WO2008069033A1 - 改質装置及びその運転方法 - Google Patents

改質装置及びその運転方法 Download PDF

Info

Publication number
WO2008069033A1
WO2008069033A1 PCT/JP2007/072732 JP2007072732W WO2008069033A1 WO 2008069033 A1 WO2008069033 A1 WO 2008069033A1 JP 2007072732 W JP2007072732 W JP 2007072732W WO 2008069033 A1 WO2008069033 A1 WO 2008069033A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
temperature
evaporator
flow path
cylindrical tube
Prior art date
Application number
PCT/JP2007/072732
Other languages
English (en)
French (fr)
Inventor
Naohiko Matsuda
Katsuki Yagi
Keiji Tanizaki
Akira Goto
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd., Nippon Oil Corporation filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to CA2667389A priority Critical patent/CA2667389C/en
Priority to US12/514,494 priority patent/US8404007B2/en
Priority to CN2007800420364A priority patent/CN101535173B/zh
Priority to KR1020097010628A priority patent/KR101133477B1/ko
Publication of WO2008069033A1 publication Critical patent/WO2008069033A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • C01B2203/1294Evaporation by heat exchange with hot process stream

Definitions

  • the present invention relates to a reformer and an operation method thereof.
  • the reformer has a panner and a reforming catalyst layer, and circulates a mixture formed by mixing raw materials such as kerosene and methane gas and water through the reforming catalyst layer and uses the heating gas of the panner to By heating the reforming catalyst layer, the raw material is steam reformed to generate a reformed gas (hydrogen rich gas) containing hydrogen gas.
  • This reformed gas is used, for example, as fuel for fuel cells.
  • Patent Document 1 there is one disclosed in Patent Document 1 below, for example.
  • the raw fuel (raw material) is vaporized by the raw fuel vaporizer built in the reformer.
  • a plurality of reforming tubes filled with the reforming catalyst are arranged around the perner. That is, the reforming tube is a multi-tube type.
  • the heating gas of the PANAN flows into the vacuum insulation container without supplying the mixture to the reforming tube, so that the low-temperature shift converter and the selection in the vacuum insulation container are selected.
  • the temperature of the oxidized CO remover is heated from the outer peripheral side.
  • Patent Document 2 Also, as a conventional example of a reformer, there is one described in Patent Document 2.
  • This patent text In item 2, the mixture of the raw material and water (liquid) is evaporated in an evaporation section having a spiral flow path, and then reformed with steam in the reforming section to generate a reformed gas. Quality equipment is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-327405
  • Patent Document 2 Japanese Patent No. 3719931
  • Vacuum insulation containers are expensive to manufacture.
  • a reforming tube at about 800 ° C is insulated, the amount of degassing from the metal forming the vacuum insulation container increases due to the high temperature, and the vacuum maintenance life is significantly reduced.
  • a shielding plate or the like inside the vacuum heat insulation container to prevent radiant heat transfer since it is necessary to install a shielding plate or the like inside the vacuum heat insulation container to prevent radiant heat transfer, the structure of the apparatus becomes complicated and the apparatus becomes expensive.
  • the reforming temperature in the reforming tube (reforming catalyst layer) is high and the concentration of CO contained in the reformed gas is high (for example, Reforming catalyst temperature 650 ° C, CO concentration ll% dry, reforming catalyst temperature 750 ° C, CO concentration 15% dry).
  • the concentration of CO contained in the reformed gas for example, Reforming catalyst temperature 650 ° C, CO concentration ll% dry, reforming catalyst temperature 750 ° C, CO concentration 15% dry.
  • the temperature of the low-temperature CO shift catalyst rises due to the heat generated by the CO shift reaction (CO + H 0 ⁇ H + CO). Reduce the life of the CO shift catalyst. This is because the low temperature CO shift catalyst has an operating temperature of 200 ° C to 250 ° C, while the heat resistant temperature is 300 ° C, and the operating temperature and heat resistant temperature are close to each other!
  • Patent Document 1 states that a methanation-type CO removal catalyst is used. However, since the reaction temperature range is narrow for methanation, the temperature is not controlled by cooling with heated gas, and CO is removed. It may be difficult to do.
  • the present invention enables uniform mixing with water (steam) and a temperature even if the raw material is a liquid fuel such as kerosene and carbon is likely to precipitate. Carbon deposition can be prevented without the need for a control device, and water and mixtures can be efficiently heated with a heated gas. It is an object to provide a simple reformer and an operation method thereof. Means for solving the problem
  • the reformer of the first invention that solves the above-mentioned problems is a reformer that has a reforming catalyst layer and generates a reformed gas containing hydrogen.
  • a first evaporator having a first flow path for flowing water, and a second evaporation having a second flow path for flowing a mixture of water vapor and raw material.
  • a raw material mixing part provided in the middle of the pipe,
  • the first evaporator is arranged outside and the second evaporator is arranged concentrically inside, and a cylindrical gap between the first evaporator and the second evaporator serves as a heating gas flow path, In the first evaporator, the water flowing through the first flow path is heated by the heated gas flowing through the heated gas flow path to become water vapor,
  • the raw material is mixed with the water vapor flowing out of the first flow path and flowing through the pipe to obtain the mixture
  • the mixture when the mixture flows through the second flow path, the mixture is further heated by the heated gas flowing through the heated gas flow path,
  • the mixture is supplied to the reforming catalyst layer.
  • the reformer of the second invention is a reformer that has a reforming catalyst layer and generates a reformed gas containing hydrogen.
  • a first evaporator having a cylindrical shape and having a first flow path for circulating a mixture of water vapor and raw material
  • a second evaporator having a second flow path for flowing the water, and a pipe connecting the outlet of the second flow path and the inlet of the first flow path;
  • a raw material mixing part provided in the middle of the pipe,
  • the first evaporator is arranged outside and the second evaporator is arranged concentrically inside, and a cylindrical gap between the first evaporator and the second evaporator serves as a heating gas flow path, In the second evaporator, the water flowing through the second flow path is heated by the heated gas flowing through the heated gas flow path to become water vapor,
  • the raw material is mixed with the water vapor flowing out of the second flow path and flowing through the pipe to obtain the mixture
  • the mixture when the mixture flows through the first flow path, the mixture is further heated by the heated gas flowing through the heated gas flow path,
  • the mixture is supplied to the reforming catalyst layer.
  • the reformer of the third invention is the reformer of the first or second invention
  • a low-temperature CO shift catalyst layer is disposed inside the second evaporator.
  • the reformer of the fourth invention is the reformer of the third invention
  • the reforming pipe containing the reforming catalyst layer is disposed above the first evaporator and the second evaporator, and the mixture flowing out from the second flow path of the second evaporator, or
  • the mixture that has flowed out of the first flow path of the first evaporator flows from the lower end of the reforming catalyst layer and is steam reformed while flowing upward through the reforming catalyst layer.
  • This reformed gas flows out from the upper end of the reforming catalyst layer and flows downward, flows into the low temperature CO shift catalyst layer from the upper end, and flows downward through the low temperature CO shift catalyst layer. It is characterized by having a configuration.
  • the reformer of the fifth invention is the reformer of the fourth invention
  • a panner for generating the heated gas is arranged downward on the upper end side of the reforming pipe.
  • the reformer of the sixth invention is the reformer of the third invention
  • a CO removal catalyst layer is provided in a cylindrical shape so as to surround the first evaporator, and the reformed gas that has flowed out of the low temperature CO shift catalyst layer flows through the CO removal catalyst layer. It is characterized by.
  • the reformer of the seventh invention is the reformer of the third or fourth invention, A high temperature CO shift catalyst layer is provided in front of the low temperature CO shift catalyst layer,
  • the reformed gas that has flowed out of the reforming catalyst layer flows through the high temperature CO shift catalyst layer and then flows through the low temperature CO shift catalyst layer.
  • the reformer of the eighth invention is the reformer of the fifth invention
  • a reforming portion cylindrical tube disposed so as to surround the reforming tube
  • the reforming tube is a triple tube comprising an inner cylindrical tube arranged concentrically, an outer cylindrical tube on the outer side, and an intermediate cylindrical tube between these inner cylindrical tube and outer cylindrical tube. It has a structure and is arranged so as to surround the perner,
  • the lower end side of the inner cylindrical tube is closed by a lower end plate
  • the upper end side between the inner cylindrical tube and the outer cylindrical tube is closed by a first upper end plate, and the gap between the first upper end plate and the upper end of the intermediate cylindrical tube is turned over by the reformed gas.
  • a cylindrical gap between the intermediate cylindrical tube and the inner cylindrical tube is used as a reformed gas flow path, and the reforming catalyst layer is cylindrical between the intermediate cylindrical tube and the outer cylindrical tube.
  • the reforming section cylindrical tube is closed at the upper end side by a second upper end plate, and a gap between the second upper end plate and the first upper end plate is used as a heated gas turn-up section,
  • a cylindrical gap between the reforming portion cylindrical tube and the outer cylindrical tube is used as a heating gas flow path, and the heated gas exhausted downward from the panner follows the inner peripheral surface of the inner cylindrical tube.
  • the reforming catalyst layer is heated while flowing upward and flowing back through the heated gas flow path and flowing down the heated gas flow path, and then between the first evaporator and the second evaporator. While flowing into the heated gas flow path,
  • the reformed gas that has flowed out from the upper end of the reforming catalyst layer is folded at the reformed gas folding portion, flows downward in the reformed gas flow path, and flows into the low temperature CO shift catalyst layer from the upper end. It is characterized by that.
  • the reformer of the ninth invention is the reformer of the first or second invention
  • the first flow path and the second flow path are both formed in a spiral shape.
  • the reformer of the tenth invention is the reformer of the first or second invention
  • the first evaporator has a double-pipe structure in which a cylindrical tube is fitted to the outer peripheral surface side of a corrugated tube having a spiral irregularity formed on the tube surface, and the corrugated tube, the cylindrical tube, Formed during The spiral gap made is the first flow path,
  • the second evaporator has a double-pipe structure in which another cylindrical tube is fitted on the outer peripheral surface side of another corrugated tube having a spiral unevenness formed on the tube surface, and the other corrugated tube A spiral gap formed between a pipe and the other cylindrical pipe serves as the second flow path.
  • the reformer of the eleventh invention is the reformer of the third or sixth invention.
  • the low temperature CO shift catalyst layer is provided inside the cylindrical tube,
  • a cylindrical gap between the cylindrical tube and the second evaporator is used as a reformed gas channel, and the reformed gas flowing out of the reforming catalyst layer flows through the reformed gas channel. After the temperature has decreased due to heat exchange with the mixture or water flowing through the second flow path of the second evaporator, it flows into the inside of the cylindrical tube from the flow hole provided in the cylindrical tube. It is characterized by having a configuration in which a low-temperature CO shift catalyst layer is distributed.
  • the reformer of the twelfth invention is the reformer of the third or sixth invention.
  • the low temperature CO shift catalyst layer is provided in a cylindrical shape between a first cylindrical tube disposed inside the second evaporator and a second cylindrical tube disposed inside the first cylindrical tube,
  • a cylindrical gap between the first cylindrical tube and the second evaporator is a first reformed gas channel, and an inner side of the second cylindrical tube is a second reformed gas channel,
  • the second evaporator While the reformed gas flowing out from the reforming catalyst layer flows through the first reformed gas channel from one end side to the other end side of the low-temperature CO shift catalyst layer, the second evaporator The temperature is lowered by heat exchange with the mixture or the water flowing through two flow paths, and is folded at the reformed gas folding portion on the other end side of the low-temperature CO shift catalyst layer, and the other end side of the low-temperature CO shift catalyst layer After the temperature rises due to heat exchange with the low-temperature CO shift catalyst layer while flowing through the second reformed gas flow path from the one end to the one end side, the first through the flow hole provided in the second cylindrical tube. It is characterized in that it flows between the one cylindrical tube and the second cylindrical tube and flows through the low-temperature CO shift catalyst layer.
  • the reformer of the thirteenth aspect of the invention is the reformer of the eighth aspect of the invention.
  • the low-temperature CO shift catalyst layer includes a first cylindrical tube disposed inside the second evaporator and a first cylindrical tube.
  • a cylindrical gap between the first cylindrical tube and the second evaporator is provided between the first cylindrical tube and the second cylindrical tube disposed inside the first cylindrical tube.
  • the inside of the second cylindrical tube is a second reformed gas flow path
  • the second evaporator While the reformed gas flowing out from the reforming catalyst layer flows through the first reformed gas channel from one end side to the other end side of the low-temperature CO shift catalyst layer, the second evaporator The temperature is lowered by heat exchange with the mixture or the water flowing through two flow paths, and is folded at the reformed gas folding portion on the other end side of the low-temperature CO shift catalyst layer, and the other end side of the low-temperature CO shift catalyst layer After the temperature rises due to heat exchange with the low-temperature CO shift catalyst layer while flowing through the second reformed gas flow path from the one end to the one end side, the first through the flow hole provided in the second cylindrical tube. It is characterized in that it flows between the one cylindrical tube and the second cylindrical tube and flows through the low-temperature CO shift catalyst layer.
  • the reformer of the fourteenth invention is the reformer of the fourth or eighth invention.
  • the high-temperature CO shift catalyst is arranged in a region where the reformed gas flows above the low-temperature CO shift catalyst layer inside the reforming pipe containing the reforming catalyst layer.
  • the reformer of the fifteenth invention is the reformer of the third or sixth invention.
  • the low temperature CO shift catalyst layer is provided in a cylindrical shape between a first cylindrical tube disposed inside the second evaporator and a second cylindrical tube disposed inside the first cylindrical tube.
  • a high temperature CO shift catalyst layer is provided in a cylindrical shape between the first cylindrical tube and the second cylindrical tube and above the low temperature CO shift catalyst layer;
  • a cylindrical gap between the first cylindrical tube and the second evaporator is a first reformed gas channel, and an inner side of the second cylindrical tube is a second reformed gas channel,
  • the reformed gas that has flowed out of the reforming catalyst layer flows downward through the first reformed gas channel from the upper end side of the high temperature CO shift catalyst layer toward the lower end side of the low temperature CO shift catalyst layer.
  • the temperature decreases due to heat exchange with the mixture or the water flowing through the second flow path of the second evaporator, and is folded at the reformed gas folding portion on the lower end side of the low-temperature CO shift catalyst layer.
  • the high temperature CO shift catalyst layer After the temperature rises due to heat exchange between the low-temperature CO shift catalyst layer and the high-temperature CO shift catalyst layer while flowing upward through the second reformed gas passage toward the upper end side, the second reforming is performed.
  • the reformer of the sixteenth invention is the reformer of the eleventh invention
  • the heated gas is sucked by the pump, moisture is removed by the condenser, introduced into the upper end side of the O adsorption catalyst layer by the heated gas introduction pipe, and then folded.
  • O in the heated gas is removed to generate an O-less gas
  • Part of this O-less gas flows through the low-temperature CO shift catalyst layer and discharges water vapor remaining in the low-temperature CO shift catalyst layer, or passes through the low-temperature CO shift catalyst layer and the CO removal catalyst layer in order.
  • the water vapor remaining in the low temperature CO shift catalyst layer and the CO removal catalyst layer is discharged,
  • the remainder of the o-less gas flows out from the flow hole provided in the cylindrical tube, and then flows through the reforming catalyst layer to discharge water vapor remaining in the reforming catalyst layer. To do.
  • the reformer of the seventeenth invention is the reformer of the fifteenth invention
  • first cylindrical tube and the second cylindrical tube it is arranged in a cylindrical shape, and is located between the low temperature CO shift catalyst layer and the high temperature CO shift catalyst layer on the low temperature CO shift catalyst layer side. And the 20th adsorption catalyst layer located on the high temperature CO shift catalyst layer side,
  • a heated gas introduction pipe penetrating the low temperature CO shift catalyst layer and the lO adsorption catalyst layer;
  • the heated gas is sucked by the pump, moisture is removed by the condenser, and introduced between the lO adsorption catalyst layer and the twentieth adsorption catalyst layer by the heated gas introduction pipe.
  • a part of the heated gas introduced between the first lO adsorption catalyst layer and the twentieth adsorption catalyst layer is folded back and circulated through the first lO adsorption catalyst layer to remove O in the heated gas.
  • O-less gas is generated, and the O-less gas flows through the low-temperature CO shift catalyst layer to discharge water vapor remaining in the low-temperature CO shift catalyst layer, or the low-temperature CO shift catalyst layer and the CO removal catalyst layer.
  • the remainder of the heated gas introduced between the lOth adsorption catalyst layer and the twentieth adsorption catalyst layer is made to flow through the twentieth adsorption catalyst layer, thereby removing O in the heated gas and removing O-less gas.
  • the O-less gas flows through the high-temperature CO shift catalyst layer and flows out from the reformed gas turn-up portion at the end of the second reformed gas flow path, and then flows through the reforming catalyst layer. It is characterized in that water vapor remaining in the high temperature CO shift catalyst layer and the reforming catalyst layer is discharged.
  • the reforming device of the eighteenth invention is the reforming device of the fourth invention or the eighth invention, wherein the outlet of the second flow path of the second evaporator or the first of the first evaporator.
  • a cylindrical header tank is provided between the outlet of the flow path and the inlet of the reforming catalyst layer, and a plurality of ejection holes are formed in the circumferential direction on the side surface or upper surface of the header tank,
  • the jet It is characterized by being configured to be ejected from a hole and flow into the reforming catalyst layer from the inlet.
  • the reformer of the nineteenth invention is the reformer of the first invention or the fourth invention, wherein the outlet of the second flow path of the second evaporator or the first of the first evaporator.
  • a cleaning pipe connecting the outlet of the flow path and the inlet of the reforming catalyst layer;
  • a cleaning removal part attached detachably in the middle of the cleaning pipe. It flows through the second flow path of the evaporator and the first flow path of the first evaporator in order, or flows through the first flow path of the first evaporator and the second flow path of the second evaporator in order. It is characterized by having a configuration.
  • the reformer of the twentieth invention is the reformer of the first or second invention
  • the raw material mixing part has a double nozzle structure having an outer nozzle and an inner nozzle provided inside the outer nozzle,
  • the water vapor flowing out from the first flow path of the first evaporator or the water vapor flowing out from the second flow path of the second evaporator flows between the outer nozzle and the inner nozzle, and the raw material Is configured to distribute the inner nozzle,
  • the raw material flows between the outer nozzle and the inner nozzle and flows out of the water vapor flowing out of the first flow path of the first evaporator or the second flow path of the second evaporator. Further, the water vapor is configured to flow through the inner nozzle.
  • the reformer of the twenty-first invention is the reformer of the eighth invention.
  • a cylindrical heat insulating material is disposed so as to surround the reformer cylindrical tube.
  • the operation method of the reformer of the twenty-second invention is the operation method of the reformer of the eighth invention.
  • the water and the raw material are not supplied! / ⁇ state, and the heating gas of the panner is applied to the inner peripheral surface of the inner cylindrical tube of the reforming tube.
  • the first and second evaporators after being circulated upward and turned back at the heated gas turn-back portion and passed through the heated gas flow path outside the reforming pipe.
  • the heated gas causes the reformed pipe and the reforming catalyst layer, the first evaporator and the second evaporator, and the low-temperature CO shift.
  • the catalyst layer is heated in order to increase the temperature.
  • the reformer operation method according to the twenty-third invention is the reformer operation method according to the thirteenth invention, wherein the water and the raw material are used in the heating temperature raising operation when starting the reformer.
  • Will supply In a state where there is no gas the heated gas of the PANANER flows upward along the inner peripheral surface of the inner cylindrical tube of the reforming tube, and is turned back at the heated gas turn-up portion to be outside the reforming tube.
  • the heated gas passage is circulated downward, and then the heated gas passage between the first evaporator and the second evaporator is circulated downward. Heating the material pipe and the reforming catalyst layer, the first evaporator and the second evaporator, and the low-temperature CO shift catalyst layer in order,
  • the water is supplied and the first flow path of the first evaporator and the second flow path of the second evaporator are circulated in order, or the first 2
  • the flow through the heated gas flow path between the first evaporator and the second evaporator by passing the second flow path of the evaporator and the first flow path of the first evaporator in order.
  • Steam is generated by heating with a heated gas, and when the steam passes through the reforming catalyst layer and then sequentially flows through the first reformed gas channel and the second reformed gas channel,
  • the low temperature CO shift catalyst layer is heated to increase the temperature by condensing on the outer surface of the first cylindrical tube and the inner surface of the second cylindrical tube.
  • the operation method of the reformer of the twenty-fourth invention is the operation method of the reformer of the fifth or eighth invention.
  • the reformed gas temperature at the outlet of the reforming catalyst layer is measured, and the fuel supply amount to the burner is controlled so that the measured value of the reformed gas temperature becomes a predetermined temperature
  • the reformed gas temperature at the inlet of the low temperature CO shift catalyst layer is measured, and the air supply amount to the burner is controlled so that the measured value of the reformed gas temperature becomes a predetermined temperature.
  • the operation method of the reformer of the twenty-fifth aspect of the invention is the operation method of the reformer of the fifth or eighth aspect of the invention.
  • the reformed gas temperature at the outlet of the reforming catalyst layer is measured, and the fuel supply amount to the burner is controlled so that the measured value of the reformed gas temperature becomes a predetermined temperature
  • the temperature of the mixture at the outlet of the second flow path of the second evaporator, or of the first evaporator is measured, and the air supply amount to the burner is controlled so that the measured value of the mixture temperature becomes a predetermined temperature.
  • a first evaporator having a first flow path for flowing water and a cylindrical shape, and a mixture of water vapor and a raw material formed in a cylindrical shape.
  • a second evaporator having a second flow path for circulating the liquid, a pipe connecting the outlet of the first flow path and the inlet of the second flow path, and a raw material mixing section provided in the middle of the pipe.
  • the first evaporator is disposed on the outer side
  • the second evaporator is disposed concentrically on the inner side
  • a cylindrical gap between the first evaporator and the second evaporator is provided with a heated gas flow.
  • the hydraulic power that flows through the first flow path is heated by the heated gas that flows through the heated gas flow path, so that water vapor is generated.
  • the first flow The raw material is mixed with the water vapor flowing out from the passage and flowing through the pipe to obtain the mixture, and in the second evaporator, When the mixture flows through the second flow path, the mixture is further heated by the heated gas flowing through the heated gas flow path, and the mixture is supplied to the reforming catalyst layer. Therefore, the heated gas flowing through the heated gas flow path between the first evaporator and the second evaporator causes the water flowing through the first flow path of the first evaporator and the second evaporator to The mixture flowing through the second flow path can be efficiently heated.
  • the water vapor flowing out from the first flow path of the first evaporator has a higher flow rate (for example, about 50 m / s) than water (liquid) when flowing through the pipe. Therefore, since the raw material mixed in the raw material mixing section in the middle of the pipe can be well stirred and dispersed uniformly in the water vapor by this high flow rate water vapor, uniform mixing with the raw material is possible. is there. In this case, even if the raw material is a liquid fuel such as kerosene or the supply amount of the raw material is small, water vapor and the raw material can be mixed uniformly. Furthermore, in the second evaporator, the raw material is vaporized and heated while being accompanied by water vapor.
  • the reforming apparatus of the second invention is cylindrical and distributes a mixture of water vapor and raw material.
  • a first evaporator having a first flow path, a second evaporator having a second flow path for circulating water, and an outlet of the second flow path and the first
  • a pipe connecting the inlet of the flow path, and a raw material mixing section provided in the middle of the pipe, the first evaporator is disposed outside, and the second evaporator is disposed concentrically inside
  • a cylindrical gap between the first evaporator and the second evaporator is used as a heating gas flow path, and in the second evaporator, the water flowing through the second flow path is the heating gas flow path.
  • the heated gas flowing through the water When heated by the heated gas flowing through the water, it becomes water vapor, and in the raw material mixing section, the raw material is mixed with the water vapor flowing out from the second flow path and flowing through the pipe to obtain the mixture, and
  • the heating gas passage between the first evaporator and the second evaporator is circulated. The water flowing through the second flow path of the second evaporator and the mixture flowing through the first flow path of the first evaporator can be efficiently heated by the heated gas.
  • the water vapor flowing out of the second flow path of the second evaporator has a higher flow velocity (for example, about 50 m / s) when flowing through the pipe than water (liquid). Therefore, since the raw material mixed in the raw material mixing section in the middle of the pipe can be well stirred and dispersed uniformly in the water vapor by this high flow rate water vapor, uniform mixing with the raw material is possible. is there. In this case, even if the raw material is a liquid fuel such as kerosene or the supply amount of the raw material is small, water vapor and the raw material can be mixed uniformly. Furthermore, in the first evaporator, the raw material is vaporized and heated while being accompanied by water vapor.
  • a low temperature CO shift catalyst layer is disposed inside the second evaporator, so that the reformed gas flowing out from the reforming catalyst layer is cooled at a low temperature.
  • the mixture or water flowing through the second flow path of the second evaporator at this time absorbs heat generated by the CO shift reaction of the reformed gas in the low-temperature CO shift catalyst layer and absorbs the reformed gas. Cooling.
  • the second evaporator surrounds the low temperature CO shift catalyst layer, and the mixture or water flows through the second flow path of the second evaporator during the steady operation of the reformer, the low temperature CO shift.
  • the temperature of the catalyst layer is not increased by contact with the heated gas flowing through the heated gas flow path outside the second evaporator, and the mixture or water flowing through the second flow path of the second evaporator Absorption of heat generated by the CO shift reaction in the low-temperature CO shift catalyst layer can reliably cool the reformed gas. Therefore, it is possible to prevent the CO concentration in the reformed gas flowing out from the low-temperature CO shift catalyst layer from increasing due to insufficient cooling as in the prior art. Therefore, even when the reformed gas flowing out from the low temperature CO shift catalyst layer is further circulated through the CO removal catalyst layer, the supply amount of CO selective oxidation air to the CO removal catalyst layer can be reduced. Quality efficiency can be improved, and there is no need to use a methanation type CO removal catalyst that is difficult to control temperature.
  • the reforming pipe containing the reforming catalyst layer is disposed above the first evaporator and the second evaporator, and the second The mixture flowing out from the second flow path of the evaporator or the mixture flowing out from the first flow path of the first evaporator flows into the reforming catalyst layer from the lower end of the reforming catalyst layer. Steam is reformed into the reformed gas while flowing upward, and this reformed gas flows out from the upper end of the reforming catalyst layer and flows downward, and reaches the upper end of the low-temperature CO shift catalyst layer.
  • the low-temperature CO shift catalyst layer flows downward from the low-temperature CO shift catalyst layer, so that the reforming pipe, the first evaporator, the second evaporator, and the low-temperature CO shift catalyst layer are mixed with the mixture.
  • a rational and compact arrangement that takes into account the flow of reformed gas (heat exchange between mixture and reformed gas)! /, The
  • the panner for generating the heating gas is disposed downward on the upper end side of the reforming pipe, trouble occurs in the panner. In this case, it is possible to remove and maintain only the panner that does not turn over the reformer as before.
  • the parner can be made very short compared to the conventional long parner, so it is easy to handle and can be adjusted and replaced locally by manpower.
  • the CO removal catalyst layer is disposed around the first evaporator.
  • the reformed gas 1S that flows out from the low-temperature CO shift catalyst layer is provided in a cylindrical shape so as to surround the reformed gas 1S that flows out from the low-temperature CO shift catalyst layer.
  • the water or mixture flowing through the first flow path of the first evaporator absorbs the heat generated by the CO selective oxidation reaction of the reformed gas in the CO removal catalyst layer and cools the reformed gas. To do.
  • the first evaporator is interposed between the heated gas flow path and the CO removal catalyst layer, and water or a mixture flows through the first flow path of the first evaporator during the steady operation of the reformer. Therefore, the CO removal catalyst layer does not contact the heated gas flowing through the heated gas flow path inside the first evaporator and the temperature is not increased, and water flowing through the first flow path of the first evaporator or The mixture can absorb the heat generated by the CO selective oxidation reaction in the CO removal catalyst layer, and can reliably cool the reformed gas.
  • the CO removal catalyst in the CO removal catalyst layer is cooled to about the vaporization temperature of water and has high CO removal capability, so it is also necessary to use a methanation type CO removal catalyst that is difficult to control temperature.
  • a high-temperature CO shift catalyst layer is provided in front of the low-temperature CO shift catalyst layer, and the reformed gas flowing out of the reforming catalyst layer is After the CO shift catalyst layer is distributed, the low temperature CO shift catalyst layer is configured to be distributed, and the high temperature CO shift catalyst layer is composed of only the low temperature CO shift catalyst layer as the CO shift catalyst layer.
  • Power provided High-temperature CO shift catalyst has a high operating temperature and is heat-resistant, and because it has a high operating temperature, it can remove CO in a smaller amount than a low-temperature CO shift catalyst with a high reaction rate.
  • the CO concentration in the reformed gas after passing through the high-temperature CO shift catalyst layer becomes lower than the CO concentration in the reformed gas at a conventional 650 ° C level, for example. Therefore, even if this reformed gas flows into the low temperature CO shift catalyst layer, the temperature of the low temperature CO shift catalyst is increased due to the heat generated by the CO shift reaction, so that the life of the low temperature CO shift catalyst can be extended. Furthermore, if the temperature of the low-temperature CO shift catalyst is not raised, the outlet temperature of the low-temperature CO shift catalyst layer also decreases, so the CO concentration in the reformed gas flowing out from the low-temperature CO shift catalyst layer also decreases due to the equilibrium reaction. For this reason, when the reformed gas flowing out from the low temperature CO shift catalyst layer is further circulated through the CO removal catalyst layer, the load of the CO removal catalyst can be reduced.
  • the reforming provided so as to surround the reforming pipe.
  • the reforming pipe has a concentric inner inner cylindrical pipe, an outer outer cylindrical pipe, and an intermediate cylindrical pipe between the inner cylindrical pipe and the outer cylindrical pipe.
  • the inner cylindrical pipe is closed by a lower end plate, and the inner cylindrical pipe and the outer cylindrical pipe are closed.
  • the upper end side between the first upper end plate and the upper end of the intermediate cylindrical tube is closed by a first upper end plate, and the gap between the first upper end plate and the upper end of the intermediate cylindrical tube is used as a reformed gas turn-up portion.
  • a cylindrical gap between the cylindrical tube is used as a reformed gas flow path, and the reforming catalyst layer is provided in a cylindrical shape between the intermediate cylindrical tube and the outer cylindrical tube, and the reforming unit cylindrical tube
  • the upper end side is closed by a second upper end plate, and a gap between the second upper end plate and the first upper end plate is used as a heated gas return portion, and the reforming portion cylinder
  • the heated gas flow path between the first evaporator and the second evaporator is heated after the reforming catalyst layer is heated while being folded by the heated gas folded portion and flowing downward in the heated gas flow path.
  • the reformed gas that has flowed out from the upper end of the reforming catalyst layer is folded at the reformed gas folding section and flows downward in the reformed gas flow path, and then rises to the low-temperature CO shift catalyst layer. Since it is configured to flow from the end, the reforming catalyst layer can be efficiently heated from the inside and outside of the cylindrical reforming tube (reforming catalyst layer) by the heating gas. Moreover, the reforming pipe is a single pipe type that is different from the conventional multi-pipe type, and there is no need for piping or header tanks that aggregate multiple reformed pipes, reducing manufacturing costs. It is possible.
  • the reforming device of the ninth invention since the first flow path and the second flow path are both formed in a spiral shape, water or a mixture is formed in the first flow path. Flows in a spiral, and in the second channel, the mixture or water flows in a spiral. For this reason, heat exchange between the water or mixture and the heated gas in the first evaporator and heat exchange between the mixture or water and the heated gas in the second evaporator can be reliably performed.
  • the second flow path or the first flow path is, for example, a simple cylindrical flow path
  • the flow rate of the mixture becomes slow, so water (steam) in the mixture and the raw material are separated, and water The ratio of (steam) to the raw material (S / C: Steam / Carbon) is out of the planned value, and carbon is deposited from the raw material, reducing the life of the reforming catalyst. There is a risk that.
  • the flow rate of the mixture is higher in the spiral second flow path or the first flow path than in the simple cylindrical flow path described above, so water (steam) in the mixture is separated from the raw material. Can be prevented.
  • the first evaporator includes a double tube in which a cylindrical tube is fitted on the outer peripheral surface side of a corrugated tube having a spiral irregularity formed on the tube surface.
  • a spiral gap formed between the corrugated tube and the cylindrical tube serves as the first flow path, and the second evaporator is spirally formed on the tube surface.
  • the formed spiral gap is the second flow path, the same effect as in the ninth aspect of the invention can be obtained, and water or the mixture and the heated gas are supplied to the first evaporator.
  • the mixture or water and the heated gas are in surface contact with each other through the cylindrical tube of the second evaporator, and further, the heated gas is formed by the irregularities of the corrugated tube of the first evaporator.
  • the flow state becomes turbulent, it is possible to perform heat exchange between the heat exchange and mixture of water and the heating gas and the heating gas efficiently.
  • the low temperature CO shift catalyst layer is provided inside the cylindrical tube, and the cylindrical gap between the cylindrical tube and the second evaporator is modified.
  • the low-temperature CO shift catalyst layer (cylindrical tube) ) Will not be heated in contact with the heated gas flowing through the heated gas flow path outside the second evaporator.
  • the mixture or the water flowing through the second flow passage of the second evaporator as possible out possible to reliably cool the CO absorption shift reaction by heating Ya reformed gas at a low temperature CO shift catalyst layer. Accordingly, it is possible to prevent the CO concentration in the reformed gas flowing out from the low-temperature CO shift catalyst layer from being increased due to insufficient cooling as in the prior art.
  • the low temperature CO shift catalyst layer includes a first cylindrical tube disposed inside the second evaporator and an inner side of the first cylindrical tube.
  • a cylindrical gap between the first cylindrical tube and the second evaporator is provided as a first reformed gas flow path, and is provided between the second cylindrical tube and the second cylindrical tube.
  • the inside of the pipe is a second reformed gas flow path, and the reformed gas flowing out of the reforming catalyst layer flows from the one end side of the low-temperature CO shift catalyst layer toward the other end side of the first reformed gas.
  • the temperature decreases due to heat exchange with the mixture or the water flowing through the second flow path of the second evaporator, and the reformed gas wraps around the other end of the low-temperature CO shift catalyst layer.
  • the low-temperature CO shift catalyst layer is folded while flowing through the second reformed gas channel from the other end side to the one end side of the low-temperature CO shift catalyst layer.
  • the flow hole force provided in the second cylindrical pipe flows into the space between the first cylindrical pipe and the second cylindrical pipe, and the low temperature CO shift catalyst layer Since it is characterized in that it is configured to circulate, the same effect as the eleventh invention can be obtained, and the cooling power of the second evaporator (mixture or water) with respect to the low-temperature CO shift catalyst layer is low.
  • the reformed gas flows through the reformed gas flow path between the low temperature CO shift catalyst layer and the second evaporator as a heat transfer from the warm CO shift catalyst layer to the second evaporator (mixture or water) only by radiant heat transfer.
  • convective heat transfer due to the flow of the reformed gas is also added, which is higher than in the case of cooling only by radiant heat transfer.
  • the reformed gas flows through the first reformed gas channel outside the low-temperature CO shift catalyst layer and the second reformed gas channel inside, the water is heated after the heating and heating operation. Even if this water vapor flows in, the water vapor first flows into the outer surface of the first cylindrical tube and the second cylindrical tube in the first reformed gas channel and the second reformed gas channel. It condenses on the inner surface of the catalyst and does not condense on the low temperature CO shift catalyst layer. In addition, when water vapor condenses on the outer surface of the first cylindrical tube and the inner surface of the second cylindrical tube, the latent heat of condensation is transferred to the low-temperature CO shift catalyst layer, so that the temperature of the low-temperature CO shift catalyst layer rises. For this reason, when water vapor flows into the low temperature CO shift catalyst layer, the water vapor will not condense in the low temperature CO shift catalyst layer. Degradation of the low-temperature CO shift catalyst due to condensation of water can be prevented.
  • the reformed gas flowing in the second reformed gas flow path cools the inner part of the low-temperature CO shift catalyst layer, so that the temperature of the inner part is prevented from rising, and this inner part is passed through.
  • the CO concentration in the reformed gas can also be lowered.
  • the high temperature CO shift is performed in a region where the reformed gas flows above the low temperature CO shift catalyst layer inside the reforming pipe containing the reforming catalyst layer. Since the catalyst is arranged, the reformed gas flowing out from the upper end of the reforming catalyst layer flows downward, flows into the hot CO shift catalyst layer from the upper end, and flows downward through the hot CO shift catalyst layer. Then, it flows into the low-temperature CO shift catalyst layer from the upper end.
  • the same effect as the seventh invention is obtained, and when the temperature of the reforming pipe (reforming catalyst layer) is heated by the heating gas during the heating / heating operation of the reformer, the reforming pipe ( The high temperature CO shift catalyst layer inside the intermediate cylindrical tube) is also heated by the heating force S through the reforming tube (reforming catalyst layer).
  • the low-temperature CO shift catalyst layer is provided in a first cylindrical tube disposed inside the second evaporator and in the first cylindrical tube.
  • a high temperature CO shift catalyst layer is provided between the second cylindrical tube and a cylindrical shape between the first cylindrical tube and the second cylindrical tube and above the low temperature CO shift catalyst layer.
  • a cylindrical gap between the first cylindrical tube and the second evaporator is a first reformed gas flow path, and an inner side of the second cylindrical tube is a second reformed gas flow path, The reformed gas that has flowed out of the reforming catalyst layer flows downward from the upper end side of the high temperature CO shift catalyst layer to the lower end side of the low temperature CO shift catalyst layer.
  • the first cylinder is turned back at the reformed gas turn-up portion at the upper end of the second reformed gas flow path. Inflow between the pipe and the second cylindrical pipe, and the high temperature CO shift catalyst layer and the low temperature CO shift catalyst layer are configured to flow downward in order. Due to the feature, the same effect as the eleventh and twelfth inventions can be obtained.
  • a high temperature CO shift catalyst layer is provided as a CO shift catalyst layer.
  • the high temperature CO shift catalyst has a high operating temperature and is heat resistant, and has a high operating temperature, so it can remove CO in a smaller amount than a low temperature CO shift catalyst with a high reaction rate.
  • the CO concentration in the reformed gas after passing through the high-temperature CO shift catalyst layer becomes lower than the CO concentration in the reformed gas at a conventional 650 ° C level, for example. Therefore, even if this reformed gas flows into the low-temperature CO shift catalyst layer, the temperature of the low-temperature CO shift catalyst is raised by the heat generated by the CO shift reaction, so that the life of the low-temperature CO shift catalyst can be extended. Furthermore, if the temperature of the low-temperature CO shift catalyst is not raised, the outlet temperature of the low-temperature CO shift catalyst layer also decreases, so the CO concentration in the reformed gas flowing out from the low-temperature CO shift catalyst layer also decreases due to the equilibrium reaction. For this reason, when the reformed gas flowing out from the low temperature CO shift catalyst layer is further circulated through the CO removal catalyst layer, the load of the CO removal catalyst can be reduced.
  • a high-temperature CO shift catalyst layer is also prepared using the first and second cylindrical tubes. It can be manufactured at the same time as the low-temperature CO shift catalyst layer, and it can be attached to the reformer later. For this reason, the handling ability in the manufacturing process is improved and the manufacturing cost is reduced by the force S.
  • the reforming catalyst layer (intermediate cylindrical tube) and the high-temperature CO shift catalyst layer (first Since the first reformed gas flow path is interposed between this and the cylindrical tube, a high-temperature CO shift catalyst layer is installed.
  • the portion of the reforming catalyst layer at the position is also quickly heated by the heated gas, which is less affected by the heat capacity of the high-temperature CO shift catalyst layer. Even if the temperature of the high temperature CO shift catalyst layer is insufficient at this time, the temperature of the high temperature CO shift catalyst layer can be increased by the latent heat of condensation of water vapor as described above. In this case, there is no risk of water vapor condensation.
  • the O adsorption catalyst layer disposed inside the cylindrical tube, the low temperature CO shift catalyst layer, and the heated gas penetrating the O adsorption catalyst layer.
  • the reformer is stopped, the heated gas is sucked by the pump, and the condenser After removing moisture and introducing it to the upper end side of the O adsorption catalyst layer with the heated gas introduction pipe, the O gas in the heated gas is removed by folding and circulating the O adsorption catalyst layer.
  • O-less gas is generated, and part of this O-less gas flows through the low-temperature CO shift catalyst layer to discharge water vapor remaining in the low-temperature CO shift catalyst layer, or removes the low-temperature CO shift catalyst layer and the CO.
  • the low temperature CO shift catalyst layer and the front Water vapor remaining in the CO removal catalyst layer is discharged, and the remainder of the o-less gas flows out from the flow hole provided in the cylindrical tube, and then flows through the reforming catalyst layer and remains in the reforming catalyst layer. Therefore, the steam remaining in the reforming catalyst layer and the low-temperature CO shift catalyst layer, or the reforming catalyst layer and the low-temperature CO shift catalyst layer when the reformer is stopped. Further, since the water vapor remaining in the CO removal catalyst layer can be discharged by o-less gas, it is possible to prevent the catalyst of each of these catalyst layers from being deteriorated due to the condensation of water vapor.
  • a cylindrical shape is disposed between the first cylindrical tube and the second cylindrical tube, and the low-temperature CO shift catalyst layer and the high-temperature CO Between the shift catalyst layer, the lO adsorption catalyst layer located on the low temperature CO shift catalyst layer side and the 20th adsorption catalyst layer located on the high temperature CO shift catalyst layer side, the low temperature CO shift catalyst layer, and A heated gas introduction pipe penetrating through the first lO adsorption catalyst layer; a condenser for removing moisture in the heated gas; and a pump for sucking the heated gas, and the heated gas when the reformer is stopped.
  • the remaining heated gas introduced between the lOth adsorption catalyst layer and the twentieth adsorption catalyst layer removes O in the heated gas by circulating the twentieth adsorption catalyst layer.
  • O-less gas is generated, and this O-less gas is added to the high temperature CO shift catalyst layer.
  • the reformed catalyst layer is circulated and remains in the high temperature CO shift catalyst layer and the reformed catalyst layer. Since the steam is discharged, the reforming catalyst layer, the high-temperature CO shift catalyst layer and the low-temperature CO shift catalyst layer, or the reforming catalyst layer, the high-temperature CO shift catalyst layer are used when the reformer is stopped.
  • the water vapor remaining in the low-temperature CO shift catalyst layer and the CO removal catalyst layer can be discharged by o-less gas, so that the catalyst in each of these catalyst layers is prevented from deteriorating due to condensation of water vapor. be able to.
  • the outlet of the second flow path of the second evaporator or the outlet of the first flow path of the first evaporator and the reforming catalyst layer A cylindrical header tank is provided between the inlets, and a plurality of ejection holes are formed in the circumferential direction on the side surface or upper surface of the header tank.
  • the jet Since the structure is such that the mixture is ejected from the hole and flows into the reforming catalyst layer from the inlet, the mixture is uniformly dispersed in the circumferential direction with respect to the cylindrical reforming catalyst layer by the header tank. Therefore, it is possible to improve reforming efficiency.
  • the outlet of the second flow path of the second evaporator, or the outlet of the first flow path of the first evaporator and the reforming catalyst layer Cleaning pipes connecting the entrance, A cleaning removal part attached detachably in the middle of the cleaning pipe, and when removing the cleaning removal part and injecting a chemical solution from the injection pipe of the cleaning pipe, the chemical solution is It flows through the second flow path of the second evaporator and the first flow path of the first evaporator in order, or the first flow path of the first evaporator and the second flow path of the second evaporator in order.
  • the raw material mixing section has a double nozzle structure having an outer nozzle and an inner nozzle provided inside the outer nozzle.
  • the water vapor flowing out from the first flow path of the 1 evaporator or the water vapor flowing out from the second flow path of the second evaporator flows between the outer nozzle and the inner nozzle, and the raw material is the The internal nozzle is circulated, or the raw material circulates between the outer nozzle and the inner nozzle and flows out of the first flow path of the first evaporator, Since the water vapor flowing out from the second flow path of the second evaporator is configured to circulate through the inner nozzle, the raw material is finely misted in the raw material mixing section to form water (water vapor). ) Uniformly mixed. For this reason, it is possible to more reliably prevent carbon from being precipitated from the raw material, and more reliably prevent deterioration of the reforming catalyst.
  • the cylindrical heat insulating material is disposed so as to surround the reforming portion cylindrical tube, the surface of the reforming portion cylindrical tube is arranged. Heat dissipation from the heat can be reduced by heat insulation.
  • an inexpensive material made of ceramic fiber may be used as the heat insulating material and formed to an appropriate thickness.
  • the heating gas of the panner is supplied without supplying the water and the raw material. And flowing upward along the inner peripheral surface of the inner cylindrical pipe of the reforming pipe, and folding back at the heated gas folding section to lower the heated gas flow path outside the reforming pipe downward.
  • the heated gas passage between the first evaporator and the second evaporator is caused to flow downward, so that the heated gas causes the reforming pipe and the reforming catalyst layer, Since the first evaporator, the second evaporator, and the low-temperature CO shift catalyst layer are heated in order to raise the temperature, each part of the reformer is efficiently heated and heated with a heating gas. That's the power S.
  • the heating gas of the panner is supplied without supplying the water and the raw material. And flowing upward along the inner peripheral surface of the inner cylindrical pipe of the reforming pipe, and folding back at the heated gas folding section to lower the heated gas flow path outside the reforming pipe downward. After the flow, the heated gas passage between the first evaporator and the second evaporator is caused to flow downward, so that the heated gas causes the reforming pipe and the reforming catalyst layer to flow.
  • the first evaporator, the second evaporator, and the low-temperature CO shift catalyst layer are sequentially heated to raise the temperature, and then the water is supplied without supplying the raw material, and the first The first flow path of the evaporator and the second flow path of the second evaporator are circulated in order, or the second evaporation
  • the heated gas flowing through the heated gas flow path between the first evaporator and the second evaporator by sequentially flowing the second flow path and the first flow path of the first evaporator.
  • the low-temperature CO shift catalyst layer is heated by the condensation on the outer surface of the second cylindrical tube and the inner surface of the second cylindrical tube, and the temperature is raised. It is possible to increase the temperature of the low-temperature CO shift catalyst layer more reliably by the latent heat of condensation of water vapor.
  • the reformed gas temperature at the outlet of the reforming catalyst layer is measured,
  • the fuel supply amount to the burner is controlled so that the measured value becomes a predetermined temperature, and the reformed gas temperature at the inlet of the low-temperature CO shift catalyst layer is measured. Since the amount of air supplied to the burner is controlled so as to be equal to the temperature, the reformed gas temperature at the outlet of the reforming catalyst layer and the reformed gas temperature at the inlet of the low temperature CO shift catalyst layer are Each can be reliably maintained at a predetermined temperature.
  • the reformed gas temperature at the outlet of the reforming catalyst layer is measured,
  • the fuel supply amount to the burner is controlled so that the measured value becomes a predetermined temperature, and the mixture temperature at the outlet of the second flow path of the second evaporator or the first flow path of the first evaporator is controlled.
  • the temperature of the mixture at the outlet is measured and the amount of air supplied to the burner is controlled so that the measured value of the mixture becomes a predetermined temperature, the reformed gas temperature at the outlet of the reforming catalyst layer
  • the mixture temperature at the outlet of the second flow path of the second evaporator or the temperature of the mixture at the outlet of the first flow path of the first evaporator can be reliably maintained at a predetermined temperature.
  • FIG. 1 is a longitudinal sectional view of a reforming apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG.
  • FIG. 4 (a) is a longitudinal sectional view showing a configuration of a raw material mixing section provided in the reformer, and FIG. (B) is a sectional view taken along the line CC of (a).
  • FIG. 5 is a longitudinal sectional view of a reformer according to Embodiment 2 of the present invention.
  • FIG. 6 is a cross-sectional view taken along the line D-D in FIG.
  • FIG. 7 is a cross-sectional view taken along line ⁇ - ⁇ in FIG.
  • FIG. 8 is a cross-sectional view taken along line FF in FIG.
  • FIG. 9 is a cross-sectional view taken along line GG in FIG.
  • FIG. 10 is a diagram showing a heat exchanger for heating gas and process water (water).
  • FIG. 11 is a block diagram of a temperature control system provided in the reformer.
  • FIG. 12 is a longitudinal sectional view showing a configuration when a cleaning pipe and a cleaning removal portion are provided between the second evaporator and the reforming catalyst layer.
  • FIG. 13 is a longitudinal sectional view of a reformer according to Embodiment 3 of the present invention.
  • FIG. 14 is a cross-sectional view taken along line ⁇ - ⁇ in FIG.
  • FIG. 15 is a cross-sectional view taken along line JJ in FIG.
  • FIG. 16 is a longitudinal sectional view of a reformer according to Embodiment 4 of the present invention.
  • FIG. 17 is a transverse sectional view taken along line KK in FIG.
  • FIG. 18 is a cross-sectional view taken along line LL in FIG.
  • FIG. 19 is a cross-sectional view taken along the line ⁇ - ⁇ in FIG.
  • FIG. 1 is a longitudinal sectional view of a reformer according to Embodiment 1 of the present invention
  • FIG. 2 is a transverse sectional view taken along line AA in FIG. 1
  • FIG. 3 is viewed along arrow BB in FIG.
  • FIG. 4 (a) is a longitudinal sectional view showing the configuration of the raw material mixing section provided in the reformer
  • FIG. 4 (b) is a sectional view taken along the line CC in FIG. 4 (a).
  • the reformer of Embodiment 1 is provided with a reformer 04, a reformer cylindrical tube 02, a reformer tube 04 having a reforming catalyst layer 03, etc. on the upper side.
  • the first evaporator 05, the second evaporator 06, the low-temperature CO shift catalyst layer 07, the CO removal catalyst layer 08, etc. are arranged on the lower side. It has been configured.
  • the reforming pipe 04 is composed of a concentric inner inner cylindrical pipe 09, an outer outer cylindrical pipe 010, and these inner cylindrical pipes 09.
  • This is a triple pipe structure having an intermediate cylindrical pipe 011 between outer cylindrical pipes 010, and each cylindrical pipe 09, 010, 011 is arranged so as to surround the periphery of the panner 01.
  • this reformer is not a multi-tube type equipped with a plurality of reformer tubes, but a single-tube type equipped with only one reformer tube 04.
  • the lower end of the inner cylindrical tube 09 is closed by a lower end plate 012.
  • the upper end side between the inner cylindrical tube 09 and the outer cylindrical tube 011 is closed by an upper end plate 013 (first upper end plate).
  • a gap is secured between the upper end plate 013 and the upper end of the intermediate cylindrical tube 011, and this gap serves as a reformed gas folding portion 014.
  • a cylindrical gap is secured between the intermediate cylindrical pipe 011 and the inner cylindrical pipe 09, and this gap serves as a reformed gas flow path 015.
  • the reforming catalyst layer 03 has a cylindrical shape in which a gap between the intermediate cylindrical tube 011 and the outer cylindrical tube 0 10 is filled with the reforming catalyst.
  • the reforming catalyst layer 03 has an inlet at the lower end and an outlet at the upper end.
  • the reforming portion cylindrical tube 02 is disposed concentrically with the outer cylindrical tube 010 so as to surround the outer cylindrical tube 010 of the reforming tube 04.
  • the upper end side of the reforming section cylindrical tube 02 is closed by an upper end plate 016 (second upper end plate).
  • a gap is secured between the upper end plate 016 and the upper end plate 013, and this gap serves as a heated gas return portion 017.
  • a cylindrical gap is secured between the reforming section cylindrical tube 02 and the outer cylindrical tube 010, and this gap serves as a heated gas flow path 018.
  • the heated gas channel 018 has an upper end as an inlet and a lower end as an outlet.
  • the panner 01 is located on the upper end side (the upper end portion of the reformer) of the reforming pipe 04 and is disposed downward and passes through the upper end plate 016 of the reforming section cylindrical pipe 02. It is fixed to the top plate 016.
  • the lower side of the PANA 01 is a combustion space portion 019, and the flame 020 of the PANA 01 is formed downward.
  • the first evaporator 05 is cylindrical and has a first flow path (not shown) for flowing water 021.
  • the second evaporator 06 has a cylindrical shape smaller in diameter than the first evaporator 05, and a second flow path (not shown) for flowing the mixture 023, which is a mixed fluid of water 021 (water vapor) and the raw material 022. )have.
  • raw materials 022 include carbon such as city gas (methane gas) and kerosene. System fuel is used.
  • the first evaporator 05 and the second evaporator 06 are arranged concentrically with the first evaporator 05 on the outside and the second evaporator 06 on the inside, and the first evaporator 05 and the second evaporator 06 The cylindrical gap secured between the two becomes the heated gas flow path 024! /.
  • the heated gas flow path 024 has an upper end serving as an inlet and a lower end serving as an outlet, and the upper end includes a reforming section cylindrical tube 02 and a reforming tube 04 (outer cylindrical tube 010). Leading to the lower end of the heated gas flow path 018.
  • the cylindrical tube 025 constituting the inner surface of the first evaporator 05 extends vertically, and its upper end is connected to the lower end of the reforming section cylindrical tube 02.
  • the lower end of the cylindrical tube 025 is closed with a lower end plate 036.
  • the upper end of the second evaporator 06 is connected to the lower end of the reforming pipe 04 (outer cylindrical pipe 010, intermediate cylindrical pipe 011).
  • the heated gas flow path 024 between the first evaporator 05 and the second evaporator 06 extends vertically, and the upper end is connected to the lower end of the heated gas flow path 018. Further, an exhaust pipe 026 is connected to the lower end of the heated gas flow path 024 (cylindrical pipe 025).
  • the first flow path of the first evaporator 05 and the second flow path of the second evaporator 06 are preferably spiral.
  • the first evaporator 05 and the second evaporator 06 are configured by spirally wrapping a tube that becomes the first flow path and the second flow path around the cylindrical tube.
  • the two flow paths may be spiral, or the first evaporator 05 and the second evaporator 06 may be connected to a corrugated pipe (corrugated pipe) in the same manner as the evaporator of Embodiment 2 (see Fig. 5).
  • the lower end is an inlet and the upper end is an outlet, and the lower end is also the second flow path of the second evaporator 06.
  • the inlet and upper end are outlets.
  • the inlet side of the first evaporator 05 (first flow path) is connected to a water supply device (not shown) via a water supply pipe (not shown).
  • a pipe 027 is arranged outside the first evaporator 05 (CO removal catalyst layer 08), and this pipe 027 causes the outlet of the first flow path of the first evaporator 05 and the second evaporator. Connected to the entrance of the second flow path of 06.
  • One end of a raw material supply pipe (not shown) is connected to the middle of the pipe 027, and a connecting portion between the raw material supply pipe and the pipe 027 serves as a raw material mixing section 028.
  • the other end of the raw material supply pipe is connected to a raw material supply device.
  • the outlet of the second flow path of the second evaporator 06 leads to the inlet of the reforming catalyst layer 03! /.
  • the raw material mixing unit 028 preferably has a double nozzle structure including an outer nozzle 030 and an inner nozzle 031 provided on the inner side of the outer nozzle 030. ,. Outer nozzle 030 and inner nozzle 031 are concentrically arranged!
  • the outer nozzle 030 has a cylindrical portion 030a and a tapered portion 030b provided at the tip of the cylindrical portion 030a.
  • the side surface of the cylindrical portion 030a is connected to the first evaporator 05 (first
  • the tip of the detail 030b is connected to the inlet of the second evaporator 06 (second flow path) via the pipe 027.
  • the inner nozzle 031 has a cylindrical portion 031a and a tapered portion 031b provided at the tip of the cylindrical portion 031a.
  • the rear end of the cylindrical portion 031a is connected to the raw material supply device via the raw material supply pipe 032. It is connected.
  • the water (water vapor) 021 flowing out from the outlet of the first evaporator 05 flows between the outer nozzle 030 and the inner nozzle 031 and is supplied from the raw material supply apparatus.
  • 022 flows through the inner nozzle 031. Therefore, the raw material flowing out from the tip 031b of the inner nozzle 031 The tip of the outer nozzle 030
  • the water (steam) flowing through 030b is mixed uniformly in the space of the tip of 03 lb with respect to the water (water vapor) 021 023
  • This mixture 023 flows into the second evaporator 06 (second flow path). Since the flow rate of water (water vapor) 021 is larger than that of the raw material 022, it is desirable that the flow be as described above.
  • the raw material 022 is not necessarily limited to this, but the outer nozzle 030 and the inner nozzle
  • the water (water vapor) 021 may be circulated through the inner nozzle 031.
  • the lower part of the inner cylindrical pipe 09 of the reforming pipe 04 extends to the upper part inside the second evaporator 06, and the lower part of the inner cylindrical pipe 09 and A cylindrical gap between the upper part of the second evaporator 06 serves as a reformed gas flow path 029.
  • the reformed gas channel 029 communicates with the reformed gas channel 015 between the inner cylindrical tube 09 and the intermediate cylindrical tube 011.
  • the low temperature CO shift catalyst layer 07 is filled with a low temperature CO shift catalyst, and is disposed inside the second evaporator 06.
  • the CO removal catalyst layer 08 is filled with a CO removal catalyst (PROX catalyst), and is provided in a cylindrical shape so as to surround the first evaporator 05.
  • the CO removal catalyst layer 08 has an upper end as an inlet and a lower end as an outlet.
  • a pipe 033 is arranged outside the first evaporator 05 (CO removal catalyst layer 08).
  • One end side and the other end side of the pipe 033 are connected to the lower end plate 036 and the upper end portion of the CO removal catalyst layer 08. That is, the outlet of the low temperature CO shift catalyst layer 07 and the inlet of the CO removal catalyst layer 08 are connected by the pipe 033.
  • the outlet of the CO removal catalyst layer 08 is connected to a fuel cell (not shown) via a reformed gas supply pipe (not shown).
  • An air mixing unit 034 is provided in the middle of the pipe 033, and CO selective oxidation air 035 supplied from a CO selective oxidation air supply device (not shown) via a CO selective oxidation air supply pipe is connected to the pipe 033.
