by weight of the organic solvent. Dissolve.
  • dissolution time varies depending on the stirring power of the dissolution tank and the polymer concentration
  • polymer powder with an inherent viscosity of 2.0 d 1 Zg or more is usually 3 to 48 hours
  • the time can be shortened to 1 to 40 to 1/4.
  • the method for producing the battery electrode mixture includes a kneading stirrer (a stirrer such as a planetary mixer or a homogenizer), at least a positive or negative active material, and, if necessary, a conductive aid such as carbon black, It can be obtained by adding the vinylidene fluoride polymer powder and N-methyl-2-pyrrolidone (hereinafter referred to as NMP) and mixing with sufficient stirring.
  • NMP N-methyl-2-pyrrolidone
  • NMP may be added to adjust the viscosity and solid content concentration of this mixture slurry for coating.
  • the prepared mixture slurry is preferable in terms of coating properties on the current collector and battery characteristics because the polymer is dissolved in a short time and the active material or the conductive auxiliary powder is sufficiently dispersed.
  • FIG. 1 is a graph showing the cumulative pore volume of the vinylidene fluoride polymer powder of the present invention prepared in Examples 1 to 4 and the vinylidene fluoride polymer powder of Comparative Example 1.
  • FIG. 2 is a graph showing the cumulative pore volume distribution (ml / g) of the vinylidene fluoride polymer powders of Examples 1 to 4 and Comparative Examples 1 to 9.
  • FIG. 3 is a graph showing the logarithmic differential pore volume distribution (mg / 1) of the vinylidene fluoride polymer powder of Example 1 and Comparative Example 9.
  • FIG. 4 is a graph showing the solubility of the powdered vinylidene fluoride polymers of Examples 1 to 4 and Comparative Examples 1 to 9 in comparison.
  • FIG. 5 is a visual observation photograph of the solubility of the electrode mixture using the vinylidene fluoride polymer powders of Example 1 and Comparative Examples 1 to 4.
  • the inherent viscosity was determined by adding 4 g of vinylidene fluoride polymer to 1 liter of N, N-dimethylformamide and dissolving it in 8 OX over 8 hours. This value was obtained by measuring the logarithmic viscosity with an Ubbelohde viscometer while holding the solution at 3 Ot.
  • the pore distribution of the obtained vinylidene fluoride polymer powder is After drying 0.3 to 0.4 g of lima powder sample at 105 ⁇ 2 ° C for 4 hours, using “Autopore 9520” (manufactured by Micrometric Co., Ltd.), JISR 1655 mercury intrusion method In conformity with the cell volume 5ml (powder cell), pore range 3 ⁇ ! The pore distribution at ⁇ 225 00 nm was measured. .
  • ion-exchanged water 1040 g, methyl cellulose 0.4 g, vinylidene fluoride monomer 400 g, perbutyloxypivalate 0.32 g, sodium pyrophosphate 0.4 g, acidic sodium pyrophosphate 0 .
  • ion-exchanged water 1040 g, methyl cellulose 0.4 g, vinylidene fluoride monomer 400 g, perbutyloxypivalate 0.32 g, sodium pyrophosphate 0.4 g, acidic sodium pyrophosphate 0 .
  • Each of 4 g and 2.0 g of jetyl carbonate was charged, stirred at 10 for 30 minutes, and then heated to 45 ° C over 120 minutes. The maximum pressure in the autoclave reached 6.
  • IMP a The polymerization was terminated when the pressure in the autoclave was reduced to 2.5 MPa within 25 hours after the start of temperature increase.
  • Polymerization was carried out in the same manner as in Example 1 except that 1.52 g of cetyl carbonate was used and the temperature was raised from 10 ° C to 55 ° C over 180 minutes. The maximum pressure in the autoclave reached 7. IMP a. Polymerization was terminated when the pressure in the autoclave was reduced to 2.5 MPa within 10.25 hours after the start of temperature increase.
  • the polymer slurry was taken out, dehydrated, washed with water, dehydrated, and dried at 80 for 20 hours.
  • the yield was 84.5%
  • the inherent viscosity was 2.27 dl / g
  • the bulk density was 0.
  • a 236 g / m 1 vinylidene fluoride polymer powder was obtained.
  • the butyl peroxypivalate is 0.28 g and the jetyl carbonate is 1.67 g.
  • Polymerization was carried out in the same manner as in Example 1 except that the temperature was raised from 1 Ot to 60 in 180 minutes. The maximum pressure in the autoclave reached 7.7 MPa. 10.33 hours after temperature rise The polymerization was terminated when the pressure in the autoclave was reduced to 2.5 MPa. After the polymerization is completed, the polymer slurry is taken out, dehydrated, washed with water and dried for 20 hours at 80 ° C. The yield is 85.5% with an inherent viscosity of 2.18d lZg, strength, density 0 A 238 g / m 1 vinylidene fluoride polymer powder was obtained.
  • Polymerization was carried out in the same manner as in Example 1 except that the amount of perbutyl peroxybivalate was 0.60 g and the amount of jetyl carbonate was 1.20 g, and the temperature was raised from 10 ° C to 65 ° C in 180 minutes. The maximum pressure in the autoclave reached 7.9 MPa. Polymerization was terminated when the pressure in the autoclave was reduced to 2.5 MPa in 6.85 hours after the start of temperature increase. After the polymerization was completed, the polymer slurry was taken out, dehydrated, washed with water, dehydrated, and dried at 80 ° C for 20 hours. The yield was 84.5%, and the inherent viscosity was 2.33 dl / g. A vinylidene fluoride polymer powder having a density of 0.246 g / m 1 was obtained.
  • Polymerization was carried out in the same manner as in Example 1, except that 0.26 g of perbutyl peroxybivalate and no jetyl carbonate were used. The maximum pressure in the autoclave reached 6.7 MPa. Polymerization was terminated when the pressure in the autoclave was reduced to 2.5 MPa within 23.0 hours after the start of temperature increase.
  • the polymer slurry was taken out, dehydrated, washed with water. * After dehydration, the polymer slurry was dried at 80 ° C for 20 hours. The yield was 85.0% and the inherent viscosity was 3.46 d lZg. A vinylidene fluoride polymer powder with a density of 0.250 g / ml was obtained.
  • This comparative example is the preparation of a vinylidene fluoride polymer powder by an ordinary suspension polymerization method.
  • 1040 g of ion-exchanged water, 0.4 g of methyl cellulose, 400 g of vinylidene fluoride monomer, 2.5 g of diisopropyl baroxydi, 2.5 g of ponate, and 5.0 g of ethyl acetate Suspension polymerization was carried out at 26 at 20 hours.
  • the polymer slurry is taken out, dehydrated, washed with water and dehydrated.
  • This comparative example is the preparation of vinylidene fluoride polymer powder by a conventional suspension polymerization method.
  • ion exchange water 1040 g In an autoclave with an internal volume of 2 liters, ion exchange water 1040 g, methyl cell mouthpiece 0.4 g, vinylidene fluoride monomer 400 g, normal propyl peroxydicarbonate 2. O g, ethyl acetate 8. O g The amount was charged and suspension polymerization was carried out at 25 ° C for 13 hours.
  • the polymer slurry was taken out, dehydrated, washed with water, dehydrated, and dried at 80 ° C for 20 hours, resulting in an inherent viscosity of 1.10 d lZg and a bulk density of 0. 426 g / ml of vinylidene fluoride polymer powder was obtained.
  • Rsolef6020j (manufactured by Solvay Solexis) produced by suspension polymerization was used.
  • KF polymer # 1300 (manufactured by Kureha Co., Ltd.) produced by the suspension polymerization method was used.
  • Solef6010 manufactured by Solvay Solexis
  • Solefl010 manufactured by Solvay Solexis manufactured by suspension polymerization was used.
  • This comparative example is the preparation of vinylidene fluoride monomer powder by the supercritical suspension polymerization method described in Comparative Example 1 of Patent Document 1.
  • the polymer slurry was taken out, dehydrated, washed with water and dehydrated, and then dried at 80 ° C for 20 hours, resulting in an inherent viscosity of 1. lldl / g with a yield of 89% and a bulk density of 0.238.
  • a vinylidene fluoride polymer powder of g / m 1 was obtained.
  • Table 2 shows the results of determining the pore distribution for Examples 1 to 5 and Comparative Examples 1 to 9.
  • the vinylidene fluoride polymer powder of the present invention has a high molecular weight exceeding 2.0 d 1 Z g, although the inherent viscosity is It can be seen that the solubility in N-methyl-2-pyrrolidone is excellent.
  • Kneading and stirring device for preparing a mixture “Burai Hibismix f mode l 03” (manufactured by Primics Co., Ltd.) and lithium cobalt oxide (“Cell seed C—8G” (Nippon Chemical Industry ( 200 g) and conductive carbon black (“Denka Black” (manufactured by Electrochemical Co., Ltd.)) 4. 17 g was added and the powder was mixed for 10 minutes at 50 rpm. Vinylidene fluoride polymer powder prepared in Example 1 4.17 g of body, 138.89 g of N-methyl-2-pyrrolidone were added and stirred and mixed at 50 rpm for 10 minutes. The solid content at this time was 60%.
  • Fig. 5 (1) shows Example 1, Fig. 5 (2) shows Comparative Example 1, Fig. 5 (3) shows Comparative Example 2, Fig. 5 (4) shows Comparative Example 3, and Fig. 5 (5) shows Comparative Example 4.
  • Fig. 5 (1) shows a homogeneous dissolved state
  • Fig. 5 (2) shows large undissolved masses
  • Fig. 5 (3) shows several undissolved masses.
  • a large lump of undissolved material is observed
  • FIG. 5 (5) a small lump of undissolved material is observed.
  • the vinylidene fluoride polymer powder of the present invention is completely dissolved to form a uniform solution, but in Comparative Examples 1 to 4, dumpling-like lumps are seen and dissolved. Incomplete and uniform solution is not obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

