WO2008098881A1 - Zündtransformator für eine entladungslampe - Google Patents

Zündtransformator für eine entladungslampe Download PDF

Info

Publication number
WO2008098881A1
WO2008098881A1 PCT/EP2008/051546 EP2008051546W WO2008098881A1 WO 2008098881 A1 WO2008098881 A1 WO 2008098881A1 EP 2008051546 W EP2008051546 W EP 2008051546W WO 2008098881 A1 WO2008098881 A1 WO 2008098881A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition
transformer
ignition transformer
lamp
discharge lamp
Prior art date
Application number
PCT/EP2008/051546
Other languages
English (en)
French (fr)
Inventor
Bernhard Siessegger
Manfred RÖHL
Original Assignee
Osram Gesellschaft mit beschränkter Haftung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Gesellschaft mit beschränkter Haftung filed Critical Osram Gesellschaft mit beschränkter Haftung
Priority to AT08708820T priority Critical patent/ATE472928T1/de
Priority to US12/524,188 priority patent/US8339060B2/en
Priority to CN200880001552.7A priority patent/CN101578922B/zh
Priority to JP2009549813A priority patent/JP5069321B2/ja
Priority to DE502008000877T priority patent/DE502008000877D1/de
Priority to EP08708820A priority patent/EP2119323B1/de
Publication of WO2008098881A1 publication Critical patent/WO2008098881A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/02Details
    • H05B41/04Starting switches

Definitions

  • the invention is based on an ignition transformer for igniting a discharge lamp, preferably high-pressure gas discharge lamp, by means of pulse ignition, whereby after the ignition a high-frequency lamp operation takes place on an electronic ballast.
  • a reproduced in the document WO2005 / 011338 circuit arrangement for a high-pressure discharge lamp has an operating part with a DC voltage source and an ignition part with pulse source and a mercury-free metal halide high-pressure discharge lamp.
  • the discharge lamp and a secondary winding of an ignition transformer are connected in series.
  • the primary winding of the ignition transformer is controlled by a pulse source.
  • As material for the ignition transformer core a particularly low-loss material is preferred.
  • this secondary winding Since the lamp current flows through the secondary winding during operation of the discharge lamp, this secondary winding has an unwanted inductance during lamp operation.
  • a partial compensation of the inductance of the secondary winding can be achieved according to the above-mentioned document be connected in series with the secondary winding, a capacitor.
  • the inductance of the secondary winding in the lamp circuit also remains using the above-mentioned capacitor, so that both losses occur in the ignition transformer and in the converter supplying the high-frequency lamp current.
  • the object of the present invention is to provide an ignition transformer for a discharge lamp, in which the losses during high-frequency lamp operation are reduced and a low circuit complexity is required, as well as to provide a compact lamp cap.
  • an ignition transformer for a discharge lamp is provided with a transformer core whose material, power and structure are chosen in such a way that the Curie temperature of the material can be achieved by a voltage drop across a secondary winding of the ignition transformer after the ignition caused by the ignition transformer ,
  • the heating up to the ignition temperature takes place with the kundärwicklung applied energy, wherein after reaching the Curie temperature, the secondary winding of the ignition transformer is practically ineffective and only a small power and absorption from the lamp circuit is necessary to keep the transformer core to the Curie temperature.
  • the material of the transformer core has a Curie temperature in the range of 60 0 C to 400 0 C, in particular between 100 ° C and 220 0 C, whereby an excessive heating of the transformer core, which may be due to materials in the environment the transformer core could have a negative impact is avoided.
  • the Curie temperature in the range between 100 0 C and 220 ° C preferred because with increasing Curie temperature, the efficiency decreases due to heat losses, on the other hand, the Curie temperature must be above the ambient temperature in any case to ensure proper functioning can.
  • the transformer core is preferably designed such that the magnetic length and the magnetic effective cross section of the transformer core are minimized in such a way that there is sufficient magnetic coupling between primary and secondary winding in the cold state of the ignition transformer for the ignition.
  • a quick ignition can take place while the secondary winding is virtually ineffective during lamp operation.
  • the transformer core ring shape as in a high-frequency lamp current less electromagnetic interference than an open geometry such as a rod core.
  • the ignition transformer is formed thermally isolated to keep the transformer core at a lower power to be supplied and thus higher efficiency of the entire assembly to Curie temperature and to make the secondary winding virtually ineffective.
  • the transformer core is preferably cast for thermal and electrical insulation, which makes it economically producible economically.
  • the transformer core can be provided in a closed housing, whereby the convection of air and the associated increased cooling can be prevented.
  • the ignition transformer is provided in particular for a high-pressure discharge lamp.
  • a compact design with good luminous efficacy can be achieved especially in automotive headlamps.
  • a lamp cap for a discharge lamp is provided with an ignition transformer having the properties described above, wherein due to the small volume of the transformer core, a compact design of the lamp assembly can be implemented.
  • the discharge vessel of the lamp is provided in the hole of the ignition transformer in the lamp base at least partially protruding. In this way, the large axial dimension of the discharge use lamps for providing the transformer core in the vicinity of the discharge vessel of the discharge lamp.
  • FIG. 1 shows a circuit arrangement for a discharge lamp with an ignition transformer according to the present invention
  • FIG. 2 shows a schematic view of a lamp base with ignition transformer, pulse source and discharge lamp according to the present invention
  • FIG. 3 is a perspective view of a transformer core with gap for an ignition transformer according to the present invention.
  • FIG. 4 is a graph showing the dependence of initial permeability on temperature on a material for the transformer core according to the present invention.
  • FIG 5 shows the structure of the pulse source for controlling an ignition transformer according to the first embodiment of the invention
  • Fig. 6 shows the construction of a pulse source for an ignition transformer according to the second embodiment of the invention
  • Fig. 7 is a graph of the voltage across the secondary winding and the capacitor according to the second embodiment.
  • Fig. 8 shows a circuit arrangement for a discharge lamp using a symmetrical ignition according to the third embodiment.
  • Fig. 9 shows a modification of a transformer core with exemplary dimensions.
  • FIG. 1 A circuit arrangement 1 with ignition transformer 2 according to the present invention is shown in FIG. 1
  • a primary winding 4 of the ignition transformer 2 is fed by a pulse source 6 and an ignition voltage U2.
  • the secondary winding 8 of the ignition transformer 2 is connected in series with the discharge lamp 10 and is fed by an operating voltage U Q.
  • the discharge lamp used is preferably a high-pressure gas discharge lamp, for example a mercury-containing metal halide lamp of the "OSRAM HQI" type.
  • FIG. 2 shows a discharge lamp 10 in a lamp base 12.
  • the lamp base 12 has the pulse source 6, through which the primary winding 4 of the ignition transformer 2 is fed.
  • the ignition transformer 2 is preferably of annular design and has a transformer core 14, which has an air gap 15 as shown in FIG.
  • the secondary winding 8 is applied, which is surrounded by the primary winding 4.
  • a terminal 16 of the discharge lamp 10 is connected to one end of the secondary winding 8, while another terminal 18 of the discharge lamp 10 is supplied with the operating voltage UQ via the lamp base.
  • the pulse source 6 is supplied with the ignition voltage U2.
  • the lamp cap 12 is preferably provided with a potting compound, such as a potting compound. Silicone, filled so that a high voltage insulation is present around the ignition transformer and at the same time a thermal insulation of the transformer core 14 is provided. It is a casting with a foam structure or a hollow body filling conceivable. Alternatively, the core may be provided in a sealed housing, which prevents convection of the air and thus prevents cooling.
  • the connections for the ignition voltage U2 and the operating voltage U Q are led out of the lamp base as electrical connections to the operating device.
  • the discharge vessel 20 of the discharge lamp 10 is immersed in a central hole in the ignition transformer 2, whereby, as already stated in the published patent application DE 19610385, a small-volume gas discharge lamp with short power supply can be implemented in an integrated design. In addition to the advantageous compact design losses in the ignition voltage can be kept low due to this compact design.
  • FIG. 3 shows the exemplary perspective view of the transformer core 14 with an air gap 15.
  • the core material used is a ferrite.
  • material N30 from manufacturer Epcos having an outer diameter of 25mm, an inner diameter of 15mm, a height of 3.8mm and an air gap of 3.5mm is used.
  • the material for the transformer core is chosen in such a way that the Curie temperature directly after ignition is achieved by using a portion of the energy provided by the converter to heat the transformer core.
  • the secondary winding of the transformer is substantially ineffective, but low power absorption from the lamp circuit is required to maintain the transformer core or portions of the transformer core at the Curie temperature.
  • a Curie temperature is preferably sought in the range between 60 0 C and 400 0 C of the material, as this occurs from the perspective of the prior art due to poor ferrite properties of the desired effect in the secondary winding at an early stage ,
  • the transformer core is to be chosen so large that the transformer can perform its functions, ie in the cold state allows sufficient magnetic coupling between the primary and the secondary winding.
  • the ring shape shown in FIG. 3 is particularly suitable, since at such a temperature and high-frequency lamp currents less electromagnetic interference is caused than in a rod core, which occurs especially at temperatures near or at the Curie temperature.
  • the permeability reaches a value of approximately 1 at a temperature of approximately 143 ° C., the Curie temperature, with the core material N30 used. If now, during operation after ignition, the temperature of the transformer core is kept close to 143 ° C or slightly above that temperature, the transformer core loses its ferrimagnetic properties and exhibits only paramagnetic properties, effectively rendering the secondary winding ineffective.
  • a transformer core made from the material N30 as described above is used.
  • FIG. 5 shows a pulse source 26 according to the first embodiment which is used instead of the pulse source 6 of FIG.
  • the secondary winding 8 has 30 turns of Teflon-insulated wire and has an impedance of 39 ⁇ H at 20 ° C.
  • the primary winding has two turns. The middle turns of both the primary winding 4 and the secondary winding 8 are arranged on the transformer core 14 with respect to the air gap.
  • the transformer core is insulated by vacuum encapsulation by means of silicone heat and high voltage.
  • the primary winding 4 is connected in series via a resistor 28 of 10OkQ and a spark gap 30 with a switching voltage of 2kV.
  • a capacitor 32 of 27nF is connected in parallel via the resistor 28 to the ignition voltage U2.
  • the ignition voltage U2 is 2.5kV.
  • the discharge lamp used is a mercury-containing metal halide lamp of the "OSRAM HQI" type with a nominal power of 35W.
  • the ignition voltage U2 is switched off so that no further ignition pulses are generated via the ignition transformer 2.
  • the discharge lamp 10 is operated via the operating voltage U Q with a frequency of 2 MHz.
  • the discharge lamp 10 is operated with an operating current of 40 ohms, whereby initially an ohmic-inductive voltage drop across the secondary winding 8 of about 200V occurs. Due to this voltage drop, the transformer core 14 is heated.
  • the lamp voltage is initially 20V.
  • the inductance decreases drastically, so that the voltage drop across the secondary winding is set to about 40V.
  • the core temperature reaches a value close to the Curie temperature in the same time range as the ramp-up of the lamp. In practice, this period may be a few seconds to a few minutes.
  • the lamp voltage increases from initially 20V to 85V. Due to the reduced voltage drop across the secondary winding 8, only a low operating voltage UQ is necessary.
  • a regulation of the lamp power is now carried out by increasing the frequency, for example from 2.5MHz to 3.5MHz.
  • This regulation of the lamp power and the stabilization of the discharge takes place via the remaining residual inductance of the secondary winding 8.
  • This residual inductance depends on the inductance of the air coil formed by the secondary winding 8, as well as the temperature conditions during steady-state operation.
  • This residual inductance is preferably set so that the resulting impedance is in the range of y ⁇ to five times the impedance of the discharge lamp. In the first embodiment, the residual inductance has been 8 ⁇ H. Under the impedance of the discharge lamp should Here, the quotient of the two of the two RMS values of lamp voltage and current at nominal power are understood.
  • FIG. 6 shows a pulse source 46 in accordance with the second exemplary embodiment.
  • This pulse source 26 of the first embodiment has a spark gap 50 and a capacitor 52.
  • a resistance comparable to the resistor 28 in the first embodiment is not provided in the second embodiment.
  • the capacitor 52 has a capacitance of 7OnF and the spark gap has a switching voltage of 800V.
  • the operation subsequent to the ignition of the lamp is the same as that in the circuit arrangement according to the first embodiment.
  • the circuit arrangement according to the first and second exemplary embodiment makes it possible to achieve a low inductance of the secondary winding and also lower losses during operation of the discharge lamp for lamp operation after ignition.
  • the discharge lamps are preferably used for video projection, in the motor vehicle headlight and for general lighting.
  • no additional component such as the capacitor for partial grain compensation from this document is necessary.
  • a good overall efficiency can be achieved in the circuit arrangement.
  • FIG. 8 shows a circuit arrangement 54 according to the third exemplary embodiment, wherein a symmetrical ignition is realized by the two secondary windings 8a and 8b.
  • the core material is a ferrite having a Curie temperature of only about 109 0 C and a maximum initial permeability of 2500 is used only, in contrast to about 143 ° C and 5400 according to Figure 4 in the two previous embodiments.
  • a pulse source 56 and a driver 58 which provides the voltages U2 and UQ.
  • the connections for the power supply (eg 12 V DC or 230 V AC are designated 60.
  • the circuit 54 is located in the lamp base
  • Figure 9 shows the two secondary windings 8a and 8b are wound on the two 30mm long core sides.
  • the primary winding was wound in half over the secondary windings 8a and down on the two long core sides.
  • the transformer is encapsulated in the lamp socket together with the pulse source and the operating device.
  • Parts of the control gear which are particularly hot during operation were thereby be arranged, such as power semiconductors, in close proximity to the ignition transformer to use their waste heat to heat the transformer core can. During operation, therefore, very little energy must be removed from the lamp circuit in order to keep the transformer core close to the Curie temperature.
  • An ignition transformer for a discharge lamp with a transformer core is provided.
  • the material and the dimension of the transformer core are chosen in such a way that the Curie temperature of the material after the ignition effected by means of the ignition transformer can be achieved by a voltage drop across a secondary winding of the ignition transformer. In this way, only one residual inductance remains for the secondary winding.
  • a lamp base for a discharge lamp is provided with such an ignition transformer, the discharge vessel of the lamp preferably projecting at least in sections into the center hole of the ignition transformer in the lamp base, resulting in a compact lamp base with discharge lamp.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Regulation Of General Use Transformers (AREA)

Abstract

Es wird ein Zündtransformator für eine Entladungslampe mit einem Transformatorkern vorgesehen. Das Material und die Abmessung des Transformatorkerns sind in einer solchen Weise gewählt, dass die Curie-Temperatur des Materials nach der mittels des Zündtransformators bewirkten Zündung durch einen Spannungsabfall über einer Sekundärwicklung des Zündtransformators erreichbar ist. Auf diese Weise verbleibt für die Sekundärwicklung nur eine Restinduktivität. Es wird ferner ein Lampensockel für eine Entladungslampe mit einem derartigen Zündtransformator vorgesehen, wobei bevorzugt das Entladungsgefäß der Lampe in das Mittelloch des Zündtransformators im Lampensockel zumindest abschnittsweise hineinragt, woraus sich ein kompakter Lampensockel mit Entladungslampe ergibt.

Description

Beschreibung
Zündtransformator für eine Entladungslampe
Technisches Gebiet
Die Erfindung geht aus von einem Zündtransformator zur Zündung einer Entladungslampe, vorzugsweise Hockdruckgasentladungslampe, mittels Impulszündung, wobei nach der Zündung ein hochfrequenter Lampenbetrieb an einem elektronischen Vorschaltgerät erfolgt.
Stand der Technik
Eine in der Druckschrift WO2005/011338 wiedergegebene Schaltungsanordnung für eine Hochdruckentladungslampe weist ein Betriebsteil mit einer Gleichspannungsquelle und ein Zündteil mit Impulsquelle und einer quecksilberfreien Halogen-Metalldampf-Hochdruckentladungslampe auf. Im Zündteil sind die Entladungslampe und eine Sekundärwicklung eines Zündtransformators in Reihe geschaltet. Die Primärwicklung des Zündtransformators wird über eine Impulsquelle angesteuert. Als Material für den Zündtransformatorkern wird ein besonders verlustarmes Material bevorzugt. Nach der Zündung der Entladungslampe über Impulsquelle und Zündtransformator liegt die Sekundärwicklung mit der Entladungslampe im Betriebskreis in Reihe.
Da der Lampenstrom während des Betriebes der Entladungslampe durch die Sekundärwicklung fließt, weißt diese Sekundärwicklung während des Lampenbetriebes eine unerwünschte Induktivität auf. Eine partielle Kompensation der Induktivität der Sekundärwicklung kann entsprechend der vorstehend genannten Druckschrift dadurch erreicht werden, dass mit der Sekundärwicklung ein Kondensator in Reihe geschaltet wird.
Bei einem hochfrequenten Lampenbetrieb verbleibt jedoch auch unter Verwendung des vorstehend genannten Kondensa- tors die Induktivität der Sekundärwicklung im Lampenstromkreis, sodass sowohl Verluste im Zündtransformator als auch in dem den hochfrequenten Lampenstrom liefernden Wandler auftreten.
Darstellung der Erfindung
Die Aufgabe der vorliegenden Erfindung ist es, einen Zündtransformator für eine Entladungslampe, bei dem die Verluste während eines hochfrequenten Lampenbetriebes verringert sind und ein geringer schaltungstechnischer Aufwand erforderlich ist, sowie einen kompakten Lampensockel vorzusehen.
Diese Aufgabe wird durch den Zündtransformator für die Entladungslampe nach Anspruch 1 und einen Lampensockel nach Anspruch 9 gelöst.
Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.
Erfindungsgemäß wird ein Zündtransformator für eine Entladungslampe mit einem Transformatorkern vorgesehen, dessen Material, Leistung und Aufbau in einer solchen Weise gewählt sind, dass die Curie-Temperatur des Materials nach der für mittels des Zündtransformators bewirkten Zündung durch einen Spannungsabfall über einer Sekundärwicklung des Zündtransformators erreichbar ist. Die Aufheizung auf die Zündtemperatur erfolgt mit der an der Se- kundärwicklung anliegenden Energie, wobei nach Erreichen der Curie-Temperatur die Sekundärwicklung des Zündtransformators praktisch unwirksam ist und nur eine geringe Leistung und Absorption aus dem Lampenkreis notwendig ist, um den Transformatorkern auf der Curie-Temperatur zu halten .
Es wird bevorzugt, dass das Material des Transformatorkerns eine Curie-Temperatur im Bereich von 600C bis 4000C, insbesondere zwischen 100°C und 2200C aufweist, wodurch eine zu starke Erwärmung des Transformatorkerns, die möglicherweise auf Materialien in der Umgebung des Transformatorkern negative Auswirkungen haben könnte, vermieden wird.
Es wird die Curie-Temperatur im Bereich zwischen 1000C und 220 °C bevorzugt, da mit zunehmender Curie-Temperatur die Effizienz durch Wärmeverluste sinkt, andererseits die Curie-Temperatur in jedem Fall über der Umgebungstemperatur liegen muss, um eine einwandfrei Funktion gewährleisten zu können.
Ferner ist der Transformatorkern bevorzugt so gestaltet, dass die magnetische Länge und der magnetische wirksame Querschnitt von dem Transformatorkern in einer solchen Weise minimiert sind, dass eine für die Zündung ausreichende magnetische Kopplung zwischen Primär- und Sekun- därwicklung im kalten Zustand des Zündtransformators vorliegt. Somit kann eine schnelle Zündung erfolgen und gleichzeitig während des Lampenbetriebes die Sekundärwicklung praktisch unwirksam sein.
In einer besonderen Ausgestaltung hat der Transformator- kern Ringform, da bei einem hochfrequenten Lampenstrom weniger elektromagnetische Störungen verursacht werden, als bei einer offenen Geometrie wie etwas einem Stabkern.
Ferner wird bevorzugt, wenn der Zündtransformator thermisch isoliert ausgebildet ist, um den Transformatorkern bei geringerer zuzuführender Leistung und damit höherer Effizienz der gesamten Anordnung auf Curie-Temperatur zu halten und die Sekundärwicklung praktisch unwirksam zu machen .
Der Transformatorkern wird bevorzugt zur thermischen und elektrischen Isolation vergossen, wodurch sich dieser ö- konomisch günstig herstellen lässt.
Alternativ dazu kann der Transformatorkern in einem abgeschlossenen Gehäuse vorgesehen sein, wodurch sich die Konvektion von Luft und die damit einhergehende verstärk- te Kühlung unterbinden lassen.
Der Zündtransformator ist insbesondere für eine Hochdruckentladungslampe vorgesehen. Dabei lässt sich insbesondere bei Automobilscheinwerfern eine kompakte Bauform bei guter Lichtausbeute erzielen.
Ferner wird ein Lampensockel für eine Entladungslampe mit einem Zündtransformator mit den vorstehend beschriebenen Eigenschaften vorgesehen, wobei sich aufgrund des geringen Volumens des Transformatorkerns eine kompakte Bauform der Lampenanordnung umsetzen lässt.
In einer Weiterbildung ist das Entladungsgefäß der Lampe in das Loch des Zündtransformators im Lampensockel zumindest abschnittsweise hineinragend vorgesehen. Auf diese Weise lässt sich die große Axialabmessung der Entladungs- lampen zum Vorsehen des Transformatorkerns in der Umgebung des Entladungsgefäßes der Entladungslampe nutzen.
Kurze Beschreibung der Zeichnungen
Im Folgenden soll die Erfindung anhand von Ausführungsbeispielen näher erläutert werden. Die Figuren zeigen:
Fig. 1 Eine Schaltungsanordnung für eine Entladungslampe mit einem Zündtransformator entsprechend der vorliegenden Erfindung,
Fig. 2 Eine schematische Ansicht eines Lampensockels mit Zündtransformator, Impulsquelle und Entladungslam- pe entsprechend der vorliegenden Erfindung,
Fig. 3 Eine Perspektivansicht eines Transformatorkerns mit Spalt für einen Zündtransformator entsprechend der vorliegenden Erfindung,
Fig. 4 Eine graphische Darstellung der Abhängigkeit der Anfangspermeabilität von der Temperatur bei einem Material für den Transformatorkern entsprechend der vorliegenden Erfindung,
Fig. 5 Den Aufbau der Impulsquelle zur Ansteuerung eines Zündtransformators entsprechend dem ersten Ausfüh- rungsbeispiel der Erfindung,
Fig. 6 Den Aufbau einer Impulsquelle für einen Zündtransformator entsprechend dem zweiten Ausführungsbeispiel der Erfindung, und Fig. 7 Eine graphische Darstellung der Spannung an der Sekundärwicklung und am Kondensator entsprechend dem zweiten Ausführungsbeispiel.
Fig. 8 Eine Schaltungsanordnung für eine Entladungslampe unter Verwendung einer symmetrischen Zündung entsprechend dem dritten Ausführungsbeispiel.
Fig. 9 zeigt eine Abwandlung eines Transformatorkerns mit beispielhaften Maßen.
Bevorzugte Ausführung der Erfindung
Eine Schaltungsanordnung 1 mit Zündtransformator 2 ent- sprechend der vorliegenden Erfindung ist in Figur 1 gezeigt .
Eine Primärwicklung 4 des Zündtransformators 2 wird durch eine Impulsquelle 6 und eine Zündspannung U2 gespeist. Die Sekundärwicklung 8 des Zündtransformators 2 ist mit der Entladungslampe 10 in Reihe geschaltet und wird durch eine Betriebsspannung UQ gespeist. Als Entladungslampe gelangt bevorzugt eine Hochdruckgasentladungslampe, beispielsweise eine quecksilberhaltige Halogen- Metalldampflampe vom Typ „OSRAM HQI" zum Einsatz.
In Figur 2 ist eine Entladungslampe 10 in einem Lampensockel 12 dargestellt. Der Lampensockel 12 weist die Impulsquelle 6 auf, durch die die Primärwicklung 4 des Zündtransformators 2 gespeist wird. Der Zündtransformator 2 ist, wie in Figur 2 gezeigt, bevorzugt ringförmig aus- gebildet und hat einen Transformatorkern 14, der wie in Figur 3 gezeigt einen Luftspalt 15 hat. Auf dem Transfor- matorkern 14 ist die Sekundärwicklung 8 aufgebracht, die von der Primärwicklung 4 umgeben ist.
Wie bereits in Figur 1 gezeigt ist ein Anschluss 16 der Entladungslampe 10 mit einem Ende der Sekundärwicklung 8 verbunden, während ein anderer Anschluss 18 der Entladungslampe 10 über den Lampensockel mit der Betriebsspannung UQ versorgt wird. Wie bereits in Figur 1 gezeigt, wird die Impulsquelle 6 mit der Zündspannung U2 gespeist. Der Lampensockel 12 ist bevorzugt mit einer Vergussmasse, wie z.B. Silikon, gefüllt, damit eine hohe Spannungsisolation um den Zündtransformator vorliegt und gleichzeitig eine thermische Isolation des Transformatorkerns 14 vorgesehen wird. Es ist ein Verguss mit einer Schaumstruktur oder einer Hohlkörperfüllung denkbar. Alternativ dazu kann der Kern in einem abgeschlossenem Gehäuse vorgesehen sein, durch das eine Konvektion der Luft verhindert und somit eine Kühlung unterbunden wird.
Die Anschlüsse für die Zündspannung U2 und die Betriebsspannung UQ sind als elektrische Anschlüsse zum Betriebs- gerät aus dem Lampensockel herausgeführt.
Das Entladungsgefäß 20 der Entladungslampe 10 taucht in ein mittleres Loch im Zündtransformator 2 ein, wodurch, wie bereits in der Offenlegungsschrift DE 19610385 dargelegt, eine kleinvolumige Gasentladungslampe mit kurzen Spannungszuführungen in integrierter Bauweise umgesetzt werden kann. Neben der vorteilhaften kompakten Bauweise können Verluste bei der Zündspannung aufgrund dieser kompakten Bauweise gering gehalten werden.
In Figur 3 ist die beispielhafte Perspektivansicht des Transformatorkerns 14 mit einem Luftspalt 15 dargestellt. Als Kernmaterial kommt ein Ferrit zur Anwendung. In diesem Beispiel wird als Material N30 vom Hersteller Epcos mit einem Außendurchmesser von 25mm, einem Innendurchmesser von 15mm, einer Höhe von 3,8mm und einem Luftspalt von 3,5mm verwendet. Das Material für den Transformatorkern wird in einer solchen Weise gewählt, dass die Curie- Temperatur direkt nach der Zündung dadurch erreicht wird, dass ein Anteil der vom Wandler zur Verfügung gestellten Energie zur Aufheizung des Transformatorkerns genutzt wurde. Wenn der Transformatorkern zumindest teilweise die Curie-Temperatur erreicht hat, ist die Sekundärwicklung des Transformators im Wesentlichen unwirksam, wobei jedoch eine geringe Leistungsabsorption aus dem Lampenkreis benötigt wird, um den Transformatorkern oder Teile des Transformatorkerns auf der Curie-Temperatur zu halten.
Beim Stand der Technik wurde eine hohe Curie-Temperatur angestrebt, damit das magnetische Bauelement bei einer hohen Leistung betrieben werden kann. Im Gegensatz dazu wird bei der vorliegenden Erfindung eine Curie-Temperatur vorzugsweise im Bereich zwischen 600C und 4000C des Materials angestrebt, da dieser aus Sicht des Stands der Technik aufgrund schlechten Ferriteigenschaften der gewünschte Effekt bei der Sekundärwicklung bereits zu einem frühen Zeitpunkt eintritt.
Während beim Stand der Technik im Hinblick auf angestrebte geringe Verluste ein großer Querschnitt des Transformatorkerns von Vorteil war, wird bei der vorliegenden Erfindung ein besonders geringer Kernquerschnitt angestrebt. Darüber hinaus sollte auch die magnetische Länge gering gehalten werden. Dadurch kann die zur Aufheizung des Transformatorkerns erforderliche Energie gering gehalten werden. Zusammenfassend kann somit gesagt werden, dass ein geringes Kernvolumen für die vorliegende Erfindung von Vorteil ist. Der Transformatorkern ist jedoch so groß zu wählen, dass der Transformator seine Funktionen wahrnehmen kann, d.h. im kalten Zustand eine ausreichende magnetische Kopplung zwischen der Primär- und der Sekundärwicklung ermöglicht.
Als Kernform ist besonders die in Figur 3 gezeigt Ringform geeignet, da bei einer derartigen Temperatur und hochfrequenten Lampenströmen weniger elektromagnetische Störungen als bei einem Stabkern verursacht werden, wobei dieses insbesondere bei Temperaturen nahe oder bei der Curie-Temperatur auftritt.
Aus Figur 4 geht hervor, dass die Permeabilität ab einer Temperatur von ungefähr 143°C, der Curie-Temperatur, bei dem verwendeten Kernmaterial N30 ungefähr den Wert 1 erreicht. Wenn nun während des Betriebes nach der Zündung die Temperatur des Transformatorkerns nahe 143°C oder etwas oberhalb dieser Temperatur gehalten wird, so verliert der Transformatorkern seine ferrimagnetischen Eigenschaften und zeigt nur noch paramagnetische Eigenschaften, wodurch die Sekundärwicklung faktisch unwirksam wird.
Bei dem nachfolgend beschriebenen ersten und zweiten Ausführungsbeispiel gelangt ein Transformatorkern aus dem Material N30 gemäß Vorbeschreibung zum Einsatz.
Figur 5 zeigt eine Impulsquelle 26 entsprechend dem ersten Ausführungsbeispiel, die statt der Impulsquelle 6 aus Figur 1 verwendet wird. Die Sekundärwicklung 8 weist 30 Windungen aus teflonisoliertem Draht auf und hat eine Impedanz von 39μH bei 20°C. Die Primärwicklung weist zwei Windungen auf. Die mittleren Windungen sowohl der Primärwicklung 4 als auch der Sekundärwicklung 8 sind auf dem Transformatorkern 14 gegenüber dem Luftspalt angeordnet. Der Transformatorkern ist durch Vakuumverguss mittels Silikon wärme- und hochspannungsisoliert. Die Primärwicklung 4 ist über einen Widerstand 28 vom 10OkQ und einer Funkenstrecke 30 mit einer Schaltspannung von 2kV in Reihe geschaltet. Eine Kondensator 32 von 27nF ist über den Widerstand 28 zur Zündspannung U2 parallel geschaltet. Die Zündspannung U2 beträgt 2,5kV.
Nachfolgend wird der Betrieb eines Zündtransformators mit der Impulsquelle 26 aus Figur 5 beschrieben.
Solange eine Zündspannung U2 anliegt, werden durch den Zündtransformator 2 an der Sekundärwicklung 8 Impulse mit Spitzenspannung von 2IkV erzeugt. Dieses führt zum Zünden der in Figur 5 nicht dargestellten Entladungslampe 10. Als Entladungslampe kommt eine quecksilberhaltige Halogen-Metalldampflampe vom Typ „OSRAM HQI" mit einer Nennleistung von 35W zur Anwendung.
Nach der Zündung der Entladungslampe 10 erfolgt ein Abschalten der Zündspannung U2, sodass über den Zündtrans- formator 2 keine weiteren Zündimpulse erzeugt werden. Entsprechend Figur 1 erfolgt ein Betrieb der Entladungslampe 10 über die Betriebsspannung UQ mit einer Frequenz von 2 MHz. Die Entladungslampe 10 wird mit einem Betriebsstrom von 40OmA betrieben, wodurch zunächst ein ohmsch-induktiver Spannungsabfall über der Sekundärwick- lung 8 von etwa 200V auftritt. Durch diesen Spannungsabfall erfolgt eine Erwärmung des Transformatorkerns 14. Die Lampenspannung beträgt zunächst 20V.
Wenn die Temperatur des Transformatorkerns 14 in die Nähe der Curie-Temperatur von etwa 143°C gelangt, so verringert sich entsprechend Figur 4 die Induktivität drastisch, sodass sich der Spannungsabfall über der Sekundärwicklung auf etwa 40V einstellt. Durch eine geeignete thermische Isolierung und eine entsprechende Auslegung der Schaltung erreicht die Kerntemperatur einen Wert nahe der Curie-Temperatur im gleichen Zeitbereich wie das Hochlaufen der Lampe. In der Praxis kann diese Zeitdauer wenige Sekunden bis einige Minuten betragen. In dieser Zeit erhöht sich die Lampenspannung von anfangs 20V auf 85V. Aufgrund des verringerten Spannungsabfalls über der Sekundärwicklung 8 ist nur eine geringe Betriebsspannung UQ notwendig.
Eine Regelung der Lampenleistung erfolgt nun durch eine Erhöhung der Frequenz, beispielsweise von 2,5MHz auf 3,5MHz. Diese Regelung der Lampenleistung und die Stabilisierung der Entladung erfolgt über die verbleibende Restinduktivität der Sekundärwicklung 8. Diese Restinduktivität hängt von der Induktivität der von der Sekundärwicklung 8 gebildeten Luftspule, sowie den Temperaturver- hältnissen während des stationären Betriebes ab. Diese Restinduktivität wird bevorzugt so eingestellt, dass die sich ergebende Impedanz im Bereich von yζ- bis zum fünffachen der Impedanz der Entladungslampe liegt. Beim ersten Ausführungsbeispiel hat die Restinduktivität 8μH betragen. Unter der Impedanz der Entladungslampe soll hier der Quotient der beiden der beiden Effektivwerte von Lampenspannung und -ström bei Nennleistung verstanden werden .
In Figur 6 ist eine Impulsquelle 46 entsprechend dem zweiten Ausführungsbeispiel dargestellt. Diese Impulsquelle 26 des ersten Ausführungsbeispiels weist eine Funkenstrecke 50 und einen Kondensator 52 auf. Ein dem Widerstand 28 beim ersten Ausführungsbeispiel vergleichbarer Widerstand ist beim zweiten Ausführungsbeispiel nicht vorgesehen. Der Kondensator 52 hat eine Kapazität von 7OnF und die Funkenstrecke eine Schaltspannung von 800V.
In Figur 7 ist in der oberen graphischen Darstellung die durch die Sekundärwicklung 8 erzeugte Spannung dargestellt, während in der unteren Darstellung die Spannung am Kondensator 52 erkennbar ist.
Der sich an die Zündung der Lampe anschließende Betrieb erfolgt wie der bei der Schaltungsanordnung entsprechend dem ersten Ausführungsbeispiel. Durch die Schaltungsanordnung entsprechend dem ersten und zweiten Ausführungs- beispiel lassen sich für einen Lampenbetrieb nach der Zündung eine geringe Induktivität der Sekundärwicklung und auch geringere Verluste während des Betriebes der Entladungslampe erzielen.
Die Entladungslampen kommen bevorzugt für die Videopro- jektion, im Kraftfahrzeugscheinwerfer und für die Allgemeinbeleuchtung zum Einsatz. Im Vergleich zu dem in der WO2005/011338 gezeigten Stand der Technik, ist bei einer Schaltungsanordnung für den Betrieb einer Entladungslampe entsprechend der vorliegenden Erfindung kein zusätzliches Bauelement, wie z.B. der Kondensator zur partiellen Korn- pensation aus dieser genannten Druckschrift notwendig. Im Ergebnis lässt sich mit der vorliegenden Erfindung ein guter Gesamtwirkungsgrad bei der Schaltungsanordnung erzielen .
In den bisher dargestellten Ausführungsformen wurde immer eine unsymmetrische Zündanordnung betrachtet, bei der der Zündtransformator nur eine Sekundärwicklung besitzt. Die Figur 8 zeigt eine Schaltungsanordnung 54 gemäß dem dritten Ausführungsbeispiel wobei durch die beiden Sekundär- Wicklungen 8a und 8b eine symmetrische Zündung realisiert wird. Als Kernmaterial wird ein Ferrit mit einer Curie- Temperatur von nur ungefähr 1090C und einer maximalen Anfangspermeabilität von nur 2500 verwendet, im Gegensatz zu ungefähr 143°C und 5400 gemäß Figur 4 bei den beiden bisherigen Ausführungsbeispielen. Ferner sind in Fig. 8 eine Impulsquelle 56 und ein Betriebsgerät 58, das die Spannungen U2 und UQ zur Verfügung stellt, gezeigt. Die Anschlüsse für die Stromzuführung (z.B. 12 V Gleichstrom oder 230 V Wechselstrom sind mit 60 bezeichnet. Die Schaltungsanordnung 54 befindet sich im Lampensockel
Die geometrischen Abmessungen des Kerns, welcher keinen Spalt aufweist, zeigt Figur 9. Die beiden Sekundärwicklungen 8a und 8b sind dabei auf den beiden 30mm langen Kernseiten gewickelt. In einem weiteren Arbeitsschritt wurde die Primärwicklung jeweils zur Hälfte über die Sekundärwicklungen 8a und ab auf den beiden langen Kernseiten gewickelt.
Der Transformator ist zusammen mit der Impulsquelle und dem Betriebsgerät im Lampensockel vergossen. Dabei wurden Teile des Betriebsgeräts welche im Betrieb besonders heiß werden, wie beispielsweise Leistungshalbleiter, in unmittelbarer Nähe zum Zündtransformator angeordnet, um deren Abwärme zur Erwärmung des Transformatorkerns nutzen zu können. Während des Betriebs muss daher besonders wenig Energie dem Lampenstromkreis entzogen werden, um den Transformatorkern nahe der Curie-Temperatur zu halten.
Es wird ein Zündtransformator für eine Entladungslampe mit einem Transformatorkern vorgesehen. Das Material und die Abmessung des Transformatorkerns sind in einer sol- chen Weise gewählt, dass die Curie-Temperatur des Materials nach der mittels des Zündtransformators bewirkten Zündung durch einen Spannungsabfall über einer Sekundärwicklung des Zündtransformators erreichbar ist. Auf diese Weise verbleibt für die Sekundärwicklung nur eine Restin- duktivität. Es wird ferner ein Lampensockel für eine Entladungslampe mit einem derartigen Zündtransformator vorgesehen, wobei bevorzugt das Entladungsgefäß der Lampe in das Mittelloch des Zündtransformators im Lampensockel zumindest abschnittsweise hineinragt, woraus sich ein kom- pakter Lampensockel mit Entladungslampe ergibt.

Claims

Ansprüche
1. Zündtransformator (2) für eine Entladungslampe mit einem Transformatorkern (14), dessen Material und Abmessungen in einer solchen Weise gewählt sind, dass die Curie-Temperatur des Materials nach der mittels des Zündtransformators (2) bewirkten Zündung durch einen Spannungsabfall über einer Sekundärwicklung (8) des Zündtransformators erreichbar ist.
2. Zündtransformator nach Anspruch 1, wobei die Curie- Temperatur des Materials im Bereich von 600C bis 4000C liegt.
3. Zündtransformator nach Anspruch 1 oder 2, wobei die magnetische Länge und der magnetisch wirksame Querschnitt von dem Transformatorkern (14) in einer solchen Weise minimiert ist, dass eine für die Zündung ausreichende magnetische Kopplung zwischen Primär- und Sekundärwicklung (4, 8) im kalten Zustand des Zündtransformators vorliegt.
4. Zündtransformator nach einem der vorhergehenden Ansprüche, wobei der Transformatorkern ringförmig aus- gebildet ist.
5. Zündtransformator nach einem der vorhergehenden Ansprüche, wobei der Zündtransformator thermisch isoliert ausgebildet ist.
6. Zündtransformator nach Anspruch 5, wobei der Transformatorkern (14) zur thermischen und beziehungsweise oder elektrischen Isolation vergossen ist.
7. Zündtransformator nach Anspruch 5, wobei der Trans- formatorkern (14) in einem abgeschlossenen Gehäuse vorgesehen ist, durch das eine Konvektion von Luft verringert ist.
8. Zündtransformator nach einem der vorhergehenden Ansprüche, der für eine Hochdruckentladungslampe vorge- sehen ist.
9. Lampensockel (12) für eine Entladungslampe mit einem Zündtransformator (14) nach einem der vorhergehenden Ansprüche .
10. Lampensockel nach Anspruch 9, wobei das Entladungsge- faß (20) der Lampe in das Mittelloch des Zündtransformators im Lampensockel (12) zumindest abschnittweise hineinragt.
PCT/EP2008/051546 2007-02-13 2008-02-08 Zündtransformator für eine entladungslampe WO2008098881A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT08708820T ATE472928T1 (de) 2007-02-13 2008-02-08 Zündtransformator für eine entladungslampe
US12/524,188 US8339060B2 (en) 2007-02-13 2008-02-08 Ignition transformer for a discharge lamp
CN200880001552.7A CN101578922B (zh) 2007-02-13 2008-02-08 用于放电灯的点燃变压器
JP2009549813A JP5069321B2 (ja) 2007-02-13 2008-02-08 放電ランプのための点弧トランス
DE502008000877T DE502008000877D1 (de) 2007-02-13 2008-02-08
EP08708820A EP2119323B1 (de) 2007-02-13 2008-02-08 Zündtransformator für eine entladungslampe

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102007007128.2 2007-02-13
DE102007007128 2007-02-13
DE102007017338.7 2007-04-12
DE102007017338A DE102007017338A1 (de) 2007-02-13 2007-04-12 Zündtransformator für eine Entladungslampe

Publications (1)

Publication Number Publication Date
WO2008098881A1 true WO2008098881A1 (de) 2008-08-21

Family

ID=39597698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/051546 WO2008098881A1 (de) 2007-02-13 2008-02-08 Zündtransformator für eine entladungslampe

Country Status (8)

Country Link
US (1) US8339060B2 (de)
EP (1) EP2119323B1 (de)
JP (1) JP5069321B2 (de)
CN (1) CN101578922B (de)
AT (1) ATE472928T1 (de)
DE (2) DE102007017338A1 (de)
TW (1) TW200850069A (de)
WO (1) WO2008098881A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007017338A1 (de) 2007-02-13 2008-08-14 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Zündtransformator für eine Entladungslampe
US9640315B2 (en) * 2013-05-13 2017-05-02 General Electric Company Low stray-loss transformers and methods of assembling the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216796A (ja) * 1989-02-17 1990-08-29 Tokyo Electric Co Ltd 放電灯点灯装置
DE19610385A1 (de) * 1996-03-16 1997-09-18 Bosch Gmbh Robert Gasentladungslampe, insbesondere für Kraftfahrzeug-Scheinwerfer
US20010026132A1 (en) * 2000-03-10 2001-10-04 Youichi Yamamoto Starting device for a discharge lamp
WO2005011338A1 (de) * 2003-07-23 2005-02-03 Patent-Treuhand- Gesellschaft Für Elektrische Glühlampen Mbh Schaltungsanordnung zum betreiben von hochdruckentladungslampen
JP2005340060A (ja) * 2004-05-28 2005-12-08 Toshiba Lighting & Technology Corp 放電ランプ点灯装置および電球形蛍光ランプ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832763A (en) * 1985-10-15 1989-05-23 Westinghouse Electric Corp. Method of stress-relief annealing a magnetic core containing amorphous material
US4980612A (en) * 1987-04-06 1990-12-25 Lumisistemas, S.A. De C.V. Energy-saving ballast for electric gas discharge lamps
US4929873A (en) * 1988-06-06 1990-05-29 Powr-Ups Corporation Luminaire system
JPH03297096A (ja) * 1990-04-13 1991-12-27 Tokyo Electric Co Ltd 放電灯点灯装置
JPH0869930A (ja) * 1994-08-29 1996-03-12 Matsushita Electric Works Ltd 電磁装置
JPH0869931A (ja) * 1994-08-29 1996-03-12 Matsushita Electric Works Ltd 電磁装置
JP3315854B2 (ja) 1995-02-28 2002-08-19 松下電工株式会社 放電灯点灯装置
US5896013A (en) * 1996-02-12 1999-04-20 Advanced Lighting Technologies, Inc. Operating circuit for an inductively ballasted arc discharge lamp
JP3436062B2 (ja) * 1997-04-30 2003-08-11 松下電工株式会社 放電灯点灯装置
JPH11185982A (ja) * 1997-12-22 1999-07-09 Matsushita Electric Works Ltd 放電灯照明装置
ATE326056T1 (de) * 1998-11-13 2006-06-15 Vacuumschmelze Gmbh Magnetkern, der zum einsatz in einem stromwandler geeignet ist, verfahren zur herstellung eines magnetkerns und stromwandler mit einem magnetkern
JP2000286082A (ja) * 1999-03-30 2000-10-13 Toshiba Lighting & Technology Corp 放電ランプ点灯装置、始動用昇圧トランスおよび照明装置
JP4355058B2 (ja) * 1999-07-27 2009-10-28 日本信号株式会社 電源装置
JP3867488B2 (ja) * 2000-09-14 2007-01-10 松下電工株式会社 ランプソケット
JP4343448B2 (ja) * 2001-01-26 2009-10-14 株式会社日立産機システム 変圧器の製造方法
JP2004063550A (ja) * 2002-07-25 2004-02-26 Nippon Antenna Co Ltd チョークコイル
DE10333729A1 (de) * 2003-07-23 2005-03-10 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Vorschaltgerät für mindestens eine Hochdruckentladungslampe, Betriebsverfahren und Beleuchtungssytem für eine Hochdruckentladungslampe
JP2005150425A (ja) * 2003-11-17 2005-06-09 Tdk Corp トランス、トランス用磁心およびその製造方法
EP1869954A1 (de) * 2005-04-14 2007-12-26 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Vorrichtung zum betreiben oder zünden einer hochdruckentladungslampe, lampensockel und beleuchtungssystem mit einer derartigen vorrichtung sowie verfahren zum betreiben einer hochdruckentladungslampe
DE102006026750A1 (de) * 2006-06-08 2007-12-13 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hochdruckentladungslampe mit verbesserter Zündfähigkeit sowie Hochspannungspulsgenerator
DE102007017338A1 (de) 2007-02-13 2008-08-14 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Zündtransformator für eine Entladungslampe
US20080258629A1 (en) * 2007-04-20 2008-10-23 Rensselaer Polytechnic Institute Apparatus and method for extracting power from and controlling temperature of a fluorescent lamp

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216796A (ja) * 1989-02-17 1990-08-29 Tokyo Electric Co Ltd 放電灯点灯装置
DE19610385A1 (de) * 1996-03-16 1997-09-18 Bosch Gmbh Robert Gasentladungslampe, insbesondere für Kraftfahrzeug-Scheinwerfer
US20010026132A1 (en) * 2000-03-10 2001-10-04 Youichi Yamamoto Starting device for a discharge lamp
WO2005011338A1 (de) * 2003-07-23 2005-02-03 Patent-Treuhand- Gesellschaft Für Elektrische Glühlampen Mbh Schaltungsanordnung zum betreiben von hochdruckentladungslampen
JP2005340060A (ja) * 2004-05-28 2005-12-08 Toshiba Lighting & Technology Corp 放電ランプ点灯装置および電球形蛍光ランプ

Also Published As

Publication number Publication date
JP2010518650A (ja) 2010-05-27
DE502008000877D1 (de) 2010-08-12
JP5069321B2 (ja) 2012-11-07
EP2119323B1 (de) 2010-06-30
DE102007017338A1 (de) 2008-08-14
US8339060B2 (en) 2012-12-25
EP2119323A1 (de) 2009-11-18
US20100045199A1 (en) 2010-02-25
CN101578922B (zh) 2012-12-12
CN101578922A (zh) 2009-11-11
ATE472928T1 (de) 2010-07-15
TW200850069A (en) 2008-12-16

Similar Documents

Publication Publication Date Title
EP1635619A2 (de) Transformator und Zündvorrichtung mit einem Transformator sowie Hochdruckentladungslampe mit einem Transformator
DE60207131T2 (de) Lichtquellenvorrichtung
EP1177711B1 (de) Verbessertes pulsbetriebsverfahren für eine stille entladungslampe
EP1938670B8 (de) Elektronisches vorschaltgerät und verfahren zum betreiben einer elektrischen lampe
DE102005061832A1 (de) Hochdruckentladungslampe mit verbesserter Zündfähigkeit sowie Hochspannungspulsgenerator
DE3021209A1 (de) Beleuchtungseinheit
EP2119323B1 (de) Zündtransformator für eine entladungslampe
WO2006108406A1 (de) Vorrichtung zum betreiben oder zünden einer hochdruckentladungslampe, lampensockel und beleuchtungssystem mit einer derartigen vorrichtung sowie verfahren zum betreiben einer hochdruckentladungslampe
EP0914754A1 (de) Zündvorrichtung für eine entladungslampe und verfahren zum zünden einer entladungslampe
DE102006026750A1 (de) Hochdruckentladungslampe mit verbesserter Zündfähigkeit sowie Hochspannungspulsgenerator
EP1056315B1 (de) Schaltung zum Betreiben von Wechselstrom-Hochdruckgasentladungslampen für ein Kraftfahrzeug
DE3342010C2 (de)
EP2025208A1 (de) Hockdruckentladungslampe mit verbesserter zündfähigkeit sowie hochspannungspulsgenerator
WO2006053529A1 (de) Schaltungsanordnung zum betrieb einer hochdruckentladungslampe
DE3019543C2 (de) Leuchtstofflampe mit quellenfreiem elektrischen Feld
DE102005061831A1 (de) Hochdruckentladungslampe mit verbesserter Zündfähigkeit
EP2116111B1 (de) Hochspannungspulsgenerator und hochdruckentladungslampe mit derartigem generator
EP0794695B1 (de) Schaltung zum Betrieb einer Hochdruckgasentladungslampe
AT164231B (de) Vorrichtung mit einer elektrischen Gasentladungsröhre
DE102006049128A1 (de) Zündvorrichtung für eine Hochdruckentladungslampe und Hochdruckentladungslampe sowie Verfahren zum Zünden einer Gasentladung in einer Hochdruckentladungslampe
WO1989011160A1 (en) Low-pressure gas discharge lamp
DE2715460A1 (de) Schaltkreise fuer beleuchtungseinrichtungen mit gasentladungslampen
CH668344A5 (en) Starter for fluorescent lamp with two preheater windings - uses surge voltage induced in choke coil by opening of bimetallic contact warmed by preheating current
DE102005020773A1 (de) Vorrichtung zum Betreiben oder Zünden einer Hochdruckentladungslampe, Lampensockel und Beleuchtungssystem mit einer derartigen Vorrichtung sowie Verfahren zum Betreiben einer Hochdruckentladungslampe
WO2011144403A1 (de) Schaltungsanordnung zum zünden von hochdruck-entladungslampen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880001552.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08708820

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008708820

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12524188

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009549813

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097018555

Country of ref document: KR