  • the reformed gas 037 is mixed in the air mixing unit 034 and flows into the CO removal catalyst layer 08 together with the reformed gas 033! /.
  • Pana fuel 038 and the Pana air 039 supplied from the Pana fuel supply device and Pana air supply device (not shown) to the Pana 01 are burned in the Pana 01, they are heated to a high temperature (for example, 1000 ° C).
  • Gas 040 is generated.
  • This calo hot gas 040 flows downward at first because PANA 01 is directed downward, but since the lower end of the inner cylindrical tube 09 of the reforming tube 04 is blocked by the lower end plate 012, Folds up and flows upward along the inner surface of the inner cylindrical tube 09.
  • the heat S of the heated gas 040 is supplied from the inner side of the reforming tube 04 to the reforming catalyst layer 03 through the inner cylindrical tube 09 and the intermediate cylindrical tube 011.
  • the calothermal gas 040 is folded at the calothermal gas folding unit 017 and flows into the heating gas channel 018 outside the reforming tube 04 and flows downward through the heating gas channel 018. Also at this time, the heat of the hot gas 040 is supplied from the outside of the reforming tube 04 to the reforming catalyst layer 03 through the outer cylindrical tube 010. That is, heat exchange between the heated gas 040 and the mixture 023 flowing through the reforming catalyst layer 03 and the reforming catalyst layer 03 is performed inside and outside the reforming tube 04 (reforming catalyst layer 03). As a result, when the temperature of the heating gas 040 flows out of the heating gas channel 018, the temperature decreases to, for example, about 400 ° C.
  • the heated gas 040 flowing out of the heated gas flow path 018 is supplied to the first evaporator 05 and the second evaporator 06. It flows into the heating gas flow path 024 between them and flows through the heating gas flow path 024 downward.
  • the heated gas 040 flowing through the heated gas channel 024 is discharged to the exhaust pipe 39 and released into the atmosphere.
  • the water 021 to which the water supply device force is also supplied flows into the first flow path of the first evaporator 05 through the water supply pipe.
  • Water 021 flowing into the first flow path of the first evaporator 05 flows upward through the first flow path.
  • the water 021 also rises while flowing spirally around the outer periphery of the heated gas flow path 024.
  • the water 021 is heated by the heated gas 040 flowing through the heated gas channel 024.
  • the amount of heat (reformation) held by the reformed gas 037 flowing into the CO removal catalyst layer 08 by the water 021 flowing through the first flow path of the first evaporator 05 is the amount of heat (reformation) held by the reformed gas 037 flowing into the CO removal catalyst layer 08 by the water 021 flowing through the first flow path of the first evaporator 05.
  • the amount of heat corresponding to lowering the temperature of the gas 037 to a predetermined temperature (for example, from 150 ° C to 80 ° C) and the CO selective oxidation reaction (2CO + 0) of the reformed gas 037 in the CO removal catalyst layer 08 ⁇ Absorbs (removes heat) the amount of heat generated by 2CO).
  • a part (for example, about half) of the water 021 flowing through the first flow path of the first evaporator 05 is vaporized.
  • the vaporization temperature of this water 021 is, for example, about 120 ° C. Since the CO removal catalyst layer 08 is cooled by the water 021 that is partially vaporized, the CO 0 removal catalyst layer 08 is maintained at the vaporization temperature of the water 021 (eg, about 120 ° C.).
  • the temperature of the heating gas 040 when it flows out of the heating gas flow path 024 is lowered by applying heat of the calo heat gas 040 to the water 021.
  • the vaporization temperature of the water 021 is, for example, about 120 ° C.
  • the lower end portion of the first evaporator 05 into which the liquid water 021 flows is at room temperature.
  • the temperature of the heated gas 040 when it flows out of 024 is as low as about 100 ° C, for example.
  • the water 021 having flowed through the first flow path of the first evaporator 05 becomes water vapor (wet steam) and flows out from the first flow path force, and flows downward through the pipe 027.
  • the raw material mixing unit 028 in the middle of the pipe 027 the raw material 022 supplied from the raw material supply device is mixed with water (steam) 021 to generate a mixture 023.
  • the water vapor has a high flow rate in the pipe 024 of about 50 m / s, for example. Therefore, because of this high flow rate, it is mixed in the raw material mixing unit 028.
  • the raw material 022 is well agitated and uniformly dispersed in water (steam) 021. For this reason, the ratio (S / C: Steam / Carbon) of water (steam) 021 and raw material 022 in the mixture 023 is kept stable without deviating from the planned value.
  • the mixture 023 generated here flows into the second flow path of the second evaporator 06 and flows upward through the second flow path. At this time, when the second flow path is spiral, the mixture 023 also rises while flowing spirally on the inner peripheral side of the heated gas flow path 024.
  • the mixture 023 flowing through the second flow path of the second evaporator 06 is heated by heat exchange with the heated gas 040 flowing through the heated gas flow path 024 outside the second evaporator 06. Further, at the position where the low temperature CO shift catalyst layer 07 is disposed, the amount of heat held by the reformed gas 037 flowing into the low temperature CO shift catalyst layer 07 by the mixture 023 flowing through the second flow path of the second evaporator 06.
  • the amount of heat generated by (+ H 0 ⁇ H + CO) (the amount of heat corresponding to raising the temperature of the reformed gas 037, for example, by about 50 ° C.) is absorbed (heat removal).
  • the mixture 023 flowing through the second flow path of the second evaporator 06 circulates through the reformed gas flow path 029 inside the second evaporator 06.
  • the amount of heat held by the reformed gas 037 (the amount of heat corresponding to lowering the temperature of the reformed gas 037 to a predetermined temperature (for example, from 550 ° C. to 250 ° C.)) is absorbed.
  • the unvaporized portion of the water 021 in the mixture 023 is also vaporized, and when the raw material 022 in the mixture 023 is a liquid fuel such as kerosene, the liquid fuel is also vaporized and overheated. It becomes steam (dry steam).
  • the temperature of the mixture 023 when it flows out from the second flow path of the second evaporator 06 reaches, for example, about 400 ° C.
  • the mixture 023 flowing out from the second flow path of the second evaporator 06 flows into the reforming catalyst layer 03 and flows upward through the reforming catalyst layer 03.
  • the heat of the heating gas 040 flowing through the inside and outside of the reforming tube 04 (heating gas flow path 018) is supplied to the reforming catalyst layer 03.
  • a steam reforming reaction of the raw material 022 occurs, and reformed gas 037 (hydrogen rich gas) containing hydrogen gas is generated.
  • heat with the heating gas 040 As a result of the exchange, the temperature of the reforming catalyst reaches, for example, about 700 ° C. above the reforming catalyst layer 03, and reformed gas 037 containing, for example, 50% or more of hydrogen is generated.
  • the reformed gas 037 generated in the reforming catalyst layer 03 flows out from the upper end of the reforming catalyst layer 03. At this time, the temperature of the reformed gas 037 at the outlet of the reforming catalyst layer 03 is, for example, 750 ° C. It becomes.
  • the reformed gas 037 flowing out of the reforming catalyst layer 03 is folded by the reformed gas folding unit 014 and flows downward through the reformed gas channel 015 and then flows into the reformed gas channel 029.
  • the heat of the reformed gas 037 is transferred to the reforming catalyst layer 03 (mixture 023) via the intermediate cylindrical tube 011.
  • the temperature of the reformed gas 87 flowing from the channel 015 into the reformed gas channel 029 is, for example, about 550 ° C.
  • the reformed gas 037 that has flowed into the reformed gas channel 029 flows downward through the reformed gas channel 029 and then flows into the low-temperature CO shift catalyst layer 07. While the reformed gas flow path 029 is circulated, the reformed gas 037 is cooled by exchanging heat with the mixture 023 flowing through the second flow path of the second evaporator 06, so that the temperature is about 250 °, for example. Decreases to C. That is, the retained calorific power of the reformed gas 037 corresponding to lowering the temperature of the reformed gas 037 as described above to a predetermined temperature (for example, from 550 ° C. to 250 ° C.) Absorbed by the mixture 023 flowing through the two flow paths.
  • a predetermined temperature for example, from 550 ° C. to 250 ° C.
  • the CO shift reaction (CO + H0 ⁇ CO + H) of the reformed gas 037 occurs in the low temperature CO shift catalyst layer 07, so the CO concentration in the reformed gas 037 is reduced.
  • This CO shift reaction is also an exothermic reaction, but this reaction heat is absorbed by the mixture 023 flowing through the second flow path of the second evaporator 06 as described above.
  • the periphery of the low temperature CO shift catalyst layer 07 is surrounded by the second evaporator 06, and the temperature of the second evaporator 06 is, for example, about 150 ° C. Therefore, the reformed gas 037 is cooled to the temperature of about 150 ° C. by being cooled by the second evaporator 06 of about 150 ° C. while flowing through the low temperature CO shift catalyst layer 07.
  • the temperature of the reforming gas 037 is reduced to a predetermined temperature by the mixture 023 flowing through the second flow path of the second evaporator 06 ( (For example, from 250 ° C to 150 ° C)
  • the amount of heat retained in the reformed gas 037 corresponding to the decrease is absorbed.
  • This cooling effect also improves the reformed gas 03 Since the CO concentration in 7 decreases to the equilibrium CO concentration at that temperature, compared to the case where the low-temperature CO shift catalyst layer 07 was circulated without cooling the reformed gas 037, CO concentration can be reduced.
  • the reformed gas 037 flowing out from the low temperature CO shift catalyst layer 07 flows into the CO removal catalyst layer 08 via the pipe 033.
  • the CO selective oxidation air 035 supplied from the CO selective oxidation air supply device via the CO selective oxidation air supply pipe is reformed through the pipe 033.
  • the reformed gas 0 37 flows into the CO removal catalyst layer 08 together with the CO selective oxidation air 035 and flows downward through the CO removal catalyst layer 08.
  • CO selective oxidation reaction of the reformed gas 037 occurs in the CO removal catalyst layer 08, so that the CO concentration in the reformed gas 037 is further reduced.
  • This CO selective oxidation reaction is also an exothermic reaction, but as described above, this reaction heat is absorbed by the water 021 flowing through the first flow path of the first evaporator 05.
  • the CO removal catalyst layer 08 is installed so as to surround the first evaporator 05, and the water 021 flowing through the first flow path of the first evaporator 05 is vaporized. Is always maintained at a vaporization temperature of about 120 ° C.
  • the reformed gas 037 flowing out from the CO removal catalyst layer 08 is cooled by water 021 flowing through the first flow path of the first evaporator 05, whereby the temperature is reduced to about 80 ° C., for example.
  • the temperature of the reformed gas 037 is reduced to a predetermined temperature (for example, 150 ° C) by the water 021 flowing through the first flow path of the first evaporator 05.
  • the amount of heat stored in the reformed gas 037 which is equivalent to a decrease in temperature from 0 to 80 ° C, is absorbed.
  • the reformed gas 037 having a low CO concentration flowing out from the CO removal catalyst layer 08 is supplied to the fuel cell as a fuel for power generation via the reformed gas supply pipe.
  • the fuel for the paner 038 and the air for the paner 039 supplied from the air supply device for the panner and the air supply device for the panner are burned in the pan 01 in the same manner as in the steady operation. Gas 040 is generated. However, during this temperature raising operation, the mixture 023 (raw material 022, water 021) is not supplied.
  • the heating gas 040 is circulated upward along the inner peripheral surface of the inner cylindrical tube 09 of the reforming tube 04 in the same manner as in the steady operation, and is folded and reformed by the heating gas folding unit 017.
  • Tube 04 After the heated gas flow path 018 on the outer side of the refrigerant is circulated downward, the heated gas flow path 024 between the first evaporator 05 and the second evaporator 06 is circulated downward.
  • the heat of the heated gas 040 sequentially heats the reforming tube 04 and the reforming catalyst layer 03, the first evaporator 05 and the second evaporator 06, the low temperature CO shift catalyst layer 07, and the CO removal catalyst layer 08. The temperature rises.
  • the temperature of the reforming tube 04 and the reforming catalyst layer 03 is heated when the heated gas 040 flows inside and outside the reforming tube 04.
  • the first evaporator 05 and the second evaporator 06 are heated and heated when the heated gas 040 flows through the heating gas flow path 024 between them. Since the low temperature CO shift catalyst layer 07 is provided inside the second evaporator 06, the heating temperature is raised through the second evaporator 06, and the CO removal catalyst layer 08 is located outside the first evaporator 05. Therefore, the temperature is raised through the first evaporator 05.
  • a cylindrical shape is formed, and the first evaporator 05 having a first flow path for circulating water 021 is formed in a cylindrical shape, and the mixture 023 is circulated.
  • a second evaporator 06 having a second flow path, a pipe 027 connecting the outlet of the first flow path and the inlet of the second flow path, and a raw material mixing unit 028 provided in the middle of the pipe 027.
  • the first evaporator 05 and the second evaporator 06 are arranged concentrically with the first evaporator 05 on the outside and the second evaporator 06 on the inside, and the first evaporator 05 and the second evaporator 06 are arranged.
  • the heated gas flow path 024 By being heated by the circulating heated gas 040, it becomes water vapor (wet steam), and in the raw material mixing unit 028, the raw material 022 is mixed with the water vapor flowing out of the first flow path and flowing through the pipe 027.
  • the mixture 023 which flows from the pipe 027 to the second flow path and flows through the second flow path, heats the reforming catalyst layer 03 and heats the heated gas flow path.
  • the raw material 022 mixed in the raw material mixing unit 028 in the middle of the pipe 02 7 can be uniformly stirred in the water (steam) 021 by this high flow rate of water (steam) 021, Uniform mixing of water (steam) 021 and raw material 022 is possible.
  • the raw material 022 is a liquid fuel such as kerosene or the supply amount of the raw material 02 2 is small, the water (steam) 021 and the raw material 022 can be uniformly mixed.
  • the mixture 02 3 formed by mixing the raw material 022 and water (steam) 021 is heated with the heating gas 040 to form superheated steam, so the raw material 022 in the mixture 023 is Vaporized with water 021 in mixture 023. Therefore, even if the raw material 022 is easily deposited with carbon such as kerosene, it is possible to prevent the reforming catalyst from deteriorating by preventing carbon from precipitating from the raw material 022. For this reason, the troublesome control of the temperature rise required when the raw material is vaporized by the raw fuel vaporizer as in the prior art is unnecessary.
  • the raw material mixing unit 028 is a double nozzle comprising the outer nozzle 030 and the inner nozzle 031 provided inside the outer nozzle 030.
  • the water (water vapor) 021 flowing out from the first flow path of the first evaporator 05 flows between the outer nozzle 030 and the inner nozzle 031, and the raw material 022 flows through the inner nozzle 031.
  • the raw material 022 flows between the outer nozzle 030 and the inner nozzle 031, and water (water vapor) 021 flowing out from the first flow path of the first evaporator 05 flows through the inner nozzle 031.
  • the raw material 022 is finely misted and uniformly mixed with water (steam) 021. For this reason, carbon deposition from the raw material 022 can be more reliably prevented, and deterioration of the reforming catalyst can be more reliably prevented.
  • the low temperature CO The reformed gas 037 flowing out from the reforming catalyst layer 03 is circulated through the low temperature CO shift catalyst layer 07 and the mixture flowing in the second flow path of the second evaporator 06 at this time. Therefore, the heat generated by the CO shift reaction of the reformed gas 037 in the low temperature CO shift catalyst layer 07 is absorbed and the reformed gas 037 is cooled. Is surrounded by the second evaporator 06, and the mixture 023 flows through the second flow path of the second evaporator 06 during steady operation of the reformer, so that the low temperature CO shift catalyst layer 07 becomes the second evaporator.
  • the heated gas flow path 024 outside the 06 is not heated in contact with the heated gas 040 flowing through the 024, and the low temperature CO shift catalyst is obtained by the mixture 023 flowing through the second flow path of the second evaporator 06. Absorption of heat generated by the CO shift reaction in layer 07. Reformed gas 037 must be cooled reliably. Can. Accordingly, it is possible to prevent the CO concentration in the reformed gas 037 flowing out from the low temperature CO shift catalyst layer 07 from being insufficiently cooled as in the conventional case. For this reason, even when the reformed gas 037 flowing out from the low temperature CO shift catalyst layer 07 is further circulated to the CO removal catalyst layer 08, the supply amount of the CO selective oxidation air 035 to the CO removal catalyst layer 08 must be reduced. Therefore, reforming efficiency can be improved, temperature control is difficult, and it is not necessary to use a methanation-type CO removal catalyst!
  • the first evaporator 05 and the second evaporator 06 have the first flow path and the second flow path at the bottom, the first flow path and Arranged so that the outlet of the second flow path is on top, in the first evaporator 05, water 021 flows upward through the first flow path, and in the second evaporator 06, the mixture 023 flows in the second flow.
  • the water 021 flowing through the first flow path of the first evaporator 05 and the reformed gas 037 flowing through the CO removal catalyst layer 08 are in counterflow, and the second evaporator 06 Since the mixture 023 flowing through the second flow path and the reformed gas 037 flowing through the low-temperature CO shift catalyst layer 07 are opposed to each other, heat exchange between them can also be performed efficiently.
  • the reforming tube 0 containing the reforming catalyst layer 03 is provided. 4 is arranged above the first evaporator 05 and the second evaporator 06, and the superheated steam of the mixture 023 flowing out from the second evaporator 06 flows in from the lower end of the reforming catalyst layer 03 and reforms.
  • PANA-01 can be made very short compared to the conventional long PANA, so it is easy to handle, and on-site adjustment and replacement work are also possible with human power.
  • the CO removal catalyst layer 08 is provided in a cylindrical shape so as to surround the first evaporator 05, and flows out of the low temperature CO shift catalyst layer 07.
  • the reformed gas 037 circulated through the CO removal catalyst layer 08.
  • the water 021 flowing through the first flow path of the first evaporator 06 is used to selectively oxidize the reformed gas 037 in the CO removal catalyst layer 08. Since the heat generated by the reaction is absorbed and the reformed gas 037 is cooled, the first evaporator 05 is interposed between the calothermal gas channel 024 and the CO removal catalyst layer 08.
  • the CO removal catalyst layer 08 is heated gas flow path 024 inside the first evaporator 06.
  • the CO removal catalyst is removed by the water 021 that circulates through the first flow path of the first evaporator 05.
  • the CO selective oxidation reaction by cooling the absorbent Ya reformed gas 037 in heat generation in the layer 08 can be reliably performed.
  • the CO removal catalyst in the CO removal catalyst layer 08 is cooled to about the vaporization temperature of water 02 1 and has a high CO removal capability, so it is also necessary to use a meta-type CO removal catalyst that is difficult to control temperature! /, .
  • the reforming apparatus of Embodiment 1 of the present invention has the reforming portion cylindrical tube 02 disposed so as to surround the reforming tube 04, and the reforming tube 04 is concentrically formed.
  • Inner cylindrical tube provided inside 0 9 and an outer outer cylindrical tube 010, and an intermediate cylindrical tube 011 between the inner cylindrical tube 09 and the outer cylindrical tube 010.
  • the lower end side of the inner cylindrical tube 09 is closed by a lower end plate 012
  • the upper end side between the inner cylindrical tube 09 and the outer cylindrical tube 010 is closed by an upper end plate 013.
  • the gap between the upper end plate 013 and the upper end of the intermediate cylindrical pipe 011 is defined as a reformed gas folding part 014, and the cylindrical gap between the intermediate cylindrical pipe 011 and the inner cylindrical pipe 09 is defined as a reformed gas flow path.
  • the reforming catalyst layer 03 is provided in a cylindrical shape between the intermediate cylindrical tube 011 and the outer cylindrical tube 010, and the upper end of the reforming unit cylindrical tube 02 is closed by the upper end plate 016.
  • the reformed gas 037 flowing out from the upper end of the reforming catalyst layer 03 flows into the heated gas flow path 024 between the first evaporator 05 and the second evaporator 06.
  • the reforming catalyst layer 03 can be efficiently heated from the inside and outside of the material tube 04 (reforming catalyst layer 03).
  • the reforming tube 04 is not a multi-tube type as in the past, but a single-tube type, which eliminates the need for piping and header tanks that consolidate multiple reforming tubes. It is possible to reduce.
  • the force provided with only the low-temperature CO shift catalyst layer 07 as the CO shift catalyst layer is not limited to this, and the high-temperature CO is located above the low-temperature CO shift catalyst layer 07 (that is, upstream of the reformed gas flow direction).
  • a shift catalyst layer may be provided.
  • the lower end (lower end plate 012) of the inner cylindrical tube 09 is moved upward to provide a high temperature CO shift catalyst layer inside the intermediate cylindrical tube 011 or inside the second evaporator 06.
  • the reformed gas that has flowed out may flow through the low temperature CO shift catalyst layer 07 after flowing through the high temperature CO shift catalyst layer.
  • the high-temperature CO shift catalyst has a high operating temperature and is heat resistant, and since the operating temperature is high, CO can be removed in a smaller amount than a low-temperature CO shift catalyst having a high reaction rate.
  • the CO concentration in the reformed gas after passing through the high-temperature CO shift catalyst layer is, for example, the conventional 65 Lower than the CO concentration in the reformed gas at 0 ° C level. Therefore, even if this reformed gas flows into the low temperature CO shift catalyst layer, the temperature of the low temperature CO shift catalyst is not easily raised due to the heat generated by the CO shift reaction, so the life of the low temperature CO shift catalyst can be extended.
  • the outlet temperature of the low-temperature CO shift catalyst layer also decreases, so the CO concentration in the reformed gas flowing out from the low-temperature CO shift catalyst layer also decreases due to the equilibrium reaction. For this reason, when the reformed gas flowing out from the low-temperature CO shift catalyst layer is further circulated through the CO removal catalyst layer, the load of the CO removal catalyst can be reduced.
  • FIG. 5 is a longitudinal sectional view of the reforming apparatus according to Embodiment 2 of the present invention
  • FIG. 6 is a transverse sectional view taken along the line D-D in FIG. 5
  • FIG. 7 is a view taken along the line E-E in FIG. 8 is a cross-sectional view taken along line FF in FIG. 5
  • FIG. 9 is a cross-sectional view taken along line GG in FIG.
  • Fig. 10 is a diagram showing a heat exchanger for heating gas and process water (water)
  • Fig. 11 is a block diagram of a temperature control system provided in the reformer
  • Fig. 12 is a second evaporator and reforming catalyst. It is a longitudinal cross-sectional view which shows a structure at the time of providing the piping for cleaning and the removal part for cleaning between layers.
  • the reformer of Embodiment 2 includes a reformer 2 having a reformer 1, a reformer cylindrical tube 10, a reforming catalyst layer 21, a high-temperature CO shift catalyst layer on the upper side.
  • the first evaporator 4, the second evaporator 5, the O adsorption catalyst layer 6, the low-temperature CO shift catalyst layer 7, the CO removal catalyst layer 8, etc. are arranged on the lower side. These components are entirely covered with ceramic fiber insulation 9! /.
  • the reforming pipe 2 is composed of an inner cylindrical pipe 11 provided concentrically, an outer cylindrical pipe 12 provided outside, and the inner cylindrical pipe 11 and the outer cylindrical pipe 11.
  • This is a triple pipe structure having an intermediate cylindrical pipe 13 between the cylindrical pipes 12, and the cylindrical pipes 11, 12, 13 are arranged so as to surround the periphery of the burner 1. That is, this reformer is a single tube type having only one reforming tube 2 rather than a multi-tube type having a plurality of reforming tubes.
  • the lower end of the inner cylindrical tube 11 is closed by a circular shell plate 14 as a lower end plate, and a heat insulating material 15 is provided on the circular shell plate 14.
  • the heat insulating material 15 is made of a ceramic fiber formed in a cylindrical shape.
  • the circular shell plate 14 has an arc shape with a longitudinal cross-section protruding downward, It has an advantageous shape.
  • the upper end side between the inner cylindrical tube 11 and the outer cylindrical tube 12 is closed by an annular upper end plate 16 (first upper end plate). A gap is secured between the upper end plate 16 and the upper end of the intermediate cylindrical tube 13, and this gap serves as the reformed gas turn-back portion 17.
  • the upper end plate 16 is also a shape that is advantageous in terms of thermal stress because the longitudinal cross-sectional shape is an upwardly convex arc shape.
  • a cylindrical gap is secured between the intermediate cylindrical pipe 13 and the inner cylindrical pipe 11, and this gap serves as the reformed gas flow path 18.
  • the width of the reformed gas channel 18 is about 2 mm, for example.
  • the reforming catalyst layer 21 has a cylindrical shape provided in the gap between the intermediate cylindrical tube 13 and the outer cylindrical tube 12.
  • the length of the intermediate cylindrical tube 13 and the outer cylindrical tube 12 is about 600 mm, for example, and the distance between the intermediate cylindrical tube 13 and the outer cylindrical tube 12 is about 20 mm, for example.
  • the reforming catalyst is formed in a space composed of an intermediate cylindrical tube 13, an outer cylindrical tube 12, and perforated plates (punching plates) 19, 20 fixed to the upper and lower ends between the cylindrical tubes 13, 12.
  • the reforming catalyst layer 21 is formed by filling the catalyst.
  • a disk-like support plate 22 is provided between the upper and lower portions of the reformer.
  • a lower end side between the outer cylindrical tube 12 and the intermediate cylindrical tube 13 is closed by a support plate 22.
  • the lower end of the outer cylindrical tube 12 is fixed to the upper surface side of the support plate 22, the lower end of the intermediate cylindrical tube 13 is connected to the upper end of the second evaporator 5, and the side surface of the second evaporator 5 is Fixed to the inner periphery of the support plate 22! /
  • a header tank 27 is provided so as to surround the periphery of the outlet 5a-1 of the flow path 5a of the second evaporator 5.
  • the header tank 27 is composed of a cylindrical pipe 27a surrounding the flow path outlet 5a—1, a part of the second evaporator 5 (cylindrical pipe 5B), and a cylindrical pipe 27a and the second evaporator 5 (cylindrical pipe 5B).
  • the upper end plate 27b with the upper end between the two ends, and the support plate 22 with the lower end between the cylindrical tube 27a and the second evaporator 5 (cylindrical tube 5B).
  • the cylindrical tube 27a has an ejection hole 27a.
  • a plurality of ejection holes 27a are formed in the circumferential direction of the cylindrical tube 27a.
  • the reforming section cylindrical tube 10 is disposed concentrically with the outer cylindrical tube 12 so as to surround the outer cylindrical tube 12 of the reforming tube 2.
  • the upper end side of the reforming section cylindrical tube 10 is closed by an upper end plate 23 (second upper end plate).
  • a gap is secured between the upper end plate 23 and the upper end plate 16, and this gap serves as a heated gas return portion 24.
  • the reforming section cylindrical tube 10 and the outer cylinder A cylindrical gap is secured between the pipe 12 and this gap serves as the heated gas passage 25.
  • the heated gas flow path 25 has an inlet 25a at the upper end and an outlet 25b at the lower end.
  • the width of the heated gas passage 25 is, for example, about 10 mm.
  • the lower end of the reforming section cylindrical tube 10 is fixed to the upper surface side of the support plate 22.
  • a plurality of flow holes 22 a are formed in the support plate 22 in the circumferential direction at positions corresponding to the space between the reforming section cylindrical tube 10 and the outer cylindrical tube 12 (that is, the heated gas flow
  • the PANA 1 is located on the upper end side (upper end portion of the reformer) of the reforming pipe 2 and is disposed downward, and the upper end plate 23 and the heat insulating material 9 of the reformer cylindrical pipe 10 are disposed.
  • the upper end plate 23 is fixed to the upper end plate 23 so as to penetrate the upper portion 9a.
  • the lower side of the burner 1 is a combustion space 33, and the flame 37 of the burner 1 is formed downward.
  • the cylindrical outer cylindrical tube 34 provided in the PANA 1 extends downward, and the cylindrical gap between the outer cylindrical tube 34 and the inner cylindrical tube 11 of the reforming tube 2 is extended.
  • the heated gas passage 35 is formed.
  • a gap force between the lower end of the burner outer tube 34 and the heat insulating material 15 is a heated gas turn-up portion 36.
  • the length of the PANA 1 including the burner outer tube 34 is, for example, about 400 mm.
  • the first evaporator 4 is cylindrical and has a spiral flow path 4a (first flow path) for flowing process water 85 as water.
  • the second evaporator 5 has a cylindrical shape smaller in diameter than the first evaporator 5, and the spiral flow path 5 a (the first flow path for flowing the mixture 89, which is a mixed fluid of the process water (steam) 85 and the raw material 86. 2 channels).
  • the first evaporator 4 and the second evaporator 5 are arranged concentrically with the first evaporator 4 on the outside and the second evaporator 5 on the inside.
  • the first evaporator 4 and the second evaporator Cylindrical gap force S secured between 5 and the heated gas flow path 26.
  • the width of the heated gas passage 26 is, for example, about 3 mm at a narrow portion (a portion between the convex portion of the corrugated tube 4A of the first evaporator 4 and the cylindrical tube 5B of the second evaporator 5).
  • a carbon-based fuel such as city gas (methane gas) or kerosene is used.
  • the configurations of the first evaporator 4 and the second evaporator 5 are described in detail!
  • the first evaporator 4 has a cylindrical tube 4B fitted on the outer peripheral surface side of a corrugated tube (corrugated tube) 4A. It has a double tube structure.
  • the second evaporator 5 also has a double tube structure in which a cylindrical tube 5B is fitted to the outer peripheral surface side of a corrugated tube (corrugated tube) 5A.
  • the cylindrical tubes 4B and 5B are simply cylindrical with no irregularities on the tube surfaces.
  • Corrugated tube 4A , 5B have spiral irregularities (waveforms) formed on the tube surface.
  • the corrugations of the corrugated tubes 4 and 5 are spiraled toward the tube axis while turning along the corrugated tubes 4 and 5 tube surfaces.
  • the length of the corrugated tube 4 mm is about 600 mm, for example, and the corrugated tube 5B is longer than the corrugated tube 4A.
  • Such corrugated tubes 4A and 5A for example, rotate a cylindrical tube around its tube axis while supporting and supporting both ends of the cylindrical tube, and a spherical pressing roller on the outer peripheral surface of the rotating cylindrical tube.
  • the corrugated tube 4A and the cylindrical tube 4B can be fitted, for example, by shrink-fitting the cylindrical tube 4B on the outer peripheral surface of the corrugated tube 4A, or by winding a plate material around the outer peripheral surface of the corrugated tube 4A. This can be done easily by welding them together to form a cylindrical tube B.
  • the corrugated tube 5A and the cylindrical tube 5B can be easily fitted by the same method as that for fitting the corrugated tube 4A and the cylindrical tube 4B.
  • the gap is the aforementioned spiral flow path 4a.
  • the spiral gap formed between the corrugated tube 5A (helical unevenness) and the cylindrical tube 5B by fitting the corrugated tube 5A and the cylindrical tube 5B is It becomes the aforementioned spiral flow path 5a!
  • the lower end is the inlet 4a-1, and the upper end is the outlet 4a-2.
  • the upper end is The end becomes outlet 5a-1 and the lower end becomes inlet 5a-2.
  • One end side of the process water supply pipe 28 is connected to the inlet 4a-1 of the flow path 4a, and the other end side of the process water supply pipe 28 is connected to one end side of the tube 77.
  • the other end of the tube 77 is connected to a process water supply device such as a pump (not shown) via another process water supply pipe 28. If the tube 77 is not necessarily provided, the other end side of the process water supply pipe 28 connected to the inlet 4a-1 of the flow path 4a is directly connected to the process water supply device. Connected to.
  • a pipe 29 is arranged outside the first evaporator 4 (CO removal catalyst layer 8), and one end side and the other end side of the pipe 29 are respectively connected to the first evaporator 4 (cylindrical pipe 4B). ) And the lower end of the second evaporator 5 (cylindrical tube 5B). That is, the flow of the first evaporator 4 is The outlet 4a-2 of the channel 4a is connected to the inlet 5a-2 of the channel 5a of the second evaporator 5.
  • One end side of the raw material supply pipe 30 is connected to the middle of the pipe 29, and a connecting portion between the raw material supply pipe 30 and the pipe 29 is a raw material mixing section 31.
  • the position of the raw material mixing section 31, that is, the connection position of the pipe 29 and the raw material supply pipe 30 is not limited to the lower end of the pipe 29 as shown in the figure, but may be any position on the pipe 29. It is desirable that the raw material mixing section 31 has a double nozzle structure similar to that shown in FIG.
  • the other end of the raw material supply pipe 30 is connected to a raw material supply device such as a pump!
  • the outlet 5a-1 of the flow path 5a leads to the inside of the header tank 27 described above!
  • the lower end side between the first evaporator 4 and the second evaporator 5 (the heated gas flow path 26) is closed by an annular lower end plate 32.
  • the heated gas flow path 26 has an upper end portion serving as an inlet 26a and a lower end portion serving as an outlet 26b.
  • the upper end 4B-1 of the cylindrical tube 4B of the first evaporator 4 has an inner diameter enlarged to be approximately the same as the inner diameter of the reforming unit cylindrical tube 10, and its upper end is on the lower surface side of the support plate 22 It is fixed to. Therefore, in the upper end portion 4B-1 of the cylindrical tube 4B, a space 38 having a width larger than that of the heated gas passage 26 is formed between the second evaporator 5 (cylindrical tube 5B)! The outlet 25b of the heating gas passage 25 on the reforming pipe 2 side and the inlet 26a of the heating gas passage 26 on the evaporators 4 and 5 side are communicated with each other through the space 38 and the flow hole 22a of the support plate 22. /!
  • One end side of the exhaust pipe 39 is connected to the outlet 26b of the heating gas passage 26, and the other end side of the exhaust pipe 39 is connected to the inlet side of the heat exchanger 40 disposed outside the heat insulating material 9.
  • One end of the air supply pipe 41 for the burner is also connected to the inlet side of the heat exchanger 40, and the other end of the air supply pipe 41 for the burner is connected to the air supply device 82 for the burner such as a pump (see Fig. 11). It is connected to the.
  • one end side of the exhaust pipe 42 and one end side of the air supply pipe 43 are connected to the outlet side of the heat exchanger 40, and the other end side of the exhaust pipe 42 is opened to the atmosphere so that the burner air supply pipe is opened.
  • the other end of 43 is connected to PANA 1. That is, the heat exchanger 40 is for exchanging heat between the heating gas 88 and the burner air 84.
  • One end of the burner fuel supply pipe 44 is also connected to the PANA 1 and the other end of the PANANER fuel supply pipe 44 is connected to a PUNNER fuel supply device 81 (see FIG. 11) such as a pump. Yes.
  • the lower end of the reformer has a base disk-shaped support plate 45, and the lower end of the lower end plate 45 is fixed to the lower end of the cylindrical tube 5B of the second evaporator 5. . Also, on the bottom plate 45 An elongated cylindrical tube 46 (second cylindrical tube) is erected on the surface. The cylindrical tube 46 extends to the vicinity of the lower end (circular shell plate 25) of the inner cylindrical tube 11 of the reforming tube 2, and the upper end is closed by the upper end plate 47. The cylindrical tube 46 is positioned inside the second evaporator 5 (the corrugated tube 5A and the cylindrical tube 5B) and the reforming tube 2 (the intermediate cylindrical tube 13), and is arranged concentrically therewith.
  • the high temperature CO shift catalyst layer 3 is a cylindrical one provided between the intermediate cylindrical tube 13 and the cylindrical tube 46 of the reforming tube 2. That is, the high temperature CO shift catalyst layer 3 is disposed inside the reforming catalyst layer 21 and below the circular shell plate 14 of the inner cylindrical tube 11.
  • a high-temperature CO is formed in a space consisting of the intermediate cylindrical tube 13, the cylindrical tube 46, and the perforated plates (notching plates) 48, 49 fixed between the upper and lower ends of the cylindrical tubes 13, 46.
  • the high temperature CO shift catalyst layer 3 is formed by filling the shift catalyst.
  • the operating temperature of this high temperature CO shift catalyst is, for example, in the range of 550-400 ° C.
  • a cylindrical tube 50 (first cylindrical tube) is disposed inside the second evaporator 5.
  • the cylindrical tube 50 is located between the second evaporator 5 and the cylindrical tube 46, and is disposed concentrically with the second evaporator 5 (the corrugated tube 5A and the cylindrical tube 5B), the cylindrical tube 46, etc. 2 It has almost the same length as the evaporator 5.
  • the upper end and the lower end between the cylindrical tube 50 and the cylindrical tube 46 are closed by an upper end plate 51 and a lower end plate 52, respectively.
  • a cylindrical gap is secured between the cylindrical pipe 50 and the second evaporator 5 (corrugated pipe 5A), and this gap serves as the reformed gas flow path 53.
  • the width of the reformed gas channel 53 is, for example, about 2 mm at a narrow portion (a portion between the convex portion of the corrugated tube 5A of the second evaporator 5 and the cylindrical tube 50).
  • the cylindrical tube 50 is formed with a circulation hole 54.
  • a plurality of flow holes 54 are formed in the circumferential direction of the cylindrical tube 50 at a position between the upper O adsorption catalyst layer 6 and the lower low temperature CO shift catalyst layer 7, and the reformed gas flow path outside the cylindrical tube 50 is formed.
  • 53 communicates with the inlet 73 of the low temperature CO shift catalyst layer 7 (that is, the space between the cylindrical tube 50 and the cylindrical tube 46 on the upper end side of the low temperature CO shift catalyst layer 7).
  • the low-temperature CO shift catalyst layer 7 has a cylindrical shape provided in the lower portion between the cylindrical tube 50 and the cylindrical tube 46.
  • the lower end position of the low temperature CO shift catalyst layer 7 substantially corresponds to the lower end position of the second evaporator 5.
  • a low-temperature CO shift catalyst is placed in a space consisting of a cylindrical tube 50, a cylindrical tube 46, and perforated plates (punching plates) 55, 56 fixed to the lower end portion and the intermediate portion between these cylindrical tubes 50, 46.
  • the low temperature CO shift catalyst layer 7 is formed by filling. It is made.
  • the operating temperature of this low-temperature CO shift catalyst is, for example, in the range of 150-250 ° C.
  • the O adsorption catalyst layer 6 is a cylindrical member provided in an upper portion between the cylindrical tube 50 and the cylindrical tube 46, and is located above the low-temperature CO shift catalyst layer 7.
  • a space consisting of a cylindrical tube 50, a cylindrical tube 46, and perforated plates (punching plates) 57, 58 fixed to the upper end portion and intermediate portion between these cylindrical tubes 50, 46 can be oxidized and reduced.
  • O adsorption catalyst layer 6 is formed by filling the adsorption catalyst.
  • the heated gas introduction pipe 59 penetrates the low temperature CO shift catalyst layer 7 and the O adsorption catalyst layer 6.
  • One end side of the heated gas introduction pipe 59 extends upward and protrudes from the upper end of the O adsorption catalyst layer 6.
  • a gap is secured between one end (upper end) of the heated gas introduction pipe 59 and the upper end plate 51, and this gap serves as a heated gas return portion 108.
  • the other end side of the heated gas introduction pipe 59 is taken out through the lower end plate 52 of the cylindrical pipe 50 and the cylindrical pipe 5B of the second evaporator 5, and is connected to the discharge side of the pump 60.
  • the suction side of the pump 60 is connected to the outlet side of the condenser 62 via the pipe 61, and the inlet side of the condenser 62 is connected to the exhaust pipe 39 via the pipe 63! /.
  • the CO removal catalyst layer 8 is provided in a cylindrical shape so as to surround the periphery of the first evaporator 4.
  • the first evaporator 4 (cylindrical tube 4B) is surrounded by a cylindrical tube 64 concentrically with the first evaporator 4, the cylindrical tube 4B of the first evaporator 4, and these cylinders.
  • the CO removal catalyst layer 8 is constructed by filling the space consisting of the perforated plates (punching plates) 65 and 66 fixed between the upper and lower ends of the pipes 64 and 4B with the CO removal catalyst (PROX catalyst). is doing.
  • the upper end and the lower end between the cylindrical tube 4B and the cylindrical tube 64 of the first evaporator 4 are closed by an upper end plate 67 and a lower end plate 68, respectively.
  • a pipe 69 is arranged outside the first evaporator 4 (CO removal catalyst layer 8), and one end side and the other end side of the pipe 69 are respectively at the upper end of the lower end plate 52 and the cylindrical pipe 64. Connected to the department. That is, the outlet 70 of the low temperature CO shift catalyst layer 7 (the space between the cylindrical tube 50 and the cylindrical tube 46 on the lower end side of the low temperature CO shift catalyst layer 7) and the inlet 71 of the CO removal catalyst layer 8 (CO removal catalyst layer). The space between the cylindrical pipe 64 and the cylindrical pipe 4B on the upper end side of 8) is connected by a pipe 69.
  • the outlet 72 of the CO removal catalyst layer 8 (that is, the circle on the lower end side of the CO removal catalyst layer 8)
  • One end of the reformed gas supply pipe 74 is connected to the space between the cylindrical pipe 64 and the cylindrical pipe 4B), and the other end side of the modified gas supply pipe 74 is not shown in FIG. /!
  • one end of a CO selective oxidation air supply pipe 98 is connected to the pipe 69. That is, the connecting portion force S between the pipe 69 and the CO selective oxidation air supply pipe 98 and the air mixing section 99 are provided.
  • the air mixing unit 99 can be provided at an arbitrary position of the pipe 69.
  • the other end of the CO selective oxidation air supply pipe 98 is connected to a CO selective oxidation air supply device such as a pump (not shown).
  • the heat insulating material 9 has a cylindrical shape, is placed on the support plate 45, and has an upper end closed by an upper portion 9a covering the upper end plate 23 of the reforming section cylindrical tube 10.
  • the heat insulating material 9 totally insulates the components of the reformer.
  • the reformer cylindrical tube 10 Above the reformer, the reformer cylindrical tube 10, the reformer tube 2 (the reforming catalyst layer 21), and the high-temperature CO shift catalyst layer. 3 and the lower side of the reformer surround the CO removal catalyst layer 8, the first evaporator 4, the second evaporator 5, the O adsorption catalyst layer 6, and the low temperature CO shift catalyst layer 7. Pipes 29 and 69 are also housed inside.
  • the outer diameter of the heat insulating material 9 is constant from top to bottom, while the inner diameter of the heat insulating material 9 is smaller on the upper side and larger on the lower side. This is because the outer diameter including the lower pipes 29 and 69 is larger than the outer diameter of the upper reforming section cylindrical pipe 10. In other words, due to the difference in the outer diameter, even if the outer diameter of the heat insulating material 9 is constant, the thickness of the upper heat insulating material 9 (for example, 70 mm) that requires high resistance and heat insulation compared to the lower side. Can be made thicker than the thickness of the lower insulating material 9 (for example, 50 mm).
  • a tube 77 is spirally wound around the outer peripheral surface of the heat insulating material 9. As described above, one end side of the tube 77 is connected to the other end side of the process water supply pipe 28 drawn out of the heat insulating material 9, and the other end side of the tube 77 is connected to another process water supply pipe 28. Is connected to a process water supply device (not shown).
  • the tube 77 is not necessarily provided, but is effective in further improving the efficiency of the reformer.
  • the heat from the heat insulating material 9 is reduced by providing the tube 77. It is desirable to collect.
  • heat exchange for heat exchange between the heating gas 88 and the process water 85 as shown in FIG. A converter 78 may be provided.
  • the heat exchanger 78 is disposed outside the heat insulating material 9 and is provided in the middle of the process water supply pipe 28 and the exhaust pipe 39.
  • the outlet 79 of the reforming catalyst layer 21 (that is, the space portion between the outer cylindrical tube 12 and the intermediate cylindrical tube 13 on the upper end side of the reforming catalyst layer 21) is the first.
  • the first reformed gas thermometer 75 is installed, and the second reformed gas thermometer 76 is installed at the inlet 73 of the low-temperature CO shift catalyst layer 7.
  • the first reformed gas thermometer 75 measures the temperature of the reformed gas flowing out from the reforming catalyst layer 21, and the second reformed gas thermometer 76 measures the reformed gas flowing into the low temperature CO shift catalyst layer 7. Measure the temperature.
  • the temperature measurement signal of the first reformed gas thermometer 75 and the temperature measurement signal of the second reformed gas thermometer 76 are both input to the temperature controller 80.
  • the fuel for the panner is supplied so that the measured value of the reformed gas temperature at the reforming catalyst layer outlet 79 by the first reformed gas thermometer 75 becomes a predetermined temperature (for example, 750 ° C).
  • the device 81 is controlled to control the supply amount of the fuel 83 for the panner supplied from the fuel supply device 81 for the panner to the burner 1.
  • the heating gas temperature of the Parner 1 should be increased by increasing the burner fuel supply amount to the Parner 1.
  • the reformed gas temperature (measured value) at the reforming catalyst layer outlet 79 is set to a predetermined temperature.
  • the amount of fuel supplied to the burner 1 is reduced to lower the heating gas temperature of the burner 1.
  • the reformed gas temperature (measured value) at the reforming catalyst layer outlet 79 is set to a predetermined temperature.
  • the control of the fuel supply device 81 for the burner by the temperature control device 80 includes, for example, the opening control of the fuel flow rate adjustment valve and the output (discharge amount) control of the pump in the fuel supply device 81 for the burner.
  • the measured value force of the reformed gas temperature at the low temperature CO shift catalyst layer inlet 73 by the first reformed gas thermometer 76 is used for the controller so that the predetermined temperature (for example, 250 ° C) is obtained.
  • the air supply device 82 is controlled to control the supply amount of the air 82 for the panner supplied from the air supply device for the 82 to the Parner 1.
  • the measured value of the reformed gas temperature at the low temperature CO shift catalyst layer inlet 73 is lower than the predetermined temperature.
  • the reformed gas temperature (measured value) of 73 is set to a predetermined temperature.
  • the control of the air supply device 82 for the paner by the temperature control device 80 includes, for example, the opening control of the air flow rate adjusting valve and the output (discharge amount) control of the pump in the air supply device 82 for the panner. .
  • the principle that the reformed gas temperature at the low temperature CO shift catalyst layer inlet 73 can be controlled by the heated gas flow rate (heated gas air amount) will be described later.
  • a mixture thermometer 112 is provided at the outlet 5a-1 of the flow path 5a of the second evaporator 5, and the temperature control device 80 uses the mixture thermometer 112 to mix the mixture at the flow path outlet 5a-1 89 (superheated steam).
  • the mixture temperature (measured value) at the channel outlet 5a-1 is set to the predetermined temperature.
  • the heating air flow rate (heating gas air amount) of the Parner 1 is reduced by reducing the supply air amount to the Parner 1. Accordingly, the mixture temperature (measured value) at the flow path outlet 5a-1 may be set to a predetermined temperature.
  • a cleaning pipe 101 and a cleaning removal portion 102 may be provided between the second evaporator 5 and the reforming catalyst layer 21.
  • the cleaning pipe 101 has one end and the other end connected to the cylindrical pipe 5A of the second evaporator 5 and the outer cylindrical pipe 12 of the reforming pipe 2, respectively, and the outlet 5a— 1 is connected to the space 104 between the outer cylindrical pipe 12 of the reforming pipe 2 and the intermediate cylindrical pipe 13 formed on the lower side of the reforming catalyst layer 21 (that is, the inlet 106 of the reforming catalyst layer 21). I'm going.
  • an annular ring provided between the outer cylindrical tube 12 and the intermediate cylindrical tube 13 is provided in the space portion 104.
  • the upper end plate 105 has a shape.
  • a plurality of ejection holes 105a are formed in the upper end plate 105 in the circumferential direction. That is, in this case, the upper end plate 105, a part of the outer cylindrical tube 12, a part of the intermediate cylindrical tube 13, a part of the second evaporator 5 (cylindrical tube 5B), and one of the support plates 22 are provided.
  • the header tank 27 is constructed from the part!
  • a cleaning removal section 102 is detachably attached to the cleaning pipe 101.
  • the cleaning pipe 101 passes through the heat insulating material 9, and the cleaning removal portion 102 is located outside the heat insulating material 9.
  • the inlet 103 which is the open end of the cleaning pipe 101 is exposed.
  • the chemical solution 111 is injected from the injection port 103.
  • the cleaning removal part 102 is simply attached to the cleaning pipe 101 so as to be detachable, or detachably connected by a connecting means such as a bolt and nut. Use mounting force S.
  • the heated gas 88 is folded back at the heated gas folding section 24, flows into the heated gas channel 25 outside the reforming pipe 2 from the inlet 25a, and flows downward through the heated gas channel 25. Exit 25a force also flows out.
  • the thermal power of the heated gas 88 is changed from the outside of the reforming pipe 2 to the outer cylindrical pipe 12. And supplied to the reforming catalyst layer 21. That is, heat exchange between the heating gas 88 and the mixture 89 flowing through the reforming catalyst layer 21 and the reforming catalyst layer 21 is performed inside and outside the reforming pipe 2 (the reforming catalyst layer 21).
  • the temperature of the heated gas 88 decreases to, for example, about 400 ° C. when it flows out of the heated gas passage 25.
  • the heated gas 88 that has flowed out of the heated gas flow path 25 passes through the circulation hole 22a of the support plate 22 and the space 38, and the heated gas flow path 26 between the first evaporator 4 and the second evaporator 5 26 Flows from the inlet 26a and flows through the heated gas passage 26 downward.
  • the flow state of the heated gas 88 at this time is turbulent (stirred) by the irregularities (waveform) of the corrugated tube 4A of the first evaporator 4 to become a turbulent flow state.
  • the surface temperature of the first evaporator 4 (cylindrical tube 4B) and the CO removal catalyst layer 8 (cylindrical tube 64) is, for example, about 150 ° C.
  • the heat insulating material 9 in the surrounding portion can sufficiently reduce heat radiation from the surfaces of the first evaporator 4 (cylindrical tube 4B) and the CO removal catalyst layer 8 (cylindrical tube 64) even with a thickness of about 50 mm, for example.
  • the heated gas 88 flowing through the heated gas flow path 26 flows out from the outlet 26b and flows into the heat exchanger 40 through the exhaust pipe 39.
  • heat exchanger 40 heat exchange between the heated gas 88 and the burner air 84 supplied to the heat exchanger 40 from the air supply device 82 for the burner 82 (see FIG. 11) via the air supply pipe 41 for the burner is performed. Done.
  • the temperature of the heated gas 88 after this heat exchange decreases to, for example, about 50 ° C. That is, here, the heat of the heated gas 88 is recovered by the burner air 84.
  • the heated gas 88 recovered by the heat exchanger 40 is released into the atmosphere through the exhaust pipe 42, and the air for the panner 88 recovered by the heat exchanger 40 is passed through the air supply pipe 43 for the panner. Supplied to 1.
  • the process water 85 supplied from the process water supply device is obtained when the tube 77 is provided. Flows from the inlet 4a-1 into the flow path 4a of the first evaporator 4 through the tube 77 and the process water supply pipe 39, and is not provided with the tube 77! / In some cases, directly through the process water supply pipe 39 It flows into the channel 4a from the inlet 4a-1.
  • the tube 77 is provided, it is transferred from the inside of the heat insulating material 9 to the tube 77 through the heat insulating material 9 by the process water 85 flowing through the tube 77 before flowing into the flow path 4a of the first evaporator 4. Absorbs the heat of the heated gas 88.
  • the heat exchanger 78 when the heat exchanger 78 is provided, in this heat exchanger 78, the heated gas 88 flowing out from the heated gas flow path 26 between the first evaporator 4 and the second evaporator 5, Heat exchange with the process water 85 before flowing into the flow path 4a of the first evaporator 4 is performed. In other words, the heat of the heated gas 88 is recovered by the process water 85 here.
  • the heating gas 88 recovered by the heat exchanger 78 is further recovered by the heat exchanger 40, and the force may be released into the atmosphere via the exhaust pipe 42. However, it may be discharged directly into the atmosphere via the exhaust pipe 42.
  • the process water 85 heat recovered by the heat exchanger 78 flows into the flow path 4a of the first evaporator 4 from the inlet 4a-1.
  • the amount of heat (reformation) held by the reformed gas 87 flowing into the CO removal catalyst layer 8 by the process water 85 flowing through the flow path 4a of the first evaporator 4 The amount of heat corresponding to lowering the temperature of the gas 87 to a predetermined temperature (for example, 150 ° C. to 80 ° C.) and the CO selective oxidation reaction (2CO + 0 ⁇ Absorbs (removes heat) the amount of heat generated by 2CO).
  • the process water 85 flowing through the flow path 4a of the first evaporator 4 is vaporized to become steam (wet steam).
  • the vaporization temperature of the process water 12 is, for example, about 120 ° C. Since the CO removal catalyst layer 8 is cooled by the heat of vaporization of the process water 85, the vaporization temperature of the process water 85 (for example, about 120 ° C) is maintained. Note that the flow state of the heating gas 88 when it flows through the heating gas passage 26 is in a turbulent state due to the corrugations (corrugations) of the corrugated tube 4A. Is efficiently transferred to process water 85.
  • the temperature of the heating gas 88 when it flows out of the heating gas channel 26 is lowered by applying the heat of the heating gas 88 to the process water 85.
  • the vaporization temperature of the process water 85 is, for example, about 120 ° C.
  • the lower end of the first evaporator 4 into which the liquid process water 85 flows is at room temperature, so the heated gas
  • the temperature of the heated gas 88 when it flows out of the flow path 26 is a low temperature of about 100 ° C., for example.
  • heat exchange between the heating gas 88 having a calorific value of about 100 ° C. and the burner air 84 and the process water 85 is performed by the heat exchanger 40 and the heat exchanger 78. We will try to make more effective use of the heat stored in gas 88.
  • the process water 85 that has flowed through the flow path 4a of the first evaporator 4 is discharged from the outlet 4a in a partially vaporized state.
  • the mixture 89 generated here flows into the flow path 5a of the second evaporator 5 from the inlet 5a-2 and flows upward through the flow path 5a. At this time, the mixture 89 rises while flowing spirally on the inner peripheral side of the heated gas flow channel 26 because the flow channel 5a is spiral.
  • the mixture 89 flowing through the flow path 5a of the second evaporator 5 is heated by heat exchange with the heated gas 88 flowing through the heated gas flow path 26 outside the second evaporator 5. Further, at the position where the low temperature CO shift catalyst layer 7 is disposed, the reformed gas 87 flowing into the low temperature CO shift catalyst layer 7 is held by the mixture 89 flowing through the flow path 5a of the second evaporator 5.
  • the amount of heat (the amount of heat equivalent to lowering the temperature of the reformed gas 87 to a predetermined temperature (for example, from 250 ° C to 150 ° C)) and the CO shift reaction of the reformed gas 87 in the low temperature CO shift catalyst layer 7 ( It absorbs (removes heat) the amount of heat generated by (CO + H 0 ⁇ H + CO) (the amount of heat equivalent to increasing the temperature of the reformed gas 87 by, for example, about 50 ° C).
  • the mixture 89 flowing through the flow path 5a of the second evaporator 5 flows through the reformed gas flow path 53 inside the second evaporator 5.
  • the amount of heat possessed by the reformed gas 87 (the amount of heat corresponding to lowering the temperature of the reformed gas 87 to a predetermined temperature (for example, from 550 ° C to 250 ° C)) is absorbed. Therefore, the mixture 89 is heated while flowing through the flow path 5a of the second evaporator 5, the heat from the low-temperature CO shift catalyst layer 7 (cylindrical tube 50), and the heat of the reformed gas 87.
  • a predetermined temperature for example, from 550 ° C to 250 ° C
  • the raw material 86 in the mixture 89 is heated together with the process water 85 in the mixture 89, and the vaporization temperature of the process water 85 is at most about 100 to 150 ° C. Even if carbon such as kerosene is likely to precipitate, no carbon is deposited from the raw material 86.
  • the mixture 89 flowing out of the flow path 5a of the second evaporator 5 flows into the header tank 27 and flows in the header tank 27 in the circumferential direction, and a plurality of the side surfaces of the header tank 27 (cylindrical tube 27a) It ejects from each of the ejection holes 27a and flows into the reforming catalyst layer 21 from below.
  • the cleaning pipe 101 and the cleaning removal portion 102 are provided between the second evaporator 5 and the reforming pipe 2 (the reforming catalyst layer 21)
  • the mixture 89 flowing out from the flow path 5a of the second evaporator 5 flows into the header tank 27 through the cleaning pipe 101 and the cleaning removal section 102, flows in the header tank 27 in the circumferential direction, and flows into the header tank 27. It ejects from each of a plurality of ejection holes 105a on the upper surface (upper end plate 105) of 27, and flows into the reforming catalyst layer 21 from below.
  • the superheated steam of the mixture 89 is supplied to the cylindrical reforming catalyst layer 21 by being uniformly dispersed in the circumferential direction by the header tank 27.
  • the mixture 89 that has flowed into the reforming catalyst layer 21 flows upward through the reforming catalyst layer 21.
  • the heat of the heating gas 88 flowing inside (the heating gas passage 35) and outside (the heating gas passage 25) of the reforming pipe 2 is supplied to the reforming catalyst layer 21.
  • a reforming gas 87 hydrogen Rich gas
  • the temperature of the reforming catalyst reaches, for example, about 700 ° C. above the reforming catalyst layer 21 by heat exchange with the heated gas 88, and a reformed gas 87 containing 50% or more of hydrogen is generated.
  • the reformed gas 87 generated in the reforming catalyst layer 21 flows out of the reforming catalyst layer 21 from the outlet 79.
  • the temperature of the reformed gas 87 at the outlet 79 is, for example, 750 ° C.
  • the first reformed gas thermometer 75 measures the temperature of the reformed gas 87 at the outlet 79 of the reforming catalyst layer 21, and the temperature controller 80 uses the first reformed gas thermometer 75.
  • the supply amount of the fuel 83 for the burner to the burner 1 is controlled so that the measured value of the reformed gas temperature obtained by the above becomes a predetermined temperature (for example, 750 ° C.).
  • the reformed gas 87 flowing out from the reforming catalyst layer 21 is folded at the reformed gas folding portion 17 and flows downward through the reformed gas flow path 18, and then flows into the high temperature CO shift catalyst layer 3.
  • the heat of the reformed gas 87 is transferred to the modified catalyst layer 21 (mixture 89) via the intermediate cylindrical tube 13.
  • the temperature of the reformed gas 87 becomes, for example, about 550 ° C. Accordingly, the temperature of the reformed gas 87 when it flows out of the reformed gas flow path 18 is, for example, about 550 ° C., and this reformed gas 87 flows into the high temperature CO shift catalyst layer 3.
  • the reformed gas 87 flows downward. During this time, the CO shift reaction (CO + H 0 ⁇ CO + H) of the reformed gas 87 occurs in the high temperature CO shift catalyst layer 3, so the CO concentration in the reformed gas 87 is reduced from, for example, 13% to about 6%. To do.
  • This CO shift reaction is an exothermic reaction. The reaction heat is transmitted to the reforming catalyst layer 21 adjacent to the outside of the high temperature CO shift catalyst layer 3 through the intermediate cylindrical tube 13.
  • the temperature of the reformed gas 87 flowing out from the high-temperature CO shift catalyst layer 3 is, for example, about 550 ° C., and this reformed gas 87 is passed through the reformed gas channel 53 between the second evaporator 5 and the cylindrical tube 5. Flow into.
  • the reformed gas 87 that has flowed into the reformed gas channel 53 flows downward through the reformed gas channel 53, and then between the cylindrical tube 50 and the cylindrical tube 46 through the circulation hole 54 of the cylindrical tube 50. Flow into.
  • the reformed gas 87 is cooled by exchanging heat with the mixture 8 9 flowing through the channel 5a of the second evaporator 5 to have a temperature of about 250, for example. Decrease to ° C. That is, the temperature of the reformed gas 87 as described above is lowered to a predetermined temperature (for example, from 550 ° C to 250 ° C).
  • the calorific power of the reformed gas 87 corresponding to the absorption is absorbed by the mixture 89 flowing through the flow path 5a of the second evaporator 5.
  • the second reformed gas thermometer 76 measures the temperature of the reformed gas 87 at the inlet 73 of the low-temperature CO shift catalyst layer 7, and the temperature controller 80 uses the second reformed gas thermometer 76.
  • the supply amount of the air 84 for the panner to the Parner 1 is controlled so that the measured value force S of the reformed gas temperature by means of S, and a predetermined temperature (for example, 250 ° C).
  • the principle that the reformed gas temperature at the inlet 73 of the low-temperature CO shift catalyst layer 7 can be controlled by controlling the supply amount of the air 84 for the panner to the parner 1 is as follows.
  • the temperature of the reformed gas 87 at the inlet 73 of the low-temperature CO shift catalyst layer 7 is approximately 550 ° C after passing through the high-temperature CO shift catalyst layer 3 and the second evaporator. The temperature is lowered to 250 ° C by heat exchange with the mixture 89 flowing in the channel 5a.
  • the amount of heat exchange between the mixture 89 and the heating gas 88 increases, the temperature of the mixture 89 flowing through the flow path 5a of the second evaporator 5 increases. Therefore, at this time, the amount of heat exchange between the reformed gas 87 and the mixture 89 decreases, that is, the reformed gas 87 after passing through the high-temperature CO shift catalyst layer 3 is not cooled down by the mixture 89 whose temperature has increased. The temperature of the reformed gas 87 at the inlet 73 of the low temperature CO shift catalyst layer 7 will rise. (5) Therefore, if the amount of heat exchange between the mixture 89 and the heating gas 88 can be controlled, the amount of heat exchange between the reformed gas 87 and the mixture 89 can be controlled.
  • the temperature of the reformed gas 87 at the inlet 73 of the CO shift catalyst layer 7 can be controlled.
  • the amount of heat exchange between the mixture 89 and the heating gas 88 depends on the flow rate of the heating gas 88. Therefore, if the flow rate of the heating gas 88, that is, the supply amount (dilution air amount) of the burner air 84 to the burner 1 is controlled, the amount of heat exchange between the mixture 89 and the heating gas 88 can be controlled. Since the amount of heat exchange between the reformed gas 87 and the mixture 89 can be controlled, the temperature S of the reformed gas 87 at the inlet 73 of the low-temperature CO shift catalyst layer 7 can be controlled by the force S. .
  • the mixture temperature at the flow path outlet 5a-1 of the second evaporator 5 becomes a predetermined temperature (for example, 400 ° C).
  • the CO shift reaction (CO + H 0 ⁇ CO + H) of the reformed gas 87 occurs in the low-temperature CO shift catalyst layer 7, so that the CO concentration in the reformed gas 87 is, for example, about 6% to 0.3% To reduce.
  • This CO shift reaction is also an exothermic reaction, but this reaction heat is absorbed by the mixture 89 flowing through the flow path 5a of the second evaporator 5 as described above.
  • the periphery of the low temperature CO shift catalyst layer 7 (cylindrical tube 50) is surrounded by the second evaporator 5, and the temperature of the second evaporator 5 is, for example, about 150 ° C. Therefore, the reformed gas 87 is cooled to about 150 ° C. by being radiatively cooled by the second evaporator 5 at about 150 ° C. while flowing through the low temperature CO shift catalyst layer 7. That is, at the position where the low-temperature CO shift catalyst layer 7 is installed as described above, the temperature of the reformed gas 87 is reduced to a predetermined temperature (for example, 250 °) by the mixture 89 flowing through the flow path 5a of the second evaporator 5.
  • a predetermined temperature for example, 250 °
  • the amount of heat stored in the reformed gas 87 corresponding to the decrease in temperature (from C to 150 ° C) is absorbed.
  • the CO concentration in the reformed gas 87 decreases to the equilibrium CO temperature of the temperature, so it was assumed that the low-temperature CO shift catalyst layer 7 was circulated without cooling the reformed gas 87.
  • the CO concentration in the reformed gas 87 can be reduced.
  • the reformed gas 87 flowing out from the low temperature CO shift catalyst layer 7 flows into the CO removal catalyst layer 8 from above through the pipe 69.
  • This CO selective oxidation reaction is also an exothermic reaction.
  • the CO removal catalyst layer 8 is installed so as to surround the first evaporator 4, and the process water 85 flowing through the flow path 4a of the first evaporator 4 is vaporized. It is always maintained at a vaporization temperature of 85 (eg about 120 ° C).
  • the reformed gas 87 that flows out from the CO removal catalyst layer 8 and flows into the reformed gas supply pipe 74 is cooled by the process water 85 flowing through the flow path 4a of the first evaporator 4 to about 80 °. The temperature is reduced to C.
  • the temperature of the reformed gas 87 is increased to a predetermined temperature (for example, 150 ° C.) by the process water 85 flowing through the flow path 4a of the first evaporator 4.
  • a predetermined temperature for example, 150 ° C.
  • the amount of heat retained in the reformed gas 87 corresponding to the decrease in temperature is absorbed.
  • the reformed gas 87 having a low CO concentration flowing out from the CO removal catalyst layer 8 is supplied to the fuel cell through the reformed gas supply pipe 74 as a fuel for power generation.
  • the fuel for the panner 83 and the air for the panner 84 supplied from the fuel supply device for the panner and the air supply device for the panner are burned with the burner 1 in the same manner as in the steady operation. Heated gas 88 is generated. However, during this temperature raising operation, the mixture 8 9 (raw material 86, process water 85) is not supplied.
  • the heating gas 88 is circulated upward (through the heating gas flow path 35) along the inner peripheral surface of the inner cylindrical tube 11 of the reforming tube 2 in the same manner as in the steady operation, and the heating gas After turning back at the turn-back portion 17 and flowing the heated gas flow path 25 outside the reforming pipe 2 downward, the heated gas flow path 26 between the first evaporator 4 and the second evaporator 5 is Distribute downward.
  • this heated gas 8 With the heat of 8, the reforming pipe 2 and the reforming catalyst layer 21, the high temperature CO shift catalyst layer 3, the first evaporator 4 and the second evaporator 5, the low temperature CO shift catalyst layer 7 and the CO removal catalyst layer 8 are Heat up in order.
  • the reforming pipe 2 and the reforming catalyst layer 21 are heated and heated when the heated gas 88 flows inside and outside the reforming pipe 2. Since the high temperature CO shift catalyst layer 3 is provided on the inner peripheral side of the reforming catalyst layer 21, the temperature is raised through the reforming catalyst layer 21. The first evaporator 4 and the second evaporator 5 are heated and heated when the heated gas 88 flows through the heated gas flow path 26 between them. Since the low temperature CO shift catalyst layer 7 is provided inside the second evaporator 5, the temperature is raised through the second evaporator 5, and the CO removal catalyst layer 8 is located outside the first evaporator 4. Therefore, the temperature is raised through the first evaporator 4.
  • the supply of the mixture 89 (raw material 86, process water 85) is started, and the generation of the reformed gas 87 is started.
  • the end of the heating temperature raising operation is determined by, for example, measuring the duration of the heating temperature raising operation to determine whether a predetermined time has elapsed or by measuring the temperature of any catalyst layer. This is possible by determining whether or not the temperature has been reached.
  • each catalyst layer 3 in the reformer 3 is stopped. , 7, 8 and 21 contain water vapor.
  • the reformer cools in this state, the water vapor remaining in each catalyst layer 3, 7, 8, 21 condenses and deteriorates the catalyst in each catalyst layer 3, 7, 8, 21. End up. Therefore, the water vapor remaining in each catalyst layer 3, 7, 8, 21 is purged as follows.
  • the Parner 1 is ignited again to generate the heated gas 88. Alternatively, even if the supply of the mixture 89 is stopped, the Parner 1 does not extinguish and continues to generate heated gas.
  • the heated gas 88 is used as a gas for purging water vapor.
  • the heated gas 88 contains, for example, O at a concentration of about 5%, and also contains moisture. [0193] Therefore, the heated gas 88 discharged from the heated gas passage 26 to the exhaust pipe 39 after flowing in the same manner as in the steady operation or the heating temperature raising operation is supplied from the exhaust pipe 39 to the pipe 6 by starting the pump 60. Pull to 3.
  • the condenser 62 may condense the moisture in the heating gas 88 by blowing air from a fan, for example, or may condense the moisture in the heating gas 88 by using process water 85 or Pana air 84. Good.
  • the heated gas 88 from which moisture has been removed flows into the heated gas introduction pipe 59 and flows upward through the heated gas introduction pipe 59, thereby being guided to the upper end side of the O adsorption catalyst layer 6. Then, the heated gas 88 flowing out from the heated gas introduction pipe 59 is folded by the heated gas folding section 108 and flows downward through the O adsorption catalyst layer 6. During this time, O in the heated gas 88 is adsorbed in the O adsorption catalyst layer 6 and O-less gas 107 is generated.
  • Part of the O-less gas 107 flowing out from the O adsorption catalyst layer 6 is opposite to the flow of the reformed gas 87, from the flow hole 54 of the cylindrical tube 50 to the outside of the cylindrical tube 50 (reformed gas channel 53).
  • the O-less gas exhaust pipe (not shown) is passed through the flow path 5a, the pipe 29 and the raw material supply pipe 30 of the second evaporator 5. Exhausted from.
  • the high temperature CO shift catalyst layer 3 and the reforming catalyst remain in the high temperature CO shift catalyst layer 3! Purged from layer 21.
  • the O-less gas 107 and the water vapor are not limited to being discharged via the flow path 5a of the second evaporator 5 as described above, but may be performed from an appropriate position after passing through the reforming catalyst layer 21.
  • an O-less gas exhaust pipe 109 is connected to the cleaning pipe 101, and during steam purge, the valve 110 provided in the O-less gas exhaust pipe 109 is opened, and the O-less gas 107 and steam May be discharged from the O-less gas exhaust pipe 109.
  • the remainder of the O-less gas 107 flowing out from the O adsorption catalyst layer 6 is passed through the low-temperature CO shift catalyst layer 7 and the CO removal catalyst layer 8 in the same manner as the flow of the reformed gas 87, and then reformed.
  • the gas is exhausted from an O-less gas exhaust pipe (not shown) through a gas supply pipe 74.
  • water vapor remaining in the low temperature CO shift catalyst layer 7 and steam power remaining in the CO removal catalyst layer 8 were purged from the low temperature CO shift catalyst layer 7 and the CO removal catalyst layer 8 by the O-less gas 107. It is.
  • the process water 85 contains a solid component such as silica
  • the solid component flows into the flow paths 4a, 5a of the first evaporator 4 and the second evaporator 5. May accumulate in the flow path and block the channels 4a and 5a. Therefore, in order to prevent such problems, it is necessary to apply the configuration shown in FIG. 12 to the reformer and periodically clean the flow paths 4a and 5a of the first evaporator 4 and the second evaporator 5. There is. This procedure is as follows.
  • the cleaning removal portion 102 is removed from the cleaning pipe 101 as shown by the alternate long and short dash line in FIG. 12, and the inlet 103 is exposed.
  • medical solution 111 for removing the said solid component is inject
  • the chemical liquid 111 flows into the flow path 5a of the second evaporator 5 from the outlet 5a-1, and the flow of the flow path 5a of the second evaporator 5 and the flow of the first evaporator 4 is opposite to the flow of the mixture 89.
  • the liquid is discharged from a chemical discharge pipe (not shown) through the process water supply pipe 28.
  • the solid components accumulated in the flow paths 4a and 5a of the first evaporator 4 and the second evaporator 5 are removed by the chemical liquid 111 and discharged from the flow paths 4a and 5a together with the chemical liquid 111.
  • the chemical solution discharge line and the cleaning pipe 101 are connected to form a chemical solution circulation line, and the chemical solution 111 is circulated so that the flow paths 4a, 5a of the first evaporator 4 and the second evaporator 5 are circulated. May be discharged after being distributed multiple times.
  • the first evaporator 4 having a cylindrical shape and the flow path 4a for circulating the process water 85, the cylindrical shape, and the mixture 89 is formed.
  • a second evaporator 5 having a flow path 5a for circulation, a pipe 29 connecting the outlet 4a-2 of the flow path 4a and the inlet 5a-2 of the flow path 5a, and a raw material mixing section provided in the middle of the pipe 29
  • the first evaporator 4 and the second evaporator 5 are arranged concentrically with the first evaporator 4 on the outside and the second evaporator 5 on the inside, and the first evaporator 4 and the second evaporator 5
  • the cylindrical gap between the evaporator 5 is defined as a heated gas flow path 26.
  • the process water 85 flowing through the flow path 4a is heated after the reforming catalyst layer 21 is heated.
  • the heated gas 88 that circulates 26 it is vaporized and vaporized (wet steam).
  • the raw material 86 is mixed with the process water (steam) 21 that flows out of the flow path 4a and flows through the pipe 29, thereby generating a mixture 89.
  • the mixture 89 flowing from the pipe 29 into the flow path 5a and flowing through the flow path 5a is heated by the heated gas 88 flowing through the heated gas flow path 29 after heating the reforming catalyst layer 21, thereby causing superheated steam (
  • the mixture 89 is configured to circulate the superheated steam of the mixture 89 through the reforming catalyst layer 21. Accordingly, the heating gas flowing through the heating gas passage 26 between the first evaporator 4 and the second evaporator 5 is heated.
  • the process water 85 flowing through the flow path 4a of the first evaporator 4 and the mixture 89 flowing through the flow path 5a of the second evaporator 5 can be efficiently heated by the gas 88.
  • the process water 85 flowing out from the flow path 4a of the first evaporator 4 is heated and vaporized by the heated gas 88, the flow rate when flowing through the pipe 29 is not vaporized. Compared to this, it is faster (for example, about 50m / s). Therefore, the raw material 86 mixed in the raw material mixing section 31 in the middle of the pipe 29 can be uniformly dispersed in the process water (water vapor) 85 by the high flow rate process water (steam) 85. Therefore, uniform mixing of process water (steam) 85 and raw material 86 is possible. In this case, even if the raw material 86 is a liquid fuel such as kerosene and the supply amount of the raw material 86 is small, the process water (steam) 85 and the raw material 86 can be mixed uniformly. .
  • the mixture 89 formed by mixing the raw material 86 and the process water (steam) 85 is heated with the heated gas 88 to form superheated steam, so the raw material 86 in the mixture 89 Will be vaporized with process water 85 in mixture 89. Therefore, even if the raw material 86 is easily deposited with a force such as kerosene, it is possible to prevent the carbon from being deposited from the raw material 86. For this reason, the troublesome control of the temperature rise required when the raw material is vaporized by the raw fuel vaporizer as in the prior art is unnecessary.
  • the raw material mixing section 31 has a double nozzle structure, the raw material mixing section 31 is uniformly mixed with the process water (steam) 85 in a fine mist form of the raw material 86. For this reason, it is possible to prevent the deposition of carbon from the raw material 86 more reliably and to prevent the reforming catalyst from deteriorating more reliably.
  • the low-temperature CO shift catalyst layer 7 is disposed inside the second evaporator 5, and the cylindrical tube 50 is disposed inside the cylindrical tube 50.
  • a cylindrical gap between the cylindrical tube 50 and the second evaporator 5 is used as a reformed gas flow path 53, and the reformed gas 87 flowing out of the reforming catalyst layer 21 is reformed.
  • the cylindrical pipe 50 and the cylindrical pipe 46 are connected through the flow holes 54 provided in the cylindrical pipe 50.
  • the mixture 89 flowing through the flow path 5 a of the second evaporator 5 causes the reformed gas 87 in the low temperature CO shift catalyst layer 7 to flow.
  • the reforming gas 87 is cooled by absorbing the heat generated by the CO shift reaction, that is, the low temperature CO shift catalyst layer 7 is disposed inside the second evaporator 5 and flows out from the reforming catalyst layer 21.
  • the reformed gas 87 circulated through the low-temperature CO shift catalyst layer 7, and at this time, the low-temperature CO
  • the temperature of the low temperature CO shift catalyst layer 7 is surrounded by the second evaporator. 5 is surrounded, and the mixture 89 is flowing through the flow path 5a of the second evaporator 5 during steady operation of the reformer, so that the low temperature CO shift catalyst layer 7 is a heated gas outside the second evaporator 5.
  • the temperature is not increased in contact with the heated gas 88 flowing through the flow path 26, but the CO shift in the low-temperature CO shift catalyst layer 7 is reduced by the mixture 89 flowing through the flow path 5a of the second evaporator 5.
  • the reformed gas 87 can be reliably cooled by absorbing heat generated by the reaction. Therefore, it is possible to prevent the CO concentration in the reformed gas 87 flowing out from the low-temperature CO shift catalyst layer 7 from increasing due to insufficient cooling as in the past. For this reason, even when the reformed gas 87 flowing out from the low temperature CO shift catalyst layer 7 is further circulated to the CO removal catalyst layer 8, the supply amount of the CO selective oxidation air 90 to the CO removal catalyst layer 8 must be reduced. Therefore, it is possible to improve the reforming efficiency and there is no need to use a methanation-type CO removal catalyst that is difficult to control temperature.
  • the first evaporator 4 and the second evaporator 5 are provided under the inlets 4a-1 and 5a-2 of the flow paths 4a and 5a, and the flow paths 4a and 5a.
  • the reforming pipe 2 containing the reforming catalyst layer 21 is disposed above the first evaporator 4 and the second evaporator 5. Then, the superheated steam of the mixture 89 flowing out from the second evaporator 5 flows from the lower end of the reforming catalyst layer 21 and is steam reformed while flowing upward through the reforming catalyst layer 21, and reformed gas 87.
  • the reformed gas 87 flows out from the upper end of the reforming catalyst layer 21 and flows downward, flows into the low temperature CO shift catalyst layer 7 from the upper end, and flows through the low temperature CO shift catalyst layer 7 downward.
  • Parner 1 Since the configuration is such that the Parner 1 is disposed downward on the upper end side of the reforming pipe 2, the reforming pipe 2, the first evaporator 4, the second evaporator 5, and the low-temperature CO shift catalyst layer 7
  • it is a rational and compact arrangement considering the flow of the mixture 89 and the reformed gas 87 (heat exchange between the mixture 89 and the reformed gas 87).
  • PANA 1 such flipping conventional as reformer from the device.
  • Parna 1 can be made very short, for example 400 mm, compared to the conventional long parner, so it is easy to handle and can be adjusted and replaced locally by manpower. .
  • the CO removal catalyst layer 8 is provided in a cylindrical shape so as to surround the first evaporator 4, and flows out of the low temperature CO shift catalyst layer 7.
  • the reformed gas 8 7 flows through the CO removal catalyst layer 8 and at this time the process water 85 flowing through the flow path 4a of the first evaporator 4 is used for the selective oxidation reaction of the reformed gas 87 in the CO removal catalyst layer 8 by the process water 85.
  • the first evaporator 4 is interposed between the heated gas passage 26 and the CO removal catalyst layer 8 by absorbing the heat generated by the gas and cooling the reformed gas 87.
  • the CO removal catalyst layer 8 and the heated gas 88 flowing through the heated gas flow path 26 inside the first evaporator 4 The contact temperature is increased by the nodding force, but the process water 85 flowing through the flow path 4a of the first evaporator 4 makes the CO removal catalyst Absorption of heat generated by the selective CO oxidation reaction in the layer 8 can reliably cool the reformed gas 87.
  • the CO removal catalyst in the CO removal catalyst layer 8 is cooled to about the vaporization temperature of process water 85 (for example, 120 ° C), and has a high CO removal capability. Need to use! /.
  • the reforming apparatus of Embodiment 2 of the present invention has the reforming unit cylindrical tube 10 arranged so as to surround the reforming tube 2, and the reforming tube 2 is concentric.
  • a three-pipe structure comprising an inner cylindrical tube 11 on the inside, an outer cylindrical tube 12 on the outer side, and an intermediate cylindrical tube 13 between the inner cylindrical tube 11 and the outer cylindrical tube 12.
  • a cylindrical gap is used as the reformed gas flow path 18, the reforming catalyst layer 21 is provided in a cylindrical shape between the intermediate cylindrical pipe 13 and the outer cylindrical pipe 12, and the upper end side of the reforming section cylindrical pipe 10 is the upper end plate 23.
  • a heated gas turning portion 24 Closed at this top 23 and the upper end plate 16 are defined as a heated gas turning portion 24, and a cylindrical gap between the reforming portion cylindrical tube 10 and the outer cylindrical tube 12 is defined as a heated gas flow path 25 from
  • the heated gas 88 exhausted downward flows upward along the inner peripheral surface of the inner cylindrical tube 11, is folded at the heated gas folding unit 24, and reformed while flowing through the heated gas channel 25 downward.
  • the superheated steam of the mixture 89 that flows into the heated gas flow path 26 between the first evaporator 4 and the second evaporator 5 and flows out from the flow path 5 a of the second evaporator 5. Is reformed with steam while flowing upward through the reforming catalyst layer 21 to become reformed gas 87.
  • This reformed gas 87 flows out from the upper end of the reforming catalyst layer 21 and is folded back at the reformed gas folding portion 17. Therefore, the cylindrical reforming pipe 2 (reformation) is heated by the heated gas 88.
  • the reforming catalyst layer 21 can be efficiently heated from the inside and outside of the catalyst layer 21).
  • the reforming pipe 2 is a single pipe type that is different from the conventional multi-pipe type, and piping and header tanks that aggregate multiple reforming pipes are not required, reducing manufacturing costs. It is possible to do this.
  • the reformed gas 87 flowing out of the reforming catalyst layer 21 flows into the reformed gas channel 53 after passing through the high temperature CO shift catalyst layer 3. .
  • CO The high-temperature CO shift catalyst layer 3 is also provided as a low-temperature CO shift catalyst layer 7 alone.
  • the high-temperature CO shift catalyst has a high operating temperature (for example, 550 to 400 ° C), is heat resistant, and operates. CO can be removed in a smaller amount than the low-temperature CO shift catalyst 7, which has a high reaction rate due to its high temperature.
  • the CO concentration in the reformed gas 87 after passing through the high temperature CO shift catalyst layer 3 becomes lower than the CO concentration in the reformed gas at a level of 650 ° C., for example. Therefore, even if this reformed gas 87 flows into the low-temperature CO shift catalyst layer 7, the low-temperature CO shift catalyst is unlikely to be heated due to the heat generated by the CO shift reaction, so the life of the low-temperature CO shift catalyst can be extended.
  • the temperature of the low-temperature CO shift catalyst is not increased, the outlet temperature of the low-temperature CO shift catalyst layer 7 also decreases, so that the CO concentration in the reformed gas 87 flowing out from the low-temperature CO shift catalyst layer 7 also decreases due to the equilibrium reaction. For this reason, the load of the CO removal catalyst can be reduced.
  • both the flow path 4a and the flow path 5a are formed in a spiral shape, so that the process water 85 is spiraled in the flow path 4a. Since the mixture 89 flows spirally in the flow path 5a, the heat exchange between the process water 85 and the heated gas 88 in the first evaporator 4 and the mixture 89 and the heated gas 88 in the second evaporator 5 are exchanged. Power S can be reliably exchanged with heat.
  • the flow rate of the mixture 89 becomes slow, so the process water (steam) 85 and the raw material 86 in the mixture 89 are separated, and the process 89
  • the ratio of water (steam) 85 to raw material 86 (S / C) may be out of the planned value, and carbon may be precipitated from the raw material 86 to reduce the life of the reforming catalyst 21.
  • the process water (steam) 85 and the raw material 86 in the mixture 89 are separated. Separation can be prevented.
  • the first evaporator 4 is fitted with the cylindrical tube 4B on the outer peripheral surface side of the corrugated tube 4A in which spiral irregularities are formed on the tube surface.
  • a spiral tube formed between the corrugated tube 4A and the cylindrical tube 4B serves as a flow path 4a, and the second evaporator 5 is also formed on the tube surface.
  • the cleaning pipe 101 is connected to the inlet 106 of the cleaning pipe, and the cleaning removal section 102 is detachably attached in the middle of the cleaning pipe 101, and the inlet of the cleaning pipe 101 is removed by removing the cleaning removal section 102.
  • the heated gas 88 that has flowed out of the heated gas flow channel 26 as shown in FIG. 10 and before flowing into the flow channel 4a of the first evaporator 4 If the heat exchanger 78 that exchanges heat with the process water 85 is provided, the heat of the heating gas 88 discharged from the heating gas passage 26 is recovered without wasting, and the process water 85 is heated. Therefore, the efficiency can be further improved.
  • the heating gas 88 is sucked by the pump 60 when the reforming apparatus is stopped, the water is removed by the condenser 62, and the heating gas introduction pipe is removed.
  • the folded adsorption catalyst layer 6 After being introduced to one end side (upper end side) of the O adsorption catalyst layer 6 in 59, the folded adsorption catalyst layer 6 is circulated to remove O in the heated gas 88 and generate O-less gas. Part of this O-less gas Circulates through the low temperature CO shift catalyst layer 7 and the CO removal catalyst layer 8 in order to discharge water vapor remaining in the low temperature CO shift catalyst layer 7 and the CO removal catalyst layer 8, and the remainder of the O-less gas is cylindrical.
  • the high-temperature CO shift catalyst layer 3 and the reforming catalyst layer 21 are sequentially flowed to discharge water vapor remaining in the high-temperature CO shift catalyst layer 3 and the reforming catalyst layer 21.
  • water vapor remaining in the reforming catalyst layer 21, the high temperature CO shift catalyst layer 3, the low temperature CO shift catalyst layer 7 and the CO removal catalyst layer 8 can be discharged by O-less gas when stopped. Therefore, it is possible to prevent the catalyst of each of the catalyst layers 21, 3, 7, and 8 from being deteriorated by condensation of water vapor.
  • the high-temperature CO shift catalyst layer 3 is located below the circular shell plate 14 and inside the intermediate cylindrical tube 13 and inside the intermediate cylindrical tube 13. Since it is provided in a cylindrical shape with the provided cylindrical tube 46, the temperature of the reforming tube 2 (reforming catalyst layer 21) is increased by heating gas during the heating / heating operation of the reformer. When this occurs, the high temperature CO shift catalyst layer 3 inside the intermediate cylindrical tube 13 can also be heated and heated through the reforming tube 2 (reforming catalyst layer 21).
  • a cylindrical header tank 27 is provided between the second evaporator 5 and the reforming catalyst layer 21, and the header tank 27
  • a plurality of spray holes 27c or 91a are formed in the side surface (cylindrical tube 27a) or upper surface (upper end plate 105) in the circumferential direction, and the mixture 87 flowing out from the second flow path 5a of the second evaporator 5
  • the superheated steam flows into the header tank 27, it is ejected from the ejection holes 27a and 91a and flows into the reforming catalyst layer 21, so that the superheated steam of the mixture 89 is removed from the cylindrical tank by the header tank 27.
  • the reforming catalyst layer 21 can be uniformly dispersed in the circumferential direction and supplied, so that the reforming efficiency can be improved.
  • the reforming unit cylindrical tube 10 Heat dissipation from the surface can be reduced by the heat insulating material 9.
  • the heat insulating material 9 may be formed to an appropriate thickness (for example, 70 mm) using an inexpensive ceramic fiber, for example.
  • the tube 77 is spirally wound around the outer peripheral surface of the heat insulating material 9, and released from the inside of the heat insulating material 9 through the heat insulating material 9.
  • Heat to flow path 4a By adopting a structure in which the process water 85 flowing through the tube 77 is absorbed before flowing in, the heat of the heated gas 88 released through the heat insulating material 9 is also recovered without wasting, and the process water 85 is heated. Because it can be used effectively for the purpose, it is possible to improve the efficiency with S.
  • the heating gas 88 of the Parner 1 is supplied without supplying the mixture 89. Is circulated upward along the inner peripheral surface of the inner cylindrical pipe 11 of the reforming pipe 2 and folded back at the heating gas folding section 24 so that the heating gas flow path 25 outside the reforming pipe 2 moves downward. Then, the heated gas passage 26 between the first evaporator 4 and the second evaporator 5 is circulated downward, so that the heated gas 88 allows the reforming pipe 2 and the reforming catalyst to flow.
  • each part of the reformer The power S can be heated efficiently with heated gas 88.
  • the reformed gas temperature at the outlet 79 of the reforming catalyst layer 21 is measured, The amount of fuel supplied to PANA 1 is controlled so that the measured value of the reformed gas temperature becomes a predetermined temperature, and the reformed gas temperature at the inlet 73 of the low-temperature CO shift catalyst layer 7 is measured.
  • the reformed gas temperature at the outlet 79 of the reforming catalyst layer 21 and the inlet 73 of the low-temperature CO shift catalyst layer 7 are used.
  • Each of the reformed gas temperatures can be reliably maintained at a predetermined temperature.
  • the reformed gas temperature at the outlet 79 of the reforming catalyst layer 21 is measured, The amount of fuel supplied to the Parner 1 is controlled so that the measured value of the reformed gas temperature becomes a predetermined temperature, and the mixture temperature at the outlet 5a-1 of the flow path 5a of the second evaporator 5 is measured.
  • the air supply amount to PANA 1 so that the measured value of the mixture temperature becomes a predetermined temperature
  • the reformed gas temperature at the outlet 79 of the reforming catalyst layer 21 and the second evaporator 5 The mixture temperature at the outlet 5a-1 of the channel 5a can be reliably maintained at a predetermined temperature.
  • the reforming apparatus of Embodiment 2 as described above exhibits excellent performance, but in order to further improve performance, the following points can be improved. desirable.
  • the cooling of the low-temperature CO shift catalyst layer 7 may be insufficient. If the cooling of the low-temperature CO shift catalyst layer 7 becomes insufficient, the temperature of the low-temperature CO shift catalyst layer 7 becomes higher, and the CO concentration of the reformed gas 87 flowing out from the low-temperature CO shift catalyst layer 7 increases. As the load on the CO removal catalyst layer 8 on the downstream side increases, the reforming efficiency may decrease. In other words, when the CO concentration in the reformed gas 87 flowing into the CO removal catalyst layer 8 increases, the supply amount of the CO selective oxidation air 90 also needs to be increased. As a result, the consumption of hydrogen in the reformed gas 87 is increased. As a result, the reforming efficiency decreases.
  • the second evaporator 5 is heated by the heating gas 88 flowing through the heating gas passage 26, and the low-temperature CO shift is performed by the radiant heat transfer from the second evaporator 5. Since the temperature of the catalyst layer 7 is increased, the temperature increase rate of the low temperature CO shift catalyst layer 7 is slow.
  • the supply of process water 85 is started in a state where the temperature of the low temperature CO shift catalyst layer 7 is insufficiently raised, and the water vapor of the process water 87 flows into the low temperature CO shift catalyst layer 7, the water vapor is reduced.
  • FIG. 13 is a longitudinal sectional view of the reformer according to Embodiment 3 of the present invention
  • FIG. 14 is a transverse sectional view taken along line II in FIG. 13
  • FIG. 15 is a transverse view taken along line JJ in FIG. FIG. Figure 13 to Figure
  • FIG. 15 the same parts as those in the second embodiment (see FIGS. 5 to 9) are denoted by the same reference numerals, and the detailed description thereof is omitted.
  • an elongated cylindrical tube 201 (third cylindrical tube) is disposed inside the cylindrical tube 46.
  • the cylindrical tube 201 is erected on the support plate 45, and the upper end thereof extends to the vicinity of the upper end of the cylindrical tube 50 and is closed by the upper end plate 205.
  • the cylindrical tube 46 is not erected on the support plate 45, and its lower end is opened away from the support plate 45.
  • a circulation hole 54 is formed in the cylindrical tube 50! / ,!
  • a cylindrical gap is secured between the cylindrical pipe 46 and the cylindrical pipe 201, and this gap serves as the reformed gas flow path 202. That is, the reformed gas channel 202 is formed on the inner peripheral side of the low-temperature CO shift catalyst layer 7.
  • a gap is also secured between the lower end plate 52 that closes the lower end between the cylindrical tube 50 and the cylindrical tube 46 and the support plate 45, and this gap serves as the reformed gas folding portion 203.
  • a cylindrical gap is secured between the second evaporator 4 (corrugated pipe 4A) and the cylindrical pipe 50, and this gap is reformed.
  • Gas channel 53 !
  • the outer reformed gas channel 53 and the inner reformed gas channel 202 are communicated with each other via a reformed gas turn-back portion 203.
  • a circulation hole 204 is formed in the cylindrical tube 46.
  • a plurality of circulation holes 204 are formed between the upper O adsorption catalyst layer 6 and the lower low temperature CO shift catalyst layer 7! /, And are formed in the circumferential direction of the cylindrical tube 46.
  • the inner reformed gas flow path 202 communicates with the inlet 73 of the low temperature CO shift catalyst layer 7 (that is, the space between the cylindrical tube 50 and the cylindrical tube 46 on the upper end side of the low temperature CO shift catalyst layer 7). Yes.
  • the reformed gas temperature at the outlet 79 of the porous catalyst layer 21 and the reformed gas temperature at the inlet 73 of the low temperature CO shift catalyst layer 7 or the mixture temperature at the outlet 5a-1 of the flow path 5a of the second evaporator 5 are respectively To a predetermined temperature (for example, 750 ° C, 200 ° C or 400 ° C). Furthermore, the configuration of FIG. 12 can also be applied to the reformer of the third embodiment.
  • the flow of the heated gas 88 during steady operation is the same as that of Embodiment 2 described above, and a detailed description thereof will be omitted here.
  • the reformed gas 87 of, for example, 550 ° C flowing out of the high-temperature CO shift catalyst layer 3 is also added to the second evaporator.
  • the process until the gas flows into the reformed gas channel 53 between 5 and the cylindrical pipe 50 is the same as that in the second embodiment, and thus detailed description thereof is omitted here. Therefore, in the following, the subsequent flow of the reformed gas 87 will be mainly described.
  • the reformed gas 87 that has flowed into the reformed gas channel 53 flows down the reformed gas channel 53 along the outer surface of the O adsorption catalyst layer 6 (cylindrical tube 50), and the low temperature CO shift catalyst layer. While reaching the upper end position of 7, the temperature is lowered from, for example, 550 ° C to 250 ° C by being cooled by heat exchange with the mixture 89 flowing through the flow path 5a of the second evaporator 5. That is, the reformed gas corresponding to lowering the temperature of the reformed gas 87 to a predetermined temperature (for example, from 550 ° C to 250 ° C) by the mixture 89 flowing through the flow path 5a of the second evaporator 5. 87 retained heat is absorbed. This is the same as the second embodiment.
  • the reformed gas 87 further flows down the reformed gas channel 53 along the outer surface of the low temperature CO shift catalyst layer 7 (cylindrical tube 50), and the low temperature CO.
  • the gas is folded at the reformed gas folding section 203 on the lower end side of the shift catalyst layer 7 and flows into the reformed gas flow path 202 inside the low temperature CO shift catalyst layer 7.
  • the reformed gas 87 that has flowed into the reformed gas channel 202 flows upward through the reformed gas channel 202 along the inner surface of the low-temperature CO shift catalyst layer 7 (cylindrical tube 46). It flows into the space between the cylindrical tube 50 and the cylindrical tube 46 from the circulation hole 204.
  • the reformed gas 87 also flows through the second evaporator 5 when it flows down the reformed gas channel 53 along the outer surface of the low-temperature CO shift catalyst layer 7 (cylindrical tube 50).
  • the temperature drops, for example from 250 ° C to 130 ° C, because it is cooled by heat exchange with the mixture 89 flowing in path 5a. That is, at the position where the low temperature CO shift catalyst layer 7 is installed, the temperature of the reformed gas 87 is increased to a predetermined temperature (for example, from 250 ° C. to 130 ° C.) by the mixture 89 flowing through the flow path 5a of the second evaporator 5.
  • the amount of heat stored in the reformed gas 87 corresponding to the decrease (up to ° C) is absorbed.
  • the reformed gas 8 7 flows upward through the reformed gas flow path 202 along the inner surface of the low temperature CO shift catalyst layer 7 (cylindrical tube 46), the reformed gas 87 and the low temperature CO shift catalyst layer 7
  • the temperature force S of the reformed gas 87 increases, for example, from 130 ° C to 200 ° C. That is, at this time, the reformed gas 87 cools the inner portion of the low-temperature CO shift catalyst layer 7 and the temperature of the inner portion decreases.
  • the measured value of the temperature of the reformed gas 87 at the inlet 73 of the low temperature CO shift catalyst layer 7 by the second reformed gas thermometer 76 is a predetermined temperature (for example, 200 ° C.).
  • the supply amount of the air 82 for the panner to the panner 1 is controlled so that Alternatively, by controlling the supply amount (dilution air amount) of PANA air 84 to PANA 1, the mixture temperature at the outlet 5a-1 of the second evaporator 5 becomes a predetermined temperature (for example, 400 ° C). Control to be.
  • the reformed gas 87 flowing into the low temperature CO shift catalyst layer 7 flows downward through the low temperature CO shift catalyst layer 7. During this time, the CO shift reaction of the reformed gas 87 occurs in the low temperature CO shift catalyst layer 7, so that the CO concentration in the reformed gas 87 is further reduced.
  • the temperature of the reformed gas 87 when it flows out of the low-temperature CO shift catalyst layer 7 is lowered to, for example, 140 ° C. due to cooling by the second evaporator 5 (mixture 89). In other words, the reformed flow into the low temperature CO shift catalyst layer 7 at this time.
  • the amount of heat held by the gas 87 (the amount of heat equivalent to lowering the temperature of the reformed gas 87 to a predetermined temperature (for example, from 200 ° C to 140 ° C)) and the reformed gas in the low-temperature CO shift catalyst layer 7
  • the amount of heat generated by the CO shift reaction of 87 is absorbed (removed heat) by the second evaporator 5 (mixture 89) by the radiant heat transfer and convection heat transfer described above.
  • the temperature power of the second evaporator 5 is about the vaporization temperature of process water 85 (for example, 120 ° C). It is not cooled more than this, and it is not overcooled and does not deviate from the operating temperature range of the low temperature CO shift catalyst (for example, 150 to 250 ° C.). Since the flow of the reformed gas 87 after flowing out of the low temperature CO shift catalyst layer 7 is the same as that in the second embodiment, the description thereof is omitted here.
  • the reformer Even if the process water 85 starts to be supplied in order to start the generation of the reformed gas 87 after the heating and heating operation at the time of starting the steam, and the steam of the process water 85 flows in, the steam is first modified. In the quality gas flow paths 53 and 202, condensation occurs on the outer surface of the cylindrical tube 50 and on the inner surface of the cylindrical tube 46, and does not condense in the low temperature CO shift catalyst layer 7.
  • the reforming apparatus and its operating method of the third embodiment can achieve the same effects as those of the second embodiment, and the reforming apparatus of the third embodiment further has the following effects. The effect is also obtained.
  • the low-temperature CO shift catalyst layer 7 is disposed inside the second evaporator 5, and the cylindrical tube 50 is disposed inside the cylindrical tube 50.
  • the cylindrical gap between the cylindrical tube 50 and the second evaporator 5 is provided as a first reformed gas flow path 53, and the cylindrical tube 46,
  • a cylindrical gap between the cylindrical tube 201 disposed inside the cylindrical tube 46 serves as a second reformed gas flow path 202, and the reformed gas 87 flowing out of the reforming catalyst layer 21 is cooled at a low temperature.
  • the temperature lowers due to heat exchange with the low-temperature CO shift catalyst layer 7 and is folded at the reformed gas folding portion 203 on the other end side of the low-temperature CO shift catalyst layer 7 so that the second end from the other end side of the low-temperature CO shift catalyst layer 7 toward the one end side.
  • Modified gas flow The temperature rises due to heat exchange with the low-temperature CO shift catalyst layer 7 while flowing through the channel 202, and then flows into the cylindrical tube 50 and the cylindrical tube 46 through the flow hole 204 provided in the cylindrical tube 46, and the low temperature.
  • the mixture 89 flowing through the CO shift catalyst layer 7 and flowing through the flow path 5a of the second evaporator 5 at this time absorbs the heat generated by the CO shift reaction of the reformed gas 87 in the low temperature CO shift catalyst layer 7 and improves it.
  • the second evaporator 5 (mixture 89) for the low-temperature CO shift catalyst layer 7 can be obtained by cooling the gas 87.
  • Cooling capacity is the first between the low-temperature CO shift catalyst layer 7 and the second evaporator 5 as heat transfer from the low-temperature CO shift catalyst layer 7 to the second evaporator 5 (mixture 87).
  • the reformed gas 87 flows through the reformed gas channel 53 of the Since convective heat transfer due to the flow of 87 is also added, it becomes higher than in the case of cooling by radiant heat transfer alone.
  • the reformed gas 87 flows through the first reformed gas channel 53 outside the low-temperature CO shift catalyst layer 7 and the second reformed gas channel 202 inside! / Therefore, even if the supply of the process water 85 is started after the heating and heating operation and the water vapor of the process water 85 flows in, the water vapor is first supplied to the first reformed gas channel 53 and the second In the reformed gas flow path 202, condensation occurs on the outer surface of the cylindrical tube 50 and the inner surface of the cylindrical tube 46, and does not condense in the low-temperature CO shift catalyst layer 7.
  • the inner portion of the low-temperature CO shift catalyst layer 7 is also cooled by the reformed gas 87 flowing through the second reformed gas flow path 202, the temperature of the inner portion is prevented from being increased, The CO concentration in the reformed gas 87 passing through this inner part can also be lowered.
  • the process water 85 is supplied and the flow path 4a of the first evaporator 4 is supplied without supplying the raw material 86.
  • the water vapor is heated by heating with the heated gas 88 flowing through the heating gas flow path 26 between the first evaporator 4 and the second evaporator 5.
  • the steam and the second reformed gas channel 53 and the second reformed gas channel 202 are sequentially passed through the outer surface of the first cylindrical tube 50 and the second (2)
  • the temperature of the low-temperature CO shift catalyst layer 7 can be more reliably increased by the latent heat of condensation of water vapor.
  • Power S can be.
  • the reformers of Embodiments 2 and 3 as described above exhibit excellent performance. However, in order to further improve performance, the following points are improved. It is desirable.
  • FIG. 16 is a longitudinal sectional view of the reformer according to Embodiment 4 of the present invention
  • FIG. 17 is a transverse sectional view taken along the line KK in FIG. 16
  • FIG. 18 is a transverse sectional view taken along the line LL in FIG.
  • FIG. 19 is a cross-sectional view taken along line MM in FIG.
  • the same parts as those in the second embodiment (see FIGS. 5 to 9) and the third embodiment (FIGS. 13 to 15) are denoted by the same reference numerals, and duplicated. The detailed description to be omitted is omitted.
  • an elongated cylindrical tube 301 (third cylindrical tube) is disposed inside the cylindrical tube 46.
  • the cylindrical tube 301 is erected on the support plate 45, and its upper end extends to the vicinity of the lower end (circular shell plate 14) of the inner cylindrical tube 11 of the reforming tube 2.
  • the upper ends of the cylindrical tubes 46 and 50 extend to the vicinity of the lower end (circular shell plate 14) of the inner cylindrical tube 11 of the reforming tube 2.
  • the upper end of the cylindrical tube 50 and the upper end of the cylindrical tube 301 are closed by an upper end plate 302.
  • the cylindrical tube 46 is not erected on the support plate 45, and its lower end is opened away from the support plate 45.
  • the cylindrical hole 46 is not formed with a flow hole 204.
  • the cylindrical high-temperature CO shift catalyst 3 is converted into the reforming catalyst layer 21. Is the same as in FIG. 5 except that it is disposed below the lower end (circular shell plate 14) of the inner cylindrical pipe 11 of the reforming pipe 2 but between the cylindrical pipe 50 and the cylindrical pipe 46. This is different from Fig. 5.
  • a high-temperature CO shift catalyst is placed in a space consisting of a cylindrical tube 50, a cylindrical tube 46, and perforated plates (punching plates) 48, 49 fixed between the upper and lower sides of the cylindrical tubes 50, 46.
  • the high temperature CO shift catalyst layer 3 is constituted by filling.
  • a cylindrical gap is secured between the cylindrical pipe 46 and the cylindrical pipe 301, and this gap serves as the reformed gas channel 303. That is, the reformed gas channel 303 is formed on the inner peripheral side of the low temperature CO shift catalyst layer 7 and on the inner peripheral side of the high temperature CO shift catalyst layer 3.
  • a gap is also secured between the lower end plate 52 that closes the lower end between the cylindrical tube 50 and the cylindrical tube 46 and the support plate 45, and this gap serves as the reformed gas folding portion 304.
  • a cylindrical gap is secured between the second evaporator 4 (corrugated tube 4 A) and the cylindrical tube 50 on the outer peripheral side of the low temperature CO shift catalyst layer 7.
  • the gap is the reformed gas channel 53.
  • the reformed gas channel 53 extends between the intermediate cylindrical tube 13 and the cylindrical tube 50 of the reforming tube 2. That is, a cylindrical gap is also secured between the intermediate cylindrical pipe 13 and the cylindrical pipe 50 of the reforming pipe 2, and this gap is also part of the reformed gas channel 53.
  • the outer first reformed gas channel 53 and the inner second reformed gas channel 303 are communicated with each other via a reformed gas folding unit 304. Further, a gap is also secured between the cylindrical tube 46 and the upper end plate 302, and this gap serves as the reformed gas folding portion 305.
  • the reformed gas flow path 303 and the upper end (the upper end side of the high-temperature CO shift catalyst layer 3) between the cylindrical tube 46 and the cylindrical tube 50 communicate with each other through the reformed gas folding portion 305. .
  • the first adsorption catalyst layer 6A and the first adsorption catalyst layer 6A are used as the O adsorption catalyst layer.
  • Two layers of 20 adsorption catalyst layers 6B are provided. These lO adsorption catalyst layer 6A and twentieth adsorption catalyst layer 6B are both arranged in a cylindrical shape between the first cylindrical tube 50 and the second cylindrical tube 46, and the low temperature CO shift catalyst layer 7 and Located between the high-temperature CO shift catalyst layer 3.
  • the first lO adsorption catalyst layer 6A is formed by filling an O adsorption catalyst between the perforated plates 57 and 58, and is located on the low temperature CO shift catalyst layer 7 side.
  • the 20th adsorption catalyst layer 6B has O adsorption contact between perforated plates 49 and 306. It is filled with a medium and is located on the high temperature CO shift catalyst layer 3 side.
  • the heated gas introduction pipe 59 passes through the low temperature CO shift catalyst layer 7 and the lO adsorption catalyst layer 6A. Accordingly, when the reformer is stopped, the heated gas 88 is introduced between the 10th adsorption catalyst layer 6A and the 20th adsorption catalyst layer 6B through the heated gas introduction pipe 59.
  • Part of the heated gas 88 introduced between the lO adsorption catalyst layer 6A and the twentieth adsorption catalyst layer 6B is folded and circulated through the lO adsorption catalyst layer 6A. O is removed and O-less gas 107 is generated. The O-less gas 107 flows through the low-temperature CO shift catalyst layer 7 and the CO removal catalyst layer 8 in order, and discharges water vapor remaining in the low-temperature CO shift catalyst layer 7 and the CO removal catalyst layer 8. The remainder of the heated gas 88 introduced between the lOth adsorption catalyst layer 6A and the 20th adsorption catalyst layer 6B flows through the 20th adsorption catalyst layer 6B.
  • the O-less gas 107 flows through the high-temperature CO shift catalyst layer 3 and flows through the reforming catalyst layer 21 after flowing out from the reformed gas folding portion 305 at the end of the second reformed gas channel 303. Water vapor remaining in the high-temperature CO shift catalyst layer 3 and the modified catalyst layer 21 is discharged.
  • FIG. 10 Other configurations of the reforming apparatus of the fourth embodiment are the same as those of the reforming apparatus of the first embodiment.
  • a heat exchanger 78 for exchanging heat between the heated gas 88 and the process water 85 as shown in FIG. 10 may be provided.
  • the reforming apparatus of the third embodiment is also provided with the temperature control system shown in FIG. 11. By this temperature control, the reforming apparatus is reformed as in the case of the reforming apparatus of the second embodiment.
  • the reformed gas temperature at the outlet 79 of the catalyst layer 21 and the reformed gas temperature at the inlet 73 of the low-temperature CO shift catalyst layer 7 or the mixture temperature at the outlet 5a-1 of the flow path 5a of the second evaporator 5 The temperature is controlled to be a predetermined temperature (for example, 750 ° C and 200 ° C or 400 ° C). Furthermore, the configuration of FIG. 12 can also be applied to the reforming apparatus of the fourth embodiment.
  • the flow of the heated gas 88 during steady operation is the same as in Embodiment 2 above, and thus detailed description thereof is omitted here.
  • the reformed gas 87 at 750 ° C. flowing out of the reforming catalyst layer 21, for example is The reforming catalyst layer 21 (mixture 8 The process until the temperature is lowered to, for example, 550 ° C. due to heat exchange with 9) is the same as that in the second embodiment, and thus detailed description thereof is omitted here. Therefore, hereinafter, the flow of the reformed gas 87 will be mainly described.
  • the reformed gas 87 that has flowed through the reformed gas channel 18 flows into the first reformed gas channel 53.
  • the reformed gas 87 that has flowed into the first reformed gas channel 53 flows down the first reformed gas channel 53 along the outer surface of the high-temperature CO shift catalyst layer 3 (cylindrical tube 50), and further As in Embodiment 2 above, while flowing down the reformed gas flow path 53 along the outer surface of the O adsorption catalyst layer 6 (cylindrical tube 50) and reaching the upper end position of the low temperature CO shift catalyst layer 7.
  • the temperature decreases from, for example, 550 ° C to 250 ° C.
  • the reformed gas corresponding to lowering the temperature of the reformed gas 87 to a predetermined temperature for example, from 550 ° C to 250 ° C
  • a predetermined temperature for example, from 550 ° C to 250 ° C
  • the reformed gas 87 flows downward along the outer surface of the low-temperature CO shift catalyst layer 7 (cylindrical tube 50) through the first reformed gas channel 53, and the low-temperature CO shift catalyst layer 7
  • the reformed gas at the lower end side of the gas is folded at the folded portion 304 and flows into the second reformed gas channel 30 3 inside the low temperature CO shift catalyst layer 7.
  • the reformed gas 87 that has flowed into the second reformed gas channel 303 flows upward through the second reformed gas channel 303 along the inner surface of the low-temperature CO shift catalyst layer 7 (cylindrical tube 46).
  • the high temperature CO It is folded at the reformed gas folding section 305 on the upper end side of the shift catalyst layer 3 and flows into the high temperature CO shift catalyst layer 3 (between the cylindrical tube 50 and the cylindrical tube 46).
  • the cooling capacity of the second evaporator 5 (mixture 89) with respect to the low-temperature CO shift catalyst layer 7 is the same as in the case of Embodiment 3 described above, and the low-temperature CO shift catalyst layer 7 and the second evaporator 5
  • the reformed gas 87 flows through the reformed gas flow path 53 between the two, convective heat transfer due to the flow of the reformed gas 87 is added as well as radiant heat transfer. Higher than.
  • the reformed gas 87 is also used when the second evaporator passes through the first modified gas flow path 53 along the outer surface of the low-temperature CO shift catalyst layer 7 (cylindrical tube 50). Mixture flowing through 5 channels 5a 8 Because it is cooled by heat exchange with 9, the temperature drops from 250 ° C to 130 ° C, for example. That is, at the position where the low-temperature CO shift catalyst layer 7 is installed, the temperature of the reformed gas 87 is increased to a predetermined temperature (for example, from 250 ° C to 130 ° C) by the mixture 89 flowing through the flow path 5a of the second evaporator 5. The amount of heat retained in the reformed gas 87 corresponding to the decrease is absorbed.
  • the reformed gas 87 flows upward through the second reformed gas channel 303 along the inner surfaces of the high temperature CO shift catalyst layer 3, the O adsorption catalyst layer 6, and the low temperature CO shift catalyst layer 7 (cylindrical tube 46).
  • the temperature power of the reformed gas 87 rises from 130 ° C to 400 ° C, for example. That is, at this time, the reformed gas 87 cools the inner portions of the high-temperature CO shift catalyst layer 3 and the low-temperature CO shift catalyst layer 7, and the temperature of these inner portions decreases.
  • the heat generated by the CO shift reaction of the reformed gas 87 at this time is caused by the reformed gas 87 flowing through the second reformed gas channel 303 or the reformed gas channel 53 outside the high temperature CO shift catalyst layer 3. Then, it is transmitted to the adjacent reforming catalyst layer 21 via the intermediate cylindrical tube 13. Therefore, the temperature of the reformed gas 87 flowing out from the high temperature CO shift catalyst layer 3 is, for example, about 400 ° C.
  • the reformed gas 87 flowing out from the high temperature CO shift catalyst layer 3 passes through the O adsorption catalyst layer 6 and flows into the low temperature CO shift catalyst layer 7, and during this time, the mixture flows through the flow path 5a of the second evaporator 5.
  • the temperature drops to, for example, about 200 ° C. That is, the reformed gas corresponding to lowering the temperature of the reformed gas 87 to a predetermined temperature (for example, from about 400 ° C. to 200 ° C.) by the mixture 89 flowing through the flow path 5a of the second evaporator 5. 87 retained heat is absorbed.
  • the temperature of the reformed gas 87 at the inlet 73 of the low-temperature CO shift catalyst layer 7 (the measured temperature value of the second reformed gas thermometer 76) is predetermined.
  • the supply amount of the air 84 for the panner is controlled so that the temperature (for example, 200 ° C) is reached.
  • the temperature of the mixture at the outlet 5a-1 of the second evaporator 5 is controlled to a predetermined temperature (for example, 400 ° C) by controlling the supply amount (dilution air amount) of the air 84 for the Parner 1 to the Parner 1. Control so that
  • the reformed gas 87 flowing into the low temperature CO shift catalyst layer 7 moves down the low temperature CO shift catalyst layer 7. And circulate. During this time, the CO shift reaction of the reformed gas 87 occurs in the low temperature CO shift catalyst layer 7, so that the CO concentration in the reformed gas 87 is further reduced.
  • the temperature of the reformed gas 87 when it flows out of the low-temperature CO shift catalyst layer 7 is lowered to, for example, 140 ° C. due to cooling by the second evaporator 5 (mixture 89).
  • this corresponds to reducing the amount of heat held by the reformed gas 87 flowing into the low temperature CO shift catalyst layer 7 at this time (the temperature of the reformed gas 87 is lowered to a predetermined temperature (for example, from 200 ° C to 140 ° C).
  • the amount of heat generated by the CO shift reaction of the reformed gas 87 in the low-temperature CO shift catalyst layer 7 is absorbed by the second evaporator 5 (mixture 89) by the radiant heat transfer and convection heat transfer described above. (Heat is removed).
  • the temperature power of the second evaporator 5 is about the vaporization temperature of process water 85 (for example, 120 ° C), so the low temperature CO shift catalyst layer 7 It is not cooled more than this, and it is not overcooled and does not deviate from the operating temperature range of the low temperature CO shift catalyst (for example, 150 to 250 ° C.). Since the flow of the reformed gas 87 after flowing out of the low temperature CO shift catalyst layer 7 is the same as that in the second embodiment, the description thereof is omitted here.
  • the reformed gas 87 is disposed outside (reformed gas channel 53) and inside (reformed gas channel 53) of the low temperature CO shift catalyst layer 7. Since it is configured to flow through the flow path 303), supply of process water 85 is started to start generation of the reformed gas 87 after the heating and heating operation when starting the reformer. Even if the water vapor of water 85 flows in, the water vapor first condenses in the reformed gas passages 53 and 303 on the outer surface of the cylindrical tube 50 and the inner surface of the cylindrical tube 46, and condenses in the low-temperature CO shift catalyst layer 7. do not do.
  • Embodiment 4 when the supply of the process water 85 is started as described above, the latent heat of condensation when the water vapor condenses on the outer surface of the cylindrical tube 50 and the inner surface of the cylindrical tube 49 is high. Since it is also transmitted to the CO shift catalyst layer 3, the temperature of the high temperature CO shift catalyst layer 3 also rises. others Therefore, when water vapor flows into the high temperature CO shift catalyst layer 3, the water vapor does not condense in the high temperature CO shift catalyst layer 3. Therefore, the high temperature CO shift catalyst of the high temperature CO shift catalyst layer 3 is not deteriorated by the condensation of water vapor.
  • the heating / heating operation is performed!
  • the reforming catalyst layer 21 is heated and heated by the heating gas 88 flowing through the heating gas passage 25 on the outer side, Since the reformed gas flow path 53 is interposed between the reforming catalyst layer 21 (intermediate cylindrical tube 13) and the high temperature CO shift catalyst layer 3 (cylindrical tube 50), the high temperature CO shift catalyst layer 3 is installed. The portion of the reforming catalyst layer 21 at the existing position is also quickly heated by the heated gas 88 that is not significantly affected by the heat capacity of the high temperature CO shift catalyst layer 3.
  • the force S at which the high temperature CO shift catalyst layer 3 is heated at the time of the heating and heating operation is given as S, and the high temperature CO shift catalyst layer 3 at this time Even if the temperature rise is insufficient, the high-temperature CO shift catalyst layer 3 can be heated by the latent heat of condensation as described above, so there is no possibility that water vapor will condense in the high-temperature CO shift catalyst layer 3.
  • the O adsorption catalyst layer 6, the low temperature CO shift catalyst layer 7, and the high temperature CO shift catalyst layer 3 are separately manufactured using the cylindrical tubes 46, 50, Attach this to the device.
  • the steam purge when the reformer is stopped is as follows. That is, the heated gas 88 discharged from the heated gas flow channel 26 to the exhaust pipe 39 after flowing in the same manner as in the steady operation or the heating and heating operation is shown in FIG. As shown by the flow of O-less gas 107, when pump 60 is started, exhaust pipe 39 is pulled into pipe 63. First, in the condenser 62, the water in the heated gas 88 is condensed and removed. The condenser 62 may condense the moisture in the heated gas 88 by blowing air from a fan, for example, or may condense the moisture in the heated gas 88 using process water 85 or Pana air 84. Also good.
  • the heated gas 88 from which moisture has been removed flows into the heated gas introduction pipe 59 and flows upward through the heated gas introduction pipe 59, thereby Chakushokubai layer 6A and is introduced into between the first 2_Rei 2 adsorptive catalyst layer 6B. It is as described above for subsequent ⁇ 2 Resugasu 107 purging of residual water vapor by generating and O Resugasu 107.
  • the reforming apparatus and its operating method of the fourth embodiment can achieve the same effects as those of the second embodiment, and the reforming apparatus of the fourth embodiment further has the following effects. The effect is also obtained.
  • the low temperature CO shift catalyst layer 7 includes the cylindrical tube 50 disposed inside the second evaporator 5, and the cylindrical tube 50 inside. It is provided in a cylindrical shape between the cylindrical tube 46 and a high temperature CO shift catalyst layer 3 disposed below the circular plate 14 and inside the intermediate cylindrical tube 13, and this high temperature CO shift catalyst layer 3. Is provided in a cylindrical shape between the cylindrical tube 50 and the cylindrical tube 46 extending to the inside of the intermediate cylindrical tube 13, and a cylindrical gap between the cylindrical tube 50 and the second evaporator 5 is provided in the first modified The cylindrical gap between the cylindrical tube 46 and the cylindrical tube 301 disposed inside the cylindrical tube 46 is defined as the second reformed gas channel 303, and the reforming catalyst layer 21.
  • the temperature decreases due to heat exchange with the mixture 89 flowing in the channel 5a of the second evaporator 5, and the other end of the low-temperature CO shift catalyst layer 7 Folded at the reformed gas folding section 304 on the side (lower end side) 304, the second reforming is performed from the other end side of the low temperature CO shift catalyst layer 7 to one end side and from the other end side to the one end side of the high temperature CO shift catalyst layer 3.
  • the upper end of the second reformed gas path 303 is improved.
  • the gas is turned back at the mass gas turning part 3 05, it flows between the cylindrical pipe 50 and the cylindrical pipe 46 and flows through the high-temperature CO shift catalyst layer 3 and the low-temperature CO shift catalyst layer 7 in this order.
  • the mixture 89 flowing in the flow path 5a of 5 absorbs the heat generated by the CO shift reaction of the reformed gas 87 in the low temperature CO shift catalyst layer 7 and With the construction for cooling the reformed gas 87, in addition to the same effect as the reforming catalyst layer in embodiment 2 above can be obtained, against a low-temperature CO shift catalyst layer 7
  • the cooling capacity of the second evaporator (mixture) is the same as that of the low-temperature CO shift catalyst layer 7 and the second evaporator 5 (mixture 89).
  • the reformed gas 87 flows through the first reformed gas channel 53 outside the low temperature CO shift catalyst layer 7 and the second reformed gas channel 303 inside. Therefore, even if the supply of the process water 85 is started after the heating temperature raising operation and the steam of the process water 85 flows in, the steam firstly has the first reformed gas channel 53 and the second reformed gas. In the gas flow path 303, condensation occurs on the outer surface of the cylindrical tube 50 and the inner surface of the cylindrical tube 46, but not on the low-temperature CO shift catalyst layer 7.
  • the reformed gas 87 flowing through the second reformed gas channel 303 also cools the inner portions of the low temperature CO shift catalyst layer 7 and the high temperature CO shift catalyst layer 3, the temperature of these inner portions is reduced.
  • the force S is used to prevent the CO gas concentration in the reformed gas 87 passing through the inner part from being lowered.
  • a high temperature CO shift catalyst layer 3 is provided as a CO shift catalyst layer.
  • the high temperature CO shift catalyst has a high operating temperature and is heat resistant, and has a high operating temperature, so it can remove CO in a smaller amount than a low temperature CO shift catalyst with a high reaction rate.
  • the CO concentration in the reformed gas after passing through the high temperature CO shift catalyst layer 3 is, for example, This is lower than the CO concentration in the reformed gas at 650 ° C level. Therefore, even if this reformed gas flows into the low-temperature CO shift catalyst layer 7, the temperature of the low-temperature CO shift catalyst is raised by the heat generated by the CO shift reaction, so that the life of the low-temperature CO shift catalyst can be extended.
  • the outlet temperature of the low-temperature CO shift catalyst layer 7 also decreases, so that the CO concentration in the reformed gas flowing out from the low-temperature CO shift catalyst layer 7 also decreases due to the equilibrium reaction. For this reason, when the reformed gas flowing out from the low temperature CO shift catalyst layer 7 is further circulated to the CO removal catalyst layer 8, the load of the CO removal catalyst can be reduced.
  • the reforming catalyst layer 21 (intermediate cylindrical pipe 13) and the high-temperature CO are heated. Since the first reformed gas flow path 53 is interposed between the shift catalyst layer 3 (cylindrical tube 50), the portion of the reforming catalyst layer 21 at the position where the high temperature CO shift catalyst layer 3 is installed is also The temperature is quickly raised by the heated gas 88 that is not significantly affected by the heat capacity of the high temperature CO shift catalyst layer 3.
  • the high-temperature CO shift catalyst layer 3 can be heated by the condensation heat of water vapor as described above. There is no possibility that the water vapor of the process water 85 is condensed in the catalyst layer 3.
  • the process water 85 is supplied and the flow path 4a of the first evaporator 4 is supplied without supplying the raw material 86.
  • the water vapor is heated by heating with the heated gas 88 flowing through the heating gas flow path 26 between the first evaporator 4 and the second evaporator 5.
  • the outer surface of the cylindrical tube 50 and the cylindrical tube 46 are sequentially passed through the first reformed gas channel 53 and the second reformed gas channel 303.
  • the low-temperature CO shift catalyst layer 7 and the high-temperature CO shift catalyst layer are disposed between the cylindrical tube 50 and the cylindrical tube 46 in a cylindrical shape.
  • the heated gas introduction pipe 59 that penetrates the lO adsorbing catalyst layer 6A, the condenser 62 that removes the moisture in the heated gas 88, and the pump 60 that sucks the heated gas 88 are provided.
  • the heated gas 88 is sucked by the pump 60, moisture is removed by the condenser 62, and is introduced between the lO adsorbing catalyst layer 6A and the twentieth adsorbing catalyst layer 6B by the heated gas introducing pipe 59. A part of the heated gas 88 introduced between the lO adsorption catalyst layer 6A and the twentieth adsorption catalyst layer 6B is folded and passed through the lO adsorption catalyst layer 6A.
  • O in the heated gas 88 is removed to produce an O-less gas 107, and this O-less gas 107 flows through the low-temperature CO shift catalyst layer 7 and the CO removal catalyst layer 8 in order, and the low-temperature CO shift catalyst layer 7 and Water vapor remaining in the CO removal catalyst layer 8 is discharged, and the remainder of the heated gas 88 introduced between the lO adsorption catalyst layer 6A and the 20th adsorption catalyst layer 6B is circulated through the 20th adsorption catalyst layer 6B.
  • O in the heated gas 88 is removed to generate an O 2 -less gas 107, and this O-less gas 107 flows through the high-temperature CO shift catalyst layer 3 and the reformed gas at the end of the second reformed gas channel 303.
  • the reformer is configured to flow through the reforming catalyst layer 21 after flowing out from the folded portion 305 and discharge the water vapor remaining in the high-temperature CO shift catalyst layer 3 and the reforming catalyst layer 21. Reforming catalyst layer 21, high temperature CO shift catalyst layer 3, low temperature CO shift catalyst layer 7 and CO removal catalyst Water vapor remaining in 8, it is possible to discharge by O Resugasu 107 can each of these catalyst layers 21, 3, 7, 8 of the catalyst is prevented from being deteriorated by condensation of water vapor.
  • the first evaporator and the second evaporator are obtained by fitting a corrugated tube and a cylindrical tube such as the first evaporator 4 and the second evaporator 5 of the above-described Embodiments 2 to 4.
  • a cylindrical shape having a flow path for flowing process water 85 or mixture 89 is sufficient.
  • a cylindrical tube It can be a spirally wound tube!
  • the reforming pipe is preferably a single pipe type like the reforming pipe 2 in the above embodiment example!
  • the force is not necessarily limited to this.
  • a multi-tubular (plurality) reforming pipe is arranged in an annular shape so as to surround the periphery of PANA 01, 1, and the first evaporators 05, 4 are arranged below them.
  • the second evaporators 06 and 5, the low-temperature CO shift catalyst layers 07 and 7, the CO removal catalyst layers 08 and 8, etc. may be provided.
  • the raw material is mixed with the water vapor flowing out of the second flow path and flowing through the pipe.
  • the mixture is further heated by the heated gas flowing through the heated gas flow path, and the mixture is supplied to the modified catalyst layer. It becomes composition.
  • the present invention relates to a reformer and a method for operating the reformer, and enables uniform mixing of a raw material and water (steam) for generating reformed gas, prevention of carbon precipitation, improvement of maintainability, and the like. Therefore, the present invention is useful when applied to a simple reformer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明は水(水蒸気)と原料を均一に混合すること、温度制御装置を要することなくカーボンの析出を防止すること、水や混合物を加熱ガスによって効率的に加熱することなどが可能な改質装置などを提供することを目的する。そのため、改質装置の構成は、円筒状を成し、第1流路を有する第1蒸発器05と、円筒状を成し、第2流路を有する第2蒸発器06と、第1流路出口と第2流路入口とを繋ぐ配管027と、配管の途中に設けた原料混合部028とを有し、第1蒸発器と第2蒸発器は同心円状に配設し、第1蒸発器と第2蒸発器との間を加熱ガス流路024とし、第1蒸発器では第1流路を流通する水021が加熱ガスで加熱されて水蒸気となり、原料混合部では前記水蒸気に原料を混入することにより混合物を生成し、第2蒸発器では第2流路を流通する前記混合物が加熱ガスで加熱されて過熱蒸気となり、この過熱蒸気を改質触媒層03に流通させる、構成とする。

Description

明 細 書
改質装置及びその運転方法
技術分野
[0001] 本発明は改質装置及びその運転方法に関する。
背景技術
[0002] 改質装置はパーナと改質触媒層とを有し、前記改質触媒層に灯油やメタンガスな どの原料と水とを混合してなる混合物を流通させるとともに前記パーナの加熱ガスで 前記改質触媒層を加熱することにより、前記原料を水蒸気改質して、水素ガスを含有 する改質ガス(水素リッチガス)を生成するものである。この改質ガスは例えば燃料電 池の燃料などとして利用される。力、かる改質装置の従来例としては、例えば下記の特 許文献 1に開示されたものがある。
[0003] この特許文献 1に記載された改質装置の特徴は次のとおりである。
(1) 改質装置に内蔵された原燃料気化器によって、原燃料 (原料)を気化させる。
(2) 内部に改質触媒が充填された改質管が、パーナの周囲に複数配設されている 。即ち、改質管が多管式となっている。
(3) 改質管などの断熱のために真空断熱容器を用いて!/、る。
(4) 真空断熱容器を外すだけで装置内部のメンテナンスが可能となる。
(5) 改質管から流出した改質ガスを、その温度を低下させてから、低温シフトコンパ ータへ流入させる。
(6) 低温シフトコンバータにおける低温 COシフト触媒及び選択酸化 CO除去器に おける CO除去触媒の発熱を除去するための装置がなぐこれらはパーナの加熱ガ スのみで冷却されている。
(7) 改質装置を起動する加熱昇温運転時には、改質管に混合物を供給しない状態 でパーナの加熱ガスを真空断熱容器内に流すことにより、真空断熱容器内の低温シ フトコンバータ及び選択酸化 CO除去器を、これらの外周側から加熱昇温する。
(8) 選択酸化 CO除去器の外周側を通過した加熱ガスは、そのまま排気される。
[0004] また、改質装置の従来例としては、特許文献 2に記載されたものもある。この特許文 献 2には、原料と水 (液体)とを混合した混合物を、螺旋状流路などを有する蒸発部 で蒸発した後、改質部で水蒸気改質して改質ガスを生成する構成の改質装置が開 示されている。
[0005] 特許文献 1 :特開 2003— 327405号公報
特許文献 2:特許第 3719931号公報
発明の開示
発明が解決しょうとする課題
[0006] 特許文献 1の改質装置では次のような問題点を有している。
[0007] (1) 原料が灯油などのカーボンを析出し易いものの場合には、当該原料を原燃料 気化器で昇温して気化させるときにカーボンが析出しないように原料の昇温温度を 制御する装置が必要である。
(2) 多管式では、改質管が複数であることや、これら複数の改質管を集約する配管 やヘッダタンクなどが必要になることから、製造コストが高くなる。
(3) 真空断熱容器は製造コストが高い。また、約 800°Cの改質管を断熱する場合、 高温のために真空断熱容器を形成する金属からの脱ガス量が多くなり、真空の維持 寿命が著しく低下する。更には、輻射伝熱を防止するために真空断熱容器の内部に 遮蔽板などを設置することが必要になるため、装置の構造が複雑化して装置が高コ スト化する。
(4) 改質装置において最もトラブルが発生するのはパーナである。パーナでは燃料 の目詰まり、逆火、点火装置の作動不良などのトラブルが発生する。しかし、上記従 来の改質装置では下から燃料ガス供給管が揷通され、この燃料ガス供給管の上端 に設けられたバーナカ 装置中心部に位置している。従って、メンテナンスのために パーナにアクセスするには、改質装置をひっくり返して、燃料ガス供給管も含めた長 尺のパーナを上方に引き抜く大工事が必要になる。また、仮に構造上からは触媒系 のメンテナンスが容易であるとしても、触媒は開放後に還元処理などが必要になるた め、触媒系のメンテナンスは現場で対応可能なものではない。また、メンテナンスのた めに真空断熱容器を取り外す場合には、その形状、重量から上方に改質装置の 2倍 の高さまで真空断熱容器を吊り上げる必要があり、そのためにはクレーンなどの重機 が必要となるため、メンテナンス作業が容易ではない。
(5) 原料が灯油などの C比率が高いものである場合には、改質管(改質触媒層)に おける改質温度が高くなり、改質ガスに含まれる CO濃度が高くなる(例えば改質触 媒温度 650°Cで CO濃度 l l %dry、改質触媒温度 750°Cで CO濃度 15%dry)。そ の結果、改質触媒層から流出した改質ガスが低温シフトコンバータへ流入すると、 C Oシフト反応(CO + H 0→H + CO )による発熱で低温 COシフト触媒の温度が上 昇して低温 COシフト触媒の寿命を低下させる。何故なら、低温 COシフト触媒は作動 温度が 200〜250°Cであるのに対して耐熱温度が 300°Cであり、作動温度と耐熱温 度が近接して!/、るからである。
(6) 低温 COシフト触媒の発熱や CO除去触媒の発熱を加熱ガスでのみ冷却するた め、冷却不足となって低温 COシフト触媒の温度が上がることにより、低温シフトコン バータから流出する改質ガス中の CO濃度が高くなる。このため、選択酸化 CO除去 器 (CO除去触媒層)へ供給する CO選択酸化用空気の量を多くすることが必要にな り、その結果、無駄に改質ガス中の水素が消費されてしまい、改質効率の低下を招く ことになる。なお、特許文献 1にはメタネーシヨン式の CO除去触媒を用いることが記 述されているが、メタネーシヨンは反応温度範囲が狭いため、加熱ガスによる冷却で は温度制御がしに《て、 COを除去しにくい可能性がある。
(7) 改質装置を起動する際の触媒層の加熱昇温時には、加熱ガスを真空断熱容 器内に流して低温シフトコンバータ及び選択酸化 CO除去器を、これらの外周側から 加熱昇温するため、これらが設置された位置でも、加熱ガスの放熱を低減するために 高い断熱性が要求され、真空断熱のような高価な断熱処理が必要になる。
(8) 加熱ガスは選択酸化 CO除去器の外周側を通過した後、そのまま排気され、こ のときの最終的な加熱ガスの温度は特許文献 1に CO除去触媒の作動温度が 200°C 程度と記述されていることから、 200°C以上となる。その結果、排気される加熱ガスの 熱量が多くなり、効率低下につながる。
また、特許文献 2の改質装置では原料と水 (液体)とを混合してから蒸発部に供給 するため、特に原料が液体燃料の場合には水との均一な混合ができずにカーボンが 析出して改質触媒が劣化するおそれがある。 [0009] 従って本発明は上記の事情に鑑み、原料が灯油のような液体燃料で且つカーボン の析出し易いものであっても、水(水蒸気)との均一な混合を可能にし、且つ、温度制 御装置を要することなくカーボンの析出を防止することができ、更には水や混合物を 加熱ガスによって効率的に加熱することが可能になるなど、上記従来技術の問題点 を解決することが可能な改質装置及びその運転方法を提供することを課題とする。 課題を解決するための手段
[0010] 上記課題を解決する第 1発明の改質装置は、改質触媒層を有し、水素を含有する 改質ガスを生成する改質装置におレ、て、
円筒状を成し、水を流通させるための第 1流路を有する第 1蒸発器と、 円筒状を成し、水蒸気と原料の混合物を流通させるための第 2流路を有する第 2蒸 発器と、
前記第 1流路の出口と前記第 2流路の入口とを繋ぐ配管と、
前記配管の途中に設けた原料混合部とを有し、
前記第 1蒸発器を外側に前記第 2蒸発器を内側に同心円状に配設し、 前記第 1蒸発器と前記第 2蒸発器との間の円筒状の隙間を、加熱ガス流路とし、 前記第 1蒸発器では、前記第 1流路を流通する前記水が、前記加熱ガス流路を流 通する加熱ガスによって加熱されることにより、水蒸気となり、
前記原料混合部では、前記第 1流路から流出して前記配管を流通する前記水蒸気 に原料を混合して前記混合物を得るとともに、
前記第 2蒸発器では、この混合物が前記第 2流路を流通するときに、前記加熱ガス 流路を流通する前記加熱ガスによって更に加熱され、
この混合物が前記改質触媒層に供給される構成としたことを特徴とする。
[0011] また、第 2発明の改質装置は、改質触媒層を有し、水素を含有する改質ガスを生成 する改質装置において、
円筒状を成し、水蒸気と原料の混合物を流通させるための第 1流路を有する第 1蒸 発器と、
円筒状を成し、前記水を流通させるための第 2流路を有する第 2蒸発器と、 前記第 2流路の出口と前記第 1流路の入口とを繋ぐ配管と、 前記配管の途中に設けた原料混合部とを有し、
前記第 1蒸発器を外側に前記第 2蒸発器を内側に同心円状に配設し、 前記第 1蒸発器と前記第 2蒸発器との間の円筒状の隙間を、加熱ガス流路とし、 前記第 2蒸発器では、前記第 2流路を流通する前記水が、前記加熱ガス流路を流 通する加熱ガスによって加熱されることにより、水蒸気となり、
前記原料混合部では、前記第 2流路から流出して前記配管を流通する前記水蒸気 に原料を混合して前記混合物を得るとともに、
前記第 1蒸発器では、この混合物が前記第 1流路を流通するときに、前記加熱ガス 流路を流通する前記加熱ガスによって更に加熱され、
この混合物が前記改質触媒層に供給される構成としたことを特徴とする。
[0012] また、第 3発明の改質装置は、第 1又は第 2発明の改質装置において、
前記第 2蒸発器の内側に低温 COシフト触媒層を配置したことを特徴とする。
[0013] また、第 4発明の改質装置は、第 3発明の改質装置において、
前記改質触媒層を収容した改質管を、前記第 1蒸発器及び前記第 2蒸発器の上方 に配置して、前記第 2蒸発器の前記第 2流路から流出した前記混合物、又は、前記 第 1蒸発器の前記第 1流路から流出した前記混合物が、前記改質触媒層の下端から 流入して前記改質触媒層を上方へと流通する間に水蒸気改質されて前記改質ガス となり、この改質ガスが、前記改質触媒層の上端から流出して下方へと流れ、前記低 温 COシフト触媒層へ上端から流入して前記低温 COシフト触媒層を下方へと流通す る構成としたことを特徴とする。
[0014] また、第 5発明の改質装置は、第 4発明の改質装置において、
前記加熱ガスを発生させるパーナを、前記改質管の上端側に下向きに配置したこ とを特徴とする。
[0015] また、第 6発明の改質装置は、第 3発明の改質装置において、
CO除去触媒層を、前記第 1蒸発器の周囲を囲むようにして円筒状に設け、前記低 温 COシフト触媒層から流出した前記改質ガスが、前記 CO除去触媒層を流通する構 成としたことを特徴とする。
[0016] また、第 7発明の改質装置は、第 3又は第 4発明の改質装置において、 前記低温 COシフト触媒層の前に高温 COシフト触媒層を設け、
前記改質触媒層から流出した前記改質ガスが、前記高温 COシフト触媒層を流通 した後、前記低温 COシフト触媒層を流通する構成としたことを特徴とする。
[0017] また、第 8発明の改質装置は、第 5発明の改質装置において、
前記改質管の周囲を囲むように配設した改質部円筒管を有し、
前記改質管は同心円状に設けられた内側の内円筒管と、外側の外円筒管と、これ らの内円筒管と外円筒管の間の中間円筒管とを有して成る 3重管構造のものであつ て、前記パーナの周囲を囲むように配設されており、
前記内円筒管の下端側は下端板で閉じられ、
前記内円筒管と前記外円筒管との間の上端側は第 1上端板で閉じられ、且つ、こ の第 1上端板と前記中間円筒管の上端との間の隙間を、改質ガス折り返し部とし、 前記中間円筒管と前記内円筒管との間の円筒状の隙間を、改質ガス流路とし、 前記改質触媒層は前記中間円筒管と前記外円筒管との間に円筒状に設け、 前記改質部円筒管は上端側が第 2上端板で閉じられ、この第 2上端板と前記第 1 上端板との間の隙間を、加熱ガス折り返し部とし、
前記改質部円筒管と前記外円筒管との間の円筒状の隙間を、加熱ガス流路とし、 前記パーナから下方へと排気された加熱ガスは、前記内円筒管の内周面に沿って 上方へ流れ、前記加熱ガス折り返し部で折り返して前記加熱ガス流路を下方へと流 れる間に前記改質触媒層を加熱した後、前記第 1蒸発器と第 2蒸発器との間の前記 加熱ガス流路へ流入する一方、
前記改質触媒層の上端から流出した前記改質ガスは、前記改質ガス折り返し部で 折り返して前記改質ガス流路を下方へと流れ、前記低温 COシフト触媒層へ上端から 流入する構成としたことを特徴とする。
[0018] また、第 9発明の改質装置は、第 1又は第 2発明の改質装置において、
前記第 1流路と前記第 2流路は、何れも螺旋状に形成されてレ、ることを特徴とする。
[0019] また、第 10発明の改質装置は、第 1又は第 2発明の改質装置において、
前記第 1蒸発器は、管面に螺旋状の凹凸が形成された波形管の外周面側に円筒 管を嵌合させた 2重管構造のものであって、前記波形管と前記円筒管との間に形成 された螺旋状の隙間が、前記第 1流路となっており、
前記第 2蒸発器は、管面に螺旋状の凹凸が形成された他の波形管の外周面側に 他の円筒管を嵌合させた 2重管構造のものであって、前記他の波形管と前記他の円 筒管との間に形成された螺旋状の隙間が、前記第 2流路となっていることを特徴とす
[0020] また、第 11発明の改質装置は、第 3又は第 6発明の改質装置において、
前記低温 COシフト触媒層は円筒管の内側に設け、
前記円筒管と前記第 2蒸発器との間の円筒状の隙間を、改質ガス流路とし、 前記改質触媒層から流出した前記改質ガスが、前記改質ガス流路を流通する間に 前記第 2蒸発器の第 2流路を流れる前記混合物又は前記水との熱交換によって温度 が低下した後、前記円筒管に設けた流通穴から前記円筒管の内側へ流入して、前 記低温 COシフト触媒層を流通する構成としたことを特徴とする。
[0021] また、第 12発明の改質装置は、第 3又は第 6発明の改質装置において、
前記低温 COシフト触媒層は、前記第 2蒸発器の内側に配設した第 1円筒管と、こ の第 1円筒管の内側に配設した第 2円筒管との間に円筒状に設け、
前記第 1円筒管と前記第 2蒸発器との間の円筒状の隙間を、第 1改質ガス流路とし 前記第 2円筒管の内側を、第 2改質ガス流路とし、
前記改質触媒層から流出した改質ガスが、前記低温 COシフト触媒層の一端側か ら他端側へ向かって前記第 1改質ガス流路を流通する間に前記第 2蒸発器の第 2流 路を流れる前記混合物又は前記水との熱交換によって温度が低下し、前記低温 CO シフト触媒層の他端側の改質ガス折り返し部で折り返して、前記低温 COシフト触媒 層の他端側から一端側へ向かって前記第 2改質ガス流路を流通する間に前記低温 COシフト触媒層との熱交換によって温度が上昇した後、前記第 2円筒管に設けた流 通穴から前記第 1円筒管と前記第 2円筒管の間へ流入して、前記低温 COシフト触媒 層を流通する構成としたことを特徴とする。
[0022] また、第 13発明の改質装置は、第 8発明の改質装置において、
前記低温 COシフト触媒層は、前記第 2蒸発器の内側に配設した第 1円筒管と、こ の第 1円筒管の内側に配設した第 2円筒管との間に円筒状に設け、 前記第 1円筒管と前記第 2蒸発器との間の円筒状の隙間を、第 1改質ガス流路とし 前記第 2円筒管の内側を、第 2改質ガス流路とし、
前記改質触媒層から流出した改質ガスが、前記低温 COシフト触媒層の一端側か ら他端側へ向かって前記第 1改質ガス流路を流通する間に前記第 2蒸発器の第 2流 路を流れる前記混合物又は前記水との熱交換によって温度が低下し、前記低温 CO シフト触媒層の他端側の改質ガス折り返し部で折り返して、前記低温 COシフト触媒 層の他端側から一端側へ向かって前記第 2改質ガス流路を流通する間に前記低温 COシフト触媒層との熱交換によって温度が上昇した後、前記第 2円筒管に設けた流 通穴から前記第 1円筒管と前記第 2円筒管の間へ流入して、前記低温 COシフト触媒 層を流通する構成としたことを特徴とする。
[0023] また、第 14発明の改質装置は、第 4又は第 8発明の改質装置において、
前記改質触媒層を収納した改質管の内側で前記低温 COシフト触媒層の上方の改 質ガスが流れる領域に、高温 COシフト触媒を配置したことを特徴とする。
[0024] また、第 15発明の改質装置は、第 3又は第 6発明の改質装置において、
前記低温 COシフト触媒層は、前記第 2蒸発器の内側に配設した第 1円筒管と、こ の第 1円筒管の内側に配設した第 2円筒管との間に円筒状に設けるとともに、 高温 COシフト触媒層を、前記第 1円筒管と前記第 2円筒管とのと間で且つ前記低 温 COシフト触媒層の上側に円筒状に設け、
前記第 1円筒管と前記第 2蒸発器との間の円筒状の隙間を、第 1改質ガス流路とし 前記第 2円筒管の内側を、第 2改質ガス流路とし、
前記改質触媒層から流出した改質ガスが、前記高温 COシフト触媒層の上端側か ら前記低温 COシフト触媒層の下端側へ向かって前記第 1改質ガス流路を下方へと 流通する間に前記第 2蒸発器の第 2流路を流れる前記混合物又は前記水との熱交 換によって温度が低下し、前記低温 COシフト触媒層の下端側の改質ガス折り返し部 で折り返して、前記低温 COシフト触媒層の下端側から前記高温 COシフト触媒層の 上端側へ向かって前記第 2改質ガス流路を上方へと流通する間に前記低温 COシフ ト触媒層及び前記高温 COシフト触媒層との熱交換によって温度が上昇した後、前記 第 2改質ガス流路の上端の改質ガス折り返し部で折り返すことにより、前記第 1円筒 管と前記第 2円筒管の間に流入して、前記高温 COシフト触媒層と前記低温 COシフ ト触媒層とを順に下方へと流通する構成としたことを特徴とする。
[0025] また、第 16発明の改質装置は、第 11発明の改質装置において、
前記円筒管の内側に配設された O吸着触媒層と、
前記低温 COシフト触媒層及び前記 O吸着触媒層を貫通した加熱ガス導入管と、 前記加熱ガス中の水分を除去する凝縮器と、
前記加熱ガスを吸引するポンプとを有し、
改質装置の停止時に前記加熱ガスを、前記ポンプで吸引し、前記凝縮器で水分を 除去して、前記加熱ガス導入管で前記 O吸着触媒層の上端側へと導入した後、折り 返して前記 O吸着触媒層を流通させることにより、前記加熱ガス中の Oを除去して O レスガスを生成し、
この Oレスガスの一部は、前記低温 COシフト触媒層を流通して前記低温 COシフト 触媒層に残留する水蒸気を排出し、又は、前記低温 COシフト触媒層と前記 CO除去 触媒層とを順に流通して前記低温 COシフト触媒層及び前記 CO除去触媒層に残留 する水蒸気を排出し、
且つ、前記 oレスガスの残りは、前記円筒管に設けた流通穴から流出した後、前記 改質触媒層を流通して前記改質触媒層に残留する水蒸気を排出する構成としたこと を特徴とする。
[0026] また、第 17発明の改質装置は、第 15発明の改質装置において、
前記第 1円筒管と前記第 2円筒管の間に円筒状に配設され、且つ、前記低温 CO シフト触媒層と前記高温 COシフト触媒層との間で、前記低温 COシフト触媒層側に 位置する第 lO吸着触媒層及び前記高温 COシフト触媒層側に位置する第 20吸着 触媒層と、
前記低温 COシフト触媒層及び前記第 lO吸着触媒層を貫通した加熱ガス導入管 と、 前記加熱ガス中の水分を除去する凝縮器と、
前記加熱ガスを吸引するポンプとを有し、
改質装置の停止時に前記加熱ガスを、前記ポンプで吸引し、前記凝縮器で水分を 除去して、前記加熱ガス導入管で前記第 lO吸着触媒層と前記第 20吸着触媒層 の間へ導入した後、
この第 lO吸着触媒層と第 20吸着触媒層の間に導入した加熱ガスの一部は、折 り返して前記第 lO吸着触媒層を流通させることにより、前記加熱ガス中の Oを除去 して Oレスガスを生成し、この Oレスガスが、前記低温 COシフト触媒層を流通して前 記低温 COシフト触媒層に残留する水蒸気を排出し、又は、前記低温 COシフト触媒 層と前記 CO除去触媒層とを順に流通して前記低温 COシフト触媒層及び前記 CO 除去触媒層に残留する水蒸気を排出し、
前記第 lO吸着触媒層と第 20吸着触媒層の間に導入した加熱ガスの残りは、前 記第 20吸着触媒層を流通させることにより、前記加熱ガス中の Oを除去して Oレス ガスを生成し、この Oレスガスが、前記高温 COシフト触媒層を流通し、且つ、前記第 2改質ガス流路の端の改質ガス折り返し部から流出した後に前記改質触媒層を流通 して、前記高温 COシフト触媒層及び前記改質触媒層に残留する水蒸気を排出する 構成としたことを特徴とする。
[0027] また、第 18発明の改質装置は、第 4発明又は第 8発明の改質装置において、 前記第 2蒸発器の第 2流路の出口、又は、前記第 1蒸発器の第 1流路の出口と前記 改質触媒層の入口の間に円筒状のヘッダータンクを設け、且つ、このヘッダータンク の側面又は上面には噴出し穴を、周方向に複数形成し、
前記第 2蒸発器の第 2流路の出口から流出した前記混合物、又は、前記第 1蒸発 器の第 1流路の出口から流出した前記混合物が、前記ヘッダータンクに流入した後、 前記噴出し穴から噴出されて前記改質触媒層に前記入口から流入する構成としたこ とを特徴とする。
[0028] また、第 19発明の改質装置は、第 1発明又は第 4発明の改質装置において、 前記第 2蒸発器の第 2流路の出口、又は、前記第 1蒸発器の第 1流路の出口と前記 改質触媒層の入口とを繋ぐ掃除用配管と、 前記掃除用配管の途中に着脱可能に取り付けた掃除用取り外し部とを有し、 前記掃除用取り外し部を取り外して前記掃除用配管の注入口から薬液を注入した とき、この薬液が、前記第 2蒸発器の第 2流路及び前記第 1蒸発器の第 1流路を順に 流通する、又は、前記第 1蒸発器の第 1流路及び前記第 2蒸発器の第 2流路を順に 流通する構成としたことを特徴とする。
[0029] また、第 20発明の改質装置は、第 1又は第 2発明の改質装置において、
前記原料混合部は外側ノズルと、この外側ノズルの内側に設けた内側ノズルとを有 してなる 2重ノズル構造とし、
前記第 1蒸発器の第 1流路から流出した前記水蒸気、又は、前記第 2蒸発器の第 2 流路から流出した前記水蒸気は前記外側ノズルと前記内側ノズルとの間を流通し、 前記原料は前記内側ノズルを流通する構成としたこと、
又は、前記原料は前記外側ノズルと前記内側ノズルとの間を流通し、前記第 1蒸発 器の第 1流路から流出した前記水蒸気、又は、前記第 2蒸発器の第 2流路から流出し た前記水蒸気は前記内側ノズルを流通する構成としたことを特徴とする。
[0030] また、第 21発明の改質装置は、第 8発明の改質装置において、
前記改質部円筒管の周囲を囲むようにして円筒状の断熱材を配設したことを特徴 とする。
[0031] また、第 22発明の改質装置の運転方法は、第 8発明の改質装置の運転方法であ つて、
改質装置を起動する際の加熱昇温運転では、前記水及び前記原料は供給しな!/ヽ 状態で、前記パーナの加熱ガスを、前記改質管の前記内円筒管の内周面に沿って 上方へと流通させ、且つ、前記加熱ガス折り返し部で折り返して前記改質管の外側 の前記加熱ガス流路を下方へと流通させた後、前記第 1蒸発器と第 2蒸発器との間 の前記加熱ガス流路を下方へと流通させることによって、この加熱ガスにより、前記改 質管及び前記改質触媒層、前記第 1蒸発器及び前記第 2蒸発器、前記低温 COシフ ト触媒層を順に加熱して、昇温することを特徴とする。
[0032] また、第 23発明の改質装置の運転方法は、第 13発明の改質装置の運転方法であ つて、改質装置を起動する際の加熱昇温運転では、前記水及び前記原料は供給し ない状態で、前記パーナの加熱ガスを、前記改質管の前記内円筒管の内周面に沿 つて上方へと流通させ、且つ、前記加熱ガス折り返し部で折り返して前記改質管の外 側の前記加熱ガス流路を下方へと流通させた後、前記第 1蒸発器と第 2蒸発器との 間の前記加熱ガス流路を下方へと流通させることによって、この加熱ガスにより、前記 改質管及び前記改質触媒層、前記第 1蒸発器及び前記第 2蒸発器、前記低温 CO シフト触媒層を順に加熱して、昇温し、
続けて、前記原料は供給しない状態で、前記水を供給して、前記第 1蒸発器の第 1 流路と前記第 2蒸発器の第 2流路とを順に流通させること、又は、前記第 2蒸発器の 第 2流路と前記第 1蒸発器の第 1流路とを順に流通させることにより、前記第 1蒸発器 と第 2蒸発器との間の前記加熱ガス流路を流通する前記加熱ガスで加熱して水蒸気 を発生させ、この水蒸気が、前記改質触媒層を流通した後、前記第 1改質ガス流路 及び前記第 2改質ガス流路を順に流通するときに前記第 1円筒管の外面及び前記 第 2円筒管の内面で凝縮することにより、前記低温 COシフト触媒層を加熱して、昇温 することを特徴とする。
[0033] また、第 24発明の改質装置の運転方法は、第 5又は第 8発明の改質装置の運転方 法であって、
改質装置の定常運転時には、前記改質触媒層の出口の改質ガス温度を計測して 、この改質ガス温度の計測値が所定温度となるように前記バーナヘの燃料供給量を 制御し、
且つ、前記低温 COシフト触媒層の入口の改質ガス温度を計測して、この改質ガス 温度の計測値が所定温度となるように前記バーナヘの空気供給量を制御することを 特徴とする。
[0034] また、第 25発明の改質装置の運転方法は、第 5又は第 8発明の改質装置の運転方 法であって、
改質装置の定常運転時には、前記改質触媒層の出口の改質ガス温度を計測して 、この改質ガス温度の計測値が所定温度となるように前記バーナヘの燃料供給量を 制御し、
且つ、前記第 2蒸発器の第 2流路の出口の混合物温度、又は、前記第 1蒸発器の 第 1流路の出口の混合物温度を計測して、この混合物温度の計測値が所定温度とな るように前記バーナヘの空気供給量を制御することを特徴とする。
発明の効果
[0035] 第 1発明の改質装置によれば、円筒状を成し、水を流通させるための第 1流路を有 する第 1蒸発器と、円筒状を成し、水蒸気と原料の混合物を流通させるための第 2流 路を有する第 2蒸発器と、前記第 1流路の出口と前記第 2流路の入口とを繋ぐ配管と 、前記配管の途中に設けた原料混合部とを有し、前記第 1蒸発器を外側に前記第 2 蒸発器を内側に同心円状に配設し、前記第 1蒸発器と前記第 2蒸発器との間の円筒 状の隙間を、加熱ガス流路とし、前記第 1蒸発器では、前記第 1流路を流通する前記 水力 前記加熱ガス流路を流通する加熱ガスによって加熱されることにより、水蒸気 となり、前記原料混合部では、前記第 1流路から流出して前記配管を流通する前記 水蒸気に原料を混合して前記混合物を得るとともに、前記第 2蒸発器では、この混合 物が前記第 2流路を流通するときに、前記加熱ガス流路を流通する前記加熱ガスに よって更に加熱され、この混合物が前記改質触媒層に供給される構成としたことを特 徴とするため、第 1蒸発器と第 2蒸発器との間の加熱ガス流路を流通する加熱ガスに よって、第 1蒸発器の第 1流路を流通する水と、第 2蒸発器の第 2流路を流通する混 合物とを効率的に加熱することができる。
しかも、第 1蒸発器の第 1流路から流出した水蒸気は、配管を流通するときの流速 が水(液体)と比較して高速 (例えば 50m/s程度)となる。従って、この高流速の水蒸 気により、配管途中の原料混合部で混合される原料を、よく攪拌して水蒸気中に均 一に分散させることができるため、原料との均一な混合が可能である。この場合、原 料が灯油のような液体燃料であっても、また、原料の供給量が僅かであっても、水蒸 気と原料との均一な混合が可能である。更には、第 2蒸発器では原料が水蒸気と同 伴されながら気化、昇温される。従って、原料が灯油などのカーボンの析出し易いも のであっても、当該原料からカーボンが析出されるのを防止して、改質触媒の劣化を 防止すること力 Sできる。このため、従来の如く原燃料気化器で原料を気化させる場合 に必要となる面倒な昇温温度の制御は不要である。
[0036] また、第 2発明の改質装置によれば、円筒状を成し、水蒸気と原料の混合物を流通 させるための第 1流路を有する第 1蒸発器と、円筒状を成し、水を流通させるための 第 2流路を有する第 2蒸発器と、前記第 2流路の出口と前記第 1流路の入口とを繋ぐ 配管と、前記配管の途中に設けた原料混合部とを有し、前記第 1蒸発器を外側に前 記第 2蒸発器を内側に同心円状に配設し、前記第 1蒸発器と前記第 2蒸発器との間 の円筒状の隙間を、加熱ガス流路とし、前記第 2蒸発器では、前記第 2流路を流通 する前記水が、前記加熱ガス流路を流通する加熱ガスによって加熱されることにより 、水蒸気となり、前記原料混合部では、前記第 2流路から流出して前記配管を流通 する前記水蒸気に原料を混合して前記混合物を得るとともに、前記第 1蒸発器では、 この混合物が前記第 1流路を流通するときに、前記加熱ガス流路を流通する前記加 熱ガスによって更に加熱され、この混合物が前記改質触媒層に供給される構成とし たことを特徴とするため、第 1蒸発器と第 2蒸発器との間の加熱ガス流路を流通する 加熱ガスによって、第 2蒸発器の第 2流路を流通する水と、第 1蒸発器の第 1流路を 流通する混合物とを効率的に加熱することができる。
しかも、第 2蒸発器の第 2流路から流出した水蒸気は、配管を流通するときの流速 が水(液体)と比較して高速 (例えば 50m/s程度)となる。従って、この高流速の水蒸 気により、配管途中の原料混合部で混合される原料を、よく攪拌して水蒸気中に均 一に分散させることができるため、原料との均一な混合が可能である。この場合、原 料が灯油のような液体燃料であっても、また、原料の供給量が僅かであっても、水蒸 気と原料との均一な混合が可能である。更には、第 1蒸発器では原料が水蒸気と同 伴されながら気化、昇温される。従って、原料が灯油などのカーボンの析出し易いも のであっても、当該原料からカーボンが析出されるのを防止して、改質触媒の劣化を 防止すること力 Sできる。このため、従来の如く原燃料気化器で原料を気化させる場合 に必要となる面倒な昇温温度の制御は不要である。
また、第 3発明の改質装置によれば、前記第 2蒸発器の内側に低温 COシフト触媒 層を配置したことを特徴とするため、改質触媒層から流出した前記改質ガスが、低温 COシフト触媒層を流通し、このときに第 2蒸発器の第 2流路を流れる混合物又は水 によって、低温 COシフト触媒層における改質ガスの COシフト反応による発熱を吸収 し且つ改質ガスを冷却する。 しかも、低温 COシフト触媒層の周囲を第 2蒸発器が囲んでおり、改質装置の定常 運転時には第 2蒸発器の第 2流路を混合物又は水が流通しているため、低温 COシ フト触媒層が第 2蒸発器の外側の加熱ガス流路を流通する加熱ガスと接触して昇温 されることはなく、しかも、第 2蒸発器の第 2流路を流通する混合物又は水によって、 低温 COシフト触媒層での COシフト反応による発熱の吸収ゃ改質ガスの冷却を確実 に行うことができる。従って、従来の如く冷却不足によって低温 COシフト触媒層から 流出する改質ガス中の CO濃度が高くなるのを防止することができる。このため、低温 COシフト触媒層から流出した改質ガスを更に CO除去触媒層に流通させる場合でも 、この CO除去触媒層への CO選択酸化用空気の供給量を低減することができるため 、改質効率を向上させることができ、温度制御の難しいメタネーシヨン式の CO除去触 媒を用いる必要もない。
[0038] また、第 4発明の改質装置によれば、前記改質触媒層を収容した改質管を、前記 第 1蒸発器及び前記第 2蒸発器の上方に配置して、前記第 2蒸発器の前記第 2流路 から流出した前記混合物、又は、前記第 1蒸発器の前記第 1流路から流出した前記 混合物が、前記改質触媒層の下端から流入して前記改質触媒層を上方へと流通す る間に水蒸気改質されて前記改質ガスとなり、この改質ガスが、前記改質触媒層の 上端から流出して下方へと流れ、前記低温 COシフト触媒層へ上端から流入して前 記低温 COシフト触媒層を下方へと流通する構成としたことを特徴とするため、改質 管、第 1蒸発器、第 2蒸発器及び低温 COシフト触媒層が、混合物と改質ガスの流れ (混合物と改質ガスとの熱交換)などを考慮した合理的でコンパクトな配置となって!/、
[0039] また、第 5発明の改質装置によれば、前記加熱ガスを発生させるパーナを、前記改 質管の上端側に下向きに配置したことを特徴とするため、パーナにトラブルが発生し た際、従来の如く改質装置をひっくり返すことなぐパーナのみを装置から取り外して メンテナンスすることができる。しかも、パーナは従来の長尺なパーナに比べて、非常 に短くすることができるため、取り扱いが容易であり、現地での調整や交換作業なども 人力によって十分に可能である。
[0040] また、第 6発明の改質装置によれば、 CO除去触媒層を、前記第 1蒸発器の周囲を 囲むようにして円筒状に設け、前記低温 COシフト触媒層から流出した前記改質ガス 1S 前記 CO除去触媒層を流通する構成としたことを特徴とするため、低温 COシフト 触媒層から流出した改質ガスが CO除去触媒層を流通するときに第 1蒸発器の第 1 流路を流れる水又は混合物によって、 CO除去触媒層における改質ガスの CO選択 酸化反応による発熱を吸収し且つ改質ガスを冷却する。
しかも、加熱ガス流路と CO除去触媒層との間に第 1蒸発器が介在しており、改質 装置の定常運転時には第 1蒸発器の第 1流路に水又は混合物が流通しているため、 CO除去触媒層が第 1蒸発器の内側の加熱ガス流路を流通する加熱ガスと接触して 昇温されることはなぐしかも、第 1蒸発器の第 1流路を流通する水又は混合物によつ て、 CO除去触媒層での CO選択酸化反応による発熱の吸収ゃ改質ガスの冷却を確 実に行うことができる。そして、 CO除去触媒層の CO除去触媒は水の気化温度程度 に冷却されて、 CO除去能力が高いため、温度制御の難しいメタネーシヨン式の CO 除去触媒を用いる必要もなレ、。
[0041] また、第 7発明の改質装置によれば、前記低温 COシフト触媒層の前に高温 COシ フト触媒層を設け、前記改質触媒層から流出した前記改質ガスが、前記高温 COシフ ト触媒層を流通した後、前記低温 COシフト触媒層を流通する構成としたことを特徴と しており、 COシフト触媒層として低温 COシフト触媒層だけでなぐ高温 COシフト触 媒層も設けている力 高温 COシフト触媒は作動温度が高くて耐熱性があり、し力、も作 動温度が高いので反応速度が速ぐ低温 COシフト触媒よりも少量で COを除去でき る。その結果、高温 COシフト触媒層を通過後の改質ガス中の CO濃度は、例えば従 来の 650°Cレベルの改質ガス中の CO濃度よりも低くなる。従って、この改質ガスが低 温 COシフト触媒層に流入しても、低温 COシフト触媒が COシフト反応の発熱で昇温 されに《なるため、低温 COシフト触媒の延命が可能となる。更には低温 COシフト触 媒が昇温されないと、低温 COシフト触媒層の出口温度も下がるため、平衡反応上、 低温 COシフト触媒層から流出する改質ガス中の CO濃度も下がる。このため、低温 C Oシフト触媒層から流出した改質ガスを更に CO除去触媒層に流通させる場合、 CO 除去触媒の負荷を低減することができる。
[0042] また、第 8発明の改質装置によれば、前記改質管の周囲を囲むように配設した改質 部円筒管を有し、前記改質管は同心円状に設けられた内側の内円筒管と、外側の 外円筒管と、これらの内円筒管と外円筒管の間の中間円筒管とを有して成る 3重管 構造のものであって、前記パーナの周囲を囲むように配設されており、前記内円筒管 の下端側は下端板で閉じられ、前記内円筒管と前記外円筒管との間の上端側は第 1 上端板で閉じられ、且つ、この第 1上端板と前記中間円筒管の上端との間の隙間を、 改質ガス折り返し部とし、前記中間円筒管と前記内円筒管との間の円筒状の隙間を 、改質ガス流路とし、前記改質触媒層は前記中間円筒管と前記外円筒管との間に円 筒状に設け、前記改質部円筒管は上端側が第 2上端板で閉じられ、この第 2上端板 と前記第 1上端板との間の隙間を、加熱ガス折り返し部とし、前記改質部円筒管と前 記外円筒管との間の円筒状の隙間を、加熱ガス流路とし、前記パーナから下方へと 排気された加熱ガスは、前記内円筒管の内周面に沿って上方へ流れ、前記加熱ガ ス折り返し部で折り返して前記加熱ガス流路を下方へと流れる間に前記改質触媒層 を加熱した後、前記第 1蒸発器と第 2蒸発器との間の前記加熱ガス流路へ流入する 一方、前記改質触媒層の上端から流出した前記改質ガスは、前記改質ガス折り返し 部で折り返して前記改質ガス流路を下方へと流れ、前記低温 COシフト触媒層へ上 端から流入する構成としたことを特徴とするため、加熱ガスによって、円筒状の改質 管(改質触媒層)の内側と外側から、改質触媒層を効率的に加熱することができる。 しかも、改質管は従来のような多管式のもではなぐ単管式のものであり、複数の改 質管を集約する配管やヘッダタンクなども不要であることから、製造コストを低減する ことが可能である。
また、第 9発明の改質装置によれば、前記第 1流路と前記第 2流路は、何れも螺旋 状に形成されていることを特徴とするため、第 1流路では水又は混合物が螺旋状に 流動し、第 2流路では混合物又は水が螺旋状に流動する。このため、第 1蒸発器に おける水又は混合物と加熱ガスとの熱交換と、第 2蒸発器における混合物又は水と 加熱ガスとの熱交換とを確実に行うことができる。また、第 2流路又は第 1流路が例え ば単なる円筒状の流路であった場合には混合物の流速が遅くなるため、混合物中の 水 (水蒸気)と原料とが分離して、水 (水蒸気)と原料との比率(S/C: Steam/Carbo n)が計画値から外れ、また、原料からカーボンが析出して改質触媒の寿命を低下さ せるおそれがある。これに対して、螺旋状の第 2流路又は第 1流路では前述の単なる 円筒状の流路などに比べて混合物の流速が高くなるため、混合物中の水(水蒸気)と 原料とが分離するのを防止することができる。
[0044] また、第 10発明の改質装置によれば、前記第 1蒸発器は、管面に螺旋状の凹凸が 形成された波形管の外周面側に円筒管を嵌合させた 2重管構造のものであって、前 記波形管と前記円筒管との間に形成された螺旋状の隙間が、前記第 1流路となって おり、前記第 2蒸発器は、管面に螺旋状の凹凸が形成された他の波形管の外周面側 に他の円筒管を嵌合させた 2重管構造のものであって、前記他の波形管と前記他の 円筒管との間に形成された螺旋状の隙間が、前記第 2流路となっていることを特徴と するため、上記第 9発明と同様の効果が得られ、しかも、水又は混合物と加熱ガスは 第 1蒸発器の波形管を介して面接触し、混合物又は水と加熱ガスは第 2蒸発器の円 筒管を介して面接触し、更には第 1蒸発器の波形管の凹凸によって加熱ガスの流動 状態が乱流状態となることにより、水と加熱ガスとの熱交換や混合物と加熱ガスとの 熱交換を効率的に行うことができる。
[0045] また、第 11発明の改質装置によれば、前記低温 COシフト触媒層は円筒管の内側 に設け、前記円筒管と前記第 2蒸発器との間の円筒状の隙間を、改質ガス流路とし、 前記改質触媒層から流出した前記改質ガスが、前記改質ガス流路を流通する間に 前記第 2蒸発器の第 2流路を流れる前記混合物又は前記水との熱交換によって温度 が低下した後、前記円筒管に設けた流通穴から前記円筒管の内側へ流入して、前 記低温 COシフト触媒層を流通する構成としたことを特徴とするため、低温 COシフト 触媒層の周囲を第 2蒸発器が囲んでおり、改質装置の定常運転時には第 2蒸発器 の第 2流路を混合物又は水が流通しているため、低温 COシフト触媒層(円筒管)が 第 2蒸発器の外側の加熱ガス流路を流通する加熱ガスと接触して昇温されることはな ぐしかも、第 2蒸発器の第 2流路を流通する混合物又は水によって、低温 COシフト 触媒層での COシフト反応による発熱の吸収ゃ改質ガスの冷却を確実に行うことがで きる。従って、従来の如く冷却不足によって低温 COシフト触媒層から流出する改質 ガス中の CO濃度が高くなるのを防止することができる。このため、低温 COシフト触媒 層から流出した改質ガスを更に CO除去触媒層に流通させる場合でも、この CO除去 触媒層への CO選択酸化用空気の供給量を低減することができるため、改質効率を 向上させることができ、温度制御の難しいメタネーシヨン式の CO除去触媒を用いる必 要もない。
また、第 12又は第 13発明の改質装置によれば、前記低温 COシフト触媒層は、前 記第 2蒸発器の内側に配設した第 1円筒管と、この第 1円筒管の内側に配設した第 2 円筒管との間に円筒状に設け、前記第 1円筒管と前記第 2蒸発器との間の円筒状の 隙間を、第 1改質ガス流路とし、前記第 2円筒管の内側を、第 2改質ガス流路とし、前 記改質触媒層から流出した改質ガスが、前記低温 COシフト触媒層の一端側から他 端側へ向かって前記第 1改質ガス流路を流通する間に前記第 2蒸発器の第 2流路を 流れる前記混合物又は前記水との熱交換によって温度が低下し、前記低温 COシフ ト触媒層の他端側の改質ガス折り返し部で折り返して、前記低温 COシフト触媒層の 他端側から一端側へ向かって前記第 2改質ガス流路を流通する間に前記低温 COシ フト触媒層との熱交換によって温度が上昇した後、前記第 2円筒管に設けた流通穴 力、ら前記第 1円筒管と前記第 2円筒管の間へ流入して、前記低温 COシフト触媒層を 流通する構成としたことを特徴とするため、上記第 11発明と同様の効果が得られ、し 力、も、低温 COシフト触媒層に対する第 2蒸発器 (混合物又は水)の冷却能力は、低 温 COシフト触媒層から第 2蒸発器 (混合物又は水)への熱伝達として放射伝熱だけ でなぐ低温 COシフト触媒層と第 2蒸発器の間の改質ガス流路に改質ガスが流れる ことによって、この改質ガスの流れによる対流熱伝達も加わることになるため、放射伝 熱のみによる冷却の場合に比べて高くなる。
更には、改質ガスが低温 COシフト触媒層の外側の第 1改質ガス流路と内側の第 2 改質ガス流路とを流れる構成となってレ、るため、加熱昇温運転後に水の供給を開始 して、この水の水蒸気が流入してきても、当該水蒸気は先ずは第 1改質ガス流路及 び第 2改質ガス流路において第 1円筒管の外面及び第 2円筒管の内面で凝縮し、低 温 COシフト触媒層では凝縮しない。しかも、第 1円筒管の外面と第 2円筒管の内面 で水蒸気が凝縮すると、その凝縮潜熱が低温 COシフト触媒層に伝わるため、低温 C Oシフト触媒層の温度が上昇する。このため、低温 COシフト触媒層に水蒸気が流入 してくるころには、当該水蒸気が低温 COシフト触媒層で凝縮することはなぐ水蒸気 の凝縮よる低温 COシフト触媒の劣化を防止することができる。
また、第 2改質ガス流路を流れる改質ガスによって、低温 COシフト触媒層の内側部 分も冷却するため、この内側部分の温度が高くなるのを防止して、この内側部分を通 過する改質ガス中の CO濃度も低くすることができる。
[0047] また、第 14発明の改質装置によれば、前記改質触媒層を収納した改質管の内側 で前記低温 COシフト触媒層の上方の改質ガスが流れる領域に、高温 COシフト触媒 を配置したことを特徴とするため、改質触媒層の上端から流出した改質ガスは下方へ と流れ、高温 COシフト触媒層へ上端から流入して高温 COシフト触媒層を下方へと 流通した後、前記低温 COシフト触媒層へ上端から流入する。
このため、上記第 7発明と同様の効果が得られ、しかも、改質装置の加熱昇温運転 時に加熱ガスによって、改質管(改質触媒層)を加熱昇温するとき、改質管(中間円 筒管)の内側の高温 COシフト触媒層も、改質管(改質触媒層)を介して加熱昇温す ること力 Sでさる。
[0048] また、第 15発明の改質装置は、前記低温 COシフト触媒層は、前記第 2蒸発器の 内側に配設した第 1円筒管と、この第 1円筒管の内側に配設した第 2円筒管との間に 円筒状に設けるとともに、高温 COシフト触媒層を、前記第 1円筒管と前記第 2円筒管 とのと間で且つ前記低温 COシフト触媒層の上側に円筒状に設け、前記第 1円筒管 と前記第 2蒸発器との間の円筒状の隙間を、第 1改質ガス流路とし、前記第 2円筒管 の内側を、第 2改質ガス流路とし、前記改質触媒層から流出した改質ガスが、前記高 温 COシフト触媒層の上端側から前記低温 COシフト触媒層の下端側へ向かつて前 記第 1改質ガス流路を下方へと流通する間に前記第 2蒸発器の第 2流路を流れる前 記混合物又は前記水との熱交換によって温度が低下し、前記低温 COシフト触媒層 の下端側の改質ガス折り返し部で折り返して、前記低温 COシフト触媒層の下端側か ら前記高温 COシフト触媒層の上端側へ向かって前記第 2改質ガス流路を上方へと 流通する間に前記低温 COシフト触媒層及び前記高温 COシフト触媒層との熱交換 によって温度が上昇した後、前記第 2改質ガス流路の上端の改質ガス折り返し部で 折り返すことにより、前記第 1円筒管と前記第 2円筒管の間に流入して、前記高温 CO シフト触媒層と前記低温 COシフト触媒層とを順に下方へと流通する構成としたことを 特徴とするため、上記第 11及び第 12発明と同様の効果が得られる。
しかも、上記の如く水の供給を開始した際に第 1円筒管の外面と第 2円筒管の内面 で水蒸気が凝縮するときの凝縮潜熱が、高温 COシフト触媒層にも伝わるため、高温 COシフト触媒層の温度も上昇する。このため、高温 COシフト触媒層に水蒸気が流 入してくるころには、当該水蒸気が高温 COシフト触媒層で凝縮することもない。従つ て、水蒸気の凝縮によって高温 COシフト触媒が劣化することもない。
また、第 2の改質ガス流路を流れる改質ガスによって、低温 COシフト触媒層や高温 COシフト触媒層の内側部分も冷却するため、これらの内側部分の温度が高くなるの を防止して、この内側部分を通過する改質ガス中の CO濃度も低くすることができる。 また、 COシフト触媒層として低温 COシフト触媒層だけでなぐ高温 COシフト触媒 層も設けている。高温 COシフト触媒は作動温度が高くて耐熱性があり、し力、も作動 温度が高いので反応速度が速ぐ低温 COシフト触媒よりも少量で COを除去できる。 その結果、高温 COシフト触媒層を通過後の改質ガス中の CO濃度は、例えば従来 の 650°Cレベルの改質ガス中の CO濃度よりも低くなる。従って、この改質ガスが低温 COシフト触媒層に流入しても、低温 COシフト触媒が COシフト反応の発熱で昇温さ れに《なるため、低温 COシフト触媒の延命が可能となる。更には低温 COシフト触 媒が昇温されないと、低温 COシフト触媒層の出口温度も下がるため、平衡反応上、 低温 COシフト触媒層から流出する改質ガス中の CO濃度も下がる。このため、低温 C Oシフト触媒層から流出した改質ガスを更に CO除去触媒層に流通させる場合、 CO 除去触媒の負荷を低減することができる。
しかも、改質装置の製作工程においては、先に改質装置に高温 COシフト触媒層を 設けておく必要がなぐ別途、第 1円筒管及び第 2円筒管を用いて高温 COシフト触 媒層も低温 COシフト触媒層と同時に製作することができ、これを後から改質装置に 取り付ければよい。このため、製作工程におけるハンドリング性が向上して、製造コス 卜を低減すること力 Sでさる。
また、改質装置の加熱昇温運転時に加熱ガスによって、改質管(改質触媒層)を加 熱昇温する際、改質触媒層(中間円筒管)と高温 COシフト触媒層(第 1円筒管)との 間に第 1改質ガス流路が介在しているため、高温 COシフト触媒層が設置されている 位置の改質触媒層の部分も、高温 COシフト触媒層の熱容量の影響をあまり受けるこ となぐ加熱ガスによって速やかに昇温される。なお、このときに高温 COシフト触媒層 の昇温が不十分であったとしても、上記の如く水蒸気の凝縮潜熱によって高温 COシ フト触媒層を昇温することができるため、高温 COシフト触媒層において水蒸気が凝 縮するおそれはない。
[0049] また、第 16発明の改質装置によれば、前記円筒管の内側に配設された O吸着触 媒層と、前記低温 COシフト触媒層及び前記 O吸着触媒層を貫通した加熱ガス導入 管と、前記加熱ガス中の水分を除去する凝縮器と、前記加熱ガスを吸引するポンプと を有し、改質装置の停止時に前記加熱ガスを、前記ポンプで吸引し、前記凝縮器で 水分を除去して、前記加熱ガス導入管で前記 O吸着触媒層の上端側へと導入した 後、折り返して前記 O吸着触媒層を流通させることにより、前記加熱ガス中の Oを除 去して Oレスガスを生成し、この Oレスガスの一部は、前記低温 COシフト触媒層を 流通して前記低温 COシフト触媒層に残留する水蒸気を排出し、又は、前記低温 CO シフト触媒層と前記 CO除去触媒層とを順に流通して前記低温 COシフト触媒層及び 前記 CO除去触媒層に残留する水蒸気を排出し、且つ、前記 oレスガスの残りは、 前記円筒管に設けた流通穴から流出した後、前記改質触媒層を流通して前記改質 触媒層に残留する水蒸気を排出する構成としたことを特徴とするため、改質装置の 停止時に改質触媒層及び低温 COシフト触媒層に残留している水蒸気、又は改質触 媒層、低温 COシフト触媒層及び CO除去触媒層に残留している水蒸気を、 oレスガ スによって排出することができるため、これらの各触媒層の触媒が水蒸気の凝縮によ つて劣化するのを防止することができる。
[0050] また、第 17発明の改質装置によれば、前記第 1円筒管と前記第 2円筒管の間に円 筒状に配設され、且つ、前記低温 COシフト触媒層と前記高温 COシフト触媒層との 間で、前記低温 COシフト触媒層側に位置する第 lO吸着触媒層及び前記高温 CO シフト触媒層側に位置する第 20吸着触媒層と、前記低温 COシフト触媒層及び前 記第 lO吸着触媒層を貫通した加熱ガス導入管と、前記加熱ガス中の水分を除去す る凝縮器と、前記加熱ガスを吸引するポンプとを有し、改質装置の停止時に前記加 熱ガスを、前記ポンプで吸引し、前記凝縮器で水分を除去して、前記加熱ガス導入 管で前記第 102吸着触媒層と前記第 202吸着触媒層の間へ導入した後、この第 102 吸着触媒層と第 2〇2吸着触媒層の間に導入した加熱ガスの一部は、折り返して前記 第 ι〇2吸着触媒層を流通させることにより、前記加熱ガス中の〇2を除去して〇2レスガ スを生成し、この Oレスガスが、前記低温 COシフト触媒層を流通して前記低温 COシ フト触媒層に残留する水蒸気を排出し、又は、前記低温 COシフト触媒層と前記 CO 除去触媒層とを順に流通して前記低温 COシフト触媒層及び前記 CO除去触媒層に 残留する水蒸気を排出し、前記第 lO吸着触媒層と第 20吸着触媒層の間に導入し た加熱ガスの残りは、前記第 20吸着触媒層を流通させることにより、前記加熱ガス 中の Oを除去して Oレスガスを生成し、この Oレスガスが、前記高温 COシフト触媒 層を流通し、且つ、前記第 2改質ガス流路の端の改質ガス折り返し部から流出した後 に前記改質触媒層を流通して、前記高温 COシフト触媒層及び前記改質触媒層に 残留する水蒸気を排出する構成としたことを特徴とするため、改質装置の停止時に 改質触媒層、高温 COシフト触媒層及び低温 COシフト触媒層、又は改質触媒層、高 温 COシフト触媒層、低温 COシフト触媒層及び CO除去触媒層に残留している水蒸 気を、 oレスガスによって排出することができるため、これらの各触媒層の触媒が水 蒸気の凝縮によって劣化するのを防止することができる。
[0051] また、第 18発明の改質装置によれば、前記第 2蒸発器の第 2流路の出口、又は、 前記第 1蒸発器の第 1流路の出口と前記改質触媒層の入口の間に円筒状のヘッダ 一タンクを設け、且つ、このヘッダータンクの側面又は上面には噴出し穴を、周方向 に複数形成し、
前記第 2蒸発器の第 2流路の出口から流出した前記混合物、又は、前記第 1蒸発 器の第 1流路の出口から流出した前記混合物が、前記ヘッダータンクに流入した後、 前記噴出し穴から噴出されて前記改質触媒層に前記入口から流入する構成としたこ とを特徴とするため、ヘッダータンクによって混合物を、円筒状の改質触媒層に対し 、その周方向に均一に分散して供給することができるため、改質効率を向上させるこ と力 Sできる。
[0052] また、第 19発明の改質装置によれば、前記第 2蒸発器の第 2流路の出口、又は、 前記第 1蒸発器の第 1流路の出口と前記改質触媒層の入口とを繋ぐ掃除用配管と、 前記掃除用配管の途中に着脱可能に取り付けた掃除用取り外し部とを有し、前記掃 除用取り外し部を取り外して前記掃除用配管の注入ロカ、ら薬液を注入したとき、この 薬液が、前記第 2蒸発器の第 2流路及び前記第 1蒸発器の第 1流路を順に流通する 、又は、前記第 1蒸発器の第 1流路及び前記第 2蒸発器の第 2流路を順に流通する 構成としたことを特徴とするため、改質装置の長期間の運転によって水に含まれてい るシリカなどの固形成分が第 1流路ゃ第 2流路に堆積しても、改質装置の停止時に 掃除用取り外し部を取り外して、薬液を掃除用配管の注入ロカ 注入して第 2流路 及び第 1流路に順に流通させ、又は第 1流路及び第 2流路を順に流通させることより 、前記固形成分を第 1流路ゃ第 2流路から除去することができる。このため、第 1流路 や第 2流路が前記固形成分によって閉塞されるのを防止することができる。
[0053] また、第 20発明の改質装置によれば、前記原料混合部は外側ノズルと、この外側ノ ズノレの内側に設けた内側ノズルとを有してなる 2重ノズル構造とし、前記第 1蒸発器 の第 1流路から流出した前記水蒸気、又は、前記第 2蒸発器の第 2流路から流出した 前記水蒸気は前記外側ノズルと前記内側ノズルとの間を流通し、前記原料は前記内 側ノズルを流通する構成としたこと、又は、前記原料は前記外側ノズルと前記内側ノ ズルとの間を流通し、前記第 1蒸発器の第 1流路から流出した前記水蒸気、又は、前 記第 2蒸発器の第 2流路から流出した前記水蒸気は前記内側ノズルを流通する構成 としたことを特徴とするため、原料混合部では原料が、細かくミスト状になって水(水蒸 気)に均一に混合される。このため、原料からのカーボンの析出をより確実に防止し て、より確実に改質触媒の劣化を防止することができる。
[0054] また、第 21発明の改質装置によれば、前記改質部円筒管の周囲を囲むようにして 円筒状の断熱材を配設したことを特徴とするため、改質部円筒管の表面からの放熱 を、断熱材によって低減することができる。なお、この場合、断熱材として例えば安価 なセラミックファイバ製のものを使用し、適宜の厚さに形成すればよい。
[0055] また、第 22発明の改質装置の運転方法によれば、改質装置を起動する際の加熱 昇温運転では、前記水及び前記原料は供給しない状態で、前記パーナの加熱ガス を、前記改質管の前記内円筒管の内周面に沿って上方へと流通させ、且つ、前記加 熱ガス折り返し部で折り返して前記改質管の外側の前記加熱ガス流路を下方へと流 通させた後、前記第 1蒸発器と第 2蒸発器との間の前記加熱ガス流路を下方へと流 通させることによって、この加熱ガスにより、前記改質管及び前記改質触媒層、前記 第 1蒸発器及び前記第 2蒸発器、前記低温 COシフト触媒層を順に加熱して、昇温 することを特徴とするため、改質装置の各部を加熱ガスによって効率的に加熱昇温 すること力 Sでさる。
[0056] また、第 23発明の改質装置の運転方法によれば、改質装置を起動する際の加熱 昇温運転では、前記水及び前記原料は供給しない状態で、前記パーナの加熱ガス を、前記改質管の前記内円筒管の内周面に沿って上方へと流通させ、且つ、前記加 熱ガス折り返し部で折り返して前記改質管の外側の前記加熱ガス流路を下方へと流 通させた後、前記第 1蒸発器と第 2蒸発器との間の前記加熱ガス流路を下方へと流 通させることによって、この加熱ガスにより、前記改質管及び前記改質触媒層、前記 第 1蒸発器及び前記第 2蒸発器、前記低温 COシフト触媒層を順に加熱して、昇温し 、続けて、前記原料は供給しない状態で、前記水を供給して、前記第 1蒸発器の第 1 流路と前記第 2蒸発器の第 2流路とを順に流通させること、又は、前記第 2蒸発器の 第 2流路と前記第 1蒸発器の第 1流路とを順に流通させることにより、前記第 1蒸発器 と第 2蒸発器との間の前記加熱ガス流路を流通する前記加熱ガスで加熱して水蒸気 を発生させ、この水蒸気が、前記改質触媒層を流通した後、前記第 1改質ガス流路 及び前記第 2改質ガス流路を順に流通するときに前記第 1円筒管の外面及び前記 第 2円筒管の内面で凝縮することにより、前記低温 COシフト触媒層を加熱して、昇温 することを特徴とするため、改質装置の各部を加熱ガスによって効率的に加熱昇温 すること力 Sでき、しかも、水蒸気の凝縮潜熱によって、低温 COシフト触媒層の昇温を 、より確実に fiうことカできる。
[0057] また、第 24発明の改質装置の運転方法によれば、改質装置の定常運転時には、 前記改質触媒層の出口の改質ガス温度を計測して、この改質ガス温度の計測値が 所定温度となるように前記バーナヘの燃料供給量を制御し、且つ、前記低温 COシフ ト触媒層の入口の改質ガス温度を計測して、この改質ガス温度の計測値が所定温度 となるように前記バーナヘの空気供給量を制御することを特徴とするため、改質触媒 層の出口の改質ガス温度と、低温 COシフト触媒層の入口の改質ガス温度とを、それ ぞれ所定温度に確実に維持することができる。
[0058] また、第 25発明の改質装置の運転方法によれば、改質装置の定常運転時には、 前記改質触媒層の出口の改質ガス温度を計測して、この改質ガス温度の計測値が 所定温度となるように前記バーナヘの燃料供給量を制御し、且つ、前記第 2蒸発器 の第 2流路の出口の混合物温度、又は、前記第 1蒸発器の第 1流路の出口の混合物 温度を計測して、この混合物温度の計測値が所定温度となるように前記バーナヘの 空気供給量を制御することを特徴とするため、改質触媒層の出口の改質ガス温度と 、第 2蒸発器の第 2流路の出口の混合物温度、又は第 1蒸発器の第 1流路の出口の 混合物温度とを、それぞれ所定温度に確実に維持することができる。
図面の簡単な説明
[0059] [図 1]本発明の実施の形態例 1に係る改質装置の縦断面図である。
[図 2]図 1の A— A線矢視の横断面図である。
[図 3]図 1の B— B線矢視の横断面図である。
[図 4] (a)は前記改質装置に備えた原料混合部の構成を示す縦断面図、図 (b)は (a) の C C線矢視断面図である。
[図 5]本発明の実施の形態例 2に係る改質装置の縦断面図である。
[図 6]図 5の D— D線矢視の横断面図である。
[図 7]図 5の Ε— Ε線矢視の横断面図である。
[図 8]図 5の F— F線矢視の横断面図である。
[図 9]図 5の G— G線矢視の横断面図である。
[図 10]加熱ガスとプロセス水(水)との熱交換器を示す図である。
[図 11]前記改質装置に備えた温度制御系のブロック図である。
[図 12]第 2蒸発器と改質触媒層との間に掃除用配管と掃除用取り外し部とを設けた 場合の構成を示す縦断面図である。
[図 13]本発明の実施の形態例 3に係る改質装置の縦断面図である。
[図 14]図 13の Ι— Ι線矢視の横断面図である。
[図 15]図 13の J -J線矢視の横断面図である。
[図 16]本発明の実施の形態例 4に係る改質装置の縦断面図である。 [図 17]図 16の K K線矢視の横断面図である。
[図 18]図 16の L— L線矢視の横断面図である。
[図 19]図 16の Μ— Μ線矢視の横断面図である。
符号の説明
01 パーナ、 02 改質部円筒管、 03 改質触媒層、 04 改質管、 05 第 1 蒸発器、 06 第 2蒸発器、 07 低温 COシフト触媒層、 08 CO除去触媒層、 0 9 内円筒管、 010 外円筒管、 011 中間円筒管、 012 下端板、 013 上端 板、 014 改質ガス折り返し部、 015 改質ガス流路、 016 上端板、 017 加 熱ガス折り返し部、 018 加熱ガス流路、 019 燃焼空間部、 020 火炎、 021 水、 022 原料、 023 混合物、 024 加熱ガス流路、 025 円筒管、 026 排気管、 027 配管、 028 原料混合部、 029 改質ガス流路、 030 外側ノズ ル、 030a 円筒部、 030b 先細部、 031 内側ノズル、 031a 円筒部、 031 b 先細部、 032 原料供給管、 033 配管、 034 空気混合部、 035 CO選 択酸化用空気、 036 下端板、 037 改質ガス、 038 パーナ用燃料、 039 バーナ用空気、 040 加熱ガス、 1 パーナ、 2 改質管、 3 高温 COシフト触 媒層、 4 第 1蒸発器、 4a 流路、 4a— 1 入口、 4a— 2 出口
4A 波形管、 4B 円筒管、 4B— 1 上端部、 5 第 2蒸発器、 5a 流路、 5a - 1 出口、 5a— 2 入口、 5A 波形管、 5B 円筒管、 6, 6A, 6B O吸着触 媒層、 7 低温 COシフト触媒層、 8 CO除去触媒層、 9 断熱材、 9a 上部、 10 改質部円筒管、 11 内円筒管、 12 外円筒管、 13 中間円筒管、 14 円 殻板、 15 断熱材、 16 上端板、 17 改質ガス折り返し部、 18 改質ガス流路 、 19, 20 多孔板、 21 改質触媒層、 22 支持板、 22a 流通穴、 23 上端 板、 24 加熱ガス折り返し部、 25 加熱ガス流路、 25a 入口、 25b 出口、 2 6 加熱ガス流路、 26a 入口、 26b 出口、 27 ヘッダータンク、 27a 円筒管 、 27b 上端板、 27c 噴出し穴、 28 プロセス水供給管、 29 配管、 30 原 料供給管、 31 原料混合部、 32 下端板、 33 燃焼空間部、 34 パーナ外筒 管、 35 加熱ガス流路、 36 加熱ガス折り返し部、 37 火炎、 38 空間部、 3 9 排気管、 40 熱交換器、 41 パーナ用空気供給管、 42 排気管、 43 バ ーナ用空気供給管、 44 パーナ用燃料供給管、 45 支持板、 46 円筒管、 4 7 上端板、 48, 49 多孔板、 50 円筒管、 51 上端板
52 下端板、 53 改質ガス流路、 54 流通穴、 55, 56, 57, 58 多孔板、 5 9 加熱ガス導入管、 60 ポンプ、 61 配管、 62 凝縮器、 63 配管、 64 円 筒管、 65, 66 多孔板、 67 上端板、 68 下端板、 69 配管、 70 出口、 71 入口、 72 出口、 73 入口、 74 改質ガス供給管、 75 第 1の改質ガス温 度計、 76 第 2の改質ガス温度計、 77 チューブ、 78 熱交換器、 79 出口、
80 温度制御装置、 81 パーナ用燃料供給装置、 82 パーナ用空気供給装置 、 83 バーナ用燃料、 84 バーナ用空気、 85 プロセス水、 86 原料、 87 改質ガス、 88 加熱ガス
89 混合物、 90 CO選択酸化用空気、 98 CO選択酸化用空気供給管、 99 空気混合部、 101 掃除用配管、 102 掃除用取り外し部、 103 注入口、 1 04 空間部、 105 上端板、 105a 噴出し穴、 106 入口、 107 Oレスガス、
108 加熱ガス折り返し部、 109 排気管、 110 バルブ、 111 掃除用液、 1 12 混合物温度計、 201 円筒管、 202 改質ガス流路、 203 改質ガス折り返 し部、 204 流通穴、 205 上端板、 301 円筒管、 302 上端板、 303 改 質ガス流路、 304, 305 改質ガス折り返し部、 306 多孔板
発明を実施するための最良の形態
[0061] 以下、本発明の実施の形態例を図面に基づいて詳細に説明する。
[0062] [実施の形態例 1]
図 1は本発明の実施の形態例 1に係る改質装置の縦断面図、図 2は図 1の A— A線 矢視の横断面図、図 3は図 1の B— B線矢視の横断面図である。また、図 4 (a)は前記 改質装置に備えた原料混合部の構成を示す縦断面図、図 4 (b)は図 4 (a)の C C 線矢視断面図である。
[0063] <構成〉
図 1に示すように、本実施の形態例 1の改質装置は、上側にはパーナ 01、改質部 円筒管 02、改質触媒層 03を有する改質管 04などが配設される一方、下側には第 1 蒸発器 05、第 2蒸発器 06、低温 COシフト触媒層 07、 CO除去触媒層 08などが配設 された構成となっている。
[0064] 図 1〜図 3に基づいて詳述すると、改質管 04は同心円状に設けられた内側の内円 筒管 09と、外側の外円筒管 010と、これらの内円筒管 09と外円筒管 010の間の中間 円筒管 011とを有して成る 3重管構造ものであり、各円筒管 09, 010, 011がパーナ 01の周囲を囲むようにして配設されている。即ち、本改質装置は複数の改質管を備 えた多管式のものではなぐ 1つの改質管 04だけを備えた単管式のものである。
[0065] 内円筒管 09の下端は、下端板 012で閉じられている。内円筒管 09と外円筒管 011 との間の上端側は上端板 013 (第 1上端板)によって閉じられている。上端板 013と中 間円筒管 011の上端との間には隙間が確保されており、この隙間が改質ガス折り返 し部 014となっている。
[0066] 中間円筒管 011と内円筒管 09との間には円筒状の隙間が確保されており、この隙 間が改質ガス流路 015となっている。改質触媒層 03は中間円筒管 011と外円筒管 0 10との隙間に改質触媒を充填してなる円筒状のものである。改質触媒層 03は下端 が入口、上端が出口となっている。
[0067] 改質部円筒管 02は、改質管 04の外円筒管 010の周囲を囲むようにして外円筒管 010と同心円状に配設されている。改質部円筒管 02の上端側は上端板 016 (第 2上 端板)によって閉じられている。この上端板 016と上端板 013との間には隙間が確保 されており、この隙間が加熱ガス折り返し部 017となっている。また、改質部円筒管 0 2と外円筒管 010との間には円筒状の隙間が確保されており、この隙間が加熱ガス 流路 018となっている。加熱ガス流路 018は上端が入口、下端が出口となっている。
[0068] そして、パーナ 01は、改質管 04の上端側(改質装置の上端部)に位置して下向き に配設されており、改質部円筒管 02の上端板 016を貫通した状態で上端板 016に 固定されている。パーナ 01の下側は燃焼空間部 019となっており、パーナ 01の火炎 020は下方に向かって形成される。
[0069] 第 1蒸発器 05は円筒状であり、水 021を流すための第 1流路(図示省略)を有して いる。第 2蒸発器 06は第 1蒸発器 05よりも直径の小さな円筒状であり、水 021 (水蒸 気)と原料 022との混合流体である混合物 023を流すための第 2流路(図示省略)を 有している。原料 022としては、例えば都市ガス(メタンガス)や灯油などのカーボン 系の燃料が用いられる。第 1蒸発器 05と第 2蒸発器 06は第 1蒸発器 05を外側、第 2 蒸発器 06を内側にして同心円状に配設されており、第 1蒸発器 05と第 2蒸発器 06と の間に確保された円筒状の隙間が、加熱ガス流路 024となって!/、る。
[0070] この加熱ガス流路 024は上側の端部が入口、下側の端部が出口となっており、上 端が改質部円筒管 02と改質管 04 (外円筒管 010)との間の加熱ガス流路 018の下 端に通じている。詳述すると、第 1蒸発器 05の内面を構成する円筒管 025は上下に 延びており、上端が改質部円筒管 02の下端に接続されている。円筒管 025の下端 は下端板 036で閉じられている。一方、第 2蒸発器 06の上端は改質管 04 (外円筒管 010, 中間円筒管 011)の下端に接続されている。従って、第 1蒸発器 05と第 2蒸発 器 06の間の加熱ガス流路 024は上下に延びて、上端が加熱ガス流路 018の下端に 接続されている。また、加熱ガス流路 024 (円筒管 025)の下端部には排気管 026が 接続されている。
[0071] 第 1蒸発器 05の第 1流路及び第 2蒸発器 06の第 2流路は螺旋状とすることが望ま しい。この場合、例えば第 1蒸発器 05や第 2蒸発器 06を、円筒管に第 1流路ゃ第 2 流路となるチューブを螺旋状に巻き付けた構成とすることによって、第 1流路ゃ第 2流 路を螺旋状にしてもよぐまた、後述する実施の形態例 2の蒸発器(図 5参照)と同様 に第 1蒸発器 05や第 2蒸発器 06を、波形管 (コルゲート管)と円筒管を嵌合してなる 2重管構造とすることよって、第 1流路ゃ第 2流路を螺旋状にしてもよ!/、。
[0072] 第 1蒸発器 05の第 1流路では下側の端部が入口、上側の端部が出口となっており 、第 2蒸発器 06の第 2流路でも下側の端部が入口、上側の端部が出口となっている 。第 1蒸発器 05 (第 1流路)の入口側は、図示しない水供給管を介して図示しない水 供給装置に接続されている。
[0073] 第 1蒸発器 05 (CO除去触媒層 08)の外側には配管 027が配置されており、この配 管 027によって第 1蒸発器 05の第 1流路の出口と、第 2蒸発器 06の第 2流路の入口 とを繋いでいる。配管 027の途中には図示しない原料供給管の一端側が接続されて おり、この原料供給管と配管 027との接続部が原料混合部 028となっている。原料供 給管の他端側は原料供給装置に接続されている。第 2蒸発器 06の第 2流路の出口 は改質触媒層 03の入口に通じて!/、る。 [0074] 図 4に示すように、原料混合部 028は外側ノズノレ 030と、この外側ノズノレ 030の内 側に設けた内側ノズル 031とを有してなる 2重ノズル構造とすることが望ましレ、。外側 ノズル 030と内側ノズル 031は同心円状に設けられて!/、る。外側ノズル 030は円筒部 030aと、この円筒部 030aの先に設けられた先細部 030bとを有してなるものであり、 円筒部 030aの側面が配管 027を介して第 1蒸発器 05 (第 1流路)の出口に接続され 、先細部 030bの先端が配管 027を介して第 2蒸発器 06 (第 2流路)の入口に接続さ れている。内側ノズル 031は円筒部 031aと、この円筒部 031aの先に設けられた先 細部 031bとを有してなるものであり、円筒部 031aの後端が原料供給管 032を介して 原料供給装置に接続されてレ、る。
[0075] 従って、第 1蒸発器 05 (第 1流路)の出口から流出した水(水蒸気) 021は外側ノズ ノレ 030と内側ノズル 031との間を流通し、原料供給装置から供給された原料 022は 内側ノズル 031を流通する。従って、内側ノズル 031の先細部 031bから流出する原 料力 外側ノズル 030の先細部 030bを流通する水(水蒸気) 021に対して先細部 03 lbの先の空間部で均一に混合されて混合物 023が生成され、この混合物 023が第 2蒸発器 06 (第 2流路)に流入する。なお、原料 022よりも水(水蒸気) 021の方が流 量が多いため、上記のような流れとすることが望ましいが、必ずしもこれに限定するも のではなぐ原料 022が外側ノズル 030と内側ノズル 031との間を流通し、水(水蒸気 ) 021が内側ノズル 031を流通する構成としてもよい。
[0076] 続いて図 1〜図 3に基づいて説明すると、改質管 04の内円筒管 09の下部は第 2蒸 発器 06の内側の上部まで延びており、内円筒管 09の下部と第 2蒸発器 06の上部と の間の円筒状の隙間が、改質ガス流路 029となっている。この改質ガス流路 029は 内円筒管 09と中間円筒管 011との間の改質ガス流路 015と連通している。
[0077] そして、低温 COシフト触媒層 07は低温 COシフト触媒を充填してなるものであり、 第 2蒸発器 06の内側に配置されている。また、 CO除去触媒層 08は CO除去触媒 (P ROX触媒)を充填してなるものであり、第 1蒸発器 05の周囲を囲むようにして円筒状 に設けられている。 CO除去触媒層 08は上端部が入口、下端部が出口となっている
[0078] 第 1蒸発器 05 (CO除去触媒層 08)の外側には配管 033が配置されており、この配 管 033の一端側と他端側は、下端板 036と CO除去触媒層 08の上端部とに接続され ている。即ち、低温 COシフト触媒層 07の出口と CO除去触媒層 08の入口とが、配管 033によって繋がれている。 CO除去触媒層 08の出口は、図示しない改質ガス供給 管を介して図示しない燃料電池に接続されている。配管 033の途中には空気混合部 034が設けられており、図示しない CO選択酸化用空気供給装置から CO選択酸化 用空気供給管を介して供給される CO選択酸化用空気 035が、配管 033を流通する 改質ガス 037に空気混合部 034で混合されて、改質ガス 033とともに CO除去触媒 層 08に流入するようになって!/、る。
[0079] ここで、上記構成の改質装置における定常運転時の加熱ガス 040の流れや、水 02 1、原料 022、混合物 023及び改質ガス 037の流れなどについて説明する。図 1には 加熱ガス 040の流れを点線の矢印で示し、水 021、原料 022、混合物 023及び改質 ガス 037の流れを実線の矢印で示して!/、る。
[0080] まず、はじめに加熱ガス 040の流れについて主に説明する。
[0081] 図示しないパーナ用燃料供給装置及びパーナ用空気供給装置からパーナ 01に 供給されるパーナ用燃料 038及びパーナ用空気 039を、パーナ 01で燃焼させると、 高温(例えば 1000°C)の加熱ガス 040が発生する。このカロ熱ガス 040は、パーナ 01 が下方に向けられているため、はじめは下方へと流れるが、改質管 04の内円筒管 09 の下端が下端板 012で塞がれているため、その後は折り返して内円筒管 09の内面 に沿うようにして上方へと流れていく。このとき加熱ガス 040の熱力 S、改質管 04の内 側から内円筒管 09及び中間円筒管 011を介して改質触媒層 03に供給される。
[0082] その後、カロ熱ガス 040はカロ熱ガス折り返し部 017で折り返して、改質管 04の外側の 加熱ガス流路 018に流入し、加熱ガス流路 018を下方へと流通する。このときにもカロ 熱ガス 040の熱が、改質管 04の外側から外円筒管 010を介して改質触媒層 03に供 給される。即ち、改質管 04 (改質触媒層 03)の内側及び外側において、加熱ガス 04 0と、改質触媒層 03ゃ改質触媒層 03を流通する混合物 023との熱交換が行われる 。その結果、加熱ガス 040の温度は、加熱ガス流路 018から流出したとき、例えば 40 0°C程度まで低下する。
[0083] 加熱ガス流路 018から流出した加熱ガス 040は、第 1蒸発器 05と第 2蒸発器 06の 間の加熱ガス流路 024に流入し、加熱ガス流路 024を下方へと流通する。加熱ガス 流路 024を流通した加熱ガス 040は排気管 39へ排出されて、大気中に放出される。
[0084] 続いて、水 021、原料 022、混合物 023及び改質ガス 037の流れについて主に説 明する。
[0085] 水供給装置力も供給される水 021は、水供給管を介して第 1蒸発器 05の第 1流路 に流入する。第 1蒸発器 05の第 1流路へ流入した水 021は、第 1流路を上方へと流 通する。第 1流路が螺旋状である場合には水 021も、加熱ガス流路 024の外周側を 螺旋状に流動しながら上昇していく。このとき水 021は、加熱ガス流路 024を流通し ている加熱ガス 040によって加熱される。更に、 CO除去触媒層 08が配設された位 置では第 1蒸発器 05の第 1流路を流れる水 021によって、 CO除去触媒層 08へ流入 した改質ガス 037が保有する熱量(改質ガス 037の温度を所定の温度まで (例えば 1 50°Cから 80°Cまで)低下させるのに相当する熱量)と、 CO除去触媒層 08における 改質ガス 037の CO選択酸化反応(2CO + 0→2CO )によって発生する熱量とを吸 収 (抜熱)する。
[0086] このとき、第 1蒸発器 05の第 1流路を流通する水 021は、一部(例えば約半分)が気 化する。この水 021の気化温度は例えば 120°C程度である。 CO除去触媒層 08は、 この一部が気化した水 021によって冷却されるため、水 021の気化温度(例えば 120 °C程度)に維持される。
[0087] 一方、加熱ガス流路 024から流出したときの加熱ガス 040の温度は、カロ熱ガス 040 の熱を水 021に与えたことにより低下する。このとき、水 021の気化温度が例えば 12 0°C程度であり、且つ、液体の水 021が流入する第 1蒸発器 05の下端部は常温にな つていること力、ら、加熱ガス流路 024から流出したときの加熱ガス 040の温度は、例え ば 100°C程度の低い温度となる。
[0088] 第 1蒸発器 05の第 1流路を流通した水 021は、水蒸気(湿り蒸気)となって第 1流路 力、ら流出し、配管 027を下方へと流通する。この間に配管 027の途中の原料混合部 028では、原料供給装置から供給される原料 022が、水(水蒸気) 021に混合されて 混合物 023が生成される。このとき水蒸気は、配管 024内における流速が例えば 50 m/s程度の高流速になる。従って、この高流速のため、原料混合部 028で混合され た原料 022は、よく攪拌されて水(水蒸気) 021中に均一に分散される。このため、混 合物 023における水(水蒸気) 021と原料 022との比率 (S/C: Steam/Carbon)が 計画値から外れることなぐ安定した状態に保たれる。
[0089] ここで生成された混合物 023は第 2蒸発器 06の第 2流路に流入して、第 2流路を上 方へと流通する。このとき第 2流路が螺旋状である場合には混合物 023も、加熱ガス 流路 024の内周側で螺旋状に流動しながら上昇していく。
[0090] この第 2蒸発器 06の第 2流路を流れる混合物 023は、第 2蒸発器 06の外側の加熱 ガス流路 024を流通している加熱ガス 040との熱交換によって加熱される。また、低 温 COシフト触媒層 07が配設された位置では第 2蒸発器 06の第 2流路を流れる混合 物 023によって、低温 COシフト触媒層 07へ流入した改質ガス 037が保有する熱量( 改質ガス 037の温度を所定の温度まで(例えば 250°Cから 150°Cまで)低下させるの に相当する熱量)と、低温 COシフト触媒層 07における改質ガス 037の COシフト反応 (CO + H 0→H + CO )によって発生する熱量(改質ガス 037の温度を例えば 50°C 程度上昇させるのに相当する熱量)とを吸収(抜熱)する。
[0091] 更に、低温 COシフト触媒層 07よりも上方の位置では第 2蒸発器 06の第 2流路を流 れる混合物 023によって、第 2蒸発器 06の内側の改質ガス流路 029を流通している 改質ガス 037が保有する熱量(改質ガス 037の温度を所定の温度まで(例えば 550 °Cから 250°Cまで)低下させるのに相当する熱量)を吸収する。従って、混合物 023 は、第 2蒸発器 06の第 2流路を流通する間に加熱ガス 040の熱と、低温 COシフト触 媒層 07力、らの放熱と、改質ガス 037の熱とを禾 IJ用して、混合物 023中の水 021のうち の未気化分も気化し、また、混合物 023中の原料 022が灯油などの液体燃料である 場合には当該液体燃料も気化して、過熱蒸気(乾き蒸気)となる。第 2蒸発器 06の第 2流路から流出するときの混合物 023の温度は、例えば約 400°Cに達する。
[0092] 第 2蒸発器 06の第 2流路から流出した混合物 023は、改質触媒層 03へ流入して、 改質触媒層 03を上方へと流通する。そして、この間に前述の如く改質管 04の内側及 び外側(加熱ガス流路 018)を流れる加熱ガス 040の熱が改質触媒層 03に供給され ることにより、改質触媒層 03では、原料 022の水蒸気改質反応が生じて水素ガスを 含有する改質ガス 037 (水素リッチガス)が生成される。このとき、加熱ガス 040との熱 交換によって改質触媒層 03の上部では改質触媒の温度が例えば約 700°C程度に 到達し、水素を例えば 50%以上含む改質ガス 037が生成される。
[0093] 改質触媒層 03で生成された改質ガス 037は、改質触媒層 03の上端から流出する ヽこのときの改質触媒層 03出口における改質ガス 037の温度は例えば 750°Cとな る。改質触媒層 03から流出した改質ガス 037は、改質ガス折り返し部 014で折り返し て改質ガス流路 015を下方へと流れた後、改質ガス流路 029に流入する。改質ガス 037が改質ガス流路 015を流通するとき、改質ガス 037の熱が中間円筒管 011を介 して改質触媒層 03 (混合物 023)に伝達されるため、改質ガス流路 015から改質ガス 流路 029に流入する改質ガス 87の温度は例えば約 550°Cとなる。
[0094] 改質ガス流路 029へ流入した改質ガス 037は、改質ガス流路 029を下方へと流通 した後、低温 COシフト触媒層 07へ流入する。この改質ガス流路 029を流通する間に 改質ガス 037は、第 2蒸発器 06の第 2流路を流通する混合物 023と熱交換して冷却 されることにより、温度が例えば約 250°Cまで低下する。即ち、前述の如ぐ改質ガス 037の温度を所定の温度まで(例えば 550°Cから 250°Cまで)低下させるのに相当す る改質ガス 037の保有熱量力 第 2蒸発器 06の第 2流路を流通する混合物 023によ つて吸収される。
[0095] 低温 COシフト触媒層 07へ流入した改質ガス 037は、低温 COシフト触媒層 07を下 方へと流通する。この間に低温 COシフト触媒層 07では改質ガス 037の COシフト反 応(CO + H 0→CO +H )が生じるため、改質ガス 037中の CO濃度が低減する。こ の COシフト反応も発熱反応であるが、この反応熱は前述の如ぐ第 2蒸発器 06の第 2流路を流れる混合物 023によって吸収される。
[0096] また、低温 COシフト触媒層 07の周囲は第 2蒸発器 06に囲まれており、この第 2蒸 発器 06の温度は例えば約 150°Cである。従って、改質ガス 037は低温 COシフト触 媒層 07を流通する間にこの約 150°Cの第 2蒸発器 06によって冷却されることにより、 約 150°Cの温度まで低下する。即ち、前述の如ぐ低温 COシフト触媒層 07が設置さ れている位置では第 2蒸発器 06の第 2流路を流通する混合物 023によって、改質ガ ス 037の温度を所定の温度まで(例えば 250°Cから 150°Cまで)低下させるのに相当 する改質ガス 037の保有熱量が吸収される。また、この冷却効果により、改質ガス 03 7中の CO濃度は、その温度の平衡 CO濃度まで低下するため、改質ガス 037を冷却 せずに低温 COシフト触媒層 07を流通させたと仮定した場合に比べて、改質ガス 03 7中の CO濃度を低減することができる。
[0097] 低温 COシフト触媒層 07から流出した改質ガス 037は、配管 033を介して CO除去 触媒層 08に流入する。このとき配管 033の途中の空気混合部 034では、 CO選択酸 化用空気供給装置から CO選択酸化用空気供給管を介して供給される CO選択酸化 用空気 035が、配管 033を流通する改質ガス 037に混合される。従って、改質ガス 0 37は CO選択酸化用空気 035とともに CO除去触媒層 08へ流入し、 CO除去触媒層 08を下方へと流通する。この間に CO除去触媒層 08では改質ガス 037の CO選択酸 化反応が生じるため、改質ガス 037中の CO濃度が更に低減する。
[0098] この CO選択酸化反応も発熱反応であるが、前述の如ぐこの反応熱は第 1蒸発器 05の第 1流路を流通する水 021によって吸収される。このとき、 CO除去触媒層 08は 第 1蒸発器 05の周囲を囲むようにして設置されており、第 1蒸発器 05の第 1流路を流 通する水 021が気化しているため、この水 021の気化温度(例えば約 120°C)程度に 常に維持される。 CO除去触媒層 08から流出する改質ガス 037は、第 1蒸発器 05の 第 1流路を流通する水 021によって冷却されることにより、例えば約 80°Cまで温度が 低減される。即ち、前述の如ぐ CO除去触媒層 08が設置された位置では第 1蒸発 器 05の第 1流路を流通する水 021によって、改質ガス 037の温度を所定の温度まで (例えば 150°Cから 80°Cまで)低下させるのに相当する改質ガス 037の保有熱量が 吸収される。そして、 CO除去触媒層 08から流出する低 CO濃度の改質ガス 037は、 改質ガス供給管を介して燃料電池へ発電用の燃料として供給される。
[0099] 次に、改質装置を起動する際の加熱昇温運転について説明する。
[0100] 加熱昇温運転では、定常運転時と同様にパーナ用燃料供給装置及びパーナ用空 気供給装置から供給されるパーナ用燃料 038及びパーナ用空気 039をパーナ 01で 燃焼させることによって、加熱ガス 040を発生させる。但し、この昇温運転時には混合 物 023 (原料 022、水 021)の供給は行わない。
[0101] そして、加熱ガス 040を、定常運転時と同様に改質管 04の内円筒管 09の内周面 に沿って上方へと流通させ、且つ、加熱ガス折り返し部 017で折り返して改質管 04 の外側の加熱ガス流路 018を下方へと流通させた後、第 1蒸発器 05と第 2蒸発器 06 との間の加熱ガス流路 024を下方へと流通させる。その結果、この加熱ガス 040の熱 により、改質管 04及び改質触媒層 03、第 1蒸発器 05及び第 2蒸発器 06、低温 CO シフト触媒層 07及び CO除去触媒層 08が、順に加熱されて昇温する。
[0102] 即ち、改質管 04及び改質触媒層 03は加熱ガス 040が改質管 04の内側と外側を 流れるときに加熱昇温される。第 1蒸発器 05と第 2蒸発器 06は、これらの間の加熱ガ ス流路 024を加熱ガス 040が流れるときに加熱昇温される。低温 COシフト触媒層 07 は、第 2蒸発器 06の内側に設けられているため、第 2蒸発器 06を介して加熱昇温さ れ、 CO除去触媒層 08は、第 1蒸発器 05の外側に設けられているため、第 1蒸発器 0 5を介して加熱昇温される。
[0103] この加熱昇温運転が終了すると、混合物 023 (原料 022、水 021)の供給を開始し て、改質ガス 037の生成を開始する。なお、加熱昇温運転終了の判断は、例えばカロ 熱昇温運転の継続時間を測定して、所定時間が経過したか否かを判断することや、 何れかの触媒層の温度を計測して所定温度に達したか否かを判断することなどによ つて可能である。
[0104] <作用効果〉
本実施の形態例 1の改質装置によれば、円筒状を成し、水 021を流通させるための 第 1流路を有する第 1蒸発器 05と、円筒状を成し、混合物 023を流通させるための第 2流路を有する第 2蒸発器 06と、第 1流路の出口と第 2流路の入口とを繋ぐ配管 027 と、配管 027の途中に設けた原料混合部 028とを有し、第 1蒸発器 05と第 2蒸発器 0 6は第 1蒸発器 05を外側、第 2蒸発器 06を内側にして同心円状に配設し、第 1蒸発 器 05と第 2蒸発器 06との間の円筒状の隙間を、加熱ガス流路 024とし、第 1蒸発器 0 5では、第 1流路を流通する水 021が、改質触媒層 03を加熱後に加熱ガス流路 024 を流通する加熱ガス 040によって加熱されることにより、水蒸気(湿り蒸気)となり、原 料混合部 028では、第 1流路から流出して配管 027を流通する水蒸気に原料 022を 混合することにより、混合物 023を生成し、第 2蒸発器 06では、配管 027から第 2流 路に流入して第 2流路を流通する混合物 023が、改質触媒層 03を加熱後に加熱ガ ス流路 024を流通する加熱ガス 040によって加熱されることにより、過熱蒸気(乾き蒸 気)となり、この混合物 023の過熱蒸気を、改質触媒層 03に流通させる構成としたた め、第 1蒸発器 05と第 2蒸発器 06との間の加熱ガス流路 024を流通する加熱ガス 04 0によって、第 1蒸発器 05の第 1流路を流通する水 021と、第 2蒸発器 06の第 2流路 を流通する混合物 023とを効率的に加熱することができる。
[0105] しかも、第 1蒸発器 05の第 1流路から流出した水 021は、加熱ガス 040で加熱され て気化しているため、配管 027を流通するときの流速が未気化の場合に比べて高速 (例えば 50m/s程度)となる。従って、この高流速の水(水蒸気) 021により、配管 02 7途中の原料混合部 028で混合される原料 022を、よく攪拌して水 (水蒸気) 021中 に均一に分散させることができるため、水(水蒸気) 021と原料 022との均一な混合が 可能である。この場合、原料 022が灯油のような液体燃料であっても、また、原料 02 2の供給量が僅かであっても、水(水蒸気) 021と原料 022との均一な混合が可能で ある。
[0106] 更には、第 2蒸発器 06では原料 022と水(水蒸気) 021とを混合してなる混合物 02 3を加熱ガス 040で加熱して過熱蒸気とするため、混合物 023中の原料 022は混合 物 023中の水 021とともに気化されることなる。従って、原料 022が灯油などのカーボ ンの析出し易いものであっても、当該原料 022からカーボンが析出されるのを防止し て、改質触媒の劣化を防止することができる。このため、従来の如く原燃料気化器で 原料を気化させる場合に必要となる面倒な昇温温度の制御は不要である。
[0107] また、本実施の形態例 1の改質装置によれば、原料混合部 028は外側ノズル 030と 、この外側ノズル 030の内側に設けた内側ノズル 031とを有してなる 2重ノズル構造と し、第 1蒸発器 05の第 1流路から流出した水(水蒸気) 021は外側ノズル 030と内側ノ ズル 031との間を流通し、原料 022は内側ノズル 031を流通する構成としたこと、又 は、原料 022は外側ノズル 030と内側ノズル 031との間を流通し、第 1蒸発器 05の第 1流路から流出した水(水蒸気) 021は内側ノズル 031を流通する構成としたことを特 徴とするため、原料混合部 028では原料 022が、細かくミスト状になって水(水蒸気) 021に均一に混合される。このため、原料 022からのカーボンの析出をより確実に防 止して、より確実に改質触媒の劣化を防止することができる。
[0108] また、本実施の形態例 1の改質装置によれば、第 2蒸発器 06の内側に低温 COシ フト触媒層 07を配置して、改質触媒層 03から流出した改質ガス 037が、この低温 C Oシフト触媒層 07を流通し、このときに第 2蒸発器 06の第 2流路を流れる混合物 023 によって、低温 COシフト触媒層 07における改質ガス 037の COシフト反応による発 熱を吸収し且つ改質ガス 037を冷却する構成としたことを特徴とするため、低温 CO シフト触媒層 07の周囲を第 2蒸発器 06が囲んでおり、改質装置の定常運転時には 第 2蒸発器 06の第 2流路を混合物 023が流通しているため、低温 COシフト触媒層 0 7が第 2蒸発器 06の外側の加熱ガス流路 024を流通する加熱ガス 040と接触して昇 温されることはなく、しかも、第 2蒸発器 06の第 2流路を流通する混合物 023によって 、低温 COシフト触媒層 07での COシフト反応による発熱の吸収ゃ改質ガス 037の冷 却を確実に行うことができる。従って、従来の如く冷却不足によって低温 COシフト触 媒層 07から流出する改質ガス 037中の CO濃度が高くなるのを防止することができる 。このため、低温 COシフト触媒層 07から流出した改質ガス 037を更に CO除去触媒 層 08に流通させる場合でも、この CO除去触媒層 08への CO選択酸化用空気 035 の供給量を低減することができるため、改質効率を向上させることができ、温度制御 の難しレ、メタネーシヨン式の CO除去触媒を用いる必要もな!/、。
[0109] また、本実施の形態例 1の改質装置によれば、第 1蒸発器 05及び第 2蒸発器 06は 第 1流路及び第 2流路の入口が下、第 1流路及び第 2流路の出口が上となるように配 置し、第 1蒸発器 05では水 021が第 1流路を上方へと流通し、第 2蒸発器 06では混 合物 023が第 2流路を上方へと流通する構成であることを特徴とするため、第 1蒸発 器 05と第 2蒸発器 06との間の加熱ガス流路 024を下方へと流れる加熱ガス 040と、 第 1蒸発器 05の第 1流路を流れる水 021及び第 2蒸発器 06の第 2流路を流れる混 合物 023とが対向流となるため、これらのカロ熱ガス 040と水 021及び混合物 023との 熱交換を効率的に行うことができる。
[0110] 更には、第 1蒸発器 05の第 1流路を流れる水 021と、 CO除去触媒層 08を流れる 改質ガス 037とが対向流となっており、また、第 2蒸発器 06の第 2流路を流れる混合 物 023と低温 COシフト触媒層 07を流れる改質ガス 037とが対向流となっているため 、これらの間の熱交換も効率的に行うことができる。
[0111] また、本実施の形態例 1の改質装置によれば、改質触媒層 03を収容した改質管 0 4を、第 1蒸発器 05及び第 2蒸発器 06の上方に配置して、第 2蒸発器 06から流出し た混合物 023の過熱蒸気が、改質触媒層 03の下端から流入して改質触媒層 03を 上方へと流通する間に水蒸気改質されて改質ガス 037となり、この改質ガス 037が、 改質触媒層 03の上端から流出して下方へと流れ、低温 COシフト触媒層 07へ上端 から流入して低温 COシフト触媒層 07を下方へと流通する構成とし、且つ、パーナ 01 は改質管 04の上端側に下向きに配置したことを特徴とするため、改質管 04、第 1蒸 発器 05、第 2蒸発器 06及び低温 COシフト触媒層 07が、混合物 023と改質ガス 037 の流れ(混合物 023と改質ガス 037との熱交換)を考慮した合理的でコンパクトな配 置となっており、しかも、パーナ 01にトラブルが発生した際、従来の如く改質装置を ひっくり返すことなぐパーナ 01のみを装置から取り外してメンテナンスすることができ る。しかも、パーナ 01は従来の長尺なパーナに比べて、非常に短くすることができる ため、取り扱いが容易であり、現地での調整や交換作業なども人力によって十分に 可能である。
[0112] また、本実施の形態例 1の改質装置によれば、 CO除去触媒層 08を、第 1蒸発器 0 5の周囲を囲むようにして円筒状に設け、低温 COシフト触媒層 07から流出した改質 ガス 037が、 CO除去触媒層 08を流通し、このときに第 1蒸発器 06の第 1流路を流れ る水 021によって、 CO除去触媒層 08における改質ガス 037の CO選択酸化反応に よる発熱を吸収し且つ改質ガス 037を冷却する構成としたことを特徴とするため、カロ 熱ガス流路 024と CO除去触媒層 08との間に第 1蒸発器 05が介在しており、改質装 置の定常運転時には第 1蒸発器 05の第 1流路に水 021が流通しているため、 CO除 去触媒層 08が第 1蒸発器 06の内側の加熱ガス流路 024を流通する加熱ガス 040と 接触して昇温されることはなぐしかも、第 1蒸発器 05の第 1流路を流通する水 021に よって、 CO除去触媒層 08での CO選択酸化反応による発熱の吸収ゃ改質ガス 037 の冷却を確実に行うことができる。そして、 CO除去触媒層 08の CO除去触媒は水 02 1の気化温度程度に冷却されて、 CO除去能力が高いため、温度制御の難しいメタネ ーシヨン式の CO除去触媒を用いる必要もな!/、。
[0113] また、本実施の形態例 1の改質装置によれば、改質管 04の周囲を囲むように配設 した改質部円筒管 02を有し、改質管 04は同心円状に設けられた内側の内円筒管 0 9と、外側の外円筒管 010と、これらの内円筒管 09と外円筒管 010の間の中間円筒 管 011とを有して成る 3重管構造のものであって、パーナ 01の周囲を囲むように配設 されており、内円筒管 09の下端側は下端板 012で閉じられ、内円筒管 09と外円筒 管 010との間の上端側は上端板 013で閉じられ、且つ、この上端板 013と中間円筒 管 011の上端との間の隙間を、改質ガス折り返し部 014とし、中間円筒管 011と内円 筒管 09との間の円筒状の隙間を、改質ガス流路 015とし、改質触媒層 03は中間円 筒管 011と外円筒管 010との間に円筒状に設け、改質部円筒管 02は上端側が上端 板 016で閉じられ、この上端板 016と上端板 013との間の隙間を、加熱ガス折り返し 部 017とし、改質部円筒管 02と外円筒管 010との間の円筒状の隙間を、加熱ガス流 路 018とし、パーナ 01から下方へと排気された加熱ガス 040は、内円筒管 09の内周 面に沿って上方へ流れ、加熱ガス折り返し部 017で折り返して加熱ガス流路 018を 下方へと流れる間に改質触媒層 03を加熱した後、第 1蒸発器 05と第 2蒸発器 06との 間の加熱ガス流路 024へ流入する一方、改質触媒層 03の上端から流出した改質ガ ス 037は、改質ガス折り返し部 014で折り返して改質ガス流路 015を下方へと流れ、 低温 COシフト触媒層 07へ上端から流入する構成としたことを特徴とするため、加熱 ガス 040によって、円筒状の改質管 04 (改質触媒層 03)の内側と外側から、改質触 媒層 03を効率的に加熱することができる。しかも、改質管 04は従来のような多管式 のもではなく、単管式のものであり、複数の改質管を集約する配管やヘッダタンクな ども不要であることから、製造コストを低減することが可能である。
なお、図 1では COシフト触媒層として低温 COシフト触媒層 07のみを設けた力 こ れに限定するものではなぐ低温 COシフト触媒層 07の上方(即ち改質ガス流通方向 上流側)に高温 COシフト触媒層を設けてもよい。例えば内円筒管 09の下端(下端板 012)の位置を上方に移動させて、中間円筒管 011の内側や第 2蒸発器 06の内側 に高温 COシフト触媒層を設け、改質触媒層 03から流出した前記改質ガスが、高温 COシフト触媒層を流通した後、低温 COシフト触媒層 07を流通する構成としてもよい 。この場合、高温 COシフト触媒は作動温度が高くて耐熱性があり、しかも作動温度 が高いので反応速度が速ぐ低温 COシフト触媒よりも少量で COを除去できる。その 結果、高温 COシフト触媒層を通過後の改質ガス中の CO濃度は、例えば従来の 65 0°Cレベルの改質ガス中の CO濃度よりも低くなる。従って、この改質ガスが低温 CO シフト触媒層に流入しても、低温 COシフト触媒が COシフト反応の発熱で昇温されに くくなるため、低温 COシフト触媒の延命が可能となる。更には低温 COシフト触媒が 昇温されないと、低温 COシフト触媒層の出口温度も下がるため、平衡反応上、低温 COシフト触媒層から流出する改質ガス中の CO濃度も下がる。このため、低温 COシ フト触媒層から流出した改質ガスを更に CO除去触媒層に流通させる場合、 CO除去 触媒の負荷を低減することができる。
[0115] [実施の形態例 2]
図 5は本発明の実施の形態例 2に係る改質装置の縦断面図、図 6は図 5の D— D線 矢視の横断面図、図 7は図 5の E— E線矢視の横断面図、図 8は図 5の F— F線矢視 の横断面図、図 9は図 5の G— G線矢視の横断面図である。また、図 10は加熱ガスと プロセス水 (水)との熱交換器を示す図、図 11は前記改質装置に備えた温度制御系 のブロック図、図 12は第 2蒸発器と改質触媒層との間に掃除用配管と掃除用取り外 し部とを設けた場合の構成を示す縦断面図である。
[0116] <構成〉
図 5に示すように、本実施の形態例 2の改質装置は、上側にはパーナ 1、改質部円 筒管 10、改質触媒層 21を有する改質管 2、高温 COシフト触媒層 3などが配設される 一方、下側には第 1蒸発器 4、第 2蒸発器 5、 O吸着触媒層 6、低温 COシフト触媒層 7、 CO除去触媒層 8などが配設されており、これらの構成要素全体がセラミックフアイ バ製の断熱材 9で覆われた構成となって!/、る。
[0117] 図 5〜図 9に基づいて詳述すると、改質管 2は同心円状に設けられた内側の内円筒 管 11と、外側の外円筒管 12と、これらの内円筒管 11と外円筒管 12の間の中間円筒 管 13とを有して成る 3重管構造ものであり、各円筒管 11 , 12, 13がパーナ 1の周囲 を囲むようにして配設されている。即ち、本改質装置は複数の改質管を備えた多管 式のものではなぐ 1つの改質管 2だけを備えた単管式のものである。
[0118] 内円筒管 11の下端は、下端板としての円殻板 14で閉じられており、円殻板 14の上 には断熱材 15が設けられている。断熱材 15は円柱状に形成されたセラミックフアイ バ製のものである。円殻板 14は縦断面形状が下に凸の円弧状であり、熱応力的に 有利な形状となっている。内円筒管 11と外円筒管 12との間の上端側は円環状の上 端板 16 (第 1上端板)によって閉じられている。上端板 16と中間円筒管 13の上端と の間には隙間が確保されており、この隙間が改質ガス折り返し部 17となっている。上 端板 16も、縦断面形状が上に凸の円弧状であって熱応力的に有利な形状となって いる。
[0119] 中間円筒管 13と内円筒管 11との間には円筒状の隙間が確保されており、この隙 間が改質ガス流路 18となっている。改質ガス流路 18の幅は例えば 2mm程度である 。改質触媒層 21は中間円筒管 13と外円筒管 12との隙間に設けられた円筒状のもの である。中間円筒管 13及び外円筒管 12の長さは例えば 600mm程度であり、中間 円筒管 13と外円筒管 12の間隔は例えば 20mm程度である。図示例では中間円筒 管 13と、外円筒管 12と、これらの円筒管 13, 12の間の上端部と下端部に固定した 多孔板 (パンチングプレート) 19, 20とからなる空間に改質触媒を充填することによつ て、改質触媒層 21を構成している。改質装置の上部と下部の間には円板状の支持 板 22が設けられている。外円筒管 12と中間円筒管 13の間の下端側は、支持板 22 によって閉じられている。詳述すると、外円筒管 12の下端は支持板 22の上面側に固 定され、中間円筒管 13の下端は第 2蒸発器 5の上端に接続されており、第 2蒸発器 5 の側面は支持板 22の内周に固定されて!/、る。
[0120] 改質触媒層 21の下には、第 2蒸発器 5の流路 5aの出口 5a— 1の周囲を囲むように してヘッダータンク 27が設けられている。ヘッダータンク 27は流路出口 5a— 1の周囲 を囲む円筒管 27aと、第 2蒸発器 5 (円筒管 5B)の一部と、円筒管 27aと第 2蒸発器 5 (円筒管 5B)との間の上端を塞いだ円環状の上端板 27bと、円筒管 27aと第 2蒸発器 5 (円筒管 5B)との間の下端を塞いだ支持板 22の一部とからなる構成であり、側面の 円筒管 27aに噴出し穴 27aを有している。噴出し穴 27aは円筒管 27aの周方向に複 数形成されている。
[0121] 改質部円筒管 10は、改質管 2の外円筒管 12の周囲を囲むようにして外円筒管 12 と同心円状に配設されている。改質部円筒管 10の上端側は上端板 23 (第 2上端板) によって閉じられている。この上端板 23と上端板 16との間には隙間が確保されてお り、この隙間が加熱ガス折り返し部 24となっている。また、改質部円筒管 10と外円筒 管 12との間には円筒状の隙間が確保されており、この隙間が加熱ガス流路 25となつ ている。加熱ガス流路 25は上側の端部が入口 25a、下側の端部が出口 25bとなって いる。加熱ガス流路 25の幅は例えば 10mm程度である。改質部円筒管 10の下端は 支持板 22の上面側に固定されている。支持板 22には、改質部円筒管 10と外円筒管 12との間(即ち加熱ガス流路 25)に対応する位置において周方向に複数の流通穴 2 2aが形成されている。
[0122] そして、パーナ 1は、改質管 2の上端側(改質装置の上端部)に位置して下向きに 配設されており、改質部円筒管 10の上端板 23及び断熱材 9の上部 9aを貫通した状 態で上端板 23に固定されている。パーナ 1の下側は燃焼空間部 33となっており、バ ーナ 1の火炎 37は下方に向かって形成される。なお、図示例ではパーナ 1に備えた 円筒状のパーナ外筒管 34が下方へと延びており、このパーナ外筒管 34と改質管 2 の内円筒管 11との間の円筒状の隙間が、加熱ガス流路 35となっている。また、バー ナ外筒管 34の下端と断熱材 15との間の隙間力 加熱ガス折り返し部 36となっている 。パーナ 1の長さは、バーナ外筒管 34も含めて例えば 400mm程度である。
[0123] 第 1蒸発器 4は円筒状であり、水としてのプロセス水 85を流すための螺旋状の流路 4a (第 1流路)を有してレ、る。第 2蒸発器 5は第 1蒸発器 5よりも直径の小さな円筒状で あり、プロセス水(水蒸気) 85と原料 86との混合流体である混合物 89を流すための 螺旋状の流路 5a (第 2流路)を有している。そして、第 1蒸発器 4と第 2蒸発器 5は第 1 蒸発器 4を外側、第 2蒸発器 5を内側にして同心円状に配設されており、第 1蒸発器 4と第 2蒸発器 5との間に確保された円筒状の隙間力 S、加熱ガス流路 26となっている 。加熱ガス流路 26の幅は、狭い部分 (第 1蒸発器 4の波形管 4Aの凸部と第 2蒸発器 5の円筒管 5Bとの間の部分)で例えば 3mm程度である。なお、原料 86としては、例 えば都市ガス (メタンガス)や灯油などのカーボン系の燃料が用いられる。
[0124] 第 1蒸発器 4と第 2蒸発器 5の構成につ!/、て詳述すると、第 1蒸発器 4は波形管 (コ ルゲート管) 4Aの外周面側に円筒管 4Bを嵌合させて成る 2重管構造のものである。 第 2蒸発器 5も、波形管(コルゲート管) 5Aの外周面側に円筒管 5Bを嵌合させて成る 2重管構造のものである。
[0125] 円筒管 4B, 5Bは、その管面に凹凸のない単なる円筒状のものである。波形管 4A , 5Bは何れも、その管面に螺旋状の凹凸(波形)が形成されたものである。即ち波形 管 4Α, 5Αの凹凸は、波形管 4Α, 5Αの管面に沿って旋回しながら管軸方向に向か う螺旋状となっている。波形管 4Αの長さは例えば 600mm程度であり、波形管 5Bは 波形管 4Aよりも長い。このような波形管 4A, 5Aは例えば円筒管を、その両端側を押 圧支持しながら、その管軸回りに回転させる一方、球体の押圧ローラを、この回転し ている円筒管の外周面に押し付けながら、同円筒管の管軸方向に移動(送り運動)さ せてスピユング加工することにより、容易に作製することができる。波形管 4Aと円筒 管 4Bの嵌合は、例えば波形管 4Aの外周面に円筒管 4Bを焼き嵌めすることや、波 形管 4Aの外周面に板材を巻いて板材の巻回方向の端部同士を溶接して円筒管 B を形成することなどによって容易に行うことができる。波形管 5Aと円筒管 5Bの嵌合も 、この波形管 4Aと円筒管 4Bを嵌合する場合と同様の方法によって容易に行うことが できる。
[0126] そして、第 1蒸発器 4では、波形管 4Aと円筒管 4Bとを嵌合することよって波形管 4 A (螺旋状の凹凸)と円筒管 4Bとの間に形成される螺旋状の隙間が、前述の螺旋状 の流路 4aとなっている。同様に、第 2蒸発器 5でも、波形管 5Aと円筒管 5Bとを嵌合 することによって波形管 5A (螺旋状の凹凸)と円筒管 5Bとの間に形成される螺旋状 の隙間が、前述の螺旋状の流路 5aとなって!/、る。
[0127] 第 1蒸発器 4の流路 4aでは下側の端部が入口 4a— 1、上側の端部が出口 4a— 2と なっており、第 2蒸発器 5の流路 5aでは上側の端部が出口 5a— 1、下側の端部が入 口 5a— 2となって!/、る。流路 4aの入口 4a— 1にはプロセス水供給管 28の一端側が接 続されており、プロセス水供給管 28の他端側はチューブ 77の一端側に接続されて いる。チューブ 77の他端側は、他のプロセス水供給管 28を介して図示しないポンプ などのプロセス水供給装置に接続されている。なお、チューブ 77は必ずしも設ける必 要はなぐチューブ 77を設けない場合には、流路 4aの入口 4a— 1に接続されたプロ セス水供給管 28の他端側が、直接、前記プロセス水供給装置に接続される。
[0128] 第 1蒸発器 4 (CO除去触媒層 8)の外側には配管 29が配置されており、この配管 2 9の一端側と他端側は、それぞれ第 1蒸発器 4 (円筒管 4B)の上端部と第 2蒸発器 5 ( 円筒管 5B)の下端部とに接続されている。即ち、配管 29によって、第 1蒸発器 4の流 路 4aの出口 4a— 2と、第 2蒸発器 5の流路 5aの入口 5a— 2とを繋いでいる。配管 29 の途中には原料供給管 30の一端側が接続されており、この原料供給管 30と配管 29 との接続部が原料混合部 31となっている。なお、原料混合部 31の位置、即ち配管 2 9と原料供給管 30との接続位置は、図示例のような配管 29の下端部に限らず、配管 29上のどの位置でもよい。この原料混合部 31も、前述の図 4と同様の 2重ノズル構造 とすること力 S望ましい。原料供給管 30の他端側はポンプなどの原料供給装置に接続 されて!/、る。流路 5aの出口 5a— 1は前述のヘッダータンク 27の内部に通じて!/、る。
[0129] 第 1蒸発器 4と第 2蒸発器 5の間 (加熱ガス流路 26)の下端側は、円環状の下端板 3 2によって閉じられている。加熱ガス流路 26は上側の端部が入口 26a、下側の端部 が出口 26bとなっている。
[0130] 第 1蒸発器 4の円筒管 4Bの上端部 4B— 1は、内径が拡大されて改質部円筒管 10 の内径と同程度になっており、その上端が支持板 22の下面側に固定されている。従 つて、円筒管 4Bの上端部 4B— 1では、第 2蒸発器 5 (円筒管 5B)との間に加熱ガス 流路 26よりも大きな幅の空間部 38が形成されて!/、る。改質管 2側の加熱ガス流路 25 の出口 25bと、蒸発器 4, 5側の加熱ガス流路 26の入口 26aは、この空間部 38及び 支持板 22の流通穴 22aを介して連通されて!/、る。
[0131] 加熱ガス流路 26の出口 26bには排気管 39の一端側が接続されており、排気管 39 の他端側は断熱材 9の外側に配設された熱交換器 40の入口側に接続されて!/、る。 熱交換器 40の入口側にはパーナ用空気供給管 41の一端側も接続されており、バー ナ用空気供給管 41の他端側はポンプなどのパーナ用空気供給装置 82 (図 11参照 )に接続されている。一方、熱交換器 40の出口側には排気管 42の一端側とパーナ 用空気供給管 43の一端側とが接続され、排気管 42の他端側は大気開放され、バー ナ用空気供給管 43の他端側はパーナ 1に接続されている。即ち、熱交換器 40は加 熱ガス 88とバーナ用空気 84との熱交換をするためのものである。パーナ 1にはバー ナ用燃料供給管 44の一端側も接続されており、パーナ用燃料供給管 44の他端側 はポンプなどのパーナ用燃料供給装置 81 (図 1 1参照)に接続されている。
[0132] 改質装置の下端には基礎となる円板状の支持板 45を有しており、この下端板 45の 上面には第 2蒸発器 5の円筒管 5Bの下端が固定されている。また、下端板 45の上 面には細長い円筒管 46 (第 2円筒管)が立設されている。円筒管 46は改質管 2の内 円筒管 11の下端(円殻板 25)近傍まで延びており、上端が上端板 47で閉じられてい る。また、円筒管 46は第 2蒸発器 5 (波形管 5A、円筒管 5B)や改質管 2 (中間円筒管 13)の内側に位置し、これらと同心円状に配設されている。
[0133] 高温 COシフト触媒層 3は改質管 2の中間円筒管 13と円筒管 46との間に設けられ た円筒状のものである。即ち、高温 COシフト触媒層 3は改質触媒層 21の内側で且 つ内円筒管 11の円殻板 14よりも下方に配設されている。図示例では中間円筒管 13 と、円筒管 46と、これらの円筒管 13, 46の間の上端部と下端部に固定した多孔板( ノ ンチングプレート) 48, 49とからなる空間に高温 COシフト触媒を充填することによ つて、高温 COシフト触媒層 3を構成している。この高温 COシフト触媒の作動温度は 例えば 550〜400°Cの範囲である。
[0134] 第 2蒸発器 5の内側には円筒管 50 (第 1円筒管)が配設されている。円筒管 50は第 2蒸発器 5と円筒管 46との間に位置し、これらの第 2蒸発器 5 (波形管 5A、円筒管 5B )や円筒管 46などと同心円状に配設され、第 2蒸発器 5とほぼ同等の長さを有してい る。円筒管 50と円筒管 46の間の上端と下端は、それぞれ上端板 51と下端板 52とで 閉じられている。円筒管 50と第 2蒸発器 5 (波形管 5A)との間には円筒状の隙間が確 保されており、この隙間が改質ガス流路 53となっている。改質ガス流路 53の幅は、狭 い部分(第 2蒸発器 5の波形管 5Aの凸部と円筒管 50との間の部分)で例えば 2mm 程度である。また、円筒管 50には流通穴 54が形成されている。流通穴 54は上側の O吸着触媒層 6と下側の低温 COシフト触媒層 7と間の位置において円筒管 50の周 方向に複数形成されており、円筒管 50の外側の改質ガス流路 53と、低温 COシフト 触媒層 7の入口 73 (即ち低温 COシフト触媒層 7の上端側における円筒管 50と円筒 管 46の間の空間部)とを連通している。
[0135] 低温 COシフト触媒層 7は、円筒管 50と円筒管 46との間の下側部分に設けられた 円筒状のものである。低温 COシフト触媒層 7の下端位置は、第 2蒸発器 5の下端位 置にほぼ対応している。図示例では円筒管 50と、円筒管 46と、これらの円筒管 50, 46の間の下端部及び中間部に固定した多孔板(パンチングプレート) 55, 56とから なる空間に低温 COシフト触媒を充填することによって、低温 COシフト触媒層 7を構 成している。この低温 COシフト触媒の作動温度は例えば 150〜250°Cの範囲である
[0136] O吸着触媒層 6は、円筒管 50と円筒管 46との間の上側部分に設けられた円筒状 のものであり、低温 COシフト触媒層 7の上方に位置している。図示例では円筒管 50 と、円筒管 46と、これらの円筒管 50, 46の間の上端部及び中間部に固定した多孔 板 (パンチングプレート) 57, 58とからなる空間に酸化還元可能な O吸着触媒を充 填することによって、 O吸着触媒層 6を構成している。
[0137] また、低温 COシフト触媒層 7及び O吸着触媒層 6には、加熱ガス導入管 59が貫通 している。加熱ガス導入管 59の一端側は上方へと延びて、 O吸着触媒層 6の上端か ら突出している。加熱ガス導入管 59の一端(上端)と上端板 51との間には隙間が確 保されており、この隙間が加熱ガス折り返し部 108となっている。加熱ガス導入管 59 の他端側は、円筒管 50の下端板 52及び第 2蒸発器 5の円筒管 5Bを貫通して外部 へ取り出され、ポンプ 60の吐出側に接続されている。ポンプ 60の吸い込み側は、配 管 61を介して凝縮器 62の出口側に接続され、凝縮器 62の入口側は、配管 63を介 して排気管 39に接続されて!/、る。
[0138] CO除去触媒層 8は、第 1蒸発器 4の周囲を囲むようにして円筒状に設けられている 。図示例では第 1蒸発器 4 (円筒管 4B)の周囲を囲むようにして第 1蒸発器 4と同心円 状に配設された円筒管 64と、第 1蒸発器 4の円筒管 4Bと、これらの円筒管 64, 4Bの 間の上端側及び下端側に固定した多孔板 (パンチングプレート) 65, 66とからなる空 間に CO除去触媒 (PROX触媒)を充填することによって、 CO除去触媒層 8を構成し ている。なお、第 1蒸発器 4の円筒管 4Bと円筒管 64の間の上端及び下端は、それぞ れ上端板 67と下端板 68とで閉じられている。
[0139] 第 1蒸発器 4 (CO除去触媒層 8)の外側には配管 69が配置されており、この配管 6 9の一端側と他端側は、それぞれ下端板 52と円筒管 64の上端部とに接続されている 。即ち、低温 COシフト触媒層 7の出口 70 (低温 COシフト触媒層 7の下端側における 円筒管 50と円筒管 46の間の空間部)と、 CO除去触媒層 8の入口 71 (CO除去触媒 層 8の上端側における円筒管 64と円筒管 4Bの間の空間部)とが、配管 69によって繋 がれている。 CO除去触媒層 8の出口 72 (即ち CO除去触媒層 8の下端側における円 筒管 64と円筒管 4Bの間の空間部)には、改質ガス供給管 74の一端が接続され、改 質ガス供給管 74の他端側は図示しな!/、燃料電池に接続されて!/、る。
[0140] また、配管 69には CO選択酸化用空気供給管 98の一端側が接続されている。即ち 、配管 69と CO選択酸化用空気供給管 98との接続部力 S、空気混合部 99となってい る。なお、この空気混合部 99は配管 69の任意の位置に設けることができる。 CO選択 酸化用空気供給管 98の他端側は、図示しな!/、ポンプなどの CO選択酸化用空気供 給装置に接続されている。
[0141] 断熱材 9は円筒状のものであり、支持板 45上に載置され、上端が改質部円筒管 10 の上端板 23を覆う上部 9aによって閉じられている。断熱材 9は改質装置の構成要素 を全体的に断熱するものであり、改質装置の上側では改質部円筒管 10、改質管 2 ( 改質触媒層 21)及び高温 COシフト触媒層 3の周囲を囲み、改質装置の下側では C O除去触媒層 8、第 1蒸発器 4、第 2蒸発器 5、 O吸着触媒層 6及び低温 COシフト触 媒層 7の周囲を囲み、また、配管 29, 69も内部に収容している。
[0142] なお、断熱材 9の外径は上から下まで一定である一方、断熱材 9の内径は上側の 方が小さぐ下側の方が大きくなつている。これは、上側の改質部円筒管 10の外径に 比べて、下側の配管 29, 69を含めた外径の方が大きくなつているためである。換言 すれば、このような外径の違いにより、断熱材 9の外径を一定にしても、下側に比べて 高レ、断熱性が要求される上側の断熱材 9の厚み(例えば 70mm)を、下側の断熱材 9 の厚み(例えば 50mm)よりも厚くすること力 Sできる。
[0143] また、断熱材 9の上側では、断熱材 9の外周面にチューブ 77が、螺旋状に巻回さ れている。前述のとおり、チューブ 77の一端側は、断熱材 9の外に引き出されたプロ セス水供給管 28の他端側に接続され、チューブ 77の他端側は、他のプロセス水供 給管 28を介して図示しないプロセス水供給装置に接続されている。なお、チューブ 7 7は、必ずしも設ける必要はないが、更なる改質装置の効率向上を図る場合に有効 である。例えば改質部円筒管 10を包む断熱材 9の断熱性能が不足して、断熱材 9の 表面温度が例えば 50°C程度になる場合にはチューブ 77を設けることによって断熱 材 9からの放熱の回収を図ることが望ましい。
[0144] また、図 10に示すような加熱ガス 88とプロセス水 85との熱交換をするための熱交 換器 78を設けてもよい。熱交換器 78は断熱材 9の外側に配置し、プロセス水供給管 28と排気管 39の途中に設ける。
[0145] また、図 5に示すように、改質触媒層 21の出口 79 (即ち改質触媒層 21の上端側に おける外円筒管 12と中間円筒管 13の間の空間部)には第 1の改質ガス温度計 75が 設置され、低温 COシフト触媒層 7の入口 73には第 2の改質ガス温度計 76が設置さ れている。第 1の改質ガス温度計 75では改質触媒層 21から流出した改質ガスの温 度を計測し、第 2の改質ガス温度計 76では低温 COシフト触媒層 7へ流入する改質 ガスの温度を計測する。図 11に示すように、第 1の改質ガス温度計 75の温度計測信 号と第 2の改質ガス温度計 76の温度計測信号は、何れも温度制御装置 80に入力さ れる。
[0146] 温度制御装置 80では第 1の改質ガス温度計 75による改質触媒層出口 79の改質 ガス温度の計測値が、所定温度 (例えば 750°C)となるようにパーナ用燃料供給装置 81を制御して、パーナ用燃料供給装置 81からパーナ 1に供給されるパーナ用燃料 8 3の供給量を制御する。
[0147] 即ち、改質触媒層出口 79の改質ガス温度の計測値が所定温度よりも低い場合に は、パーナ 1へのバーナ用燃料供給量を増やしてパーナ 1の加熱ガス温度を上げる ことにより、改質触媒層出口 79の改質ガス温度(計測値)を所定温度にする。一方、 改質触媒層出口 79の改質ガス温度の計測値が所定温度よりも高い場合には、バー ナ 1へのパーナ用燃料供給量を減らしてパーナ 1の加熱ガス温度を下げることにより
、改質触媒層出口 79の改質ガス温度(計測値)を所定温度にする。なお、この場合 の温度制御装置 80によるパーナ用燃料供給装置 81の制御としては、例えばパーナ 用燃料供給装置 81における燃料流量調整弁の開度制御やポンプの出力(吐出量) 制御などがある。
[0148] また、温度制御装置 80では第 1の改質ガス温度計 76による低温 COシフト触媒層 入口 73の改質ガス温度の計測値力 所定温度(例えば 250°C)となるようにパーナ用 空気供給装置 82を制御して、パーナ用空気供給装置 82からパーナ 1に供給される パーナ用空気 84の供給量を制御する。
[0149] 即ち、低温 COシフト触媒層入口 73の改質ガス温度の計測値が所定温度よりも低 い場合には、パーナ 1へのパーナ用空気供給量を増やしてパーナ 1の加熱ガス流量 、即ち加熱ガスに含まれる空気の量 (希釈空気量)を増やすことにより、低温 COシフ ト触媒層入口 73の改質ガス温度(計測値)を所定温度にする。一方、低温 COシフト 触媒層入口 73の改質ガス温度の計測値が所定温度よりも高い場合には、パーナ 1 へのパーナ用空気供給量を減らしてパーナ 1の加熱ガス流量 (加熱ガス空気量)を 減らすことにより、低温 COシフト触媒層入口 73の改質ガス温度(計測値)を所定温 度にする。なお、この場合の温度制御装置 80によるパーナ用空気供給装置 82の制 御としては、例えばパーナ用空気供給装置 82における空気流量調整弁の開度制御 やポンプの出力(吐出量)制御などがある。加熱ガス流量 (加熱ガス空気量)によって 低温 COシフト触媒層入口 73の改質ガス温度を制御することができる原理につ!/、て は、後述する。
[0150] なお、第 2蒸発器 5の流路 5aの出口 5a— 1に混合物温度計 112を設け、温度制御 装置 80では混合物温度計 112による流路出口 5a— 1の混合物 89 (過熱蒸気)の温 度の計測値が、所定温度 (例えば 400°C)となるようにパーナ用燃料供給装置 81を 制御して、パーナ用燃料供給装置 81からパーナ 1に供給されるパーナ用燃料 83の 供給量を制御するようにしてもよい。即ち、流路出口 5a— 1の混合物温度の計測値 が所定温度よりも低い場合には、パーナ 1へのパーナ用空気供給量を増やしてバー ナ 1の加熱ガス流量、即ち加熱ガスに含まれる空気の量 (希釈空気量)を増やすこと により、流路出口 5a— 1の混合物温度(計測値)を所定温度にする。一方、流路出口 5a— 1の混合物温度の計測値が所定温度よりも高い場合には、パーナ 1へのパーナ 用空気供給量を減らしてパーナ 1の加熱ガス流量 (加熱ガス空気量)を減らすことに より、流路出口 5a— 1の混合物温度(計測値)を所定温度にするようにしてもよい。
[0151] また、図 12に示すように第 2蒸発器 5と改質触媒層 21との間には、掃除用配管 101 と掃除用取り外し部 102とを設けてもよい。掃除用配管 101は一端側と他端側が、第 2蒸発器 5の円筒管 5Aと改質管 2の外円筒管 12とにそれぞれ接続され、第 2蒸発器 5の流路 5aの出口 5a— 1と、改質触媒層 21の下側に形成された改質管 2の外円筒 管 12と中間円筒管 13との間の空間部 104 (即ち改質触媒層 21の入口 106)とを繋 いでいる。また、空間部 104には、外円筒管 12と中間円筒管 13との間に設けた円環 状の上端板 105を有している。上端板 105には、周方向に複数の噴出し穴 105aが 形成されている。即ち、この場合には上端板 105と、外円筒管 12の一部と、中間円 筒管 13の一部と、第 2蒸発器 5 (円筒管 5B)の一部と、支持板 22の一部とから、へッ ダータンク 27が構成されて!/、る。
[0152] そして、掃除用配管 101の途中には掃除用取り外し部 102が、掃除用配管 101に 対して着脱可能に取り付けられている。掃除用配管 101は断熱材 9を貫通しており、 掃除用取り外し部 102は断熱材 9の外側に位置している。図 12中に一点鎖線で示 すように掃除用取り外し部 102を取り外すと、掃除用配管 101の開口端である注入口 103が露出する。この注入口 103からは薬液 111が注入される。なお、掃除用取り外 し部 102は、掃除用配管 101に対して単に着脱可能に嵌合させことや、ボルトとナツ トなどの結合手段で着脱可能に結合することなど、適宜の着脱手段によって取り付け ること力 Sでさる。
[0153] ここで、上記構成の改質装置における定常運転時の加熱ガス 88の流れや、プロセ ス水 85、原料 86、混合物 89及び改質ガス 87の流れなどについて説明する。図 5に は加熱ガス 88の流れを点線の矢印で示し、プロセス水 85、原料 86、混合物 89及び 改質ガス 87の流れを実線の矢印で示している。
[0154] まず、はじめに加熱ガス 88の流れについて主に説明する。
[0155] パーナ用燃料供給装置及びパーナ用空気供給装置からパーナ 1に供給されるバ ーナ用燃料 83及びパーナ用空気 84を、パーナ 1で燃焼させると、高温 (例えば 100 0°C)の加熱ガス 88が発生する。この加熱ガス 88は、パーナ 1が下方に向けられてい るため、はじめは下方へと流れるが、改質管 2の内円筒管 11の下端が円殻板 14で 塞がれているため(図示例ではその前に断熱材 15で塞がれているため)、その後は 折り返して内円筒管 11の内面に沿うようにして上方へと流れていく(図示例では加熱 ガス流路 35を流通する)。このとき加熱ガス 88の熱力 改質管 2の内側から内円筒管 11及び中間円筒管 13を介して改質触媒層 21に供給される。
[0156] その後、加熱ガス 88は加熱ガス折り返し部 24で折り返して、改質管 2の外側の加 熱ガス流路 25に入口 25aから流入し、加熱ガス流路 25を下方へと流通して出口 25a 力も流出する。このときにも加熱ガス 88の熱力 改質管 2の外側から外円筒管 12を 介して改質触媒層 21に供給される。即ち、改質管 2 (改質触媒層 21)の内側及び外 側において、加熱ガス 88と、改質触媒層 21ゃ改質触媒層 21を流通する混合物 89と の熱交換が行われる。その結果、加熱ガス 88の温度は、加熱ガス流路 25から流出し たとき、例えば 400°C程度まで低下する。
[0157] このとき改質部円筒管 10の表面温度は加熱ガス流路 25を流通する加熱ガス 88と 接触するため、上部から下部にかけて例えば 800〜400°C程度の温度分布を示して おり、この改質部円筒管 10の表面からの放熱を低減するため、断熱材 9の改質部円 筒管 10を囲む部分の厚みは、前述の如く断熱材 9の第 1蒸発器 4などを囲む部分の 厚み(例えば 50mm)よりも、厚く(例えば 70mm)して!/、る。
[0158] 加熱ガス流路 25から流出した加熱ガス 88は、支持板 22の流通穴 22a及び空間部 38を介して、第 1蒸発器 4と第 2蒸発器 5の間の加熱ガス流路 26に入口 26aから流入 し、加熱ガス流路 26を下方へと流通する。このときの加熱ガス 88の流動状態は、第 1 蒸発器 4の波形管 4Aの凹凸(波形)で乱されて (攪拌されて)乱流状態となる。なお、 第 1蒸発器 4 (円筒管 4B)及び CO除去触媒層 8 (円筒管 64)の表面温度は例えば 1 50°C程度であるため、この第 1蒸発器 4及び CO除去触媒層 8の囲む部分の断熱材 9は、例えば 50mm程度の厚みでも十分に第 1蒸発器 4 (円筒管 4B)や CO除去触媒 層 8 (円筒管 64)の表面からの放熱を低減することができる。
[0159] 加熱ガス流路 26を流通した加熱ガス 88は出口 26bから流出し、排気管 39を介して 熱交換器 40へ流入する。熱交換器 40では、当該加熱ガス 88と、パーナ用空気供給 装置 82 (図 11参照)からパーナ用空気供給管 41を介して熱交換器 40に供給される バーナ用空気 84との熱交換が行われる。この熱交換後の加熱ガス 88は例えば 50°C 程度まで温度が低下する。即ち、ここでは加熱ガス 88の熱がバーナ用空気 84によつ て回収される。熱交換器 40で熱回収された加熱ガス 88は、排気管 42を介して大気 中に放出され、熱交換器 40で熱回収したパーナ用空気 88は、パーナ用空気供給 管 43を介してパーナ 1に供給される。
[0160] 続いて、プロセス水 85、原料 86、混合物 89及び改質ガス 87の流れについて主に 説明する。
[0161] プロセス水供給装置から供給されるプロセス水 85は、チューブ 77を設けた場合に はチューブ 77及びプロセス水供給管 39を介して第 1蒸発器 4の流路 4aに入口 4a— 1から流入し、チューブ 77を設けな!/、場合には直接プロセス水供給管 39を介して前 記流路 4aに入口 4a— 1から流入する。チューブ 77を設けた場合には、第 1蒸発器 4 の流路 4aへ流入する前にチューブ 77を流通するプロセス水 85により、断熱材 9の内 側から断熱材 9を介してチューブ 77に伝わる加熱ガス 88の熱を吸収する。
[0162] また、熱交換器 78を設けた場合には、この熱交換器 78において、第 1蒸発器 4と第 2蒸発器 5の間の加熱ガス流路 26から流出した加熱ガス 88と、第 1蒸発器 4の流路 4 aへ流入する前のプロセス水 85との熱交換が行われる。即ち、ここでは加熱ガス 88の 熱がプロセス水 85によって回収される。熱交換器 78で熱回収された加熱ガス 88は、 更に熱交換器 40で熱回収されて力も排気管 42を介して大気中に放出するようにし てもよぐ熱交換器 40を設けない場合には直接排気管 42を介して大気中に放出す るようにしてもよい。熱交換器 78で熱回収したプロセス水 85は第 1蒸発器 4の流路 4a に入口 4a— 1から流入する。
[0163] チューブ 77や熱交換器 78を介して又はこれらを介さずに第 1蒸発器 4の流路 4aへ 流入したプロセス水 85は、流路 4aを上方へと流通する。流路 4aは螺旋状であるため 、プロセス水 85も、加熱ガス流路 26の外周側を螺旋状に流動しながら上昇していく。 このときプロセス水 85は、加熱ガス流路 26を流通している加熱ガス 88によって加熱 される。更に、 CO除去触媒層 8が配設された位置では第 1蒸発器 4の流路 4aを流れ るプロセス水 85によって、 CO除去触媒層 8へ流入した改質ガス 87が保有する熱量( 改質ガス 87の温度を所定の温度まで(例えば 150°Cから 80°Cまで)低下させるのに 相当する熱量)と、 CO除去触媒層 8における改質ガス 87の CO選択酸化反応(2CO + 0→2CO )によって発生する熱量とを吸収(抜熱)する。
[0164] このとき、第 1蒸発器 4の流路 4aを流通するプロセス水 85は、気化して水蒸気(湿り 蒸気)となる。このプロセス水 12の気化温度は例えば 120°C程度である。 CO除去触 媒層 8は、プロセス水 85の気化熱によって冷却されるため、プロセス水 85の気化温 度(例えば 120°C程度)に維持される。なお、加熱ガス流路 26を流れているときの加 熱ガス 88の流動状態は波形管 4Aの凹凸(波形)によって乱流状態となっているため 、加熱ガス 88や CO除去触媒層 8の熱が効率的にプロセス水 85に伝達される。 [0165] 一方、加熱ガス流路 26から流出したときの加熱ガス 88の温度は、加熱ガス 88の熱 をプロセス水 85に与えたことにより低下する。このとき、プロセス水 85の気化温度が 例えば 120°C程度であり、且つ、液体のプロセス水 85が流入する第 1蒸発器 4の下 端部は常温になってレ、ることから、加熱ガス流路 26から流出したときの加熱ガス 88の 温度は、例えば 100°C程度の低い温度となる。なお、前述の如ぐこの 100°C程度の 熱量を保有する加熱ガス 88と、バーナ用空気 84やプロセス水 85との熱交換を、熱 交換器 40や熱交換器 78で行うことにより、加熱ガス 88の保有熱量の更なる有効利 用を図ることあでさる。
[0166] 第 1蒸発器 4の流路 4aを流通したプロセス水 85は、一部が気化した状態で出口 4a
2から流出し、配管 29を下方へと流通する。この間に配管 29の途中の原料混合部 31では、原料供給装置から供給される原料 86が、プロセス水(水蒸気) 85に混合さ れて混合物 89が生成される。このときプロセス水 85は、気化(蒸発)しているため、配 管 29内における流速が例えば 50m/s程度の高流速になる。従って、この高流速の プロセス水(水蒸気) 85のため、原料混合部 31で混合された原料 86は、よく攪拌さ れてプロセス水(水蒸気) 86中に均一に分散される。このため、混合物 89におけるプ 口セス水(水蒸気) 86と原料 89との比率 (S/C: Steam/Carbon)が計画値から外れ ることなぐ安定した状態に保たれる。
[0167] ここで生成された混合物 89は第 2蒸発器 5の流路 5aに入口 5a— 2から流入して、 流路 5aを上方へと流通する。このとき混合物 89は、流路 5aが螺旋状であるため、加 熱ガス流路 26の内周側で螺旋状に流動しながら上昇していく。
[0168] この第 2蒸発器 5の流路 5aを流れる混合物 89は、第 2蒸発器 5の外側の加熱ガス 流路 26を流通している加熱ガス 88との熱交換によって加熱される。また、低温 COシ フト触媒層 7が配設された位置では第 2蒸発器 5の流路 5aを流れる混合物 89によつ て、低温 COシフト触媒層 7へ流入した改質ガス 87が保有する熱量(改質ガス 87の 温度を所定の温度まで(例えば 250°Cから 150°Cまで)低下させるのに相当する熱量 )と、低温 COシフト触媒層 7における改質ガス 87の COシフト反応(CO + H 0→H + CO )によって発生する熱量(改質ガス 87の温度を例えば 50°C程度上昇させるの に相当する熱量)とを吸収(抜熱)する。 [0169] 更に、低温 COシフト触媒層 7よりも上方の位置では第 2蒸発器 5の流路 5aを流れる 混合物 89によって、第 2蒸発器 5の内側の改質ガス流路 53を流通している改質ガス 87が保有する熱量(改質ガス 87の温度を所定の温度まで(例えば 550°Cから 250°C まで)低下させるのに相当する熱量)を吸収する。従って、混合物 89は、第 2蒸発器 5 の流路 5aを流通する間に加熱ガス 88の熱と、低温 COシフト触媒層 7 (円筒管 50)か らの放熱と、改質ガス 87の熱とを利用して、混合物 89中のプロセス水 85のうちの未 気化分も気化し、また、混合物 89中の原料 86が灯油などの液体燃料である場合に は当該液体燃料も気化して、過熱蒸気(乾き蒸気)となる。第 2蒸発器 5の流路 5a (出 口 5a— 1)から流出するときの混合物 89 (過熱蒸気)の温度は、例えば約 400°Cに達 する。
[0170] そして、このときに混合物 89中の原料 86は混合物 89中のプロセス水 85とともに加 熱され、プロセス水 85の気化温度が高々 100〜150°C程度であるため、当該原料 8 6が灯油などのカーボンの析出し易いものであっても、当該原料 86からカーボンが析 出することはない。
[0171] 第 2蒸発器 5の流路 5aから流出した混合物 89は、ヘッダータンク 27へ流入してへ ッダータンク 27内を周方向に流動し、ヘッダータンク 27の側面(円筒管 27a)の複数 の噴出し穴 27aのからそれぞれから噴出して、改質触媒層 21に下から流入する。
[0172] なお、図 12に示すように第 2蒸発器 5と改質管 2 (改質触媒層 21)との間に掃除用 配管 101と掃除用取り外し部 102とを設けた場合には、第 2蒸発器 5の流路 5aから流 出した混合物 89は、掃除用配管 101及び掃除用取り外し部 102を介してヘッダータ ンク 27へ流入してヘッダータンク 27内を周方向に流動し、ヘッダータンク 27の上面( 上端板 105)の複数の噴出し穴 105aのそれぞれから噴出して、改質触媒層 21に下 から流入する。何れにしても、ヘッダータンク 27によって混合物 89の過熱蒸気は、円 筒状の改質触媒層 21に対し、その周方向に均一に分散して供給されることになる。
[0173] 改質触媒層 21へ流入した混合物 89は、改質触媒層 21を上方へと流通する。そし て、この間に前述の如く改質管 2の内側 (加熱ガス流路 35)及び外側 (加熱ガス流路 25)を流れる加熱ガス 88の熱が改質触媒層 21に供給されることにより、改質触媒層 21では、原料 86の水蒸気改質反応が生じて水素ガスを含有する改質ガス 87 (水素 リッチガス)が生成される。このとき、加熱ガス 88との熱交換によって改質触媒層 21の 上部では改質触媒の温度が例えば約 700°C程度に到達し、水素を 50%以上含む 改質ガス 87が生成される。
[0174] 改質触媒層 21で生成された改質ガス 87は、改質触媒層 21を出口 79から流出する ヽこのときの出口 79における改質ガス 87の温度は例えば 750°Cとなる。このとき、 第 1の改質ガス温度計 75では、この改質触媒層 21の出口 79における改質ガス 87の 温度を計測し、温度制御装置 80では、この第 1の改質ガス温度計 75による改質ガス 温度の計測値が、所定温度(例えば 750°C)となるようにパーナ 1へのパーナ用燃料 83の供給量を制御する。
[0175] 改質触媒層 21から流出した改質ガス 87は、改質ガス折り返し部 17で折り返して改 質ガス流路 18を下方へと流れた後、高温 COシフト触媒層 3に流入する。改質ガス 8 7が改質ガス流路 18を流通するとき、改質ガス 87の熱が中間円筒管 13を介して改 質触媒層 21 (混合物 89)に伝達されるため、改質触媒層 21の軸方向の中ほどに改 質ガス 87が到達するころには、改質ガス 87の温度が例えば約 550°Cとなる。従って 、改質ガス流路 18から流出したときの改質ガス 87の温度は例えば約 550°Cとなり、こ の改質ガス 87が、高温 COシフト触媒層 3へ流入する。
[0176] 高温 COシフト触媒層 3では改質ガス 87が下方へ流通する。この間に高温 COシフ ト触媒層 3では改質ガス 87の COシフト反応(CO + H 0→CO +H )が生じるため、 改質ガス 87中の CO濃度が例えば 13%から 6%程度まで低減する。なお、この COシ フト反応は発熱反応である力 この反応熱は高温 COシフト触媒層 3の外側に隣接す る改質触媒層 21に中間円筒管 13を介して伝達される。従って、高温 COシフト触媒 層 3から流出した改質ガス 87の温度は例えば約 550°Cであり、この改質ガス 87が第 2蒸発器 5と円筒管 5の間の改質ガス流路 53へ流入する。
[0177] 改質ガス流路 53へ流入した改質ガス 87は、改質ガス流路 53を下方へと流通した 後、円筒管 50の流通穴 54から円筒管 50と円筒管 46との間へ流入する。この改質ガ ス流路 53を流通する間に改質ガス 87は、第 2蒸発器 5の流路 5aを流通する混合物 8 9と熱交換して冷却されることにより、温度が例えば約 250°Cまで低下する。即ち、前 述の如ぐ改質ガス 87の温度を所定の温度まで(例えば 550°Cから 250°Cまで)低下 させるのに相当する改質ガス 87の保有熱量力 第 2蒸発器 5の流路 5aを流通する混 合物 89によって吸収される。
[0178] 円筒管 50と円筒管 46との間へ流入した例えば 250°Cの改質ガス 87は、低温 CO シフト触媒層 7に上の入口 73から流入する。このとき、第 2の改質ガス温度計 76では 、低温 COシフト触媒層 7の入口 73における改質ガス 87の温度を計測し、温度制御 装置 80では、この第 2の改質ガス温度計 76による改質ガス温度の計測値力 S、所定温 度(例えば 250°C)となるようにパーナ 1へのパーナ用空気 84の供給量を制御する。 パーナ 1へのパーナ用空気 84の供給量を制御することによって低温 COシフト触媒 層 7の入口 73の改質ガス温度を制御することができる原理は、次のとおりである。
[0179] (1) 低温 COシフト触媒層 7の入口 73における改質ガス 87の温度は、高温 COシフ ト触媒層 3を通過後の約 550°Cの改質ガス 87と、第 2蒸発器 5の流路 5aを流れる混 合物 89との熱交換によって、 250°Cまで低下させる。
(2) 従って、このときの改質ガス 87と混合物 89との熱交換量を制御することができ れば、低温 COシフト触媒層 7の入口 73における改質ガス 87の温度を制御すること ができる。
(3) 第 2蒸発器 5の流路 5aを流れる混合物 89は、前述の高温 COシフト触媒層 3を 通過後の改質ガス 87と熱交換する前に、第 1蒸発器 4と第 2蒸発器 5の間の加熱ガス 流路 26を流れる加熱ガス 88と熱交換する。
(4) このときの混合物 89と加熱ガス 88との熱交換量が低下すれば、第 2蒸発器 5の 流路 5aを流れる混合物 89の温度が低下する。従って、このときには前述の改質ガス 87と混合物 89との熱交換量が増加する、即ち温度が低下した混合物 89によって高 温 COシフト触媒層 3を通過後の改質ガス 87がよく冷やされるため、低温 COシフト触 媒層 7の入口 73における改質ガス 87の温度は低下することになる。一方、前述の混 合物 89と加熱ガス 88との熱交換量が増加すれば、第 2蒸発器 5の流路 5aを流れる 混合物 89の温度が上昇する。従って、このときには前述の改質ガス 87と混合物 89と の熱交換量が減少する、即ち温度が上昇した混合物 89によって高温 COシフト触媒 層 3を通過後の改質ガス 87があまり冷やされないため、低温 COシフト触媒層 7の入 口 73における改質ガス 87の温度は上昇することになる。 (5) 従って、前述の混合物 89と加熱ガス 88との熱交換量を制御することができれ ば、前述の改質ガス 87と混合物 89との熱交換量を制御することができて、低温 CO シフト触媒層 7の入口 73における改質ガス 87の温度を制御することができることにな る。そして、前述の混合物 89と加熱ガス 88との熱交換量は、加熱ガス 88の流量によ つて左右される。従って、加熱ガス 88の流量、即ちパーナ 1へのバーナ用空気 84の 供給量 (希釈空気量)を制御すれば、前述の混合物 89と加熱ガス 88との熱交換量を 制御することができて、前述の改質ガス 87と混合物 89との熱交換量を制御すること ができるため、低温 COシフト触媒層 7の入口 73における改質ガス 87の温度を制御 すること力 Sでさることになる。
[0180] なお、このときにパーナ 1へのパーナ用空気 84の供給量 (希釈空気量)を制御する ことによって、第 2蒸発器 5の流路出口 5a— 1の混合物温度が所定温度(例えば 400 °C)となるようにしてもよい。
[0181] 低温 COシフト触媒層 7へ流入した所定温度(例えば 250°C)の改質ガス 87は、低 温 COシフト触媒層 7を下方へと流通する。この間に低温 COシフト触媒層 7では改質 ガス 87の COシフト反応(CO + H 0→CO +H )が生じるため、改質ガス 87中の C O濃度が例えば 6%から 0. 3%程度まで低減する。この COシフト反応も発熱反応で あるが、この反応熱は前述の如ぐ第 2蒸発器 5の流路 5aを流れる混合物 89によって 吸収される。
[0182] また、低温 COシフト触媒層 7 (円筒管 50)の周囲は第 2蒸発器 5に囲まれており、こ の第 2蒸発器 5の温度は例えば約 150°Cである。従って、改質ガス 87は低温 COシフ ト触媒層 7を流通する間にこの約 150°Cの第 2蒸発器 5によって放射冷却されること により、約 150°Cの温度まで低下する。即ち、前述の如ぐ低温 COシフト触媒層 7が 設置されている位置では第 2蒸発器 5の流路 5aを流通する混合物 89によって、改質 ガス 87の温度を所定の温度まで(例えば 250°Cから 150°Cまで)低下させるのに相 当する改質ガス 87の保有熱量が吸収される。また、この冷却効果により、改質ガス 8 7中の CO濃度は、その温度の平衡 CO温度まで低下するため、改質ガス 87を冷却 せずに低温 COシフト触媒層 7を流通させたと仮定した場合に比べて、改質ガス 87中 の CO濃度を低減することができる。 [0183] 低温 COシフト触媒層 7から流出した改質ガス 87は、配管 69を介して CO除去触媒 層 8に上から流入する。このとき配管 69の途中の空気混合部 99では、 CO選択酸化 用空気供給装置から CO選択酸化用空気供給管 98を介して供給される CO選択酸 化用空気 90が、配管 69を流通する改質ガス 87に混合される。従って、改質ガス 87 は CO選択酸化用空気 90とともに CO除去触媒層 8へ流入し、 CO除去触媒層 8を下 方へと流通する。この間に CO除去触媒層 8では改質ガス 87の CO選択酸化反応が 生じるため、改質ガス 87中の CO濃度が例えば 0. 3%から lOppm以下に低減する。
[0184] この CO選択酸化反応も発熱反応であるが、前述の如ぐこの反応熱は第 1蒸発器
4の流路 4aを流通するプロセス水 85によって吸収される。このとき、 CO除去触媒層 8 は第 1蒸発器 4の周囲を囲むようにして設置されており、第 1蒸発器 4の流路 4aを流 通するプロセス水 85が気化しているため、このプロセス水 85の気化温度(例えば約 1 20°C)程度に常に維持される。 CO除去触媒層 8から流出して改質ガス供給管 74へ 流入する改質ガス 87は、第 1蒸発器 4の流路 4aを流通するプロセス水 85によって冷 却されることにより、約 80°Cまで温度が低減される。即ち、前述の如ぐ CO除去触媒 層 8が設置された位置では第 1蒸発器 4の流路 4aを流通するプロセス水 85によって 、改質ガス 87の温度を所定の温度まで(例えば 150°Cから 80°Cまで)低下させるの に相当する改質ガス 87の保有熱量が吸収される。そして、 CO除去触媒層 8から流 出する低 CO濃度の改質ガス 87は、改質ガス供給管 74を介して燃料電池へ発電用 の燃料として供給される。
[0185] 次に、改質装置を起動する際の加熱昇温運転について説明する。
[0186] 加熱昇温運転では、定常運転時と同様にパーナ用燃料供給装置及びパーナ用空 気供給装置から供給されるパーナ用燃料 83及びパーナ用空気 84をパーナ 1で燃 焼させることによって、加熱ガス 88を発生させる。但し、この昇温運転時には混合物 8 9 (原料 86、プロセス水 85)の供給は行わない。
[0187] そして、加熱ガス 88を、定常運転時と同様に改質管 2の内円筒管 11の内周面に沿 つて (加熱ガス流路 35を)上方へと流通させ、且つ、加熱ガス折り返し部 17で折り返 して改質管 2の外側の加熱ガス流路 25を下方へと流通させた後、第 1蒸発器 4と第 2 蒸発器 5との間の加熱ガス流路 26を下方へと流通させる。その結果、この加熱ガス 8 8の熱により、改質管 2及び改質触媒層 21、高温 COシフト触媒層 3、第 1蒸発器 4及 び第 2蒸発器 5、低温 COシフト触媒層 7及び CO除去触媒層 8が、順に加熱されて昇 温する。
[0188] 即ち、改質管 2及び改質触媒層 21は加熱ガス 88が改質管 2の内側と外側を流れる ときに加熱昇温される。高温 COシフト触媒層 3は、改質触媒層 21の内周側に設けら れているため、改質触媒層 21を介して加熱昇温される。第 1蒸発器 4と第 2蒸発器 5 は、これらの間の加熱ガス流路 26を加熱ガス 88が流れるときに加熱昇温される。低 温 COシフト触媒層 7は、第 2蒸発器 5の内側に設けられているため、第 2蒸発器 5を 介して加熱昇温され、 CO除去触媒層 8は、第 1蒸発器 4の外側に設けられているた め、第 1蒸発器 4を介して加熱昇温される。
[0189] この加熱昇温運転が終了すると、混合物 89 (原料 86、プロセス水 85)の供給を開 始して、改質ガス 87の生成を開始する。なお、加熱昇温運転終了の判断は、例えば 加熱昇温運転の継続時間を測定して、所定時間が経過したか否かを判断することや 、何れかの触媒層の温度を計測して所定温度に達したか否力、を判断することなどに よって可能である。
[0190] 次に、改質装置を停止する際の水蒸気パージについて説明する。図 5には点線の 矢印で水蒸気パージ時の加熱ガス 88及び Oレスガス 107の流れを示している。
[0191] プロセス水供給装置からのプロセス水 85の供給と、原料供給装置からの混合物 86 の供給とを停止して改質ガス 87の生成を停止した際、改質装置内の各触媒層 3, 7, 8, 21には水蒸気が残留する。そして、この状態で改質装置が冷えてくると、各触媒 層 3, 7, 8, 21に残留している水蒸気が凝縮して各触媒層 3, 7, 8, 21の触媒を劣 化させてしまう。そこで、次のようにして各触媒層 3, 7, 8, 21に残留している水蒸気 をパージする。
[0192] 即ち、混合物 89 (プロセス水 85、原料 86)の供給を停止して改質ガス 87の生成を 停止した後、パーナ 1を再び点火して加熱ガス 88を発生させる。或いは、混合物 89 の供給は停止しても、パーナ 1は消火せずに引き続き加熱ガスを発生させておく。そ して、この加熱ガス 88を水蒸気パージ用のガスとして利用する。しかし、加熱ガス 88 には例えば 5%程度の濃度の Oが含まれており、水分も含まれている。 [0193] そこで、定常運転時や加熱昇温運転時と同様に流通した後に加熱ガス流路 26から 排気管 39へ排出される加熱ガス 88を、ポンプ 60の起動により、排気管 39から配管 6 3へ引き込む。そして、まず、凝縮器 62において当該加熱ガス 88中の水分を凝縮さ せて除去する。なお、凝縮器 62では、例えばファンによる送風によって加熱ガス 88 中の水分を凝縮させてもよぐ或いはプロセス水 85やパーナ用空気 84などを利用し て加熱ガス 88中の水分を凝縮させてもよい。
[0194] 水分が除去された加熱ガス 88は加熱ガス導入管 59へ流入し、この加熱ガス導入 管 59を上方へと流通することにより、 O吸着触媒層 6の上端側へと導かれる。そして 、加熱ガス導入管 59から流出した加熱ガス 88は、加熱ガス折り返し部 108で折り返 して O吸着触媒層 6を下方へと流れる。この間に O吸着触媒層 6では加熱ガス 88中 の Oが吸着されて Oレスガス 107が生成される。
[0195] O吸着触媒層 6から流出した Oレスガス 107の一部は、改質ガス 87の流れとは逆 に円筒管 50の流通穴 54から円筒管 50の外側(改質ガス流路 53)へ流出した後、高 温 COシフト触媒層 3と改質触媒層 21とを順に流通し、第 2蒸発器 5の流路 5a、配管 29及び原料供給管 30を介して図示しない Oレスガス排気管から排気される。その結 果、高温 COシフト触媒層 3に残留して!/、た水蒸気及び改質触媒層 21に残留して!/、 た水蒸気が、 Oレスガス 107によって高温 COシフト触媒層 3及び改質触媒層 21から パージされる。なお、 Oレスガス 107及び水蒸気は、上記の如く第 2蒸発器 5の流路 5aを経由して排出する場合に限らず、改質触媒層 21を通過後の適宜の位置から行 えばよい。例えば、図 12に一点鎖線で示すように掃除用配管 101に Oレスガス排気 管 109を接続し、水蒸気パージの際には Oレスガス排気管 109に設けたバルブ 110 を開けて、 Oレスガス 107及び水蒸気を Oレスガス排気管 109から排出するようにし てもよい。
[0196] また、 O吸着触媒層 6から流出した Oレスガス 107の残りは、改質ガス 87の流れと 同様に低温 COシフト触媒層 7と CO除去触媒層 8とを順に流通した後、改質ガス供 給管 74を介して図示しない Oレスガス排気管から排気される。その結果、低温 COシ フト触媒層 7に残留していた水蒸気及び CO除去触媒層 8に残留していた水蒸気力 Oレスガス 107によって低温 COシフト触媒層 7及び CO除去触媒層 8からパージさ れる。
[0197] 次に、図 12に示す構成を本改質装置に適用した場合の第 1蒸発器 4及び第 2蒸発 器 5の掃除手順について説明する。
[0198] プロセス水 85にはシリカなどの固形成分が含まれているため、改質装置を長期間 運転すると、その固形成分が第 1蒸発器 4及び第 2蒸発器 5の流路 4a, 5aに堆積し て流路 4a, 5aを閉塞させる可能性がある。そこで、かかる不具合を防止するためには 、図 12のような構成を改質装置に適用して、定期的に第 1蒸発器 4及び第 2蒸発器 5 の流路 4a, 5aを掃除する必要がある。この手順は次のとおりである。
[0199] まず、改質装置を停止させた状態で、図 12に一点鎖線で示すように掃除用配管 1 01から掃除用取り外し部 102を取り外して、注入口 103を露出させる。そして、前記 固形成分を除去するための薬液 111を、図示しない薬液供給装置から注入口 103 に注入する。その結果、薬液 111は、第 2蒸発器 5の流路 5aに出口 5a— 1から流入 し、混合物 89の流れとは逆に第 2蒸発器 5の流路 5a及び第 1蒸発器 4の流路 4aを流 通した後、プロセス水供給管 28を介して図示しない薬液排出管から排出される。
[0200] その結果、第 1蒸発器 4及び第 2蒸発器 5の流路 4a, 5aに堆積していた前記固形 成分が、薬液 111によって除去され、薬液 111とともに流路 4a, 5aから排出される。 なお、前記薬液排出管と掃除用配管 101とを繋いで薬液循環ラインを構成して、薬 液 11 1を循環させることにより、第 1蒸発器 4及び第 2蒸発器 5の流路 4a, 5aに複数 回流通させた後に排出するようにしてもよい。
[0201] <作用効果〉
本実施の形態例 2の改質装置によれば、円筒状を成し、プロセス水 85を流通させ るための流路 4aを有する第 1蒸発器 4と、円筒状を成し、混合物 89を流通させるため の流路 5aを有する第 2蒸発器 5と、流路 4aの出口 4a— 2と流路 5aの入口 5a— 2とを 繋ぐ配管 29と、配管 29の途中に設けた原料混合部 31とを有し、第 1蒸発器 4と第 2 蒸発器 5は第 1蒸発器 4を外側、第 2蒸発器 5を内側にして同心円状に配設し、第 1 蒸発器 4と第 2蒸発器 5との間の円筒状の隙間を、加熱ガス流路 26とし、第 1蒸発器 4では、流路 4aを流通するプロセス水 85が、改質触媒層 21を加熱後に加熱ガス流 路 26を流通する加熱ガス 88によって加熱されることにより、気化して水蒸気(湿り蒸 気)となり、原料混合部 31では、流路 4aから流出して配管 29を流通するプロセス水( 水蒸気) 21に原料 86を混合することにより、混合物 89を生成し、第 2蒸発器 5では、 配管 29から流路 5aに流入して流路 5aを流通する混合物 89が、改質触媒層 21を加 熱後に加熱ガス流路 29を流通する加熱ガス 88によって加熱されることにより、過熱 蒸気(乾き蒸気)となり、この混合物 89の過熱蒸気を、改質触媒層 21に流通させる構 成としたため、第 1蒸発器 4と第 2蒸発器 5との間の加熱ガス流路 26を流通する加熱 ガス 88によって、第 1蒸発器 4の流路 4aを流通するプロセス水 85と、第 2蒸発器 5の 流路 5aを流通する混合物 89とを効率的に加熱することができる。
[0202] しかも、第 1蒸発器 4の流路 4aから流出したプロセス水 85は、加熱ガス 88で加熱さ れて気化しているため、配管 29を流通するときの流速が未気化の場合に比べて高速 (例えば 50m/s程度)となる。従って、この高流速のプロセス水(水蒸気) 85により、 配管 29途中の原料混合部 31で混合される原料 86を、よく攪拌してプロセス水 (水蒸 気) 85中に均一に分散させることができるため、プロセス水(水蒸気) 85と原料 86との 均一な混合が可能である。この場合、原料 86が灯油のような液体燃料であっても、ま た、原料 86の供給量が僅かであっても、プロセス水(水蒸気) 85と原料 86との均一な 混合が可能である。
[0203] 更には、第 2蒸発器 5では原料 86とプロセス水(水蒸気) 85とを混合してなる混合 物 89を加熱ガス 88で加熱して過熱蒸気とするため、混合物 89中の原料 86は混合 物 89中のプロセス水 85とともに気化されることなる。従って、原料 86が灯油などの力 一ボンの析出し易いものであっても、当該原料 86からカーボンが析出されるのを防 止すること力 Sできる。このため、従来の如く原燃料気化器で原料を気化させる場合に 必要となる面倒な昇温温度の制御は不要である。
[0204] なお、原料混合部 31を 2重ノズル構造とした場合には、原料混合部 31では原料 86 力 細かくミスト状になってプロセス水(水蒸気) 85に均一に混合される。このため、原 料 86からのカーボンの析出をより確実に防止して、より確実に改質触媒の劣化を防 止すること力 Sでさる。
[0205] また、本実施の形態例 2の改質装置によれば、低温 COシフト触媒層 7を、第 2蒸発 器 5の内側に配設した円筒管 50と、この円筒管 50の内側に配設した円筒管 46との 間に円筒状に設け、円筒管 50と第 2蒸発器 5との間の円筒状の隙間を、改質ガス流 路 53とし、改質触媒層 21から流出した改質ガス 87が、改質ガス流路 53を流通する 間に第 2蒸発器 5の流路 5aを流れる混合物 89との熱交換によって温度が低下した後 、円筒管 50に設けた流通穴 54から円筒管 50と円筒管 46の間へ流入して、低温 CO シフト触媒層 7を流通し、このときに第 2蒸発器 5の流路 5aを流れる混合物 89によつ て、低温 COシフト触媒層 7における改質ガス 87の COシフト反応の発熱を吸収し且 っ改質ガス 87を冷却する構成としたこと、即ち、第 2蒸発器 5の内側に低温 COシフト 触媒層 7を配置して、改質触媒層 21から流出した改質ガス 87が、この低温 COシフト 触媒層 7を流通し、このときに第 2蒸発器 5の流路 5aを流れる混合物 89によって、低 温 COシフト触媒層 7における改質ガス 87の COシフト反応による発熱を吸収し且つ 改質ガス 87を冷却する構成としたことを特徴とするため、低温 COシフト触媒層 7の周 囲を第 2蒸発器 5が囲んでおり、改質装置の定常運転時には第 2蒸発器 5の流路 5a を混合物 89が流通しているため、低温 COシフト触媒層 7が第 2蒸発器 5の外側の加 熱ガス流路 26を流通する加熱ガス 88と接触して昇温されることはなぐしかも、第 2蒸 発器 5の流路 5aを流通する混合物 89によって、低温 COシフト触媒層 7での COシフ ト反応による発熱の吸収ゃ改質ガス 87の冷却を確実に行うことができる。従って、従 来の如く冷却不足によって低温 COシフト触媒層 7から流出する改質ガス 87中の CO 濃度が高くなるのを防止することができる。このため、低温 COシフト触媒層 7から流出 した改質ガス 87を更に CO除去触媒層 8に流通させる場合でも、この CO除去触媒層 8への CO選択酸化用空気 90の供給量を低減することができるため、改質効率を向 上させること力 Sでき、温度制御の難しいメタネーシヨン式の CO除去触媒を用いる必要 もない。
また、本実施の形態例 2の改質装置によれば、第 1蒸発器 4及び第 2蒸発器 5は流 路 4a, 5aの入口 4a— 1 , 5a— 2カ下、流路 4a, 5aの出口 4a— 2, 5a— 1カ上となる ように配置し、第 1蒸発器 4ではプロセス水 85が流路 4aを上方へと流通し、第 2蒸発 器 5では混合物 89が流路 5aを上方へと流通する構成であることを特徴とするため、 第 1蒸発器 4と第 2蒸発器 5との間の加熱ガス流路 26を下方へと流れる加熱ガス 88と 、第 1蒸発器 4の流路 4aを流れるプロセス水 85及び第 2蒸発器 5の流路 5aを流れる 混合物 89とが対向流となるため、これらの加熱ガス 88とプロセス水 85及び混合物 89 との熱交換を効率的に行うことができる。
[0207] 更には、第 1蒸発器 4の流路 4aを流れるプロセス水 85と、 CO除去触媒層 8を流れ る改質ガス 87とが対向流となっており、また、第 2蒸発器 5の流路 5aを流れる混合物 89と低温 COシフト触媒層 7を流れる改質ガス 87とが対向流となっているため、これら の間の熱交換も効率的に行うことができる。
[0208] また、本実施の形態例 2の改質装置によれば、改質触媒層 21を収容した改質管 2 を、第 1蒸発器 4及び第 2蒸発器 5の上方に配置して、第 2蒸発器 5から流出した混合 物 89の過熱蒸気が、改質触媒層 21の下端から流入して改質触媒層 21を上方へと 流通する間に水蒸気改質されて改質ガス 87となり、この改質ガス 87が、改質触媒層 21の上端から流出して下方へと流れ、低温 COシフト触媒層 7へ上端から流入して低 温 COシフト触媒層 7を下方へと流通する構成とし、且つ、パーナ 1は改質管 2の上端 側に下向きに配置したことを特徴とするため、改質管 2、第 1蒸発器 4、第 2蒸発器 5 及び低温 COシフト触媒層 7が、混合物 89と改質ガス 87の流れ(混合物 89と改質ガ ス 87との熱交換)を考慮した合理的でコンパクトな配置となっており、しかも、パーナ 1 にトラブルが発生した際、従来の如く改質装置をひっくり返すことなぐパーナ 1のみ を装置から取り外してメンテナンスすることができる。しかも、パーナ 1は従来の長尺な パーナに比べて、例えば 400mmと非常に短くすることができるため、取り扱いが容 易であり、現地での調整や交換作業なども人力によって十分に可能である。
[0209] また、本実施の形態例 2の改質装置によれば、 CO除去触媒層 8を、第 1蒸発器 4の 周囲を囲むようにして円筒状に設け、低温 COシフト触媒層 7から流出した改質ガス 8 7が、 CO除去触媒層 8を流通し、このときに第 1蒸発器 4の流路 4aを流れるプロセス 水 85によって、 CO除去触媒層 8における改質ガス 87の CO選択酸化反応による発 熱を吸収し且つ改質ガス 87を冷却する構成としたことにより、加熱ガス流路 26と CO 除去触媒層 8との間に第 1蒸発器 4が介在しており、改質装置の定常運転時には第 1 蒸発器 4の流路 4aにプロセス水 85が流通しているため、 CO除去触媒層 8が第 1蒸 発器 4の内側の加熱ガス流路 26を流通する加熱ガス 88と接触して昇温されることは なぐし力、も、第 1蒸発器 4の流路 4aを流通するプロセス水 85によって、 CO除去触媒 層 8での CO選択酸化反応による発熱の吸収ゃ改質ガス 87の冷却を確実に行うこと ができる。そして、 CO除去触媒層 8の CO除去触媒はプロセス水 85の気化温度(例 えば 120°C)程度に冷却されて、 CO除去能力が高いため、温度制御の難しいメタネ ーシヨン式の CO除去触媒を用いる必要もな!/、。
[0210] また、本実施の形態例 2の改質装置によれば、改質管 2の周囲を囲むように配設し た改質部円筒管 10とを有し、改質管 2は同心円状に設けられた内側の内円筒管 11 と、外側の外円筒管 12と、これらの内円筒管 11と外円筒管 12の間の中間円筒管 13 とを有して成る 3重管構造のものであって、パーナ 1の周囲を囲むように配設されてお り、内円筒管 11の下端側は円殻板 14で閉じられ、内円筒管 11と外円筒管 12との間 の上端側は上端板 16で閉じられ、且つ、この上端板 16と中間円筒管 13の上端との 間の隙間を、改質ガス折り返し部 17とし、中間円筒管 13と内円筒管 11との間の円筒 状の隙間を、改質ガス流路 18とし、改質触媒層 21は中間円筒管 13と外円筒管 12と の間に円筒状に設け、改質部円筒管 10は上端側が上端板 23で閉じられ、この上端 板 23と上端板 16との間の隙間を、加熱ガス折り返し部 24とし、改質部円筒管 10と外 円筒管 12との間の円筒状の隙間を、加熱ガス流路 25とし、パーナ 1から下方へと排 気された加熱ガス 88は、内円筒管 11の内周面に沿って上方へ流れ、加熱ガス折り 返し部 24で折り返して加熱ガス流路 25を下方へと流れる間に改質触媒層 21を加熱 した後、第 1蒸発器 4と第 2蒸発器 5との間の加熱ガス流路 26へ流入する一方、第 2 蒸発器 5の流路 5aから流出した混合物 89の過熱蒸気は、改質触媒層 21を上方へと 流れる間に水蒸気改質されて改質ガス 87となり、この改質ガス 87は改質触媒層 21 の上端から流出し、改質ガス折り返し部 17で折り返して改質ガス流路 18を下方へと 流通する構成としたことを特徴とするため、加熱ガス 88によって、円筒状の改質管 2 ( 改質触媒層 21)の内側と外側から、改質触媒層 21を効率的に加熱することができる 。しかも、改質管 2は従来のような多管式のもではなぐ単管式のものであり、複数の 改質管を集約する配管やヘッダタンクなども不要であることから、製造コストを低減す ることが可能である。
[0211] また、本実施の形態例 2の改質装置では、改質触媒層 21から流出した改質ガス 87 は、高温 COシフト触媒層 3を流通した後に改質ガス流路 53に流入する。即ち COシ フト触媒層として低温 COシフト触媒層 7だけでなぐ高温 COシフト触媒層 3も設けて おり、高温 COシフト触媒は作動温度(例えば例えば 550〜400°C)が高くて耐熱性 があり、しかも作動温度が高いので反応速度が速ぐ低温 COシフト触媒 7よりも少量 で COを除去できる。その結果、高温 COシフト触媒層 3を通過後の改質ガス 87中の CO濃度は、例えば従来 650°Cレベルの改質ガス中の CO濃度よりも低くなる。従つ て、この改質ガス 87が低温 COシフト触媒層 7に流入しても、低温 COシフト触媒が C Oシフト反応の発熱で昇温されにくくなるため、低温 COシフト触媒の延命が可能とな る。更には低温 COシフト触媒が昇温されないと、低温 COシフト触媒層 7の出口温度 も下がるため、平衡反応上、低温 COシフト触媒層 7から流出する改質ガス 87中の C O濃度も下がる。このため、 CO除去触媒の負荷を低減することができる。
[0212] また、本実施の形態例 2の改質装置によれば、流路 4aと流路 5aは、何れも螺旋状 に形成されているため、流路 4aではプロセス水 85が螺旋状に流動し、流路 5aでは 混合物 89が螺旋状に流動するため、第 1蒸発器 4におけるプロセス水 85と加熱ガス 88との熱交換と、第 2蒸発器 5における混合物 89と加熱ガス 88との熱交換とを確実 に行うこと力 Sできる。また、流路 5aが例えば単なる円筒状の流路であった場合には混 合物 89の流速が遅くなるため、混合物 89中のプロセス水(水蒸気) 85と原料 86とが 分離して、プロセス水(水蒸気) 85と原料 86との比率(S/C)が計画値から外れ、ま た、原料 86からカーボンが析出して改質触媒 21の寿命を低下させるおそれがある。 これに対して、螺旋状の流路 5aでは前述の単なる円筒状に流路などに比べて混合 物 89の流速が高くなるため、混合物 89中のプロセス水(水蒸気) 85と原料 86とが分 離するのを防止することができる。
[0213] しかも、本実施の形態例 2の改質装置によれば、第 1蒸発器 4は、管面に螺旋状の 凹凸が形成された波形管 4Aの外周面側に円筒管 4Bを嵌合させた 2重管構造のも のであって、波形管 4Aと円筒管 4Bとの間に形成された螺旋状の隙間が流路 4aとな つており、第 2蒸発器 5も、管面に螺旋状の凹凸が形成された波形管 5Aの外周面側 に円筒管 5Bを嵌合させた 2重管構造のものであって、波形管 5Aと円筒管 5Bとの間 に形成された螺旋状の隙間が流路 5aとなっているため、プロセス水 85と加熱ガス 88 は第 1蒸発器 4の波形管 4Aを介して面接触し、混合物 89と加熱ガス 88は第 2蒸発 器 5の円筒管 5Bを介して面接触すること、更には第 1蒸発器 4の波形管 4Aの凹凸に よって加熱ガス 88の流動状態が乱流状態となることにより、プロセス水 85と加熱ガス 88との熱交換や混合物 89と加熱ガス 88との熱交換を効率的に行うことができる。
[0214] また、本実施の形態例 2の改質装置によれば、図 12の構成を適用した場合、即ち、 第 2蒸発器 5の流路 5aの出口 5a— 1と改質触媒層 21の入口 106とを繋ぐ掃除用配 管 101と、掃除用配管 101の途中に着脱可能に取り付けた掃除用取り外し部 102と を有し、掃除用取り外し部 102を取り外して掃除用配管 101の注入口 103から薬液 1 11を注入したとき、この薬液 1 11が第 2蒸発器 5の流路 5a及び第 1蒸発器 4の流路 4 aを順に流通する構成とした場合には、改質装置の長期間の運転によってプロセス 水 85に含まれているシリカなどの固形成分が流路 4aゃ流路 5aに堆積しても、改質 装置の停止時に掃除用取り外し部 102を取り外して、薬液 111を掃除用配管 101の 注入口 103から注入して流路 5a及び流路 4aに順に流通させることより、前記固形成 分を流路 4aゃ流路 5aから除去することができるため、流路 4aゃ流路 5aが前記固形 成分によって閉塞されるのを防止することができる。
[0215] また、本実施の形態例 2の改質装置によれば、加熱ガス流路 26から流出した加熱 ガス 88と、パーナ 1に供給する前のパーナ用空気 84との熱交換をする熱交換器 40 を備えたことにより、加熱ガス流路 26から排出された加熱ガス 88の熱も無駄にせず に回収して、パーナ用空気 84の加熱のために有効活用することができるため、更な る効率の向上を図ることができる。
[0216] また、本実施の形態例 2の改質装置によれば、図 10のような加熱ガス流路 26から 流出した加熱ガス 88と、第 1蒸発器 4の流路 4aへ流入する前のプロセス水 85との熱 交換をする熱交換器 78を備えた場合には、加熱ガス流路 26から排出された加熱ガ ス 88の熱も無駄にせずに回収して、プロセス水 85の加熱のために有効活用すること ができるため、更なる効率の向上を図ることができる。
[0217] また、本実施の形態例 2の改質装置によれば、改質装置の停止時に加熱ガス 88を 、ポンプ 60で吸引し、凝縮器 62で水分を除去して、加熱ガス導入管 59で O吸着触 媒層 6の一端側(上端側)へと導入した後、折り返しての吸着触媒層 6を流通させるこ とにより、加熱ガス 88中の Oを除去して Oレスガスを生成し、この Oレスガスの一部 は、低温 COシフト触媒層 7と CO除去触媒層 8とを順に流通して、低温 COシフト触媒 層 7及び CO除去触媒層 8に残留する水蒸気を排出し、且つ、 Oレスガスの残りは、 円筒管 50に設けた流通穴 54から流出した後、高温 COシフト触媒層 3と改質触媒層 21とを順に流通して、高温 COシフト触媒層 3及び改質触媒層 21に残留する水蒸気 を排出する構成としたことにより、停止時に改質触媒層 21、高温 COシフト触媒層 3、 低温 COシフト触媒層 7及び CO除去触媒層 8に残留している水蒸気を、 Oレスガス によって排出することができるため、これらの各触媒層 21 , 3, 7, 8の触媒が水蒸気 の凝縮によって劣化するのを防止することができる。
[0218] また、本実施の形態例 2の改質装置によれば、高温 COシフト触媒層 3は、円殻板 1 4よりも下方で中間円筒管 13と、この中間円筒管 13の内側に設けた円筒管 46との間 に円筒状に設けたことを特徴とするため、改質装置の加熱昇温運転時に加熱ガスに よって、改質管 2 (改質触媒層 21)を加熱昇温するとき、中間円筒管 13の内側の高 温 COシフト触媒層 3も、改質管 2 (改質触媒層 21)を介して加熱昇温することができ
[0219] また、本実施の形態例 2の改質装置によれば、第 2蒸発器 5と改質触媒層 21との間 には、円筒状のヘッダータンク 27を設け、このヘッダータンク 27の側面(円筒管 27a) 又は上面(上端板 105)にはた噴出し穴 27c又は 91aが周方向に複数形成されてお り、第 2蒸発器 5の第 2流路 5aから流出した混合物 87の過熱蒸気が、ヘッダータンク 27に流入した後、噴出し穴 27a, 91aら噴出されて改質触媒層 21に流入する構成と したことにより、ヘッダータンク 27によって混合物 89の過熱蒸気を、円筒状の改質触 媒層 21に対し、その周方向に均一に分散して供給することができるため、改質効率 を向上させることができる。
[0220] また、本実施の形態例 2の改質装置によれば、改質部円筒管 10の周囲を囲むよう にして円筒状の断熱材 9を配設したため、改質部円筒管 10の表面からの放熱を、断 熱材 9によって低減することができる。なお、断熱材 9は例えば安価なセラミックフアイ バ製のものを使用して適宜の厚さ(例えば 70mm)に形成すればよい。
[0221] また、本実施の形態例 2の改質装置によれば、チューブ 77を、断熱材 9の外周面に 螺旋状に巻回し、断熱材 9の内側から断熱材 9を介して放出される熱を、流路 4aへ 流入する前にチューブ 77を流通するプロセス水 85によって吸収する構成としたこと により、断熱材 9を介して放出される加熱ガス 88の熱も無駄にせずに回収して、プロ セス水 85の加熱のために有効活用することができるため、更なる効率の向上を図る こと力 Sでさる。
[0222] また、本実施の形態例 2の改質装置の運転方法によれば、改質装置の起動する際 の加熱昇温運転では、混合物 89は供給しない状態で、パーナ 1の加熱ガス 88を、 改質管 2の内円筒管 11の内周面に沿って上方へと流通させ、且つ、加熱ガス折り返 し部 24で折り返して改質管 2の外側の加熱ガス流路 25を下方へと流通させた後、第 1蒸発器 4と第 2蒸発器 5との間の加熱ガス流路 26を下方へと流通させることによって 、この加熱ガス 88により、改質管 2及び改質触媒層 21、高温 COシフト触媒層 3、第 1 蒸発器 4及び第 2蒸発器 5、低温 COシフト触媒層 7及び CO除去触媒層 8を順に加 熱して、昇温するため、改質装置の各部を加熱ガス 88によって効率的に加熱昇温す ること力 Sでさる。
[0223] また、本実施の形態例 2の改質装置の運転方法によれば、改質装置の定常運転時 には、改質触媒層 21の出口 79の改質ガス温度を計測して、この改質ガス温度の計 測値が所定温度となるようにパーナ 1への燃料供給量を制御し、且つ、低温 COシフ ト触媒層 7の入口 73の改質ガス温度を計測して、この改質ガス温度の計測値が所定 温度となるようにパーナ 1への空気供給量を制御するため、改質触媒層 21の出口 79 の改質ガス温度と、低温 COシフト触媒層 7の入口 73の改質ガス温度とを、それぞれ 所定温度に確実に維持することができる。
[0224] また、本実施の形態例 2の改質装置の運転方法によれば、改質装置の定常運転時 には、改質触媒層 21の出口 79の改質ガス温度を計測して、この改質ガス温度の計 測値が所定温度となるようにパーナ 1への燃料供給量を制御し、且つ、第 2蒸発器 5 の流路 5aの出口 5a— 1の混合物温度を計測して、この混合物温度の計測値が所定 温度となるようにパーナ 1への空気供給量を制御する場合には、改質触媒層 21の出 口 79の改質ガス温度と、第 2蒸発器 5の流路 5aの出口 5a— 1の混合物温度とを、そ れぞれ所定温度に確実に維持することができる。
[0225] なお、上記のような改質ガスや混合物の温度制御は上記実施の形態例 1にお!/、て あ適用すること力でさる。
[0226] ところで、上記の如ぐ本実施の形態例 2の改質装置は優れた性能を発揮するもの であるが、更なる性能の向上を図るためには、次の点を改善することが望ましい。
[0227] (1) 即ち、本実施の形態例 2の改質装置では、図 5に示すように低温 COシフト触媒 層 7に対する冷却手段として、低温 COシフト触媒層 7の外周側に第 2蒸発器 5が設け られているだけである。従って、定常運転中の低温 COシフト触媒層 7に対する冷却( 即ち COシフト反応による発熱量及び低温 COシフト触媒層 7へ流入する改質ガス 87 の保有熱量の吸収 (抜熱))は、低温 COシフト触媒層 7 (円筒管 50)の外周面から第 2蒸発器 5 (波形管 5A)の内周面への放射伝熱が主体となる。このため、改質ガスの 生産量が多い場合には、低温 COシフト触媒層 7に対する冷却が不十分になるおそ れがある。低温 COシフト触媒層 7に対する冷却が不十分になると、低温 COシフト触 媒層 7の温度が高くなつて、低温 COシフト触媒層 7から流出する改質ガス 87の CO 濃度が増大し、その結果、後流側の CO除去触媒層 8にかかる負荷が大きくなつて、 改質効率が低下するおそそれがある。つまり、 CO除去触媒層 8へ流入する改質ガス 87中の CO濃度が高くなると、 CO選択酸化用空気 90の供給量も増やす必要があり 、その結果、改質ガス 87中の水素の消費量も増えてしまうため、改質効率が低下し てしまう。
(2) また、同時に低温 COシフト触媒層 7に対する冷却力 S、低温 COシフト触媒層 7 ( 円筒管 50)の外周面からの冷却のみであるため、低温 COシフト触媒層 7の内側部分 は冷却されに《て温度が高くなり、この内側部分を通過する改質ガス 87中の CO濃 度が高くなる傾向にある。
(3) 更に、起動時の加熱昇温運転においては、加熱ガス流路 26を流れる加熱ガス 88によって第 2蒸発器 5が加熱され、この第 2蒸発器 5からの放射伝熱によって低温 COシフト触媒層 7が昇温されるため、低温 COシフト触媒層 7の昇温速度が遅い。低 温 COシフト触媒層 7の昇温が不十分な状態でプロセス水 85の供給を開始して、この プロセス水 87の水蒸気が低温 COシフト触媒層 7へ流入してくると、当該水蒸気が低 温 COシフト触媒層 7の低温部で凝縮して、低温 COシフト触媒層 7の触媒を劣化させ る可能十生がある。 [0228] そこで、次に述べる本発明の実施の形態例 3の改質装置では、これらの点を改善し て更なる性能の向上が図られている。
[0229] [実施の形態例 3]
図 13は本発明の実施の形態例 3に係る改質装置の縦断面図、図 14は図 13の I I 線矢視の横断面図、図 15は図 13の J— J線矢視の横断面図である。なお、図 13〜図
15において、上記実施の形態例 2 (図 5〜図 9参照)と同様の部分については同一の 符号を付し、重複する詳細な説明は省略する。
[0230] <構成〉
図 13〜図 15に示すように、本実施の形態例 3の改質装置では、円筒管 46の内側 に細長い円筒管 201 (第 3円筒管)が配設されている。円筒管 201は支持板 45に立 設され、その上端が、円筒管 50の上端近傍まで延びており、上端板 205によって閉 じられている。一方、円筒管 46は、図 5とは異なり支持板 45に立設されてはおらず、 その下端が、支持板 45から離れて開放されている。また、円筒管 50には、図 5とは異 なり流通穴 54が形成されて!/、な!/、。
[0231] そして、円筒管 46と円筒管 201との間には円筒状の隙間が確保されており、この隙 間が改質ガス流路 202となっている。即ち、改質ガス流路 202は低温 COシフト触媒 層 7の内周側に形成されている。また、円筒管 50と円筒管 46の間の下端を塞いだ下 端板 52と、支持板 45との間にも隙間が確保されており、この隙間が改質ガス折り返し 部 203となっている。図 5の場合と同様に低温 COシフト触媒層 7の外周側では、第 2 蒸発器 4 (波形管 4A)と円筒管 50の間に円筒状の隙間が確保されており、この隙間 が改質ガス流路 53となって!/、る。
[0232] 外側の改質ガス流路 53と内側の改質ガス流路 202は、改質ガス折り返し部 203を 介して連通されている。また、円筒管 46には流通穴 204が形成されている。流通穴 2 04は上側の O吸着触媒層 6と下側の低温 COシフト触媒層 7と間の位置にお!/、て、 円筒管 46の周方向に複数形成されており、円筒管 46の内側の改質ガス流路 202と 、低温 COシフト触媒層 7の入口 73 (即ち低温 COシフト触媒層 7の上端側における円 筒管 50と円筒管 46の間の空間部)とを連通している。
[0233] 本実施の形態例 3の改質装置のその他の構成は、上記実施の形態 1の改質装置と 同様である。なお、本実施の形態例 3の改質装置でも、図 10に示すような加熱ガス 8 8とプロセス水 85の熱交換をするための熱交換器 78を設けてもよい。また、本実施の 形態 2の改質装置でも、図 11に示す温度制御系を備えており、この温度制御系によ つて、上記実施の形態例 2の改質装置の場合と同様にして改質触媒層 21の出口 79 の改質ガス温度と、低温 COシフト触媒層 7の入口 73の改質ガス温度又は第 2蒸発 器 5の流路 5aの出口 5a— 1の混合物温度とが、それぞれの所定温度(例えば 750°C と、 200°C又は 400°C)となるように制御される。更に、本実施の形態例 3の改質装置 においても、図 12の構成を適用することができる。
[0234] 本実施の形態例 3の改質装置においても、定常運転時における加熱ガス 88の流 れについては、上記実施の形態例 2と同様であるため、ここでの詳細な説明は省略 する。また、定常運転時のプロセス水 85、原料 86、混合物 89及び改質ガス 87の流 れについても、高温 COシフト触媒層 3から流出した例えば 550°Cの改質ガス 87が、 第 2蒸発器 5と円筒管 50との間の改質ガス流路 53へ流入するまでのことについては 、上記実施の形態例 2と同様であるため、ここでの詳細な説明は省略する。従って、 以下では、その後の改質ガス 87の流れについて主に説明する。
[0235] 改質ガス流路 53へ流入した改質ガス 87は、 O吸着触媒層 6 (円筒管 50)の外面に 沿って改質ガス流路 53を下方へと流れて低温 COシフト触媒層 7の上端位置まで達 する間に第 2蒸発器 5の流路 5aを流れる混合物 89との熱交換によって冷却されるこ とにより、温度が例えば 550°Cから 250°Cまで低下する。即ち、第 2蒸発器 5の流路 5 aを流通する混合物 89によって、改質ガス 87の温度を所定の温度まで(例えば 550 °Cから 250°Cまで)低下させるのに相当する改質ガス 87の保有熱量が吸収される。こ のことは上記実施の形態例 2と同様である。
[0236] そして本実施の形態例 3では、更に改質ガス 87は、低温 COシフト触媒層 7 (円筒 管 50)の外面に沿って改質ガス流路 53を下方へと流通し、低温 COシフト触媒層 7の 下端側の改質ガス折り返し部 203で折り返して低温 COシフト触媒層 7の内側の改質 ガス流路 202へ流入する。改質ガス流路 202へ流入した改質ガス 87は、低温 COシ フト触媒層 7 (円筒管 46)の内面に沿って改質ガス流路 202を上方へと流通した後、 円筒管 46の流通穴 204から円筒管 50と円筒管 46との間へ流入する。 [0237] このとき、低温 COシフト触媒層 7から第 2蒸発器 5 (混合物 89)への熱伝達としては 、放射伝熱だけでなぐ低温 COシフト触媒層 7と第 2蒸発器 5の間の改質ガス流路 5 3に改質ガス 87が流れるため、この改質ガス 87の流れによる対流熱伝達も加わること になる。このため、低温 COシフト触媒層 7に対する第 2蒸発器 5 (混合物 89)の冷却 能力が、上記実施の形態例 2の場合よりも高くなる。
[0238] また、改質ガス 87は、低温 COシフト触媒層 7 (円筒管 50)の外面に沿って改質ガス 流路 53を下方へと流通するときにも、第 2蒸発器 5の流路 5aを流れる混合物 89との 熱交換によって冷却されるため、温度が例えば 250°Cから 130°Cまで低下する。即ち 、低温 COシフト触媒層 7が設置された位置では第 2蒸発器 5の流路 5aを流通する混 合物 89によって、改質ガス 87の温度を所定の温度まで(例えば 250°Cから 130°Cま で)低下させるのに相当する改質ガス 87の保有熱量が吸収される。一方、改質ガス 8 7が低温 COシフト触媒層 7 (円筒管 46)の内面に沿って改質ガス流路 202を上方へ と流通するときには、改質ガス 87と低温 COシフト触媒層 7とが熱交換することにより、 改質ガス 87の温度力 S、例えば 130°Cから 200°Cまで上昇する。即ち、このときには改 質ガス 87により、低温 COシフト触媒層 7の内側部分が冷却されて当該内側部分の 温度が低下する。
[0239] 円筒管 50と円筒管 46との間へ流入した改質ガス 87は、上記実施の形態例 2と同 様に低温 COシフト触媒層 7に流入する。このとき図 11の温度制御装置 80では、第 2 の改質ガス温度計 76による低温 COシフト触媒層 7の入口 73における改質ガス 87の 温度の計測値が、所定温度(例えば 200°C)になるようにパーナ 1へのパーナ用空気 84の供給量を制御する。或いは、パーナ 1へのパーナ用空気 84の供給量 (希釈空 気量)を制御することによって、第 2蒸発器 5の流路出口 5a— 1の混合物温度が所定 温度(例えば 400°C)となるように制御する。
[0240] 低温 COシフト触媒層 7へ流入した改質ガス 87は、低温 COシフト触媒層 7を下方へ と流通する。この間に低温 COシフト触媒層 7では改質ガス 87の COシフト反応が生じ るため、改質ガス 87中の CO濃度が更に低減する。低温 COシフト触媒層 7から流出 したときの改質ガス 87は、前述の第 2蒸発器 5 (混合物 89)による冷却によって温度 が例えば 140°Cまで低下する。即ち、このときの低温 COシフト触媒層 7へ流入した改 質ガス 87が保有する熱量(改質ガス 87の温度を所定の温度まで (例えば 200°Cから 140°Cまで)低下させるのに相当する熱量)と、低温 COシフト触媒層 7における改質 ガス 87の COシフト反応によって発生する熱量とが、前述の放射伝熱及び対流熱伝 達によって、第 2蒸発器 5 (混合物 89)に吸収 (抜熱)される。
[0241] 低温 COシフト触媒層 7が設けられている位置では第 2蒸発器 5の温度力 プロセス 水 85の気化温度(例えば 120°C)程度であるため、低温 COシフト触媒層 7は、それ 以上には冷却されず、冷却され過ぎて低温 COシフト触媒の作動温度(例えば 150 〜250°C)の範囲を外れることはない。低温 COシフト触媒層 7から流出後の改質ガス 87の流れについては、上記実施の形態例 2と同様であるため、ここでの説明は省略 する。
[0242] そして、上記の如く改質ガス 87が低温 COシフト触媒層 7の外側の改質ガス流路 53 と内側の改質ガス流路 202とを流れる構成となっているため、改質装置を起動する際 の加熱昇温運転後に改質ガス 87の生成を開始するためにプロセス水 85の供給を開 始して、このプロセス水 85の水蒸気が流入してきても、当該水蒸気は先ずは改質ガ ス流路 53, 202において円筒管 50の外面及び円筒管 46の内面で凝縮し、低温 CO シフト触媒層 7では凝縮しない。し力、も、円筒管 50の外面と円筒管 46の内面で水蒸 気が凝縮すると、その凝縮潜熱が低温 COシフト触媒層 7に伝わるため、低温 COシ フト触媒層 7の温度が上昇する。このため、低温 COシフト触媒層 7に水蒸気が流入し てくるころには、当該水蒸気が低温 COシフト触媒層 7で凝縮することはない。従って 、水蒸気の凝縮により低温 COシフト触媒層 7の低温 COシフト触媒が劣化することは ない。
[0243] なお、加熱昇温運転における加熱ガス 88の流れや各触媒層 3, 7, 8, 21の加熱昇 温される順番などについては、本実施の形態例 3においても上記実施の形態 1と同 様であるため、ここでの詳細な説明は省略する。
[0244] また、改質装置を停止する際の水蒸気パージについても、上記実施の形態例 2と 同様であるため、ここでの詳細な説明は省略する。なお、上記実施の形態例 2 (図 5) では O吸着触媒層 6から流出した Oレスガス 107の一部力 円筒管 50の流通穴 54 力も円筒管 50の外側(改質ガス流路 53)へ流出するのに対して、本実施の形態例 3 (図 13)では〇2吸着触媒層 6から流出した〇2レスガス 107の一部力 円筒管 46の流 通穴 204から円筒管 46の内側(改質ガス流路 202)へ流出し、改質ガス折り返し部 2
03で折り返して改質ガス流路 53へ流入する。改質ガス流路 53へ流入後の Oレスガ ス 107の流れについては、上記実施の形態例 2と同様である。
[0245] また、図 12の構成の適用した場合の第 1蒸発器 4及び第 2蒸発器 5の掃除手順に ついても、上記実施の形態例 2と同様であるため、ここでの詳細な説明は省略する。
[0246] <作用効果〉
本実施の形態例 3の改質装置及びその運転方法でも上記実施の形態例 2と同様 の作用効果が得られ、そして更に本実施の形態例 3の改質装置によれば、次のよう な作用効果も得られる。
[0247] 即ち、本実施の形態例 3の改質装置によれば、低温 COシフト触媒層 7を、第 2蒸発 器 5の内側に配設した円筒管 50と、この円筒管 50の内側に配設した円筒管 46との 間に円筒状に設け、円筒管 50と第 2蒸発器 5との間の円筒状の隙間を、第 1の改質 ガス流路 53とし、円筒管 46と、円筒管 46の内側に配設した円筒管 201との間の円 筒状の隙間を、第 2の改質ガス流路 202とし、改質触媒層 21から流出した改質ガス 8 7が、低温 COシフト触媒層 7の一端側(上端側)から他端側(下端側)へ向かって第 1 の改質ガス流路 53を流通する間に第 2蒸発器 5の流路 5aを流れる混合物 89との熱 交換によって温度が低下し、低温 COシフト触媒層 7の他端側の改質ガス折り返し部 203で折り返して、低温 COシフト触媒層 7の他端側から一端側へ向かって第 2の改 質ガス流路 202を流通する間に低温 COシフト触媒層 7との熱交換によって温度が上 昇した後、円筒管 46に設けた流通穴 204から円筒管 50と円筒管 46の間へ流入して 、低温 COシフト触媒層 7を流通し、このときに第 2蒸発器 5の流路 5aを流れる混合物 89によって、低温 COシフト触媒層 7における改質ガス 87の COシフト反応による発 熱を吸収し且つ改質ガス 87を冷却する構成としたことにより、上記実施の形態例 2の 改質触媒層と同様の効果が得られることに加えて、低温 COシフト触媒層 7に対する 第 2蒸発器 5 (混合物 89)の冷却能力は、低温 COシフト触媒層 7から第 2蒸発器 5 ( 混合物 87)への熱伝達として放射伝熱だけでなぐ低温 COシフト触媒層 7と第 2蒸発 器 5の間の第 1の改質ガス流路 53に改質ガス 87が流れることによって、この改質ガス 87の流れによる対流熱伝達も加わることになるため、放射伝熱のみによる冷却の場 合に比べて高くなる。
[0248] 更には、改質ガス 87が低温 COシフト触媒層 7の外側の第 1の改質ガス流路 53と内 側の第 2改質ガス流路 202とを流れる構成となって!/、るため、加熱昇温運転後にプロ セス水 85の供給を開始して、このプロセス水 85の水蒸気が流入してきても、当該水 蒸気は先ずは第 1の改質ガス流路 53及び第 2の改質ガス流路 202において円筒管 50の外面及び円筒管 46の内面で凝縮し、低温 COシフト触媒層 7では凝縮しない。 し力、も、円筒管 50の外面と円筒管 46の内面で水蒸気が凝縮すると、その凝縮潜熱 が低温 COシフト触媒層 7に伝わるため、低温 COシフト触媒層 7の温度が上昇する。 このため、低温 COシフト触媒層 7に水蒸気が流入してくるころには、当該水蒸気が低 温 COシフト触媒層 7で凝縮することはなぐ水蒸気の凝縮による低温 COシフト触媒 の劣化を防止することができる。
[0249] また、第 2の改質ガス流路 202を流れる改質ガス 87によって、低温 COシフト触媒層 7の内側部分も冷却するため、この内側部分の温度が高くなるのを防止して、この内 側部分を通過する改質ガス 87中の CO濃度も低くすることができる。
[0250] なお、加熱昇温運転の際、加熱ガス 88による各部の加熱昇温に続いて、原料 86 は供給しない状態で、プロセス水 85を供給して第 1蒸発器 4の流路 4aと第 2蒸発器 5 の流路 5aとを順に流通させることにより、第 1蒸発器 4と第 2蒸発器 5との間の加熱ガ ス流路 26を流通する加熱ガス 88で加熱して水蒸気を発生させ、この水蒸気が、改質 触媒層 21を流通した後、第 1改質ガス流路 53及び第 2改質ガス流路 202を順に流 通するときに第 1円筒管 50の外面及び第 2円筒管 46の内面で凝縮することにより、 低温 COシフト触媒層 7を加熱して、昇温すれば、水蒸気の凝縮潜熱によって、低温 COシフト触媒層 7の昇温を、より確実に行うこと力 Sできる。
[0251] ところで、上記の如ぐ本実施の形態例 2, 3の改質装置は優れた性能を発揮するも のであるが、更なる性能の向上を図るためには、次の点を改善することが望ましい。
[0252] (1) 即ち、本実施の形態例 2, 3 (図 5,図 13)では高温 COシフト触媒層 3が改質管 2 (中円筒管 13)に直接接触する構成となっているため、改質装置の製作工程にお いては、高温 COシフト触媒層 3を低温 COシフト触媒層 7などと同時に製作すること ができず、先に改質管 2の内側に高温 COシフト触媒層 3を設けた後、別途、円筒管 46, 50を用いて O吸着触媒層 6や低温 COシフト触媒層 7を製作したものを、高温 C Oシフト触媒層 3の下側に取り付けという手順で製作する必要がある。このため、製作 工程が増加し、装置のコストアップに繋がる。
(2) また、加熱昇温運転において改質触媒層 21を、その外側の加熱ガス流路 25を 流れる加熱ガス 88によって加熱昇温する際、高温 COシフト触媒層 3が設置されてい る位置の改質触媒層 21の部分力 これよりも上部の改質触媒層 21の部分と比較し て、高温 COシフト触媒層 3の熱容量の影響で昇温されにくい。
[0253] そこで、次に述べる本発明の実施の形態例 4の改質装置では、これらの点を改善し て更なる性能の向上が図られている。
[0254] [実施の形態例 4]
図 16は本発明の実施の形態例 4に係る改質装置の縦断面図、図 17は図 16の K K線矢視の横断面図、図 18は図 16の L L線矢視の横断面図、図 19は図 16の M M線矢視の横断面図である。なお、図 16〜図 19において、上記実施の形態例 2 ( 図 5〜図 9参照)や上記実施の形態例 3図 13〜図 15)と同様の部分については同一 の符号を付し、重複する詳細な説明は省略する。
[0255] <構成〉
図 16〜図 19に示すように、本実施の形態例 4の改質装置では、円筒管 46の内側 に細長い円筒管 301 (第 3円筒管)が配設されている。円筒管 301は支持板 45に立 設され、その上端が、改質管 2の内円筒管 11の下端(円殻板 14)近傍まで延びてい る。また、本実施の形態例 4では円筒管 46, 50も、その上端が、改質管 2の内円筒管 11の下端(円殻板 14)近傍まで延びている。円筒管 50の上端及び円筒管 301の上 端は上端板 302によって閉じられている。
[0256] 一方、円筒管 46は、図 5とは異なり支持板 45に立設されてはおらず、その下端が、 支持板 45から離れて開放されている。また、円筒管 50には、図 5とは異なり流通穴 5 4が形成されていない。円筒管 46にも、図 13とは異なり流通穴 204が形成されてい ない。
[0257] そして、本実施の形態例 4では、円筒状の高温 COシフト触媒 3が、改質触媒層 21 の内側で且つ改質管 2の内円筒管 11の下端(円殻板 14)よりも下方に配設されてい る点は図 5と同様であるが、円筒管 50と円筒管 46との間に設けられている点が図 5と は異なっている。図示例では円筒管 50と、円筒管 46と、これらの円筒管 50, 46の間 の上側及び下側に固定した多孔板 (パンチングプレート) 48, 49とからなる空間に高 温 COシフト触媒を充填することによって、高温 COシフト触媒層 3を構成している。
[0258] また、円筒管 46と円筒管 301との間には円筒状の隙間が確保されており、この隙間 が改質ガス流路 303となっている。即ち、改質ガス流路 303は低温 COシフト触媒層 7の内周側及び高温 COシフト触媒層 3の内周側に形成されている。また、円筒管 50 と円筒管 46の間の下端を塞いだ下端板 52と、支持板 45との間にも隙間が確保され ており、この隙間が改質ガス折り返し部 304となっている。
[0259] 図 5の場合と同様に低温 COシフト触媒層 7の外周側では、第 2蒸発器 4 (波形管 4 A)と円筒管 50の間に円筒状の隙間が確保されており、この隙間が改質ガス流路 53 となっている。但し、本実施の形態例 4では、この改質ガス流路 53が、改質管 2の中 間円筒管 13と円筒管 50との間まで延びている。即ち、改質管 2の中間円筒管 13と 円筒管 50との間にも円筒状の隙間が確保されており、この隙間も改質ガス流路 53の 一部となっている。
[0260] 外側の第 1の改質ガス流路 53と内側の第 2の改質ガス流路 303は、改質ガス折り 返し部 304を介して連通されている。また、円筒管 46と上端板 302との間にも隙間が 確保されており、この隙間が改質ガス折り返し部 305となっている。この改質ガス折り 返し部 305を介して改質ガス流路 303と、円筒管 46と円筒管 50との間の上端部(高 温 COシフト触媒層 3の上端側)とが連通している。
[0261] また、ポンプ 60や凝縮器 62を有することは上記実施の形態例 2, 3と同様であるが 、本実施の形態例 4では O吸着触媒層として、第 lO吸着触媒層 6Aと第 20吸着触 媒層 6Bの 2層設けられている。これらの第 lO吸着触媒層 6A及び第 20吸着触媒 層 6Bは何れも、第 1円筒管 50と第 2円筒管 46の間に円筒状に配設され、且つ、低 温 COシフト触媒層 7と高温 COシフト触媒層 3との間に位置している。第 lO吸着触 媒層 6Aは多孔板 57, 58間に O吸着触媒を充填してなるものであり、低温 COシフト 触媒層 7側に位置している。第 20吸着触媒層 6Bは多孔板 49, 306間に O吸着触 媒を充填してなるものであり、高温 COシフト触媒層 3側に位置している。加熱ガス導 入管 59は低温 COシフト触媒層 7及び第 lO吸着触媒層 6Aを貫通している。従って 、改質装置の停止時に加熱ガス 88は加熱ガス導入管 59によって第 lO吸着触媒層 6Aと第 20吸着触媒層 6Bの間へ導入される。
[0262] 第 lO吸着触媒層 6Aと第 20吸着触媒層 6Bの間に導入された加熱ガス 88の一 部は、折り返して第 lO吸着触媒層 6Aを流通し、このときに加熱ガス 88中の Oが除 去されて Oレスガス 107が生成される。この Oレスガス 107は、低温 COシフト触媒層 7と CO除去触媒層 8とを順に流通して、低温 COシフト触媒層 7及び CO除去触媒層 8に残留する水蒸気を排出する。第 lO吸着触媒層 6Aと第 20吸着触媒層 6Bの間 に導入された加熱ガス 88の残りは、第 20吸着触媒層 6Bを流通し、このときに加熱 ガス 88中の Oが除去されて Oレスガス 107が生成される。この Oレスガス 107は、高 温 COシフト触媒層 3を流通し、且つ、第 2改質ガス流路 303の端の改質ガス折り返し 部 305から流出した後に改質触媒層 21を流通して、高温 COシフト触媒層 3及び改 質触媒層 21に残留する水蒸気を排出する。
[0263] 本実施の形態例 4の改質装置のその他の構成は、上記実施の形態 1の改質装置と 同様である。なお、本実施の形態例 4の改質装置でも、図 10に示すような加熱ガス 8 8とプロセス水 85の熱交換をするための熱交換器 78を設けてもよい。また、本実施の 形態 3の改質装置でも、図 11に示す温度制御系を備えており、この温度制御によつ て、上記実施の形態例 2の改質装置の場合と同様に改質触媒層 21の出口 79の改 質ガス温度と、低温 COシフト触媒層 7の入口 73の改質ガス温度又は第 2蒸発器 5の 流路 5aの出口 5a— 1の混合物温度とが、それぞれの所定温度(例えば 750°Cと 200 °C又は 400°C)となるように制御される。更に、本実施の形態例 4の改質装置におい ても、図 12の構成を適用することができる。
[0264] 本実施の形態例 4の改質装置においても、定常運転時における加熱ガス 88の流 れについては、上記実施の形態例 2と同様であるため、ここでの詳細な説明は省略 する。また、定常運転時のプロセス水 85、原料 86、混合物 89及び改質ガス 87の流 れについても、改質触媒層 21から流出した例えば 750°Cの改質ガス 87が、改質触 媒層 18の内側の改質ガス流路 18を下方へと流通する間に改質触媒層 21 (混合物 8 9)との熱交換によって例えば 550°Cまで低下することまでについては、上記実施の 形態例 2と同様であるため、ここでの詳細な説明は省略する。従って、以下では、そ の後の改質ガス 87の流れについて主に説明する。
[0265] 改質ガス流路 18を流通した改質ガス 87は第 1の改質ガス流路 53へ流入する。第 1 の改質ガス流路 53へ流入した改質ガス 87は、高温 COシフト触媒層 3 (円筒管 50) の外面に沿って第 1の改質ガス流路 53を下方へと流れ、更に上記実施の形態例 2と 同様に O吸着触媒層 6 (円筒管 50)の外面に沿って改質ガス流路 53を下方へと流 れて低温 COシフト触媒層 7の上端位置まで達する間に第 2蒸発器 5の流路 5aを流 れる混合物 89との熱交換によって冷却されることにより、温度が例えば 550°Cから 25 0°Cまで低下する。即ち、第 2蒸発器 5の流路 5aを流通する混合物 89によって、改質 ガス 87の温度を所定の温度まで(例えば 550°Cから 250°Cまで)低下させるのに相 当する改質ガス 87の保有熱量が吸収される。
[0266] そして、更に改質ガス 87は、低温 COシフト触媒層 7 (円筒管 50)の外面に沿って第 1の改質ガス流路 53を下方へと流通し、低温 COシフト触媒層 7の下端側の改質ガス 折り返し部 304で折り返して低温 COシフト触媒層 7の内側の第 2の改質ガス流路 30 3へ流入する。第 2の改質ガス流路 303へ流入した改質ガス 87は、低温 COシフト触 媒層 7 (円筒管 46)の内面に沿って第 2の改質ガス流路 303を上方へと流通し、更に O吸着触媒層 6 (円筒管 46)の内面及び高温 COシフト触媒層 3 (円筒管 46)の内面 に沿って第 2の改質ガス流路 303を上方へと流通した後、高温 COシフト触媒層 3の 上端側の改質ガス折り返し部 305で折り返して高温 COシフト触媒層 3 (円筒管 50と 円筒管 46との間)へ流入する。
[0267] このとき、低温 COシフト触媒層 7に対する第 2蒸発器 5 (混合物 89)の冷却能力は、 上記実施の形態例 3の場合と同様に低温 COシフト触媒層 7と第 2蒸発器 5の間の改 質ガス流路 53に改質ガス 87が流れることにより、放射伝熱だけでなぐ改質ガス 87 の流れによる対流熱伝達も加わることになるため、上記実施の形態例 2の場合よりも 高くなる。
[0268] また、改質ガス 87は、低温 COシフト触媒層 7 (円筒管 50)の外面に沿って第 1の改 質ガス流路 53を下方へと流通するときにも、第 2蒸発器 5の流路 5aを流れる混合物 8 9との熱交換によって冷却されるため、温度が例えば 250°Cから 130°Cまで低下する 。即ち、低温 COシフト触媒層 7が設置されている位置では第 2蒸発器 5の流路 5aを 流通する混合物 89によって、改質ガス 87の温度を所定の温度まで(例えば 250°Cか ら 130°Cまで)低下させるのに相当する改質ガス 87の保有熱量が吸収される。一方、 改質ガス 87が高温 COシフト触媒層 3、 O吸着触媒層 6及び低温 COシフト触媒層 7 ( 円筒管 46)の内面に沿って第 2の改質ガス流路 303を上方へと流通するときには、 高温 COシフト触媒層 3及び低温 COシフト触媒層 7と改質ガス 87とが熱交換すること により、改質ガス 87の温度力 例えば 130°Cから 400°Cまで上昇する。即ち、このとき には改質ガス 87により、高温 COシフト触媒層 3や低温 COシフト触媒層 7の内側部 分が冷却されてこれらの内側部分の温度が低下する。
[0269] 高温 COシフト触媒層 3へ流入した改質ガス 87は、高温 COシフト触媒層 3を下方へ と流通し、この間に COシフト反応によって改質ガス 87中の CO濃度が低減される。こ のときの改質ガス 87の COシフト反応による発熱は、第 2の改質ガス流路 303を流れ る改質ガス 87や、高温 COシフト触媒層 3の外側に改質ガス流路 53を介して隣接す る改質触媒層 21に中間円筒管 13を介して伝達される。従って、高温 COシフト触媒 層 3から流出した改質ガス 87の温度は例えば約 400°Cである。高温 COシフト触媒層 3から流出した改質ガス 87は、 O吸着触媒層 6を通過して低温 COシフト触媒層 7へ 流入するが、この間に第 2蒸発器 5の流路 5aを流通する混合物 89と熱交換して冷却 されることにより、温度が例えば約 200°Cまで低下する。即ち、第 2蒸発器 5の流路 5a を流通する混合物 89によって、改質ガス 87の温度を所定の温度まで(例えば約 400 °Cから 200°Cまで)低下させるのに相当する改質ガス 87の保有熱量が吸収される。
[0270] なお、このとき図 11の温度制御装置 80では、低温 COシフト触媒層 7の入口 73に おける改質ガス 87の温度(第 2の改質ガス温度計 76の温度計測値)が所定温度(例 えば 200°C)になるようにパーナ 1へのパーナ用空気 84の供給量を制御する。或い は、パーナ 1へのパーナ用空気 84の供給量 (希釈空気量)を制御することによって、 第 2蒸発器 5の流路出口 5a— 1の混合物温度が所定温度(例えば 400°C)となるよう に制御する。
[0271] 低温 COシフト触媒層 7へ流入した改質ガス 87は、低温 COシフト触媒層 7を下方へ と流通する。この間に低温 COシフト触媒層 7では改質ガス 87の COシフト反応が生じ るため、改質ガス 87中の CO濃度が更に低減する。低温 COシフト触媒層 7から流出 したときの改質ガス 87は、前述の第 2蒸発器 5 (混合物 89)による冷却によって温度 が例えば 140°Cまで低下する。即ち、このときの低温 COシフト触媒層 7へ流入した改 質ガス 87が保有する熱量(改質ガス 87の温度を所定の温度まで (例えば 200°Cから 140°Cまで)低下させるのに相当する熱量)と、低温 COシフト触媒層 7における改質 ガス 87の COシフト反応によって発生する熱量とが、前述の放射伝熱及び対流熱伝 達によって、第 2蒸発器 5 (混合物 89)に吸収 (抜熱)される。
[0272] 低温 COシフト触媒層 7が設けられている位置では第 2蒸発器 5の温度力 プロセス 水 85の気化温度(例えば 120°C)程度であるため、低温 COシフト触媒層 7は、それ 以上には冷却されず、冷却され過ぎて低温 COシフト触媒の作動温度(例えば 150 〜250°C)の範囲を外れることはない。低温 COシフト触媒層 7から流出後の改質ガス 87の流れについては、上記実施の形態例 2と同様であるため、ここでの説明は省略 する。
[0273] また、本実施の形態例 4においても、上記実施の形態例 3と同様に改質ガス 87が 低温 COシフト触媒層 7の外側(改質ガス流路 53)と内側(改質ガス流路 303)を流れ る構成となっているため、改質装置を起動する際の加熱昇温運転後に改質ガス 87の 生成を開始するためにプロセス水 85の供給が開始されて、このプロセス水 85の水蒸 気が流入してきても、当該水蒸気は先ずは改質ガス流路 53, 303において円筒管 5 0の外面及び円筒管 46の内面で凝縮し、低温 COシフト触媒層 7では凝縮しない。し 力、も、円筒管 50の外面と円筒管 49の内面で水蒸気が凝縮すると、その凝縮潜熱が 低温 COシフト触媒層 7に伝わるため、低温 COシフト触媒層 7の温度が上昇する。こ のため、低温 COシフト触媒層 7に水蒸気が流入してくるころには、当該水蒸気が低 温 COシフト触媒層 7で凝縮することはない。従って、水蒸気の凝縮によって低温 CO シフト触媒層 7の低温 COシフト触媒が劣化することはない。
[0274] また、本実施の形態例 4においては、上記の如くプロセス水 85の供給を開始した際 に円筒管 50の外面と円筒管 49の内面で水蒸気が凝縮するときの凝縮潜熱が、高温 COシフト触媒層 3にも伝わるため、高温 COシフト触媒層 3の温度も上昇する。このた め、高温 COシフト触媒層 3に水蒸気が流入してくるころには、当該水蒸気が高温 CO シフト触媒層 3で凝縮することもない。従って、水蒸気の凝縮によって高温 COシフト 触媒層 3の高温 COシフト触媒が劣化することもない。
[0275] そして、本実施の形態例 4では加熱昇温運転にお!/、て改質触媒層 21が、その外側 の加熱ガス流路 25を流れる加熱ガス 88によって加熱昇温される際、改質触媒層 21 (中間円筒管 13)と高温 COシフト触媒層 3 (円筒管 50)との間に改質ガス流路 53が 介在しているため、高温 COシフト触媒層 3が設置されている位置の改質触媒層 21 の部分も、高温 COシフト触媒層 3の熱容量の影響をあまり受けることなぐ加熱ガス 8 8によって速やかに昇温される。なお、この場合には上記実施の形態例 2の場合に比 ベて加熱昇温運転時に高温 COシフト触媒層 3が昇温されに《なる力 S、このときの高 温 COシフト触媒層 3の昇温が不十分であったとしても、上記の如く凝縮潜熱によって 高温 COシフト触媒層 3を昇温することができるため、高温 COシフト触媒層 3におい て水蒸気が凝縮するおそれはなレ、。
[0276] また、改質装置を製作工程においては、別途、円筒管 46, 50を用いて O吸着触 媒層 6や低温 COシフト触媒層 7と高温 COシフト触媒層 3とを同時に製作し、これを装 置に取り付ける。
[0277] 加熱昇温運転における加熱ガス 88の流れや各触媒層 3, 7, 8, 21が加熱昇温さ れる順番などについては、本実施の形態例 4においても上記実施の形態 1と同様で あるため、ここでの詳細な説明は省略する。
[0278] 改質装置を停止する際の水蒸気パージについては、次のとおりである。即ち、定常 運転時や加熱昇温運転時と同様に流通した後に加熱ガス流路 26から排気管 39へ 排出される加熱ガス 88を、図 16に点線の矢印で水蒸気パージ時の加熱ガス 88及び Oレスガス 107の流れを示すようにポンプ 60の起動により、排気管 39力、ら配管 63へ 引き込む。そして、まず、凝縮器 62において当該加熱ガス 88中の水分を凝縮させて 除去する。なお、凝縮器 62では、例えばファンによる送風によって加熱ガス 88中の 水分を凝縮させてもよぐ或いはプロセス水 85やパーナ用空気 84などを利用して加 熱ガス 88中の水分を凝縮させてもよい。水分が除去された加熱ガス 88は加熱ガス導 入管 59へ流入し、この加熱ガス導入管 59を上方へと流通することにより、第 lO吸 着触媒層 6Aと第 2〇2吸着触媒層 6Bの間へ導入される。その後の〇2レスガス 107が 生成や Oレスガス 107による残留水蒸気のパージについては上記のとおりである。
[0279] なお、図 12の構成の適用した場合の第 1蒸発器 4及び第 2蒸発器 5の掃除手順に ついては、上記実施の形態例 2と同様であるため、ここでの詳細な説明は省略する。
[0280] <作用効果〉
本実施の形態例 4の改質装置及びその運転方法でも上記実施の形態例 2と同様 の作用効果が得られ、そして更に本実施の形態例 4の改質装置によれば、次のよう な作用効果も得られる。
[0281] 即ち、本実施の形態例 4の改質装置によれば、低温 COシフト触媒層 7は、第 2蒸発 器 5の内側に配設した円筒管 50と、この円筒管 50の内側に配設した円筒管 46との 間に円筒状に設け、円殻板 14よりも下方で中間円筒管 13の内側には高温 COシフト 触媒層 3を配置し、且つ、この高温 COシフト触媒層 3は中間円筒管 13の内側まで延 びた円筒管 50と円筒管 46との間に円筒状に設け、円筒管 50と第 2蒸発器 5との間 の円筒状の隙間を、第 1の改質ガス流路 53とし、円筒管 46と、円筒管 46の内側に配 設した円筒管 301との間の円筒状の隙間を、第 2の改質ガス流路 303とし、改質触媒 層 21から流出した改質ガス 87が、高温 COシフト触媒層 3の一端側(上端側)から他 端側(下端側)及び低温 COシフト触媒層 7の一端側(上端側)から他端側 (他端側) へ向かって第 1の改質ガス流路 53を流通する間に第 2蒸発器 5の流路 5aを流れる混 合物 89との熱交換によって温度が低下し、低温 COシフト触媒層 7の他端側(下端側 )の改質ガス折り返し部 304で折り返して、低温 COシフト触媒層 7の他端側から一端 側及び高温 COシフト触媒層 3の他端側から一端側へ向かって第 2の改質ガス流路 3 03を流通する間に低温 COシフト触媒層 7及び高温 COシフト触媒層 3との熱交換に よって温度が上昇した後、第 2の改質ガス流路 303の上端側の改質ガス折り返し部 3 05で折り返すことより円筒管 50と円筒管 46の間に流入して、高温 COシフト触媒層 3 と低温 COシフト触媒層 7とを順に流通し、このときに第 2蒸発器 5の流路 5aを流れる 混合物 89によって、低温 COシフト触媒層 7における改質ガス 87の COシフト反応の 発熱を吸収し且つ改質ガス 87を冷却する構成としたことにより、上記実施の形態例 2 の改質触媒層と同様の効果が得られることに加えて、低温 COシフト触媒層 7に対す る第 2蒸発器 (混合物)の冷却能力は、低温 COシフト触媒層 7から第 2蒸発器 5 (混 合物 89)への熱伝達として放射伝熱だけでなぐ低温 COシフト触媒層 7と第 2蒸発器 5の間の第 1の改質ガス流路 53に改質ガス 87が流れることによって、この改質ガス 8 7の流れによる対流熱伝達も加わることになるため、放射伝熱のみによる冷却に比べ て高くなる。
[0282] 更には、改質ガス 87が低温 COシフト触媒層 7の外側の第 1の改質ガス流路 53と内 側の第 2の改質ガス流路 303とを流れる構成となっているため、加熱昇温運転後に プロセス水 85の供給を開始して、このプロセス水 85の水蒸気が流入してきても、当 該水蒸気は先ずは第 1の改質ガス流路 53及び第 2の改質ガス流路 303において円 筒管 50の外面及び円筒管 46の内面で凝縮し、低温 COシフト触媒層 7では凝縮しな い。しかも、円筒管 50の外面と円筒管 46の内面で水蒸気が凝縮すると、その凝縮潜 熱が低温 COシフト触媒層 7に伝わるため、低温 COシフト触媒層 7の温度が上昇する 。このため、低温 COシフト触媒層 7に水蒸気が流入してくるころには、当該水蒸気が 低温 COシフト触媒層 7で凝縮することはなぐ水蒸気の凝縮による低温 COシフト触 媒の劣化を防止することができる。
[0283] また、上記の如くプロセス水 85の供給を開始した際に円筒管 50の外面と円筒管 46 の内面で水蒸気が凝縮するときの凝縮潜熱が、高温 COシフト触媒層 3にも伝わるた め、高温 COシフト触媒層 3の温度も上昇する。このため、高温 COシフト触媒層 3に 水蒸気が流入してくるころには、当該水蒸気が高温 COシフト触媒層 3で凝縮すること もない。従って、水蒸気の凝縮によって高温 COシフト触媒が劣化することもない。
[0284] また、第 2の改質ガス流路 303を流れる改質ガス 87によって、低温 COシフト触媒層 7や高温 COシフト触媒層 3の内側部分も冷却するため、これらの内側部分の温度が 高くなるのを防止して、この内側部分を通過する改質ガス 87中の CO濃度も低くする こと力 Sでさる。
[0285] また、 COシフト触媒層として低温 COシフト触媒層 7だけでなぐ高温 COシフト触媒 層 3も設けている。高温 COシフト触媒は作動温度が高くて耐熱性があり、し力、も作動 温度が高いので反応速度が速ぐ低温 COシフト触媒よりも少量で COを除去できる。 その結果、高温 COシフト触媒層 3を通過後の改質ガス中の CO濃度は、例えば従来 の 650°Cレベルの改質ガス中の CO濃度よりも低くなる。従って、この改質ガスが低温 COシフト触媒層 7に流入しても、低温 COシフト触媒が COシフト反応の発熱で昇温 されに《なるため、低温 COシフト触媒の延命が可能となる。更には低温 COシフト触 媒が昇温されないと、低温 COシフト触媒層 7の出口温度も下がるため、平衡反応上 、低温 COシフト触媒層 7から流出する改質ガス中の CO濃度も下がる。このため、低 温 COシフト触媒層 7から流出した改質ガスを更に CO除去触媒層 8に流通させる場 合、 CO除去触媒の負荷を低減することができる。
[0286] しかも、改質装置の製作工程においては、先に改質装置に高温 COシフト触媒層 3 を設けておく必要がなぐ別途、円筒管 50及び円筒管 46を用いて高温 COシフト触 媒層 3も低温 COシフト触媒層 7と同時に製作することができ、これを後から改質装置 に取り付ければよい。このため、製作工程におけるハンドリング性が向上して、製造コ ストを低減することができる。
[0287] また、改質装置の加熱昇温運転時に加熱ガスによって、改質管 2 (改質触媒層 21) を加熱昇温する際、改質触媒層 21 (中間円筒管 13)と高温 COシフト触媒層 3 (円筒 管 50)との間に第 1改質ガス流路 53が介在しているため、高温 COシフト触媒層 3が 設置されている位置の改質触媒層 21の部分も、高温 COシフト触媒層 3の熱容量の 影響をあまり受けることなぐ加熱ガス 88によって速やかに昇温される。なお、このとき に高温 COシフト触媒層 3の昇温が不十分であったとしても、上記の如く水蒸気の凝 縮潜熱によって高温 COシフト触媒層 3を昇温することができるため、高温 COシフト 触媒層 3においてプロセス水 85の水蒸気が凝縮するおそれはない。
[0288] なお、加熱昇温運転の際、加熱ガス 88による各部の加熱昇温に続いて、原料 86 は供給しない状態で、プロセス水 85を供給して第 1蒸発器 4の流路 4aと第 2蒸発器 5 の流路 5aとを順に流通させることにより、第 1蒸発器 4と第 2蒸発器 5との間の加熱ガ ス流路 26を流通する加熱ガス 88で加熱して水蒸気を発生させ、この水蒸気が、改質 触媒層 21を流通した後、第 1改質ガス流路 53及び第 2改質ガス流路 303を順に流 通するときに円筒管 50の外面及び円筒管 46の内面で凝縮することにより、高温 CO シフト触媒層 3及び低温 COシフト触媒層 7を加熱して、昇温すれば、水蒸気の凝縮 潜熱によって、高温 COシフト触媒層 3及び低温 COシフト触媒層 7の昇温を、より確 実に行うことができる。
[0289] また、本実施の形態例 4の改質装置によれば、円筒管 50と円筒管 46の間に円筒 状に配設され、且つ、低温 COシフト触媒層 7と高温 COシフト触媒層 3との間で、低 温 COシフト触媒層 7側に位置する第 lO吸着触媒層 6A及び高温 COシフト触媒層 3側に位置する第 20吸着触媒層 6Bと、低温 COシフト触媒層 7及び第 lO吸着触 媒層 6Aを貫通した加熱ガス導入管 59と、加熱ガス 88中の水分を除去する凝縮器 6 2と、加熱ガス 88を吸引するポンプ 60とを有し、改質装置の停止時に加熱ガス 88を 、ポンプ 60で吸引し、凝縮器 62で水分を除去して、加熱ガス導入管 59で第 lO吸 着触媒層 6Aと第 20吸着触媒層 6Bの間へ導入した後、この第 lO吸着触媒層 6A と第 20吸着触媒層 6Bの間に導入した加熱ガス 88の一部は、折り返して第 lO吸 着触媒層 6Aを流通させることにより、加熱ガス 88中の Oを除去して Oレスガス 107 を生成し、この Oレスガス 107が、低温 COシフト触媒層 7と CO除去触媒層 8とを順 に流通して、低温 COシフト触媒層 7及び CO除去触媒層 8に残留する水蒸気を排出 し、第 lO吸着触媒層 6Aと第 20吸着触媒層 6Bの間に導入した加熱ガス 88の残り は、第 20吸着触媒層 6Bを流通させることにより、加熱ガス 88中の Oを除去して O レスガス 107を生成し、この Oレスガス 107が、高温 COシフト触媒層 3を流通し、且 つ、第 2改質ガス流路 303の端の改質ガス折り返し部 305から流出した後に改質触 媒層 21を流通して、高温 COシフト触媒層 3及び改質触媒層 21に残留する水蒸気を 排出する構成としたことを特徴とするため、改質装置の停止時に改質触媒層 21、高 温 COシフト触媒層 3、低温 COシフト触媒層 7及び CO除去触媒層 8に残留している 水蒸気を、 Oレスガス 107によって排出することができるため、これらの各触媒層 21 , 3, 7, 8の触媒が水蒸気の凝縮によって劣化するのを防止することができる。
[0290] なお、第 1蒸発器と第 2蒸発器は、上記実施の形態例 2〜4の第 1蒸発器 4及び第 2 蒸発器 5の如ぐ波形管と円筒管を嵌合したものが望ましいが、必ずしもこれに限定 するものではなぐ円筒状であってプロセス水 85や混合物 89を流すための流路を有 するものであればよぐ例えば円筒管にプロセス水 85や混合物 89を流すためのチュ ーブを螺旋状に巻き付けたものでもよ!/、。
[0291] また、改質管は、上記実施の形態例;!〜 4の改質管 2の如く単管式ものが望ましい 力 必ずしもこれに限定するものではなぐ例えばパーナ 01 , 1の周囲を囲むようにし て円環状に多管式 (複数)の改質管を配設し、これらの下方に第 1蒸発器 05, 4、第 2 蒸発器 06 , 5、低温 COシフト触媒層 07, 7、 CO除去触媒層 08, 8などを配設した構 成としてあよい。
[0292] また、上記実施の形態例;!〜 4では、第 1蒸発器の第 1流路に水を流通させ、第 2蒸 発器の第 2流路に水蒸気と原料の混合物を流通させる構成としている力 S、必ずしもこ れに限定するものではなぐ水と混合物の流れを逆にしてもよい。即ち、第 1蒸発器 の第 1流路に水蒸気と原料の混合物を流通させ、第 2蒸発器の第 2流路に水を流通 させる構成としてもよい。この場合には、第 2蒸発器では、第 2流路を流通する水が、 第 1蒸発器と第 2蒸発器との間の加熱ガス流路を流通する加熱ガスによって加熱され ることにより、水蒸気となり、第 2流路の出口と第 1流路の入口を繋ぐ配管の途中に設 けた原料混合部では、第 2流路から流出して前記配管を流通する水蒸気に原料を混 合して混合物を得るとともに、第 1蒸発器では、この混合物が第 1流路を流通するとき に、前記加熱ガス流路を流通する加熱ガスによって更に加熱され、この混合物が改 質触媒層に供給される構成となる。
産業上の利用可能性
[0293] 本発明は改質装置及びその運転方法に関するものであり、改質ガスを生成するた めの原料と水(水蒸気)の均一な混合、カーボン析出の防止、メンテナンス性の向上 などが可能な改質装置を提供する場合に適用して有用なものである。