有機溶媒に対する溶解性に優れた非水系電池用電極バインダーとして有用な高分子量のフッ化ビニリデン系ポリマー粉体、NMP溶液及び電極合剤の製造方法を提供する。水系分散媒での超臨界懸濁重合で製造されたフッ化ビニリデン系ポリマーで、水銀ポロシメータで測定した細孔直径0.03μm以上1.0μm以下の細孔容積が全細孔容積の77vol%以上93vol%以下を占め、且つインヘレント粘度が2.0dl/g以上のフッ化ビニリデン系ポリマー粉体を得る。

Description

明細書
フッ化ビニリデン系ポリマー粉体及びその利用
技術分野
本発明は、 リチウム電池などの非水系電池の電極形成用バインダ一溶液に用いられ るフッ化ビニリデン系ポリマ一粉体及びその利用に関する。
背景技術
フッ化ビ二リデン系ポリマーは結晶性ポリマーであり、機械的強度の良好なポリマ 一として種々の成形物に使用されている。 リチウム電池などの非水系電池の電極形成 用バインダー溶液としてフッ化ビニリデン系ポリマ一を使用する場合には、その溶解 性が問題となる。 たとえば、 フッ化ビニリデン系ポリマーが完全に溶解していない不 均一な溶液を非水系電池の電極形成用バインダ一として使用すると、 粉末電極材料
(電極活物質および導電助剤などの粉末材料) を十分に結着できないばかりか、 粉末 電極材料とバインダーとの合剤を集電体に塗布すると凸凹が生じ、表面を平坦化でき ない。 .
フッ化ビニリデン系ポリマーを電池用バインダーとして用いる場合は、インへレン ト粘度が 2 . 0 d 1 / gを超えるものが結着性等において優れている(特許文献 2 )。 インへレント粘度はポリマーの分子量 (重合度) の代替指標の一つであり、 インヘレ ント粘度が高いほどポリマー粉体の有機溶媒への溶解性は低下し、溶解に時間を要す る。
均一な溶液を調製するために、 従来は、 フッ化ビニリデン系ポリマーに対して十分 な溶解力を有するいわゆる良溶媒を選択し、必要に応じて加熱しながら撹拌していた。 しかし、 撹拌時にフッ化ビニリデン系ポリマ一粉末同士が凝集して団子状となり、 凝 集樹脂内部への溶媒の浸透が妨げられるため、均一な溶液となるまで完全に溶解させ るには長時間を必要とする。 フッ化ビニリデン系ポリマーが非水系電池用電極バイン ダ一として有用な高重合度のものであればあるほど、 この傾向は強くなる。 一例を挙 げれば、 インへレント粘度 (樹脂 4 gを 1リツトルの N, N—ジメチルホルムアミド に溶解させた溶液の 3 0 υにおける対数粘度) が 2 . 1 d 1 / gのフッ化ビニリデン 系ポリマーを N—メチルー 2—ピロリドンに溶解させて濃度 1 0質量%の溶液を調 製するためには 7 0 で 2日間と長時間の撹拌を必要とする。団子状になることを防 ぐために、 フッ化ビニリデン系ポリマーを極めて少量ずつ溶媒中に投入する方法も考 えられたが、 作業性と能率の悪さから実用的ではない。
フッ化ビ二リデン系ポリマーの溶解性の悪さは、 フッ化ビ二リデン系ポリマー粉体 粒子表面が緻密であるために有機溶媒が粉体粒子内部にまで浸透しにくいことに起 因すると考えられる。フッ化ビニリデン系ポリマーの調製方法としては、溶液重合法、 乳化重合法、 懸濁重合法が知られている。 溶液重合法は、 通常、 重合温度 2 0 ° (〜 8 0 °Cの比較的低圧下 (例えば 1 . 5 M P a以下) で行われ、 比較的低分子量 (例えば 数平均分子量 1 0万以下)の塗料用フッ化ビニリデン系ポリマーの製造に用いられる。 乳化重合法は、 化学的に安定なフッ素系乳化剤や緩衝剤を使用して重合を行い、 0 . 1〜1 i mの小粒径ラテックス状の生成物を得て、 凝集剤などにより析出させ、 造粒 処理の後、 粉体粒子とする。 乳化重合法は、 高価な乳化剤の使用、 凝集 ·析出操作に よる粉体分離、凝集剤中のイオン性物質の除去など簡便性に劣りコス卜が高くなると いう欠点がある。 懸濁重合法は、 低温で開始能のある開始剤の開発と共に 3 0 . 1 °C (フッ化ビニリデンモノマーの臨界温度)以下での重合が可能となったことに伴い行 われるようになつた方法である。懸濁剤を用いてフッ化ビニリデンモノマ一を単独又 は共重合可能なモノマーと共に水中に分散し、生成したモノマーの液滴中に可溶な重 合開始剤の存在下に重合を進行させる。 本出願人は、 懸濁重合のうち、 フッ化ビニリ デンを主成分とするモノマーを、 はじめにその臨界圧力 P c r未満の圧力で供給し、 次いで P c r以上の圧力で供給する分割供給法を提案した (特許文献 1 )。 このよう な分割供給による懸濁重合法では、 重合系の過剰な圧力上昇を防止することができ、 得られるフッ化ビニリデン系ポリマ一は溶融成形体の外観として重要な高温耐着色 性を有する。
しかし、 これら改良された重合法で得られるフッ化ビニリデン系ポリマ一は主とし てインへレント粘度 1 . 5 d 1 / g以下の溶融成形体を得る目的で用いられ、 得られ る重合体の有機溶媒への溶解性に関する課題や解決方法については何ら触れられて いない。
また、 特許文献 1には、 フッ化ビニリデンを主成分とするモノマーの後添加を行わ ない重合例が比較例として記載されているが、 この重合方法によつて得られたポリマ 一のインへレント粘度は 1. l d lZgであった。 これまでインへレント粘度が 2. 0 d lZg以上のもので、溶解性に優れたフッ化ビニリデン系ポリマー粉体は知られ ていなかった。
特許文献 1 :国際特許出願公開パンフレツト WO 2006/06 1988 特許文献 2 :特許第 3703582号公報
発明の開示
発明が解決しょうとする課題
そこで、 本発明は、 有機溶媒に対する溶解性に優れた非水系電池用電極バインダー として有用な高重合度のフッ化ビ二リデン系ポリマー粉体及びその利用として、該粉 体を用いた電池バインダーおよび電池電極合剤の製造方法を提供することを目的と する。
課題を解決するための手段
本発明者らは、 水銀ポロシメータで測定した細孔直径 0. 03 111以上1.
以下の細孔容積が全細孔容積の 77 V o 1 %以上 93 V o 1 %以下であり且つィン へレント粘度が 2. 0 d lZg以上 5. 0 d lZg以下のフッ化ビニリデン系ポリマ 一粉体が有機溶媒に対する溶解性に優れることを見出し、本発明を完成するに至った。 すなわち、 本発明によれば、 水銀ポロシメータで測定した細孔直径 0. 03 / m以 上 1. 0 /xm以下の細孔容積が全細孔容積の 77 vo l %以上 93 vo l %以下、 好 ましくは 82 V o 1 %以上 90 V o 1 %以下であり、 且つインへレント粘度 (ポリマ 一粉体 4 gを 1リットルの N, N—ジメチルホルムアミドに溶解させた溶液の 30°C における対数粘度) が 2. O d lZg以上 5. O d lZg以下、 好ましくは 2. 0 d 1/g以上 4. 0 d lZg以下、 より好ましくは 2. l d l/g以上 3. 5 d 1/g 以下であることを特徴とするフッ化ビニリデン系ポリマ一粉体が提供される。
また、本発明のフッ化ビニリデン系ポリマー粉体は、 (上記の 03 m以上 1.
0 以下の細孔容積の範囲且つ上記のインへレント粘度の範囲であり)水銀ポロシ メ一夕で測定した細孔直径 0. 003 / m以上 1. 0 ^ m以下の細孔容積が全細孔容 積の 85 V 0 1 %以上、 好ましくは 89 v o 1 %以上、 より好ましくは 93 vo 1 % 以上であることが望ましい。
