WO2008107439A1 - Mit hydrophobinen modifizierte offenzellige schaumstoffe - Google Patents

Mit hydrophobinen modifizierte offenzellige schaumstoffe Download PDF

Info

Publication number
WO2008107439A1
WO2008107439A1 PCT/EP2008/052619 EP2008052619W WO2008107439A1 WO 2008107439 A1 WO2008107439 A1 WO 2008107439A1 EP 2008052619 W EP2008052619 W EP 2008052619W WO 2008107439 A1 WO2008107439 A1 WO 2008107439A1
Authority
WO
WIPO (PCT)
Prior art keywords
open
modified
cell foam
foam
hydrophobin
Prior art date
Application number
PCT/EP2008/052619
Other languages
English (en)
French (fr)
Inventor
Ulf Baus
Thorsten Montag
Claus Bollschweiler
Thomas Subkowski
Marvin Karos
Armin Alteheld
Hans-Jürgen QUADBECK-SEEGER
Bernhard Vath
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to EP08717377A priority Critical patent/EP2134775B1/de
Priority to AT08717377T priority patent/ATE471960T1/de
Priority to DE502008000846T priority patent/DE502008000846D1/de
Priority to KR1020097020890A priority patent/KR101455885B1/ko
Priority to PL08717377T priority patent/PL2134775T3/pl
Priority to US12/529,988 priority patent/US8173716B2/en
Priority to BRPI0807872A priority patent/BRPI0807872B1/pt
Priority to CN2008800071993A priority patent/CN101627076B/zh
Priority to JP2009552193A priority patent/JP5444007B2/ja
Publication of WO2008107439A1 publication Critical patent/WO2008107439A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08L61/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/05Open cells, i.e. more than 50% of the pores are open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2361/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08J2361/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof

Definitions

  • the present invention relates to an open-cell foam based on a MeI amine-formaldehyde condensation product, a polyurethane or a polyimide which is modified with hydrophobins, a process for producing such foams and their use for receiving organic liquids, as leakage and leakage protection for Liquid storage and for liquid-liquid separation.
  • Open-cell, elastic foams based on melamine-formaldehyde resins are characterized by a comparatively low density, high flammability and high resistance to heat and cold. They are particularly suitable for the thermal insulation of buildings, vehicles, pipelines or tanks, for sound insulation and as insulating and shock-absorbing packaging material.
  • Untreated melamine-formaldehyde foams absorb both hydrophilic and hydrophobic liquids very quickly.
  • the absorption of water can have a negative effect on the properties, for example in an increase in density or a deterioration in the thermal insulation effect.
  • DE-A 100 11 388 discloses an open-celled melamine resin foam whose cell structure is coated with a fluoroalkyl ester. As a result, both the water and the oil absorption capacity of the melamine resin foam are reduced.
  • EP-A 633 283 it is known to reduce the water absorption of melamine-formaldehyde foams by coating the foam skeleton with a hydrophobic material, in particular with an aqueous emulsion of a silicone resin.
  • a foam with an apparent density of 1 1 kg / m 3 is used, which is coated in an additional step with a hydrophobic agent and after treatment apparent densities between 72 kg / m 3 and 120 kg / m 3 ,
  • the higher density is for weight-sensitive applications. fertilize, such as applications in vehicle construction and in particular applications in aircraft construction and in space travel, extremely disadvantageous.
  • Hydrophobins are small proteins of about 100 to 150 amino acids, which occur in filamentous fungi, for example Schizophyllum commune. They usually have 8 cysteine units. Hydrophobins can be isolated from natural sources, but can also be obtained by genetic engineering, as disclosed, for example, by WO 2006/082251 or WO 2006/131564.
  • WO 96/41882 proposes the use of hydrophobins as emulsifiers, thickeners, surface-active substances, for hydrophilicizing hydrophobic surfaces, for improving the water resistance of hydrophilic substrates, for producing oil-in-water emulsions or for water-in-oil emulsions. Furthermore, pharmaceutical applications such as the production of ointments or creams and cosmetic applications such as skin protection or the production of hair shampoos or hair rinses are proposed.
  • EP 1 252 516 discloses the coating of various substrates ner with a hydrophobin-containing solution at a temperature of 30 to 80 0 C. Further, for example, the use as demulsifier (WO 2006/103251) as evaporation retarders (WO 2006/128877) or soiling inhibitor (WO 2006/103215) proposed.
  • hydrophobins for modifying open-cell foams based on melamine-formaldehyde condensation products, polyurethanes or a polyimide is not yet known.
  • the object of the invention was to provide a modified, open-cell foam based on melamine-formaldehyde condensation products, polyurethanes or polyimides with a novel property profile.
  • an open-celled foam based on a melamine-formaldehyde condensation product has been found, which is modified with at least one hydrophobin.
  • a process for producing such a foam comprises treating an unmodified, open-cell foam based on a melamine-formaldehyde condensation product, a polyurethane or a polyimide with an aqueous solution of a hydrophobin.
  • a further production process has been found in which the preparation of the open-cell foam is carried out in the presence of at least one hydrophobin.
  • hydrophobins are to be understood below to mean polypeptides of the general structural formula (I)
  • X is selected for each of the 20 naturally occurring amino acids (Phe, Leu, Ser, Tyr, Cys, Trp, Pro, His, GIn, Arg, Ne Met, Thr, Asn, Lys, VaI, Ala, Asp, Glu, GIy) can stand.
  • the radicals X may be the same or different.
  • the indices standing at X each represent the number of amino acids in the respective subsequence X
  • C stands for cysteine, alanine, serine, glycine, methionine or threonine, at least four of the radicals named C being cysteine
  • the indices n and m independently represent natural numbers between 0 and 500, preferably between 15 and 300.
  • the polypetides according to the formula (I) are further characterized by the property that at room temperature after coating a glass surface, they increase the contact angle of a water droplet of at least 20 °, preferably at least 25 ° and particularly preferably 30 °, in each case compared with the contact angle of a water droplet of the same size with the uncoated glass surface.
  • the amino acids designated C to C 8 are preferably cysteines; but they can also be replaced by other amino acids of similar space filling, preferably by alanine, serine, threonine, methionine or glycine. However, at least four, preferably at least 5, particularly preferably at least 6 and in particular at least 7 of the positions C to C 8 should consist of cysteines. Cysteines can either be reduced in the proteins according to the invention or can form disulfide bridges with one another. Particularly preferred is the intramolecular formation of CC bridges, in particular those with at least one, preferably 2, more preferably 3 and most preferably 4 intramolecular disulfide bridges.
  • cysteines In the exchange of cysteines described above by amino acids of similar space filling, it is advantageous to exchange in pairs those C positions which are capable of forming intramolecular disulfide bridges with one another. If cysteines, serines, alanines, glycines, methionines or threonines are also used in the positions indicated by X, the numbering of the individual C positions in the general formulas may change accordingly.
  • X, C and the indices standing at X and C have the above meaning
  • the indices n and m are numbers between 0 and 350, preferably 15 to 300
  • the proteins further by the above-mentioned Distinguish contact angle change and it is still at least 6 of the radicals named C is cysteine. Most preferably, all of the C radicals are cysteine.
  • the proteins are further characterized by the abovementioned contact angle change, and at least 6 of the C named residues are cysteine. Most preferably, all of the C radicals are cysteine.
  • radicals X n and X m may be peptide sequences that are naturally also linked to a hydrophobin. However, one or both of the residues may be peptide sequences that are not naturally linked to a hydrophobin. Including such radicals X N and / or X m are to be understood, in which a naturally occurring in a hydrophobin peptide sequence is extended by a non-naturally occurring in a hydrophobin peptide sequence.
  • X n and / or X m are peptide sequences not naturally linked to hydrophobins, such sequences are generally at least 20, preferably at least 35 amino acids in length. They may, for example, be sequences from 20 to 500, preferably 30 to 400 and particularly preferably 35 to 100 amino acids. Such a residue, which is not naturally linked to a hydrophobin, will also be referred to below as a fusion partner. This is to say that the proteins may consist of at least one hydrophobin part and one fusion partner part which in nature do not coexist in this form. Fusion hydrophobins from fusion partner and hydrophobin part are for example in WO 2006/082251, WO 2006/082253 and WO 2006/131564.
  • the fusion partner portion can be selected from a variety of proteins. Only a single fusion partner can be linked to the hydrophobin moiety, or several fusion partners can also be linked to a hydrophobin moiety, for example at the amino terminus (X n ) and at the carboxy terminus (X m ) of the hydrophobic moiety. However, it is also possible, for example, to link two fusion partners with a position (X n or X m ) of the protein according to the invention.
  • fusion partners are proteins that occur naturally in microorganisms, in particular in E. coli or Bacillus subtilis.
  • fusion partners are the sequences yaad (SEQ ID NO: 16 in WO 2006/082251), yaae (SEQ ID NO: 18 in WO 2006/082251), ubiquitin and thioredoxin.
  • fragments or derivatives of said sequences which comprise only a part, for example 70 to 99%, preferably 5 to 50%, and particularly preferably 10 to 40% of said sequences, or in which individual amino acids or nucleotides are opposite the said sequence are changed, wherein the percentages in each case refers to the number of amino acids.
  • the fusion hydrophobin in addition to said fusion partner as one of the groups X n or X m or as a terminal component of such a group on a so-called affinity domain (affinity tag / affinity tail) on.
  • affinity domains include (His) k, (Arg) k, (Asp) k, (Phe) k or (Cys) k groups, wherein k is generally a natural number of 1 to 10. It may preferably be a (His) k group, where k is 4 to 6.
  • the group X n and / or m X may consist exclusively of such an affinity domain or a naturally or non-naturally linked to a hydrophobin radical X n and X m is extended by a terminal affinity domain.
  • hydrophobins used according to the invention may also be modified in their polypeptide sequence, for example by glycosylation, acetylation or else by chemical crosslinking, for example with glutaric dialdehyde.
  • One property of the hydrophobins or their derivatives used according to the invention is the change of surface properties when the surfaces are coated with the proteins.
  • the change in the surface properties can be experimentally determined, for example, by determining the contact angle of a water dropping before and after coating the surface with the protein is measured and the difference between the two measurements is determined.
  • contact angle measurements is known in principle to the person skilled in the art.
  • the measurements refer to room temperature and water drops of 5 ⁇ l and the use of glass slides as substrate.
  • the exact experimental conditions for an exemplary method for measuring the contact angle are shown in the experimental part.
  • the fusion proteins used according to the invention have the property of increasing the contact angle by at least 20 °, preferably at least 25 °, particularly preferably at least 30 °, in each case compared with the contact angle of a water droplet of the same size with the uncoated glass surface.
  • hydrophobins for carrying out the present invention are the hydrophobins of the type dewA, rodA, hypA, hypB, sc3, basfi, basf2. These hydrophobins including their sequences are disclosed, for example, in WO 2006/82251. Unless stated otherwise, the sequences given below refer to sequences disclosed in WO 2006/82251. An overview table with the SEQ-I D numbers can be found in WO 2006/82251 on page 20.
  • fusion proteins yaad-Xa-dewA-his (SEQ ID NO: 20), yaad-Xa-rodA-his (SEQ ID NO: 22) or yaad-Xa-basfl-his (SEQ ID NO: 24) with the polypeptide sequences given in parentheses and the nucleic acid sequences coding therefor, in particular the sequences according to SEQ ID NO: 19, 21, 23.
  • yaad-Xa-dewA-his proteins which, starting from the amino acid sequences shown in SEQ ID NO.
  • the biological property of the proteins is hereby understood as the change in the contact angle already described by at least 20 °.
  • Particularly suitable derivatives for carrying out the present invention are from yaad-Xa-dewA-his (SEQ ID NO: 20), yaad-Xa-rodA-his (SEQ ID NO: 22) or yaad-Xa-basf1-his (SEQ ID NO: 24) derivatives derived from truncation of the yaad fusion partner.
  • yaad fusion partner SEQ ID NO: 16
  • a shortened yaad residue can advantageously be used.
  • the truncated residue should, however, comprise at least 20, preferably at least 35, amino acids.
  • a truncated radical having 20 to 293, preferably 25 to 250, particularly preferably 35 to 150 and for example 35 to 100 amino acids can be used.
  • An example of such a protein is yaad40-Xa-dewA-his (SEQ ID NO: 26 in PCT / EP2006 / 064720) which has a 40 amino acid truncated yaad residue.
  • a cleavage site between the hydrophobin and the fusion partner or the fusion partners can be used to cleave off the fusion partner and to release the pure hydrophobin in underivatized form (for example by BrCN cleavage on methionine, factor Xa, enterokinase, thrombin). , TEV split, etc.).
  • hydrophobins used according to the invention for modifying open-cell foams can be prepared chemically by known methods of peptide synthesis, such as, for example, by Merrifield solid-phase synthesis.
  • Naturally occurring hydrophobins can be isolated from natural sources by suitable methods. As an example, let Wösten et. al., Eur. J Cell Bio. 63, 122-129 (1994) or WO 96/41882.
  • fusion proteins can preferably be carried out by genetic engineering methods in which a nucleic acid sequence coding for the fusion partner and a hydrophobin part, in particular DNA sequence, are combined in such a way that the desired protein is produced in a host organism by gene expression of the combined nucleic acid sequence.
  • a production process for example, is disclosed by WO 2006/082251 or WO 2006/082253.
  • the fusion partners greatly facilitate the production of hydrophobins. Fusion hydrophobins are produced in genetically engineered processes with significantly better yields than hydrophobins without fusion partners.
  • the fusion hydrophobins produced by the host organisms by the genetic engineering process can be worked up in a manner known in principle and purified by known chromatographic methods.
  • the simplified work-up and purification process disclosed in WO 2006/082253, pages 1 1/12 can be used.
  • the fermented cells are first separated from the Fermetationsbrühe, digested and the cell debris of the inclusion bodies (inclusion bo) this separated. The latter can be done advantageously by centrifuging.
  • the inclusion bodies for example by acids, bases and / or detergents can be digested in a manner known in principle in order to liberate the fusion hydrophobins.
  • the inclusion bodies with the inventively used As a rule, theses of fusion hydrophobins can be completely dissolved within about 1 h using 0.1 M NaOH.
  • the solutions obtained can -ggf. after adjusting the desired pH, without further purification, to carry out this invention.
  • the fusion hydrophobins can also be isolated from the solutions as a solid. The isolation can preferably be carried out by means of spray granulation or spray drying, as described in WO 2006/082253, page 12.
  • the products obtained by the simplified processing and purification process comprise, in addition to residues of cell debris, usually about 80 to 90% by weight of proteins.
  • the amount of fusion hydrophobins is generally from 30 to 80% by weight with respect to the amount of all proteins.
  • the isolated products containing fusion hydrophobins can be stored as solids and dissolved for use in the respective desired media.
  • the fusion hydrophobins can be used as such or else after cleavage and separation of the fusion partner as "pure" hydrophobins for carrying out this invention .
  • a splitting is advantageously carried out after isolation of the inclusion bodies and their dissolution.
  • the hydrophobins are used to modify open-celled foams.
  • these are open-celled foams based on melamine-formaldehyde resins.
  • the modified foams can be obtained by using unmodified, open-cell foams and treated with hydrophobins.
  • Production processes for unmodified foams based on polyurethanes are known, for example, from WO 2005/103107 or WO 2006/008054.
  • Preparation processes for unmodified foams based on melamine-formaldehyde resins are disclosed, for example, in EP-A 17 672, EP-A 37 470 and WO 01/94436. Thereafter, a mixture of dissolved or dispersed in an aqueous medium melamine-formaldehyde precondensate, a blowing agent, a dispersant and a curing agent is heated, foamed and cured. The heating can be carried out, for example, by means of hot air, steam or microwave irradiation.
  • the concentration of melamine / formaldehyde Precondensates in the mixture is usually 55 and 85 wt.%, Preferably between 63 and 80 wt.%.
  • the bulk density of the open-cell foam based on melamine-formaldehyde resins used as starting material is generally in the range from 3 to 100 kg / m 3 , preferably in the range from 5 to 20 kg / m 3 .
  • the term "bulk density" refers in a manner known in principle to the density of the skin including the pore volume
  • the cell number is usually in the range from 50 to 300 cells / 25 mm
  • the average pore size is usually in the range from 100 to 250 ⁇ m is preferably in the range of 100 to 150 kPa and the elongation at break in the range of 8 to 20%.
  • a formulation which comprises at least water or aqueous solvent mixture and a hydrophobin.
  • Suitable aqueous solvent mixtures include water and one or more water-miscible solvents.
  • the selection of such components is limited only insofar as the hydrophobins and the other components in the mixture must be sufficiently soluble.
  • such mixtures comprise at least 50% by weight, preferably at least 65% by weight and more preferably at least 80% by weight, of water. Most preferably, only water is used.
  • suitable water-miscible solvents include monoalcohols, such as methanol,
  • Ethanol or propanol, higher alcohols such as ethylene glycol or polyether polyols and ether alcohols such as butyl glycol or methoxypropanol.
  • the formulation used for the treatment preferably has a pH of> 4, preferably> 6 and particularly preferably> 7.
  • the pH is in the range from 4 to 11, preferably 6 to 10, more preferably 7 to 9.5 and most preferably 7.5 to 9.
  • the pH may be 7.5 to 8.5 or 8 , 5 to 9.
  • the formulation preferably comprises a suitable buffer.
  • a suitable buffer depending on the pH range intended for the coating. These include, for example, potassium dihydrogen phosphate buffer, tris (hydroxymethyl) aminomethane buffer (tris-buffer), borax buffer, sodium bicarbonate buffer or sodium hydrogen phosphate buffer. Preferred is Tris buffer.
  • the concentration of the buffer in the solution will be determined by the skilled person depending on the desired properties of the formulation. The skilled person will usually pay attention to a sufficient buffer capacity to achieve the most constant coating conditions.
  • the formulation comprises at least one hydrophobin.
  • hydrophobins can be used as hydrophobins.
  • yaad-Xa-dewA-his SEQ ID NO: 20
  • products with a shortened yaad residue such as yaad40-Xa-dewA-his.
  • the products produced by the simplified cleaning method described above can be used.
  • the concentration of hydrophobins in the solution is chosen by the skilled person depending on the desired properties of the coating. With higher concentrations, a faster coating can usually be achieved. As a rule, a concentration of 0.1 ⁇ g / ml to 1000 ⁇ g / ml, preferably 1 ⁇ g / ml to 500 ⁇ g / ml, more preferably 10 ⁇ g / ml to 250 ⁇ g / ml, very particularly preferably 30 ⁇ g / ml, has proven useful to 200 ⁇ g / ml and, for example, 50 to 100 ⁇ g / ml.
  • formulation used may optionally comprise further components or additives.
  • Suitable surfactants are, for example, nonionic surfactants which comprise polyalkoxy groups, in particular polyethylene oxide groups. Examples include polyoxyethylene stearates, alkoxylated phenols and the like. Further examples of suitable surfactants include polyethyl neglycol (20) sorbitan monolaurate (Tween® 20), polyethylene glycol (20) sorbitan monopalmitate (Tween® 40), polyethylene glycol (20) sorbitan monostearate (Tween® 60), poly (ethylene glycol) (20) sorbitan monooleate ( Tween® 80), cyclohexyl-methyl- ⁇ -D-maltoside, cyclohexyl-ethyl- ⁇ -D-maltoside, cyclohexyl-n-hexyl- ⁇ -D-maltoside, n-undecyl- ⁇ -D-maltoside, n-octyl- ⁇ D-maltopy
  • surfactants are disclosed, for example, in WO 2005/68087 page 9, line 10 to page 10, line 2.
  • the concentration of surfactants is generally 0.001% by weight to 0.5% by weight, preferably 0.01% by weight to 0.25% by weight and particularly preferably 0.1% by weight. % to 0.2% by weight, in each case based on the amount of all components of the formulation.
  • metal ions in particular divalent metal ions, to the formulation.
  • Metal ions can contribute to a more uniform coating.
  • suitable divalent metal ions include, for example, alkaline earth metal ions such as Ca 2+ ions.
  • Such metal ions may preferably be added as formulation-soluble salts, for example in the form of chlorides, nitrates or carbonate, acetate, citrate, gluconate, hydroxide, lactate, sulfate, succinate, tartrate.
  • CaCb or MgCb can be added.
  • the solubility can optionally also be increased by suitable auxiliaries, for example complexing agents. If present, the concentration of such metal ions is generally 0.01 mmol / l to 10 mmol / l, preferably 0.1 mmol / l to 5 mmol / l and particularly preferably 0.5 mmol / l to 2 mmol / l.
  • the formulations can be obtained by mixing the workup solutions described above with the desired additional components and diluting to the desired concentration.
  • the formulations can be obtained by dissolving isolated, solid hydrophobins accordingly.
  • the unmodified, open-cell foam is treated with the formulation containing hydrophobins.
  • the foam should be soaked as completely as possible with the formulation.
  • the treatment may be carried out by dipping the foam into the formulation, spraying it with the formulation or dousing it with the formulation.
  • a certain exposure time is required to deposit the fusion hydrophobins on the surface.
  • the person skilled in the art will choose a suitable exposure time depending on the desired result. Examples of typical exposure times are from 0.1 to 12 h, without the invention being restricted thereto.
  • the reaction time depends on the temperature as well as on the concentration of the hydrophobin in the solution. The higher the temperature and the higher the concentration in the course of the coating process, the shorter the exposure time can be.
  • the temperature in the course of the coating process may be at room temperature or it may be elevated temperatures. For example, it may be temperatures of 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 1 10, or 120 0 C. Preference is given to temperatures of 15 to 120 0 C, more preferably 20 to 100 ° C, and for example 40 to 100 0 C or 70 to 90 ° C.
  • the temperature can be introduced, for example, by heating the bath in which the object to be coated is immersed. But you can also heat a submerged object later, for example using IR emitters.
  • the treatment with hydrophobins takes place in the presence of microwave irradiation.
  • the exposure time can be greatly reduced, depending on the energy input, it may take a few seconds to precipitate the hydrophobin on the surface.
  • the solvent is removed from the foam.
  • the foam may be first expressed to remove most of the solvent.
  • the foam may be previously washed with water or a preferably aqueous solvent mixture.
  • the removal of the solvent can be done for example by simple evaporation in air.
  • the removal of the solvent can also be facilitated by raising the temperature and / or with suitable gas streams and / or applying a vacuum.
  • the evaporation can be facilitated by, for example, heated objects in a drying oven or blown with a heated gas stream.
  • the methods can also be combined, for example by drying in a convection oven or a drying tunnel.
  • the coating for removing the solvent can also be heated by means of radiation, in particular IR radiation.
  • IR radiation for this purpose, all types of broadband IR emitters, for example. NIR, MIR or NIR steel can be used. However, it is also possible, for example, to use IR lasers.
  • Such radiation sources are commercially available in various radiation geometries.
  • the temperature and the drying time in the course of drying is determined by the person skilled in the art. Has proven to have a drying temperature of 30 to 130 0 C, preferably 50 to 120 0 C, more preferably 70 to 1 10 ° C, most preferably 75 to 105 0 C and, for example, 85 to 100 0 C. What is meant here is the temperature of Coating itself.
  • the temperature in a dryer can of course also be higher.
  • the drying time is naturally shorter, the higher the drying temperature.
  • the temperature treatment in the course of coating and drying can advantageously be combined with one another.
  • a surface can first be treated with the formulation at room temperature and then dried and tempered at elevated temperatures.
  • elevated temperature is applied at least in one of the two steps "treatment” or “drying".
  • higher temperature than room temperature is used in both steps.
  • the treatment can be carried out immediately after the production process of the unmodified foam, for example by the manufacturer of the foam itself. Of course, it can also be done later Timing be made, for example, by a processor or after the delivery of the foam to the end user of this itself.
  • the open-cell foam becomes more hydrophobic than the unmodified foam.
  • the bulk density of the modified foam is only insignificantly higher than that of the unmodified foam.
  • the bulk density of the modified foam is usually in the range of 3 to 100 kg / m 3 .
  • the apparent density is preferably from 5 to 15 kg / m 3 and more preferably in the range from 8 to 10 kg / m 3 .
  • the density of the modified foam of course depends on the density and the inner surface of the unmodified foam. In general, however, the density of the hydrophobin-modified foam is not more than 10%, preferably not more than 5% greater than the density of the re-modified foam.
  • the modified foams can be obtained by carrying out the production of the foam in the presence of at least one hydrophobin.
  • the hydrophobins and, optionally, further of the abovementioned constituents can be mixed with formaldehyde condensation products with the abovementioned aqueous solution or dispersion of the melamine-formaldehyde precondensate, a propellant, a dispersant and a hardener. Subsequently, the mixture can be heated, foamed and cured in a manner known in principle.
  • the modified with hydrophobins foams can be used on the one hand as unmodified foams, for example for thermal and acoustic insulation of buildings and parts of buildings, for thermal and acoustic insulation of the engine and interiors of vehicles and aircraft and for low temperature insulation, for example, from cold stores, oil tanks and Containers of LPG. Further fields of application include the use as insulating wall cladding and as insulating and shock-absorbing packaging material.
  • the reduced water absorption capacity by the modification with hydrophobins reduces the impairment of the insulating effect of the foam by atmospheric moisture.
  • the mass of the insulation is prevented from increasing as a result of the absorption of water. This is especially for use in vehicles and especially aircraft of great importance.
  • the modified open-cell foam according to the invention has a markedly greater affinity for non-polar, organic liquids. It therefore also offers novel uses compared to the unmodified foams.
  • the modified foam can be used to pick up organic liquids.
  • the organic liquids can be, for example, after an accident leaked fuels, which can be selectively absorbed by the modified foam.
  • the modified foam can in this case be designed for example in the form of a mat or else be dispersed as granules.
  • Other uses include liquid storage leakage and leakage protection, such as fuel tanks, oil tanks, tanker tankers, tank trailers or tankers.
  • the liquid reservoirs can be enveloped in this case, for example, with the modified Schaustoff. In this case, in the event of leakage or overflowing, the foam first sucks completely with the liquid.
  • the modified foam can be used for liquid separation.
  • two-phase liquid mixtures are separated from one another by the foam selectively absorbing one of the two phases from the mixture.
  • the modified foam according to the invention can be used in particular for the selective separation of organic phases from biphasic aqueous-organic mixtures.
  • the organic phase is taken up exclusively or at least preferably by the modified foam, depending on the polarity.
  • the organic phases may preferably be oil phases in a preferred use of the foam.
  • the separated liquid phase can be separated again from the foam after recording by simply squeezing. The pressed foam can then be reused.
  • the separation may be, for example, the separation of an oil slick on a water surface.
  • the modified foam preferably prefers to soak up with the oil and floats on the water even when soaked.
  • An unmodified foam preferably prefers to soak with water and eventually sink.
  • oil residues in particular crude oil residues from aqueous phases.
  • crude oil production is usually a Röhöl- water mixture or a crude oil-water emulsion, which initially Use appropriate emulsion breaker is separated. After separating a large part of the oil remains an aqueous phase in which even small amounts of oil, usually only 0.1 g / l, are distributed, which can usually be very difficult to separate.
  • hydrophobin-modified foams according to the invention it is possible to elegantly separate off such residues, for example by immersing the modified foam in the oil-water mixture.
  • the modified with hydrophobins, open-cell foam used as filler for a suitable separation device for example as a filler for a column.
  • the modified, open-cell foams are furthermore suitable for absorbing certain substances and / or particles in their hydrophobic pores and can therefore serve to separate off such substances and / or particles from the environment.
  • hydrophobic components, aerosols, dyes and / or odors or pollen can be separated.
  • the modified foams based on melamine-formaldehyde condensation products can be used as a sterilisable working medium, in particular for microbiology.
  • Sterile culture tubes, bottles and flasks are usually closed with cotton wool, rolled pulp or silicone foam stoppers, which on the one hand allow air to enter but on the other hand retain airborne germs as a depth filter. However, they must not contain any moisture, because otherwise microorganisms can grow through from the outside to the inside. According to the invention, the modified foams can advantageously be used for this purpose.
  • the increased hydrophobicity effectively keeps moisture away from materials.
  • the working means may be, for example, plugs with which culture tubes, bottles or pistons are sealed for medical or microbiological work.
  • plugs can be sterilized at temperatures above 100 0 C treated. It may also be material for sealing vessels, in which contaminated material is decontaminated by treatment at temperatures above 100 0 C.
  • modified foams based on melamine-formaldehyde condensation products have a high temperature stability and can be treated even at temperatures around 180 ° C.
  • hydrophobin A a fusion hydrophobin with the complete fusion partner yaad was used (yaad-Xa-dewA-his, hereinafter called hydrophobin A) and a fusion hydrophobin with a reduced to 40 amino acids fusion partner yaad40-Xa-dewA-his (hydrophobin B ).
  • hydrophobin B a fusion hydrophobin with a reduced to 40 amino acids fusion partner yaad40-Xa-dewA-his
  • the products were worked up according to the simplified purification method according to Example 9 of WO 2006/82253 and spray-dried according to Example 10 of the same specification.
  • the total protein content of the obtained, dried products was in each case about 70 to 95 wt.%,
  • the content of hydrophobins was about 40 to 90 wt.% Regarding the total protein content.
  • the products were used as such for the experiments.
  • Substrate glass (window glass, Süd Weg Glas, Mannheim)
  • the samples are air-dried and the contact angle (in degrees) of a drop of 5 ⁇ l of water at room temperature is determined.
  • the contact angle measurement was performed on a device Dataphysics Contact Angle System OCA 15+, Software SCA 20.2.0. (November 2002). The measurement was carried out according to the manufacturer's instructions. Untreated glass gave a contact angle of 15 ° to 30 ° ⁇ 5 °. Coating with the fusion hydrophobin yaad-Xa-dewA-his ⁇ gave a contact angle increase of more than 30 °; a coating with the fusion hydrophobin yaad40-Xa-dewA-his likewise gave a contact angle enlargement of more than 30 °.
  • each cube-shaped sample (7cm x 7 cm x 7 cm) were placed, and an open-cell melamine-formaldehyde foam having a density of 9 kg / m 3 (®, BASF AG basophilic tect) with a solution of 0.1 g / l hydrophobin A or hydrophobin B soaked.
  • the solution with the impregnated foam cube was heated at 60 ° C. for 15 hours. Subsequently, the aqueous solution was decanted off.
  • the foam cubes were freed by squeezing most of the liquid absorbed, washed several times with ultrapure water and pressed and dried at 40 0 C to constant weight.
  • the density of the modified foam samples is given in Table 1.
  • Example 1 An unmodified foam according to Example 1 was impregnated with rapeseed oil for the purpose of hydrophobing, completely expressed and dried. The weight gain and the water uptake were each determined as described above. The data are given in Table 1.
  • the examples and comparative examples show that the unmodified open-cell foam can be rendered hydrophobic in an excellent way using hydrophobins and yet only a minimal increase in density is observed.
  • the preparation was carried out according to the method described in WO 01/94436. It was only added before foaming the propellant-containing melamine-formaldehyde precondensate additionally 0.5 wt .-% of hydrophobin A based on the solids content in the form of an aqueous solution.
  • the resulting foams were first dried at 100 0 C and then annealed at 220 0 C. The foam produced in this way does not sink when placed on a water surface, while a foam produced by the same process but without added hydrophobin sinks.
  • Cuboidal samples (1.5 cm ⁇ 0.5 cm ⁇ 0.3 cm ⁇ 0.225 cm 3 ) of an open-cell melamine-formaldehyde foam having a density of 9 kg / m 3 (Basotect®, BASF AG) were in each case placed in a glass flask. each with 2 cm 3 of the solution used for treatment doused or soaked and treated for a certain time and temperature. After treatment, the samples were squeezed, washed and dried at 40 0 C to constant weight.
  • the degree of hydrophobing of the modified foam was determined in each case by placing at room temperature a drop of water of 5 ⁇ l onto the surface of the dried, modified foam was dropped. It was observed whether it was absorbed by the foam or not.
  • a coating formulation of hydrophobin A in water with a buffer and CaCb additive was used (50 mmol / l Tris / HCl buffer, 1 mmol / l CaCb, pH of the buffered solution: pH 8).
  • the concentration of hydrophobin was varied, the temperature and the time varied.
  • solutions without addition of hydrophobin were used in each case. The results are summarized in Table 2.
  • a solution 50 mmol / l Tris-HCl buffer, 1 mmol / l CaCb, pH 8) containing 100 mg / l hydrophobin A was used for this purpose.
  • the untreated foam was first immersed and soaked in the solution as described above at room temperature and then heated in the microwave until the treatment solution boils. Subsequently, the treated foam was squeezed as described above, washed, dried and tested as above for the degree of hydrophobing.
  • Table 4 gives the time required to boil the treatment solution and the result of the hydrophobicity test. Level 1 2 3 4 5 6 7 8 9
  • the unmodified foams were first coated with hydrophobin as described above.
  • a solution 50 mmol / l Tris-HCl buffer, 1 mmol / l CaCb, pH 8) containing 1000 mg / l hydrophobin A was used for this purpose. It was coated using the described microwave oven (1 min, 200 W).
  • the modified melamine-formaldehyde foam prepared according to Example 2 was used (i.e., the hydrophobin B-modified foam).
  • the modified melamine-formaldehyde foam produced according to Example 2 was likewise used for the following experiments. Cube-shaped samples of the modified and unmodified foam were each attached to a bar and soaked with various organic solvents (hexane, xylene, gasoline). For better visibility, the solvents were stained with a red dye that is well soluble in the organic solvent but insoluble in water. All foam samples quickly and completely absorbed the solvents. The soaked samples were then placed in a vessel filled with water and mechanically lightly loaded by means of the rod by a stirring motion in the water.
  • organic solvents hexane, xylene, gasoline
  • an emulsion of crude oil (Wintershall, Emiichheim probe 301/83 from 4.02.2005) was prepared in demineralized water. The emulsion was made by thoroughly mixing water and oil with an Ultra-Turrax (4 minutes at 24,000 rpm). Excess oil lenses were removed by means of a separatory funnel. The oil concentration was 1000 ppm.
  • the emulsion was divided into 3 vessels in equal amounts and each one piece of a foam based on melamine-formaldehyde resin immersed, in each case a treated with hydrophobin A and with hydrophobin B foam (according to Examples 1 and 2) and for comparison purposes untreated sample.
  • the samples were each left in the emulsion for 24 hours.
  • a vessel was filled with deionized water and in each case a thin layer of crude oil (Wintershall, Landau from 04.02.2005; thin liquid at 20 0 C, ⁇ 10% water) is poured.
  • Cru oil Windtershall, Landau from 04.02.2005; thin liquid at 20 0 C, ⁇ 10% water
  • FIGS 3 to 5 show the course of the experiment.
  • the modified foams absorbed almost all of the oil spill within 5 minutes.
  • the oil was more completely separated than for hydrophobin A.
  • the unmodified foam was substantially full of water.
  • the oil adhesion was only superficial. There remained even larger amounts of oil on the water surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Peptides Or Proteins (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