Claims

請求の範囲
[1] 改質触媒層を有し、水素を含有する改質ガスを生成する改質装置において、 円筒状を成し、水を流通させるための第 1流路を有する第 1蒸発器と、 円筒状を成し、水蒸気と原料の混合物を流通させるための第 2流路を有する第 2蒸 発器と、
前記第 1流路の出口と前記第 2流路の入口とを繋ぐ配管と、
前記配管の途中に設けた原料混合部とを有し、
前記第 1蒸発器を外側に前記第 2蒸発器を内側に同心円状に配設し、 前記第 1蒸発器と前記第 2蒸発器との間の円筒状の隙間を、加熱ガス流路とし、 前記第 1蒸発器では、前記第 1流路を流通する前記水が、前記加熱ガス流路を流 通する加熱ガスによって加熱されることにより、水蒸気となり、
前記原料混合部では、前記第 1流路から流出して前記配管を流通する前記水蒸気 に原料を混合して前記混合物を得るとともに、
前記第 2蒸発器では、この混合物が前記第 2流路を流通するときに、前記加熱ガス 流路を流通する前記加熱ガスによって更に加熱され、
この混合物が前記改質触媒層に供給される構成としたことを特徴とする改質装置。
[2] 改質触媒層を有し、水素を含有する改質ガスを生成する改質装置において、 円筒状を成し、水蒸気と原料の混合物を流通させるための第 1流路を有する第 1蒸 発器と、
円筒状を成し、前記水を流通させるための第 2流路を有する第 2蒸発器と、 前記第 2流路の出口と前記第 1流路の入口とを繋ぐ配管と、
前記配管の途中に設けた原料混合部とを有し、
前記第 1蒸発器を外側に前記第 2蒸発器を内側に同心円状に配設し、 前記第 1蒸発器と前記第 2蒸発器との間の円筒状の隙間を、加熱ガス流路とし、 前記第 2蒸発器では、前記第 2流路を流通する前記水が、前記加熱ガス流路を流 通する加熱ガスによって加熱されることにより、水蒸気となり、
前記原料混合部では、前記第 2流路から流出して前記配管を流通する前記水蒸気 に原料を混合して前記混合物を得るとともに、 前記第 1蒸発器では、この混合物が前記第 1流路を流通するときに、前記加熱ガス 流路を流通する前記加熱ガスによって更に加熱され、
この混合物が前記改質触媒層に供給される構成としたことを特徴とする改質装置。
[3] 請求項 1又は 2に記載の改質装置において、
前記第 2蒸発器の内側に低温 COシフト触媒層を配置したことを特徴とする改質装 置。
[4] 請求項 3に記載の改質装置において、
前記改質触媒層を収容した改質管を、前記第 1蒸発器及び前記第 2蒸発器の上方 に配置して、前記第 2蒸発器の前記第 2流路から流出した前記混合物、又は、前記 第 1蒸発器の前記第 1流路から流出した前記混合物が、前記改質触媒層の下端から 流入して前記改質触媒層を上方へと流通する間に水蒸気改質されて前記改質ガス となり、この改質ガスが、前記改質触媒層の上端から流出して下方へと流れ、前記低 温 COシフト触媒層へ上端から流入して前記低温 COシフト触媒層を下方へと流通す る構成としたことを特徴とする改質装置。
[5] 請求項 4に記載の改質装置において、
前記加熱ガスを発生させるパーナを、前記改質管の上端側に下向きに配置したこ とを特徴とする改質装置。
[6] 請求項 3に記載の改質装置において、
CO除去触媒層を、前記第 1蒸発器の周囲を囲むようにして円筒状に設け、前記低 温 COシフト触媒層から流出した前記改質ガス力 s、前記 CO除去触媒層を流通する構 成としたことを特徴とする改質装置。
[7] 請求項 3又は 4に記載の改質装置において、
前記低温 COシフト触媒層の前に高温 COシフト触媒層を設け、
前記改質触媒層から流出した前記改質ガスが、前記高温 COシフト触媒層を流通 した後、前記低温 COシフト触媒層を流通する構成としたことを特徴とする改質装置。
[8] 請求項 5に記載の改質装置において、
前記改質管の周囲を囲むように配設した改質部円筒管を有し、
前記改質管は同心円状に設けられた内側の内円筒管と、外側の外円筒管と、これ らの内円筒管と外円筒管の間の中間円筒管とを有して成る 3重管構造のものであつ て、前記パーナの周囲を囲むように配設されており、
前記内円筒管の下端側は下端板で閉じられ、
前記内円筒管と前記外円筒管との間の上端側は第 1上端板で閉じられ、且つ、こ の第 1上端板と前記中間円筒管の上端との間の隙間を、改質ガス折り返し部とし、 前記中間円筒管と前記内円筒管との間の円筒状の隙間を、改質ガス流路とし、 前記改質触媒層は前記中間円筒管と前記外円筒管との間に円筒状に設け、 前記改質部円筒管は上端側が第 2上端板で閉じられ、この第 2上端板と前記第 1 上端板との間の隙間を、加熱ガス折り返し部とし、
前記改質部円筒管と前記外円筒管との間の円筒状の隙間を、加熱ガス流路とし、 前記パーナから下方へと排気された加熱ガスは、前記内円筒管の内周面に沿って 上方へ流れ、前記加熱ガス折り返し部で折り返して前記加熱ガス流路を下方へと流 れる間に前記改質触媒層を加熱した後、前記第 1蒸発器と第 2蒸発器との間の前記 加熱ガス流路へ流入する一方、
前記改質触媒層の上端から流出した前記改質ガスは、前記改質ガス折り返し部で 折り返して前記改質ガス流路を下方へと流れ、前記低温 COシフト触媒層へ上端から 流入する構成としたことを特徴とする改質装置。
[9] 請求項 1又は 2に記載の改質装置において、
前記第 1流路と前記第 2流路は、何れも螺旋状に形成されてレ、ることを特徴とする 改質装置。
[10] 請求項 1又は 2に記載の改質装置において、
前記第 1蒸発器は、管面に螺旋状の凹凸が形成された波形管の外周面側に円筒 管を嵌合させた 2重管構造のものであって、前記波形管と前記円筒管との間に形成 された螺旋状の隙間が、前記第 1流路となっており、
前記第 2蒸発器は、管面に螺旋状の凹凸が形成された他の波形管の外周面側に 他の円筒管を嵌合させた 2重管構造のものであって、前記他の波形管と前記他の円 筒管との間に形成された螺旋状の隙間が、前記第 2流路となっていることを特徴とす る改質装置。
[11] 請求項 3又は 6に記載の改質装置において、
前記低温 COシフト触媒層は円筒管の内側に設け、
前記円筒管と前記第 2蒸発器との間の円筒状の隙間を、改質ガス流路とし、 前記改質触媒層から流出した前記改質ガスが、前記改質ガス流路を流通する間に 前記第 2蒸発器の第 2流路を流れる前記混合物又は前記水との熱交換によって温度 が低下した後、前記円筒管に設けた流通穴から前記円筒管の内側へ流入して、前 記低温 COシフト触媒層を流通する構成としたことを特徴とする改質装置。
[12] 請求項 3又は 6に記載の改質装置において、
前記低温 COシフト触媒層は、前記第 2蒸発器の内側に配設した第 1円筒管と、こ の第 1円筒管の内側に配設した第 2円筒管との間に円筒状に設け、
前記第 1円筒管と前記第 2蒸発器との間の円筒状の隙間を、第 1改質ガス流路とし 前記第 2円筒管の内側を、第 2改質ガス流路とし、
前記改質触媒層から流出した改質ガスが、前記低温 COシフト触媒層の一端側から 他端側へ向かって前記第 1改質ガス流路を流通する間に前記第 2蒸発器の第 2流路 を流れる前記混合物又は前記水との熱交換によって温度が低下し、前記低温 COシ フト触媒層の他端側の改質ガス折り返し部で折り返して、前記低温 COシフト触媒層 の他端側から一端側へ向かって前記第 2改質ガス流路を流通する間に前記低温 CO シフト触媒層との熱交換によって温度が上昇した後、前記第 2円筒管に設けた流通 穴から前記第 1円筒管と前記第 2円筒管の間へ流入して、前記低温 COシフト触媒層 を流通する構成としたことを特徴とする改質装置。
[13] 請求項 8に記載の改質装置において、
前記低温 COシフト触媒層は、前記第 2蒸発器の内側に配設した第 1円筒管と、こ の第 1円筒管の内側に配設した第 2円筒管との間に円筒状に設け、
前記第 1円筒管と前記第 2蒸発器との間の円筒状の隙間を、第 1改質ガス流路とし 前記第 2円筒管の内側を、第 2改質ガス流路とし、
前記改質触媒層から流出した改質ガスが、前記低温 COシフト触媒層の一端側から 他端側へ向かって前記第 1改質ガス流路を流通する間に前記第 2蒸発器の第 2流路 を流れる前記混合物又は前記水との熱交換によって温度が低下し、前記低温 COシ フト触媒層の他端側の改質ガス折り返し部で折り返して、前記低温 COシフト触媒層 の他端側から一端側へ向かって前記第 2改質ガス流路を流通する間に前記低温 CO シフト触媒層との熱交換によって温度が上昇した後、前記第 2円筒管に設けた流通 穴から前記第 1円筒管と前記第 2円筒管の間へ流入して、前記低温 COシフト触媒層 を流通する構成としたことを特徴とする改質装置。
[14] 請求項 4又は 8に記載の改質装置において、
前記改質触媒層を収納した改質管の内側で前記低温 COシフト触媒層の上方の改 質ガスが流れる領域に、高温 COシフト触媒を配置したことを特徴とする改質装置。
[15] 請求項 3又は 6に記載の改質装置において、
前記低温 COシフト触媒層は、前記第 2蒸発器の内側に配設した第 1円筒管と、こ の第 1円筒管の内側に配設した第 2円筒管との間に円筒状に設けるとともに、 高温 COシフト触媒層を、前記第 1円筒管と前記第 2円筒管とのと間で且つ前記低 温 COシフト触媒層の上側に円筒状に設け、
前記第 1円筒管と前記第 2蒸発器との間の円筒状の隙間を、第 1改質ガス流路とし 前記第 2円筒管の内側を、第 2改質ガス流路とし、
前記改質触媒層から流出した改質ガスが、前記高温 COシフト触媒層の上端側か ら前記低温 COシフト触媒層の下端側へ向かって前記第 1改質ガス流路を下方へと 流通する間に前記第 2蒸発器の第 2流路を流れる前記混合物又は前記水との熱交 換によって温度が低下し、前記低温 COシフト触媒層の下端側の改質ガス折り返し部 で折り返して、前記低温 COシフト触媒層の下端側から前記高温 COシフト触媒層の 上端側へ向かって前記第 2改質ガス流路を上方へと流通する間に前記低温 COシフ ト触媒層及び前記高温 COシフト触媒層との熱交換によって温度が上昇した後、前記 第 2改質ガス流路の上端の改質ガス折り返し部で折り返すことにより、前記第 1円筒 管と前記第 2円筒管の間に流入して、前記高温 COシフト触媒層と前記低温 COシフ ト触媒層とを順に下方へと流通する構成としたことを特徴とする改質装置。
[16] 請求項 11に記載の改質装置において、
前記円筒管の内側に配設された〇2吸着触媒層と、
前記低温 COシフト触媒層及び前記 02吸着触媒層を貫通した加熱ガス導入管と、 前記加熱ガス中の水分を除去する凝縮器と、
前記加熱ガスを吸引するポンプとを有し、
改質装置の停止時に前記加熱ガスを、前記ポンプで吸引し、前記凝縮器で水分を 除去して、前記加熱ガス導入管で前記 0吸着触媒層の上端側へと導入した後、折り 返して前記 0吸着触媒層を流通させることにより、前記加熱ガス中の 0を除去して 0 レスガスを生成し、
この 0レスガスの一部は、前記低温 COシフト触媒層を流通して前記低温 COシフト 触媒層に残留する水蒸気を排出し、又は、前記低温 COシフト触媒層と前記 CO除去 触媒層とを順に流通して前記低温 COシフト触媒層及び前記 CO除去触媒層に残留 する水蒸気を排出し、
且つ、前記 0レスガスの残りは、前記円筒管に設けた流通穴から流出した後、前記 改質触媒層を流通して前記改質触媒層に残留する水蒸気を排出する構成としたこと を特徴とする改質装置。
[17] 請求項 15に記載の改質装置において、
前記第 1円筒管と前記第 2円筒管の間に円筒状に配設され、且つ、前記低温 COシ フト触媒層と前記高温 COシフト触媒層との間で、前記低温 COシフト触媒層側に位 置する第 10吸着触媒層及び前記高温 COシフト触媒層側に位置する第 20吸着触 媒層と、
前記低温 COシフト触媒層及び前記第 10吸着触媒層を貫通した加熱ガス導入管 と、
前記加熱ガス中の水分を除去する凝縮器と、
前記加熱ガスを吸引するポンプとを有し、
改質装置の停止時に前記加熱ガスを、前記ポンプで吸引し、前記凝縮器で水分を 除去して、前記加熱ガス導入管で前記第 10吸着触媒層と前記第 20吸着触媒層 の間へ導入した後、 この第 102吸着触媒層と第 202吸着触媒層の間に導入した加熱ガスの一部は、折 り返して前記第 1〇2吸着触媒層を流通させることにより、前記加熱ガス中の〇2を除去 して 0レスガスを生成し、この 0レスガスが、前記低温 COシフト触媒層を流通して前 記低温 COシフト触媒層に残留する水蒸気を排出し、又は、前記低温 COシフト触媒 層と前記 CO除去触媒層とを順に流通して前記低温 COシフト触媒層及び前記 CO除 去触媒層に残留する水蒸気を排出し、
前記第 10吸着触媒層と第 20吸着触媒層の間に導入した加熱ガスの残りは、前 記第 20吸着触媒層を流通させることにより、前記加熱ガス中の Oを除去して 0レス ガスを生成し、この 0レスガスが、前記高温 COシフト触媒層を流通し、且つ、前記第 2改質ガス流路の端の改質ガス折り返し部から流出した後に前記改質触媒層を流通 して、前記高温 COシフト触媒層及び前記改質触媒層に残留する水蒸気を排出する 構成としたことを特徴とする改質装置。
[18] 請求項 4又は 8に記載の改質装置において、
前記第 2蒸発器の第 2流路の出口、又は、前記第 1蒸発器の第 1流路の出口と前記 改質触媒層の入口の間に円筒状のヘッダータンクを設け、且つ、このヘッダータンク の側面又は上面には噴出し穴を、周方向に複数形成し、
前記第 2蒸発器の第 2流路の出口から流出した前記混合物、又は、前記第 1蒸発 器の第 1流路の出口から流出した前記混合物が、前記ヘッダータンクに流入した後、 前記噴出し穴から噴出されて前記改質触媒層に前記入口から流入する構成としたこ とを特徴とする改質装置。
[19] 請求項 1又は 4に記載の改質装置において、
前記第 2蒸発器の第 2流路の出口、又は、前記第 1蒸発器の第 1流路の出口と前記 改質触媒層の入口とを繋ぐ掃除用配管と、
前記掃除用配管の途中に着脱可能に取り付けた掃除用取り外し部とを有し、 前記掃除用取り外し部を取り外して前記掃除用配管の注入口から薬液を注入した とき、この薬液が、前記第 2蒸発器の第 2流路及び前記第 1蒸発器の第 1流路を順に 流通する、又は、前記第 1蒸発器の第 1流路及び前記第 2蒸発器の第 2流路を順に 流通する構成としたことを特徴とする改質装置。
[20] 請求項 1又は 2に記載の改質装置において、
前記原料混合部は外側ノズルと、この外側ノズルの内側に設けた内側ノズルとを有 してなる 2重ノズル構造とし、
前記第 1蒸発器の第 1流路から流出した前記水蒸気、又は、前記第 2蒸発器の第 2 流路から流出した前記水蒸気は前記外側ノズルと前記内側ノズルとの間を流通し、 前記原料は前記内側ノズルを流通する構成としたこと、
又は、前記原料は前記外側ノズルと前記内側ノズルとの間を流通し、前記第 1蒸発 器の第 1流路から流出した前記水蒸気、又は、前記第 2蒸発器の第 2流路から流出し た前記水蒸気は前記内側ノズルを流通する構成としたことを特徴とする改質装置。
[21] 請求項 8に記載の改質装置において、
前記改質部円筒管の周囲を囲むようにして円筒状の断熱材を配設したことを特徴 とする改質装置。
[22] 請求項 8に記載の改質装置の運転方法であって、
改質装置を起動する際の加熱昇温運転では、前記水及び前記原料は供給しな!/ヽ 状態で、前記パーナの加熱ガスを、前記改質管の前記内円筒管の内周面に沿って 上方へと流通させ、且つ、前記加熱ガス折り返し部で折り返して前記改質管の外側 の前記加熱ガス流路を下方へと流通させた後、前記第 1蒸発器と第 2蒸発器との間 の前記加熱ガス流路を下方へと流通させることによって、この加熱ガスにより、前記改 質管及び前記改質触媒層、前記第 1蒸発器及び前記第 2蒸発器、前記低温 COシフ ト触媒層を順に加熱して、昇温することを特徴とする改質装置の運転方法。
[23] 請求項 13に記載の改質装置の運転方法であって、
改質装置を起動する際の加熱昇温運転では、前記水及び前記原料は供給しな!/ヽ 状態で、前記パーナの加熱ガスを、前記改質管の前記内円筒管の内周面に沿って 上方へと流通させ、且つ、前記加熱ガス折り返し部で折り返して前記改質管の外側 の前記加熱ガス流路を下方へと流通させた後、前記第 1蒸発器と第 2蒸発器との間 の前記加熱ガス流路を下方へと流通させることによって、この加熱ガスにより、前記改 質管及び前記改質触媒層、前記第 1蒸発器及び前記第 2蒸発器、前記低温 COシフ ト触媒層を順に加熱して、昇温し、 続けて、前記原料は供給しない状態で、前記水を供給して、前記第 1蒸発器の第 1 流路と前記第 2蒸発器の第 2流路とを順に流通させること、又は、前記第 2蒸発器の 第 2流路と前記第 1蒸発器の第 1流路とを順に流通させることにより、前記第 1蒸発器 と第 2蒸発器との間の前記加熱ガス流路を流通する前記加熱ガスで加熱して水蒸気 を発生させ、この水蒸気が、前記改質触媒層を流通した後、前記第 1改質ガス流路 及び前記第 2改質ガス流路を順に流通するときに前記第 1円筒管の外面及び前記 第 2円筒管の内面で凝縮することにより、前記低温 COシフト触媒層を加熱して、昇温 することを特徴とする改質装置の運転方法。
[24] 請求項 5又は 8に記載の改質装置の運転方法であって、
改質装置の定常運転時には、前記改質触媒層の出口の改質ガス温度を計測して 、この改質ガス温度の計測値が所定温度となるように前記バーナヘの燃料供給量を 制御し、
且つ、前記低温 COシフト触媒層の入口の改質ガス温度を計測して、この改質ガス 温度の計測値が所定温度となるように前記バーナヘの空気供給量を制御することを 特徴とする改質装置の運転方法。
[25] 請求項 5又は 8に記載の改質装置の運転方法であって、
改質装置の定常運転時には、前記改質触媒層の出口の改質ガス温度を計測して 、この改質ガス温度の計測値が所定温度となるように前記バーナヘの燃料供給量を 制御し、
且つ、前記第 2蒸発器の第 2流路の出口の混合物温度、又は、前記第 1蒸発器の 第 1流路の出口の混合物温度を計測して、この混合物温度の計測値が所定温度とな るように前記バーナヘの空気供給量を制御することを特徴とする改質装置の運転方 法。
PCT/JP2007/072732 2006-11-27 2007-11-26 改質装置及びその運転方法 WO2008069033A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2667389A CA2667389C (en) 2006-11-27 2007-11-26 Reforming apparatus and method of operating the same
US12/514,494 US8404007B2 (en) 2006-11-27 2007-11-26 Reforming apparatus and method of operating the same
CN2007800420364A CN101535173B (zh) 2006-11-27 2007-11-26 重整设备及其操作方法
KR1020097010628A KR101133477B1 (ko) 2006-11-27 2007-11-26 개질 장치 및 그 운전 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006318424A JP5177998B2 (ja) 2006-11-27 2006-11-27 改質装置及びその運転方法
JP2006-318424 2006-11-27

Publications (1)

Publication Number Publication Date
WO2008069033A1 true WO2008069033A1 (ja) 2008-06-12

Family

ID=39491936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072732 WO2008069033A1 (ja) 2006-11-27 2007-11-26 改質装置及びその運転方法

Country Status (7)

Country Link
US (1) US8404007B2 (ja)
JP (1) JP5177998B2 (ja)
KR (1) KR101133477B1 (ja)
CN (1) CN101535173B (ja)
CA (1) CA2667389C (ja)
TW (1) TW200835889A (ja)
WO (1) WO2008069033A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102348633A (zh) * 2009-03-09 2012-02-08 松下电器产业株式会社 氢生成设备及其制造方法和利用氢生成设备的燃料电池系统
JP2014005163A (ja) * 2012-06-22 2014-01-16 Panasonic Corp 水素生成装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5314381B2 (ja) * 2008-10-24 2013-10-16 株式会社ルネッサンス・エナジー・リサーチ 水素製造装置
JP5634729B2 (ja) * 2010-03-30 2014-12-03 Jx日鉱日石エネルギー株式会社 水素製造装置及び燃料電池システム
JP5462687B2 (ja) * 2010-03-30 2014-04-02 Jx日鉱日石エネルギー株式会社 水素製造装置及び燃料電池システム
JP5534901B2 (ja) * 2010-03-30 2014-07-02 Jx日鉱日石エネルギー株式会社 水素製造装置及び燃料電池システム
JP2011207726A (ja) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp 水素製造装置及び燃料電池システム
JP5538028B2 (ja) * 2010-03-30 2014-07-02 Jx日鉱日石エネルギー株式会社 水素製造装置及び燃料電池システム
KR20130069610A (ko) * 2010-03-31 2013-06-26 카운실 오브 사이언티픽 엔드 인더스트리얼 리서치 수소/합성가스 발생기
WO2012060817A1 (en) 2010-11-02 2012-05-10 Colgate-Palmolive Company Antiperspirant active compositions and manufacture thereof
RU2567941C2 (ru) 2011-04-26 2015-11-10 Колгейт-Палмолив Компани Антиперспирантные активные композиции и их изготовление
CA2834129A1 (en) 2011-04-26 2012-11-01 Colgate-Palmolive Company Compositions containing polyhydroxyoxoaluminum cations and manufacture thereof
DE102011102224A1 (de) * 2011-05-23 2012-11-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Verdampfung flüssiger Kohlenwasserstoffverbindungen oder von Flüssigkeiten in denen Kohlenwasserstoffverbindungen enthalten sind sowie deren Verwendung
KR101771303B1 (ko) * 2015-02-16 2017-08-24 한국가스공사 연료처리장치
KR101866500B1 (ko) * 2016-11-14 2018-07-04 한국에너지기술연구원 일산화탄소 제거부를 포함한 수소제조 반응기
KR102198569B1 (ko) * 2019-03-11 2021-01-12 한국에너지기술연구원 다목적 모듈형 콤팩트 개질기

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2670168B2 (ja) * 1990-03-14 1997-10-29 三菱重工業株式会社 水素原料改質装置
JPH11106204A (ja) * 1997-10-01 1999-04-20 Sanyo Electric Co Ltd 水素製造装置及び水素製造方法
JP2004115320A (ja) * 2002-09-26 2004-04-15 Aisin Seiki Co Ltd 改質装置
JP2005231968A (ja) * 2004-02-20 2005-09-02 T Rad Co Ltd 水蒸気改質システム
JP2005272167A (ja) * 2004-03-23 2005-10-06 Corona Corp 燃料改質装置
JP2006076850A (ja) * 2004-09-10 2006-03-23 Nippon Oil Corp 改質装置および方法ならびに燃料電池システム
JP2007308318A (ja) * 2006-05-17 2007-11-29 Mitsubishi Heavy Ind Ltd 改質装置及びその運転方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115841B2 (ja) * 1987-06-29 1995-12-13 日本酸素株式会社 メタノ−ルの水蒸気改質法
DE69730608T2 (de) * 1996-06-28 2005-09-15 Matsushita Electric Works, Ltd., Kadoma Reformierungsvorrichtung zum Erzeugen eines Spaltgases mit verringertem CO-Gehalt.
JP4161612B2 (ja) 2002-05-15 2008-10-08 株式会社Ihi 燃料改質装置の起動方法
JP2004075435A (ja) 2002-08-13 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd 燃料改質装置
JP4587016B2 (ja) 2003-05-30 2010-11-24 ソニー株式会社 反応装置とその製造方法、改質装置、電源供給システム
TWI398406B (zh) 2005-09-21 2013-06-11 Nippon Oil Corp Automatic starting method of thermal reformer
TWM328560U (en) 2007-09-14 2008-03-11 Syspotek Corp Concentration structure able to reduce environmental temperature effect

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2670168B2 (ja) * 1990-03-14 1997-10-29 三菱重工業株式会社 水素原料改質装置
JPH11106204A (ja) * 1997-10-01 1999-04-20 Sanyo Electric Co Ltd 水素製造装置及び水素製造方法
JP2004115320A (ja) * 2002-09-26 2004-04-15 Aisin Seiki Co Ltd 改質装置
JP2005231968A (ja) * 2004-02-20 2005-09-02 T Rad Co Ltd 水蒸気改質システム
JP2005272167A (ja) * 2004-03-23 2005-10-06 Corona Corp 燃料改質装置
JP2006076850A (ja) * 2004-09-10 2006-03-23 Nippon Oil Corp 改質装置および方法ならびに燃料電池システム
JP2007308318A (ja) * 2006-05-17 2007-11-29 Mitsubishi Heavy Ind Ltd 改質装置及びその運転方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102348633A (zh) * 2009-03-09 2012-02-08 松下电器产业株式会社 氢生成设备及其制造方法和利用氢生成设备的燃料电池系统
JP2014005163A (ja) * 2012-06-22 2014-01-16 Panasonic Corp 水素生成装置

Also Published As

Publication number Publication date
JP5177998B2 (ja) 2013-04-10
TWI357484B (ja) 2012-02-01
CA2667389A1 (en) 2008-06-12
CA2667389C (en) 2012-07-03
KR20090073249A (ko) 2009-07-02
US20100055030A1 (en) 2010-03-04
US8404007B2 (en) 2013-03-26
JP2008133140A (ja) 2008-06-12
KR101133477B1 (ko) 2012-04-10
CN101535173B (zh) 2011-11-16
CN101535173A (zh) 2009-09-16
TW200835889A (en) 2008-09-01

Similar Documents

Publication Publication Date Title
WO2008069033A1 (ja) 改質装置及びその運転方法
JP4135640B2 (ja) 改質装置及びその運転方法
JP3403416B2 (ja) 改質装置
US8690972B2 (en) Hydrogen production system and reforming apparatus
JP2004149402A (ja) 水素生成器とそれを備える燃料電池システム
JP2018087134A (ja) 液体改質可能燃料を改質する方法、及び液体改質可能燃料をスチーム改質する方法
JP2002187705A (ja) 単管円筒式改質器
JP2009078954A (ja) 改質装置
US20100040519A1 (en) Reformer, reforming unit, and fuel cell system
JP2009096705A (ja) 燃料電池用改質装置
JP3861077B2 (ja) 燃料改質装置
JP2012520234A (ja) 燃料改質器の燃料噴射装置及び方法
JP2004059415A (ja) 燃料改質器及び燃料電池発電システム
JP2008120634A (ja) 改質器、改質ユニットおよび燃料電池システム
JP4464230B2 (ja) 改質装置および方法ならびに燃料電池システム
RU2458854C2 (ru) Генератор водорода и источник энергии с топливным элементом
JP2008120604A (ja) 改質器、改質処理方法、改質ユニットおよび燃料電池システム
JP4638693B2 (ja) 液体燃料気化装置、液体燃料処理装置および燃料電池発電システム
JP2009062223A (ja) 改質装置
KR101199134B1 (ko) 선택적 산화반응장치 및 이를 포함하는 연료전지 시스템
KR102005715B1 (ko) 원료 예열부를 포함한 일체형 수소제조 반응기
JP2004175580A (ja) 水蒸気改質装置
JP2004315331A (ja) 一酸化炭素除去器
JP2003112904A (ja) 単管円筒式改質器
CN110422823A (zh) 一种电磁感应加热制氢装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780042036.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832457

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2667389

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020097010628

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12514494

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07832457

Country of ref document: EP

Kind code of ref document: A1