さらに、 本発明のフッ化ビニリデン系ポリマー粉体は、 水銀ポロシメータで測定し た全細孔容積が 1. 7ml/g以上 2. 2mlZg以下、 好ましくは 1. 8mlZg 以上 2. lml/g以下、 より好ましくは 1. 8mlZg以上 2. Oml/g以下で あることが望ましい。
またさらに、 本発明のフッ化ビニリデン系ポリマー粉体は、 粉体かさ密度が 0. 2 Og/ml以上 0. 3 OmgZ 1以下、 好ましくは 0. 22 gZml以上 0. 27m gZl以下、 より好ましくは 0. 23 g/m 1以上 0. 25mg/ 1以下であること が望ましい。 フッ化ピニリデンポリマーの密度は通常、 1. 78 gZmlである。 フ ッ化ビ二リデンモノマーの臨界温度よりも低い温度では、 フッ化ビニリデンモノマー は液滴の状態で存在し、 密度は 0. 7 gZml程度である。 一方、 フッ化ビニリデン モノマーが超臨界状態にある場合は、 フッ化ビ二リデンモノマーは液滴の状態で存在 するが、 密度は 0. 4gZ:mlとほぼ 1Z2となる。 超臨界状態で懸濁重合した場合 のポリマーの内部かさ密度は、 0. 4/1. 78=約 0. 23 gZm 1となる。 液滴 の懸濁粒子内では密度の高いポリマーが生成するに従って細孔が形成される。超臨界 状態で懸濁重合すると、 系内のモノマーの密度が低いため、 より多孔質な粒子が形成 されると考えられる。 粒子が多孔質になるほど、 すなわち、 懸濁重合体の粒子内部の 細孔容積が多くなり、 かつ、 粒子表面にも細孔が形成されるほど、 粒子細孔内部への 溶媒の浸透性が増加し、結果的に得られる粉体の有機溶媒への溶解性が向上すると考 えられる。
本発明のフッ化ビニリデン系ポリマー粉体は、室温で N—メチル— 2—ピロリドン 70重量部に対して粉体 2重量部を投入した際に、 260秒以内、 好ましくは 200 秒以内に溶解する。
また、 本発明によれば、 水系分散媒にフッ化ビ二リデンモノマー、 懸濁剤、 連鎖移 動剤及び重合開始剤を添加して撹拌し、直径 200 m程度の懸濁粒子状モノマー液 滴を形成する懸濁工程と、次いで、この懸濁粒子状モノマー液滴を含む懸濁液を 30. 1°Cを超える温度且つ 4. 38 MP aを超える圧力にて重合する超臨界重合工程を含 む、上述のフッ化ビニリデン系ポリマー粉体を製造する超臨界懸濁重合法も提供され る。
本発明のフッ化ピ二リデン系ポリマー粉体は上記のように超臨界懸濁重合で得る ことが好ましい。 乳化重合は好ましくない。 なぜなら、 乳化重合では重合後の乳化液 からポリマーを取り出す際に、凝集剤などによりポリマーを析出させ、造粒処理の後、 粉体粒子とする方法や、乳化液を噴霧して水系媒体を蒸発させる方法が採られるため、 粒子の内部構造においては、 重合による粒子形成というよりも、 粒子を取り出すため の後工程での影響を強く受けてしまうからである。
超臨界重合工程の温度は、 最高到達温度が 3 1 °C〜1 0 0 °Cの範囲、 好ましくは 4 5 T:〜 6 5 °Cの範囲が好ましい。 1 0 °Cから最高到達温度までの所要時間は、 重合開 始剤が分解して活性が消失しない範囲であればよく、好ましくは 3 0分間〜 3 0 0分 間、 さらに好ましくは 1 5 0分間〜 1 8 0分間となるように設定することが好ましい。 超臨界重合工程の圧力は、 最高到達圧力が 4. 4 M P a〜1 2 M P aの範囲が好ま しく、より好ましくは 6 . 0〜8 . 0 M P aの範囲である。超臨界重合工程において、 加圧容器内で懸濁液を所定の最高到達温度及び最高到達圧力に達するまで昇温プロ ファイルに従って昇温した後、 所定の温度で重合を継続すると、 フッ化ビニリデンモ ノマ—の重合の進行に伴い系内圧力力 S低下する。 重合の終了は、 投入したモノマーの 重合が 7 0 %以上進んだ時点とするのがポリマー収量の点から好ましい。具体的には、 例えば系内圧力が 2 . 5 M P aあるいはそれ以下にまで減圧したところで重合を終了 させ、 未反応モノマーガスを排出し、 ポリマースラリーを取り出し、 脱水、 水洗,脱 水した後、 乾燥させる。
本発明の超臨界懸濁重合法において用いるフッ化ビ二リデンモノマーには、 フッ化 ビニリデンのホモポリマ一、 およびフッ化ビニリデンを主成分、 好ましくは 5 0質 量%以上、 より好ましくは 6 5質量%以上含有するフッ化ビニリデンと共重合可能な モノマーとのコポリマ一が含まれる。フッ化ビニリデンと共重合可能なモノマ一とし ては、 フッ化ビニル、 トリフルォロエチレン、 テトラフルォロエチレン、 クロ口トリ フルォロエチレン、 へキサフルォロプロピレン、 パ一フルォ口アルキルビエルエーテ ル、 エチレン、 マレイン酸モノメチル、 ァリルグリシジルエーテル等を好ましく挙げ ることができる力 これらに限定されるものではない。 本発明の超臨界懸濁重合法において用いる重合開始剤としては、 1 0時間半減期温 度 T 1 ()がフッ化ピニリデンの臨界温度である 3 0 . 1 °C〜9 0 °C程度のもの、たとえ ば、 ジイソプロピルパ一ォキシジ力一ポネート (T 1 0 = 4 0 . 5 °C)、 ジノルマルプ 口ピルパ一ォキシジ力一ポネート (T 1 () = 4 0 . 3 °C)、 パーブチルパーォキシビバ レート (T 1 0= 5 4. 6 ) などを好ましく挙げることができる。
本発明の超臨界懸濁重合法において用いる懸濁剤としては、 メチルセルロース、 ヒ ドロキシェチルセルロース、 ヒドロキシプロピルセルロース、 ヒドロキシプロピルメ チルセルロース、 部分鹼化ポリ酢酸ビニル、 アクリル酸系重合体等を好ましく挙げる ことができる。
本発明の超臨界懸濁重合法において用いる連鎖移動剤としては、 酢酸ェチル、 酢酸 プロピル、 アセトン、 炭酸ジェチルなどを好ましく挙げることができる。 なお、 連鎖 移動剤は得られるポリマーの分子量を調節する目的で使用する。
また、 腐食防止のための ρ Η調整剤としてのリン酸アルキル金属塩、 たとえばピロ リン酸ナトリゥム及び酸性ピロリン酸ナトリゥムなどを必要に応じて添加してもよ い。 これらの Ρ Η調整剤は、 使用機器の腐食防止の他に、 重合懸濁粒子の安定、 粒子 同士の合一の抑制、 水相でのモノマ一重合の抑制に効果がある。
本発明の超臨界懸濁重合法においては、 フッ化ビニリデンモノマ一 1 0 0質量部に 対して、 水性媒体 1 0 0〜5 0 0質量部、 重合開始剤 0 . 0 0 1〜2質量部、 懸濁剤 0 . 0 1〜2質量部を添加することが好ましい。 ピロリン酸ナトリウム及び酸性ピロ リン酸ナトリウムなどの ρ Η調整剤を用いる場合にはフッ化ビニリデンモノマー 1 0 0質量部に対して 1質量部以下を添加することが好ましく、連鎖移動剤を用いる場 合にはインへレン卜粘度が 2 d 1 程度になるようにフッ化ビニリデンモノマー 1 0 0質量部に対して 5質量部以下を添加することが好ましい。水性媒体が 1 0 0重 量部より少ない場合や 5 0 0質量部より多い場合は懸濁重合粒子の形成が不安定に なり粉体性状が悪化する。 重合開始剤が 0 . 5質量部より多い場合は、 重合反応中に 低分子量成分が形成されやすくなり、電池用バインダ一に使用する場合には非水電角爭 液等に溶解する成分が生じ電池特性が悪化する懸念がある。懸濁剤がこの範囲外では 懸濁粒子の形成が悪く、 粉体性状が悪化する。 連鎖移動剤が 5質量部より多い場合に は、 連鎖移動の作用で重合時間が長期化し過ぎ、 あるいは所望の分子量の重合体が得 られない。
