WO2008069031A1 - 光学素子および光ピックアップ装置 - Google Patents

光学素子および光ピックアップ装置 Download PDF

Info

Publication number
WO2008069031A1
WO2008069031A1 PCT/JP2007/072723 JP2007072723W WO2008069031A1 WO 2008069031 A1 WO2008069031 A1 WO 2008069031A1 JP 2007072723 W JP2007072723 W JP 2007072723W WO 2008069031 A1 WO2008069031 A1 WO 2008069031A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
optical
lens
multilayer film
index layer
Prior art date
Application number
PCT/JP2007/072723
Other languages
English (en)
French (fr)
Inventor
Kazunari Tada
Youichi Ogawa
Nobuo Mushiake
Kazuyuki Nishi
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to CN2007800454962A priority Critical patent/CN101553744B/zh
Priority to JP2008548221A priority patent/JP4433086B2/ja
Publication of WO2008069031A1 publication Critical patent/WO2008069031A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • the present invention relates to an optical element having a lens surface coated.
  • the present invention also relates to an optical pickup device on which the optical element is mounted.
  • an optical pickup device is equipped with an objective lens (optical element) that condenses light from a laser diode and guides it to an optical disk.
  • an objective lens optical element
  • Such an objective lens is molded from a plastic material or a glass material!
  • the molded objective lens causes various aberrations (wavefront aberration) in the emitted light due to various factors, for example, tolerance of the lens surface and non-uniformity of the refractive index distribution in the lens. These aberrations make the shape of the spot diameter focused on the optical disc different from the desired shape. For this reason, a shape error occurs between the spot diameter deformed in this way and the spot diameter of the desired shape, and the phenomenon that data cannot be stably recorded on the optical disk and the data read from the optical disk force cannot be reproduced accurately. A phenomenon occurs.
  • An objective lens for a blue laser (wavelength near 405 nm) that requires high accuracy is required to have a wavefront aberration of 10 m ⁇ rms or less, for example!
  • One of the causes for making the refractive index distribution in the lens non-uniform is glass molding.
  • the objective lens OL is manufactured by glass molding, as shown in FIG. 4, the molten glass base material GM is press-molded into a mold ⁇ ( ⁇ 1 ⁇ 2) having a predetermined curved surface. For this reason, a relatively large pressure is applied to the outer edge of the objective lens OL, which causes stress distortion inside the objective lens OL, resulting in birefringence (see FIG. The number of arrows in 4 indicates the pressure distribution).
  • Such birefringence is generated in a lens having a large numerical aperture (for example, a numerical aperture of 0.6 or more) having a large thickness difference between the center and the outer edge of the lens.
  • Patent Document 1 As one measure for preventing the above phenomenon, for example, there is a method disclosed in Patent Document 1. According to this method, first, assuming that the internal refractive index distribution is uniform, the optical An initial design value of the element is obtained. Next, an optical element is formed based on this initial set value, and the refractive index distribution of the molded product (initial product) is actually measured.
  • Patent Document 1 JP 2005-283783 A
  • the present invention has been made to solve the above problems.
  • the object is to provide an optical element that can easily suppress various aberrations of the emitted light (for example, astigmatism component of wavefront aberration) and an optical pickup equipped with the optical element. It is in.
  • the present invention is an optical element having an optical multilayer film on the lens surface.
  • the lens has birefringence, the astigmatism component of the wavefront aberration caused by the lens is 10 m rms or more, and the optical multilayer film generates a phase difference between the P-polarized light and the S-polarized light.
  • the astigmatism component of wavefront aberration by the optical element is reduced to 5m rms or less.
  • phase difference of the optical multilayer film substantially monotonically increases from the center of the lens toward the outer edge.
  • An example of the monotonous change is a linear change.
  • the optical multilayer film is an antireflection film, and in the optical thin film included in the optical multilayer film,
  • Condition (1) The astigmatism component in the wavefront aberration of the lens is 20 m rms or more.
  • the optical multilayer film is an antireflection film, and in the optical thin film included in the optical multilayer film,
  • the astigmatism component in the wavefront aberration of the lens is 10 m ⁇ rms or more and
  • the optical multilayer film has a low refractive index layer, an intermediate refractive index layer, and a high refractive index layer, and has a total of 7 or more layers.
  • the optical multilayer film is an antireflection film, and in the optical thin film included in the optical multilayer film,
  • Condition (5) The astigmatism component in the wavefront aberration of the lens is 20 m rms or more.
  • the optical multilayer film is an antireflection film, and in the optical thin film included in the optical multilayer film,
  • the optical multilayer film includes a total of five or more optical films, and includes a repeating structure in which low refractive index layers and high refractive index layers are alternately laminated.
  • the lens is formed by molding.
  • the numerical aperture of the lens is 0.6 or more.
  • the birefringence occurs radially with respect to the lens axis center of the lens, and increases with the amount S of birefringence and the force from the lens axis center to the outer edge of the lens.
  • the optical multilayer film is a dielectric multilayer film in which dielectric films for antireflection are laminated. desirable.
  • optical pickup device including the above-described optical element can also be said to be the present invention.
  • the lens has birefringence, and the optical multilayer film generates a phase difference between the P-polarized light and the S-polarized light to cancel the birefringence. Therefore, an optical element that reduces the astigmatism component of the wavefront aberration generated in the lens to half or less can also be said to be the present invention.
  • the optical multilayer film reduce the astigmatism component of wavefront aberration generated in the lens to 1/5 or less! /.
  • the optical multilayer film formed on the optical element can easily suppress various aberrations of the emitted light (for example, astigmatism component of wavefront aberration).
  • FIG. 1 is an enlarged view of the objective lens in FIG. 2 described later.
  • FIG. 2 is a configuration diagram of an optical pickup device.
  • FIG. 3A is a perspective view of a confirmation device for confirming birefringence.
  • FIG. 3B is a plan view of a lens surface seen by the confirmation device.
  • FIG. 3C is a plan view of the lens surface when the objective lens is rotated.
  • FIG. 3D is a plan view of the lens surface when the polarizing plate in the confirmation apparatus is rotated.
  • FIG. 4 is a configuration diagram showing a molding die for an objective lens and a glass base material.
  • FIG. 5 is a reflection characteristic diagram showing reflection characteristics of the dielectric multilayer film of Example 1.
  • FIG. 6 is a phase difference characteristic diagram showing the phase difference characteristics of the dielectric multilayer film of Example 1 at a wavelength of 405 nm.
  • FIG. 7 is a phase difference characteristic diagram showing the phase difference characteristics of the dielectric multilayer film of Example 1 at a wavelength of 660 nm.
  • FIG. 8 is a phase difference characteristic diagram showing the phase difference characteristic of the dielectric multilayer film of Example 1 at a wavelength of 785 nm.
  • FIG. 9 is a reflection characteristic diagram showing the reflection characteristics of the dielectric multilayer film of Example 2.
  • FIG. 10 shows the retardation characteristics of the dielectric multilayer film of Example 2 at a wavelength of 405 nm. It is a phase difference characteristic view.
  • FIG. 13 is a reflection characteristic diagram showing the reflection characteristics of the dielectric multilayer film of Example 3.
  • 14] A phase difference characteristic diagram showing the phase difference characteristic of the dielectric multilayer film of Example 3 at a wavelength of 405 nm.
  • FIG. 17 is a reflection characteristic diagram showing the reflection characteristics of the dielectric multilayer film of Example 4.
  • 18] A phase difference characteristic diagram showing the phase difference characteristic of the dielectric multilayer film of Example 4 at a wavelength of 405 nm.
  • FIG. 19 is a phase difference characteristic diagram showing the phase difference characteristic of the dielectric multilayer film of Example 4 at a wavelength of 660 nm.
  • FIG. 20 is a phase difference characteristic diagram showing the phase difference characteristics of the dielectric multilayer film of Example 4 at a wavelength of 785 nm.
  • FIG. 21 is a reflection characteristic diagram showing the reflection characteristics of the dielectric multilayer film of Example 5.
  • FIG. 22 is a phase difference characteristic diagram showing the phase difference characteristics of the dielectric multilayer film of Example 5 at a wavelength of 405 nm.
  • FIG. 23 is a phase difference characteristic diagram showing the phase difference characteristics of the dielectric multilayer film of Example 5 at a wavelength of 660 nm.
  • FIG. 24 is a phase difference characteristic diagram showing the phase difference characteristics of the dielectric multilayer film of Example 5 at a wavelength of 785 nm.
  • FIG. 25 is a reflection characteristic diagram showing the reflection characteristics of the dielectric multilayer film of Example 6.
  • FIG. 26 shows retardation characteristics of the dielectric multilayer film of Example 6 at a wavelength of 405 nm. It is a phase difference characteristic view.
  • FIG. 27 is a phase difference characteristic diagram showing the phase difference characteristics of the dielectric multilayer film of Example 6 at a wavelength of 660 nm.
  • FIG. 28 is a phase difference characteristic diagram showing the phase difference characteristic of the dielectric multilayer film of Example 6 at a wavelength of 785 mn.
  • FIG. 29 is a reflection characteristic diagram showing the reflection characteristic of the dielectric multilayer film of the comparative example.
  • FIG. 30 is a phase difference characteristic diagram showing the phase difference characteristics of the dielectric multilayer film of the comparative example at a wavelength of 405 nm.
  • FIG. 31 is a phase difference characteristic diagram showing a phase difference characteristic of a dielectric multilayer film of a comparative example at a wavelength of 660 mn.
  • FIG. 32 is a phase difference characteristic diagram showing a phase difference characteristic of a dielectric multilayer film of a comparative example at a wavelength of 785 nm.
  • FIG. 33 is a block diagram of a Twiman Green interferometer.
  • FIG. 2 is a configuration diagram showing a schematic configuration of the optical pickup device 59.
  • the optical pick-up device 59 includes a first laser unit 21, a second laser unit 31, a dichroic prism 41, a rising mirror 42, a quarter-wave plate 43, and a coating objective lens COL. .
  • the optical disc 44 is also shown for convenience.
  • the light incident on the optical disk 44 is referred to as “irradiation light”, and the light reflected from the optical disk 44 is referred to as “signal light” (the light is illustrated by a broken line).
  • the first laser unit 21 will be described.
  • the first laser unit 21 is a first laser unit 21
  • LD Laser diode
  • PBS polarization beam splitter
  • PD photodiode
  • the first LD 22 emits laser light (blue laser) having a wavelength of 405 nm toward the first PBS 23.
  • the first LD 22 is one of the next generation DVDs (Digital Versatile Discs).
  • BD Luray Disc
  • the first PBS 23 transmits linearly polarized laser light (eg, P-polarized light) emitted from the first LD 22 and guides it to the first collimator lens 24.
  • the first PBS 23 reflects the signal light (for example, S-polarized light) traveling through the first collimator lens 24 and guides it to the first PD 25.
  • the first collimator lens 24 converts the laser light incident through the first PBS 23 into parallel light and guides it to the dichroic prism 41. On the other hand, the first collimator lens 24 guides the signal light traveling through the dichroic prism 41 to the first PBS 23.
  • the first PD 25 receives the signal light incident through the first PBS 23.
  • the light received by the first PD25 detects servo signals (focus error signals, tracking error signals), information signals, aberration signals, etc. during recording / playback on Blu-ray discs.
  • the second laser unit 31 will be described.
  • the second laser unit 31
  • the second LD 32 emits laser light having a wavelength of 660 nm and laser light having a wavelength of 785 nm toward the second PBS 33. That is, the second LD 32 is a light source that emits laser light of two wavelengths, and corresponds to DVD and CD (Compact Disc).
  • the second PBS 33 transmits linearly polarized laser light (eg, P-polarized light) emitted from the second LD 32 and guides it to the second collimator lens 34.
  • the second PBS 33 reflects the signal light (for example, S-polarized light) traveling through the second collimator lens 34 and guides it to the second PD 35.
  • the second collimator lens 34 converts the laser light incident through the second PBS 33 into parallel light and guides it to the dichroic prism 41.
  • the second collimator lens 34 guides the signal light traveling through the dichroic prism 41 to the second PBS 33.
  • the second PD 35 receives the signal light incident through the second PBS 33.
  • the light received by the first PD 25 detects a servo signal (focus error signal, tracking error signal), information signal, aberration signal, etc. during recording / reproducing on a DVD or CD.
  • the dichroic prism 41 that reflects the power reflects and directs the laser beam supplied from the first laser unit 21 to the rising mirror 42 and transmits the laser beam supplied from the second laser unit 31 to transmit the laser beam. Lead to Ra 42.
  • the dichroic prism 41 is an optical path conversion element that emits the laser light incident from different directions with the same traveling direction.