Offenzelliger Schaumstoff auf Basis eines Melamin-Formaldehyd-Kondensationsproduktes, eines Polyurethans oder eines Polyimids, welcher mit Hydrophobinen modifiziert ist, ein Verfahren zur Herstellung derartiger Schaumstoffe sowie deren Verwendung zum Aufnehmen organischer Flüssigkeiten, als Leckage- und Auslaufschutz für Flüssigkeitsspeicher, zur Flüssig-Flüssig-T rennung und als Matrix zur Durchführung chemischer und oder biologischer Prozesse.

Description

Mit Hydrophobinen modifizierte offenzellige Schaumstoffe
Beschreibung
Die vorliegende Erfindung betrifft einen offenzelligen Schaumstoff auf Basis eines MeI- amin-Formaldehyd-Kondensationsproduktes, eines Polyurethans oder eines Polyimids, welcher mit Hydrophobinen modifiziert ist, ein Verfahren zur Herstellung derartiger Schaumstoffe sowie deren Verwendung zum Aufnehmen organischer Flüssigkeiten, als Leckage- und Auslaufschutz für Flüssigkeitsspeicher und zur Flüssig-Flüssig- Trennung.
Offenzellige, elastische Schaumstoffe auf Basis von Melamin-Formaldehyd-Harzen, Polyurethanen oder Polyimiden sind prinzipiell bekannt. Beispielhaft sei auf „Foamed Plastics" insbesondere Abschnitt „4.6 Foams from Melamine-Formaldehyde (MF) Re- sins" und „4.9 Polyimide (PI) Foams" sowie „Polyurethanes - 7.1 Flexible Foams", jeweils in Ullmann's Encyclopedia of Industrial Chemistry, 7th Edtition 2006, Electronic Release, Wiley-VCH, Weinheim, New York 2006, verwiesen. Herstellverfahren für derartige Schaumstoffe auf Basis von Melamin-Formaldehyd-Harzen sind beispielsweise in EP-A 17 672 EP-A 37 470 oder WO 01/94436 offenbart.
Offenzellige, elastische Schaumstoffe auf Basis von Melamin-Formaldehyd-Harzen zeichnen sich durch eine vergleichsweise niedrige Dichte, schwere Entflammbarkeit sowie eine hohe Wärme- und Kältebeständigkeit aus. Sie eignen sich insbesondere zur thermischen Isolierung von Gebäuden, Fahrzeugen, Rohrleitungen oder Tanks, zur Schallisolierung sowie als isolierendes und stoßdämmendes Verpackungsmaterial.
Unbehandelte Melamin-Formaldehyd-Schaumstoffe nehmen sowohl hydrophile als auch hydrophobe Flüssigkeiten sehr schnell auf. Die Aufnahme von Wasser kann sich hierbei negativ auf die Eigenschaften auswirken, beispielsweise in einer Erhöhung der Dichte oder einer Verschlechterung der thermischen Isolierwirkung.
DE-A 100 1 1 388 offenbart einen offenzelligen Melaminharz-Schaumstoff, dessen Zellgerüst mit einem Fluoralkylester beschichtet ist. Dadurch werden sowohl die Wasser-, wie auch die Ölaufnahmefähigkeit des Melaminharz-Schaumstoffes vermindert.
Aus EP-A 633 283 ist bekannt, die Wasseraufnahme von Melamin-Formaldehyd- Schaumstoffen durch Beschichtung des Schaumstoff-Gerüstes mit einem hydrophoben Material, insbesondere mit einer wässrigen Emulsion eines Silikonharzes zu reduzieren. In den Beispielen wird ein Schaumstoff mit einer scheinbaren Dichte von 1 1 kg/m3 eingesetzt, der in einem zusätzlichen Arbeitsschritt mit einem hydrophob wirkenden Mittel beschichtet wird und nach der Behandlung scheinbare Dichten zwischen 72 kg/m3 und 120 kg/m3 aufweist. Die höhere Dichte ist bei gewichtssensiblen Anwen- düngen, wie beispielsweise Anwendungen im Fahrzeugbau sowie insbesondere Anwendungen im Flugzeugbau und in der Weltraumfahrt, äußerst nachteilig.
Hydrophobine sind kleine Proteine von etwa 100 bis 150 Aminosäuren, welche in fila- mentösen Pilzen, beispielsweise Schizophyllum commune, vorkommen. Sie weisen in aller Regel 8 Cystein-Einheiten auf. Hydrophobine können aus natürlichen Quellen isoliert werden, können aber auch mittels gentechnischer Verfahren gewonnen werden, wie beispielsweise von WO 2006/082251 oder WO 2006/131564 offenbart.
Im Stand der Technik ist die Verwendung von Hydrophobinen für verschiedene Anwendungen vorgeschlagen worden.
WO 96/41882 schlägt die Verwendung von Hydrophobinen als Emulgatoren, Verdicker, oberflächenaktive Substanzen, zum Hydrophilieren hydrophober Oberflächen, zur Ver- besserung der Wasserbeständigkeit hydrophiler Substrate, zur Herstellung von Öl-inWasser-Emulsionen oder von Wasser-in-ÖI-Emulsionen vor. Weiterhin werden pharmazeutische Anwendungen wie die Herstellung von Salben oder Cremes sowie kosmetische Anwendungen wie Hautschutz oder die Herstellung von Haarshampoos oder Haarspülungen vorgeschlagen. EP 1 252 516 offenbart die Beschichtung verschiede- ner Substrate mit einer Hydrophobine enthaltenden Lösung bei einer Temperatur von 30 bis 800C. Weiterhin wurde beispielsweise die Verwendung als Demulgator (WO 2006/103251 ), als Verdunstungsverzögerer (WO 2006/128877) oder Verschmutzungsinhibitor (WO 2006/103215) vorgeschlagen.
Die Verwendung von Hydrophobinen zur Modifizierung von offenzelligen Schaumstoffen auf Basis von Melamin-Formaldehyd-Kondensationsprodukten, Polyurethanen oder eines Polyimiden ist bislang noch nicht bekannt.
Aufgabe der Erfindung war es, einen modifizierten, offenzelligen Schaumstoff auf Basis von Melamin-Formaldehyd-Kondensationsprodukten, Polyurethanen oder Polyimiden mit einem neuartigen Eigenschaftprofil bereitzustellen.
Dementsprechend wurde ein offenzelliger Schaumstoff auf Basis eines Melamin- Formaldehyd-Kondensationsproduktes gefunden, der mit mindestens einem Hydrophobin modifiziert ist.
Weiterhin wurde ein Verfahren zur Herstellung eines derartigen Schaumstoffes gefunden, bei dem man einen unmodifizierten, offenzelligen Schaumstoff auf Basis eines Melamin-Formaldehyd-Kondensationsproduktes, eines Polyurethans oder eines Polyi- mids mit einer wässrigen Lösung eines Hydrophobins behandelt. Es wurde ein weiteres Herstellverfahren gefunden, bei dem man die Herstellung des offenzelligen Schaumstoffes in Gegenwart mindestens eines Hydrophobins vornimmt.
Schließlich wurde die Verwendung derartiger modifizierter Schaumstoffe für verschie- dene Zwecke, insbesondere zur Schall- und Wärmeisolierung sowie zur Abtrennung organischer Phasen aus Emulsionen oder Mischungen mit Wasser.
Zu der Erfindung ist im Einzelnen das Folgende auszuführen:
Unter dem Begriff „Hydrophobine" im Sinne der vorliegenden Erfindung sollen im Folgenden Polypeptide der allgemeinen Strukturformel (I)
Xn-C1-Xi-5o-C2-Xo-5-C3-Xi-ioo-C4-Xi-ioo-C5-Xi-5o-C6-Xo-5-C7-Xi-5o-C8-Xm (I)
verstanden werden, wobei X für jede der 20 natürlich vorkommenden Aminosäuren (Phe, Leu, Ser, Tyr, Cys, Trp, Pro, His, GIn, Arg, Ne Met, Thr, Asn, Lys, VaI, AIa, Asp, GIu, GIy) stehen kann. Dabei können die Reste X jeweils gleich oder verschieden sein. Hierbei stellen die bei X stehenden Indizes jeweils die Anzahl der Aminosäuren in der jeweiligen Teilsequenz X dar, C steht für Cystein, Alanin, Serin, Glycin, Methionin oder Threonin, wobei mindestens vier der mit C benannten Reste für Cystein stehen, und die Indizes n und m stehen unabhängig voneinander für natürliche Zahlen zwischen 0 und 500, bevorzugt zwischen 15 und 300.
Die Polypetide gemäß der Formel (I) sind weiterhin durch die Eigenschaft charakteri- siert, dass sie bei Raumtemperatur nach Beschichten einer Glasoberfläche eine Vergrößerung des Kontaktwinkels eines Wassertropfens von mindestens 20°, bevorzugt mindestens 25° und besonders bevorzugt 30° bewirken, jeweils verglichen mit dem Kontaktwinkel eines gleich großen Wassertropfens mit der unbeschichteten Glasoberfläche.
Die mit C bis C8 benannten Aminosäuren sind bevorzugt Cysteine; sie können aber auch durch andere Aminosäuren ähnlicher Raumerfüllung, bevorzugt durch Alanin, Serin, Threonin, Methionin oder Glycin ersetzt werden. Allerdings sollen mindestens vier, bevorzugt mindestens 5, besonders bevorzugt mindestens 6 und insbesondere mindestens 7 der Positionen C bis C8 aus Cysteinen bestehen. Cysteine können in den erfindungsgemäßen Proteinen entweder reduziert vorliegen oder miteinander Di- sulfidbrücken ausbilden. Besonders bevorzugt ist die intramolekulare Ausbildung von C-C Brücken, insbesondere die mit mindestens einer, bevorzugt 2, besonders bevorzugt 3 und ganz besonders bevorzugt 4 intramolekularen Disulfidbrücken. Bei dem oben beschriebenen Austausch von Cysteinen durch Aminosäuren ähnlicher Raumerfüllung werden vorteilhaft solche C-Positionen paarweise ausgetauscht, die intramolekulare Disulfidbrücken untereinander ausbilden können. Falls in den mit X bezeichneten Positionen auch Cysteine, Serine, Alanine, Glycine, Methionine oder Threonine verwendet werden, kann sich die Nummerierung der einzelnen C-Positionen in den allgemeinen Formeln entsprechend verändern.
Bevorzugt werden Hydrophobine der allgemeinen Formel (II)
Xn-C1-X3-25-C2-Xθ-2-C3-X5-5O-C4-X2-35-C5-X2-15-C6-Xθ-2-C7-X3-35-C8-Xm (I I)
zur Ausführung der vorliegenden Erfindung eingesetzt, wobei X, C und die bei X und C stehenden Indizes die obige Bedeutung haben, die Indizes n und m für Zahlen zwischen 0 und 350, bevorzugt 15 bis 300 stehen, sich die Proteine weiterhin durch die oben erwähnte Kontaktwinkeländerung auszeichnen, und es sich weiterhin bei mindestens 6 der mit C benannten Reste um Cystein handelt. Besonders bevorzugt handelt es sich bei allen Resten C um Cystein.
Besonders bevorzugt werden Hydrophobine der allgemeinen Formel (III)
Xn-C1-X5-9-C2-C3-Xi1-39-C4-X2-23-C5-X5-9-C6-C7-X6-18-C8-Xm (I I I)
eingesetzt, wobei X, C und die bei X stehenden Indizes die obige Bedeutung haben, die Indizes n und m für Zahlen zwischen 0 und 200 stehen, sich die Proteine weiterhin durch die oben erwähnte Kontaktwinkeländerung auszeichnen, und es sich bei mindestens 6 der mit C benannten Reste um Cystein handelt. Besonders bevorzugt handelt es sich bei allen Resten C um Cystein.
Bei den Resten Xn und Xm kann es sich um Peptidsequenzen handeln, die natürlicherweise auch mit einem Hydrophobin verknüpft sind. Es kann sich aber auch bei einem oder bei beiden Resten um Peptidsequenzen handeln, die natürlicherweise nicht mit einem Hydrophobin verknüpft sind. Darunter sind auch solche Reste Xn und/oder Xm zu verstehen, bei denen eine natürlicherweise in einem Hydrophobin vorkommende Pep- tidsequenz durch eine nicht natürlicherweise in einem Hydrophobin vorkommende Peptidsequenz verlängert ist.
Falls es sich bei Xn und/oder Xm um natürlicherweise nicht mit Hydrophobinen ver- knüpfte Peptidsequenzen handelt, sind derartige Sequenzen in der Regel mindestens 20, bevorzugt mindestens 35 Aminosäuren lang. Es kann sich beispielsweise um Sequenzen aus 20 bis 500, bevorzugt 30 bis 400 und besonders bevorzugt 35 bis 100 Aminosäuren handeln. Ein derartiger, natürlicherweise nicht mit einem Hydrophobin verknüpfter Rest soll im Folgenden auch als Fusionspartner bezeichnet werden. Damit soll ausgedrückt werden, dass die Proteine aus mindestens einem Hydrophobinteil und einem Fusionspartnerteil bestehen können, die in der Natur nicht zusammen in dieser Form vorkommen. Fusions-Hydrophobine aus Fusionspartner und Hydrophobinteil sind beispielsweise in WO 2006/082251 , WO 2006/082253 und WO 2006/131564 offenbart worden.
Der Fusionspartnerteil kann aus einer Vielzahl von Proteinen ausgewählt werden. Es kann nur ein einziger Fusionspartner mit dem Hydrophobinteil verknüpft sein, oder es können auch mehrere Fusionspartner mit einem Hydrophobinteil verknüpft werden, beispielsweise am Aminoterminus (Xn) und am Carboxyterminus (Xm) des Hydropho- binteils. Es können aber auch beispielsweise zwei Fusionspartner mit einer Position (Xn oder Xm) des erfindungsgemäßen Proteins verknüpft werden.
Besonders geeignete Fusionspartner sind Proteine, die natürlicherweise in Mikroorganismen, insbesondere in E. coli oder Bacillus subtilis vorkommen. Beispiele für solche Fusionspartner sind die Sequenzen yaad (SEQ ID NO: 16 in WO 2006/082251), yaae (SEQ ID NO:18 in WO 2006/082251 ), Ubiquitin und Thioredoxin. Gut geeignet sind auch Fragmente oder Derivate dieser genannten Sequenzen, die nur einen Teil, beispielsweise 70 bis 99 %, bevorzugt 5 bis 50 %, und besonders bevorzugt 10 bis 40 % der genannten Sequenzen umfassen, oder bei denen einzelne Aminosäuren, bzw. Nukleotide gegenüber der genannten Sequenz verändert sind, wobei sich die Prozentangaben jeweils auf die Anzahl der Aminosäuren bezieht.
In einer weiterhin bevorzugten Ausführungsform weist das Fusion-Hydrophobin neben dem genannten Fusionspartner als eine der Gruppen Xn oder Xm oder als terminaler Bestandteil einer solchen Gruppe noch eine sogenannte Affinitätsdomäne (affinity tag / affinity tail) auf. Hierbei handelt es sich in prinzipiell bekannter Art und Weise um An- kergruppen, welche mit bestimmten komplementären Gruppen wechselwirken können und der leichteren Aufarbeitung und Reinigung der Proteine dienen können. Beispiele derartiger Affinitätsdomänen umfassen (His)k- , (Arg)k-, (Asp)k-, (Phe)k- oder (Cys)k-Gruppen, wobei k im allgemeinen für eine natürliche Zahl von 1 bis 10 steht. Bevorzugt kann es sich um eine (His)k-Gruppe handeln, wobei k für 4 bis 6 steht. Hier- bei kann die Gruppe Xn und/oder Xm ausschließlich aus einer derartigen Affinitätsdomäne bestehen oder aber ein natürlicherweise oder nicht natürlicherweise mit einem Hydrophobin verknüpfter Rest Xn bzw. Xmwird um eine terminal angeordnete Affinitätsdomäne verlängert.
Die erfindungsgemäß verwendeten Hydrophobine können auch noch in ihrer Polypep- tidsequenz modifiziert sein, beispielsweise durch Glycosilierung, Acetylierung oder auch durch chemische Quervernetzung beispielsweise mit Glutardialdehyd.
Eine Eigenschaft der erfindungsgemäß verwendeten Hydrophobine bzw. deren Deriva- ten ist die Änderung von Oberflächeneigenschaften, wenn die Oberflächen mit den Proteinen beschichtet werden. Die Änderung der Oberflächeneigenschaften lässt sich experimentell beispielsweise dadurch bestimmen, dass der Kontaktwinkel eines Was- sertropfens vor und nach der Beschichtung der Oberfläche mit dem Protein gemessen wird und die Differenz der beiden Messungen ermittelt wird.
Die Durchführung von Kontaktwinkelmessungen ist dem Fachmann prinzipiell bekannt. Die Messungen beziehen sich auf Raumtemperatur sowie Wassertropfen von 5 μl und die Verwendung von Glasplättchen als Substrat. Die genauen experimentellen Bedingungen für eine beispielhaft geeignete Methode zur Messung des Kontaktwinkels sind im experimentellen Teil dargestellt. Unter den dort genannten Bedingungen besitzen die erfindungsgemäß verwendeten Fusionsproteine die Eigenschaft, den Kontaktwinkel um mindestens 20°, bevorzugt mindestens 25°, besonders bevorzugt mindestens 30° zu vergrößern, jeweils verglichen mit dem Kontaktwinkel eines gleich großen Wassertropfens mit der unbeschichteten Glasoberfläche.
Besonders bevorzugte Hydrophobine zur Ausführung der vorliegenden Erfindung sind die Hydrophobine des Typs dewA, rodA, hypA, hypB, sc3, basfi , basf2. Diese Hydrophobine inklusive ihrer Sequenzen sind beispielsweise in WO 2006/82251 offenbart. Sofern nicht anders angegeben, beziehen sich die nachfolgend angegebenen Sequenzen auf in WO 2006/82251 offenbarten Sequenzen. Eine Übersichtstabelle mit den SEQ-I D-Nummern befindet sich in WO 2006/82251 auf Seite 20.
Erfindungsgemäß insbesondere geeignet sind die Fusionsproteine yaad-Xa-dewA-his (SEQ ID NO: 20), yaad-Xa-rodA-his (SEQ ID NO: 22) oder yaad-Xa-basfl-his (SEQ ID NO: 24) mit den in Klammern angegebenen Polypeptidsequenzen sowie den dafür codierenden Nukleinsäuresequenzen, insbesondere den Sequenzen gemäß SEQ ID NO: 19, 21 , 23. Besonders bevorzugt kann yaad-Xa-dewA-his (SEQ ID NO: 20) eingesetzt werden. Auch Proteine, die sich ausgehend von den in SEQ ID NO. 20, 22 oder 24 dargestellten Polypeptidsequenzen durch Austausch, Insertion oder Deleti- on von mindestens einer, bis hin zu 10, bevorzugt 5, besonders bevorzugt 5% aller Aminosäuren ergeben, und die die biologische Eigenschaft der Ausgangsproteine noch zu mindestens 50% besitzen, sind besonders bevorzugte Ausführungsformen. Unter biologischer Eigenschaft der Proteine wird hierbei die bereits beschriebene Änderung des Kontaktwinkels um mindestens 20° verstanden.
Besonders zur Ausführung der vorliegenden Erfindung geeignete Derivate sind von yaad-Xa-dewA-his (SEQ ID NO: 20), yaad-Xa-rodA-his (SEQ ID NO: 22) oder yaad- Xa-basf1-his (SEQ ID NO: 24) durch Verkürzung des yaad-Fusionspartners abgeleitete Derivate. Anstelle des vollständigen yaad-Fusionspartners (SEQ ID NO: 16) mit 294 Aminosäuren kann vorteilhaft ein verkürzter yaad-Rest eingesetzt werden. Der verkürzte Rest sollte aber zumindest 20, bevorzugt mindestens 35 Aminosäuren um- fassen. Beispielsweise kann ein verkürzter Rest mit 20 bis 293, bevorzugt 25 bis 250, besonders bevorzugt 35 bis 150 und beispielsweise 35 bis 100 Aminosäuren eingesetzt werden. Ein Beispiel für ein derartiges Protein ist yaad40-Xa-dewA-his (SEQ ID NO: 26 in PCT/EP2006/064720), welches einen auf 40 Aminosäuren verkürzten yaad-Rest aufweist.
Eine Spaltstelle zwischen dem Hydrophobin und dem Fusionspartner bzw. den Fusi- onspartnern kann dazu genutzt werden, den Fusionspartner abzuspalten und das reine Hydrophobin in underivatisierter Form freizusetzen (beispielsweise durch BrCN-Spal- tung an Methionin, Faktor Xa-, Enterokinase-, Thrombin-, TEV-Spaltung etc.).
Die erfindungsgemäß zur Modifizierung offenzelliger Schaumstoffe verwendeten Hydrophobine lassen sich chemisch durch bekannte Verfahren der Peptidsynthese, wie beispielsweise durch Festphasensynthese nach Merrifield herstellen.
Natürlich vorkommende Hydrophobine lassen sich aus natürlichen Quellen mittels geeigneter Methoden isolieren. Beispielhaft sei auf Wösten et. al., Eur. J Cell Bio. 63, 122-129 (1994) oder WO 96/41882 verwiesen.
Ein gentechnisches Herstellverfahren für Hydrophobine ohne Fusionspartner aus TaIa- romyces thermophilus ist von US 2006/0040349 beschrieben.
Die Herstellung von Fusionsproteinen kann bevorzugt durch gentechnische Verfahren erfolgen, bei denen eine für den Fusionspartner und eine für den Hydrophobinteil codierende Nukleinsäuresequenz, insbesondere DNA-Sequenz, so kombiniert werden, dass in einem Wirtsorganismus durch Genexpression der kombinierten Nukleinsäuresequenz das gewünschte Protein erzeugt wird. Ein derartiges Herstellverfahren bei- spielsweise ist von WO 2006/082251 oder WO 2006/082253 offenbart. Die Fusionspartner erleichtern die Herstellung der Hydrophobine erheblich. Fusions-Hydrophobine werden bei den gentechnischen Verfahren mit deutlich besseren Ausbeuten produziert als Hydrophobine ohne Fusionspartner.
Die nach dem gentechnischen Verfahren von den Wirtsorganismen produzierten Fusions-Hydrophobine können in prinzipiell bekannter Art und Weise aufgearbeitet und mittels bekannter chromatographischer Methoden gereinigt werden.
In einer bevorzugten Ausführungsform kann das in WO 2006/082253, Seiten 1 1/12 offenbarte, vereinfachte Aufarbeitungs- und Reinigungsverfahren eingesetzt werden. Hierzu werden die fermentierten Zellen zunächst aus der Fermetationsbrühe abgetrennt, aufgeschlossen und die Zelltrümmer von den Einschlusskörpern (inclusion bo- dies) getrennt. Letzteres kann vorteilhaft durch Zentrifugieren erfolgen. Schließlich können die Einschlusskörper, beispielsweise durch Säuren, Basen und/oder Detergen- tien in prinzipiell bekannter Art und Weise aufgeschlossen werden, um die Fusions- Hydrophobine freizusetzen. Die Einschlusskörper mit den erfindungsgemäß verwende- ten Fusion-Hydrophobinen können in der Regel schon unter Verwendung von 0,1 m NaOH innerhalb von ca. 1 h vollständig gelöst werden.
Die erhaltenen Lösungen können -ggf. nach Einstellen des gewünschten pH-Wertes- ohne weitere Reinigung zur Ausführung dieser Erfindung eingesetzt werden. Die Fusi- ons-Hydrophobine können aus den Lösungen aber auch als Feststoff isoliert werden. Bevorzugt kann die Isolierung mittels Sprühgranulieren oder Sprühtrocknen erfolgen, wie in WO 2006/082253, Seite 12 beschrieben. Die nach dem vereinfachten Aufarbei- tungs- und Reinigungsverfahren erhaltenen Produkte umfassen neben Resten von Zelltrümmern in der Regel ca. 80 bis 90 Gew. % Proteine. Die Menge an Fusions-Hy- drophobinen beträgt je nach Fusionskonstrukt und Fermentationsbedingungen in der Regel 30 bis 80 Gew. % bezüglich der Menge aller Proteine.
Die isolierten, Fusions-Hydrophobine enthaltenden Produkte können als Feststoffe gelagert werden und zum Einsatz in den jeweils gewünschten Medien gelöst werden.
Die Fusions-Hydrophobine können als solche oder auch nach Abspaltung und Abtrennung des Fusionspartners als „reine" Hydrophobine zur Ausführung dieser Erfindung verwendet werden. Eine Spaltung nimmt man vorteilhaft nach der Isolierung der Ein- Schlusskörper und deren Auflösung vor.
Erfindungsgemäß werden die Hydrophobine zur Modifizierung von offenzelligen Schaumstoffen verwendet.
In einer bevorzugten Ausführungsform der Erfindung handelt es sich hierbei um offen- zellige Schaumstoffe auf Basis von Melamin-Formaldehyd-Harzen.
In einer ersten Ausführungsform der Erfindung können die modifizierten Schaumstoffe erhalten werden, indem man unmodifizierte, offenzellige Schaumstoffe einsetzt und mit Hydrophobinen behandelt.
Herstellverfahren für unmodifizierte Schaumstoffe auf Basis von Polyurethanen sind beispielsweise aus WO 2005/103107 oder WO 2006/008054 bekannt.
Herstellverfahren für unmodifizierte Schaumstoffe auf Basis von Melamin-Formaldehyd-Harzen sind beispielsweise in EP-A 17 672, EP-A 37 470 sowie WO 01/94436 offenbart. Hiernach wird eine Mischung eines in einem wässrigen Medium gelösten oder dispergierten Melamin-Formaldehyd-Vorkondensates, eines Treibmittels, eines Dispergiermittels sowie eines Härters erwärmt, verschäumt und ausgehärtet. Das Er- wärmen kann beispielsweise mithilfe von Heißluft, Wasserdampf oder Mikrowellen- betrahlung vorgenommen werden. Die Konzentration des Melamin/Formaldehyd- Vorkondensates in der Mischung beträgt in der Regel 55 und 85 Gew. %, bevorzugt zwischen 63 und 80 Gew.%.
Die Rohdichte des als Ausgangsmaterial eingesetzten, offenzelligen Schaumstoffes auf Basis von Melamin-Formaldehyd-Harzen liegt in der Regel im Bereich von 3 bis 100 kg/m3, bevorzugt im Bereich von 5 bis 20 kg/m3. Der Begriff „Rohdichte" bezeichnet in prinzipiell bekannter Art und Weise die Dichte des Schaustoffes inklusive des Porenvolumens. Die Zellzahl liegt üblicherweise im Bereich von 50 bis 300 Zellen/25 mm. Die durchschnittliche Porengröße liegt üblicherweise im Bereich von 100 bis 250 μm. Die Zugfestigkeit liegt bevorzugt im Bereich von 100 bis 150 kPa und die Bruchdehnung im Bereich von 8 bis 20%.
Zur Behandlung des unmodifizierten, offenzelligen Schaumstoffes wird eine Formulierung eingesetzt, welche mindestens Wasser oder wässriges Lösemittelgemisch sowie ein Hydrophobin umfasst.
Geeignete wässrige Lösemittelgemische umfassen Wasser sowie eines oder mehrere, mit Wasser mischbare Lösemittel. Die Auswahl derartiger Komponenten ist nur insofern beschränkt, als die Hydrophobine und die anderen Komponenten im Gemisch in ausreichendem Maße löslich sein müssen. Im Regelfalle umfassen derartige Gemische zumindest 50 Gew. %, bevorzugt mindestens 65 Gew. % und besonders bevorzugt mindestens 80 Gew. % Wasser. Ganz besonders bevorzugt wird nur Wasser eingesetzt. Der Fachmann trifft unter den mit Wasser mischbaren Lösemitteln je nach den gewünschten Eigenschaften der Formulierung eine geeignete Auswahl. Beispiele ge- eigneter, mit Wasser mischbarer Lösemittel umfassen Monoalkohole wie Methanol,
Ethanol oder Propanol, höhere Alkohole wie Ethylenglykol oder Polyetherpolyole sowie Etheralkohole wie Butylglykol oder Methoxypropanol.
Bevorzugt weist die zur Behandlung eingesetzte Formulierung einen pH-Wert > 4, be- vorzugt > 6 und besonders bevorzugt > 7 auf. Insbesondere liegt der pH-Wert im Bereich von 4 bis 11 , bevorzugt 6 bis 10, besonders bevorzugt 7 bis 9,5 und ganz besonders bevorzugt 7,5 bis 9. Beispielsweise kann der pH-Wert 7,5 bis 8,5 oder 8,5 bis 9 betragen.
Zur Einstellung des pH-Wertes umfasst die Formulierung bevorzugt einen geeigneten Puffer. Der Fachmann wählt je nach dem zur Beschichtung vorgesehenen pH-Bereich einen geeigneten Puffer. Zu nennen sind beispielsweise Kaliumdihydrogenphosphat- Puffer, Tris(hydroxymethyl)aminomethan-Puffer (Tri s- P uff er), Borax-Puffer, Natrium- hydrogencarbonat-Puffer oder Natriumhydrogenphosphat-Puffer. Bevorzugt ist Tris- Puffer. Die Konzentration des Puffers in der Lösung wird vom Fachmann je nach den gewünschten Eigenschaften der Formulierung bestimmt. Der Fachmann wird in der Regel auf eine ausreichende Pufferkapazität achten, um möglichst konstante Beschichtungs- bedingungen zu erreichen. Bewährt hat sich eine Konzentration von 0,001 mol/l bis 1 mol/l, bevorzugt 0,005 mol/l bis 0,1 mol/l und besonders bevorzugt 0,01 mol/l bis 0,05 mol/l.
Weiterhin umfasst die Formulierung mindestens ein Hydrophobin. Selbstverständlich können auch Gemische verschiedener Hydrophobine eingesetzt werden. In bevorzug- ten Ausführungsform der Erfindung können als Hydrophobine die oben erwähnten Fusions-Hydrophobine eingesetzt werden. Beispielsweise kann yaad-Xa-dewA-his (SEQ ID NO: 20) eingesetzt werden, sowie insbesondere Produkte mit verkürztem yaad-Rest, wie beispielsweise yaad40-Xa-dewA-his. Vorteilhaft können die nach dem oben beschriebenen, vereinfachten Reinigungsverfahren hergestellten Produkte einge- setzt werden.
Die Konzentration der Hydrophobine in der Lösung wird vom Fachmann je nach den gewünschten Eigenschaften der Beschichtung gewählt. Mit höheren Konzentrationen lässt sich in der Regel eine schnellere Beschichtung erreichen. Bewährt hat sich im Regelfalle eine Konzentration von 0,1 μg/ml bis 1000 μg/ml, bevorzugt 1 μg/ml bis 500 μg/ml, besonders bevorzugt 10 μg/ml bis 250 μg/ml, ganz besonders bevorzugt 30 μg/ml bis 200 μg/ml und beispielsweise 50 bis 100 μg/ml.
Die eingesetzte Formulierung kann darüber hinaus optional weitere Komponenten bzw. Additive umfassen.
Beispiele zusätzlicher Komponenten umfassen Tenside. Geeignete Tenside sind beispielsweise nichtionische Tenside, welche Polyalkoxygruppen, insbesondere Polyethy- lenoxidgruppen umfassen. Beispiele umfassen Polyoxyethylenstearate, alkoxylierte Phenole und dergleichen. Weitere Beispiele geeigneter Tenside umfassen Polyethyle- neglycol(20)sorbitanmonolaurat (Tween® 20), Polyethyleneglycol(20)sorbitanmono- palmitat (Tween® 40), Polyethyleneglycol(20)sorbitanmonostearat (Tween® 60), PoIy- ethyleneglycol(20)sorbitanmonooleat (Tween® 80), Cyclohexyl-methyl-ß D-Maltosid, Cyclohexyl-ethyl-ß D-Maltosid, Cyclohexyl-n-hexyl-ß D-Maltosid, n-Undecyl-ß D-Malto- sid, n-Octyl-ß D-Maltopyranosid, n-Octyl-ß D-Glucopyranosid, n-Octyl-α D-Glucopy- ranosid, n-Dodecanoylsucrose. Weitere Tenside sind beispielsweise in WO 2005/68087 Seite 9, Zeile 10 bis Seite 10, Zeile 2 offenbart. Die Konzentration an Tensiden beträgt in der Regel 0,001 Gew. % bis 0,5 Gew. %, bevorzugt 0,01 Gew. % bis 0,25 Gew. %und besonders bevorzugt 0,1Gew. % bis 0,2% Gew. %, jeweils bezo- gen auf die Menge aller Komponenten der Formulierung. Weiterhin können der Formulierung noch Metallionen, insbesondere zweiwertige Metallionen zugegeben werden. Metallionen können zu einer gleichmäßigeren Beschichtung beitragen. Beispiele geeigneter zweiwertiger Metallionen umfassen, beispielsweise Erdalkalimetallionen wie Ca2+-lonen. Derartige Metallionen können bevorzugt als in der Formulierung lösliche Salze zugegeben werden, beispielsweise in Form von Chloriden, Nitraten oder Carbonat, Acetat, Citrat, Gluconat, Hydroxid, Lactat, Sulfat, Succinat, Tartrat. Beispielsweise können CaCb oder MgCb zugegeben werden. Die Löslichkeit kann optional auch durch geeignete Hilfsmittel, beispielsweise Komplexbildner gesteigert werden. Falls vorhanden, beträgt die Konzentration derartiger Metallionen in der Regel 0,01 mmol/l bis 10 mmol/l, bevorzugt 0,1 mmol/l bis 5 mmol/l und besonders bevorzugt 0,5 mmol/l bis 2 mmol/l.
Die Formulierungen können erhalten werden, indem die oben beschriebenen Lösungen aus der Aufarbeitung mit den gewünschten zusätzlichen Komponenten mischt und auf die gewünschte Konzentration verdünnt. Selbstverständlich können die Formulierungen auf erhalten werden, indem man isolierte, feste Hydrophobine entsprechend löst.
Erfindungsgemäß wird derunmodifizierte, offenzellige Schaumstoff mit der Hydropho- bine enthaltenden Formulierung behandelt. Um eine gleichmäßige Modifizierung der gesamten inneren Oberfläche des Schaumstoffes zu gewährleisten, sollte der Schaumstoff möglichst vollständig mit der Formulierung getränkt werden. Die Behandlung kann insbesondere vorgenommen werden, indem man den Schaumstoff in die Formulierung eintaucht, mit der Formulierung besprüht oder mit der Formulierung begießt.
In der Regel ist eine gewisse Einwirkzeit erforderlich, um die Fusions-Hydrophobine auf der Oberfläche abzuscheiden. Der Fachmann wählt je nach dem gewünschten Ergebnis eine geeignete Einwirkzeit. Beispiele typischer Einwirkzeiten liegen bei 0,1 bis 12 h, ohne dass die Erfindung hierauf beschränkt sein soll.
Im Regelfalle ist die Einwirkzeit von der Temperatur sowie von der Konzentration des Hydrophobins in der Lösung abhängig. Je höher die Temperatur und je höher die Konzentration im Zuge des Beschichtungsvorganges, desto kürzer kann die Einwirkzeit sein. Die Temperatur im Zuge des Beschichtungsvorganges kann bei Raumtemperatur liegen oder aber es kann sich um erhöhte Temperaturen handeln. Beispielsweise kann es sich um Temperaturen von 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 1 10, oder 1200C handeln. Bevorzugt handelt es sich um Temperaturen von 15 bis 1200C, besonders bevorzugt 20 bis 100°C, und beispielsweise 40 bis 1000C oder 70 bis 90°C. Die Temperatur kann beispielsweise durch Erwärmen des Bades, in welches der zu be- schichtende Gegenstand eingetaucht wird, eingebracht werden. Man kann aber auch einen eingetauchten Gegenstand nachträglich erwärmen, beispielsweise mithilfe von IR-Strahlern. In einer bevorzugten Ausführungsform der Erfindung erfolgt die Behandlung mit Hydrophobinen in Gegenwart von Mikrowellenbestrahlung. Dadurch kann die Einwirkzeit sehr stark reduziert werden, je nach Energieeintrag reichen u.U. bereits wenige Sekunden zur Abscheidung des Hydrophobins auf der Oberfläche aus.
Nach dem Beschichten wird das Lösungsmittel aus dem Schaumstoff entfernt. Bevorzugt kann der Schaumstoff zunächst ausgedrückt werden um einen Großteil des Lösemittels zu entfernen. Optional kann der Schaumstoff zuvor noch mit Wasser oder einem bevorzugt wässrigen Lösemittelgemisch gewaschen werden. Das Entfernen des Lösemittels kann beispielsweise durch einfaches Abdampfen an Luft erfolgen. Das Entfernen des Lösemittels kann aber auch durch Erhöhen der Temperatur und/oder mit geeigneten Gasströmen und/oder Anlegen eines Vakuums erleichtert werden. Das Abdampfen kann erleichtert werden, indem man beispielsweise beschichtete Gegenstände in einem Trockenschrank erwärmt oder mit einem erwärmten Gasstrom anbläst. Die Methoden können auch kombiniert werden, beispielsweise indem man in einem Umlufttrockenschrank oder einem Trockenkanal trocknet. Weiterhin kann die Beschich- tung zum Entfernen des Lösemittels auch mittels Strahlung, insbesondere IR-Stahlung erwärmt werden. Hierzu können alle Arten von breitbandigen IR-Strahlern, bspw. NIR-, MIR- oder NIR-Stahler eingesetzt werden. Es können aber beispielsweise auch IR-La- ser eingesetzt werden. Derartige Strahlungsquellen sind in diversen Strahlungsgeometrien kommerziell erhältlich.
Die Temperatur sowie die Trockenzeit im Zuge des Trocknens wird vom Fachmann festgelegt. Bewährt hat sich eine Trocknungstemperatur von 30 bis 1300C, bevorzugt 50 bis 1200C, besonders bevorzugt 70 bis 1 10°C, ganz besonders bevorzugt 75 bis 1050C und beispielsweise 85 bis 1000C. Gemeint ist hierbei die Temperatur der Be- schichtung selbst. Die Temperatur in einem Trockner kann selbstverständlich auch höher sein. Die Trockenzeit ist naturgemäß umso kürzer, je höher die Trockentemperatur ist.
Die Temperaturbehandlung im Zuge des Beschichtens und die Trocknung können vorteilhaft miteinander kombiniert werden. So kann beispielsweise eine Oberfläche zunächst mit der Formulierung bei Raumtemperatur behandelt werden und anschließend bei erhöhten Temperaturen getrocknet und getempert werden. In einer bevorzugten Ausführungsform des Verfahrens wird mindestens in einem der beiden Schritte „Behandlung" oder „Trocknung" erhöhte Temperatur angewandt. Bevorzugt wird in beiden Schritten höhere Temperatur als Raumtemperatur angewandt.
Die Behandlung kann unmittelbar im Anschluss an den Herstellprozess des unmodifi- zierten Schaumstoffes vorgenommen werden, beispielsweise durch den Hersteller des Schaumstoffes selbst. Sie kann aber selbstverständlich auch erst zu einem späteren Zeitpunkt vorgenommen werden, beispielsweise durch einen Weiterverarbeiter oder nach dem Ausliefern des Schaumstoffes an den Endverbraucher von diesem selbst.
Durch das Behandeln des offenzelligen Schaumstoffes nach dem beschriebenen Pro- zess wird ein mit Hydrophobinen modifizierter, offenzelliger Schaumstoff erhalten.
Durch die Modifizierung wird der offenzellige Schaumstoff hydrophober als der unmodi- fizierte Schaumstoff.
Überraschenderweise wird die Rohdichte des modifizierten Schaumstoffes nur unwe- sentlich über der des unmodifizierten Schaumstoffes liegt. Die Rohdichte des modifizierten Schaumstoffes liegt in der Regel im Bereich von 3 bis 100 kg/m3. Im Falle von Schaumstoffen auf Basis von Melamin-Formaldehyd-Harzen liegt die Rohdichte bevorzugt bei 5 bis 15 kg/m3 und besonders bevorzugt im Bereich von 8 bis 10 kg/m3.
Die Dichte des modifizierten Schaumstoffes hängt selbstverständlich von der Dichte und der inneren Oberfläche des unmodifizierten Schaumstoffes ab. In der Regel ist Dichte des mit Hydrophobin modifizierten Schaumstoffes aber nicht mehr als 10 %, bevorzugt nicht mehr als 5 % größer als die Dichte des ummodifizierten Schaumstoffes.
In einer zweiten Ausführungsform der Erfindung können die modifizierten Schaumstoffe erhalten werden, indem man die Herstellung des Schaumstoffes in Gegenwart von mindestens einem Hydrophobin vornimmt.
Im Falle der Herstellung von offenzelligen Schaumstoffen auf Basis von Melamin-
Formaldehyd-Kondensationsprodukten können hierzu die Hydrophobine sowie optional weitere der oben genannten Bestandteile mit der oben erwähnten wässrigen Lösung oder Dispersion des Melamin-Formaldehyd-Vorkondensates, eines Treibmittels, eines Dispergiermittels sowie eines Härters vermischt werden. Anschließend kann die Mi- schung in prinzipiell bekannter Art und Weise erwärmt, verschäumt und ausgehärtet werden.
Die mit Hydrophobinen modifizierten Schaumstoffe können einerseits wie unmodifizier- te Schaumstoffe eingesetzt werden, beispielsweise zur Wärme- und Schalldämmung von Gebäuden und Gebäudeteilen, zur Wärme- und Schalldämmung der Motor- und Innenräume von Fahrzeugen und Flugzeugen sowie zur Tieftemperaturisolierung, beispielsweise von Kühlhäusern, Öltanks und Behältern von Flüssiggas. Weitere Anwendungsgebiete umfassen die Verwendung als isolierende Wandverkleidung sowie als isolierendes und stoßdämmendes Verpackungsmaterial. Die durch die Modifizierung mit Hydrophobinen verringerte Wasseraufnahmefähigkeit vermindert die Beeinträchtigung der Isolierwirkung des Schaumstoffes durch Luftfeuchtigkeit. Außerdem wird verhindert, dass die Masse der Isolierung durch die Wasseraufnahme zunimmt. Dies ist besonders bei der Anwendung in Fahrzeugen und ganz besonders Flugzeugen von großer Wichtigkeit.
Der erfindungsgemäße, modifizierte offenzellige Schaumstoff weist eine deutliche grö- ßere Affinität zu unpolaren, organischen Flüssigkeiten auf. Er bietet daher auch neuartige Verwendungsmöglichkeiten im Vergleich zu den nicht modifizierten Schaumstoffen.
Er kann beispielsweise zum Aufnehmen organischer Flüssigkeiten verwendet werden. Hierzu eignen sich ganz besonders modifizierte Schaumstoffe auf Basis von Melamin- Formaldehyd-Kondensationsprodukten. Bei den organischen Flüssigkeiten kann es sich beispielsweise um nach einem Unfall ausgelaufene Treibstoffe handeln, welche durch den modifizierten Schaumstoff selektiv aufgenommen werden können. Der modifizierte Schaumstoff kann hierbei beispielsweise in Form einer Matte ausgelegt werden oder aber auch als Granulat verstreut werden. Weitere Verwendungen umfassen Leckage- und Auslaufschutz für Flüssigkeitsspeicher, wie beispielsweise Treibstofftanks, Öltanks, Tankcontainer für Tankfahrzeuge, Tankanhänger oder Tankschiffe. Die Flüssigkeitsspeicher können hierbei beispielsweise mit dem modifizierten Schaustoff umhüllt werden. In diesem Falle saugt sich bei einer Leckage oder beim Überlaufen zu- nächst der Schaumstoff mit der Flüssigkeit voll.
In einer bevorzugten Anwendung kann der modifizierte Schaumstoff zur Flüssig- Trennung eingesetzt werden. Hierbei werden zweiphasige flüssige Gemische voneinander getrennt, indem der Schaumstoff selektiv eine der beiden Phasen aus dem Ge- misch absorbiert. Der erfindungsgemäße, modifizierte Schaumstoff kann insbesondere zur selektiven Abtrennung organischer Phasen aus zweiphasigen, wässrigorga- nischen Gemischen verwendet werden. Hierbei wird die organische Phase je nach Polarität ausschließlich oder zumindest bevorzugt vom modifizierten Schaumstoff aufgenommen. Bei den organischen Phasen kann es sich in einer bevorzugten Verwen- düng des Schaumstoffes um Ölphasen handeln. Die abgetrennte flüssige Phase kann nach dem Aufnahmen durch einfaches Auspressen wieder vom Schaumstoff getrennt werden. Der abgepresste Schaumstoff kann anschließend erneut verwendet werden.
Bei der Trennung kann es sich beispielsweise um das Abtrennen eines Ölteppichs auf einer Wasseroberfläche handeln. Der modifizierte Schaumstoff saugt sich bevorzugt mit dem Öl voll und schwimmt auch in vollgesogenem Zustand auf dem Wasser. Ein unmodifizierter Schaumstoff saugt sich bevorzugt mit Wasser voll und versinkt schließlich.
Weiterhin kann es sich um das Abtrennen von Ölresten, insbesondere Rohölresten aus wässrigen Phasen handeln. Bei der Rohölförderung fällt in der Regel ein Röhöl- Wasser-Gemisch bzw. eine Rohöl-Wasser-Emulsion an, welche zunächst unter Ver- wendung geeigneter Emulsionsspalter getrennt wird. Nach dem Abtrennen eines Großteils des Öls verbleibt eine wässrige Phase, in welcher noch geringe Mengen Öl, in der Regel nur noch 0,1 g/l, verteilt sind, welches sich in der Regel nur sehr schwer abtrennen lassen. Mit den erfindungsgemäßen, mit Hydrophobinen modifizierten Schaumstof- fen lassen sich derartige Reste elegant abtrennen, beispielsweise indem man den modifizierten Schaumstoff in die Öl-Wasser-Mischung eintaucht. Es ist aber auch denkbar, dass man den mit Hydrophobinen modifizierten, offenzelligen Schaumstoff als Füllmaterial für eine geeignete Trennvorrichtung verwendet, beispielsweise als Füllmaterial für eine Kolonne.
Die modifizierten, offenzelligen Schaumstoffe eignen sich weiterhin dazu, bestimmte Stoffe und/oder Partikel in ihren hydrophoben Poren aufzunehmen und können daher zur Abtrennung derartiger Stoffe und/oder Partikel von der Umgebung dienen. Beispielsweise können hydrophobe Komponenten, Aerosole, Färb- und/oder Geruchsstof- fe oder Pollen abgetrennt werden.
In einer weiteren, bevorzugten Verwendung können insbesondere die modifizierten Schaumstoffe auf Basis von Melamin-Formaldehyd-Kondensationsprodukten als sterilisierbares Arbeitsmittel, insbesondere für die Mikrobiologie eingesetzt werden.
Steril zu haltende Kulturröhrchen, Flaschen und Kolben werden üblicherweise mit Stopfen aus Watte, gerolltem Zellstoff oder Silikonschaum verschlossen, die einerseits Luftzutritt ermöglichen, andererseits aber als Tiefenfilter auch Luftkeime zurückhalten. Sie dürfen allerdings keinerlei Feuchtigkeit enthalten, weil sonst Mikroorganismen von der Außenseite her nach innen durchwachsen können. Erfindungsgemäß können hierzu vorteilhaft die modifizierten Schaumstoffe eingesetzt werden. Durch die erhöhte Hydrophobie wird Feuchtigkeit wirkungsvoll aus Materialien ferngehalten.
Bei dem Arbeitsmittel kann es sich beispielsweise um Stopfen handeln, mit dem Kultur- röhrchen, Flaschen oder Kolben für medizinische oder mikrobiologische Arbeiten verschlossen werden. Derartige Stopfen können zur Sterilisation bei Temperaturen über 1000C behandelt. Es kann sich auch um Material zum Verschließen von Gefäßen handeln, in welchen kontaminiertes Material durch Behandlung bei Temperaturen über 1000C dekontaminiert wird.
Einzelheiten zum Durchführen von Sterilisationen sind dem Fachmann bekannt. Erfindungsgemäß modifizierte Schaumstoffe auf Basis von Melamin-Formaldehyd- Kondensationsprodukten weisen eine hohe Temperaturstabilität auf und können auch bei Temperaturen um die 180°C behandelt werden.
Die folgenden Beispiele sollen die Erfindung näher erläutern: Bereitstellung der Hydrophobine
Für die Beispiele wurde ein Fusions-Hydrophobin mit dem vollständigen Fusionspartner yaad eingesetzt (yaad-Xa-dewA-his; nachfolgend Hydrophobin A genannt) sowie ein Fusions-Hydrophobin mit einem auf 40 Aminosäuren verkürzten Fusionspartner yaad40-Xa-dewA-his (Hydrophobin B). Die Herstellung erfolgte gemäß der in WO 2006/082253 beschriebenen Prozedur.
Die Produkte wurden nach dem vereinfachten Reinigungsverfahren gemäß Beispiel 9 von WO 2006/82253 aufgearbeitet und gemäß Beispiel 10 derselben Schrift sprühgetrocknet. Der Gesamtproteingehalt der erhaltenen, getrockneten Produkte betrug jeweils ca. 70 bis 95 Gew. %, der Gehalt an Hydrophobinen betrug ca. 40 bis 90 Gew. % bezüglich des Gesamtproteingehaltes. Die Produkte wurden als solche für die Versuche eingesetzt.
Anwendungstechnische Prüfung: Charakterisierung der Fusions-Hydrophobine durch Kontaktwinkeländerung eines Wassertropfens auf Glas
Substrat: Glas (Fensterglas, Süddeutsche Glas, Mannheim)
Für die Tests wurden die sprühgetrockneten, Fusions-Hydrophobine enthaltenden Produkte in Wasser unter Zusatz von 5O mM Na-Acetat pH 4 und 0,1 Gew. % Polyoxye- thylen(20)-sorbitanmonolaureat (Tween® 20) gelöst. Konzentration des Produktes: 100 μg/mL in wässriger Lösung.
Vorgehensweise:
Inkubation von Glasplättchen über Nacht (Temperatur 800C), danach Beschich- tung waschen in destilliertem Wasser, danach Inkubation 10min / 800C / 1 % Natrium-Dodecylsulfat (SDS) -Lösung in dest. Wasser,
Waschen in dest. Wasser
Die Proben werden an der Luft getrocknet und der Kontaktwinkel (in Grad) eines Tropfens von 5 μl Wasser bei Raumtemperatur bestimmt.
Die Kontaktwinkelmessung wurde auf einem Gerät Dataphysics Contact Angle System OCA 15+, Software SCA 20.2.0. (November 2002) bestimmt. Die Messung erfolgte gemäss den Herstellerangaben. Unbehandeltes Glas ergab einen Kontaktwinkel von 15° bis 30° ± 5°. Eine Beschich- tung mit dem Fusions-Hydrophobin yaad-Xa-dewA-hisβ ergab eine Kontaktwinkelvergrößerung von mehr als 30°; eine Beschichtung mit dem Fusions-Hydrophobin yaad40- Xa-dewA-his ergab ebenfalls eine Kontaktwinkelvergrößerung von mehr als 30°.
Herstellung und Charakterisierung modifizierter offenzelliger Schaumstoffe
Beispiele 1 und 2: Nachträgliche Modifizierung
In einem Glaskolben wurden jeweils würfelförmige Proben (7cm x 7 cm x 7 cm) eines offenzelligen Melamin-Formaldehyd-Schaumstoffs mit einer Dichte von 9 kg/m3 (Baso- tect®, BASF AG) gegeben und mit einer Lösung von 0,1 g/l Hydrophobin A bzw. Hy- drophobin B getränkt. Die Lösung mit dem getränkten Schaumstoffwürfel wurde 15 h bei 600C erwärmt. Anschließend wurde die wässrige Lösung abdekantiert. Die Schaumstoffwürfel wurden durch Auspressen vom Großteil der aufgenommenen Flüssigkeit befreit, mehrmals mit Reinstwasser gewaschen und ausgepresst und bei 400C bis zur Gewichtskonstanz getrocknet. Die Dichte der modifizierten Schaumstoffproben ist in Tabelle 1 angegeben.
Zur Bestimmung der Wasseraufnahme wurden würfelförmige Proben von 3 cm x 3 cm x 3 cm geschnitten und bei Raumtemperatur für 30 min auf Wasser gelegt. Die Gewichtszunahme wurde gravimetrisch bestimmt und in Volumen % umgerechnet. Die Daten sind ebenfalls in Tabelle 1 angegeben.
Vergleichsversuch 1
Es wurde die Wasseraufnahme des unmodifizierten Schaumstoffs gemäß Beispiel 1 wie oben beschrieben bestimmt. Die Daten sind in Tabelle 1 angegeben.
Vergleichsversuch 2
Ein unmodifizierter Schaumstoff gemäß Beispiel 1 wurde zur Hydrophobierung mit Rapsöl getränkt, vollständig ausgedrückt und getrocknet. Die Gewichtszunahme und die Wasseraufnahme wurde jeweils wie oben beschrieben bestimmt. Die Daten sind in Tabelle 1 angegeben.
Vergleichsversuch 3
Daten von Example 1 aus EP-A 633 283; es wurde ein offenzelliger Melamin-Formal- dehyd-Schaumstoffs mit einer Dichte von 1 1 kg/m3 (Basotect ®, BASF AG) nach der beschriebenen Prozedur mit Siliconöl imprägniert.
Figure imgf000019_0001
Tabelle 1 : Ergebnisse der Beispiele und Vergleichsbeispiele (*gerechnet für die Obergrenze von 9,2)
Die Beispiele und Vergleichsbeispiele zeigen, dass sich der unmodifizierte, offenzellige Schaumstoff bei Verwendung von Hydrophobinen ausgezeichnet hydrophobieren lässt und dennoch nur eine minimale Zunahme der Dichte beobachtet wird.
Beispiel 3
Modifizierung durch Zugabe von Hydrophobinen im Zuge der Schaumstoffherstellung
Die Herstellung wurde nach dem in WO 01/94436 beschriebenen Verfahren vorgenommen. Es wurden lediglich vor dem Verschäumen des treibmittelhaltigen Melamin- Formaldehyd-Vorkondensats zusätzlich 0,5 Gew.-% Hydrophobin A bezogen auf den Feststoffanteil in Form einer wässrigen Lösung zugesetzt. Die erhaltenen Schaumstoffe wurden zunächst bei 100 0C getrocknet und anschließend bei 2200C getempert. Der so hergestellte Schaumstoff sinkt beim Auflegen auf eine Wasseroberfläche nicht ein, während ein nach dem gleichen Verfahren, aber ohne Hydrophobinzusatz hergestellter Schaumstoff einsinkt.
Variation der Beschichtungsbedingungen
In einem Glaskolben wurden jeweils quaderförmige Proben (1 ,5 cm x 0,5 cm x 0,3 cm ≡ 0,225 cm3) eines offenzelligen Melamin-Formaldehyd-Schaumstoffs mit einer Dichte von 9 kg/m3 (Basotect ®, BASF AG) mit jeweils 2 cm3 der zur Behandlung eingesetzten Lösung Übergossen bzw. getränkt und für eine bestimmte Zeit und Temperatur behandelt. Nach der Behandlung wurden die Proben abgequetscht, gewaschen und bei 400C bis zur Gewichtskonstanz getrocknet.
Der Grad der Hydrophobierung des modifizierten Schaumstoffes wurde jeweils bestimmt, indem bei Raumtemperatur ein Wassertropfen von 5 μl auf die Oberfläche des getrockneten, modifizierten Schaumstoffes aufgetropft wurde. Es wurde beobachtet, ob er vom Schaumstoff aufgesaugt wurde oder nicht.
Versuchsreihe 1
In einer ersten Versuchsreiche wurde eine Beschichtungsformulierung aus Hydropho- bin A in Wasser mit einem Puffer und CaCb-Zusatz eingesetzt (50 mmol/l Tris/HCI - Puffer, 1 mmol/l CaCb; pH-Wert der gepufferten Lösung: pH 8). Variiert wurde die Konzentration des Hydrophobins, die Temperatur und die Zeit variiert. Zur Kontrolle wurden jeweils Lösungen ohne Zusatz von Hydrophobin verwendet. Die Ergebnisse sind in Tabelle 2 zusammengestellt.
Figure imgf000020_0001
Tabelle 2: Ergebnisse von Versuchsreihe 1
(Lösung: 50 mmol/l Tris-HCI-Puffer, 1 mmol/l CaCI2; pH 8)
+ Tropfen sinkt nicht ein ==> hydrophobiert
- Tropfen sinkt ein ==> nicht hydrophobiert
0 Tropfen sinkt teilweise / sehr langsam ein ==> teilweise hydrophobiert
Ergebnis bei allen Proben ohne Hydrophobinzusatz: -
Versuchsreihe 2
In einer zweiten Versuchsreiche wurde eine Beschichtungsformulierung aus Hydrophobin A in Wasser mit einem Puffer und CaCb-Zusatz eingesetzt (50 mmol/l Na- Acetat-Puffer, 1 mmol/l CaCb; pH-Wert der gepufferten Lösung: pH 5). Variiert wurde die Konzentration des Hydrophobins, die Temperatur und die Zeit variiert. Zur Kontrolle wurden jeweils Lösungen ohne Zusatz von Hydrophobin verwendet. Die Ergebnisse sind in Tabelle 3 zusammengestellt.
Figure imgf000021_0001
Tabelle 3: Ergebnisse von Versuchsreihe 2
(Lösung: 50 mmol/l Na-Acetat-Puffer, 1 mmol/l CaCb; pH 5) + Tropfen sinkt nicht ein ==> hydrophobiert
- Tropfen sinkt ein ==> nicht hydrophobiert
1 Tropfen sinkt teilweise / sehr langsam ein ==> teilweise hydrophobiert Ergebnis bei allen Proben ohne Hydrophobinzusatz: -
Die Ergebnisse zeigen, dass auch mit einer Konzentration von nur 1 mg/l Hydrophobin eine ausreichende Hydrophobierung zu erreichen ist, vorausgesetzt, die Beschich- tungsbedingungen werden entsprechend gewählt. Es kann sowohl bei pH 8 wie auch bei pH 5 beschichtet werden, wobei pH 8 empfehlenswert ist, wenn schon bei geringen Konzenztrationen und milden Bedingungen beschichtet werden soll.
Versuchsreihe 3
In einer dritten Versuchsreihe wurde der Einfluss von Mikrowellenstrahlung auf das Beschichtungsergebnis untersucht. Als Mikrowellenquelle wurde ein handelsübliches Haushaltsmikrowellengerät mit einer maximalen Leistung von 1000 W, einstellbar in 9 Leistungsstufen 1 bis 9 verwendet.
Zur Behandlung wurde hierzu eine Lösung (50 mmol/l Tris-HCI-Puffer, 1 mmol/l CaCb; pH 8) eingesetzt, welche 100 mg/l Hydrophobin A enthielt. Der unbehandelte Schaum- stoff wurde zunächst wie oben beschrieben bei Raumtemperatur in die Lösung eingetaucht und getränkt und anschließend in der Mikrowelle jeweils bis zum Sieden der Behandlungslösung erhitzt. Anschließend wurde der behandelte Schaumstoff wie oben beschrieben abgepresst, gewaschen, getrocknet und wie oben im Hinblick auf den Grad der Hydrophobierung getestet. Tabelle 4 gibt die jeweils die erforderliche Zeit bis zum Sieden der Behandlungslösung an sowie das Ergebnis des Tests auf Hydrophobie. Stufe 1 2 3 4 5 6 7 8 9
Zeit [mm: ss] > 05: 00 03 14 01 :59 00 :55 00 :45 00: 30 00 :28 00 :34 00 19
Ergebnis + + + + + + + + +
Tabelle 4: Ergebnisse von Versuchsreihe 3 Alle Kontrollproben: -
Das Ergebnis zeigt, dass bereits ca. 20 s Mikrowellenbestrahlung bei 1000 W eine vollständige Hydrophobierung des Schaumstoffes erfolgt ist.
Versuchsreihe 4:
Untersuchung der Temperaturbeständigkeit der Beschichtung
Die unmodifizierten Schaumstoffe wurden zunächst wie oben beschrieben mit Hydro- phobin beschichtet. Zur Behandlung wurde hierzu eine Lösung (50 mmol/l Tris-HCI- Puffer, 1 mmol/l CaCb; pH 8) eingesetzt, welche 1000 mg/l Hydrophobin A enthielt. Es wurde unter Verwendung des beschriebenen Mikrowellengerätes beschichtet (1 min; 200 W).
Die getrockneten modifizierten Schaumstoffe wurden danach in einem Trockenschrank bei den in Tabelle 5 aufgeführten Temperaturen und Zeiten gelagert und danach auf Hydrophobie getestet. Es wurden jeweils Kontrollproben auf gleiche Art und Weise behandelt, jedoch ohne Hydrophobin in der Behandlungslösung. Die Ergebnisse sind in Tabelle 5 aufgeführt.
Figure imgf000022_0001
Tabelle 5: Ergebnis der Lagerversuche bei erhöhten Temperaturen Alle Kontrollproben: - ; n.b.: nicht bestimmt
Die Ergebnisse zeigen, dass die Hydrophobierung bei 1000C auch bei andauernder Temperaturbelastung erhalten bleibt; auch bei 200°C ist zumindest eine Kurzzeitbelastung unkritisch. Anwendung modifizierter Schaumstoffe
Trennung von Hexan-Wasser Gemischen bzw. Benzin-Wasser-Gemischen
Für die Trennversuche wurde der gemäß Beispiel 2 hergestellte modifizierte Melamin- Formaldehyd-Schaumstoff eingesetzt (d.h. der mit Hydrophobin B modifizierte Schaumstoff).
Würfel des modifizierten Schaumstoffes (3,4 cm3) wurden jeweils mit einem zweiphasi- gen Gemisch aus Wasser (angefärbt mit einem wasserlöslichen Farbstoff) und einem damit nicht mischbaren organischen Lösungsmittel Übergossen. Bei einem der Versuche wurde n-Hexan eingesetzt, bei dem anderen Superbenzin. Zu Vergleichszwecken wurden auch jeweils unmodifizierte Schaumstoffe in gleicher Art und Weise behandelt. Es wurde jeweils gewartet, bis der Schaumstoff mit Flüssigkeit vollgesogen war. Der unbehandelte Schaumstoff versank jeweils in der wässrigen Phase, während der behandelte Schaumstoff an der Grenzfläche zwischen organischer und wässriger Phase schwebte. Nach dem Aufsaugen wurde der Schaumstoff der Flüssigkeit entnommen, die aufgenommene Flüssigkeit abgepresst und jeweils auf ihren Anteil an organischer Phase und Wasser analysiert. Die Ergebnisse sind in Tabelle 6 zusammengestellt.
Figure imgf000023_0001
Tabelle 6: Ergebnisse der Trennversuche; Menge der im Schaumstoff enthaltenen Flüssigkeit
Die Ergebnisse zeigen, dass der Schaumstoff durch die Modifizierung mit Hydrophobin vollständig „umgepolt" wird. Während der unbehandelte Schaumstoff ausschließlich Wasser aufnimmt, nimmt der behandelte Schaumstoff überwiegend organisches Lösemittel auf.
Rückhaltevermögen für organische Lösungsmittel
Für die folgenden Versuche wurde ebenfalls der gemäß Beispiel 2 hergestellte modifizierte Melamin-Formaldehyd-Schaumstoff eingesetzt (d.h. der mit Hydrophobin B modifizierte Schaumstoff). Würfelförmige Proben des modifizierten und des unmodifizierten Schaumstoffes wurden jeweils an einem Stab befestigt und mit verschiedene organischen Lösungsmitteln (Hexan, XyIoI, Benzin) getränkt. Zur besseren Sichtbarkeit wurden die Lösungsmittel mit einem roten Farbstoff angefärbt, der gut im organischen Lösungsmittel löslich, aber in Wasser unlöslich ist. Alle Schaumstoffproben nahmen die Lösungsmittel schnell und vollständig auf. Die getränkten Proben wurden anschließend in ein mit Wasser gefülltes Gefäß gegeben und mit Hilfe des Stabes durch eine Rührbewegung im Wasser mechanisch leicht belastet.
Beim unmodifizierten Schaumstoff wurde das Lösungsmittel sofort nahezu vollständig durch Wasser verdangt, während der mit Hydrophobinen modifizierte Schaumstoff das organische Lösungsmittel nahezu vollständig im Inneren des Schaums hielt.
Trennung von Rohöl-Wasser-Gemischen
Herstellung einer Rohöl-Wasser-Emulsion
Für die Trennversuche wurde eine Emulsion von Rohöl (Wintershall, Emiichheim Sonde 301/83 vom 4.02.2005) in vollentsalztem Wasser hergestellt. Die Emulsion wurde durch intensives Vermischen von Wasser und Öl mit einem Ultra-Turrax vorgenommen (4 min. bei 24.000 U/min). Überschüssige Öllinsen wurden mittels Scheidetrichter entfernt. Die Ölkonzentration betrug 1000 ppm.
Abtrennversuche
Die Emulsion wurde auf 3 Gefäße in gleichen Mengen verteilt und jeweils ein Stück eines Schaumstoffes auf Basis von Melamin-Formaldehyd-Harz eingetaucht, und zwar jeweils ein mit Hydrophobin A und mit Hydrophobin B behandelter Schaumstoff (gemäß Beispieen 1 und 2) sowie zu Vergleichszwecken eine unbehandelte Probe. Die Proben wurden jeweils 24 h in der Emulsion belassen.
Bei den beiden modifizierten Schaumstoffen wurde jeweils eine sichtbare Menge Öl aus der Emulsion gesaugt. Der nicht behandelte Schaumstoff saugte sich mit Wasser voll, es war keine Adsorption von Öl feststellbar. Durchgeschnittene Probenkörper sind in Abbildungen 1 und 2 dargestellt. Abbildung 1 : Modifizierter Schaumstoff
Abbildung 2: Unmodifizierter Schaumstoff zum Vergleich
Abtrennen eines Ölteppiches
Ein Gefäß wurde mit vollentsalztem Wasser gefüllt und jeweils eine dünne Schicht Rohöl (Wintershall, Landau vom 4.02.2005; dünnflüssig bei 200C, <10% Wasser) aufgegossen.
Es wurde jeweils ein Stück eines Schaumstoffes, hergestellt gemäß Beispielen 1 und 2 sowie zu Vergleichszwecken eine unbehandelte Probe auf den Ölteppich aufgelegt.
Die Abbildungen 3 bis 5 zeigen den Versuchsverlauf.
Abbildung 3: Beginn des Versuchs Abbildung 4: Während des Versuchs Abbildung 5: Schaumstoff nach Ende des Versuchs
Die modifizierten Schaumstoffe saugten innerhalb von 5 min nahezu den gesamten Ölteppich ein. Bei dem mit Hydrophobin B behandelten Schaumstoff wurde das Öl vollständiger abgetrennt als bei Hydrophobin A. Der nicht modifizierte Schaumstoff saugte sich im Wesentlichen mit Wasser voll. Die Ölanhaftung war nur oberflächlich. Es verblieben noch größere Mengen Öl auf der Wasseroberfläche.

Claims

Patentansprüche
1. Offenzelliger Schaumstoff ausgewählt aus der Gruppe von Schaumstoffen auf Basis eines Melamin-Formaldehyd-Kondensationsproduktes, eines Polyurethans oder eines Polyimids, dadurch gekennzeichnet, dass der Schaumstoff mit mindestens einem Hydrophobin modifiziert ist.
2. Offenzelliger Schaumstoff gemäß Anspruch 1 , dadurch gekennzeichnet, dass der
Schaumstoff eine mit Dichte von 3 bis 100 kg/m3 aufweist.
3. Offenzelliger Schaumstoff gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich um einen Schaumstoff auf Basis eines Melamin-Formaldehyd- Kondensationsproduktes handelt.
4. Offenzelliger Schaumstoff nach Anspruch 3, dadurch gekennzeichnet, dass das Molverhältnis Melamin/Formaldehyd 1 : 1 bis 1 : 5 beträgt.
5. Offenzelliger Schaumstoff gemäß einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die Menge an Hydrophobin 5 bis 10 g / m3 Schaumstoff beträgt.
6. Verfahren zur Herstellung eines modifizierten, offenzelligen Schaumstoffes gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man einen unmodifizierten offenzelligen Schaumstoff mit einer wässrigen Lösung eines Hydrophobins behandelt.
7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass man die Behandlung bei einer Temperatur von 20 bis 1200C vornimmt.
8. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass man unter Erwär- men behandelt, und man die Erwärmung mittels Mikrowellenbestrahlung vornimmt.
9. Verfahren gemäß einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Konzentration des mindestens einen Hydrophobins in der wässrigen Lösung 0,1 μg/ml bis 1000 μg/ml beträgt.
10. Verfahren zur Herstellung eines modifizierten, offenzelligen Schaumstoffes gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man die Herstellung des offenzelligen Schaumstoffes in Gegenwart mindestens eines Hydrophobins vornimmt.
1 1. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass es sich um ein
Verfahren zur Herstellung eines modifizierten, offenzelligen Schaumstoffes auf Basis eines Melamin-Formaldehyd-Kondensationsproduktes handelt, bei dem man eine mindestens ein Melamin-Formaldehyd (MF)-Vorkondensat, ein Disper- giermittel, einen Härter sowie ein Treibmittel umfassende Mischung unter Erwärmen aufschäumt und härtet, und die Herstellung in Gegenwart mindestens eines Hydrophobins vornimmt.
12. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, dass das Molverhältnis Melamin/Formaldehyd des Vorkondensates im Bereich von 1 : 1 bis 1 : 5 liegt.
13. Verwendung des modifizierten, offenzelligen Schaumstoffes nach einem der Ansprüche 1 bis 5 als Dämmmaterial.
14. Verwendung des modifizierten, offenzelligen Schaumstoffes nach einem der Ansprüche 1 bis 5 als zur Schall- und/oder Wärmedämmung in Flugzeugen.
15. Verwendung des modifizierten, offenzelligen Schaumstoffes nach einem der Ansprüche 1 bis 5 zum Aufnehmen organischer Flüssigkeiten.
16. Verwendung des modifizierten, offenzelligen Schaumstoffes nach einem der Ansprüche 1 bis 5 als Leckage- und Auslaufschutz für Flüssigkeitsspeicher.
17. Verwendung des modifizierten, offenzelligen Schaumstoffes nach einem der An- Sprüche 1 bis 5 zur Flüssig-Flüssig-T rennung.
18. Verwendung gemäß Anspruch 15, dadurch gekennzeichnet, dass es sich um die
Abtrennung von Öl aus einem Öl-Wasser-Gemisch handelt.
19. Verwendung des modifizierten, offenzelligen Schaumstoffes nach einem der Ansprüche 1 bis 5 als sterilisierbares Arbeitsmittel.
20. Verwendung gemäß einem der Ansprüche 13 bis 19, dadurch gekennzeichnet, dass es sich um modifizierten, offenzelligen Schaumstoffes auf Basis eines MeI- amin-Formaldehyd-Kondensationsproduktes handelt.
PCT/EP2008/052619 2007-03-06 2008-03-04 Mit hydrophobinen modifizierte offenzellige schaumstoffe WO2008107439A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP08717377A EP2134775B1 (de) 2007-03-06 2008-03-04 Mit hydrophobinen modifizierte offenzellige schaumstoffe
AT08717377T ATE471960T1 (de) 2007-03-06 2008-03-04 Mit hydrophobinen modifizierte offenzellige schaumstoffe
DE502008000846T DE502008000846D1 (de) 2007-03-06 2008-03-04 Mit hydrophobinen modifizierte offenzellige schaumstoffe
KR1020097020890A KR101455885B1 (ko) 2007-03-06 2008-03-04 하이드로포빈으로 개질된 개방셀 발포체
PL08717377T PL2134775T3 (pl) 2007-03-06 2008-03-04 Modyfikowane hydrofobinami tworzywa piankowe o otwartych komórkach
US12/529,988 US8173716B2 (en) 2007-03-06 2008-03-04 Open-cell foam modified with hydrophobines
BRPI0807872A BRPI0807872B1 (pt) 2007-03-06 2008-03-04 espuma de célula aberta, método para produzir uma espuma de célula aberta modificada, e, uso da espuma de célula aberta modificada.
CN2008800071993A CN101627076B (zh) 2007-03-06 2008-03-04 用疏水蛋白改性的开孔泡沫
JP2009552193A JP5444007B2 (ja) 2007-03-06 2008-03-04 ヒドロホビンで変性された連続気泡フォーム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07103547 2007-03-06
EP07103547.1 2007-03-06

Publications (1)

Publication Number Publication Date
WO2008107439A1 true WO2008107439A1 (de) 2008-09-12

Family

ID=39493319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/052619 WO2008107439A1 (de) 2007-03-06 2008-03-04 Mit hydrophobinen modifizierte offenzellige schaumstoffe

Country Status (10)

Country Link
US (1) US8173716B2 (de)
EP (1) EP2134775B1 (de)
JP (1) JP5444007B2 (de)
KR (1) KR101455885B1 (de)
CN (1) CN101627076B (de)
AT (1) ATE471960T1 (de)
BR (1) BRPI0807872B1 (de)
DE (1) DE502008000846D1 (de)
PL (1) PL2134775T3 (de)
WO (1) WO2008107439A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009061645A3 (en) * 2007-11-06 2009-10-22 The Boeing Company Hydrophobic and/or oleophobic open cell polyimide acoustic and thermal insulation foams and methods of making
WO2011015504A3 (en) * 2009-08-07 2011-04-07 Unilever Plc Aerated products
WO2012137147A1 (en) 2011-04-08 2012-10-11 Danisco Us, Inc. Compositions
WO2014063097A1 (en) 2012-10-19 2014-04-24 Danisco Us Inc. Stabilization of biomimetic membranes
WO2015094527A1 (en) 2013-12-19 2015-06-25 Danisco Us Inc. Use of hydrophobins to increase gas transferin aerobic fermentation processes
WO2015180872A1 (en) 2014-05-28 2015-12-03 Basf Se Mesh comprising a surface of hydrated aluminum oxides and their use for oil-water separation
WO2015180873A1 (en) 2014-05-28 2015-12-03 Basf Se Coated mesh and its use for oil-water separation
WO2016193547A1 (en) 2015-06-02 2016-12-08 Teknologian Tutkimuskeskus Vtt Oy A method for increasing foam stability
WO2018108700A1 (en) 2016-12-16 2018-06-21 Basf Se Coated meshes and their use, especially for oil-water separation

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0607594A2 (pt) * 2005-03-31 2010-04-06 Basf Ag compósito multi-camadas ou substrato revestido, processo para a preparação dos mesmos, e, uso de hidrofobinas
US20080233337A1 (en) * 2007-03-23 2008-09-25 International Automotive Components Group North America, Inc. Floor covering for liquid dispersion
US20130209312A1 (en) * 2012-02-13 2013-08-15 Morgan Adhesives Company Film With Absorbing Coating
KR101379479B1 (ko) * 2013-01-07 2014-04-01 주식회사 동성화학 개방 셀 발포체용 조성물 및 이를 이용한 소수성 개방 셀 발포체와 그 제조 방법
CN103011484A (zh) * 2013-01-08 2013-04-03 石家庄东华金龙化工有限公司 一种氯乙酸法制备甘氨酸生产中氯化铵废水的处理方法
KR20150143732A (ko) * 2013-04-15 2015-12-23 바스프 에스이 코어 내의 하나 이상의 활성 및/또는 유효 물질 및 멜라민-포름알데히드 수지의 쉘을 갖는 마이크로스피어를 포함하는 멜라민-포름알데히드 폼
CN104961908A (zh) * 2015-07-29 2015-10-07 苏州宏久航空防热材料科技有限公司 一种憎水性三聚氰胺泡沫及其制备方法
CN105883242B (zh) * 2016-03-19 2019-01-25 南京航空航天大学 一种储油罐罐壁结构及其施工方法
JP7013750B2 (ja) * 2017-09-15 2022-02-01 大日本印刷株式会社 考査処理装置及び印画物作製システム
CN114750545A (zh) * 2021-05-25 2022-07-15 项晓村 一种静音轮胎及其制备方法
DE202022105421U1 (de) 2022-09-27 2022-10-14 Condair Group Ag Schalldämpfereinheit zur Anordnung in der Zuleitung einer Gebäudelüftungsanlage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060194893A1 (en) * 2004-11-01 2006-08-31 Prybutok Jarred M Hydrophobation of melamine foam
WO2006131555A1 (de) * 2005-06-10 2006-12-14 Basf Aktiengesellschaft Hydrophobin als beschichtungsmittel für expandierbare oder expandierte, thermoplastische polymerpartikel
WO2007006765A1 (de) * 2005-07-14 2007-01-18 Basf Aktiengesellschaft Wässrige monomeremulsionen enthaltend hydrophobin
WO2007082784A1 (de) * 2006-01-12 2007-07-26 Basf Aktiengesellschaft Modifizierte offenzellige schaumstoffe und verfahren zu ihrer herstellung

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3011769A1 (de) * 1980-03-27 1981-10-01 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von elastischen schaumstoffen auf basis eines melamin/formaldehyd-kondensationsprodukts
DE2915457A1 (de) 1979-04-17 1980-10-30 Basf Ag Elastischer schaumstoff auf basis eines melamin/formaldehyd-kondensationsproduktes
JP3354220B2 (ja) 1993-07-09 2002-12-09 日清紡績株式会社 メラミン系樹脂発泡体
AU5914196A (en) 1995-06-12 1997-01-09 Proefstation Voor De Champignoncultuur Hydrophobins from edible fungi, genes, nucleotide sequences and dna-fragments encoding for said hydrophobins, and expression thereof
DE10011388A1 (de) 1999-04-30 2000-11-02 Basf Ag Melaminharz-Schaumstoff
GB0002663D0 (en) 2000-02-04 2000-03-29 Biomade B V Method of stabalizing a hydrophobin-containing solution and a method of coating a surface with a hydrophobin
DE10027770A1 (de) 2000-06-07 2001-12-13 Basf Ag Verfahren zur Herstellung von Schaumstoffen aus Melamin/Formaldehyd-Kondensaten
CN1909979A (zh) 2004-01-16 2007-02-07 应用超微系统股份有限公司 在低温下用疏水蛋白涂覆物体的方法
DE102004019708A1 (de) * 2004-04-20 2005-11-17 Basf Ag Offenzellige Schaumstoffe und Verfahren zu ihrer Herstellung
DE102004034604A1 (de) 2004-07-16 2006-02-16 Basf Ag Modifizierte offenzellige Schaumstoffe und Verfahren zu ihrer Herstellung
US7147912B2 (en) * 2004-08-18 2006-12-12 E. I. Du Pont De Nemours And Company Amphipathic proteinaceous coating on nanoporous polymer
US7241734B2 (en) 2004-08-18 2007-07-10 E. I. Du Pont De Nemours And Company Thermophilic hydrophobin proteins and applications for surface modification
TW200639179A (en) 2005-02-07 2006-11-16 Basf Ag Method for coating surfaces with hydrophobins
JP5250264B2 (ja) 2005-02-07 2013-07-31 ビーエーエスエフ ソシエタス・ヨーロピア 新規ハイドロフォビン融合タンパク質、その製造および使用
JP5064376B2 (ja) 2005-03-30 2012-10-31 ビーエーエスエフ ソシエタス・ヨーロピア 硬質表面の防汚処理へのハイドロフォビンの使用方法
BRPI0609776A2 (pt) 2005-04-01 2011-10-18 Basf Ag uso de pelo menos uma hidrofobina, processo para separar pelo menos duas fases lìquidas em uma composição, e, formulação
JP2008534554A (ja) 2005-04-01 2008-08-28 ビーエーエスエフ ソシエタス・ヨーロピア 乳化破壊剤としての蛋白質の使用
CN101228249B (zh) 2005-04-01 2011-11-30 巴斯福股份公司 含疏水蛋白的钻井液
DE102005025969A1 (de) 2005-06-03 2006-12-28 Basf Ag Verfahren zur Verringerung der Verdunstungsgeschwindigkeit von Flüssigkeiten
WO2006131478A2 (de) * 2005-06-06 2006-12-14 Basf Aktiengesellschaft Verfahren zur beschichtung von oberflächen von faserigen substraten
DE102005027139A1 (de) 2005-06-10 2006-12-28 Basf Ag Neue Cystein-verarmte Hydrophobinfusionsproteine, deren Herstellung und Verwendung
MX2008001056A (es) 2005-08-01 2008-03-19 Basf Ag Uso de proteinas no enzimaticas de superficie activa para lavar textiles.
DE102005048720A1 (de) 2005-10-12 2007-04-19 Basf Ag Verwendung von Proteinen als Antischaum-Komponente in Kraftstoffen
CN100497450C (zh) * 2006-06-11 2009-06-10 上海三泰橡胶制品有限公司 硅橡胶开孔海绵

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060194893A1 (en) * 2004-11-01 2006-08-31 Prybutok Jarred M Hydrophobation of melamine foam
WO2006131555A1 (de) * 2005-06-10 2006-12-14 Basf Aktiengesellschaft Hydrophobin als beschichtungsmittel für expandierbare oder expandierte, thermoplastische polymerpartikel
WO2007006765A1 (de) * 2005-07-14 2007-01-18 Basf Aktiengesellschaft Wässrige monomeremulsionen enthaltend hydrophobin
WO2007082784A1 (de) * 2006-01-12 2007-07-26 Basf Aktiengesellschaft Modifizierte offenzellige schaumstoffe und verfahren zu ihrer herstellung

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009061645A3 (en) * 2007-11-06 2009-10-22 The Boeing Company Hydrophobic and/or oleophobic open cell polyimide acoustic and thermal insulation foams and methods of making
US8324285B2 (en) 2007-11-06 2012-12-04 The Boeing Company Hydrophobic and/or oleophobic open cell polyimide acoustic and thermal insulation foams and methods of making
WO2011015504A3 (en) * 2009-08-07 2011-04-07 Unilever Plc Aerated products
WO2012137147A1 (en) 2011-04-08 2012-10-11 Danisco Us, Inc. Compositions
WO2014063097A1 (en) 2012-10-19 2014-04-24 Danisco Us Inc. Stabilization of biomimetic membranes
US10226744B2 (en) 2012-10-19 2019-03-12 Danisco Us Inc Stabilization of biomimetic membranes
US10413871B2 (en) 2012-10-19 2019-09-17 Danisco Us Inc Stabilization of biomimetic membranes
WO2015094527A1 (en) 2013-12-19 2015-06-25 Danisco Us Inc. Use of hydrophobins to increase gas transferin aerobic fermentation processes
WO2015180872A1 (en) 2014-05-28 2015-12-03 Basf Se Mesh comprising a surface of hydrated aluminum oxides and their use for oil-water separation
WO2015180873A1 (en) 2014-05-28 2015-12-03 Basf Se Coated mesh and its use for oil-water separation
WO2016193547A1 (en) 2015-06-02 2016-12-08 Teknologian Tutkimuskeskus Vtt Oy A method for increasing foam stability
WO2018108700A1 (en) 2016-12-16 2018-06-21 Basf Se Coated meshes and their use, especially for oil-water separation

Also Published As

Publication number Publication date
BRPI0807872B1 (pt) 2018-10-23
KR101455885B1 (ko) 2014-11-04
JP5444007B2 (ja) 2014-03-19
DE502008000846D1 (de) 2010-08-05
JP2010520345A (ja) 2010-06-10
ATE471960T1 (de) 2010-07-15
BRPI0807872A2 (pt) 2014-06-17
KR20090130026A (ko) 2009-12-17
US20100044308A1 (en) 2010-02-25
PL2134775T3 (pl) 2010-11-30
CN101627076A (zh) 2010-01-13
US8173716B2 (en) 2012-05-08
CN101627076B (zh) 2012-05-23
EP2134775A1 (de) 2009-12-23
EP2134775B1 (de) 2010-06-23

Similar Documents

Publication Publication Date Title
EP2134775B1 (de) Mit hydrophobinen modifizierte offenzellige schaumstoffe
EP0716641B1 (de) Hydrophobe kieselsäureaerogele
DE69433908T2 (de) Verdampfung verhindernde flüssigkeit bei hoher temperatur
DE60319154T2 (de) Dämpfungsarme schaumstoffzusammensetzung und kabel mit einer schicht aus dämpfungsarmem schaumstoff
EP2252668A1 (de) Verwendung von hydrophobinen zur verhinderung der eisbildung auf oberflächen
DE69724831T2 (de) Lagerstabile wasserstoffperoxid enthaltende zusammensetzungen zur reinigung und behandlung von teppichen
DE2407022A1 (de) Fluessiges wasserverdraengungsmittel
DE112016002428T5 (de) Gastrennmembran
EP0801130A2 (de) Tensidhaltige Reinigungsmittel in Form einer Mikroemulsion
WO2005102255A2 (de) Schweissabsorbierendes kosmetisches produkt und verfahren zu seiner herstellung
EP2042155A1 (de) Verfahren zum Entfernen von wasserunlöslichen Substanzen von Substratoberflächen
EP2454330B1 (de) Dispersion und verfahren zum modifizieren einer oberfläche mit hydrophobierter kieselsäure
WO2010102934A1 (de) Verwendung einer mischung aus wasserloslichen polymeren und hydrophobinen zum verdicken wässriger phasen
CH634435A5 (en) Electroviscous fluid
DE3604035A1 (de) Stabilisierte alkylenoxidaddukte
Carretti et al. Microemulsions and micellar solutions for cleaning wall painting surfaces
EP1896620B1 (de) Verfahren zur herstellung von leder
NZ230756A (en) Wood preservative composition comprising copper arsenate compound, oil, surfactant and water
CN111575120B (zh) 一种油烟机用中性清洗剂及其制备方法
RU2777538C1 (ru) Диспергент для ликвидации разливов нефти
DE4206191A1 (de) Polymerblend aus mindestens zwei polymeren und einem compatibilizer
DE3151694C2 (de) Verfahren zur Herstellung einer wäßrigen Glutaraldehyd enthaltenden Lösung mit einer stabilen Gefrierpunktserniedrigung bzw. zum Freisetzen von Glutaraldehyd aus einer wäßrigen Gleichgewichtsmischung
DE19643066A1 (de) Kollagenfreie kosmetische Zubereitungen
EP1478785A1 (de) Voc-arme fettungsmittel, ihre verwendung in der herstellung und/oder behandlung von leder und häuten, sowie das ensprechende herstellungs- bzw. behandlungsverfahren
DE60104806T2 (de) Lösungsmittel zum chemischen Reinigen und Verfahren zu ihrer Verwendung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880007199.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08717377

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008717377

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12529988

Country of ref document: US

Ref document number: 2009552193

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20097020890

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 5865/CHENP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: PI0807872

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090831