なお、 本発明の超臨界懸濁重合法は、 特許文献 1に記載の超臨界懸濁重合法と比較 して、 モノマーの後添加を行わない点で大きく異なる。 追加添加されたモノマーは粉 体粒子中の空隙中で重合し細孔を塞ぐことにより、結果的に粉体かさ密度を上げるこ とになり、 本発明のフッ化ビニリデン系ポリマー粉体の粉体かさ密度: 0 . 2 3 gZ 111 1以上0 . 2 5 m g / l以下を達成することができない。 また、 特許文献 1に記載 のモノマーの後添加を行わない比較例 1と比較して、重合開始剤及び連鎖移動剤の種 類及び量比の点並びに得られるポリマー粉体の細孔構造及びィンヘレント粘度の点 (後述の比較例 9参照) で大きく異なる。 異なる細孔構造となるメカニズムと重合処 方の関係は明確ではないが、 重合開始剤と連鎖移動剤の種類と量の組み合わせや、 助 剤である p H調整剤の存在等が複雑に関係した結果と考えられる。
本発明の超臨界懸濁重合法によって重合された重合体は、遠心脱水機やプレス脱水 機等で脱水し、 さらに加熱した気流や減圧による通常の方法で水分を蒸発させること で乾燥し、 フッ化ピニリデン系ポリマーの粉体として得ることができる。 そのように して得られたフッ化ビニリデン系ポリマーは粉体の形でそのまま電池バインダーと して使用することが可能であるが、上述の有機溶媒に溶解した溶液タイプの電池バイ ンダーも好ましく使用される。
本発明によれば、上述の有機溶媒への溶解性が向上したフッ化ビニリデン系ポリマ 一粉体を用いた電池バインダ一および電池電極合剤の製造方法が提供される。
溶液タイプの電池バインダーの製造方法は、 具体的には、 攪拌機を備えた溶解槽に 上述の有機溶媒を投入し、 攪拌しながら本発明のポリマー粉体を徐々に添加し、 室温 で攪拌を続けて溶解させる方法がある。 また、 粉体添加後に 3 0〜7 0 程度の加温 状態にして攪拌を続け溶解させる方法も好ましい。上述の有機溶媒 1 0 0質量部に対 し、 本発明のポリマー粉体は 1〜 2 0質量部、 好ましくは 1 . 5〜 1 5質量部、 より 好ましくは 2〜1 0質量部の割合で溶解させる。溶解時間は溶解槽の攪拌力やポリマ 一濃度に応じて変わるものの、 インへレント粘度 2 . 0 d 1 Z g以上のポリマー粉体 では、 通常は 3時間〜 4 8時間であるのに対し、 本発明のポリマー粉体では同条件に おいてその 1ノ4 0〜 1 / 4の時間に短縮できる。
電池電極合剤の製造方法は、 具体的には、 混練撹拌装置 (ブラネタリ一ミキサーや ホモジナイザー等の撹拌機) に、 少なくとも正極または負極の活物質、 必要によって カーボンブラック等の導電助剤、 本発明のフッ化ビニリデンポリマー粉体、 および N —メチルー 2—ピロリドン (以下 NM P ) を添加して十分撹拌混合することで得られ る。 また、 塗布用にこの合剤スラリーの粘度や固形分濃度を調整するために NM Pを 追加しても構わない。 調製した合剤スラリーは、 ポリマーが短時間に溶解され、 活物 質あるいは導電助剤の粉体が十分に分散しているため、集電体への塗工性や電池特性 の点で好ましい。
図面の簡単な説明
図 1は、実施例 1〜 4で調製した本発明のフッ化ビニリデンポリマ一粉体及び比較 例 1のフッ化ビニリデンポリマー粉体の積算細孔容積を示すグラフである。
図 2は、実施例 1〜 4及び比較例 1〜 9のフッ化ビニリデンポリマー粉体の積算細 孔容積分布 (m l / g) を示すグラフである。
図 3は、実施例 1と比較例 9とのフッ化ビニリデンポリマー粉体の対数微分細孔容 積分布 (m g / 1 ) を示すグラフである。
図 4は、 実施例 1〜4、 比較例 1〜9のフッ化ピニリデンポリマ一粉体の溶解性を 対比して示すグラフである。
図 5は、 実施例 1、 比較例 1〜4のフッ化ビニリデンポリマー粉体を用いた電極用 合剤の溶解性の目視観察写真である。
実施例
以下、 実施例により本発明を更に詳細に説明するが、 本発明はこれらに限定される ものではない。
以下の実施例において、 インへレント粘度は、 1リットルの N, N—ジメチルホル ムアミドに、 フッ化ビニリデン系ポリマー 4 gを添加し、 8 O Xで 8時間かけて溶解 させた溶液を調製し、 この溶液を 3 O tに保持してウベローデ粘度計で対数粘度を測 定して求めた値である。
また、 得られたフッ化ビニリデンポリマー粉体の細孔分布は、 フッ化ビニリデンポ リマ一粉体サンプル 0. 3〜0. 4gを 105±2 °Cで 4時間乾燥させた後、 「ォ一 トポア 9520型」 (マイクロメトリック (株) 製) を用いて、 J I S R 1655 水銀圧入法に準拠して、 セル容積 5ml (粉体用セル) で、 細孔範囲 3 ηπ!〜 225 00 nmでの細孔分布を測定した。 .
<フッ化ビニリデン系ボリマ一の製造 >
[実施例 1 ]
内容積 2リットルのオートクレーブに、 イオン交換水 1040 g、 メチルセルロー ス 0. 4g、 フッ化ビニリデンモノマー 400 g、 パーブチルバ一ォキシピバレ一ト 0. 32 g、 ピロリン酸ナトリウム 0. 4g、 酸性ピロリン酸ナトリウム 0. 4 g、 炭酸ジェチル 2. 0 gの各量を仕込み、 10でで 30分間撹拌した後、 45 °Cまで 1 20分間で昇温した。 ォ一トクレーブ内の最高圧力は 6. IMP aに到達した。 昇温 開始後 14. 25時間でオートクレープ内の圧力が 2. 5MP aにまで減圧したとこ ろで重合を終了させた。
重合終了後、 ポリマースラリーを取り出し、 脱水、 水洗 '脱水した後、 80°Cで 2 0時間乾燥させたところ、 収率 75. 5%でインへレント粘度 2. 16 d l/g、 か さ密度 0. 233 g/m 1のフッ化ビニリデンポリマー粉体が得られた。
[実施例 2]
炭酸ジェチルを 1. 52 gとし、 10°Cから 55°Cまで 180分間で昇温した以外 は実施例 1と同様に重合を行った。 オートクレープ内の最高圧力は 7. IMP aに到 達した。 昇温開始後 10. 25時間でオートクレープ内の圧力が 2. 5MP aにまで 減圧したところで重合を終了させた。
重合終了後、 ポリマースラリーを取り出し、 脱水、 水洗 ·脱水した後、 80でで 2 0時間乾燥させたところ、 収率 84. 5%でインへレント粘度 2. 27 d l/g、 か さ密度 0. 236 g/m 1のフッ化ビニリデンポリマー粉体が得られた。
[実施例 3 ]
パ一ブチルパーォキシピバレ一トを 0. 28 g、 炭酸ジェチルを 1. 67 gとし、
1 Otから 60 まで 180分間で昇温した以外は実施例 1と同様に重合を行った。 オートクレープ内の最高圧力は 7. 7MP aに到達した。 昇温開始後 10. 33時間 でオートクレープ内の圧力が 2. 5MP aにまで減圧したところで重合を終了させた。 重合終了後、 ポリマースラリーを取り出し、 脱水、 水洗 '脱水した後、 80°Cで 2 0時間乾燥させたところ、 収率 85. 5%でインへレント粘度 2. 18d lZg、 力、 さ密度 0. 238 g/m 1のフッ化ビニリデンポリマ一粉体が得られた。
[実施例 4]
パーブチルパーォキシビバレートを 0. 60 g、 炭酸ジェチルを 1. 20 gとし、 10°Cから 65°Cまで 180分間で昇温した以外は実施例 1と同様に重合を行った。 ォ一トクレーブ内の最高圧力は 7. 9MP aに到達した。 昇温開始後 6. 85時間で ォ一トクレーブ内の圧力が 2. 5 MP aにまで減圧したところで重合を終了させた。 重合終了後、 ポリマ一スラリーを取り出し、 脱水、 水洗 ·脱水した後、 80°Cで 2 0時間乾燥させたところ、 収率 84. 5%でインへレント粘度 2. 33 d l/g、 力 さ密度 0. 246 g /m 1のフッ化ビニリデンポリマ一粉体が得られた。