  • the dichroic prism 41 guides the signal light traveling through the rising mirror 42 to the first laser unit 21 or the second laser unit 31. Specifically, the signal light of the laser light emitted from the first LD 22 is reflected after being incident on the dichroic prism 41 and guided to the first collimator lens 24 of the first laser unit 21. Further, the signal light of the laser beam from which the second LD 32 force is also emitted is transmitted after being incident on the dichroic prism 41 and guided to the second collimator lens 34 of the second laser unit 31.
  • the rising mirror 42 is emitted from the dichroic prism 41 and directed to the optical disk 44 to bend the optical path of the laser beam and guide it to the coating objective lens COL.
  • the force and the raising mirror 42 are arranged in the optical path between the first LD22 ′ second LD32 and the optical disc 44, more specifically between the dichroic prism 41 and the coated object lens COL. .
  • the raising mirror 42 bends the optical path of the signal light traveling through the coating objective lens COL and guides it to the dichroic prism 41.
  • the quarter-wave plate 43 converts linearly polarized light (for example, P-polarized light) reflected by the rising mirror 42 into circularly polarized light.
  • the quarter-wave plate 43 converts the signal light (circularly polarized light) from the optical disk 44 into linearly polarized light (for example, S-polarized light).
  • the coated object lens COL is reflected by the rising mirror 42 and collects the light (irradiation light) obtained through the quarter-wave plate 43 on the optical disk 44.
  • the coating objective lens COL guides light (signal light) reflected from the optical disk 44 to the quarter-wave plate 43.
  • the coated objective lens COL is provided with a dielectric multilayer film MLR which is an antireflection film ⁇ AR (Anti Reflection) film ⁇ ! (Details will be described later).
  • the material of the objective lens OL in the coating objective lens COL is not particularly limited. However, it can be said that glass having high weather resistance against ultraviolet light is desirable. For example, the following glass molded lens is mentioned as an example.
  • NA 0.85 Lens outline (diameter): 5mm
  • the standard values of the numerical aperture of the coating objective lens COL used for BD, DVD, and CD are 0.85, 0.65, and 0.5, respectively.
  • the objective lens OL formed by glass molding has radiation birefringence centered on the lens axis, and the birefringence amount increases as it approaches the outer edge of the objective lens OL. Yes.
  • the birefringence of the objective lens OL is distributed radially from the lens axis, that is, axisymmetrically distributed! /, So the optical axis of birefringence (the fast axis is! / Is the slow axis) Exists in the radial and circumferential directions of the lens.
  • the light (marginal ray) incident on the outer edge of the objective lens OL is greatly affected by birefringence and generates wavefront aberration.
  • the coating objective COL includes a plurality of dielectric films Li for antireflection treatment (AR treatment). It is. Then, as shown in FIG. 1, for example, when parallel light is incident on the dielectric film Li, the incident angle ⁇ gradually increases as it approaches the outer edge of the coating objective lens COL (note that the dotted line in FIG. And shows the normal at the incident point in the dielectric film Li).
  • the incident angle ⁇ changes, the light traveling in the dielectric film Li is polarized (oscillating in parallel to the incident surface) and S-polarized light (perpendicular to the incident surface). The phase difference between and the polarization changes.
  • the phase difference between the P-polarized light and the S-polarized light ⁇ more specifically, the phase difference of the transmitted light passing through the plurality of dielectric films Li (dielectric multilayer film MLR); the transmission phase difference D ⁇ and the birefringence
  • the phase difference (birefringence phase difference) between P-polarized light and S-polarized light have opposite polarities. This is because the birefringence phase difference is canceled out by the transmission phase difference D caused by the dielectric film Li.
  • the astigmatism component in the wavefront aberration is reduced due to the cancellation of the birefringence phase difference.
  • the transmission phase difference D due to the dielectric film Li increases substantially monotonically as it goes from the lens center to the outer edge.
  • the birefringence of the objective lens OL is directed toward the outer edge and sea urchin. This is because it can be canceled by the transmission phase difference D.
  • a substantially monotonic increase means that the transmission phase difference D increases toward the outer edge and, as a whole, increases as a whole, even if the transmission phase difference D slightly decreases near the outermost edge. It can be said that it is increasing monotonically.
  • the object lens OL has birefringence, the polarization state of the emitted light is changed.
  • the signal light is directed to the first PBS 23 and the second PBS 33, and includes components other than S-polarized light.
  • so-called return light that passes through the PBSs 23 and 33 and reaches the LD is generated.
  • the return light must be eliminated as much as possible to destabilize the LD oscillation.
  • the dielectric multilayer film (optical multilayer film) MLR constituting the antireflection film will be described in detail.
  • a plurality of dielectric films Li are formed on the coating objective lens COL.
  • the reflectivity of the dielectric multilayer film MLR is defined as follows.
  • the thickness of each dielectric film Li and the refractive index of each dielectric film Li are expressed by the following Fresnel equations for each boundary surface ("dielectric material"). It is obtained by applying the number of films of Li film (number of layers) ").
  • the dielectric multilayer films MLR in Examples to be described later;! To 6 are designed to generate a transmission phase difference D (phase difference between P-polarized light and S-polarized light) not only for antireflection.
  • the principle of adjusting the transmission phase difference D is as follows. [0055] Normally, when light passes through a medium having a different refractive index (refractive index n> refractive index n), the refractive index n
  • phase ⁇ of the light passing through the medium (the phase ⁇ 'of the P-polarized light ⁇ '
  • phase difference phase ⁇ -phase ⁇
  • refractive index ⁇ refractive index
  • phase difference between P-polarized light and S-polarized light (phase ⁇ — phase ⁇ ) is different.
  • the transmission phase difference D can be set appropriately using the refractive index difference (refractive index difference) and the distance in the medium (film thickness) as parameters.
  • Table 16 shows the construction data of six types (Examples;! To 6) of dielectric multilayer MLR considering the transmission phase difference D.
  • Table 7 shows the construction data of one type of dielectric multilayer MLR that does not take the transmission phase difference D into consideration as a comparative example.
  • the construction data of Example 16 is a value derived from commercially available film configuration design software with the antireflection characteristic and the desired phase difference as target values.
  • the construction data of the comparative example is a value of an antireflection film that is generally used conventionally.
  • the refractive index (nd) corresponds to the d-line (wavelength 587/6 nm), and the Abbe number (i> d) of the glass corresponding to the d-line is 5 6.88.
  • the material of the dielectric film Li is indicated by a compound formula in the case of a single compound and indicated by a product name in the case of a mixture (see below).
  • H4 is a mixture of TiO and La 2 O (lanthanum oxide)
  • M3 is a mixture of Al O and La O
  • dielectric film (layer) Li is defined as follows according to the refractive index of the material.
  • Low refractive index layer L Dielectric film Li with a refractive index of less than 1.6
  • Intermediate refractive index layer M Dielectric film Li with a refractive index of 1.6 to 1.9 • High refractive index layer H: Dielectric film Li with a refractive index exceeding 1.9
  • the vertical axis of the phase difference characteristic diagram indicates the difference obtained by subtracting the phase of S-polarized light from the phase of P-polarized light.
  • “+” on the vertical axis indicates that the phase of S-polarized light is delayed with respect to the phase of P-polarized light
  • “” on the vertical axis indicates the phase of P-polarized light.
  • the transmission phase difference D that cancels out the birefringence phase difference is a value indicated by “+” in the figure.
  • the dielectric multilayer film MLR of ⁇ 6 has three types of layers: a low refractive index layer L, an intermediate refractive index layer M, and a high refractive index layer H.
  • the total number of layers (total number of dielectric films Li) included in the dielectric multilayer film MLR is 12 layers, 9 layers, 9 layers, 7 layers, 7 layers, respectively for the examples:! To 6 There are 5 layers.
  • the dielectric multilayer films MLR of Examples;! To 6 include a repetitive structure in which the low refractive index layer L and the high refractive index layer H are alternately stacked.
  • Refractive index difference (N-N) relationships are 0.73, 1.04, 0.73, 0.73, 0.73, 0.7, respectively.
  • the dielectric multilayer film MLR of the comparative example has three types of layers, a low refractive index layer L, an intermediate refractive index layer M, and a high refractive index layer H, as in Examples 1 to 6. However, the total number of layers included in the dielectric multilayer MLR is three.
  • the dielectric multilayer film MLR of the comparative example includes a repeating structure in which the low refractive index layers L and the high refractive index layers H are alternately stacked, as in the first to sixth embodiments.
  • the number of groups is one.
  • the refraction between the refractive index N of the high refractive index layer H and the refractive index N of the low refractive index layer L is refraction between the refractive index N of the high refractive index layer H and the refractive index N of the low refractive index layer L.
  • the rate difference is 1.04.
  • the following can be said from the reflection characteristic diagrams and phase difference characteristic diagrams of Examples 1 to 6.
  • the reflectance power corresponding to the wavelengths (405, 660, 785 nm) of BD, DVD, and CD is less than 3%. Therefore, when the dielectric multilayer film MLR of Examples;! To 6 is formed on the objective lens OL, the reflected light from the coating objective lens COL is effectively suppressed.
  • the transmission phase difference D [°] is specified within a certain range.
  • a used wavelength of 405 nm it is as follows.
  • the transmission phase difference D increases monotonously as the incident angle ⁇ increases in the range of 30 ° ⁇ ⁇ ⁇ 60 °.
  • monotonic change means either monotonic increase or monotonic decrease, and an example of monotonic change is linear change.
  • the incident angle ⁇ shown on the horizontal axis of the phase difference characteristic diagram is related to the radial direction of the coating objective lens COL. This is apparent from FIG. 1 showing the case where the dielectric multilayer MLR is provided on the objective lens OL!
  • the objective lens OL has the first to third embodiments. It is desirable that the dielectric multilayer film MLR 6 is formed. This is because in the dielectric multilayer MLR deposited on the objective lens OL (that is, in the case of the coating objective lens COL), the transmission phase difference D is centered on the lens axis so as to correspond to the birefringence of the objective lens OL. This is because they occur radially and the amount of phase difference increases as they approach the outer edge of the objective lens OL.
  • the transmission phase difference D caused by the dielectric multilayer film MLR corresponds to the birefringence phase difference caused by the objective lens OL. Therefore, in the coating objective lens COL on which the dielectric multilayer film MLR of Examples 1 to 6 is formed, when light with a wavelength of 405 nm is incident on the coating objective lens COL, the transmission phase difference caused by the dielectric multilayer film MLR D can sufficiently cancel out the birefringence phase difference caused by the objective lens OL. As a result, the astigmatism component in the wavefront aberration is reduced.
  • the birefringence phase difference is inversely proportional to the wavelength used.
  • the value of the transmission phase difference D was smaller than the value of the transmission phase difference D in the case of using wavelength 405 ⁇ m.
  • the transmission phase difference D and the birefringence phase difference cancel each other when the wavelength used is 405 nm, the transmission phase difference D and the birefringence phase difference are obtained even when the wavelength used is 660 and 785 nm. And offset.
  • the numerical apertures of the corresponding lenses are 0 ⁇ 65 and 0.5, respectively.
  • the light incident on the coating objective lens COL The bundle diameter is small compared to the case where light having a wavelength of 405 nm is incident. Since light with wavelengths of 660 nm and 785 nm do not enter the outer edge of the lens, there is no problem even if a large phase difference is not generated due to the influence of birefringence.
  • the reflection characteristic diagram ⁇ phase difference characteristic diagram of the comparative example the reflection skew force corresponding to the wavelengths (405, 660, 785 nm) of BD, DVD, and CD is less than 5.50 / 0 . Therefore, the case where the dielectric multilayer film MLR of the comparative example is formed on the objective lens OL is compared with the case where the dielectric multilayer film MLR of Examples;! To 6 is formed on the objective lens OL. Then, it can be seen that the coated objective lens COL corresponding to Examples 1 to 6 can more effectively suppress the reflected light than the coated objective lens COL corresponding to the comparative example.
  • the dielectric multilayer film MLR of the comparative example takes into account the transmission phase difference D! /,! /. For this reason, it is difficult for the transmission phase difference D of “+” to be generated at all wavelengths used, but rather, the transmission phase difference D of “” is easily generated.
  • the wavefront aberration is measured by a Twiman Green interferometer as shown in FIG.
  • the Toiman Green interferometer is a laser light source 14 that emits linearly polarized light, a beam splitter 15, a spherical prototype 16, a planar prototype 17, and an image that captures interference fringe images and calculates wavefront aberration.
  • a processing unit 18 The light flux from the light source is separated by the beam splitter 15, one of which is reflected by the planar master 17, and the other is collected by the lens 19, and then reflected by the spherical prototype 16.
  • the reference light reflected by the planar master 17 and the measurement light transmitted through the test lens 19 again are combined by the beam splitter 15 to generate interference fringes.
  • the interference fringes are input to the image processing device 18 and processed to measure the wavefront aberration of the lens 19 to be examined.
  • the parallelism (divergence) of the light beam incident on the test lens 19 is appropriately adjusted according to the actual use state of the test lens 19.
  • the measurement of the astigmatism component of the wavefront aberration takes the following steps.
  • the test lens 19 is arranged so that the spherical center of the spherical prototype 16 and the focal position of the test lens 19 (coating objective lens COL, etc.) match, and the reflected light from the spherical prototype 16 and the planar prototype Wavefront aberration is determined from interference fringes caused by reflected light from 17 (first measurement; measurement at 0 ° lens position).
  • the lens 19 is rotated 90 ° around the optical axis from the first measurement position, and then the wavefront aberration is measured in the same way as the first measurement (second measurement; lens position 90 ° Measurement).
  • the astigmatism component of the wavefront aberration is obtained using the wavefront aberration (wavefront aberration at the lens position of 0 ° ⁇ 90 °) obtained as described above. Specifically, first, each wavefront aberration is expanded by a Zemike polynomial, and the coefficients of the Z4 term and the Z5 term in the polynomial are obtained. After that, the astigmatism component [m rms] of the wavefront aberration is obtained from the following equation.
  • Z4 (90 °) Z4 term of Zernike's polynomial at lens position 90 °
  • Z5 (90 °) Z5 term of Zernike's polynomial at lens position 90 °
  • the Zernike polynomial uses a so-called Arizona-style expansion formula. Specifically, it was calculated using Metropro Zernike Application, an analysis software made by Canon Inc. Wavefront aberration is measured using linearly polarized light. In general, when the wavefront aberration is measured using an interferometer, circularly polarized light is used. However, the astigmatism component of the wavefront aberration due to birefringence is not detected by the method using circularly polarized light.
  • first objective lens OL1 first objective lens OL1 'second objective lens OL2
  • second objective lens OL2 The first objective lens OLl and the second objective lens OL2 are both made by glass molding, and both have a numerical aperture of 0.85.
  • the astigmatism component of the wavefront aberration caused by the first objective lens OL1 was found by the above measurement method to be 20. lm rms.
  • the astigmatism component of the wavefront aberration of the first objective lens OL1 formed with the dielectric multilayer MLR of the comparative example was found to be 18.8 m rms (reduction of about lm rms) .
  • the value of the transmission phase difference D at a certain incident angle ⁇ is as follows.
  • the astigmatism component of the wavefront aberration of the first coating objective lens COL in which the dielectric multilayer film MLR of Example 1 was formed on the first objective lens OL1 was found to be 1.7 m rms. (Reduction of about 18m rms).
  • the value of the transmission phase difference D at a certain incident angle ⁇ is as follows.
  • the dielectric multilayer film MLR of the comparative example cannot sufficiently reduce the astigmatism component of the wavefront aberration caused by the first objective lens OL1, but the dielectric multilayer film MLR of Example 1 It can be seen that the astigmatism component of the wavefront aberration caused by the first objective lens OL1 can be sufficiently reduced.
  • the astigmatism component was 18.5 m rms.
  • the astigmatism component of the wavefront aberration of the second coating objective lens COL in which the dielectric multilayer film MLR of Example 2 was formed on the second objective lens OL2 was determined as 1. lm rms. (A reduction of about 17m rms).
  • the value of the transmission phase difference D at a certain incident angle ⁇ is as follows.
  • the dielectric multilayer film MLR of Example 2 can sufficiently reduce the astigmatism component of the wavefront aberration caused by the second objective lens OL2.
  • the objective lenses OLl and OL2 have birefringence radially around the lens axis.
  • the objective lens OL was placed between the polarizing plate 12 having the transmission axis PA and the plane mirror 13 to observe interference fringes.
  • Light that has passed through the polarizing plate 12 (light that vibrates in the same direction as the transmission axis PA) passes through the objective lens OL, is reflected by the plane mirror 13, passes through the objective lens OL again, and travels toward the polarizing plate 12. And proceed.
  • the objective lens OL is equivalent to being arranged between parallel Nicols.
  • FIG. 3B shows the objective lens OL observed through the polarizing plate 12. Specifically, white was observed in the same direction (parallel direction) and perpendicular to the transmission axis PA, while black interference fringes were observed in the direction of 45 ° (135 °) with the transmission axis PA.
  • FIG. 3C shows the lens surface when the objective lens OL is rotated. The interference fringes did not rotate even when the objective lens OL was rotated.
  • FIG. 3D shows the lens surface when the polarizing plate 12 is rotated. When the polarizing plate 12 was rotated, the interference fringes were rotated in the same manner as the polarizing plate 12.
  • the objective lens OL has uniaxial crystal birefringence, and its optical axis is in the radial direction and the circumferential direction. That is, the objective lens OL has radial birefringence. It was also confirmed that the magnitude of the birefringence increases toward the outer edge of the objective lens OL.
  • the measurement of the wavefront aberration of the coating objective lens COL was not performed by using the dielectric multilayer film MLR of Examples 1 and 2, which was formed. However, it is easy to reduce the astigmatism component of the wavefront aberration caused by the objective lens OL even with the dielectric multilayer film MLR of the other embodiments having the same phase difference as the first and second embodiments. I can guess.
  • the astigmatism component of the wavefront aberration of the first objective lens OL1 exceeds 20 m rms, and the transmission phase difference D of Example 1 is 18 ° when the incident angle ⁇ force is 0 °. Since the transmission phase difference D of Examples 3 and 4 is the same as that of Example 1, it is possible to cancel birefringence similar to that of the first objective lens OL1.
  • Example 5 since the transmission phase difference D of Example 5 is the same as that of Example 2, birefringence similar to that of the second objective lens OL2 can be canceled out.
  • the magnitude of the astigmatism component of wavefront aberration correlates with the magnitude of birefringence, so Example 6 is effective when used for an objective lens having a smaller birefringence than the second objective lens OL 2.
  • the astigmatic difference component of the wavefront aberration can be reduced.
  • a dielectric multilayer film that generates a larger phase difference may be used for an objective lens having a larger birefringence than the first objective lens OL1.
  • the dielectric multilayer film MLR that generates a large phase difference and realizes antireflection has a low refractive index layer L, an intermediate refractive index layer M, and a high refractive index layer H, and is preferably composed of 9 or more layers in total. (Examples correspond to! ⁇ 3).
  • the dielectric multilayer film MLR includes a total of seven or more optical thin films and a repeating structure formed by alternately laminating low refractive index layers L and high refractive index layers H, and has a high refractive index.
  • the difference between the refractive index N of the layer H and the refractive index N of the low refractive index layer L should be 0.5 or more (Example:!
  • the number of layers of the dielectric multilayer film MLR is more preferably 20 or less. If the upper limit is exceeded, ripples occur due to variations during manufacturing, making it difficult to stably ensure antireflection characteristics.
  • Dielectric multilayer MLR which generates a relatively small phase difference and realizes antireflection, has a low refractive index layer L, an intermediate refractive index layer M, and a high refractive index layer H. There should be (Examples 1 to 5 correspond).
  • the dielectric multilayer film MLR includes a total of five or more dielectric films, and also includes a repetitive structure in which the low refractive index layers L and the high refractive index layers H are alternately stacked, and has a high refractive index.
  • the difference between the refractive index N of the layer H and the refractive index N of the low refractive index layer L is 0.5 or more. (Examples:! To 6 correspond). Antireflection can be realized even with a smaller number of layers than the above conditions. It is difficult to generate a phase difference that can compensate for birefringence. In any case, the number of layers of the dielectric multilayer MLR is more preferably 20 or less. If the upper limit is exceeded, ripples occur due to manufacturing variations, making it difficult to stably ensure antireflection characteristics.
  • the following can be said for COL. That is, birefringence occurs in the objective lens OL, which may cause a wavefront convergence in the light emitted from the objective lens OL.
  • the coated objective lens COL has a dielectric multilayer MLR that reduces the astigmatism component to 5 m rms or less! / .
  • D is 2 ° or more and 20 ° or less
  • D is 4 ° or more and 40 ° or less
  • the change of D in the range of 30 ° ⁇ ⁇ 60 ° is a monotonous change (eg linear change) and is a coated objective lens COL (example;! To 6 corresponds).
  • the force and burial coated objective lens COL can effectively reduce the astigmatism component of wavefront aberration and achieve antireflection if the following conditions are satisfied (actual) Examples;! ⁇ 3 correspond).
  • the astigmatism component in the wavefront aberration generated by the objective lens OL without the dielectric film Li is 20 m ⁇ rms or more.
  • Low refractive index layer L Low refractive index layer L, intermediate refractive index layer M, and high refractive index layer H.
  • the coated objective lens COL can effectively reduce the astigmatism component of the wavefront aberration and realize antireflection (Examples;! To 5). Is supported).
  • the astigmatism component in the wavefront aberration generated by the objective lens OL without the dielectric film Li is 10 m ⁇ rms or more and less than 20 m ⁇ rms.
  • the dielectric multilayer film MLR has a low refractive index layer L, an intermediate refractive index layer M, and a high refractive index layer H, and has a total of seven or more layers.
  • the coated objective lens COL can effectively reduce the astigmatism component of the wavefront aberration and realize antireflection even if the following conditions are satisfied separately (Examples;! Correspondence).
  • the astigmatism component in the wavefront aberration generated by the coated objective lens COL without the dielectric film Li is 20 m ⁇ rms or more.
  • the dielectric multilayer film MLR includes a total of seven or more dielectric films Li, and includes a repetitive structure in which low refractive index layers L and high refractive index layers H are alternately stacked. Yes.
  • the required difference in refractive index is 0.5 or more.
  • the coated objective lens COL can effectively reduce the astigmatism component of the wavefront aberration and realize antireflection even if the following conditions are satisfied separately (Examples;! Correspondence).
  • the astigmatism component in the wavefront aberration generated by the objective lens OL without the dielectric film Li is 10 m ⁇ rms or more and less than 20 m ⁇ rms.
  • the dielectric multilayer film MLR includes a total of five or more dielectric films Li, and includes a repetitive structure in which low refractive index layers L and high refractive index layers H are alternately stacked. Yes.
  • the required difference in refractive index is 0.5 or more.
  • birefringence is likely to occur in the objective lens OL produced by glass molding.
  • the larger the numerical aperture the more likely birefringence occurs, for example, when the numerical aperture is 0.6 or more.
  • the birefringence generated as a result of the force occurs radially around the lens axis, and the amount of birefringence increases as it approaches the outer edge of the objective lens OL.
  • the multi-layered dielectric MLR film formed on the objective lens OL is also transmitted radially with the lens axis as the center so as to correspond to the birefringence caused by the objective lens OL. D is generated, and the phase difference is increased as it approaches the outer edge of the objective lens OL. Therefore, if a dielectric multilayer film MLR is provided on such an objective lens OL, the dielectric multilayer film MLR cancels the birefringence phase difference with the transmission phase difference D without any problem and eliminates the astigmatism component of the wavefront aberration. Can be reduced.
  • the imaging lens system may be a projection lens system or a lens used for measurement. Regardless of the lens used in any of the optical systems, it is possible to reduce performance degradation due to birefringence of the lens by generating a transmission phase difference in the dielectric multilayer film MLR.
  • a force that can cancel the birefringence phase difference when the phase of S-polarized light is delayed with respect to the phase of P-polarized light is not limited to this. What is necessary is just to generate a phase difference.
  • the birefringence distribution may not be axisymmetric.
  • P-biased Those that reduce the birefringence of the lens by using the phase difference between the light and the S-polarized light are included in the present invention.
  • the dielectric multilayer film MLR has been described as an example. However, it is not limited to this. That is, the optical thin film, and thus the optical multilayer film, may be formed of a material other than the dielectric material. Further, the dielectric multilayer film MLR is not limited to the antireflection film, and the method for forming the dielectric multilayer film MLR on the objective lens OL is not limited.

Abstract

 対物レンズ(OL)には複屈折が生じ、それに起因して、対物レンズ(OL)からの出射光に波面収差が生じる。そして、かかる波面収差の非点収差成分が10mλrms以上生じる場合に、コーティング対物レンズ(COL)は、その非点収差成分を5mλrms以下にまで低減させる誘電体多層膜(MLR)を有する。

Description

明 細 書
光学素子および光ピックアップ装置
技術分野
[0001] 本発明は、レンズ表面にコーティングを施した光学素子に関するものである。また、 その光学素子を搭載する光ピックアップ装置に関するものである。
背景技術
[0002] 従来から光ピックアップ装置には、レーザダイオードからの光を集光させて光デイス クに導く対物レンズ (光学素子)が搭載されている。そして、かかるような対物レンズは 、プラスチック材料やガラス材料等で成形されて!/、る。
[0003] 成形された対物レンズは、様々な要因、例えばレンズ面の公差やレンズ内の屈折 率分布の不均一化に起因して、出射光に諸収差 (波面収差)を生じさせる。そして、 この諸収差は、光ディスクに集光するスポット径の形状を、所望形状に対して異なら せる。そのため、このように変形したスポット径と所望形状のスポット径との間に形状 誤差が生じてしまい、光ディスクに安定してデータを記録できない現象や、光ディスク 力、ら読み取られるデータを正確に再生できない現象等が起きる。なお、高精度を要 求される青色レーザ(波長 405nm近傍)に対応する対物レンズは、例えば波面収差 を 10m λ rms以下にすることが要求されて!/、る。
[0004] レンズ内の屈折率分布を不均一にする原因の一つにガラス成形が挙げられる。ガ ラス成形によって対物レンズ OLが作製される場合、図 4に示すように、溶融されたガ ラス母材 GMが所定の曲面を有する金型 ΜΜ (ΜΜ1 ·ΜΜ2)に押圧成形される。そ のために、対物レンズ OLの外縁に、比較的に大きな圧力がかかり、その圧力に起因 して、対物レンズ OLの内部に応力歪みが生じ、その結果、複屈折が発生する(なお 、図 4の矢印の個数が圧力分布を示す)。このような複屈折は、レンズの中心部と外 縁部との肉厚差の大きな、開口数の大きいレンズ (例えば開口数 0. 6以上)ほど発生 しゃすい。
[0005] 以上のような現象を防止する一方策として、例えば特許文献 1に開示される方法が ある。この方法によると、まず、内部の屈折率分布が均一であることを前提とし、光学 素子の初期設計値が求められる。次に、この初期設定値に基づいて光学素子が成 形され、その成形品(イニシャル品)の屈折率分布が実測される。
[0006] 続いて、実測の屈折率分布 (すなわち不均一な屈折率分布データ)に起因する諸 収差がシミュレーションにより求められる。そして、このシミュレーションでの収差を補 正できる非球面形状データが求められ、力、かる非球面形状データに合致するように 金型が補正加工される。すると、補正加工後の金型を使用して成形を行うことにより、 光学素子の収差を低減することができる。
特許文献 1 :特開 2005— 283783号公報
発明の開示
発明が解決しょうとする課題
[0007] しかしながら、特許文献 1に開示されて!/、る光学素子は、極めて難しくかつ煩わし!/、 金型の補正加工を要する。その上、かかる光学素子は、煩わしい不均一な屈折率分 布データの測定までも要する。
[0008] 本発明は、上記の問題点を解決するためになされたものである。そして、その目的 は、簡易に、出射光の諸収差 (例えば、波面収差の非点収差成分)を抑制できる光 学素子を提供すること、および、この光学素子を搭載した光ピックアップを提供するこ とにある。
課題を解決するための手段
[0009] 本発明は、レンズ表面に光学多層膜を有する光学素子である。そして、かかる光学 素子では、レンズは複屈折を有し、そのレンズによる波面収差の非点収差成分は 10 m rms以上であり、光学多層膜が、 P偏光と S偏光との位相差を発生させ複屈折を 相殺させることにより、光学素子による波面収差の非点収差成分を 5m rms以下に 低減させる。
[0010] なお、光学多層膜の位相差はレンズ中心から外縁部に向かうにつれ実質的に単調 増加していると望ましい。
[0011] また、光学多層膜に入射する波長 405nmの光の入射角を δ [° ]、光学多層膜を 透過する光の Ρ偏光と S偏光との位相差を D [° ]とした場合、 δと Dとの関係では、 6 = 30° のとき、 Dは 2° 以上かつ 20° 以下、 6 = 60° のとき、 Dは 4° 以上かつ 40° 以下、
の関係を満たし、
30° ≤ 6≤60° の範囲における Dの変化は、単調に変化していると望ましい
[0012] なお、単調変化の一例としては、線形変化が挙げられる。
[0013] また、光学多層膜は反射防止膜であり、光学多層膜に含まれる光学薄膜において
1. 6未満の屈折率を有する光学薄膜を低屈折率層、
1. 6以上かつ 1. 9以下の屈折率を有する光学薄膜を中間屈折率層、 1. 9を超える屈折率を有する光学薄膜を高屈折率層、
とした場合に、
以下の条件(1)および条件(2)を満たしてレ、ると望ましレ、。
条件(1):レンズの波面収差における非点収差成分が 20m rms以上である。 条件 (2):光学多層膜は、低屈折率層、中間屈折率層、および高屈折率層を有し 合計で 9層以上である。
[0014] また、光学多層膜は反射防止膜であり、光学多層膜に含まれる光学薄膜において
1. 6未満の屈折率を有する光学薄膜を低屈折率層、
1. 6以上かつ 1. 9以下の屈折率を有する光学薄膜を中間屈折率層、 1. 9を超える屈折率を有する光学薄膜を高屈折率層、
とした場合に、
以下の条件(3)および条件 (4)を満たしてレ、ると望ましレ、。
条件(3):レンズの波面収差における非点収差成分が 10m λ rms以上かつ
20m λ rms未満である。
条件 (4):光学多層膜は、低屈折率層、中間屈折率層、および高屈折率層を有し 合計で 7層以上である。 [0015] また、光学多層膜は反射防止膜であり、光学多層膜に含まれる光学薄膜において
1. 6未満の屈折率を有する光学薄膜を低屈折率層、
1. 9を超える屈折率を有する光学薄膜を高屈折率層、
とした場合に、
以下の条件(5)〜条件(7)を満たして!/、ると望まし!/、。
条件(5):レンズの波面収差における非点収差成分が 20m rms以上である。 条件 (6):光学多層膜は、合計で 7層以上の光学薄膜を含むとともに、低屈折率 層と高屈折率層とを交互に積層させて成る繰り返し構造を含んでいる。 条件 (7) :高屈折率層の屈折率と低屈折率層の屈折率を差し引いて求められる屈 折率の差が、 0. 5以上である。
[0016] また、光学多層膜は反射防止膜であり、光学多層膜に含まれる光学薄膜において
1. 6未満の屈折率を有する光学薄膜を低屈折率層、
1. 9を超える屈折率を有する光学薄膜を高屈折率層、
とした場合に、
以下の条件 (8)〜条件(10)を満たして!/、ると望まし!/、。
条件(8) :レンズの波面収差における非点収差成分が 10m rms以上かつ
20m λ rms未満である。
条件 (9) :光学多層膜は、合計で 5層以上の光学漠膜を含むとともに、低屈折率 層と高屈折率層とを交互に積層させて成る繰り返し構造を含んでいる。 条件(10) :高屈折率層の屈折率と低屈折率層の屈折率を差し引いて求められる 屈折率の差が、 0. 5以上である。
[0017] また、レンズが成形により形成されていると望ましい。
[0018] また、レンズの開口数が 0. 6以上であると望ましい。
[0019] また、複屈折が、レンズのレンズ軸中心を基準に放射状に生じており、複屈折の量 力 S、レンズ軸中心からレンズの外縁にむ力、うにつれて増加していると望ましい。
[0020] また、光学多層膜は、反射防止用の誘電体膜を積層させた誘電体多層膜であると 望ましい。
[0021] なお、以上の光学素子を備える光ピックアップ装置も本発明といえる。
[0022] また、レンズ表面に光学多層膜を有する光学素子であって、レンズは複屈折を有し 、光学多層膜が、 P偏光と S偏光との位相差を発生させ複屈折を相殺させることにより 、レンズに発生する波面収差の非点収差成分を半分以下に低減させる光学素子も 本発明といえる。
[0023] なお、かかる光学素子では、光学多層膜が、レンズに発生する波面収差の非点収 差成分を 1/5以下に低減させると望まし!/、。
発明の効果
[0024] 本発明によれば、光学素子に成膜されている光学多層膜によって、簡易に、出射 光の諸収差 (例えば、波面収差の非点収差成分)を抑制できる。
図面の簡単な説明
[0025] [図 1]後述の図 2での対物レンズの拡大図である。
[図 2]光ピックアップ装置の構成図である。
[図 3A]複屈折を確認する確認装置の斜視図である。
[図 3B]確認装置によってみえるレンズ面の平面図である。
[図 3C]対物レンズを回転させた場合でのレンズ面の平面図である。
[図 3D]確認装置内の偏光板を回転させた場合でのレンズ面の平面図である。
[図 4]対物レンズの成形金型と、ガラス母材とを示す構成図である。
[図 5]実施例 1の誘電体多層膜が有する反射特性を示す反射特性図である。
[図 6]波長 405nmにおける、実施例 1の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
[図 7]波長 660nmにおける、実施例 1の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
[図 8]波長 785nmにおける、実施例 1の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
[図 9]実施例 2の誘電体多層膜が有する反射特性を示す反射特性図である。
[図 10]波長 405nmにおける、実施例 2の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
園 11]波長 660nmにおける、実施例 2の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
園 12]波長 785nmにおける、実施例 2の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
[図 13]実施例 3の誘電体多層膜が有する反射特性を示す反射特性図である。 園 14]波長 405nmにおける、実施例 3の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
園 15]波長 660nmにおける、実施例 3の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
園 16]波長 785nmにおける、実施例 3の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
[図 17]実施例 4の誘電体多層膜が有する反射特性を示す反射特性図である。 園 18]波長 405nmにおける、実施例 4の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
園 19]波長 660nmにおける、実施例 4の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
[図 20]波長 785nmにおける、実施例 4の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
[図 21]実施例 5の誘電体多層膜が有する反射特性を示す反射特性図である。
[図 22]波長 405nmにおける、実施例 5の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
[図 23]波長 660nmにおける、実施例 5の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
[図 24]波長 785nmにおける、実施例 5の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
[図 25]実施例 6の誘電体多層膜が有する反射特性を示す反射特性図である。
[図 26]波長 405nmにおける、実施例 6の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
[図 27]波長 660nmにおける、実施例 6の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
[図 28]波長 785mnにおける、実施例 6の誘電体多層膜が有する位相差特性を示す 位相差特性図である。
園 29]比較例の誘電体多層膜が有する反射特性を示す反射特性図である。
[図 30]波長 405nmにおける、比較例の誘電体多層膜が有する位相差特性を示す位 相差特性図である。
[図 31]波長 660mnにおける、比較例の誘電体多層膜が有する位相差特性を示す位 相差特性図である。
園 32]波長 785nmにおける、比較例の誘電体多層膜が有する位相差特性を示す位 相差特性図である。
[図 33]トワイマングリーン干渉計の構成図である。
符号の説明
COL コーティング対物レンズ
OL 対物レンズ
MLR 誘電体多層膜 (光学多層膜)
Li 誘電体膜 (光学薄膜)
12 偏光板
13 平面ミラー
14 レーザ光源
15 ビームスプリッタ
16 球面原器
17 平面原器
18 画像処理装置
19 被検レンズ
21 第 1レーザユニット
22 第 1レーザダイオード 23 第 1偏光ビームスプリッタ
24 第 1コリメータレンズ
25 第 1フォトダイオード
31 第 2レーザユニット
32 第 2レーザダイオード
33 第 2偏光ビームスプリッタ
34 第 2コリメータレンズ
35 第 2フォトダイオード
42 立ち上げミラー
43 1/4波長板
44 光ディスク
59 光ピックアップ装置
発明を実施するための最良の形態
[0027] [実施の形態 1]
[1.光ピックアップ装置について]
図 2は、光ピックアップ装置 59の概略の構成を示す構成図である。そして、この光ピ ックアップ装置 59は、第 1レーザユニット 21、第 2レーザユニット 31、ダイクロイツクプリ ズム 41、立ち上げミラー 42、 1/4波長板 43、およびコーティング対物レンズ COLを 有している。なお、図 2では、便宜上、光ディスク 44も図示されている。そして、かかる 光ディスク 44に入射する光を"照射光"、光ディスク 44から反射する光を"信号光"と 称する(なお、光は破線にて図示)。
[0028] まず、第 1レーザユニット 21について説明する。力、かる第 1レーザユニット 21は、第
1レーザダイオード(LD ; Laser Diode) 22、第 1偏光ビームスプリッタ(PBS ; Polarizin g Beam Splitter) 23、第 1コリメータレンズ 24、および第 1フォトダイオード(PD ; Phot 0 Diode) 25を有している。
[0029] 第 1LD22は、第 1PBS23に向けて、波長 405nmのレーザ光(青色レーザ)を出射 する。すなわち、第 1LD22は、次世代 DVD (Digital Versatile Disc)の 1つであるブ ルーレイディスク(BD; Blu-ray Disc)に対応して!/、る。
[0030] 第 1PBS23は、第 1LD22から出射された直線偏光のレーザ光(例えば P偏光)を 透過させ、第 1コリメータレンズ 24に導く。一方で、第 1PBS23は、第 1コリメータレン ズ 24を介して進行してくる信号光(例えば S偏光)を反射させて第 1PD25に導く。
[0031] 第 1コリメータレンズ 24は、第 1PBS23を介して入射してくるレーザ光を平行光にし て、ダイクロイツクプリズム 41に導く。一方で、第 1コリメータレンズ 24は、ダイクロイツク プリズム 41を介して進行してくる信号光を第 1PBS23に導く。
[0032] 第 1PD25は、第 1PBS23を介して入射してくる信号光を受光する。そして、かかる 第 1PD25による受光によって、ブルーレイディスクへの記録再生時のサーボ信号 (フ オーカスエラー信号、トラッキングエラー信号)、情報信号、収差信号等が検出される
[0033] 次に、第 2レーザユニット 31について説明する。力、かる第 2レーザユニット 31は、第
2LD32、第 2PBS33、第 2コリメータレンズ 34、および第 2PD35を有して!/、る。
[0034] 第 2LD32は、第 2PBS33に向けて、波長 660nmのレーザ光と、波長 785nmのレ 一ザ光とを出射する。すなわち、第 2LD32は、 2波長のレーザ光を出射する光源で あり、 DVDと CD (Compact Disc)とに対応して!/、る。
[0035] 第 2PBS33は、第 2LD32から出射された直線偏光のレーザ光(例えば P偏光)を 透過させ、第 2コリメータレンズ 34に導く。一方で、第 2PBS33は、第 2コリメータレン ズ 34を介して進行してくる信号光(例えば S偏光)を反射させて第 2PD35に導く。
[0036] 第 2コリメータレンズ 34は、第 2PBS33を介して入射してくるレーザ光を平行光にし て、ダイクロイツクプリズム 41に導く。一方で、第 2コリメータレンズ 34は、ダイクロイツク プリズム 41を介して進行してくる信号光を第 2PBS33に導く。
[0037] 第 2PD35は、第 2PBS33を介して入射してくる信号光を受光する。そして、かかる 第 1PD25による受光によって、 DVDまたは CDへの記録再生時のサーボ信号(フォ 一カスエラー信号、トラッキングエラー信号)、情報信号、収差信号等が検出される。
[0038] 次に、ダイクロイツクプリズム 41について説明する。力、かるダイクロイツクプリズム 41 は、第 1レーザユニット 21から供給されるレーザ光を反射させて立ち上げミラー 42に 導くとともに、第 2レーザユニット 31から供給されるレーザ光を透過させて立ち上げミ ラー 42に導く。つまり、ダイクロイツクプリズム 41は、異なる方向から入射する各レー ザ光の進行方向を同一方向にして出射する光路変換素子である。
[0039] 一方で、ダイクロイツクプリズム 41は、立ち上げミラー 42を介して進行してくる信号 光を第 1レーザユニット 21または第 2レーザユニット 31に導く。具体的には、第 1LD2 2から出射されたレーザ光の信号光は、ダイクロイツクプリズム 41に入射した後に反 射され、第 1レーザユニット 21の第 1コリメータレンズ 24に導かれる。また、第 2LD32 力も出射されたレーザ光の信号光は、ダイクロイツクプリズム 41に入射した後に透過 され、第 2レーザユニット 31の第 2コリメータレンズ 34に導かれる。
[0040] 次に、立ち上げミラー 42について説明する。立ち上げミラー 42は、ダイクロイツクプ リズム 41から出射され光ディスク 44に向力、うレーザ光の光路を折り曲げ、コーティン グ対物レンズ COLに導く。そのために、力、かる立ち上げミラー 42は、第 1LD22 '第 2 LD32と光ディスク 44との間、より詳細にはダイクロイツクプリズム 41とコーティング対 物レンズ COLとの間の光路中に配置されている。
[0041] 一方で、立ち上げミラー 42は、コーティング対物レンズ COLを介して進行してくる 信号光の光路を折り曲げ、ダイクロイツクプリズム 41に導く。
[0042] 次に、 1/4波長板 43について説明する。 1/4波長板 43は、立ち上げミラー 42に て反射された直線偏光(例えば P偏光)を円偏光に変換する。一方で、 1/4波長板 4 3は、光ディスク 44からの信号光(円偏光)を直線偏光(例えば S偏光)に変換する。
[0043] 次に、コーティング対物レンズ COL (光学素子)について説明する。コーティング対 物レンズ COLは、立ち上げミラー 42にて反射され、 1/4波長板 43を介して得られる 光(照射光)を光ディスク 44上に集光させる。一方で、コーティング対物レンズ COL は、光ディスク 44から反射してくる光(信号光)を 1/4波長板 43に導く。なお、かかる コーティング対物レンズ COLには、反射防止膜 {AR(Anti Reflection)膜 }である誘電 多層膜 MLRが設けられて!/、る(詳細につ!/、ては後述)。
[0044] また、コーティング対物レンズ COLにおける対物レンズ OLの材料は、特に限定さ れない。ただし、紫外光に対する耐候性の高いガラスが望ましいといえる。例えば、 以下のようなガラス成形レンズが一例として挙げられる。
開口数(NA; Numerical Aperture) : 0. 85 レンズ外形(直径) : 5mm
芯厚 : 2. 6mm
なお、 BD、 DVD, CDに使用するコーティング対物レンズ COLの開口数の規格値 は、それぞれ、 0. 85、 0. 65、 0. 5である。
[0045] ところで、ガラス成形により形成された対物レンズ OLにはレンズ軸を中心とした放 射状の複屈折が生じており、その複屈折量が対物レンズ OLの外縁に近づくほど増 加している。そして、対物レンズ OLの持つ複屈折はレンズ軸から放射状に分布、す なわち軸対称に分布して!/、るので、複屈折の光学軸(進相軸ある!/、は遅相軸)はレン ズの半径方向と円周方向とに存在するといえる。その結果、対物レンズ OLの外縁に 入射する光(マージナルレイ)は、複屈折の影響を多大にうけ波面収差が発生する。
[0046] 一方、図 1 (図 2でのコーティング対物レンズ COLの拡大図)に示すように、コーティ ング対物レンズ COLは、反射防止処理 (AR処理)のために複数の誘電体膜 Liを含 んでいる。すると、図 1に示すように、例えば平行光が誘電体膜 Liに入射した場合、コ 一ティング対物レンズ COLの外縁に近づくにつれて入射角 δは徐々に大きくなる( なお、図 1での点線は、誘電体膜 Liにおける入射点での法線を示す)。
[0047] 一般的に、入射角 δが変化することで、誘電体膜 Liにて進行する光の Ρ偏光 (入射 面に対して平行に振動する偏光)と S偏光(入射面に対して垂直に振動する偏光)と の間の位相差が変化する。
[0048] すると、 P偏光と S偏光との位相差 {詳説すると、複数の誘電体膜 Li (誘電体多層膜 MLR)を通過する透過光の位相差;透過位相差 D }と、複屈折による P偏光と S偏光 との位相差 (複屈折位相差)とが、相反する極性を有することが望ましい。このように なっていると、誘電体膜 Liによる透過位相差 Dによって、複屈折位相差が打ち消され るためである。そして、力、かるように複屈折位相差が打ち消されることに起因して、波 面収差における非点収差の成分が減少する。その結果、レンズが発生する波面収差 の非点収差成分を半分以下、さらには 1/5以下に容易に低減させることが可能となる
[0049] また、誘電体膜 Liによる透過位相差 Dは、レンズ中心から外縁部にむかうにつれ実 質的に単調増加することが望ましい。対物レンズ OLの複屈折は外縁部に向力、うにつ れ大きくなるため、透過位相差 Dにより打ち消すことができるためである。なお、実質 的に単調増加するとは、透過位相差 Dが外縁部に向力、うにつれ全体として大きくなつ ていることであり、最外縁部近傍でわずかに透過位相差 Dが減少したとしても実質的 に単調増加しているといえる。
[0050] 上記のように、誘電体膜 Liの透過位相差 Dによって対物レンズ OLの複屈折を補償 することにより、光ピックアップとしての動作安定十生も向上させることもできる。また、対 物レンズ OLが複屈折を持っていると射出光の偏光状態を変えることになる。すなわ ち、信号光が第 1PBS23および第 2PBS33に向力、う際に S偏光以外の成分を含み、 その結果、 PBS23、 33を透過し LDに達する、いわゆる戻り光が生ずる。戻り光は L Dの発振を不安定にするため極力なくさねばならない。誘電体膜 Liの透過位相差 D によって対物レンズ OLの複屈折を打ち消すことにより、この戻り光による影響をきわ めて少なくすることができる。
[0051] [2.反射防止膜の詳細について]
ここで、反射防止膜を構成する誘電体多層膜 (光学多層膜) MLRにつ!/、て詳説す る。図 1に示すように、コーティング対物レンズ COLには、誘電体膜 Liが複数で成膜 されている。具体的には、 1/4波長板 43から進行してくる光を受光するコーティング 対物レンズ COLの一面に、複数の誘電体膜 Li (i= l、 2、 3· · ·)が積層されている。な お、 i= lは最もコーティング対物レンズ COLに近い誘電体膜を意味する。
[0052] そして、誘電体多層膜 MLRにおける反射率は、 "各誘電体膜 Liの膜厚"、 "各誘電 体膜 Liの屈折率"を下記のフレネルの式に各境界面("誘電体膜 Liの膜数 (層数) ") で適用することで求められる。
[0053] R= [ (n -n ) / (n +n ) ]2 · · · フレネルの式
2 1 2 1
なお、
屈折率 nの媒体 1から屈折率 nの媒体 2に光が垂直入射する場合での反射率 R
1 2
である。
[0054] ただし、後に示す実施例;!〜 6の誘電体多層膜 MLRは、反射防止のためだけでな ぐ透過位相差 D (P偏光と S偏光との位相差)を発生させるように設計されている。な お、透過位相差 Dの調整原理は、以下のとおりである。 [0055] 通常、光が屈折率の異なる媒質を通過する場合 (屈折率 n 〉屈折率 n )、屈折率 n
H L
の媒質を通過する光の位相 θ (P偏光の位相 Θ ' S偏光の位相 Θ )は、屈折率 n
H H HP HS
の媒質を通過する光の位相 θ (Ρ偏光の位相 Θ ' S偏光の位相 Θ )に対して遅れ
Ρ S
る。そのため、かかる遅れに起因し、屈折率 ηの媒質を通過する場合に生じる Ρ偏光
Η
と S偏光との位相差 (位相 Θ —位相 Θ )と、屈折率 ηの媒質を通過する場合に生
HP HP L
じる P偏光と S偏光との位相差 (位相 Θ —位相 Θ )とが異なってくる。すると、媒質
P P
間の屈折率の差 (屈折率差)および媒質中の距離 (膜厚)をパラメータとして、透過位 相差 Dが適切に設定できる。
[0056] そこで、透過位相差 Dを考慮した 6種類(実施例;!〜 6)の誘電体多層膜 MLRのコ ンストラクシヨンデータを表 1 6に示す。また、透過位相差 Dを考慮しない 1種類の誘 電体多層膜 MLRのコンストラタシヨンデータを比較例として表 7に示す。ただし、実施 例 1 6のコンストラタシヨンデータは、反射防止特性と所望の位相差を目標値として 、市販の膜構成設計ソフトから導きだされた値である。また、比較例のコンストラタショ ンデータは従来一般的に使用されている反射防止膜の値である。なお、屈折率 (nd) は d線(波長 587· 6nm)に対応しており、 d線に対応するガラスのアッベ数( i> d)は 5 6. 88になっている。
[0057] また、誘電体膜 Liの材質は、単一化合物の場合では化合式で示し、混合物の場合 では製品名で示してレ、る(下記参照)。
•フッ化マグネシウム : MgF
•酸化アルミニウム(アルミナ) : Al O
2 3
•酸化チタン : TiO
•メルクジャパン社製"サブスタンス H4": H4
なお、 H4は TiOと La O (酸化ランタン)との混合物
:製"サブスタンス M3": M3
なお、 M3は Al Oと La Oとの混合物
2 3 2 3
[0058] なお、材質の屈折率に応じて、誘電体膜 (層) Liは以下のように定義される。
•低屈折率層 L :屈折率が 1. 6未満の誘電体膜 Li
•中間屈折率層 M :屈折率が 1. 6以上かつ 1. 9以下である誘電体膜 Li •高屈折率層 H :屈折率が 1. 9を超える誘電体膜 Li
[0059] また、実施例;!〜 6および比較例に対応する反射特性図(波長 [nm]と反射率 [%] との関係を示す関係図)および、位相差特性図 (誘電体多層膜 MLRに対する入射 角 [° ]と位相差 [° ]との関係図;ただし、位相差は透過位相差 D)は、図 5〜図 32に 示される。そこで、実施例'比較例と図との対応を表 8に記す。
[0060] なお、位相差特性図の縦軸は、 P偏光の位相から S偏光の位相を差し引いて求め られる差分を示している。そして、位相差特性図の縦軸の " + "は、 P偏光の位相に対 して S偏光の位相が遅れていることを示す一方、縦軸の" "は、 P偏光の位相に対し て s偏光の位相が進んでいることを示す。そして、複屈折位相差を相殺する透過位 相差 Dは、図中の " + "で示される値とする。
[0061] [実施例 1]
[表 1]
Figure imgf000016_0001
[0062] [実施例 2]
[表 2] EXAMP LE2
Layer Material Refractive Index thickness (nm)
Objective Lens Glass 1.62280 ―
1 Al203 M 1.64 65
2 Ti02 H 2.42 19.2
3 MgF2 し 1.38 31.51
4 Ti02 H 2.42 47.67
Dielectric
i 5 MgF2 し 1.38 15.4
Layer
6 Ti02 H 2.42 82.88
7 MgF2 し 1.38 21.55
8 Ti02 H 2.42 31.28
9 MgFz し 1.38 106.92
Air Air 1.00 一
[0063] [実施例 3]
[表 3]
Figure imgf000017_0001
[0064] [実施例 4]
[表 4] E X A M P LE 4
Layer Material Refractive Index thickness (nm)
Objective Lens Glass 1.62280 ―
1 Al203 M 1.64 85
2 MgF2 し 1.38 30.54
3 H4 H 2.11 27.28
Dielectric
i 4 MgF2 し 1.38 47.13 し ayer
5 H4 H 2.11 26.29
6 MgF2 し 1.38 87.75
7 H4 H 2.11 10.74
Air Air 1.00 ―
[0065] [実施例 5]
[表 5]
Figure imgf000018_0001
[0066] [実施例 6]
[表 6]
E X A M P L E 6
し ayer Material Refractive Index thickness (nm)
Objective Lens Glass 1.62280 ―
1 M3 1.84 87.66
2 H4 H 2.1 1 35.33
Dielectric
i 3 MgF2 し 1.38 28.93
Layer
4 H4 H 2.1 1 28.89
5 MgF2 し 1.38 124.79
Air Air 1.00 ―
[0067] [比較例]
[表 7]
Figure imgf000019_0001
[0068] [実施例 ·比較例と図との対応関係]
[表 8]
Figure imgf000019_0002
[2- 1. コンストラタシヨンデータについて]
以上のような実施例 1〜6のコンストラクシヨンデータから、以下のことがいえる。 実施例;!〜 6の誘電体多層膜 MLRは、低屈折率層 L、中間屈折率層 M、および高 屈折率層 Hの 3種類の層を有している。なお、誘電体多層膜 MLRに含まれる合計の 層数 (誘電体膜 Liの総数)は、実施例:!〜 6に対して、それぞれ 12層、 9層、 9層、 7 層、 7層、 5層である。 [0070] また、実施例;!〜 6の誘電体多層膜 MLRは、低屈折率層 Lと高屈折率層 Hとを交 互に積層させて成る繰り返し構造を含んでいる。なお、 1層の低屈折率層 Lと 1層の 高屈折率層 Hとが密着して成る複層を 1つの組と解釈すると、実施例;!〜 6に対する 各組数は、それぞれ 5組、 4組、 3組、 3組、 2組、 2組である。
[0071] また、実施例;!〜 6での高屈折率層 Hの屈折率 Nと低屈折率層 Lの屈折率 Nとの
H L
屈折率差(N — N )の関係は、それぞれ 0. 73、 1. 04、 0. 73、 0. 73、 0. 73、 0. 7
H L
3である。
[0072] なお、比較例のコンストラタシヨンデータからは、以下のことがいえる。比較例の誘電 体多層膜 MLRは、実施例 1〜6と同様に、低屈折率層 L、中間屈折率層 M、および 高屈折率層 Hの 3種類の層を有している。しかし、誘電体多層膜 MLRに含まれる合 計の層数は 3層である。
[0073] また、比較例の誘電体多層膜 MLRは、実施例 1〜6と同様に、低屈折率層 Lと高 屈折率層 Hとを交互に積層させて成る繰り返し構造を含んでいる。しかし、組数は 1 組である。
[0074] また、比較例では、高屈折率層 Hの屈折率 Nと低屈折率層 Lの屈折率 Nとの屈折
H L
率差は、 1. 04である。
[0075] [2- 2.反射特性図および位相差特性図について]
さらに、実施例 1〜6の反射特性図および位相差特性図から、以下のことがいえる。 実施例;!〜 6では、 BD、 DVD, CDの波長(405、 660、 785nm)に対応する反射率 力 3%未満になる。したがって、実施例;!〜 6の誘電体多層膜 MLRが対物レンズ O Lに成膜されると、コーティング対物レンズ COLからの反射光が効果的に抑制される
[0076] また、実施例;!〜 6では、入射角 δ [° ]が特定された場合、透過位相差 D[° ]があ る範囲内に特定される。例えば、使用波長 405nmの場合、以下のようになる。
6 = 30° のとき、 Dは 2° 以上かつ 20° 以下(2≤D≤20) 6 = 60° のとき、 Dは 4° 以上かつ 40° 以下(4≤D≤40)
[0077] さらに、使用波長 405nmの場合、 30° ≤ δ≤60° の範囲での入射角 δの増加 につれて、透過位相差 Dが単調に増加している。これは、位相差特性図中のグラフラ インから明らかである。なお、単調変化とは単調増加または単調減少のいずれか一 方の現象を意味し、単調変化の一例としては線形変化が挙げられる。
[0078] また、位相差特性図の横軸に示される入射角 δは、コーティング対物レンズ COL の半径方向に関係している。それは、誘電体多層膜 MLRが対物レンズ OLに設けら れて!/、る場合を示す図 1から明らかである。
[0079] すると、対物レンズ OLがレンズ軸を中心とした放射状の複屈折を持ち、その複屈折 量が対物レンズ OLの外縁に近づくほど増加している場合、かかる対物レンズ OLに 実施例 1〜6の誘電体多層膜 MLRが成膜されていると望ましい。なぜなら、対物レン ズ OLに成膜された誘電体多層膜 MLRでは(すなわちコーティング対物レンズ COL では)、対物レンズ OLの複屈折に対応するように、透過位相差 Dがレンズ軸を中心と して放射状に生じ、その位相差量が対物レンズ OLの外縁に近づくほど増加している ためである。
[0080] つまり、誘電体多層膜 MLRに起因する透過位相差 Dが、対物レンズ OLに起因す る複屈折位相差に対応する。したがって、実施例 1〜6の誘電体多層膜 MLRが成膜 されているコーティング対物レンズ COLにおいて、波長 405nmの光がコーティング 対物レンズ COLに入射した場合、誘電体多層膜 MLRに起因する透過位相差 Dが、 対物レンズ OLに起因する複屈折位相差を十分に打ち消すことができる。その結果、 波面収差における非点収差の成分が減少することになる。
[0081] なお、複屈折位相差は使用波長に反比例する。すると、実施例;!〜 6の位相差特性 図では、使用波長 660、 785nmの場合での透過位相差 Dの値力 使用波長 405η mの場合での透過位相差 Dの値に比べて小さかったとしても問題は生じない。なぜ なら、使用波長に反比例して比較的小さくしか生じない複屈折位相差は、使用波長 660、 785nmの場合での比較的小さな透過位相差 Dでも十分に打ち消すことができ るためである。したがって、使用波長 405nmの場合で、透過位相差 Dと複屈折位相 差とが相殺するようになっていれば、使用波長 660、 785nmの場合であっても、透過 位相差 Dと複屈折位相差とが相殺する。
[0082] また、使用波長 660nmの DVD、 785nmの CDの場合、対応するレンズの開口数 は、それぞれ 0· 65、 0. 5である。つまり、コーティング対物レンズ COLに入射する光 束径は、波長 405nmの光が入射する場合と比較して小さい。波長 660nmおよび 78 5nmの光は、レンズの外縁部には入射しないので、複屈折の影響は小さぐ大きな 位相差を発生させなくても問題はない。
[0083] なお、比較例の反射特性図 ·位相差特性図から、以下のことがいえる。比較例では 、 BD、 DVD, CDの波長(405、 660、 785nm)に対応する反射串力 5. 50/0未満 になる。したがって、比較例の誘電体多層膜 MLRが対物レンズ OLに成膜された場 合と、実施例;!〜 6の誘電体多層膜 MLRが対物レンズ OLに成膜された場合とが比 較されると、実施例 1〜6に対応するコーティング対物レンズ COLのほうが、比較例に 対応するコーティング対物レンズ COLよりも、反射光を効果的に抑制できることがわ かる。
[0084] また、比較例の誘電体多層膜 MLRは透過位相差 Dが考慮されて!/、な!/、。そのた め、全ての使用波長において、 " + "の透過位相差 Dが発生しにくぐむしろ、 " "の 透過位相差 Dが発生しやすくなつている。
[0085] [3.測定について]
ここで、コーティング対物レンズ COLからの出射光に生じる波面収差、特に非点収 差の成分が、誘電体多層膜 MLRによって減少していることを実測データで示す。そ こで、まず、波面収差の測定方法について説明する。
[0086] 波面収差は、図 33に示すようなトワイマングリーン干渉計にて測定される。トヮイマ ングリーン干渉計は、直線偏光の光を放射するレーザ光源 14と、ビームスプリッタ 15 と、球面原器 16と、平面原器 17と、干渉縞画像を取り込み波面収差の計算処理を行 う画像処理装置 18とを含んでいる。光源からの光束はビームスプリッタ 15で分離され 、一方は平面原器 17で反射され、他方は被検レンズ 19で集光された後、球面原器 1 6で反射される。平面原器 17で反射された参照光と、再び被検レンズ 19を透過した 測定光とはビームスプリッタ 15で合成され干渉縞を生成する。干渉縞は画像処理装 置 18に入力され、処理されて被検レンズ 19の波面収差が測定される。なお、被検レ ンズ 19に入射する光束の平行度 (発散度)は、被検レンズ 19の実使用状態に応じて 適宜調整される。
[0087] 波面収差の非点収差成分の測定は以下のステップを踏む。最初のステップでは、 球面原器 16の球心と被検レンズ 19 (コーティング対物レンズ COL等)の焦点位置と がー致するように、被検レンズ 19が配置され、球面原器 16からの反射光および平面 原器 17からの反射光による干渉縞から波面収差が側定される(1回目の測定;レンズ 位置 0° での測定)。続いて、被検レンズ 19が、 1回目の測定位置から光軸周りに 90 ° 回転され、その後、 1回目の測定と同様に、波面収差が測定される(2回目の測定; レンズ位置 90° での測定)。
[0088] そして、以上のようにして得られた波面収差 (レンズ位置 0° · 90° での波面収差) を用いて、波面収差の非点収差成分が求められる。具体的には、まず、各波面収差 がツェルニケ(Zemike)の多項式で展開され、かかる多項式での Z4項および Z5項の 係数が求められる。その後、以下の式から、波面収差の非点収差成分 [m rms]が 求められる。
[0089] AS = ^[{〔Z4(0° )+Z4(90° )〕 /2 &}2+ {〔Z5(0° )+Z5(90° )〕 /2^6}2]
ただし、
AS :波面収差の非点収差成分
Z4(0° ):レンズ位置 0° でのツェルニケの多項式の Z4項
Z4(90° ):レンズ位置 90° でのツェルニケの多項式の Z4項
Z5(0° ):レンズ位置 0° でのツェルニケの多項式の Z5項
Z5(90° ):レンズ位置 90° でのツェルニケの多項式の Z5項
である。
なお、ツェルニケの多項式は、いわゆる Arizonaスタイルの展開式を採用しており、 具体的には(株)キャノン販売社製の解析ソフトである Metropro Zernike Applicatio nを使用して計算した。また、波面収差の測定は直線偏光を用いて行われる。一般的 に干渉計を用いて波面収差測定する場合は円偏光が用いられるが、上記の複屈折 による波面収差の非点収差成分は、円偏光を用いた方法では検出されない。
[0090] 以上のような方法に基づく測定では、反射防止膜を備えない 2種類の対物レンズ O L (第 1対物レンズ OL1 '第 2対物レンズ OL2)を用いたので、対物レンズ OLの種類 に場合分けして、以降に説明する。なお、第 1対物レンズ OLl、第 2対物レンズ OL2 ともにガラス成形で作製されたものであり、いずれも開口数は 0. 85である。 [0091] [3- 1.第 1対物レンズの波面収差の測定]
まず、第 1対物レンズ OL1に起因する波面収差の非点収差成分を、上記の測定方 法にて求めたところ、 20. lm rmsであった。
