WO2008075704A1 - 内燃機関のバルブ特性制御装置 - Google Patents

内燃機関のバルブ特性制御装置 Download PDF

Info

Publication number
WO2008075704A1
WO2008075704A1 PCT/JP2007/074398 JP2007074398W WO2008075704A1 WO 2008075704 A1 WO2008075704 A1 WO 2008075704A1 JP 2007074398 W JP2007074398 W JP 2007074398W WO 2008075704 A1 WO2008075704 A1 WO 2008075704A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
valve
map
value
hydraulic oil
Prior art date
Application number
PCT/JP2007/074398
Other languages
English (en)
French (fr)
Inventor
Yuji Miyanoo
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP07850868.6A priority Critical patent/EP2093402B1/en
Priority to US12/514,605 priority patent/US8055430B2/en
Priority to CN200780046858XA priority patent/CN101573518B/zh
Publication of WO2008075704A1 publication Critical patent/WO2008075704A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34469Lock movement parallel to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/05Timing control under consideration of oil condition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/023Temperature of lubricating oil or working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a valve characteristic control device for an internal combustion engine provided with a change mechanism that changes a valve characteristic value of an engine valve based on the hydraulic pressure of hydraulic oil supplied from an engine-driven hydraulic pump.
  • Patent Document 1 describes an internal combustion engine equipped with a valve timing changing mechanism that changes the opening and closing timings of intake and exhaust valves, V, and so on.
  • the valve timing changing mechanism 1 includes a pulley 2 and a rotor 4 that is connected to the camshaft 3 so as to be integrally rotatable.
  • the pulley 2 and the rotor 4 can rotate relative to each other.
  • the pulley 2 is drivingly connected to the output shaft of the internal combustion engine via a timing belt (not shown), and rotates in synchronization with the output shaft.
  • a timing belt not shown
  • each recess 6 is located on the same side as the advance hydraulic chamber 7, which is located on the opposite side of the rotation direction of the pulley 2 from the vane 5 by the corresponding vane 5. It is divided into a retarding hydraulic chamber 8 and.
  • valve timing changing mechanism 1 configured as described above, the hydraulic pressure of the hydraulic oil supplied to the advance hydraulic chamber 7 and the retard hydraulic chamber 8 is adjusted to adjust the valve timing to the pulley 2. 4 and the relative phase ⁇ of the camshaft 3 can be changed. As a result, the rotational phase of the camshaft 3 accompanying the rotation of the output shaft of the internal combustion engine is changed to the advance side or the retard side as shown by the broken line arrow in FIG. Can be changed to an appropriate timing according to the engine operating state. By changing the valve timing in this way, engine output and fuel efficiency can be improved. [0004] Incidentally, the valve timing changing mechanism 1 described above is driven by hydraulic pressure supplied from an engine-driven hydraulic pump that is driven using the rotational force of the engine output shaft.
  • the amount of hydraulic oil discharged from the hydraulic pump decreases when the engine rotates at a low speed, and the hydraulic pressure supplied to the hydraulic chambers 7 and 8 decreases. Further, when the hydraulic oil temperature is high, the viscosity of the hydraulic oil decreases, and the amount of hydraulic oil leaked from each part of the engine increases. As a result, the hydraulic pressure of the hydraulic oil supplied from the hydraulic pump further decreases, and the hydraulic pressure of the hydraulic oil supplied to the valve timing changing mechanism 1 may be insufficient.
  • Patent Document 1 JP-A-9-324612
  • An object of the present invention is to control the valve characteristic value such as hunting of the valve characteristic value caused by driving the valve characteristic changing mechanism based on insufficient hydraulic oil pressure.
  • a valve characteristic control device for an internal combustion engine including a hydraulic pump, a change mechanism, and a control unit.
  • the hydraulic pump is driven by the engine.
  • the changing mechanism changes the valve characteristic value of the valve of the engine based on the hydraulic pressure of the hydraulic oil supplied from the hydraulic pump.
  • the controller drives the change mechanism to control the valve characteristic value of the valve to a target value.
  • the control unit includes a storage unit and a detection unit.
  • the storage unit stores a calculation map used for calculating a target value of the valve characteristic value based on a plurality of engine control values including an engine speed.
  • the detection unit detects the temperature of the hydraulic oil.
  • the calculation map is a function Includes a first map and a second map that set the relationship of the valve characteristic value to the function control value.
  • the change amount of the valve characteristic value corresponding to the change in the engine control value is set to be smaller than that in the first map in the low engine speed range.
  • the controller switches the calculation map from the first map to the second map when the detected temperature of the hydraulic oil is relatively high.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a vehicle equipped with a control device according to a first embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional perspective view of the valve timing changing mechanism of FIG.
  • FIG. 3 is a flowchart showing a processing procedure of force and valve timing control according to the first embodiment.
  • FIG. 4 is a graph showing the integrated value of the intake air amount and the relationship between the engine cooling water temperature and the oil temperature.
  • FIG. 5 is a diagram showing a map for obtaining a target advance amount of an intake valve from an engine speed and a load factor.
  • the target advance angle of the intake valve is determined from the engine speed and load factor at high oil temperatures.
  • FIG. 7 is a flowchart showing a processing procedure of valve timing control, which is a modification of the first embodiment.
  • FIG. 8 is a flowchart showing a processing procedure of force and valve timing control according to the second embodiment.
  • FIG. 9 is a diagram showing a map for obtaining the advance angle guard value from the engine speed and the oil temperature.
  • FIG. 10 is a cross-sectional view showing a configuration of a conventional valve timing changing mechanism.
  • Valve characteristic value is defined as a concept that includes the opening timing, closing timing, maximum lift amount, valve opening period, valve overlap period, and combinations of intake valves and exhaust valves.
  • the output shaft 11 of the engine 10 is connected to a continuously variable transmission 20 that continuously changes the gear ratio, and the driving force of the engine 10 is input to the continuously variable transmission 20. Is done.
  • the output side of the continuously variable transmission 20 is connected to a differential gear 21, and the driving force of the engine 10 is transmitted to the left and right wheels 2 2L and 22R via the continuously variable transmission 20 and the differential gear 21. .
  • the engine 10 is equipped with a valve timing changing mechanism 30 that changes the valve timing of an intake valve (not shown).
  • the valve timing changing mechanism 30 is connected to the output shaft 11 of the engine 10 and is supplied with hydraulic oil by an engine-driven oil pump 40 that is driven by the rotational force of the output shaft.
  • the oil pump 40 supplies the hydraulic oil stored in the oil pan 41 to the valve timing changing mechanism 30 and each sliding portion of the engine 10 as lubricating oil based on the rotation of the output shaft 11.
  • the valve timing changing mechanism 30 changes the valve timing of the intake valve based on the hydraulic pressure of the hydraulic oil supplied from the oil pump 40.
  • the hydraulic pressure supplied to the valve timing changing mechanism 30 is controlled through an oil control valve 42 provided between the valve timing changing mechanism 30 and the oil pump 40. This oil control valve 42 operates based on a control signal from the electronic control unit 50.
  • the electronic control unit 50 includes a control unit 51 that performs various calculations based on detection values of various sensors, which will be described later, and a calculation map and various calculation programs that are referred to when the control unit 51 performs various calculations. And a storage unit 52 in which is stored.
  • a water temperature sensor 60 for detecting the engine cooling water temperature THW, a crank position sensor 61 for detecting the engine rotational speed NE, and an intake air amount GA of the engine 10 are used as the various sensors.
  • the airflow meter 62 to be detected is connected.
  • the electronic control unit 50 takes in the detection values of these various sensors 60 to 62 and controls the supply and discharge of the hydraulic oil to the valve timing changing mechanism 30 through the oil control valve 42 so as to realize the valve timing suitable for the engine operating state. .
  • valve timing changing mechanism 30 will be described in detail with reference to FIG.
  • the valve timing changing mechanism 30 is provided at one end of the intake camshaft 12 provided with an intake cam 12a for opening and closing the intake valve.
  • the valve timing changing mechanism 30 includes a pulley 31 and a rotor 32 coupled to the intake camshaft 12 so as to be integrally rotatable, and the pulley 31 and the rotor 32 are combined so as to be relatively rotatable.
  • the pulley 31 is drivingly connected to the output shaft 11 of the engine 10 via the timing belt 13 and rotates in synchronization with the output shaft 11. The direction of rotation of the pulley 31 is indicated by an arrow in FIG.
  • the pulley 31 includes a cylindrical housing 33 that houses the rotor 32.
  • a plurality of (four in FIG. 2) vanes 32a extending outward in the radial direction are formed on the outer periphery of the rotor 32, and a plurality of recesses 33a are formed on the inner periphery of the rotor 33.