[実施例 5]
パーブチルパーォキシビバレートを 0. 26 g、 炭酸ジェチルを使用しなかった以 外は実施例 1と同様に重合を行った。 オートクレ一ブ内の最高圧力は 6. 7MP aに 到達した。 昇温開始後 23. 0時間でォ一トクレープ内の圧力が 2. 5MP aにまで 減圧したところで重合を終了させた。
重合終了後、 ポリマ一スラリーを取り出し、 脱水、 水洗 *脱水した後、 80°Cで 2 0時間乾燥させたところ、 収率 85. 0%でインへレント粘度 3. 46 d lZg、 力、 さ密度 0. 250 g/mlのフッ化ビニリデンポリマー粉体が得られた。
[比較例 1 ]
本比較例は、通常の懸濁重合法によるフッ化ビ二リデンポリマ一粉体の調製である。 内容積 2リットルのオートクレ一ブに、 イオン交換水 1040 g、 メチルセルロー ス 0. 4g、 フッ化ビニリデンモノマー 400 g、 ジイソプロピルバーオキシジ力一 ポネート 2. 5 g、 酢酸ェチル 5. 0 gの各量を仕込み、 26 で 20時間懸濁重合 行つた。
重合終了後、 ポリマースラリーを取り出し、 脱水、 水洗 ·脱水した後、 80 で 2
0時間乾燥させたところ、 収率 91 %でインへレント粘度 2. 10 d lZg、 かさ密 度 0. 430 g /m 1のフッ化ビニリデンポリマー粉体が得られた。
[比較例 2 ]
本比較例は、通常の懸濁重合法によるフッ化ビ二リデンポリマー粉体の調製である。 内容積 2リットルのオートクレーブに、 イオン交換水 1040 g、 メチルセル口一 ス 0. 4 g、 フッ化ビニリデンモノマー 400 g、 ノルマルプロピルパーォキシジカ ーポネート 2. O g、 酢酸ェチル 8. O gの各量を仕込み、 25 °Cで 13時間懸濁重 合を行った。
重合終了後、 ポリマ一スラリーを取り出し、 脱水、 水洗 ·脱水した後、 80°Cで 2 0時間乾燥させたところ、 収率 91 %でインへレント粘度 1. 10 d lZg、 かさ密 度 0. 426 g/mlのフッ化ビニリデンポリマー粉体が得られた。
比較例 3〜 8として市販のフッ化ビニリデンポリマー粉体についてインへレント 粘度及びかさ密度を調べた。
[比較例 3]
懸濁重合法により製造された rsolef6020j (Solvay Solexis製) を用いた。
[比較例 4]
rKynar HSV900J (ARKEMA製) を用いた。
[比較例 5 ]
懸濁重合法により製造した 「KFポリマー #1300」 ((株) クレハ製) を用いた。
[比較例 6 ]
「Solef6010」 (Solvay Solexis製) を用いた。
[比較例 7 ]
懸濁重合法により製造された 「Solefl010」 (Solvay Solexis製) を用いた。
[比較例 8]
乳化重合法により製造された 「Kynar 761」 (ARKEMA製) を用いた。
[比較例 9 ]
本比較例は、特許文献 1の比較例 1に記載の超臨界懸濁重合法によるフッ化ビニリ デンモノマー粉体の調製である。
内容積 2リットルのオートクレープに、 イオン交換水 1040 g、 メチルセルロー ス 0. 2 g、 フッ化ビニリデンモノマー 400 g、 ジイソプロピルパーォキシジ力一 ポネート 0. 40 g、 酢酸ェチル 7. 2 gの各量を仕込み、 10 で 30分間撹拌し た後、 60°Cまで 144分間で昇温した。 ォ一トクレーブ内の最高圧力は 7. IMP aに到達した。 昇温開始後 5. 75時間でオートクレープ内の圧力が 2. OMP aに まで減圧したところで重合を終了させた。
重合終了後、 ポリマースラリーを取り出し、 脱水、 水洗 '脱水した後、 80°Cで 2 0時間乾燥させたところ、 収率 89%でインへレント粘度 1. l l d l/g、 かさ密 度 0. 238 g/m 1のフッ化ビニリデンポリマ一粉体が得られた。
実施例 1〜5、 比較例 1〜9について、 インへレント粘度及びかさ密度を表 1にま とめた。
実施例 1〜 5及び比較例 1〜 9について細孔分布を求めた結果を表 2に示す。
また、実施例 1〜 4及び比較例 1〜 9についてグラフ化した結果を図 1〜 3に示す。 くフッ化ビニリデンポリマー粉体の溶解性 >
混合撹拌装置 「あわとり練太郎 MX201」 (シンキー社製) に、 N—メチルー 2—ピロリドン 70 gを入れ、 26 °Cに設定した後、 実施例 1〜 4及び比較例 1〜 9 のフッ化ピニリデンポリマ一粉体 2 gを一気に添加し、 蓋をして撹拌機で 3分間 (1 80秒) 撹拌し混合させた。 撹拌開始後 0秒、 20秒、 140秒、 200秒及び 26 0秒の時点で未溶解物を 15メッシュ金網で回収した。回収した未溶解物を 130°C で 4時間かけて乾燥させて秤量し、 未溶解率 (%) を求めた。 未溶解率は (未溶解物 の乾燥質量) / (初期粉体投入量) X 100で求めた。 結果を表 1及び図 4にまとめ て示す。
[表 1] インへレント粘度、 かさ密度及び未溶解率の比較
Figure imgf000014_0001
* 「一」 は測定しなかったことを示す 表 1から、 本発明のフッ化ビニリデンポリマー粉体は、 インへレント粘度が 2 . 0 d 1 Z gを超える高分子量のものにも関わらず、 N—メチルー 2—ピロリドンに対す る溶解性が優れていることがわかる。
[表 2 ] 水銀ポロシメータによる細孔分布
Figure imgf000015_0001
<リチウム非水系電池電極用合剤の作製とフッ化ビニリデンポリマー粉体の溶解性 の評価 >
合剤作製用の混練撹拌装置ブラネ夕リ一ミキサー 「Τ. Κハイビスミックス f mode l 03型」 (プライミクス (株) 製) に、 コバルト酸リチウム (「セルシー ド C— 8G」 (日本化学工業 (株) 製) 200 gと、 導電性カーボンブラック (「デ ンカブラック」 (電気化学 (株) 製)) 4. 17gを投入し、 50 rpmで 10分間に わたり粉体を混合させた。 その後、 実施例 1で調製したフッ化ビニリデンポリマー粉 体 4. 17 g、 N—メチルー 2—ピロリドン 138. 89 gを添加して、 50 r pm で 10分間にわたり撹拌混合した。 このときの固形分濃度は 60%であった。 この混 合物を混合撹拌装置 「あわとり練太郎 MX201」 (シンキー社製) に投入して、 10秒間脱泡処理を行い、 評価用合剤とした。 この評価用合剤を目視観察した。 比較 例 1〜4についても同様に評価用合剤を作製し、 目視観察した。 これらの観察写真を 図 5に示す。
図 5 (1) は実施例 1、 図 5 (2) は比較例 1、 図 5 (3) は比較例 2、 図 5 (4) は比較例 3、 図 5 (5) は比較例 4の観察写真である。 図 5 (1) は均一な溶解状態 であることを示し、 図 5 (2) は未溶解物の大きな塊が観察され、 図 5 (3) では未 溶解物の塊が数個観察され、図 5 (4)では未溶解物の大きな塊が観察され、図 5 (5) では未溶解物の小さな塊が観察されている。 これらの観察写真から明らかなように、 本発明のフッ化ビニリデンポリマー粉体は完全に溶解して均一な溶液を形成してい るが、比較例 1〜4では団子状の塊が見られ溶解が不完全で均一な溶液が得られてい ない。