[0092] 次に、比較例の誘電体多層膜 MLRを成膜した第 1対物レンズ OL1の波面収差の 非点収差成分を求めたところ、 18. 8m rmsであった(約 lm rmsの低減)。なお、 比較例の誘電体多層膜 MLRにおいて、ある入射角 δでの透過位相差 Dの値は下 記のようになつている。
δ = 30° のとき、 D≤3°
δ = 60° のとき、 D≤3°
[0093] さらに、第 1対物レンズ OL1に実施例 1の誘電体多層膜 MLRを成膜した第 1コーテ イング対物レンズ COLの波面収差の非点収差成分を求めたところ、 1. 7m rmsで あった(約 18m rmsの低減)。なお、実施例 1の誘電体多層膜 MLRにおいて、ある 入射角 δでの透過位相差 Dの値は下記のようになつている。
δ = 30° のとき、 D = 8°
δ = 60° のとき、 D= 18°
[0094] 以上の測定データから、比較例の誘電体多層膜 MLRは第 1対物レンズ OL1に起 因する波面収差の非点収差成分を十分に低減できないものの、実施例 1の誘電体 多層膜 MLRは第 1対物レンズ OL1に起因する波面収差の非点収差成分を十分に 低減できることがわかる。
[0095] [3- 2.第 2対物レンズの波面収差の測定]
続いて、第 1対物レンズ OL1とは異なる第 2対物レンズ OL2の波面収差を測定した ところ、非点収差成分は 18. 5m rmsであった。
[0096] 次に、第 2対物レンズ OL2に実施例 2の誘電体多層膜 MLRを成膜した第 2コーテ イング対物レンズ COLの波面収差の非点収差成分を求めたところ、 1. lm rmsで あった(約 17m rmsの低減)。なお、実施例 2の誘電体多層膜 MLRにおいて、ある 入射角 δでの透過位相差 Dの値は下記のようになつている。
δ = 30° のとき、 Dは 4°
δ = 60° のとき、 Dは 12° [0097] 以上の実測データから、実施例 2の誘電体多層膜 MLRは第 2対物レンズ OL2に 起因する波面収差の非点収差成分を十分に低減できることがわかる。
[0098] [3- 3. レンズの複屈折の確認]
なお、対物レンズ OLl、 OL2がレンズ軸を中心として放射状に複屈折を有すること を以下の方法で確認した。
[0099] 図 3Aに示すように、対物レンズ OLを、透過軸 PAを有する偏光板 12と平面ミラー 1 3との間に配置し、干渉縞を観察した。偏光板 12を通過した光(透過軸 PAと同一方 向に振動する光)は、対物レンズ OLを透過した後に平面ミラー 13により反射され、再 び対物レンズ OLを透過し、偏光板 12に向かって進行する。つまり対物レンズ OLは 平行ニコル間に配置されていることと等価である。
[0100] 図 3Bは、偏光板 12を介して観察される対物レンズ OLを示している。具体的には、 透過軸 PAと同一方向(平行方向)および垂直方向では白く観察され、一方、透過軸 PAと 45° (135° )をなす方向では黒い干渉縞が確認された。
[0101] また、干渉縞の濃度は、対物レンズ OLのレンズ軸中心力、ら外縁に向力、うにつれて 濃くなつていた。
[0102] 図 3Cは、対物レンズ OLを回転させた場合でのレンズ面を示している。対物レンズ OLを回転させても干渉縞は回転しなかった。図 3Dは、偏光板 12を回転させた場合 でのレンズ面を示している。偏光板 12を回転させると、干渉縞は偏光板 12と同様に 回転した。
[0103] 以上の結果から、対物レンズ OLは一軸結晶状の複屈折を有し、その光学軸は半 径方向と円周方向であることが分かる。つまり、対物レンズ OLは放射状の複屈折を 有している。また、複屈折の大きさは対物レンズ OLの外縁に向力、うにつれ大きくなつ ていることが確認された。
[0104] [3-4.測定の検証]
コーティング対物レンズ COLの波面収差の測定は、実施例 1、 2の誘電体多層膜 MLRを成膜したものでし力、行わなかった。しかし、実施例 1 · 2と同様の位相差を有す る他の実施例の誘電体多層膜 MLRであっても、対物レンズ OLに起因する波面収差 の非点収差成分を低減できることは容易に推測できる。 [0105] 第 1対物レンズ OL1の波面収差の非点収差成分は 20m rmsを越える値であり、 実施例 1の透過位相差 Dは、入射角 δ力 0° のとき 18° である。実施例 3および 4 の透過位相差 Dは実施例 1と同様であるので、第 1対物レンズ OL1と同様の複屈折 を相殺すること力できる。また、実施例 5の透過位相差 Dは実施例 2と同様なので、第 2対物レンズ OL2と同様の複屈折を相殺することができる。波面収差の非点収差成 分の大きさは、複屈折の大きさと相関関係があるので、実施例 6は第 2対物レンズ OL 2よりも小さな複屈折を持つ対物レンズに用いることで、効果的に波面収差の非点収 差成分を低減することができる。逆に、第 1対物レンズ OL1よりも大きな複屈折を持つ 対物レンズに対しては、より大きな位相差を発生させる誘電体多層膜を用いればよい
[0106] 対物レンズ OLの波面収差の非点収差成分が、 20m λ rms以上の場合には、比較 的大きな位相差を発生させることが望ましい。大きな位相差を発生させるとともに反射 防止を実現する誘電体多層膜 MLRは、低屈折率層 L、中間屈折率層 M、および高 屈折率層 Hを有し、合計で 9層以上で構成するとよい(実施例;!〜 3が対応)。あるい は、誘電体多層膜 MLRは、合計で 7層以上の光学薄膜を含むとともに、低屈折率層 Lと高屈折率層 Hとを交互に積層させて成る繰り返し構造を含み、高屈折率層 Hの屈 折率 Nと低屈折率層 Lの屈折率 Nとの差が、 0. 5以上であるとよい(実施例;!〜 5が
H L
対応)。上記の条件より少ない層数でも反射防止は実現できるが、複屈折を補償する ことのできる位相差を発生させること力 S困難である。いずれの場合も誘電体多層膜 M LRの層数は 20層以下であることがさらに望ましい。上限を超えると、製造時のばらつ きによりリップルが発生し、反射防止特性を安定的に確保することが困難になる。
[0107] 対物レンズ OLの波面収差の非点収差成分が、 10m λ rms以上 20m λ rms未満 の場合には、比較的小さな位相差を発生させることが望ましい。比較的小さな位相差 を発生させるとともに反射防止を実現する誘電体多層膜 MLRは、低屈折率層 L、中 間屈折率層 M、および高屈折率層 Hを有し、合計で 7層以上であるとよい(実施例 1 〜5が対応)。あるいは、誘電体多層膜 MLRは、合計で 5層以上の誘電体膜を含む とともに、低屈折率層 Lと高屈折率層 Hとを交互に積層させて成る繰り返し構造を含 み、高屈折率層 Hの屈折率 Nと低屈折率層 Lの屈折率 Nとの差が、 0. 5以上であ るとよい(実施例;!〜 6が対応)。上記の条件より少ない層数でも反射防止は実現でき る力 複屈折を補償することのできる位相差を発生させることが困難である。いずれの 場合も誘電体多層膜 MLRの層数は 20層以下であることがさらに望ましい。上限を超 えると、製造時のばらつきによりリップルが発生し、反射防止特性を安定的に確保す ることが困難になる。
[0108] [4.総括]
総括として、コーティング対物レンズ COLには以下のことがいえる。すなわち、対物 レンズ OLに複屈折が生じ、それに起因して、対物レンズ OLからの出射光に波面収 差が生じる場合がある。そして、かかる波面収差の非点収差成分が 10m rms以上 生じる場合に、コーティング対物レンズ COLは、その非点収差成分を 5m rms以下 にまで低減させる誘電体多層膜 MLRを有して!/、る。
[0109] なお、波面収差の非点収差成分を低減させる原理は、非点収差成分の発生原因 の 1つである複屈折位相差と、誘電体多層膜 MLRにおける透過位相差 Dとを相殺さ せることである。そのために、効果的に透過位相差 Dを発生させられる誘電体多層膜 MLRを有するコーティング対物レンズ COLが望ましい。また、誘電体多層膜 MLRが 発生させる位相差はレンズ中心から外縁部にむかうにつれ実質的に単調増加してい ることが望ましい。
[0110] 力、かるようなコーティング対物レンズ COLの一例としては以下のようなものが挙げら れる。例えば、誘電体多層膜 MLRに入射する波長 405nmの光の入射角を δ、誘電 体多層膜 MLRを透過する光の Ρ偏光と S偏光との位相差 (透過位相差)を D、とした 場合での δと Dとの関係で、
6 = 30° のとき、 Dは 2° 以上かつ 20° 以下となり、
6 = 60° のとき、 Dは 4° 以上かつ 40° 以下となり、
の関係を満たし、
30° ≤ δ≤60° の範囲における Dの変化は、単調変化(例えば、線形変化)し てレ、るコーティング対物レンズ COLである(実施例;!〜 6が対応)。
[0111] さらに、力、かるようなコーティング対物レンズ COLは、以下の条件を満たしていると 効果的に波面収差の非点収差成分を低減できるとともに、反射防止を実現できる(実 施例;!〜 3が対応)。
条件(1) :誘電体膜 Liを有さない対物レンズ OLによって生じる波面収差での非 点収差成分が 20m λ rms以上である。
条件(2) :コーティング対物レンズ COLに成膜されている誘電体多層膜 MLRは
、低屈折率層 L、中間屈折率層 M、および高屈折率層 Hを有し、合計で
9層以上になっている。
[0112] また、別途に、以下の条件を満たしていても、コーティング対物レンズ COLは、効果 的に波面収差の非点収差成分を低減できるとともに、反射防止を実現できる(実施例 ;!〜 5が対応)。
条件(3) :誘電体膜 Liを有さない対物レンズ OLによって生じる波面収差での非 点収差成分が 10m λ rms以上かつ 20m λ rms未満である。
条件 (4) :誘電体多層膜 MLRは、低屈折率層 L、中間屈折率層 M、および高屈 折率層 Hを有し、合計で 7層以上になっている。
[0113] さらに、別途、以下の条件を満たしていても、コーティング対物レンズ COLは、効果 的に波面収差の非点収差成分を低減できるとともに、反射防止を実現できる(実施例 ;!〜 5が対応)。
条件(5) :誘電体膜 Liを有さないコーティング対物レンズ COLによって生じる 波面収差での非点収差成分が 20m λ rms以上である。
条件 (6) :誘電体多層膜 MLRは、合計で 7層以上の誘電体膜 Liを含むとともに 、低屈折率層 Lと高屈折率層 Hとを交互に積層させて成る繰り返し構造 を含んでいる。
条件(7) :高屈折率層 Hの屈折率 Nから低屈折率層 Lの屈折率 Nを差し引いて
H L
求められる屈折率の差が、 0. 5以上である。
[0114] さらに、別途、以下の条件を満たしていても、コーティング対物レンズ COLは、効果 的に波面収差の非点収差成分を低減できるとともに、反射防止を実現できる(実施例 ;!〜 6が対応)。
条件 (8) :誘電体膜 Liを有さない対物レンズ OLによって生じる波面収差での非 点収差成分が 10m λ rms以上かつ 20m λ rms未満である。 条件 (9) :誘電体多層膜 MLRは、合計で 5層以上の誘電体膜 Liを含むとともに 、低屈折率層 Lと高屈折率層 Hとを交互に積層させて成る繰り返し構造 を含んでいる。
条件(10):高屈折率層 Hの屈折率 Nから低屈折率層 Lの屈折率 Nを差し引いて
H L
求められる屈折率の差が、 0. 5以上である。
[0115] なお、ガラス成形で作製される対物レンズ OLには、複屈折が発生しやすい。その 上、開口数の値が大きいほど、例えば 0. 6以上であれば、特に複屈折が発生しやす い。また、力、かるようにして発生した複屈折はレンズ軸を中心として放射状に生じ、そ の複屈折量は対物レンズ OLの外縁に近づくほど増加する。
[0116] ただし、力、かるような対物レンズ OLに成膜される誘電体多層膜 MLRも、対物レンズ OLに起因する複屈折に対応するように、レンズ軸を中心とした放射状に透過位相差 Dを生じさせ、その位相差量が対物レンズ OLの外縁に近づくほど増加させる。したが つて、このような対物レンズ OLに誘電体多層膜 MLRが設けられれば、かかる誘電体 多層膜 MLRは問題なく透過位相差 Dで複屈折位相差を打ち消し、波面収差の非点 収差成分を低減できる。
[0117] [その他の実施の形態]
なお、本発明は上記の実施の形態に限定されず、本発明の趣旨を逸脱しない範囲 で、種々の変更が可能である。
[0118] 例えば、上記実施形態では、ガラス成形により作製された対物レンズの複屈折を誘 電体多層膜により補償しているカ、樹脂製のレンズであっても補償可能であり、レン ズの材質には限定されない。また、光ピックアップ用の対物レンズに限らず、撮像レン ズ系ゃ投影レンズ系あるいは測定用に使用されるレンズであってもよぐ使用用途に は限定されない。いずれの光学系に使用されるレンズであっても、誘電体多層膜 ML Rで透過位相差を発生させることで、レンズの複屈折による性能低下を低減すること ができる。
[0119] また、上記実施形態では、 P偏光の位相に対して S偏光の位相が遅れている場合 に複屈折位相差を相殺できる例を示した力 これに限らずレンズの複屈折に応じて 位相差を発生させればよい。複屈折の分布も軸対称でなくても構わない。要は、 P偏 光と S偏光との位相差を用いることでレンズの持つ複屈折を低減させるものは本発明 に含まれるものである。
また、例えば、コーティング対物レンズ COLに含まれる光学多層膜としては、誘電 体多層膜 MLRを例に挙げて説明してきた。しかし、これに限定されるものではない。 すなわち、誘電体材料以外の材料で光学薄膜、ひいては光学多層膜が形成されて いてもよい。また、誘電体多層膜 MLRも反射防止膜に限定されないし、対物レンズ OLに対する誘電体多層膜 MLRの成膜方法も限定されるものではない。

Claims

請求の範囲
[1] レンズ表面に光学多層膜を有する光学素子であって、
上記レンズは複屈折を有し、そのレンズによる波面収差の非点収差成分は 10m λ rms以上でめり、
上記光学多層膜が、 P偏光と S偏光との位相差を発生させ上記複屈折を相殺させ ることにより、光学素子による波面収差の非点収差成分を 5m rms以下に低減させ る光学素子。
[2] 上記光学多層膜の位相差はレンズ中心から外縁部に向かうにつれ実質的に単調 増加して!/、る請求項 1に記載の光学素子。
[3] 上記光学多層膜に入射する波長 405nmの光の入射角を δ [° ]、上記光学多層 膜を透過する上記光の Ρ偏光と S偏光との位相差を D [° ]とした場合、 δと Dとの関 係では、
6 = 30° のとき、 Dは 2° 以上かつ 20° 以下、
6 = 60° のとき、 Dは 4° 以上かつ 40° 以下、
の関係を満たし、
30° ≤ 6≤60° の範囲における Dの変化は、単調に変化している請求項 2 に記載の光学素子。
[4] 上記の単調変化は、線形変化である請求項 3に記載の光学素子。
[5] 上記光学多層膜は反射防止膜であり、
上記光学多層膜に含まれる光学薄膜にぉレ、て、
1. 6未満の屈折率を有する光学薄膜を低屈折率層、
1. 6以上かつ 1. 9以下の屈折率を有する光学薄膜を中間屈折率層、 1. 9を超える屈折率を有する光学薄膜を高屈折率層、
とした場合に、
以下の条件(1)および条件(2)を満たして!/、る請求項 1〜4の!/、ずれか 1項に記載の 光学素子;
条件(1):上記レンズの波面収差における非点収差成分が 20m rms以上であ 条件 (2):光学多層膜は、低屈折率層、中間屈折率層、および高屈折率層を有し 合計で 9層以上である。
[6] 上記光学多層膜は反射防止膜であり、
上記光学多層膜に含まれる光学薄膜にぉレ、て、
1. 6未満の屈折率を有する光学薄膜を低屈折率層、
1. 6以上かつ 1. 9以下の屈折率を有する光学薄膜を中間屈折率層、 1. 9を超える屈折率を有する光学薄膜を高屈折率層、
とした場合に、
以下の条件(3)および条件 (4)を満たして!/、る請求項 1〜4の!/、ずれか 1項に記載の 光学素子;
条件(3):上記レンズの波面収差における非点収差成分が 10m λ rms以上かつ
20m λ rms未満である。
条件 (4):光学多層膜は、低屈折率層、中間屈折率層、および高屈折率層を有し 合計で 7層以上である。
[7] 上記光学多層膜は反射防止膜であり、
上記光学多層膜に含まれる光学薄膜にぉレ、て、
1. 6未満の屈折率を有する光学薄膜を低屈折率層、
1. 9を超える屈折率を有する光学薄膜を高屈折率層、
とした場合に、
以下の条件(5)〜条件(7)を満たして!/、る請求項 1〜4の!/、ずれか 1項に記載の光学 素子;
条件(5):上記レンズの波面収差における非点収差成分が 20m rms以上で ある。
条件 (6):光学多層膜は、合計で 7層以上の光学薄膜を含むとともに、低屈折率 層と高屈折率層とを交互に積層させて成る繰り返し構造を含んでいる。 条件 (7) :高屈折率層の屈折率と低屈折率層の屈折率を差し引いて求められる屈 折率の差が、 0. 5以上である。
[8] 上記光学多層膜は反射防止膜であり、
上記光学多層膜に含まれる光学薄膜にぉレ、て、
1. 6未満の屈折率を有する光学薄膜を低屈折率層、
1. 9を超える屈折率を有する光学薄膜を高屈折率層、
とした場合に、
以下の条件(8)〜条件(10)を満たして!/、る請求項 1〜4の!/、ずれか 1項に記載の光 学素子;
条件(8) :上記レンズの波面収差における非点収差成分が 10m rms以上かつ
20m λ rms未満である。
条件 (9) :光学多層膜は、合計で 5層以上の光学漠膜を含むとともに、低屈折率 層と高屈折率層とを交互に積層させて成る繰り返し構造を含んでいる。 条件(10) :高屈折率層の屈折率と低屈折率層の屈折率を差し引いて求められる 屈折率の差が、 0. 5以上である。
[9] 上記レンズが成形により形成されている請求項 1〜8のいずれか 1項に記載の光学 素子。
[10] 上記レンズの開口数が 0. 6以上である請求項 1〜9のいずれ力、 1項に記載の光学 素子。
[11] 上記複屈折が、上記レンズのレンズ軸中心を基準に放射状に生じており、上記複 屈折の量が、レンズ軸中心からレンズの外縁にむ力、うにつれて増加している請求項 1 〜; 10のいずれか 1項に記載の光学素子。
[12] 上記光学多層膜は、反射防止用の誘電体膜を積層させた誘電体多層膜である請 求項;!〜 4、 9〜; 11のいずれか 1項に記載の光学素子。
[13] 請求項;!〜 12のいずれか 1項の光学素子を備える光ピックアップ装置。
[14] レンズ表面に光学多層膜を有する光学素子であって、
上記レンズは複屈折を有し、
上記光学多層膜が、 P偏光と S偏光との位相差を発生させ上記複屈折を相殺させ ることにより、レンズに発生する波面収差の非点収差成分を半分以下に低減させる光 学素子。
[15] 上記光学多層膜が、レンズに発生する波面収差の非点収差成分を 1/5以下に低 減させる請求項 14に記載の光学素子。
[16] 上記光学多層膜の位相差はレンズ中心から外縁部に向力、うにつれ実質的に単調 増加している請求項 14または 15に記載の光学素子。
[17] 上記複屈折が、上記レンズのレンズ軸中心を基準に放射状に生じており、上記複 屈折の量が、レンズ軸中心からレンズの外縁にむ力、うにつれて増加している請求項 1
4〜; 16のいずれか 1項に記載の光学素子。
[18] 上記光学多層膜は、反射防止用の誘電体膜を積層させた誘電体多層膜である請 求項 14〜; 17のいずれか 1項に記載の光学素子。
PCT/JP2007/072723 2006-12-07 2007-11-26 光学素子および光ピックアップ装置 WO2008069031A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800454962A CN101553744B (zh) 2006-12-07 2007-11-26 光学元件及光拾取装置
JP2008548221A JP4433086B2 (ja) 2006-12-07 2007-11-26 光学素子および光ピックアップ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006330267 2006-12-07
JP2006-330267 2006-12-07

Publications (1)

Publication Number Publication Date
WO2008069031A1 true WO2008069031A1 (ja) 2008-06-12

Family

ID=39491934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072723 WO2008069031A1 (ja) 2006-12-07 2007-11-26 光学素子および光ピックアップ装置

Country Status (4)

Country Link
US (1) US7986604B2 (ja)
JP (1) JP4433086B2 (ja)
CN (1) CN101553744B (ja)
WO (1) WO2008069031A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257677A (ja) * 2010-06-11 2011-12-22 Konica Minolta Opto Inc 光学素子とその製造方法
JP2013511066A (ja) * 2009-11-11 2013-03-28 イーストマン コダック カンパニー 位相補償型薄膜ビームコンバイナ
JP2016197253A (ja) * 2012-09-28 2016-11-24 株式会社ニコン・エシロール 眼鏡レンズおよびその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552008B2 (ja) * 2009-09-30 2014-07-16 Hoya株式会社 光情報記録再生光学系及び光情報記録再生装置
DE102010048088A1 (de) * 2010-10-01 2012-04-05 Carl Zeiss Vision Gmbh Optische Linse mit kratzfester Entspiegelungsschicht
KR102135345B1 (ko) * 2013-01-22 2020-07-17 엘지전자 주식회사 영상투사장치
CN113506598A (zh) * 2021-07-15 2021-10-15 中节能万润股份有限公司 一种通过建立qsar模型预测液晶分子双折射率的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318231A (ja) * 2000-02-29 2001-11-16 Asahi Glass Co Ltd 偏光性位相補正素子および光ヘッド装置
WO2003060892A2 (en) * 2002-01-17 2003-07-24 Koninklijke Philips Electronics N.V. Optical scanning device
WO2004095444A1 (ja) * 2003-04-24 2004-11-04 Konica Minolta Opto, Inc. 回折光学素子及びそれを用いた光ピックアップ装置
JP2005190615A (ja) * 2003-12-26 2005-07-14 Asahi Glass Co Ltd 光ピックアップ装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929529B2 (ja) * 2001-03-27 2012-05-09 株式会社ニコン 光学系の製造方法、および該製造方法で製造された光学系を備えた露光装置
JP2003172805A (ja) * 2001-12-05 2003-06-20 Nippon Sheet Glass Co Ltd 反射防止膜付き屈折率分布レンズ
US7411884B2 (en) * 2002-08-21 2008-08-12 Hoya Corporation Optical system with objective lens having diffraction structure
JP3757962B2 (ja) * 2003-03-18 2006-03-22 コニカミノルタオプト株式会社 光ピックアップ用プリズム及び光ピックアップの製造方法
JP3966303B2 (ja) * 2003-04-24 2007-08-29 コニカミノルタオプト株式会社 回折光学素子及びそれを用いた光ピックアップ装置
US20040213134A1 (en) * 2003-04-24 2004-10-28 Minolta Co., Ltd. Optical pickup apparatus
US7286464B2 (en) * 2003-06-30 2007-10-23 Konica Minolta Opto, Inc. Optical element and optical pick-up device
JP2005283783A (ja) * 2004-03-29 2005-10-13 Fujinon Corp 成形光学素子を有する光学系、およびその製造方法
TW200604563A (en) * 2004-07-22 2006-02-01 Hitachi Maxell Light shield sheet, optical apparatus, and method of manufacturing light shield sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318231A (ja) * 2000-02-29 2001-11-16 Asahi Glass Co Ltd 偏光性位相補正素子および光ヘッド装置
WO2003060892A2 (en) * 2002-01-17 2003-07-24 Koninklijke Philips Electronics N.V. Optical scanning device
WO2004095444A1 (ja) * 2003-04-24 2004-11-04 Konica Minolta Opto, Inc. 回折光学素子及びそれを用いた光ピックアップ装置
JP2005190615A (ja) * 2003-12-26 2005-07-14 Asahi Glass Co Ltd 光ピックアップ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511066A (ja) * 2009-11-11 2013-03-28 イーストマン コダック カンパニー 位相補償型薄膜ビームコンバイナ
JP2011257677A (ja) * 2010-06-11 2011-12-22 Konica Minolta Opto Inc 光学素子とその製造方法
JP2016197253A (ja) * 2012-09-28 2016-11-24 株式会社ニコン・エシロール 眼鏡レンズおよびその製造方法

Also Published As

Publication number Publication date
CN101553744A (zh) 2009-10-07
US7986604B2 (en) 2011-07-26
CN101553744B (zh) 2012-06-27
JPWO2008069031A1 (ja) 2010-03-18
US20080259773A1 (en) 2008-10-23
JP4433086B2 (ja) 2010-03-17

Similar Documents

Publication Publication Date Title
JP4433086B2 (ja) 光学素子および光ピックアップ装置
JP3932578B2 (ja) 対物レンズ及び光学ピックアップ装置
JP3712628B2 (ja) 対物レンズおよびその製造誤差の補正方法並びに該対物レンズを用いた光ピックアップ装置
JP3640059B2 (ja) 収差補正装置及びこれを用いた光学装置
KR101258921B1 (ko) 광픽업용 광학부품, 대물렌즈, 반사방지막 및 광픽업용광학부품의 제조방법
JP2002140831A (ja) 光ピックアップ装置
JP2004145906A (ja) 光ヘッド装置及びそれを用いた光情報装置
WO2010044355A1 (ja) 対物レンズ及び光ピックアップ装置
JP2003287675A (ja) 集光光学系、光ピックアップ装置、記録・再生装置、収差補正素子及び対物レンズ
JP2009104732A (ja) 光ピックアップレンズ
JP4513946B2 (ja) 光ピックアップ装置用光学系、光ピックアップ装置及び光情報記録再生装置
JP3826819B2 (ja) 光ピックアップ装置
JP2006164493A (ja) 光学ヘッド及び情報記録再生装置
JP2011053573A (ja) 薄膜形成方法
EP1318510A2 (en) Optical disk and recording/reproducing apparatus
JP2004341469A (ja) プリズムの製造方法及び光学システムの製造方法
US20110110217A1 (en) Objective lens, optical pickup and optical disc apparatus
JP2013206496A (ja) 光ピックアップ装置及び対物レンズ
JPH09306024A (ja) 光情報記録媒体の記録および/または再生用光学系
JP5563889B2 (ja) 対物レンズの傾き角調整方法、及び光情報記録再生装置
JP2010281847A (ja) 対物レンズ
JP5099197B2 (ja) カップリングレンズ及び光ピックアップ装置
JP2006209821A (ja) 光ピックアップ及びこれを用いる光情報処理装置
JP4768676B2 (ja) 光ピックアップおよび光情報処理装置
JP2005331963A (ja) 対物レンズおよびその製造誤差の補正方法並びに該対物レンズを用いた光ピックアップ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780045496.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548221

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832448

Country of ref document: EP

Kind code of ref document: A1