  • 33a accommodates the corresponding bin 32a.
  • each recess 33 a has an advance hydraulic chamber 34 that is located on the opposite side of the rotation direction of the pulley 31 from the vane 32 a by the corresponding vane 32 a, and a rotation angle.
  • a retarding hydraulic chamber 35 located on the same side as the direction.
  • valve timing changing mechanism 30 configured as described above, the hydraulic pressure in the advance hydraulic chamber 34 and the retard hydraulic chamber 35 is controlled through the above-described wheel control valve 42, whereby the intake valve is controlled.
  • the valve timing is changed.
  • each valve When the volume of the advance hydraulic chamber 34 is in a minimum state, in other words, when the intake camshaft 12 is in the most retarded position, each valve is set so that there is no overlap period between the intake valve and the exhaust valve. Opening and closing timing is set.
  • the valve opening / closing timing, the overlap period of the intake valve and the exhaust valve, and the like are changed by adjusting the advance amount of the intake valve according to the engine operating state.
  • the overlap period between the intake valve and the exhaust valve is eliminated to reduce the amount of exhaust that blows back into the intake port and cylinder.
  • the valve overlap period is extended by advancing the intake camshaft 12 to reduce the pumping loss and the internal EGR rate to reduce emissions.
  • FIG. 3 The processing shown in FIG. 3 is repeatedly executed at a predetermined cycle by the control unit 51 of the electronic control unit 50 during engine operation.
  • step S100 the oil temperature THO of the hydraulic oil is estimated.
  • the oil temperature THO is estimated based on the engine cooling water temperature THW detected by the water temperature sensor 60 and the integrated value ⁇ GA of the intake air amount GA in the most recent predetermined period detected by the air flow meter 62.
  • a map for calculation as shown in FIG. 4 is stored in the storage unit 52 of the electronic control unit 50, and the oil temperature THO is determined by referring to this calculation map. Presumed. This map is based on the results of experiments, etc. conducted in advance! The engine coolant temperature THW is high! / The estimated oil temperature THO increases and the intake air amount GA integrated value ⁇ The estimated oil temperature THO increases as the GA value increases.
  • step S110 compares the estimated oil temperature THO with the reference oil temperature THOst, and the oil temperature THO is equal to or less than the reference oil temperature THOst. It is determined whether or not.
  • This reference oil temperature THOst is an oil for determining whether or not the hydraulic pressure supplied to the valve timing changing mechanism 30 tends to be insufficient due to a decrease in viscosity accompanying an increase in the hydraulic oil temperature THO. It is a temperature and is set based on the results of experiments and the like conducted in advance.
  • step S110 When it is determined in step S110 that the estimated oil temperature THO is equal to or lower than the reference oil temperature THOst, that is, it is determined that the hydraulic pressure supplied to the valve timing changing mechanism 30 is sufficiently secured. If it is determined, the control unit 51 proceeds to step S120, and calculates the target advance amount ⁇ trg with reference to the first map (target advance amount calculation map).
  • This target advance amount calculation map shows the engine operation estimated from the engine speed NE and the load factor KL.
  • the target advance amount ⁇ trg of the intake valve suitable for the state is set based on the results of experiments and the like conducted in advance, and the target advance amount calculation map is stored in the storage unit 52 of the electronic control unit 50.
  • the load factor KL of the engine 10 is the ratio of the current load to the total load, and is calculated based on the intake air amount GA in one intake stroke.
  • the target advance amount ⁇ trg is calculated by referring to the target advance amount calculation map shown in FIG.
  • 0 ° CA is calculated as trg.
  • step S120 When the target advance amount ⁇ trg is calculated in step S120, the control unit 51 proceeds to step S1 30, and the oil control valve 42 is set so that the actual advance amount ⁇ matches the target advance amount ⁇ trg. Through this, the valve timing changing mechanism 30 is driven.
  • step S 130 when the deviation between the actual advance amount ⁇ and the target advance amount ⁇ trg is less than or equal to a predetermined amount, this process is temporarily terminated.
  • step S110 when it is determined that the estimated oil temperature THO is higher than the reference oil temperature THOst, that is, when it is determined that the hydraulic pressure supplied to the valve timing changing mechanism 30 is insufficient,
  • the control unit 51 proceeds to step S 125 and refers to the second map (high oil temperature map) shown in FIG. 6 in place of the target advance amount calculation map, and sets the target advance amount ⁇ trg. calculate.
  • This high oil temperature map is used to calculate the target advance amount ⁇ trg based on the engine speed NE and the load factor KL in the same manner as the target advance amount calculation map shown in FIG. However, the characteristics are set so that the target advance amount ⁇ trg in the low rotation range is smaller than the target advance amount calculation map.
  • This high oil temperature map is also stored in the storage unit 52 of the electronic control unit 50, similar to the target advance amount calculation map.
  • the target advance angle ⁇ trg is set in step S120. “40 ° CA” is calculated in the same way as the calculation result using the referenced target advance amount calculation map.
  • step S125 When the target advance amount ⁇ trg is calculated in step S125, the control unit 51 proceeds to step S1 30 and sets the oil control port so that the actual advance amount ⁇ matches the target advance amount ⁇ trg.
  • the valve timing changing mechanism 30 is driven through the control valve 42.
  • step S 130 when the deviation between the actual advance amount ⁇ and the target advance amount ⁇ trg becomes equal to or less than a predetermined amount, this process is temporarily terminated.
  • step S100 to step S130 The above series of processing (step S100 to step S130) is repeated at a predetermined cycle, so that the calculation referred to when setting the target advance amount ⁇ trg based on the hydraulic oil temperature THO.
  • the valve timing of the intake valve is changed while switching the map.
  • the control unit 51 functioning as the oil temperature detecting unit
  • the engine coolant temperature THW and the integrated value ⁇ GA of the intake air amount GA over the most recent predetermined period are used as the correlation value of the hydraulic oil temperature. While the engine coolant temperature THW varies highly correlated with the average temperature of the entire engine 10, the integrated value of the intake air amount GA ⁇ GA varies exclusively highly correlated with local temperature changes near the combustion chamber. Tend. Therefore, the hydraulic oil temperature can be estimated more accurately by referring to both the integrated value ⁇ GA of the intake air amount GA and the engine coolant temperature THW.
  • the engine speed NE is maintained near the target speed where the fuel consumption rate is optimal, and therefore the engine operating range is automatically increased.
  • the low rotation range is often used as the area.
  • the viscosity of the hydraulic fluid may decrease due to deterioration over time, and the amount of leakage may increase at the site where the hydraulic fluid is supplied. In this way, when the engine operating state is maintained in a low load operating state for a long period of time with a large amount of low rotation range and an increased amount of hydraulic oil leakage, it is supplied to the valve timing changing mechanism 30.
  • the hydraulic pressure of the hydraulic oil that is generated may be lower than the hydraulic pressure for properly operating the hydraulic oil.
  • the hydraulic pressure of the hydraulic oil is insufficient, and as a result, the operation responsiveness of the valve timing changing mechanism 30 is lowered or hunting occurs.
  • the engine operating condition becomes unstable, and inconvenience arises when drivability decreases or engine performance such as engine output and fuel consumption decreases.
  • the hydraulic oil pressure is likely to be insufficient, refer to the high oil temperature map in which the target advance amount e trg of the valve timing in the low rotation range is set small. The valve timing is changed. As a result, the occurrence of such inconvenience can be suitably suppressed.
  • the first embodiment can also be implemented in the following forms, which are appropriately changed.
  • valve timing change processing prior to the processing in step S100 for estimating the oil temperature THO of the operating oil, the valve timing change mechanism 30 is supplied based on the engine speed NE.
  • a process may be added to determine whether the hydraulic pressure is insufficient.
  • the calculation map is changed from the normal target advance calculation map to the high oil temperature setting. Switch to the map.
  • step S50 it is determined whether or not the engine speed NE is lower than the reference speed NEst.
  • the reference rotational speed NEst takes into account the discharge capacity of the oil pump 40 as the engine rotational speed that can ensure sufficient oil pressure even when the oil temperature THO of the hydraulic oil is high and the viscosity is low. This is set based on the results of experiments conducted in advance.
  • step S50 When it is determined in step S50 that the engine rotational speed NE is equal to or higher than the reference rotational speed NEst, that is, even when the hydraulic oil temperature THO is high, the supply hydraulic pressure can be sufficiently secured. If it is determined that the control unit 51 is satisfied, the control unit 51 skips steps S100 and S110 and proceeds to step S120. As in the first embodiment, in step S120 and step S130, the target advance amount ⁇ trg is calculated, and the valve timing changing mechanism 30 is driven.