Claims

請求の範囲
1. 水銀ポロシメータで測定した細孔直径 0. 03 im以上 1. 以下の細孔 容積が全細孔容積の 77 vo 1 %以上 93 V o 1 %以下であり、且つインへレント粘 度(ポリマー粉体 4 gを 1リットルの N, N—ジメチルホルムアミドに溶解させた溶 液の 30°Cにおける対数粘度) が 2. O d lZg以上 5. O d lZg以下であること を特徴とするフッ化ビニリデン系ポリマー粉体。
2. 水銀ポロシメータで測定した細孔直径 0. 003 111以上1. 0 im以下の細 孔容積が全細孔容積の 85 V o 1 %以上であることを特徴とする請求項 1に記載の フッ化ビニリデン系ポリマー粉体。
3. 水銀ポロシメータで測定した全細孔容積が 1. 7m l/g以上 2. 2ml/g 以下であることを特徴とする請求項 1または 2に記載のフッ化ビニリデン系ポリマ 一粉体。
4. 粉体かさ密度が 0. Z O gZml以上 0. 3 OmgZ 1である、 請求項 1〜3 の何れかに記載のフッ化ビニリデン系ポリマー粉体。
5. 室温で N—メチルー 2—ピロリドン 70質量部に対して粉体 2質量部を投入し た際に、 260秒以内に溶解する請求項 1〜4に記載のフッ化ビニリデン系ポリマー 粉体。
6. 水系分散媒にフッ化ビ二リデンモノマーと、 少なくとも、 懸濁剤、 重合開始剤 を添加して撹拌し、直径 200 /xm程度の懸濁粒子状モノマー液滴を形成する懸濁ェ 程と、 次いで、 この懸濁粒子状モノマー液滴を含む懸濁液を 30. 1°Cを超える温度 且つ 4. 38 MP aを超える圧力にて重合する超臨界重合工程を含む、 請求項 1〜 5 に記載のフッ化ビニリデン系ポリマー粉体を製造する超臨界懸濁重合法。
7. 請求項 1〜 5に記載のフッ化ピ二リデン系ポリマー粉体を有機溶媒に溶解する 電池用バインダ一の製造方法。
8. 電極活物質、 請求項 1〜5に記載のフッ化ピニリデン系ポリマー粉体及び有機 溶媒を混合してペースト状にする電池用電極合剤の製造方法。
PCT/JP2008/066927 2007-10-11 2008-09-12 フッ化ビニリデン系ポリマー粉体及びその利用 WO2009047969A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP08837924A EP2196479B9 (en) 2007-10-11 2008-09-12 Vinylidene fluoride polymer powder and use thereof
CN2008801107348A CN101821298B (zh) 2007-10-11 2008-09-12 1,1-二氟乙烯类聚合物粉末及其用途
JP2009536959A JP5372765B2 (ja) 2007-10-11 2008-09-12 フッ化ビニリデン系ポリマー粉体及びその利用
US12/682,451 US8298446B2 (en) 2007-10-11 2008-09-12 Vinylidene fluoride based polymer powder and use thereof
AT08837924T ATE540057T1 (de) 2007-10-11 2008-09-12 Vinylidenfluoridpolymerpulver und seine verwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007265228 2007-10-11
JP2007-265228 2007-10-11

Publications (1)

Publication Number Publication Date
WO2009047969A1 true WO2009047969A1 (ja) 2009-04-16

Family

ID=40549114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/066927 WO2009047969A1 (ja) 2007-10-11 2008-09-12 フッ化ビニリデン系ポリマー粉体及びその利用

Country Status (6)

Country Link
US (1) US8298446B2 (ja)
EP (1) EP2196479B9 (ja)
JP (1) JP5372765B2 (ja)
CN (1) CN101821298B (ja)
AT (1) ATE540057T1 (ja)
WO (1) WO2009047969A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052666A1 (ja) 2009-10-30 2011-05-05 株式会社クレハ フッ化ビニリデン系重合体粉末およびフッ化ビニリデン系重合体溶液
WO2011052669A1 (ja) 2009-10-30 2011-05-05 株式会社クレハ 熱処理済フッ化ビニリデン系重合体粉末の製造方法およびフッ化ビニリデン系重合体溶液の製造方法
JP2011091010A (ja) * 2009-10-26 2011-05-06 Nikkiso Co Ltd 改質微粉状正極物質の製造方法
WO2011122260A1 (ja) * 2010-03-30 2011-10-06 株式会社クレハ 非水電解質二次電池用負極合剤、非水電解質二次電池用負極および非水電解質二次電池
US20120157590A1 (en) * 2009-08-28 2012-06-21 Kureha Corporation Process for Producing Non-Aqueous Battery Electrode-Forming Binder Solutions, and Non-Aqueous Battery Electrode-Forming Binder Solution
JP2014040519A (ja) * 2012-08-22 2014-03-06 Kureha Corp フッ化ビニリデン系重合体の製造方法
JP2015103405A (ja) * 2013-11-25 2015-06-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 非水電解質二次電池
JP2019157110A (ja) * 2018-03-06 2019-09-19 株式会社クレハ フッ化ビニリデン重合体の製造方法
JP2019189781A (ja) * 2018-04-26 2019-10-31 株式会社クレハ 粒子

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE540057T1 (de) * 2007-10-11 2012-01-15 Kureha Corp Vinylidenfluoridpolymerpulver und seine verwendung
KR101520560B1 (ko) 2010-12-28 2015-05-14 가부시끼가이샤 구레하 불화비닐리덴계 공중합체 및 그 공중합체의 용도
CN103524647B (zh) * 2013-08-16 2016-10-12 巨化集团技术中心 一种聚偏氟乙烯树脂的制备方法
JP6206421B2 (ja) * 2015-01-14 2017-10-04 トヨタ自動車株式会社 電極の製造方法
CN109314276B (zh) * 2016-06-20 2022-10-04 索尔维公司 氟聚合物薄膜
EP3523345A1 (en) 2016-10-05 2019-08-14 Solvay Specialty Polymers Italy S.p.A. Vinylidene fluoride polymer
WO2020017561A1 (ja) * 2018-07-20 2020-01-23 株式会社クレハ 粒子状のフッ化ビニリデン系重合体、および粒子状のフッ化ビニリデン系重合体の製造方法
WO2020104513A1 (en) * 2018-11-22 2020-05-28 Solvay Specialty Polymers Italy S.P.A. Process for manufacturing heat treated pvdf
FR3103818B1 (fr) 2019-11-29 2022-05-27 Arkema France Poudre de polymère poreuse, sa composition, son utilisation et une composition la comprenant
FR3103817B1 (fr) * 2019-11-29 2021-12-17 Arkema France Composition comprenant un polymère à étapes multiples et un polymère (méth)acrylique, son procédé de préparation et son utilisation
EP4206241A1 (en) * 2020-08-26 2023-07-05 Zhejiang Quzhou Jusu Chemical Industry Co., Ltd. Copolymerized pvdf resin for lithium battery binder and preparation method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817388B1 (ja) * 1969-12-23 1973-05-29
JPS59174605A (ja) * 1983-03-10 1984-10-03 ソルベイ・アンド・カンパニ−・ソシエテ・アノニム 水性懸濁媒体中でのフツ化ビニリデンの重合方法
JPH0673135A (ja) * 1992-02-05 1994-03-15 Solvay & Cie フッ化ビニリデンとクロロトリフルオロエチレンとの不均一コポリマーで構成された新プラスチック材料、その使用法及び製法
JP2005310747A (ja) * 2004-03-23 2005-11-04 Kureha Chem Ind Co Ltd 非水系電気化学素子電極形成用バインダー、電極合剤、電極構造体および電気化学素子

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817543B1 (ja) * 1969-06-12 1973-05-30
US3780007A (en) * 1969-12-23 1973-12-18 Diamond Shamrock Corp Polymerization of vinylidene fluoride in aqueous suspension
US5030394A (en) * 1988-11-08 1991-07-09 Labofina, S.A. PVdF-based powder coatings
FR2652089B1 (fr) 1989-09-15 1993-03-19 Solvay Procede pour la polymerisation en discontinu dans un milieu aqueux de mise en suspension du fluorure de vinylidene et utilisation des polymeres du fluorure de vinylidene resultants pour le revetement d'articles par poudrage.
FR2652813B1 (fr) 1989-10-09 1993-05-28 Solvay Procede pour reduire le croutage des reacteurs en cours de polymerisation du fluorure de vinylidene dans un milieu aqueux de mise en suspension.
JP3703582B2 (ja) * 1996-02-22 2005-10-05 呉羽化学工業株式会社 電極バインダー、電極バインダー溶液、電極合剤、電極構造体および電池
JPH10302800A (ja) 1997-04-28 1998-11-13 Kureha Chem Ind Co Ltd 電池用バインダー溶液、これを含有する電極合剤、およびそれを用いた電極構造体ならびに電池
CN1354775A (zh) * 1999-02-18 2002-06-19 阿托菲纳公司 将偏二氟乙烯树脂粘合到金属基材的方法,和电极结构及其生产方法
CN100508256C (zh) * 2004-03-23 2009-07-01 株式会社吴羽 非水性电化学元件电极形成用粘合剂、电极合剂、电极结构体及电化学元件
EP1820811B1 (en) * 2004-12-08 2016-10-19 Kureha Corporation Vinylidene fluoride polymer and process for producing the same
US8338518B2 (en) * 2005-06-10 2012-12-25 Arkema Inc. Aqueous process for making a stable fluoropolymer dispersion
CN105153603A (zh) * 2006-07-06 2015-12-16 阿科玛股份有限公司 超高分子量聚偏氟乙烯乳液及其制造方法
ATE540057T1 (de) * 2007-10-11 2012-01-15 Kureha Corp Vinylidenfluoridpolymerpulver und seine verwendung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817388B1 (ja) * 1969-12-23 1973-05-29
JPS59174605A (ja) * 1983-03-10 1984-10-03 ソルベイ・アンド・カンパニ−・ソシエテ・アノニム 水性懸濁媒体中でのフツ化ビニリデンの重合方法
JPH0673135A (ja) * 1992-02-05 1994-03-15 Solvay & Cie フッ化ビニリデンとクロロトリフルオロエチレンとの不均一コポリマーで構成された新プラスチック材料、その使用法及び製法
JP2005310747A (ja) * 2004-03-23 2005-11-04 Kureha Chem Ind Co Ltd 非水系電気化学素子電極形成用バインダー、電極合剤、電極構造体および電気化学素子