  • step S50 when it is determined in step S50 that the engine rotational speed NE is smaller than the reference rotational speed NEst, that is, when the hydraulic oil temperature THO is high because the engine rotational speed NE is low, the supply hydraulic pressure is insufficient. If it is determined, the control unit 51 proceeds to step S100, and calculates the target advance amount ⁇ trg based on the oil temperature THO through steps S100 to S130 as in the first embodiment. The valve timing changing mechanism 30 is driven while switching the calculation map.
  • the engine rotational speed NE is in the low rotation range and the hydraulic oil temperature THO is relatively high, so that a sufficient hydraulic pressure for the operation of the valve timing changing mechanism 30 cannot be secured.
  • the calculation map for setting the target advance amount ⁇ trg is switched from the normal target advance amount calculation map to the high oil temperature map. Therefore, as in the first embodiment, when the supply hydraulic pressure is insufficient, the amount of change when the valve timing changing mechanism 30 is driven to change the valve timing is limited, so that the hydraulic oil pressure is insufficient. Control instability when controlling valve timing, such as hunting caused by driving the valve timing changing mechanism 30 based on this, can be suppressed.
  • step S50 it is determined through step S50 that the engine rotational speed NE is lower than the reference rotational speed NEst, and through step S110, the oil temperature THO is determined to be higher than the reference oil temperature T HOst. Only when switching the calculation map to the high oil temperature map The Therefore, the high oil temperature map only needs to be able to calculate the target advance amount S trg in the low rotation region as indicated by a portion A surrounded by a one-dot chain line in FIG. Therefore, the storage capacity for storing the calculation map can be reduced.
  • the second embodiment will be described with reference to FIG. 8 and FIG.
  • the high oil temperature map with the target advance amount ⁇ trg is set so that the change amount of the valve timing in the low rotation range becomes small.
  • the valve timing change is performed by setting the advance amount guard value ⁇ grd based on the oil temperature THO of the hydraulic oil with respect to the target advance amount ⁇ trg of the valve timing changing mechanism 30. I try to limit the amount.
  • FIG. 8 is a flowchart showing the valve timing changing process in this embodiment. This process is repeatedly executed by the control unit 51 of the electronic control unit 50 during engine operation, as in the first embodiment.
  • step S200 the oil temperature THO is estimated.
  • the oil temperature THO is estimated with reference to the calculation map shown in FIG. 4 stored in the storage unit 52 of the electronic control unit 50 in the same manner as in step S100 in the first embodiment.
  • step S210 the control unit 51 proceeds to step S210, and calculates the advance angle guard value ⁇ grd with reference to the guard value calculation map.
  • the guard value calculation map is set so that the advance amount guard value ⁇ grd decreases as the engine speed NE decreases and as the hydraulic oil temperature THO increases.
  • This guard value calculation map is also stored in the storage unit 52 of the electronic control unit 50, like the other calculation maps.
  • the engine Rotation speed NE is advanced regardless of Nl, N2, N3 (N1 ⁇ N2 ⁇ N3)
  • the angular guard value ⁇ grd is set to “40 ° CAJ, which is the maximum advance amount of the valve timing changing mechanism 30. That is, in this case, the advance amount is not substantially limited.
  • the advance angle guard value ⁇ grd is “30 ° CAJ and the engine speed NE is N2 when the engine speed is N1. When set to “35 ° CA”. If the oil temperature THO is higher than 120 ° C and lower than 130 ° C, the advance angle guard value ⁇ grd is set to “15 ° CA” when the engine speed NE is Nl or N2. When the oil temperature THO is higher than 130 ° C, the advance angle guard value ⁇ grd is set to “0 ° CA” when the engine speed NE is Nl or N2.
  • step S220 the control unit 51 proceeds to step S220, and the target advance angle calculation map shown in FIG. 5 as in the first embodiment. Referring to, calculate the target advance angle ⁇ trg.
  • step S220 When the target advance amount ⁇ trg is calculated in step S220, the control unit 51 proceeds to step 230, and determines whether or not the target advance amount ⁇ trg is larger than the advance amount guard value ⁇ grd. To do. In step S230, if it is determined that the target advance amount ⁇ trg is larger than the advance amount guard value ⁇ grd! /, The control unit 51 proceeds to step S240, and this calculated The target advance amount ⁇ trg is reset with the advance amount guard value ⁇ grd as the upper limit.
  • step 230 If it is determined in step 230 that the target advance angle amount ⁇ trg is less than or equal to the advance angle amount guard value ⁇ grd, the control unit 51 skips step S240 and proceeds to step S250.
  • the control unit 51 proceeds to step S250, and the valve timing is set so that the actual advance amount ⁇ matches the target advance amount ⁇ trg. Drive change mechanism 30.
  • step S250 when the valve timing changing mechanism 30 is driven and the deviation between the actual advance amount ⁇ and the target advance amount ⁇ trg becomes equal to or less than a predetermined amount, this process is temporarily terminated.
  • Step S200 to Step S250 The above series of processing (Step S200 to Step S250) is repeated at a predetermined cycle. As a result, the valve timing of the intake valve is changed.
  • Advance angle guard value ⁇ grd is set, the target advance angle ⁇ trg is limited when the engine speed NE is in the low rotation range and the hydraulic oil temperature THO is high. The amount of change is limited. Therefore, it is possible to suppress control instability when controlling the valve timing, such as hunting of the valve timing caused by driving the valve timing changing mechanism 30 based on insufficient hydraulic oil pressure.
  • the advance angle guard value ⁇ grd is set to a smaller value as the oil temperature THO is higher, the amount of leakage at each site where the operating oil is supplied by decreasing the viscosity of the operating oil In other words, the target advance amount ⁇ trg can be set in a manner that matches the degree of hydraulic oil pressure deficiency in the valve timing changing mechanism 30. For this reason, the control instability at the time of controlling valve timing can be suppressed more suitably.
  • the second embodiment can also be implemented in the following forms, which are appropriately modified.
  • the advance angle guard value ⁇ grd is set based on the engine speed NE and hydraulic oil temperature THO, and the advance angle guard value ⁇ grd is set as the engine speed NE is lower and the oil temperature of the hydraulic oil is also reduced.
  • a force indicating a configuration in which the THO is set to a smaller value as the THO is higher.
  • the present invention is not limited to such a configuration. That is, it is only necessary that the amount of change in the valve timing can be limited when the engine speed NE is in the low speed range and the hydraulic oil temperature THO is high. For example, when the engine rotational speed NE is less than a certain rotational speed, the higher the hydraulic oil temperature THO, the smaller the advance angle guard value ⁇ grd is set, or the hydraulic oil temperature THO is constant.
  • the hydraulic oil temperature THO is estimated based on the integrated value ⁇ GA. Is done.
  • an engine control amount that has a high correlation with the integrated value ⁇ GA of the intake air amount GA, such as an integrated value of the fuel injection amount, is used.
  • the oil temperature THO may be calculated.
  • an oil temperature sensor 63 that directly detects the oil temperature THO may be provided as indicated by a broken line in FIG.
  • the force S shown as an example in which the present invention is embodied as a control device for the valve timing change mechanism 30 for changing the valve timing of the intake valve the present invention is not limited to such a configuration. ! / In other words, a valve timing change mechanism is provided on both the intake side and exhaust side, and the valve timing of the intake valve and exhaust valve is changed, or a valve timing change mechanism is provided on the exhaust side so that only the valve timing of the exhaust valve is provided. The present invention can be applied even if the configuration is changed.
  • the valve timing changing mechanism 30 that changes the valve timing to an appropriate timing according to the engine operating state is shown as an example of a changing mechanism that changes the valve characteristic value of the engine valve.
  • a valve characteristic control device for an internal combustion engine that is effective in the present invention is provided.
  • the target changing mechanism is not limited to such a configuration, but may be any changing mechanism that changes the valve characteristics by using the hydraulic pressure supplied from the hydraulic oil supplied from the engine-driven oil pump.
  • the change mechanism has a valve closing timing, a valve opening timing, a valve opening period, a maximum lift amount, an overlap period of each valve opening period of the intake valve and the exhaust valve, and individual parameters, or a valve closing timing and a valve opening timing. Combinations of these parameters, such as valve timing, valve opening period, and maximum lift amount, may be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 オイルポンプと、バルブタイミング変更機構と、バルブタイミング制御部と、を備える内燃機関のバルブ特性制御装置が開示される。バルブタイミング変更機構は、オイルポンプから供給される作動油の油圧に基づいてエンジンの吸気バルブのバルブ特性値を変更する。バルブタイミング制御部は、記憶部と検出部とを含む。記憶部は、複数の機関制御値に基づいてバルブ特性値の目標値を算出するために用いられる演算用マップを記憶する。検出部は作動油の温度を検出する。演算用マップは、第1のマップ及び第2のマップを含む。第2のマップでは、機関回転速度の低回転域において、機関制御値の変化に対応するバルブ特性値の変更量が第1のマップと比較して小さく設定されている。バルブタイミング制御部は、検出される作動油の温度が相対的に高いときに、演算用マップを第1のマップから第2のマップに切り替える。

Description

明 細 書
内燃機関のバルブ特性制御装置
技術分野
[0001] 本発明は、機関駆動式の油圧ポンプから供給される作動油の油圧に基づいて機 関バルブのバルブ特性値を変更する変更機構を備えた内燃機関のバルブ特性制御 装置に関する。
背景技術
[0002] 近年の車両に搭載される内燃機関の多くには、吸気バルブや排気バルブのバルブ 特性値を変更するバルブ特性変更機構が搭載される。例えば特許文献 1には、吸気 バルブ及び排気バルブの開閉時期、 V、わゆるバルブタイミングを変更するバルブタ イミング変更機構を搭載する内燃機関が記載されている。図 10に示されるように、こ のバルブタイミング変更機構 1は、プーリ 2と、カムシャフト 3に一体回転可能に連結さ れたロータ 4とを含み、プーリ 2とロータ 4とは相対回転可能に組み合わされる。プーリ 2は、図示しないタイミングベルトを介して内燃機関の出力軸と駆動連結され、出力軸 と同期して回転する。図 10においてプーリ 2の回転方向を矢印にて示す。ロータ 4に は、その中心から径方向外側に突出する複数のベーン 5が形成されている。プーリ 2 には複数の凹部 6が設けられ、各凹部 6は対応するべーン 5を収容する。図 10に示さ れるように、各凹部 6は、対応するべーン 5によってベーン 5よりもプーリ 2の回転方向 と反対側に位置する進角用油圧室 7と回転方向と同側に位置する遅角用油圧室 8と に区画されている。
[0003] このように構成されたバルブタイミング変更機構 1においては、進角用油圧室 7及び 遅角用油圧室 8に供給される作動油の油圧を調整することにより、プーリ 2に対する口 ータ 4及びカムシャフト 3の相対位相 αを変更することができる。その結果、内燃機関 の出力軸の回転に伴うカムシャフト 3の回転位相を図 10に破線矢印で示されるように 進角側又は遅角側に変更することにより、吸気バルブや排気バルブのバルブタイミン グを機関運転状態に応じた適切なタイミングに変更することができる。このようにバル ブタイミングを変更することにより、機関出力や燃費の向上を図ることができる。 [0004] ところで、上述したバルブタイミング変更機構 1は機関出力軸の回転力を利用して 駆動される機関駆動式の油圧ポンプから供給される油圧によって駆動される。このた め、機関の低回転時には油圧ポンプから吐出される作動油の量が減少し、各油圧室 7, 8に供給される油圧が低下する。更に、作動油の油温が高い場合には作動油の 粘性が低下するため、機関各部からの作動油の漏出量が増加する。その結果、油圧 ポンプから供給される作動油の油圧が更に低下し、バルブタイミング変更機構 1に供 給される作動油の油圧が不足するおそれがある。
[0005] このように作動油の油圧が不足すると、バルブタイミング変更機構 1の作動応答性 が低下し、相対位相 αを目標値の変化に応じて的確に変更することができなくなるた め、ハンチングが発生することがある。その結果、機関運転状態が不安定になり、機 関出力や燃費等の機関性能が低下する。
[0006] こうした作動油の油圧が不足することによって生じる不都合は、上述したようなバル ブタイミング変更機構だけでなぐ機関駆動式の油圧ポンプから供給される油圧によ つて作動するその他のバルブ特性変更機構においても生じ得る。
特許文献 1 :特開平 9-324612号公報
発明の開示
[0007] 本発明の目的は、不十分な作動油の油圧に基づ!/、てバルブ特性変更機構を駆動 することに起因するバルブ特性値のハンチング等、バルブ特性値を制御する際の制 御不安定化を抑制することのできる内燃機関のバルブ特性制御装置を提供すること にめ ·ο。
[0008] 上記目的を達成するため、本発明の一態様では、油圧ポンプと、変更機構と、制御 部とを備える内燃機関のバルブ特性制御装置が提供される。前記油圧ポンプは前記 機関によって駆動される。前記変更機構は前記油圧ポンプから供給される作動油の 油圧に基づいて前記機関のバルブのバルブ特性値を変更する。前記制御部は前記 変更機構を駆動して前記バルブのバルブ特性値を目標値に制御する。前記制御部 は、記憶部と、検出部とを含む。前記記憶部は、機関回転速度を含む複数の機関制 御値に基づレ、て前記バルブ特性値の目標値を算出するために用いられる演算用マ ップを記憶する。前記検出部は作動油の温度を検出する。前記演算用マップは、機 関制御値に対するバルブ特性値の関係を設定した第 1のマップ及び第 2のマップを 含む。第 2のマップでは、機関回転速度の低回転域において、機関制御値の変化に 対応するバルブ特性値の変更量が前記第 1のマップと比較して小さく設定されている 。前記制御部は、前記検出される作動油の温度が相対的に高いときに、前記演算用 マップを前記第 1のマップから前記第 2のマップに切り替える。
図面の簡単な説明
[0009] [図 1]本発明の第 1実施形態にかかる制御装置を搭載した車両の概略構成を示す模 式図。
[図 2]図 1のバルブタイミング変更機構の部分断面斜視図。
[図 3]第 1実施形態に力、かるバルブタイミング制御の処理手順を示すフローチャート。
[図 4]吸入空気量の積算値及び機関冷却水温と油温との関係を示すグラフ。
[図 5]機関回転速度及び負荷率から吸気バルブの目標進角量を求めるためのマップ を示す図。
[図 6]高油温時において機関回転速度及び負荷率から吸気バルブの目標進角量を
[図 7]第 1実施形態の変更例に力、かるバルブタイミング制御の処理手順を示すフロー チャート。
[図 8]第 2実施形態に力、かるバルブタイミング制御の処理手順を示すフローチャート。
[図 9]機関回転速度及び作動油の油温から進角量ガード値を求めるためのマップを 示す図。
[図 10]従来のバルブタイミング変更機構の構成を示す断面図。
発明を実施するための最良の形態
[0010] 以下、この発明に力、かる内燃機関のバルブ特性制御装置をバルブタイミング変更 機構の制御装置に具体化した第 1実施形態について図 1〜図 6を参照して説明する 本明細書において、「バルブ特性値」とは、吸気バルブや排気バルブの開タイミン グ、閉タイミング、最大リフト量、開弁期間、バルブオーバラップ期間、更にはそれらの 組み合わせを含む概念であると定義する。 [0011] 図 1に示されるようにエンジン 10の出力軸 11は、変速比を連続的に変更する無段 変速機 20と連結されており、エンジン 10の駆動力は無段変速機 20に入力される。 無段変速機 20の出力側は、ディファレンシャルギア 21に連結されており、エンジン 1 0の駆動力はこれら無段変速機 20、ディファレンシャルギア 21を介して左右の車輪 2 2L, 22Rに伝達される。
[0012] また、エンジン 10には、図示しない吸気バルブのバルブタイミングを変更するバル ブタイミング変更機構 30が搭載されている。バルブタイミング変更機構 30には、ェン ジン 10の出力軸 11と連結され、同出力軸の回転力によって駆動する機関駆動式の オイルポンプ 40によって作動油が供給される。
[0013] オイルポンプ 40は、オイルパン 41に貯留された作動油を出力軸 11の回転に基づ いてバルブタイミング変更機構 30及び潤滑油としてエンジン 10の各摺動部へと供給 する。バルブタイミング変更機構 30は、オイルポンプ 40から供給される作動油の油 圧に基づ!/、て吸気バルブのバルブタイミングを変更する。バルブタイミング変更機構 30へ供給される油圧の制御は、バルブタイミング変更機構 30とオイルポンプ 40との 間に設けられたオイルコントロールバルブ 42を通じて行われる。このオイルコントロー ノレバルブ 42は、電子制御装置 50からの制御信号に基づ!/、て作動する。
[0014] 電子制御装置 50は、後述する各種センサの検出値に基づいて各種演算を行う制 御部 51と、同制御部 51が各種演算を行う際に参照する演算用マップや各種演算プ ログラムが記憶された記憶部 52とを含む。
[0015] 電子制御装置 50には、上記各種センサとして、例えば、機関冷却水温 THWを検 出する水温センサ 60、機関回転速度 NEを検出するクランクポジションセンサ 61、ェ ンジン 10の吸入空気量 GAを検出するェアフロメータ 62等が接続されている。電子 制御装置 50は、これら各種センサ 60〜62の検出値を取り込み、機関運転状態に適 したバルブタイミングを実現するようにオイルコントロールバルブ 42を通じてバルブタ イミング変更機構 30に対する作動油の給排を制御する。
[0016] 以下、図 2を参照してバルブタイミング変更機構 30の構成を詳しく説明する。
図 2に示されるように、バルブタイミング変更機構 30は、吸気バルブを開閉させる吸 気カム 12aが配設された吸気カムシャフト 12の一端に配設されている。 [0017] バルブタイミング変更機構 30は、プーリ 31と、吸気カムシャフト 12と一体回転可能 に連結されたロータ 32とを含み、プーリ 31とロータ 32とは相対回転可能に組み合わ される。プーリ 31は、タイミングベルト 13を介してエンジン 10の出力軸 1 1と駆動連結 され、出力軸 1 1と同期して回転する。このプーリ 31の回転方向を図 2に矢印で示す。
[0018] プーリ 31は、ロータ 32を収容する円筒状のハウジング 33を含む。ロータ 32の外周 にはその径方向外側に延びる複数(図 2では 4つ)のべーン 32aが形成されており、 ノ、ウジング 33の内周には複数の凹部 33aが形成され、各凹部 33aは対応するべ一 ン 32aを収容する。図 2に示されるように、各凹部 33aは、対応するべーン 32aによつ てべーン 32aよりもプーリ 31の回転方向と反対側に位置する進角用油圧室 34と、回 転方向と同側に位置する遅角用油圧室 35とに区画されている。
[0019] このように構成されたバルブタイミング変更機構 30においては、上述したォイルコン トロールバルブ 42を通じて進角用油圧室 34、遅角用油圧室 35内の油圧が制御され ることにより、吸気バルブのバルブタイミングが変更される。
[0020] 具体的には、進角用油圧室 34内の油圧を増大させるとともに遅角用油圧室 35内 の油圧を減少させることにより、ロータ 32がプーリ 31に対してプーリ 31の回転方向と 同方向に相対回転する。その結果、ロータ 32と連結された吸気カムシャフト 12が図 2 に破線矢印で示される進角側に回転し、出力軸 11の回転位相に対する吸気カム 12 aの相対位相が変更されてバルブタイミングが進角される。
[0021] 一方、遅角用油圧室 35内の油圧を増大させるとともに進角用油圧室 34内の油圧 を減少させた場合には、ロータ 32がプーリ 31に対してプーリ 31の回転方向と逆方向 に相対回転する。その結果、吸気カムシャフト 12が図 2に破線矢印で示される遅角 側に回転し、出力軸 11の回転位相に対する吸気カム 12aの相対位相が変更されて バルブタイミングが遅角される。
[0022] 進角用油圧室 34の容積が最小の状態のとき、換言すれば吸気カムシャフト 12が最 遅角位置にあるとき、吸気バルブと排気バルブとのオーバラップ期間がなくなるように 各バルブの開閉タイミングが設定されている。
[0023] そして、機関運転状態に応じて吸気バルブの進角量を調節することによって開弁- 閉弁タイミング及び吸気バルブと排気バルブとのオーバラップ期間等を変更する。 具体的には、機関始動時やアイドル運転時等の低回転 ·低負荷域では、吸気バル ブと排気バルブとのオーバラップ期間をなくし、排気が吸気ポート及びシリンダ内へ 吹き返す量を抑制することによって燃焼の安定化を図る。一方で発進加速時等の中 負荷域では、吸気カムシャフト 12を進角させることによりバルブオーバラップ期間を 拡大し、ポンビングロスの低減と、内部 EGR率を高めてェミッションの低減とを図る。
[0024] 以下、図 3を参照してバルブタイミング変更処理の流れを説明する。図 3に示される 処理は、機関運転中に電子制御装置 50の制御部 51により所定の周期で繰り返し実 fiされる。
[0025] まず、ステップ S100において、作動油の油温 THOが推定される。油温 THOは、 水温センサ 60によって検出された機関冷却水温 THW及びェアフロメータ 62によつ て検出された直近の所定期間での吸入空気量 GAの積算値∑ GAに基づいて推定 される。
[0026] 具体的には、電子制御装置 50の記憶部 52には図 4に示されるような演算用のマツ プが記憶されており、この演算用のマップを参照して、油温 THOが推定される。この マップは、予め行った実験等の結果に基づ!/、て機関冷却水温 THWが高!/、ときほど 推定される油温 THOの値が大きくなり、且つ吸入空気量 GAの積算値∑GAの値が 大きいときほど推定される油温 THOの値が大きくなるように設定されている。
[0027] ステップ S100において油温 THOが推定された場合、制御部 51はステップ S110 へ進み、推定された油温 THOと基準油温 THOstとを比較して、油温 THOが基準 油温 THOst以下であるか否かを判定する。
[0028] この基準油温 THOstは、作動油の油温 THOの上昇に伴う粘性の低下によって、 バルブタイミング変更機構 30に供給される油圧が不足する傾向にあるか否かを判定 するための油温であり、予め行った実験等の結果に基づいて設定される。
[0029] ステップ S110において、推定された油温 THOが基準油温 THOst以下であると判 定された場合、即ちバルブタイミング変更機構 30に供給される油圧が十分に確保で きる状態であると判定された場合には、制御部 51はステップ S 120へ進み、第 1のマ ップ(目標進角量演算用マップ)を参照して目標進角量 Θ trgを算出する。この目標 進角量演算用マップには、機関回転速度 NEと負荷率 KLとから推定される機関運転 状態に適した吸気バルブの目標進角量 Θ trgが予め行った実験等の結果に基づい て設定されており、 目標進角量演算用マップは電子制御装置 50の記憶部 52に記憶 されている。エンジン 10の負荷率 KLは、全負荷に対する現在の負荷の割合であり、 一回の吸気行程における吸入空気量 GAに基づいて算出される。
[0030] ステップ S120では、図 5に示される目標進角量演算用マップを参照することにより 目標進角量 Θ trgを算出する。例えばアイドル運転時のように低回転 ·低負荷の状態 (点 P1 :機関回転速度 NE = nl ,負荷率 KL = kl)においては、上述したようにバル ブオーバラップ期間をなくすベぐ 目標進角量 Θ trgとして「0° CA」が算出される。 一方、発進加速時等の中負荷の状態(点 P2 :機関回転速度 NE = n2,負荷率 KL = k2) , (点 P : 3機関回転速度 NE = n3,負荷率 KL = k2)においては、上述したように バルブオーバラップ期間を拡大すベぐ 目標進角量 Θ trgとして「40° CA」が算出さ れる。
[0031] ステップ S120において目標進角量 Θ trgが算出されると、制御部 51はステップ S1 30へ進み、実際の進角量 Θを目標進角量 Θ trgに一致させるようにオイルコントロー ルバルブ 42を通じてバルブタイミング変更機構 30が駆動される。
[0032] ステップ S 130において、実際の進角量 Θと目標進角量 Θ trgとの偏差が所定量以 下になるとこの処理は一旦終了される。
ステップ S110において、推定された油温 THOが基準油温 THOstよりも高いと判 定された場合、即ちバルブタイミング変更機構 30に供給される油圧が不足する状態 にあると判定された場合には、制御部 51はステップ S 125へと進み、 目標進角量演 算用マップに替えて図 6に示される第 2のマップ(高油温時用マップ)を参照して目標 進角量 Θ trgを算出する。
[0033] この高油温時用マップは、図 5に示される目標進角量演算用マップと同様に機関 回転速度 NEと負荷率 KLとに基づいて目標進角量 Θ trgを算出するものであるが、 目標進角量演算用マップと比較して低回転域における目標進角量 Θ trgが小さくな るようにその特性が設定される。この高油温時用マップも目標進角量演算用マップと 同様、電子制御装置 50の記憶部 52に記憶される。
[0034] 具体的には、図 6に示される高油温時用マップを参照することによりアイドル運転時 のように低回転 ·低負荷状態(点 PI:機関回転速度 NE = kl ,負荷率 KL = kl)にお いては、ステップ S120で参照した図 5に示される目標進角量演算用マップと同様に 、 目標進角量 e trgとして「0° CA」が算出される。一方、発進加速時等の中負荷-低 回転状態(点 P2 :機関回転速度 NE = n2,負荷率 KL = k2)においては、 目標進角 量 Θ trgとしてステップ S 120で参照した目標進角量演算用マップによる算出結果「4 0° CA」よりも小さな「10° CA」が算出される。また、中負荷域であっても、機関回転 速度 NEが大きな状態(点 P3 :機関回転速度 NE = n3,負荷率 KL = k2)にあっては 、 目標進角量 Θ trgとしてステップ S 120で参照した目標進角量演算用マップによる 算出結果と同様に「40° CA」が算出される。
[0035] ステップ S125において目標進角量 Θ trgが算出されると、制御部 51はステップ S1 30へと進み、実際の進角量 Θを目標進角量 Θ trgに一致させるようにオイルコント口 ールバルブ 42を通じてバルブタイミング変更機構 30が駆動される。ステップ S 130に おいて、実際の進角量 Θと目標進角量 Θ trgとの偏差が所定量以下になるとこの処 理は一旦終了される。
[0036] 上記一連の処理 (ステップ S 100〜ステップ S 130)が所定の周期で繰り返されるこ とにより、作動油の油温 THOに基づいて目標進角量 Θ trgを設定する際に参照する 演算用マップを切り替えながら、吸気バルブのバルブタイミングが変更される。
[0037] 以上説明した本実施形態によれば、以下の利点が得られる。
(1)作動油の油温 THOが基準油温 THOstよりも高いことに基づいてバルブタイミ ング変更機構 30に供給される油圧が不足しやすい状態であることが判定される。こ の場合には、演算用マップが、通常の目標進角量演算用マップと比較して低回転域 における目標進角量 Θ trgが小さくなるようにその特性が設定されている高油温時用 マップに切り替えられる。従って、機関回転速度 NEが低回転域にありオイルポンプ 4 0から十分な量の作動油が吐出されないときにバルブタイミングが変更される際、バ ルブタイミング変更機構 30の変更量が制限される。その結果、不十分な作動油の油 圧に基づいてバルブタイミング変更機構 30を駆動することに起因して生じるハンチン グ等、バルブタイミングを制御する際の制御不安定化を抑制することができる。
[0038] (2)第 1実施形態では、油温検出部として機能する制御部 51が、作動油の油温 T HOを推定するために、機関冷却水温 THWと直近の所定期間における吸入空気量 GAの積算値∑ GAとを作動油の温度の相関値として用いる。機関冷却水温 THWは エンジン 10全体の平均的な温度と高く相関して変化する一方、吸入空気量 GAの積 算値∑ GAは専ら燃焼室近傍の局所的な温度変化と高く相関して変化する傾向があ る。そのため、吸入空気量 GAの積算値∑GA及び機関冷却水温 THWの双方を参 照することにより、作動油温をより正確に推定することができる。
[0039] (3)第 1実施形態のように無段変速機 20を搭載する車両では、燃料消費率が最適 となる目標回転速度近傍に機関回転速度 NEが維持されるため、自ずと機関運転領 域として低回転域が多用される。また、経時劣化により作動油の粘度が低下して、同 作動油が供給される部位において漏出量が増大することがある。このように、低回転 域が多用されるとともに作動油の漏出量が増大した状態で、機関運転状態が長期間 にわたつて低負荷運転状態に維持されると、バルブタイミング変更機構 30に供給さ れる作動油の油圧がこれを適切に作動させるための油圧よりも低下することがある。 そしてこのように作動油の油圧が不足する結果、バルブタイミング変更機構 30の作 動応答性が低下したりハンチングが発生したりする。その結果機関運転状態が不安 定になり、ドライバビリティが低下したり、機関出力や燃費等の機関性能がかえって低 下したりするといつた不都合が生じる。上記実施形態によれば、作動油の油圧が不 足しやすい状態にある場合には、低回転域におけるバルブタイミングの目標進角量 e trgが小さく設定された高油温時用マップを参照してバルブタイミングの変更を行う ようにしている。その結果、こうした不都合の発生を好適に抑制することができる。
[0040] 第 1実施形態は、これを適宜変更した以下の形態にて実施することもできる。
上述したバルブタイミング変更処理(ステップ S 100〜ステップ S 130)において、作 動油の油温 THOを推定するステップ S100の処理に先立って、機関回転速度 NEに 基づいてバルブタイミング変更機構 30に供給される油圧が不足する状態か否かを判 定する処理を加えてもよい。この処理を含む構成では、機関回転速度 NEが低回転 域にあり且つ作動油の油温 THOが相対的に高いときに演算用マップを通常の目標 進角量演算用マップから高油温時用マップに切り替える。
[0041] 具体的には、図 7に示されるようにバルブタイミング変更処理においては、はじめに ステップ S50において、機関回転速度 NEが基準回転速度 NEstよりも小さいか否か が判定される。基準回転速度 NEstは、作動油の油温 THOが高くなり粘性が低下し ている場合であっても十分に油圧を確保することのできる機関回転速度として、オイ ルポンプ 40の吐出能力等を考慮して予め行われた実験等の結果に基づいて設定さ れている。
[0042] ステップ S50において、機関回転速度 NEが基準回転速度 NEst以上であると判定 された場合、即ち作動油の油温 THOが高いときであっても供給油圧を十分に確保 することのできる状態であると判定された場合には、制御部 51はステップ S100及び ステップ S 110の処理をスキップしてステップ S 120へと進む。上記第 1実施形態と同 様に、ステップ S120及びステップ S130では目標進角量 Θ trgが算出され、バルブタ イミング変更機構 30が駆動される。
[0043] 一方、ステップ S50において、機関回転速度 NEが基準回転速度 NEstより小さいと 判定された場合、即ち機関回転速度 NEが低いため作動油の油温 THOが高いとき には供給油圧が不足すると判定された場合には、制御部 51はステップ S 100へと進 み、上記第 1実施形態と同様にステップ S 100〜ステップ S130を通じて、油温 THO に基づいて目標進角量 Θ trgを算出する際の演算用マップを切り替ながらバルブタ イミング変更機構 30が駆動される。
[0044] こうした構成によれば、機関回転速度 NEが低回転域にあり且つ作動油の油温 TH Oが相対的に高いため、バルブタイミング変更機構 30の作動に十分な油圧が確保で きない場合には、 目標進角量 Θ trgを設定する際の演算用マップが通常の目標進角 量演算用マップから高油温時用マップに切り替えられる。従って、上記第 1実施形態 と同様に、供給油圧が不足する場合には、バルブタイミング変更機構 30を駆動して バルブタイミングを変更する際の変更量が制限され、不十分な作動油の油圧に基づ いてバルブタイミング変更機構 30を駆動することに起因するハンチング等、バルブタ イミングを制御する際の制御不安定化を抑制することができる。
[0045] また、この構成にあっては、ステップ S50を通じて機関回転速度 NEが基準回転速 度 NEstよりも小さいと判定され且つステップ S110を通じて油温 THOが基準油温 T HOstより高いと判定されたときにのみ、演算用マップを高油温時用マップに切り替え る。そのため、高油温時用マップは図 6の一点鎖線で囲まれた部分 Aのように低回転 域における目標進角量 S trgが算出できるものであればよい。そのため、演算用マツ プを記憶するための記憶容量を小さくすることができる。
[0046] 以下、第 2実施形態について、図 8及び図 9を参照して説明する。第 1実施形態で は、作動油の油温 THOが高い場合には、低回転域におけるバルブタイミングの変更 量が小さくなるように目標進角量 Θ trgが設定された高油温時用マップに切り替える ことにより、供給油圧が不足した状態におけるバルブタイミングの変更を抑制するよう にした。これに対して本実施形態では、バルブタイミング変更機構 30の目標進角量 Θ trgに対して作動油の油温 THOに基づいて進角量ガード値 Θ grdを設定すること により、バルブタイミングの変更量を制限するようにしている。
[0047] 以下、第 1実施形態と共通する点については説明を省略し、両実施形態の相違点 、特にバルブタイミング変更処理の流れを中心に説明する。
図 8は、この実施形態におけるバルブタイミング変更処理を示すフローチャートであ る。この処理は、第 1実施形態と同様に機関運転中に電子制御装置 50の制御部 51 により繰り返し実行される。
[0048] この一連の処理が開始されると、図 8に示されるように、まず、ステップ S200におい て、油温 THOが推定される。油温 THOの推定は、上記第 1実施形態におけるステツ プ S100と同様に電子制御装置 50の記憶部 52に記憶された図 4に示される演算用 のマップを参照して行われる。
[0049] ステップ S200において油温 THOが推定されると、制御部 51はステップ S210に進 み、ガード値演算用マップを参照して進角量ガード値 Θ grdを算出する。ガード値演 算用マップは、図 9に示されるように機関回転速度 NEが低いほど、また作動油の油 温 THOが高いほど進角量ガード値 Θ grdが小さくなるように設定されている。このガ ード値演算用マップも他の演算用マップと同様、電子制御装置 50の記憶部 52に記 憶されている。
[0050] そして、このガード値演算用マップを参照することにより、例えばエンジン 10の各摺 動部位からの作動油の漏出量が比較的少ない油温 THOが 110°C以下の場合には 、機関回転速度 NEが Nl , N2, N3 (N1 < N2< N3)のいずれの場合であっても進 角量ガード値 Θ grdがバルブタイミング変更機構 30の最大進角量である「40° CAJ に設定される。即ちこの場合、進角量の制限は実質的には行われない。
[0051] 油温 THOが 110°Cより高ぐ 120°C以下の場合には、機関回転速度が N1のときに 進角量ガード値 Θ grdが「30° CAJに、機関回転速度 NEが N2のときに「35° CA」 に設定される。また、油温 THOが 120°Cより高ぐ 130°C以下の場合には、機関回転 速度 NEが Nl , N2のときに進角量ガード値 Θ grdが「15° CA」に設定される。そし て、油温 THOが 130°Cより高い場合には、機関回転速度 NEが Nl , N2のときに進 角量ガード値 Θ grdが「0° CA」に設定される。
[0052] 油温 THOが 110°Cより高!/、状態であっても、機関回転速度 NEが高!/、 (機関回転 速度 NE〉N3)ときには、オイルポンプ 40から吐出される作動油の量が多くバルブタ イミング変更機構 30の作動に必要な供給油圧が十分に確保されるようになるため、 進角量ガード値 Θ grdは「40° CAJに設定される。
[0053] このようにして進角量ガード値 Θ grdが算出されると、制御部 51はステップ S220へ と進み、上記第 1実施形態と同様に図 5に示される目標進角量演算用マップを参照 して目標進角量 Θ trgを算出する。
[0054] ステップ S220において目標進角量 Θ trgが算出されると、制御部 51はステップ 23 0に進み、 目標進角量 Θ trgが進角量ガード値 Θ grdよりも大きいか否かを判定する。 ステップ S230にお!/、て目標進角量 Θ trgが進角量ガード値 Θ grdよりも大き!/、と判定 された場合には、制御部 51はステップ S240へと進み、この算出された目標進角量 Θ trgが進角量ガード値 Θ grdを上限として再設定される。ステップ 230において目 標進角量 Θ trgが進角量ガード値 Θ grd以下であると判定された場合には、制御部 5 1はステップ S240をスキップして、ステップ S250へと進む。このようにステップ S220 〜S240を通じて目標進角量 Θ trgが設定されると、制御部 51はステップ S250に進 み、実際の進角量 Θを目標進角量 Θ trgと一致させるようにバルブタイミング変更機 構 30を駆動する。
[0055] ステップ S250においてバルブタイミング変更機構 30が駆動され実際の進角量 Θと 目標進角量 Θ trgとの偏差が所定量以下になるとこの処理は一旦終了される。
上記一連の処理 (ステップ S200〜ステップ S250)が所定の周期で繰り返されるこ とにより、吸気バルブのバルブタイミングが変更される。
[0056] 上記第 2実施形態によれば、第 1実施形態において記載した(2)及び(3)の利点に 加えて以下の利点を得ることができる。
(4)進角量ガード値 Θ grdが設定され、機関回転速度 NEが低回転域にあり且つ作 動油の油温 THOが高いときに目標進角量 Θ trgが制限されるため、バルブタイミング の変更量が制限される。そのため、不十分な作動油の油圧に基づいてバルブタイミ ング変更機構 30を駆動することに起因するバルブタイミングのハンチング等、バルブ タイミングを制御する際の制御不安定化を抑制することができる。
[0057] (5)また、油温 THOが高いときほど進角量ガード値 Θ grdが小さな値に設定される ため、作動油の粘性が低下して作動油が供給される各部位における漏出量、換言す れば、バルブタイミング変更機構 30における作動油油圧の不足度合に即した態様を もって目標進角量 Θ trgを設定することができる。このため、バルブタイミングを制御 する際の制御不安定化を一層好適に抑制することができる。
[0058] (6)更に、機関回転速度 NEが低いときほど、進角量ガード値 Θ grdが小さな値に 設定されるため、オイルポンプ 40から吐出される作動油の量、換言すれば、バルブタ イミング変更機構 30における作動油油圧の不足度合に即した態様をもって目標進 角量 Θ trgを設定することができる。このため、バルブタイミングを制御する際の制御 不安定化を一層好適に抑制することができる。
[0059] 上記第 2実施形態は、これを適宜変更した以下の形態にて実施することもできる。
機関回転速度 NEと作動油の油温 THOとに基づいて進角量ガード値 Θ grdを設定 し、同進角量ガード値 Θ grdを機関回転速度 NEが低いときほど、また作動油の油温 THOが高いときほど小さな値に設定する構成を示した力 この発明はこうした構成に 限定されるものではない。即ち、機関回転速度 NEが低回転域にあり且つ作動油の 油温 THOが高いときにバルブタイミングの変更量を制限することができる構成であれ ばよい。例えば機関回転速度 NEが一定の回転速度未満の場合には、作動油の油 温 THOが高いほど進角量ガード値 Θ grdが小さく設定される構成や、作動油の油温 THOが一定の油温以上の場合には、機関回転速度 NEが低いほど進角量ガード値 Θ grdが小さく設定される構成を採用することもできる。 [0060] 上記第 1及び第 2実施形態は、これを適宜変更した以下の形態にて実施することも できる。
上記各実施形態では、水温センサ 60によって検出された機関冷却水温 THW及び ェアフロメータ 62によって検出された直近の所定期間での吸入空気量 GAの積算値 ∑GAに基づいて作動油の油温 THOが推定される。これに対して、吸入空気量 GA の積算値∑GAに替えて、燃料噴射量の積算値等、吸入空気量 GAの積算値∑GA と高い相関を有して変化する機関制御量を利用して油温 THOを算出してもよい。
[0061] 油温検出部として、図 1に破線で示されるように油温 THOを直接検出する油温セン サ 63を設けてもよい。
上記各実施形態では、この発明を吸気バルブのバルブタイミングを変更するバノレ ブタイミング変更機構 30の制御装置として具体化した例を示した力 S、この発明はこう した構成に限定されるものではな!/、。即ち、吸気側及び排気側の双方にバルブタイミ ング変更機構を設け、吸気バルブ及び排気バルブのバルブタイミングをそれぞれ変 更する構成や、排気側にバルブタイミング変更機構を設け、排気バルブのバルブタ イミングのみを変更する構成にあってもこの発明を適用することができる。
[0062] 吸気側及び排気側の双方にバルブタイミング変更機構を設けた内燃機関にこの発 明を適用する場合にあっては、吸気側及び排気側のバルブタイミング変更機構のう ち一方の作動量を制限することにより、他方を駆動するための油圧を確保することが できる。そのため、一方の駆動を優先させるベぐその変更量の制限態様に差を設け る構成や、吸気側及び排気側のうち一方のバルブタイミング変更機構における変更 量を制限する構成を採用することもできる。
[0063] 吸気側と排気側のバルブタイミング変更機構における変更量の制限態様に差を設 ける構成を採用する場合には、機関出力等に与える影響の大きな吸気側のバルブタ イミング変更機構を優先的に作動させるベく、排気側のバルブタイミング変更機構に おける変更量が吸気側よりも大きく制限される制限態様に設定することが望ましい。
[0064] 上記各実施形態では、機関バルブのバルブ特性値を変更する変更機構の一例と して、バルブタイミングを機関運転状態に応じて適切なタイミングに変更するバルブタ イミング変更機構 30を示した。この発明に力、かる内燃機関のバルブ特性制御装置が 対象とする変更機構は、こうした構成に限られるものではなぐ機関駆動式のオイノレ ポンプから供給される作動油の供給油圧を利用してバルブ特性を変更する変更機 構であればよい。即ち、同変更機構は、閉弁タイミング、開弁タイミング、開弁期間、 最大リフト量、吸気バルブ及び排気バルブの各開弁期間のオーバラップ期間といつ た個々のパラメータ、或いは閉弁タイミング及び開弁タイミング、開弁期間及び最大リ フト量等々、これらパラメータを組み合わせたものを変更してもよい。

Claims

請求の範囲
[1] 内燃機関のバルブ特性制御装置であって、該装置は、
前記機関によつて駆動される油圧ポンプと、
前記油圧ポンプから供給される作動油の油圧に基づいて前記機関のバルブのバ ルブ特性値を変更する変更機構と、
前記変更機構を駆動して前記バルブのバルブ特性値を目標値に制御する制御部 とを有し、
前記制御部は、機関回転速度を含む複数の機関制御値に基づいて前記バルブ特 性値の目標値を算出するために用いられる演算用マップを記憶する記憶部と、作動 油の温度を検出する検出部とを含み、前記演算用マップは、機関制御値に対するバ ルブ特性値の関係を設定した第 1のマップ及び第 2のマップを含み、第 2のマップで は、機関回転速度の低回転域にお!、て、機関制御値の変化に対応するバルブ特性 値の変更量が前記第 1のマップと比較して小さく設定されており、
前記制御部は、前記検出される作動油の温度が相対的に高いときに、前記演算用 マップを前記第 1のマップから前記第 2のマップに切り替える装置。
[2] 内燃機関のバルブ特性制御装置であって、該装置は、
前記機関によつて駆動される油圧ポンプと、
前記油圧ポンプから供給される作動油の油圧に基づいて前記機関のバルブのバ ルブ特性値を変更する変更機構と、
前記変更機構を駆動して前記バルブのバルブ特性値を目標値に制御する制御部 とを有し、
前記制御部は、機関制御値に基づ!/、て前記バルブ特性値の目標値を算出するた めに用いられる演算用マップを記憶する記憶部と、作動油の温度を検出する検出部 とを含み、前記演算用マップは、機関制御値に対するバルブ特性値の関係を設定し た第 1のマップ及び第 2のマップを含み、第 2のマップでは、機関制御値の変化に対 応するバルブ特性値の変更量が前記第 1のマップと比較して小さく設定されており、 前記制御部は、機関回転速度が低回転域にあり且つ前記検出される作動油の温 度が相対的に高いときに、前記演算用マップを前記第 1のマップから前記第 2のマツ プに切り替える装置。
[3] 内燃機関のバルブ特性制御装置であって、該装置は、
前記機関によつて駆動される油圧ポンプと、
前記油圧ポンプから供給される作動油の油圧に基づいて前記機関のバルブのバ ルブ特性値を変更する変更機構と、
前記変更機構を駆動して前記バルブのバルブ特性値を目標値に制御する制御部 とを有し、
前記制御部は作動油の温度を検出する検出部を含み、前記制御部は、機関回転 速度が低回転域にあり且つ前記検出される作動油の温度が相対的に高いときに、バ ルブ特性値の変更量を制限するように、前記変更機構を通じてバルブ特性値を制御 する装置。
[4] 前記制御部は前記検出される作動油の温度が相対的に高くなるほど前記変更量 力 S小さくなるように該変更量を制限する請求項 3に記載の装置。
[5] 前記制御部は機関回転速度が相対的に低いときほど前記変更量が小さくなるよう に該変更量を制限する請求項 3又は請求項 4に記載の装置。
[6] 前記検出部は、機関冷却水温及び直近の所定期間での吸入空気量の積算値の 少なくとも一方に基づいて、作動油の温度を推定する請求項;!〜 5のいずれか一項 に記載の装置。
[7] 前記内燃機関は変速比を連続的に変更する無段変速機を介して駆動力を車両駆 動系に伝達する請求項;!〜 6のいずれか一項に記載の装置。
PCT/JP2007/074398 2006-12-21 2007-12-19 内燃機関のバルブ特性制御装置 WO2008075704A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07850868.6A EP2093402B1 (en) 2006-12-21 2007-12-19 Valve performance controller for internal combustion engine
US12/514,605 US8055430B2 (en) 2006-12-21 2007-12-19 Valve performance controller for internal combustion engine
CN200780046858XA CN101573518B (zh) 2006-12-21 2007-12-19 内燃发动机的气门特性控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006344762A JP4656052B2 (ja) 2006-12-21 2006-12-21 内燃機関のバルブ特性制御装置
JP2006-344762 2006-12-21

Publications (1)

Publication Number Publication Date
WO2008075704A1 true WO2008075704A1 (ja) 2008-06-26

Family

ID=39536331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074398 WO2008075704A1 (ja) 2006-12-21 2007-12-19 内燃機関のバルブ特性制御装置

Country Status (5)

Country Link
US (1) US8055430B2 (ja)
EP (1) EP2093402B1 (ja)
JP (1) JP4656052B2 (ja)
CN (1) CN101573518B (ja)
WO (1) WO2008075704A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010062457A1 (en) * 2008-11-26 2010-06-03 Caterpillar Inc. Engine control system having speed-based timing

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2561158C1 (ru) * 2011-08-30 2015-08-27 Тойота Дзидося Кабусики Кайся Уплотнительное устройство для гидравлического контура
DE102012201560B4 (de) * 2012-02-02 2019-02-21 Schaeffler Technologies AG & Co. KG Volumenspeicherausführung in einer Nockenwellenverstellvorrichtung
JP5966999B2 (ja) 2013-03-29 2016-08-10 マツダ株式会社 多気筒エンジンの制御装置
US10202911B2 (en) * 2013-07-10 2019-02-12 Ford Global Technologies, Llc Method and system for an engine for detection and mitigation of insufficient torque
JP6267553B2 (ja) 2014-03-20 2018-01-24 日立オートモティブシステムズ株式会社 可変動弁機構の制御装置及び制御方法
KR101567225B1 (ko) * 2014-06-25 2015-11-06 현대자동차주식회사 이원적 중간위상 제어방법을 적용한 중간위상 연속 가변 밸브 제어 시스템
EP3431740A4 (en) * 2016-03-14 2019-10-09 Niigata Power Systems Co., Ltd. MOTOR SYSTEM AND CONTROL METHOD THEREFOR

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245406A (ja) * 1989-03-17 1990-10-01 Mazda Motor Corp エンジンのバルブタイミング制御装置
JPH09324612A (ja) 1996-04-03 1997-12-16 Toyota Motor Corp 内燃機関の可変バルブタイミング機構
JPH10227235A (ja) 1997-02-13 1998-08-25 Denso Corp 内燃機関用バルブタイミング制御装置
JP2000204982A (ja) * 1999-01-12 2000-07-25 Mitsubishi Motors Corp カム位相可変装置
JP2001241338A (ja) * 2000-02-28 2001-09-07 Toyota Central Res & Dev Lab Inc 内燃機関のバルブタイミング調整装置
JP2002038979A (ja) * 2000-07-24 2002-02-06 Toyota Motor Corp 内燃機関の運転制御装置
US20020139333A1 (en) 2001-03-29 2002-10-03 Shigeyuki Kusano Apparatus for controlling valve timing of engine
JP2004092534A (ja) * 2002-08-30 2004-03-25 Toyota Motor Corp 内燃機関の可変バルブタイミング機構の制御装置
JP2005299547A (ja) * 2004-04-14 2005-10-27 Denso Corp 内燃機関の可変バルブ制御装置
JP2006329023A (ja) * 2005-05-25 2006-12-07 Mazda Motor Corp エンジンの吸気制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2051220A1 (de) * 1970-10-19 1972-04-20 Robert Bosch Gmbh, 7000 Stuttgart Steuerung von Ein- und Auslaßventilen bei Brennkraftmaschinen durch Flüssigkeit
JP2793723B2 (ja) 1991-02-12 1998-09-03 東京瓦斯株式会社 燃焼装置
JPH11193627A (ja) 1998-01-06 1999-07-21 Nikko Planning Kk 足場板
IT1302071B1 (it) * 1998-02-26 2000-07-20 Fiat Ricerche Motore a combustione interna con valvole ad azionamento variabile.
ITTO20010269A1 (it) * 2001-03-23 2002-09-23 Fiat Ricerche Motore a combustione interna, con sistema idraulico di azionamento variabile delle valvole, e mezzi di compensazione delle variazioni di vol
JP2003129875A (ja) 2001-10-26 2003-05-08 Toyota Motor Corp 車両の制御装置
JP4078828B2 (ja) 2001-11-14 2008-04-23 日産自動車株式会社 内燃機関の制御装置
JP3750936B2 (ja) * 2002-04-25 2006-03-01 三菱電機株式会社 内燃機関のバルブタイミング制御装置
DE10239118A1 (de) * 2002-08-27 2004-03-04 Robert Bosch Gmbh Vorrichtung zur Steuerung mindestens eines Gaswechselventils einer Brennkraftmaschine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245406A (ja) * 1989-03-17 1990-10-01 Mazda Motor Corp エンジンのバルブタイミング制御装置
JPH09324612A (ja) 1996-04-03 1997-12-16 Toyota Motor Corp 内燃機関の可変バルブタイミング機構
JPH10227235A (ja) 1997-02-13 1998-08-25 Denso Corp 内燃機関用バルブタイミング制御装置
JP2000204982A (ja) * 1999-01-12 2000-07-25 Mitsubishi Motors Corp カム位相可変装置
JP2001241338A (ja) * 2000-02-28 2001-09-07 Toyota Central Res & Dev Lab Inc 内燃機関のバルブタイミング調整装置
JP2002038979A (ja) * 2000-07-24 2002-02-06 Toyota Motor Corp 内燃機関の運転制御装置
US20020139333A1 (en) 2001-03-29 2002-10-03 Shigeyuki Kusano Apparatus for controlling valve timing of engine
JP2004092534A (ja) * 2002-08-30 2004-03-25 Toyota Motor Corp 内燃機関の可変バルブタイミング機構の制御装置
JP2005299547A (ja) * 2004-04-14 2005-10-27 Denso Corp 内燃機関の可変バルブ制御装置
JP2006329023A (ja) * 2005-05-25 2006-12-07 Mazda Motor Corp エンジンの吸気制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010062457A1 (en) * 2008-11-26 2010-06-03 Caterpillar Inc. Engine control system having speed-based timing
US8113173B2 (en) 2008-11-26 2012-02-14 Caterpillar Inc. Engine control system having speed-based timing

Also Published As

Publication number Publication date
US20100313833A1 (en) 2010-12-16
JP2008157066A (ja) 2008-07-10
US8055430B2 (en) 2011-11-08
JP4656052B2 (ja) 2011-03-23
CN101573518B (zh) 2012-07-18
EP2093402B1 (en) 2018-09-05
EP2093402A4 (en) 2011-04-06
CN101573518A (zh) 2009-11-04
EP2093402A1 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
WO2008075704A1 (ja) 内燃機関のバルブ特性制御装置
KR100342840B1 (ko) 내연기관의 밸브타이밍 제어장치
US7470211B2 (en) Variable valve system of internal combustion engine and control method thereof
EP1686253A2 (en) Intake air amount control apparatus and intake air amount control method for internal combustion engine
RU2006140408A (ru) Контроллер двигателей внутреннего сгорания
US20080135002A1 (en) Controller for internal combustion engine and method for variable valve timing control for the same
WO2008016052A1 (fr) Dispositif de commande de véhicule
US20090254263A1 (en) Apparatus for and method of controlling fuel injection of engine
JP2007009807A (ja) 内燃機関の制御装置
JP2018003795A (ja) 可変容量式オイルポンプの制御装置及び制御方法
JP2005188293A (ja) 内燃機関の燃料噴射制御装置
JP4415509B2 (ja) 内燃機関の制御装置
JP5026446B2 (ja) 内燃機関の制御装置
JP4228170B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP5249814B2 (ja) 可変動弁機構の制御装置
US9670800B2 (en) Control apparatus and control method for variable valve mechanism
JP3975642B2 (ja) エンジンの出力制御装置
JP2011007114A (ja) 内燃機関の油温推定装置
JP2010077813A (ja) 内燃機関の制御装置
JP2010116816A (ja) 内燃機関の制御装置
JP2016011609A (ja) 内燃機関の制御装置
JP5104607B2 (ja) 内燃機関の排気再循環装置
JP2005061223A (ja) 内燃機関の制御装置
JP5287278B2 (ja) ハイブリッド車両の燃料噴射制御装置
JP2012136947A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780046858.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850868

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007850868

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12514605

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)