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120157590A1 (en) * 2009-08-28 2012-06-21 Kureha Corporation Process for Producing Non-Aqueous Battery Electrode-Forming Binder Solutions, and Non-Aqueous Battery Electrode-Forming Binder Solution
US9000076B2 (en) * 2009-08-28 2015-04-07 Kureha Corporation Process for producing non-aqueous battery electrode-forming binder solutions, and non-aqueous battery electrode-forming binder solution
JP2011091010A (ja) * 2009-10-26 2011-05-06 Nikkiso Co Ltd 改質微粉状正極物質の製造方法
EP2495273A1 (en) * 2009-10-30 2012-09-05 Kureha Corporation Method for producing heat-treated vinylidene fluoride polymer powder and method for producing vinylidene fluoride polymer solution
US9267016B2 (en) 2009-10-30 2016-02-23 Kureha Corporation Vinylidene fluoride polymer powder and vinylidene fluoride polymer solution
CN102597024A (zh) * 2009-10-30 2012-07-18 株式会社吴羽 1,1-二氟乙烯类聚合物粉末及1,1-二氟乙烯类聚合物溶液
WO2011052669A1 (ja) 2009-10-30 2011-05-05 株式会社クレハ 熱処理済フッ化ビニリデン系重合体粉末の製造方法およびフッ化ビニリデン系重合体溶液の製造方法
JP5766120B2 (ja) * 2009-10-30 2015-08-19 株式会社クレハ フッ化ビニリデン系重合体粉末およびフッ化ビニリデン系重合体溶液
EP2495273A4 (en) * 2009-10-30 2013-10-09 Kureha Corp METHOD FOR MANUFACTURING THERMALLY TREATED VINYLIDENE FLUORIDE POLYMER POWDER, AND PROCESS FOR PRODUCING POLYMER SOLUTION BASED ON VINYLIDENE FLUORIDE
US20150137032A1 (en) * 2009-10-30 2015-05-21 Kureha Corporation Process For Producing Heat-Treated Vinylidene Fluoride Polymer Powder And Process For Producing Vinylidene Fluoride Polymer Solution
JP5705126B2 (ja) * 2009-10-30 2015-04-22 株式会社クレハ 熱処理済フッ化ビニリデン系重合体粉末の製造方法およびフッ化ビニリデン系重合体溶液の製造方法
KR101409692B1 (ko) * 2009-10-30 2014-06-19 가부시끼가이샤 구레하 불화 비닐리덴계 중합체 분말 및 불화 비닐리덴계 중합체 용액
WO2011052666A1 (ja) 2009-10-30 2011-05-05 株式会社クレハ フッ化ビニリデン系重合体粉末およびフッ化ビニリデン系重合体溶液
EP2495265A4 (en) * 2009-10-30 2014-10-22 Kureha Corp VINYLIDENE FLUORIDE POLYMER POWDER AND VINYLIDENE FLUORIDE POLYMER SOLUTION
KR101412382B1 (ko) 2010-03-30 2014-06-25 가부시끼가이샤 구레하 비수 전해질 2 차 전지용 부극 합제, 비수 전해질 2 차 전지용 부극 및 비수 전해질 2 차 전지
JP5697660B2 (ja) * 2010-03-30 2015-04-08 株式会社クレハ 非水電解質二次電池用負極合剤、非水電解質二次電池用負極および非水電解質二次電池
JPWO2011122260A1 (ja) * 2010-03-30 2013-07-08 株式会社クレハ 非水電解質二次電池用負極合剤、非水電解質二次電池用負極および非水電解質二次電池
WO2011122260A1 (ja) * 2010-03-30 2011-10-06 株式会社クレハ 非水電解質二次電池用負極合剤、非水電解質二次電池用負極および非水電解質二次電池
CN103626900A (zh) * 2012-08-22 2014-03-12 株式会社吴羽 偏氟乙烯系聚合物的制造方法
JP2014040519A (ja) * 2012-08-22 2014-03-06 Kureha Corp フッ化ビニリデン系重合体の製造方法
JP2015103405A (ja) * 2013-11-25 2015-06-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 非水電解質二次電池
JP2019157110A (ja) * 2018-03-06 2019-09-19 株式会社クレハ フッ化ビニリデン重合体の製造方法
JP7144298B2 (ja) 2018-03-06 2022-09-29 株式会社クレハ フッ化ビニリデン重合体の製造方法
JP2019189781A (ja) * 2018-04-26 2019-10-31 株式会社クレハ 粒子
WO2019207833A1 (ja) 2018-04-26 2019-10-31 株式会社クレハ 粒子
EP3786193A4 (en) * 2018-04-26 2021-06-23 Kureha Corporation PARTICLE
JP7083690B2 (ja) 2018-04-26 2022-06-13 株式会社クレハ 粒子

Also Published As

Publication number Publication date
EP2196479B1 (en) 2012-01-04
JP5372765B2 (ja) 2013-12-18
EP2196479A1 (en) 2010-06-16
EP2196479B9 (en) 2012-05-09
US8298446B2 (en) 2012-10-30
ATE540057T1 (de) 2012-01-15
US20100270509A1 (en) 2010-10-28
JPWO2009047969A1 (ja) 2011-02-17
CN101821298B (zh) 2013-01-16
EP2196479A4 (en) 2010-11-24
CN101821298A (zh) 2010-09-01

Similar Documents

Publication Publication Date Title
WO2009047969A1 (ja) フッ化ビニリデン系ポリマー粉体及びその利用
JP5949883B2 (ja) ポリテトラフルオロエチレン水性乳化液及びその製造方法、該水性乳化液を用いて得られるポリテトラフルオロエチレン水性分散液、ポリテトラフルオロエチレンファインパウダー並びに延伸多孔体
TWI490296B (zh) 水性聚偏二氟乙烯組合物
JP5839074B2 (ja) ポリテトラフルオロエチレンファインパウダーの製造方法
JP5274774B2 (ja) フッ化ビニリデン重合体及びその製造方法
CA2490136C (en) Fluoropolymer dispersion and process for producing fluoropolymer dispersion
EP3078700B1 (en) Polyvinylidene fluoride resin particles and method for producing same
JP5177271B2 (ja) ポリテトラフルオロエチレンファインパウダーの製造方法
EP3339330B1 (en) Production methods for aqueous emulsion, fine powder and stretched porous body of modified polytetrafluoroethylene
JPS6152842B2 (ja)
TWI538947B (zh) A vinylidene fluoride-based polymer powder and a vinylidene fluoride-based polymer solution
JPH11343317A (ja) テトラフルオロエチレン系共重合体粒子を含む分散液およびその製造方法
JP2016222801A (ja) ポリフッ化ビニリデン樹脂粒子分散液、およびポリフッ化ビニリデン樹脂粒子分散液の製造方法
JP5488447B2 (ja) 炭素微粒子およびその製造方法
WO2022114039A1 (ja) フッ化ビニリデン重合体組成物およびその製造方法、樹脂組成物、電極合剤、ならびにこれらを含む電極およびその製造方法
CN113056504A (zh) 用于制造经热处理的pvdf的方法
KR20210024157A (ko) 입자상의 불화비닐리덴계 중합체 및 입자상의 불화비닐리덴계 중합체의 제조방법
JP2014200711A (ja) ポリシラン誘導体を含むエマルション、ポリシラン誘導体を含むマイクロカプセル、及びケイ素単体を含む活物質粒子、並びにこれらの製造方法
JP2023527545A (ja) リチウムイオン蓄電デバイス用電極バインダ組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880110734.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08837924

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009536959

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008837924

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12682451

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE