WO2010044355A1 - 対物レンズ及び光ピックアップ装置 - Google Patents

対物レンズ及び光ピックアップ装置 Download PDF

Info

Publication number
WO2010044355A1
WO2010044355A1 PCT/JP2009/067404 JP2009067404W WO2010044355A1 WO 2010044355 A1 WO2010044355 A1 WO 2010044355A1 JP 2009067404 W JP2009067404 W JP 2009067404W WO 2010044355 A1 WO2010044355 A1 WO 2010044355A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
optical
pickup device
lens
spherical aberration
Prior art date
Application number
PCT/JP2009/067404
Other languages
English (en)
French (fr)
Inventor
英和 戸塚
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2010533875A priority Critical patent/JPWO2010044355A1/ja
Priority to EP09820533A priority patent/EP2346041A1/en
Priority to CN2009801406768A priority patent/CN102187392A/zh
Priority to US13/124,391 priority patent/US20110199882A1/en
Publication of WO2010044355A1 publication Critical patent/WO2010044355A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers

Definitions

  • the present invention relates to an optical pickup device that records and / or reproduces information using a short wavelength light source and an objective lens used therefor.
  • BDs Blu-ray Discs
  • the light is condensed through an optical system of an optical pickup device used in an optical disk apparatus (hereinafter also referred to as an optical information recording / reproducing apparatus). It is necessary to reduce the diameter of the light spot. Since the spot system is proportional to ⁇ / NA (where ⁇ is the wavelength of the light source and NA is the numerical aperture of the objective lens), the spot diameter can be reduced by shortening the wavelength of the light source and increasing the numerical aperture.
  • the plastic objective lens has a problem that spherical aberration is likely to occur according to the temperature change because the refractive index change due to the temperature change is larger than that of the glass objective lens.
  • the image-side numerical aperture NA is generally 0.8 or more, and spherical aberration that occurs due to a temperature change or the like is generated. Since it becomes relatively large, some correction means is required. Therefore, in Patent Document 1, the beam expander disposed between the light source and the objective lens is moved in the optical axis direction, and the optical system magnification is changed in accordance with the generated spherical aberration, thereby correcting it. .
  • coma aberration fluctuates and exceeds an allowable value, so that appropriate information recording / reproduction may not be performed.
  • a more serious problem may occur in a so-called multilayer optical disc in which a plurality of information recording surfaces are stacked in the thickness direction. This is because the magnification of the objective lens is changed in order to appropriately perform recording and reproduction on each layer of the multilayer optical disc. Under such conditions, the fluctuation of the coma aberration is further increased, and the allowable value is further exceeded. Because it will end up.
  • spherical aberration can also occur due to wavelength fluctuations of the semiconductor laser serving as the light source, and the same problem occurs when the magnification of the objective lens is changed for the correction.
  • the problem in the multilayer disk and the problem in the wavelength fluctuation are not problems specific to the plastic objective lens but also apply to the glass objective lens.
  • NA the image-side numerical aperture
  • the spherical aberration caused by the temperature change, the multilayer optical disk, and the wavelength fluctuation is not large, and there is no need to change the magnification of the optical system as shown in Patent Document 1 to correct the skew. After adjustment, there was almost no coma that occurred after that, and there was no problem.
  • the lens is tilted to be coma.
  • the present inventor has also found that there is a problem that coma is not corrected even when tilt servo is performed to correct aberration.
  • the present invention has been made in view of such a problem, and an optical pickup device capable of appropriately recording / reproducing information when a temperature changes, when a multilayer disk is used, and / or when a wavelength fluctuates, and an objective lens used therefor
  • the purpose is to provide.
  • the present invention provides a lens in an optical system in which spherical aberration is generated at +0.20 ⁇ rms or more compared to the optical system in the reference state (for example, when the temperature is higher than that in the reference state and / or the protective substrate is thicker). It is an object of the present invention to provide an optical pickup device capable of performing tilt servo for correcting coma by tilting and an objective lens used therefor.
  • An objective lens for an optical pickup device is a light source that emits a light beam having a wavelength ⁇ 1 of 500 nm or less and a light beam from the light source on an information recording surface of an optical disc through a protective substrate having a thickness t1.
  • a predetermined image-side numerical aperture required for recording and / or reproducing on the optical disc is 0.7 or more, and satisfies the following expression.
  • LTR3 Third-order coma aberration generated when the objective lens is tilted by a unit angle, the optical disk is not tilted, and a parallel light beam is incident on the objective lens.
  • DTR3 The objective lens is tilted without tilting the objective lens.
  • the present inventor has found that the above-mentioned problems can be solved by deliberately designing a lens that does not satisfy the sine condition from a viewpoint different from conventional design common sense.
  • FIG. 1A shows the aberration characteristics of an objective lens according to a comparative example
  • FIG. 1B shows the aberration characteristics of an objective lens according to an example of the present invention
  • FIG. The aberration characteristics of an objective lens according to another example are shown, where the vertical axis represents the third-order coma aberration, and the horizontal axis represents the tilt angle of the objective lens (the tilt of the optical axis of the objective lens with respect to the reference axis of the optical pickup device). All objective lenses are made of plastic.
  • DTR3 is an existing value determined by the specification of the optical disk.
  • the objective lens may be designed based on an intermediate value of 0.0875 mm. Therefore, when the objective lens designed in this way is used, spherical aberration based on the thickness of the protective substrate is inherently generated when focusing on any information recording surface of the two-layer type optical disc. .
  • spherical aberration occurs due to a change in refractive index due to a temperature change.
  • the solid line indicates that a parallel light beam is incident on the objective lens under a temperature condition of 35 ° C., and is collected on the information recording surface of a virtual optical disk having a protective substrate thickness of 0.0875 mm.
  • the third-order coma aberration is shown when light is emitted, and the two-dot chain line shows spherical aberration when focusing on the second information recording surface with a protective substrate thickness of 0.1 mm under the temperature condition of 75 ° C.
  • the third-order coma aberration is shown when an optimally corrected finite light beam is incident.
  • the dotted line is focused on the first information recording surface with a protective substrate thickness of 0.075 mm under a temperature condition of ⁇ 10 ° C. 3rd order coma aberration in the case where a finite luminous flux that optimally corrects spherical aberration is made incident.
  • the objective lens when the objective lens is attached in this way, spherical aberration occurs under the temperature condition of ⁇ 10 ° C., and a finite luminous flux must be incident to correct the spherical aberration corresponding to the temperature drop.
  • Third-order coma aberration occurs. That is, it can be said that this is a problem caused by irradiating a finite light beam to the skew-adjusted objective lens.
  • the actual thickness of the protective substrate in the two-layer type optical disc is different from the design standard of 0.875 mm by ⁇ 0.0125 mm, and the first layer having a stricter protective substrate thickness of 0.075 mm.
  • FIGS. 1B and 1C are examples of an objective lens that satisfies the above formula (1), and the tilt sensitivity of the objective lens is further increased.
  • the optical axis of the objective lens is tilted by 0.12 degrees with respect to the incident light, a parallel light beam is incident under a temperature condition of 35 ° C., and the thickness of the protective substrate is designed.
  • the third-order coma aberration when focusing on the information recording surface of the reference 0.0875 mm virtual optical disk is zero.
  • the third-order coma aberration at the time of focusing on the first information recording surface having a protective substrate thickness of 0.075 mm in the two-layer type optical disc under the temperature condition of ⁇ 10 ° C. is 0.01 ⁇ rms. ( ⁇ B in FIG. 1 (b)), which is half of the comparative example. Even if the skew is adjusted at the time of assembly and the magnification of the objective lens is changed in order to cope with the temperature change and the double-layer disc, the optical pickup device is suitable. Information can be recorded / reproduced.
  • the optical axis of the objective lens is tilted by 0.15 degrees with respect to the incident light, a parallel light beam is made incident under a temperature condition of 35 ° C.
  • the third-order coma aberration becomes zero when the light is condensed on the information recording surface of a virtual optical disk having a thickness of 0.0875 mm which is the design standard.
  • the third-order coma aberration at the time of focusing on the information recording surface of the first layer having a protective substrate thickness of 0.075 mm in the two-layer type optical disk under the temperature condition of ⁇ 10 ° C. is 0. 012 ⁇ rms ( ⁇ C in FIG.
  • the optical pickup device It is possible to record / reproduce appropriate information.
  • the lens is tilted and There is a problem that even if tilt servo is performed to correct aberrations, correction is not performed.
  • the major cause is, for example, that the amount of change in the third-order coma aberration with respect to the lens tilt angle is small at a high temperature and a thickness of 75 ° C. in which the protective substrate is thick in FIG.
  • the inventor has found that coma cannot be corrected even when the lens is tilted. According to the present invention, as shown in FIGS.
  • the third coma with respect to the lens tilt angle is obtained at a high temperature and a thickness of the protective substrate of 75 ° C. and a protective substrate thickness of 0.1 mm. It can be seen that the amount of change in aberration can be increased, thereby enabling tilt servo that corrects coma aberration by tilting the lens.
  • the objective lens is a glass lens
  • the influence of temperature change is small, but the influence of the thickness of the protective substrate is also received. Therefore, the present invention is also effective in a glass objective lens.
  • the objective lens for an optical pickup device is characterized in that, in the invention according to claim 1, the following expression is satisfied.
  • An objective lens for an optical pickup device is characterized in that, in the invention of the first aspect, the following expression is satisfied.
  • DTR3 (+) is a known value determined by the specifications of the optical disk.
  • DTR3 (+): the objective lens in the case where the spherical aberration generated by correcting the magnification of the objective lens is corrected to the minimum in an optical system in which spherical aberration is generated at +0.20 ⁇ rms or more compared to the optical system in the reference state 3rd order coma aberration that occurs when the optical disk is tilted by a unit angle without tilting (for example, an optical disk with an ambient temperature of 75 ° C. and t1 0.1 mm is used, and the refractive index of the objective lens is corrected by magnification correction.
  • An objective lens for an optical pickup device is the optical lens according to any one of the first to third aspects, wherein the light beam from the light source is incident on an arbitrary position within the effective diameter of the objective lens.
  • OSC (sin ⁇ / sin ⁇ ′ ⁇ m1), where ⁇ ′ is an incident angle formed by the light beam and the optical axis, and ⁇ is an output angle formed by the optical axis when the light beam is emitted from the objective lens.
  • the sine condition violation amount OSC satisfies the following expression at any position within the effective diameter of the objective lens.
  • conditional expression (2) magnification of the objective lens when recording or reproducing information on the optical disc
  • An objective lens for an optical pickup device is characterized in that, in the invention according to any one of the first to fourth aspects, the objective lens has an optical surface composed of a refractive surface.
  • a plastic objective lens having an optical surface composed of a refracting surface that is, a plastic objective lens that does not have a diffractive structure that corrects spherical aberration that occurs when temperature changes, is a spherical surface that is generated due to temperature changes. Since the aberration increases and the magnification change must be made relatively large for the correction, the effect of the present invention is great.
  • An objective lens for an optical pickup device is the invention according to any one of the first to fourth aspects, wherein the objective lens has an optical surface provided with a diffractive structure. To do.
  • An objective lens for an optical pickup device is characterized in that, in the invention according to any one of the first to sixth aspects, the objective lens is made of plastic.
  • the optical pickup device is an optical pickup device that records and / or reproduces information with respect to an optical disc, A light source that emits a light beam having a wavelength ⁇ 1 of 500 nm or less; An objective lens for condensing the light beam from the light source on the information recording surface of the optical disc through a protective substrate having a thickness t1; A light receiving element that receives a light beam reflected by the information recording surface and passed through the objective lens, A predetermined image-side numerical aperture required for recording and / or reproduction on the optical disc is 0.7 or more, The following formula is satisfied.
  • the effect of the present invention is the same as that of the first aspect of the invention.
  • LTR3 Third-order coma aberration generated when the objective lens is tilted by a unit angle, the optical disk is not tilted, and a parallel light beam is incident on the objective lens.
  • DTR3 The objective lens is tilted without tilting the objective lens.
  • the optical pickup device according to claim 9 satisfies the following expression in the invention according to claim 7.
  • An optical pickup device according to a tenth aspect is characterized in that, in the invention according to the eighth or ninth aspect, the following expression is satisfied.
  • LTR3 (+) the objective lens in the case where the spherical aberration generated by the magnification correction of the objective lens is corrected to the minimum in the optical system in which the spherical aberration is generated at +0.20 ⁇ rms or more as compared with the optical system in the reference state 3rd order coma aberration that occurs when the optical disk is tilted by a unit angle and the optical disk is not tilted DTR3 (+): In an optical system in which spherical aberration is generated at + 0.20 ⁇ rms or more compared to the optical system in the reference state, The optical pickup device according to claim 11, wherein third-order coma aberration generated when the optical disc is tilted by a unit angle without tilting the objective lens when spherical aberration generated by magnification correction is minimized.
  • OSC (sin ⁇ / sin ⁇ ′ ⁇ m 1), where ⁇ is an incident angle formed by the light beam with the optical axis, and ⁇ is an output angle formed with the optical axis when the light beam is emitted from the objective lens.
  • the sine condition violation amount OSC satisfies the following expression at any position within the effective diameter of the objective lens.
  • m1 Magnification of the objective lens when information is recorded or reproduced on the optical disc.
  • the optical pickup device is characterized in that, in the invention according to any one of the eighth to eleventh aspects, the objective lens has an optical surface having a diffractive structure.
  • An optical pickup device is the invention according to any one of the eighth to thirteenth aspects, A coupling lens disposed between the light source and the objective lens and displaceable in the optical axis direction; The spherical aberration generated in the optical system having the coupling lens and the objective lens is corrected by displacing the coupling lens in the optical axis direction.
  • the spherical aberration generated in the optical system due to a temperature change is corrected by displacing the coupling lens in the optical axis direction.
  • the optical pickup device is the invention according to claim 14 or 15,
  • the optical disc has a plurality of information recording surfaces, Spherical aberration that occurs when information is recorded and / or reproduced on another information recording surface different from a certain information recording surface is corrected by displacing the coupling lens in the optical axis direction.
  • the optical pickup device according to claim 17 is the optical pickup device according to any one of claims 8 to 16, wherein the optical axis of the objective lens is attached to be inclined with respect to the optical axis of the optical pickup device.
  • the optical pickup device is characterized in that, in the invention according to any one of claims 8 to 17, the objective lens is made of plastic.
  • An optical pickup device receives a light source, an objective lens for condensing a light beam from the light source on an information recording surface via a protective substrate of an optical disc, and a light beam reflected by the information recording surface and transmitted through the objective lens.
  • first light source refers to the claimed light source
  • first optical disc refers to the claimed optical disc.
  • only one light source may be used (also in such an optical pickup apparatus, the optical disk is referred to as a first optical disk and the light source is referred to as a first light source).
  • a plurality of light sources may be provided.
  • at least three light sources of a first light source, a second light source, and a third light source are used.
  • the first light flux from the first light source is incident on the information recording surface of the first optical disc.
  • the second light beam from the second light source is condensed on the information recording surface of the second optical disk, and the third light beam from the third light source is condensed on the information recording surface of the third optical disk.
  • the first optical disc has a protective substrate having a thickness t1 and an information recording surface.
  • the second optical disc has a protective substrate having a thickness t2 (t1 ⁇ t2) and an information recording surface.
  • the third optical disc has a protective substrate having a thickness t3 (t2 ⁇ t3) and an information recording surface.
  • the first optical disc is preferably a BD
  • the second optical disc is a DVD
  • the third optical disc is preferably a CD, but is not limited thereto.
  • the first optical disc, the second optical disc, or the third optical disc may be an optical disc having a plurality of information recording surfaces in the thickness direction. In particular, when the first optical disc is an optical disc having a plurality of information recording surfaces in the thickness direction, the effect of the present invention becomes more remarkable.
  • a standard optical disk for example, BD: Blu-ray disc
  • information is recorded / reproduced by an objective lens with NA of 0.85 and the thickness of the protective substrate is about 0.1 mm.
  • the second optical disk information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67
  • a standard optical disk for example, a DVD
  • a protective substrate thickness of about 0.6 mm.
  • Series optical disk Examples of DVD series optical disks include DVD-ROM, DVD-Video, DVD-Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, and DVD + RW.
  • a standard optical disc for example, a CD
  • a standard optical disc for example, a CD
  • CD series optical disks include CD-ROM, CD-Audio, CD-Video, CD-R, and CD-RW.
  • the recording density it is preferable that the recording density of the first optical disk is the highest, and then the second optical disk and the third optical disk decrease in this order. (Protection board thickness)
  • the thicknesses t1, t2, and t3 of the protective substrate it is preferable to satisfy the following conditional expressions (3), (4), and (5), but is not limited thereto.
  • the light source it is preferable to use a semiconductor laser, a silicon laser, or the like.
  • the wavelength ⁇ 3 ( ⁇ 3> ⁇ 2) preferably satisfies the following conditional expressions (6) and (7).
  • the first wavelength ⁇ 1 of the first light source is 500 nm or less, preferably 350 nm or more and 440 nm or less, more preferably.
  • the second wavelength ⁇ 2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less
  • the third wavelength ⁇ 3 of the third light source is preferably Is 750 nm or more and 880 nm or less, more preferably 760 nm or more and 820 nm or less.
  • the unitization is not limited to this, and the two light sources are fixed so that the aberration cannot be corrected. Is widely included.
  • a light receiving element to be described later may be packaged.
  • a photodetector such as a photodiode is preferably used. Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it.
  • the light receiving element may comprise a plurality of photodetectors.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors.
  • a light receiving element may be used.
  • the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources. (Condensing optical system)
  • the optical pickup device according to the present invention has an objective lens. Moreover, you may have a beam splitter other than an objective lens.
  • a beam splitter refers to an optical element that splits a light beam into two or more.
  • a coupling lens such as a collimator may be provided.
  • the coupling lens is a single lens or a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam.
  • the collimator is a type of coupling lens, and is a lens that emits light incident on the collimator as parallel light.
  • the optical pickup device has an optical element such as a diffractive optical element that divides the light beam emitted from the light source into a main light beam used for information recording / reproduction and two sub light beams used for tracking and the like. Also good.
  • the optical pickup device may have a quarter wavelength plate or a diaphragm in the optical path of the light beam emitted from the light source.
  • the quarter-wave plate is an optical element that changes the light transmitted through the collimator from linearly polarized light to circularly polarized light
  • the stop is an optical element that limits the luminous flux to a predetermined numerical aperture.
  • the objective lens is an optical element having a positive refractive power for condensing a light beam from a light source on an information recording surface via a protective substrate of an optical disk.
  • the objective lens is preferably arranged at a position facing the optical disc.
  • the objective lens can be integrally displaced at least in the optical axis direction by an actuator.
  • the objective lens may be composed of two or more lenses and optical elements, or may be only a single objective lens, but is preferably a single objective lens.
  • the objective lens is a plastic lens and is a refracting lens having only a refracting surface, or a diffractive lens having a diffractive structure for compatibility with different optical disks, but does not have a diffractive structure that corrects spherical aberration caused by temperature changes Since the possibility that the magnification of the objective lens must be changed in order to correct the spherical aberration that occurs in response to a temperature change, the effect of the present invention becomes more remarkable.
  • an objective lens has a flange part with the surface extended in the orthogonal
  • NA of objective lens The numerical aperture of the objective lens necessary for the optical pickup device that performs recording / reproduction with respect to the first optical disc is NA1, and the numerical aperture of the objective lens that is necessary for the optical pickup device that performs recording / reproduction with respect to the second optical disc is NA2.
  • NA1> NA2) and NA3 (NA2> NA3) as the numerical aperture of the objective lens necessary for the optical pickup device for recording / reproducing with respect to the third optical disk.
  • NA1 is 0.7 or more, and preferably 0.8 or more and 0.9 or less. In particular, NA1 is preferably 0.85.
  • NA2 is preferably 0.55 or more and 0.7 or less. In particular, NA2 is preferably 0.60.
  • NA3 is preferably 0.4 or more and 0.55 or less. In particular, NA3 is preferably 0.45 or 0.53.
  • the spherical aberration of the spot formed on the information recording surface of the optical disc is determined by the numerical aperture NA of the objective lens and the wavelength ⁇ of the light source, and increases in proportion to NA 4 / ⁇ . Therefore, when the numerical aperture of the objective lens is increased or the wavelength of the light source is shortened in order to increase the density of the optical disk, the spherical aberration caused by the temperature change becomes larger, and stable recording / reproduction is achieved. The possibility of having to change the magnification of the objective lens in order to correct the spherical aberration to obtain the characteristics increases. Therefore, when NA is 0.7 or more (preferably 0.8 or more), the effect of the present invention becomes more remarkable.
  • the objective lens of the optical pickup device according to the present invention is made of a plastic material, the spherical aberration generated due to the temperature change becomes larger, and the spherical aberration is corrected to obtain stable recording / reproducing characteristics. Therefore, the possibility that the magnification of the objective lens must be changed increases. Therefore, when the objective lens is a plastic lens, the effect of the present invention becomes more remarkable. However, even if the objective lens is a glass lens, the magnification of the objective lens may need to be changed when dealing with multilayer optical discs or dealing with wavelength fluctuations. it can.
  • the method for manufacturing the objective lens is not particularly limited, and known methods such as an injection molding method, a compression molding method, a micromold method, a floating mold method, and a low links method can be used.
  • the injection molding method is preferable because of ease of productivity.
  • the objective lens satisfies the following formula (1).
  • LTR3 represents third-order coma aberration that occurs when a parallel light beam is incident on the objective lens without tilting the optical disk by tilting the objective lens by a unit angle.
  • DTR3 represents third-order coma aberration generated when a parallel light beam is incident on the objective lens without tilting the objective lens and tilting the optical disk by a unit angle. Since the amount of third-order coma aberration with respect to the tilt angle is proportional, it is not necessary to set the unit angle to a certain value. However, for convenience in measurement, for example, the unit angle may be set to 0.5 °. Good.
  • LTR3 (+) is an objective lens in the case where the spherical aberration generated by correcting the magnification of the objective lens is corrected to the minimum in an optical system in which spherical aberration is generated at +0.20 ⁇ rms or more compared to the optical system in the reference state. It represents the third-order coma aberration that occurs when the optical disk is not tilted while tilting by a unit angle.
  • DTR3 (+) is an objective lens in the case where the spherical aberration generated by correcting the magnification of the objective lens is corrected to the minimum in the optical system in which the spherical aberration is generated at +0.20 ⁇ rms or more as compared with the optical system in the reference state. It represents the third-order coma aberration that occurs when the optical disk is tilted by a unit angle without tilting.
  • an optical system in which spherical aberration is generated at +0.20 ⁇ rms or more compared to the optical system in the reference state means an optical system in which the protective substrate of the optical disk is thicker than the optical system in the reference state. A system is preferred.
  • the optical system in the reference state is an optical system having a virtual protective substrate thickness between the two information recording surfaces of a two-layer optical disk at room temperature, and an optical system that generates +0.20 ⁇ rms or more is
  • An optical system having a protective substrate thickness up to a deep information recording surface of the two information recording surfaces of a two-layer optical disk at a high temperature of 40 ° C. may be used.
  • conditional expression (2) is satisfied at any position within the effective diameter of the objective lens.
  • the objective lens preferably satisfies the following conditional expression.
  • M is the third-order coma aberration that occurs when the objective lens is tilted by 1 ° at the temperature T (° C.)
  • N is the third-order coma aberration that occurs when the objective lens is tilted by 1 ° at the temperature T + ⁇ T (° C.).
  • P be the third-order coma aberration that occurs when the objective lens is tilted by 1 ° at ⁇ T (° C.).
  • M, N, and P are values in a state in which the magnification of the objective lens is changed by the spherical aberration correction element so that the third-order spherical aberration on the optical disk becomes zero.
  • the focal length of the objective lens preferably satisfies the following formula.
  • the objective lens is tilted and attached in order to correct the residual coma aberration of the objective lens generated during manufacturing. More specifically, the optical axis of the objective lens (a line perpendicular to the tangent plane at the optical surface vertex of the objective lens) is tilted with respect to the optical axis of the optical pickup device (the optical axis of the light beam from the light source). It is preferable that it is attached in a state. When the objective lens is attached in such a state, coma aberration is generated due to a change in the magnification of the objective lens.
  • An optical pickup device includes a spherical aberration correction unit that corrects spherical aberration caused by a temperature change in a light beam condensed on an information recording surface by an objective lens in an optical path of a light beam emitted from a light source. It is preferable to have.
  • the spherical aberration correction means is not only for spherical aberration caused by temperature changes, but also for different types of optical discs, spherical aberration caused by the thickness of the protective substrate up to the information recording surface, and multiple information in the thickness direction.
  • spherical aberration caused by the thickness of the protective substrate up to each information recording surface and spherical aberration caused by wavelength fluctuation is preferable to correct spherical aberration caused by the thickness of the protective substrate up to each information recording surface and spherical aberration caused by wavelength fluctuation.
  • the spherical aberration correcting means for correcting the spherical aberration caused by the temperature change is caused by the thickness of the protective substrate to each information recording surface.
  • BDs those having two information recording surfaces are widespread, and the optical pickup device is used to correct spherical aberration caused by the thickness of the protective substrate up to each information recording surface of the BD. It often has spherical aberration correction means.
  • a spherical aberration correcting means for correcting spherical aberration caused by the thickness of the protective substrate up to each information recording surface of such an optical pickup device for BD has a spherical surface generated by a temperature change.
  • spherical aberration correction means it is preferable to correct spherical aberration or the like caused by at least one of a change in humidity, an error in the thickness of the protective substrate of the optical disk, and the like by the spherical aberration correction means.
  • spherical aberration correcting means for correcting the spherical aberration in the optical path of the light beam emitted from the light source.
  • spherical aberration correction means by moving the lens or lens group arranged in the optical path between the light source and the objective lens in the optical axis direction, and changing the divergence angle of the light beam incident on the objective lens, A configuration for correcting spherical aberration can be given.
  • An example of changing the divergence angle of the light beam incident on the objective lens by moving the lens or lens group arranged in the optical path between the light source and the objective lens in the optical axis direction is as follows. There is a positive lens with positive refractive power that allows divergent light emitted from the light source to enter the optical path, and this positive lens is moved in the optical axis direction to change the divergence angle of the light beam incident on the objective lens. To do.
  • a positive lens there are a collimating lens that converts a divergent light beam emitted from a light source into a parallel light beam and leads it to an objective lens, and a coupling lens that converts the divergence degree of a divergent light beam emitted from a light source and leads it to an objective lens.
  • a collimating lens that converts a divergent light beam emitted from a light source into a parallel light beam and leads it to an objective lens
  • a coupling lens that converts the divergence degree of a divergent light beam emitted from a light source and leads it to an objective lens.
  • Another example of changing the divergence angle of the light beam incident on the objective lens by moving a lens or a lens group arranged in the optical path between the light source and the objective lens in the optical axis direction is as follows.
  • a beam expander is preferably used as the positive lens having a positive refractive power and the negative lens having a negative refractive power.
  • the spherical aberration correcting means for moving the lens or the lens group in the optical axis direction is not limited to the above example, and the spherical aberration correcting means has a positive lens and a negative lens, but moves the positive lens. And a mode in which a relay lens including two positive lenses is provided, collimated light is incident on one positive lens of the relay lens, and the positive lens is moved.
  • a beam expander, a relay lens, and the like are also included in the coupling lens.
  • a stepping motor As the actuator for moving the lens in the optical axis direction, a stepping motor, a voice coil actuator, an actuator using a piezoelectric element, or the like can be used.
  • An optical information recording / reproducing apparatus includes an optical disc drive apparatus having the optical pickup device described above.
  • the optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
  • the optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc include a transfer means of an optical pickup device having a guide rail or the like for guiding toward the head, a spindle motor for rotating the optical disk, and the like.
  • the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
  • an optical pickup device that can appropriately record / reproduce information when temperature changes, when a multilayer disk is used, or when wavelength changes, and an objective lens used therefor. .
  • FIG. 3A is a longitudinal spherical aberration diagram of Example 1.
  • the vertical axis represents the height from the optical axis, and the horizontal axis represents the amount of spherical aberration (mm).
  • FIG. 3B is a diagram illustrating the sine condition violation amount of Example 1, where the vertical axis represents the height from the optical axis, and the horizontal axis represents the sine condition violation amount (mm).
  • 4 is a graph showing lens tilt sensitivity of Example 1.
  • FIG. 5A is a longitudinal spherical aberration diagram of Example 2.
  • FIG. 5B is a diagram illustrating the sine condition violation amount of Example 2, where the vertical axis represents the height from the optical axis, and the horizontal axis represents the sine condition violation amount (mm).
  • 6 is a graph showing the lens tilt sensitivity of Example 2.
  • FIG. 2 is a diagram schematically showing a configuration of an optical pickup device capable of appropriately recording / reproducing information on / from a BD.
  • Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device.
  • the present invention is not limited to the present embodiment.
  • the optical pickup device PU1 includes an objective lens OBJ, a stop ST, a quarter wavelength plate AP, a collimating lens CL, a beam splitter BS, a cylindrical lens SEN, a semiconductor laser LD1 (light source) that emits a laser beam having a wavelength of 405 nm, and a BD. It includes a light receiving element PD1 that receives a reflected light beam from the information recording surface RL1, and a uniaxial actuator AC1 that moves the collimating lens in the optical axis direction.
  • the objective lens is made of a resin and has an optical surface made of a refractive surface that is not provided with a diffractive structure.
  • the objective lens OBJ has a flange portion FL having a surface extending in a direction perpendicular to the optical axis on the outer periphery thereof. At the time of assembly, in order to eliminate residual coma aberration, the objective lens OBJ can be tilted and accurately attached to the optical pickup device by the flange portion FL.
  • the objective lens OBJ has a predetermined image-side numerical aperture of 0.7 or more required for recording and / or reproduction on the information recording surface RL of the BD, and satisfies the following expressions (1) and (1A).
  • LTR3 Third-order coma aberration generated when the objective lens is tilted by a unit angle, the optical disk is not tilted, and a parallel light beam is incident on the objective lens.
  • DTR3 The objective lens is tilted without uniting the optical disk
  • LTR3 (+) the objective lens in the case where the spherical aberration generated by the magnification correction of the objective lens is corrected to the minimum in the optical system in which the spherical aberration is generated at +0.20 ⁇ rms or more as compared with the optical system in the reference state 3rd order coma aberration that occurs when the optical disk is tilted by a unit angle and the optical disk is not tilted
  • DTR3 (+) In an optical system in which spherical aberration is generated at + 0.20 ⁇ rms or more compared to the optical system in the reference state, Third-order coma aberration generated when the optical disk is tilted by a unit angle without tilting the objective lens when the s
  • Linearly polarized light is converted to circularly polarized light by the long plate AP, the diameter of the light beam is regulated by the stop ST, and the objective lens OBJ is formed on the information recording surface RL1 of the BD via the protective substrate PL1 having a thickness of 0.1 mm. Become a spot.
  • the reflected light beam modulated by the information pits on the information recording surface RL1 is transmitted again through the objective lens OBJ and the aperture stop ST, then converted from circularly polarized light to linearly polarized light by the quarter wavelength plate AP, and converged by the collimating lens CL. And reflected by the beam splitter BS, and converged on the light receiving surface of the light receiving element PD1 by the cylindrical lens SEN.
  • the information recorded on the BD can be read by using the output signal of the light receiving element PD1 to focus or track the objective lens OBJ by the biaxial actuator AC2.
  • the collimator lens CL moves in the direction of the optical axis by the uniaxial actuator AC1, the finite light flux is objectively changed.
  • the light is incident on the lens OBJ, thereby suppressing spherical aberration.
  • the BD is a multilayer optical disc
  • spherical aberration also increases when performing an interlayer jump from one layer of a plurality of information recording surfaces to another layer. Accordingly, the collimator lens CL is moved in the optical axis direction accordingly. Yes.
  • the tilt sensitivity of the objective lens OBJ is increased so as to satisfy the above formula (1). Therefore, in order to correct the residual coma aberration, the objective lens is tilted and attached with a finite light beam. Even when the light is incident on the lens OBJ, the generation of the third-order coma aberration is effectively suppressed.
  • a power of 10 (for example, 2.5 ⁇ 10 ⁇ 3 ) is expressed using E (for example, 2.5E ⁇ 3).
  • the optical surface of the objective optical element in the present embodiment is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula obtained by substituting the coefficient shown in Table 1 into Formula 1.
  • K is a conic coefficient
  • a 2i is an aspheric coefficient.
  • Example 1 shows lens data of Example 1 of the objective lens.
  • FIG. 4 is a graph showing the lens tilt sensitivity of Example 1. The solid line, dotted line, and two-dot chain line in FIG. 4 are as described in FIG. In this embodiment,
  • 1.8 and
  • 0.9.
  • the minimum sine condition violation amount OSC is ⁇ 0.013 and the maximum is 0.005.
  • Table 2 The magnification that minimizes the spherical aberration deterioration due to the difference was calculated under the conditions shown in Table 2. As shown in FIG. 4, in this embodiment, if the optical axis of the objective lens is tilted at a maximum of 0.12 degrees with respect to the incident light, a parallel light beam is made incident under a temperature condition of 35 ° C.
  • the third-order coma aberration is zero when the light is focused on the information recording surface of a virtual optical disc having a thickness of 0.0875 mm which is the design standard.
  • the third-order coma aberration when condensing on the first information recording surface having a protective substrate thickness of 0.075 mm under a temperature condition of ⁇ 10 ° C. is within an allowable range of 0.01 ⁇ rms. .
  • the pupil coordinate 1.0 corresponds to NA 0.85.
  • FIG. 6 is a graph showing the lens tilt sensitivity of Example 1. The solid line, dotted line, and two-dot chain line in FIG. 6 are as described in FIG. In this embodiment,
  • 1.3 and
  • 0.5.
  • the minimum sine condition violation amount OSC is 0, and the maximum is 0.007.
  • Table 4 The magnification for minimizing the spherical aberration deterioration due to the thickness was calculated under the conditions shown in Table 4. As shown in FIG. 6, in this embodiment, if the optical axis of the objective lens is tilted at a maximum of 0.16 degrees with respect to the incident light, a parallel light beam is incident under a temperature condition of 35 ° C.
  • the third-order coma aberration is zero when the light is focused on the information recording surface of a virtual optical disc having a thickness of 0.0875 mm which is the design standard.
  • the third-order coma aberration when focusing on the first information recording surface having a protective substrate thickness of 0.075 mm under a temperature condition of ⁇ 10 ° C. is within an allowable range of 0.012 ⁇ rms. is there.

Abstract

 本発明は、温度変化時や多層ディスク使用時に、適切に情報の記録/再生を行える光ピックアップ装置、及び、それに用いる対物レンズを提供する。  温度変化が生じた場合、対物レンズOBJにおける屈折率変化に起因して球面収差が増大するので、1軸アクチュエータAC1により、コリメートレンズCLを光軸方向へ移動させることによって、有限光束を対物レンズOBJに入射させ、それにより球面収差を抑制している。又、BDが多層光ディスクの場合、複数の情報記録面の1層から他層へ層間ジャンプを行う際にも球面収差が増大するので、それに応じて、コリメートレンズCLを光軸方向へ移動させている。これに対し、対物レンズOBJのチルト感度を増大させているので、有限光束を対物レンズOBJに入射させた場合でも、3次コマ収差の発生を有効に抑制している。

Description

対物レンズ及び光ピックアップ装置
 本発明は、短波長の光源を用いて情報の記録及び/又は再生を行う光ピックアップ装置及びそれに用いる対物レンズに関するものである。
 近年における光ディスクの大容量化、高密度化の進展により、ブルーレイディスク(Blu-ray Disc;以下BDとする)などの高密度光ディスクの開発・実用化が進められている。記録容量が向上した高密度光ディスクに対して最適な記録又は再生を行うためには、光ディスク装置(以下、光情報記録再生装置と称することもある)に用いる光ピックアップ装置の光学系を通して集光される光スポットの径を小さくする必要がある。スポット系はλ/NA(ここで、λは光源の波長、NAは対物レンズの開口数)に比例するため、光源の短波長化及び高開口数化によりスポット径を小さくすることができる。短波長化については、波長約400nmの青紫色半導体レーザの研究が進み、既に実用化されており、従って開口数NA0.85、光源波長405nmの仕様で、BDに情報の記録及び/又は再生(以下、情報の記録/再生という)を行う光ピックアップ装置が既に市販されている。
 ところで、光ピックアップ装置用の対物レンズをプラスチック素材から形成すると、低コストで大量生産が可能になるというメリットがある。しかるに、プラスチック製の対物レンズは、ガラス製の対物レンズに比べ、温度変化に起因した屈折率変化が大きいため、温度変化に応じて球面収差が発生しやすいという問題がある。
 従って、BD等の光ディスクに対して情報の記録/再生を行う光ピックアップ装置においては、一般的に像側開口数NAが0.8以上であり、温度変化等に起因して発生する球面収差が比較的大きくなるため、何らかの補正手段が必要とされている。そこで、特許文献1においては、光源と対物レンズとの間に配置したビームエキスパンダを光軸方向に移動させ、発生する球面収差に応じて光学系倍率を変えることで、その補正を行っている。
特開2002-82280号公報
 ところで、プラスチック製の対物レンズを含む光学素子においては、製造誤差によりある程度の収差が残留してしまうことは避けられず、その一つの収差としてコマ収差が残留することは避けられないという実情がある。従って、対物レンズを光ピックアップ装置に取り付ける際には、対物レンズの光軸を光ピックアップ装置の基準軸に対して傾けることでコマ収差を排除している。これをスキュー調整という。
 しかるに、本発明者による鋭意検討の結果、スキュー調整を行って対物レンズの光軸を入射光束の光軸に対して適切に傾けて取り付けた場合であっても、実際に光ピックアップ装置を使用する際に、使用時のコマ収差(特に3次コマ収差)が変動し許容値を超える場合があることが判明した。より具体的には、特許文献1に示すように、NA0.8以上の高開口数の場合、温度変化が過大になりプラスチックレンズにおいて発生する球面収差を補正するために対物レンズの倍率を変化させるという条件下では、コマ収差が変動し許容値を超えてしまい、適切な情報の記録/再生を行えない恐れがあることがわかった。特に、複数の情報記録面を厚さ方向に重ねてなる、いわゆる多層光ディスクではより深刻な問題が生じうる。何故なら、多層光ディスクの各層に対して記録再生を適切に行うために、対物レンズの倍率を変化させるため、そのような条件下では、更にコマ収差の変動が大きくなり、許容値を更に大きく超えてしまうからである。加えて、光源となる半導体レーザの波長変動によっても球面収差は発生しうるため、その補正のために対物レンズの倍率を変化させた場合、同様の問題が発生する。尚、多層ディスクにおける問題や波長変動における問題は、プラスチック対物レンズ特有の問題ではなく、ガラス対物レンズにおいても当てはまる問題である。これに対し、従来のCDやDVDに対して情報の記録/再生を行う光ピックアップ装置においては、像側開口数NAが0.6以下であるため、例え、対物レンズがプラスチックレンズであっても、上述したような温度変化、多層光ディスク、波長変動によって発生する球面収差が大きなものではなく、特許文献1に示すような光学系の倍率を変化させて補正する必要がないために、組み立て時にスキュー調整を行えば、その後に発生するコマ収差は殆どなく、問題とはならなかった。
 更に、基準状態の光学系に比して球面収差が+0.20λrms以上発生する光学系(例えば、基準状態よりも高温及び/又は保護基板厚さが厚くなる場合)において、レンズをチルトさせてコマ収差を補正するというチルトサーボを行ったとしてもコマ収差が補正されないという問題があることも本発明者は見出した。
 本発明は、かかる問題点に鑑みてなされたものであり、温度変化時や多層ディスク使用時及び/又は波長変動時に、適切に情報の記録/再生を行える光ピックアップ装置、及び、それに用いる対物レンズを提供することを目的とする。更に、本発明は、基準状態の光学系に比して球面収差が+0.20λrms以上発生する光学系(例えば、基準状態よりも高温及び/又は保護基板厚さが厚くなる場合)において、レンズをチルトさせてコマ収差を補正するというチルトサーボを行う事を可能とする光ピックアップ装置及びそれに用いる対物レンズを提供することを目的とする。
 請求項1に記載の光ピックアップ装置用の対物レンズは、500nm以下の波長λ1の光束を出射する光源と、前記光源からの光束を厚さt1の保護基板を介して光ディスクの情報記録面上に集光する対物レンズと、前記情報記録面で反射され前記対物レンズを通過した光束を受光する受光素子と、を有し、前記光ディスクに対して情報の記録及び/又は再生を行う光ピックアップ装置用の対物レンズであって、
 前記光ディスクに記録および/または再生を行うのに必要な所定の像側開口数が0.7以上であり、以下の式を満たすことを特徴とする。
 1.0<|LTR3|/|DTR3|   (1)
但し、
 LTR3:前記対物レンズを単位角度だけ傾けて、前記光ディスクを傾けず、前記対物レンズに平行光束を入射させたときに発生する3次コマ収差
 DTR3:前記対物レンズを傾けず、前記光ディスクを単位角度だけ傾けて、前記対物レンズに平行光束を入射させたときに発生する3次コマ収差
 一般的なレンズ設計においては、軸外コマ収差特性を改善すべく、正弦条件を満たすようにしている。従って、レンズチルト感度(例えばLTR3)と光ディスクチルト感度(例えばDTR3)とを等しくするレンズ設計が常識とされている。これに対し本発明者は、鋭意研究の結果、従来の設計常識とは異なる観点より、あえて正弦条件を満たさないレンズ設計を行うことで、上述の問題を解消できることを見出した。
 本発明の原理を、図面を用いて更に具体的に説明する。図1(a)は、比較例にかかる対物レンズの収差特性を示し、図1(b)は、本発明の一例にかかる対物レンズの収差特性を示し、図1(c)は、本発明の別例にかかる対物レンズの収差特性を示し、縦軸を3次コマ収差、横軸を対物レンズの傾き角(光ピックアップ装置の基準軸に対する対物レンズの光軸の傾き)とする。尚、いずれの対物レンズもプラスチック製である。又、DTR3は光ディスクの仕様により決定される既値である。
 例えば、厚さ方向に2つの情報記録面を有する2層タイプの光ディスクに対して、情報の記録/再生を行う場合、保護基板の厚さt1は1層目が0.075mmで、2層目が0.1mmであるのに対し、対物レンズの設計は、その中間値である0.0875mmを基準として行われる場合がある。従って、このように設計された対物レンズを用いると、2層タイプの光ディスクのいずれの情報記録面に集光させる場合においても、本来的に保護基板厚さに基づく球面収差が発生することとなる。又、上述したように、温度変化による屈折率変化に起因して球面収差が発生する。この2つの球面収差を倍率変化で補正する場合において、特にコマ収差が問題となる。
 図1(a)~(c)において、実線は35℃の温度条件下で平行光束を対物レンズに入射させ、保護基板の厚さが設計基準の0.0875mmの仮想光ディスクの情報記録面に集光させる際における3次コマ収差を示し、二点鎖線は75℃の温度条件下で、保護基板の厚さが0.1mmの2層目の情報記録面に集光させる際に、球面収差を最適に補正する有限光束を入射させた場合における3次コマ収差を示し、点線は-10℃の温度条件下で、保護基板の厚さが0.075mmの1層目の情報記録面に集光させる際に、球面収差を最適に補正する有限光束を入射させた場合における3次コマ収差を示す。
 ここで、対物レンズの残留コマ収差が、例えば0.02λrms程度発生した対物レンズがあるとする。図1(a)の比較例の場合、正弦条件を満たしているので、LTR3=DTR3であり、スキュー調整によってその対物レンズの光軸を入射光に対して0.23度傾けてやれば、35℃の温度条件下で平行光束を入射させ、保護基板の厚さが設計基準の0.0875mmの仮想光ディスクの情報記録面に集光させる際における3次コマ収差はゼロとなる。ところが、このように対物レンズを取り付けた場合、-10℃の温度条件下で球面収差が発生し温度低下に応じた球面収差を補正すべく有限光束を入射させなくてはならないことから、これにより3次コマ収差が発生してしまう。即ち、スキュー調整した対物レンズに対して有限光束を照射することによって生じる課題であるといえる。加えて、2層タイプの光ディスクにおける実際の保護基板厚さは、設計基準の0.875mmに対して±0.0125mm異なっており、より厳しい側の保護基板厚さ0.075mmである1層目の情報記録面に対して集光する場合には、更に有限光束の発散角又は収束角を深くしなくてはならず、それによる3次コマ収差がプラスされる。その結果として、トータルで0.02λrmsの3次コマ収差(図1(a)のδA)が発生することとなり、組み立て時にスキュー調整を行ったとしても、光ピックアップ装置において適切な情報の記録/再生を行えない恐れがある。同様の問題は、3層以上の情報記録面を有する光ディスクについても生じうる。
 そこで、本発明者は鋭意研究の結果、上記式(1)を満足することにより、即ち、LTR3>DTR3とすることで、かかる比較例の問題を解決できることを見出した。図1(b)、(c)は、上記式(1)を満足する対物レンズの例であり、対物レンズのチルト感度をより増大させている。図1(b)に示す例では、対物レンズの光軸を入射光に対して0.12度傾けてやれば、35℃の温度条件下で平行光束を入射させ、保護基板の厚さが設計基準の0.0875mmの仮想光ディスクの情報記録面に集光させる際における3次コマ収差はゼロとなる。かかる場合、-10℃の温度条件下で、2層タイプの光ディスクにおける保護基板厚さ0.075mmである1層目の情報記録面に対して集光する際における3次コマ収差は0.01λrms(図1(b)のδB)と、比較例の半分となり、組み立て時にスキュー調整を行い、温度変化や2層ディスクに対応するために対物レンズの倍率を変更したとしても、光ピックアップ装置において適切な情報の記録/再生を行うことができる。
 又、同様に、図1(c)に示す例では、対物レンズの光軸を入射光に対して0.15度傾けてやれば、35℃の温度条件下で平行光束を入射させ、保護基板の厚さが設計基準の0.0875mmの仮想光ディスクの情報記録面に集光させる際における3次コマ収差はゼロとなる。かかる場合、-10℃の温度条件下で、2層タイプの光ディスクにおける保護基板厚さ0.075mmである1層目の情報記録面に対して集光する際における3次コマ収差は、0.012λrms(図1(b)のδC)と、比較例の約半分となり、組み立て時にスキュー調整を行い、温度変化や2層ディスクに対応するために対物レンズの倍率を変更したとしても、光ピックアップ装置において適切な情報の記録/再生を行うことができる。
 更に、基準状態の光学系に比して球面収差が+0.20λrms以上発生する光学系(例えば、基準状態よりも高温及び/又は保護基板厚さが厚くなる場合)において、レンズをチルトさせてコマ収差を補正するというチルトサーボを行ったとしても補正されないという問題がある。その大きな原因は、例えば図1(a)における高温及び保護基板厚が厚い状態である75℃、保護基板厚0.1mmの状態において、レンズチルト角度に対する3次コマ収差の変化量が小さいため、レンズをチルトさせてもコマ収差を補正できないことにある事を本発明者は見出した。本発明によれば、図1(b)、(c)に示すように、高温及び保護基板厚が厚い条件である75℃、保護基板厚0.1mmの状態において、レンズチルト角度に対する3次コマ収差の変化量をより大きくすることができ、それによって、レンズをチルトさせてコマ収差を補正するチルトサーボが可能となることがわかる。なお、対物レンズがガラスレンズである場合、温度変化の影響は小さくなるが、保護基板厚みの影響は受けるため、本発明はガラスの対物レンズにおいても効果を奏するものである。
 請求項2に記載の光ピックアップ装置用の対物レンズは、請求項1に記載の発明において、以下の式を満たすことを特徴とする。
 1.1≦|LTR3|/|DTR3|≦2.0   (1’)
 請求項3に記載の光ピックアップ装置用の対物レンズは、請求項1に記載の発明において、以下の式を満たすことを特徴とする。尚、DTR3(+)は光ディスクの仕様により決定される既知である。
 0.4≦|LTR3(+)|/|DTR3(+)|≦1.2  (1A)
 LTR3(+):基準状態の光学系に比して球面収差が+0.20λrms以上発生する光学系において、前記対物レンズの倍率補正にて発生した球面収差を最小に補正した場合における、前記対物レンズを単位角度だけ傾け、前記光ディスクを傾けないときに発生する3次コマ収差(例えば環境温度が75℃で、t1=0.1mmの光ディスクを用い、更に倍率補正にて前記対物レンズの屈折率変化に起因して発生した球面収差を最小に補正した場合における、前記対物レンズを単位角度だけ傾けたときに発生する3次コマ収差)
 DTR3(+):基準状態の光学系に比して球面収差が+0.20λrms以上発生する光学系において、前記対物レンズの倍率補正にて発生した球面収差を最小に補正した場合における、前記対物レンズを傾けず、前記光ディスクを単位角度だけ傾けたときに発生する3次コマ収差(例えば環境温度が75℃で、t1=0.1mmの光ディスクを用い、更に倍率補正にて前記対物レンズの屈折率変化に起因して発生した球面収差を最小に補正した場合における、前記光ディスクを単位角度だけ傾けたときに発生する3次コマ収差)
  条件式(1A)を満たすことにより、基準状態の光学系に比して球面収差が+0.20λrms以上発生する光学系(例えば、基準状態よりも高温及び/又は保護基板厚さが厚くなる場合)において、レンズチルト角度に対する3次コマ収差の変化量をより大きくすることができ、それによって、レンズをチルトさせてコマ収差を補正するチルトサーボをより行いやすい光ピックアップ装置を提供することが可能となる。
 請求項4に記載の光ピックアップ装置用の対物レンズは、請求項1~3のいずれかに記載の発明において、前記光源からの光束において、前記対物レンズの有効径内の任意の位置に入射する光線が光軸となす入射角をα’とし、前記光線が前記対物レンズから出射する際に光軸となす出射角をαとしたときに、OSC=(sinα/sinα’-m1)で表される正弦条件違反量OSCは、前記対物レンズの有効径内のいかなる位置においても、以下の式を満たすことを特徴とする。
 -0.02≦OSC≦0.01   (2)
但し、
m1:前記光ディスクに対して情報の記録又は再生を行う際の前記対物レンズの倍率
  条件式(2)を満たすことにより、条件式(1)によって得られる発明の効果を維持しながら、高次のコマ収差が出る事を防止でき、像高によるコマ収差の発生を低減できるという効果が得られる。
 請求項5に記載の光ピックアップ装置用の対物レンズは、請求項1~4のいずれかに記載の発明において、前記対物レンズは、屈折面からなる光学面を有していることを特徴とする。屈折面からなる光学面を有しているプラスチック製の対物レンズ、即ち、温度変化時に発生する球面収差を補正する回折構造を持たないプラスチック製の対物レンズは、温度変化に起因して発生する球面収差が大きくなり、その補正のために倍率変化を比較的大きく行わなくてはならないため、本発明による効果が大きい。
 請求項6に記載の光ピックアップ装置用の対物レンズは、請求項1~4のいずれかに記載の発明において、前記対物レンズは、回折構造を備えた光学面を有していることを特徴とする。
 請求項7に記載の光ピックアップ装置用の対物レンズは、請求項1~6のいずれかに記載の発明において、前記対物レンズはプラスチック製であることを特徴とする。
 請求項8に記載の光ピックアップ装置は、光ディスクに対して情報の記録及び/又は再生を行う光ピックアップ装置であって、
 500nm以下の波長λ1の光束を出射する光源と、
 前記光源からの光束を厚さt1の保護基板を介して光ディスクの情報記録面上に集光する対物レンズと、
 前記情報記録面で反射され前記対物レンズを通過した光束を受光する受光素子と、を有し、
 前記光ディスクに記録および/または再生を行うのに必要な所定の像側開口数が0.7以上であり、
 以下の式を満たすことを特徴とする。本発明の作用効果は請求項1の発明と同様である。
 1.0<|LTR3|/|DTR3|   (1)
但し、
 LTR3:前記対物レンズを単位角度だけ傾けて、前記光ディスクを傾けず、前記対物レンズに平行光束を入射させたときに発生する3次コマ収差
 DTR3:前記対物レンズを傾けず、前記光ディスクを単位角度だけ傾けて、前記対物レンズに平行光束を入射させたときに発生する3次コマ収差
 請求項9に記載の光ピックアップ装置は、請求項7に記載の発明において、以下の式を満たすことを特徴とする。
 1.1≦|LTR3|/|DTR3|≦2.0   (1’)
 請求項10に記載の光ピックアップ装置は、請求項8又は9に記載の発明において、以下の式を満たすことを特徴とする。
 0.4≦|LTR3(+)|/|DTR3(+)|≦1.2  (1A)
 LTR3(+):基準状態の光学系に比して球面収差が+0.20λrms以上発生する光学系において、前記対物レンズの倍率補正にて発生した球面収差を最小に補正した場合における、前記対物レンズを単位角度だけ傾け、前記光ディスクを傾けないときに発生する3次コマ収差
 DTR3(+):基準状態の光学系に比して球面収差が+0.20λrms以上発生する光学系において、前記対物レンズの倍率補正にて発生した球面収差を最小に補正した場合における、前記対物レンズを傾けず、前記光ディスクを単位角度だけ傾けたときに発生する3次コマ収差
 請求項11に記載の光ピックアップ装置は、請求項8~10のいずれかに記載の発明において、前記光源からの光束において、前記対物レンズの有効径内の任意の位置に入射する光線が光軸となす入射角をαとし、前記光線が前記対物レンズから出射する際に光軸となす出射角をαとしたときに、OSC=(sinα/sinα’-m1)で表される正弦条件違反量OSCは、前記対物レンズの有効径内のいかなる位置においても、以下の式を満たすことを特徴とする。
 -0.02≦OSC≦0.01   (2)
但し、
 m1:前記光ディスクに対して情報の記録又は再生を行う際の前記対物レンズの倍率
 請求項12に記載の光ピックアップ装置は、請求項8~11のいずれかに記載の発明において、前記対物レンズは、屈折面からなる光学面を有していることを特徴とする。
 請求項13に記載の光ピックアップ装置は、請求項8~11にいずれかに記載の発明において、前記対物レンズは、回折構造を備えた光学面を有していることを特徴とする。
 請求項14に記載の光ピックアップ装置は、請求項8~13のいずれかに記載の発明において、
 前記光源と前記対物レンズとの間に配置され光軸方向に変位可能なカップリングレンズとを有し、
 前記カップリングレンズを光軸方向に変位することにより、前記カップリングレンズと前記対物レンズを有する光学系において発生した球面収差を補正することを特徴とする。
 請求項15に記載の光ピックアップ装置は、請求項14に記載の発明において、前記カップリングレンズを光軸方向に変位することにより、温度変化によって前記光学系において発生した球面収差を補正することを特徴とする。
 請求項16に記載の光ピックアップ装置は、請求項14又は15に記載の発明において、
 前記光ディスクは複数の情報記録面を有し、
 ある情報記録面とは異なる他の情報記録面に対して情報の記録及び/又は再生を行う際に発生する球面収差を、前記カップリングレンズを光軸方向に変位することにより補正することを特徴とする。
 請求項17に記載の光ピックアップ装置は、請求項8~16のいずれかに記載の発明において、前記対物レンズの光軸は前記光ピックアップ装置の光軸に対して傾いて取り付けられていることを特徴とする。
 請求項18に記載の光ピックアップ装置は、請求項8~17のいずれかに記載の発明において、前記対物レンズはプラスチック製であることを特徴とする。
(光ピックアップ装置)
 本発明に係る光ピックアップ装置は、光源と、光源からの光束を光ディスクの保護基板を介して情報記録面上に集光する対物レンズと、情報記録面で反射され対物レンズを透過した光束を受光する受光素子とを有し、光ディスクの情報の記録/再生を行うものであり、好ましくは光源と対物レンズとの間に、光軸方向に変位可能なカップリングレンズを有する。尚、以下、第1光源というときは請求項の光源を意味し、第1光ディスクというときは請求項の光ディスクを意味する。
 一種類の光ディスクに対してのみ記録/再生を行う光ピックアップ装置の場合は、光源は一つのみでもよい(このような光ピックアップ装置においても、光ディスクを第1光ディスク、光源を第1光源と称することもある)。一方、複数の種類の光ディスクに対して記録/再生を行う光ピックアップ装置の場合は、光源を複数有していてもよい。例えば、第1光ディスク、第2光ディスク及び第3光ディスクの3種類の光ディスクに対して記録/再生を行う光ピックアップ装置の場合は、第1光源、第2光源及び第3光源の少なくとも3つの光源を有することが好ましい。また、第1光ディスク、第2光ディスク及び第3光ディスクの3種類の光ディスクに対して記録/再生を行う光ピックアップ装置の場合は、第1光源からの第1光束を第1光ディスクの情報記録面上に集光させ、第2光源からの第2光束を第2光ディスクの情報記録面上に集光させ、第3光源からの第3光束を第3光ディスクの情報記録面上に集光することが好ましい。さらに、第1光ディスク、第2光ディスク又は第3光ディスクの情報記録面からの反射光束を受光する受光素子を有することが好ましい。
(光ディスク)
 第1光ディスクは、厚さがt1の保護基板と情報記録面とを有する。また、光ピックアップ装置が、複数種類の光ディスクの記録/再生を行うものである場合、第2光ディスクは厚さがt2(t1<t2)の保護基板と情報記録面とを有する。第3光ディスクは、厚さがt3(t2<t3)の保護基板と情報記録面とを有する。第1光ディスクがBDであり、第2光ディスクがDVDであり、第3光ディスクがCDであることが好ましいが、これに限られるものではない。なお、第1光ディスク、第2光ディスク又は第3光ディスクは、厚さ方向に複数の情報記録面を有する光ディスクでもよい。特に第1光ディスクが、厚さ方向に複数の情報記録面を有する光ディスクである場合、本発明の効果がより顕著となる。
 第1光ディスクの例としては、NA0.85の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.1mm程度である規格の光ディスク(例えば、BD:ブルーレイディスク(Blu-ray Disc))が挙げられる。更に、第2光ディスクの例としては、NA0.60~0.67程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.6mm程度である規格の光ディスク(例えば、DVD系列光ディスク)が挙げられる。DVD系列光ディスクの例としては、DVD-ROM、DVD-Video、DVD-Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等がある。また、第3光ディスクの例としては、NA0.45~0.51程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが1.2mm程度である規格の光ディスク(例えば、CD系列光ディスク)が挙げられる。CD系列光ディスクの例としては、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等がある。なお、記録密度については、第1光ディスクの記録密度が最も高く、次いで第2光ディスク、第3光ディスクの順に低くなることが好ましい。
(保護基板の厚さ)
 なお、保護基板の厚さt1、t2、t3に関しては、以下の条件式(3)、(4)、(5)を満たすことが好ましいが、これに限られない。
 0.05mm≦t1≦0.13mm   (3)
 0.5mm≦t2≦0.7mm     (4)
 1.0mm≦t3≦1.3mm     (5)
(光源)
 光源としては、半導体レーザ、シリコンレーザ等を用いることが好ましい。第1光源から出射される第1光束の第1波長λ1、第2光源から出射される第2光束の第2波長λ2(λ2>λ1)、第3光源から出射される第3光束の第3波長λ3(λ3>λ2)は以下の条件式(6)、(7)を満たすことが好ましい。
(レーザ波長)
 1.5×λ1<λ2<1.7×λ1   (6)
 1.9×λ1<λ3<2.1×λ1   (7)
 また、第1光ディスク、第2光ディスク、第3光ディスクとして、それぞれ、BD、DVD及びCDが用いられる場合、第1光源の第1波長λ1は500nm以下、好ましくは、350nm以上、440nm以下、より好ましくは、380nm以上、420nm以下であって、第2光源の第2波長λ2は好ましくは570nm以上、680nm以下、より好ましくは630nm以上、670nm以下であって、第3光源の第3波長λ3は好ましくは、750nm以上、880nm以下、より好ましくは、760nm以上、820nm以下である。
(ユニット化)
 また、第1光源、第2光源、第3光源のうち少なくとも2つの光源をユニット化してもよい。ユニット化とは、例えば第1光源と第2光源とが1パッケージに固定収納されているようなものをいうが、これに限られず、2つの光源が収差補正不能なように固定されている状態を広く含むものである。また、光源に加えて、後述する受光素子を1パッケージ化してもよい。
(受光素子)
 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポットの形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラッキングのために対物レンズを移動させることが出来る。受光素子は、複数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いられるメイン光を受光する光検出器の両脇に2つのサブの光検出器を設け、当該2つのサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよい。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。
(集光光学系)
 本発明に係る光ピックアップ装置は、対物レンズを有する。また、対物レンズの他にビームスプリッタを有していてもよい。ビームスプリッタとは光束を二つ以上に分割する光学素子のことをいう。また、対物レンズの他にコリメータ等のカップリングレンズを有していてもよい。カップリングレンズとは、対物レンズと光源の間に配置され、光束の発散角を変える単レンズ又はレンズ群のことをいう。コリメータは、カップリングレンズの一種で、コリメータに入射した光を平行光にして出射するレンズである。更に光ピックアップ装置は、光源から射出された光束を、情報の記録再生に用いられるメイン光束と、トラッキング等に用いられる二つのサブ光束とに分割する回折光学素子などの光学素子を有していてもよい。また、光ピックアップ装置は、光源から出射された光束の光路内に1/4波長板や絞りを有していてもよい。1/4波長板はコリメータを透過した光を直線偏光から円偏光に変える光学素子であり、絞りは光束を所定の開口数に制限する光学素子である。
(対物レンズ)
 本明細書において、対物レンズとは、光源からの光束を光ディスクの保護基板を介して情報記録面上に集光する正の屈折力を有する光学素子である。また、対物レンズは、光ディスクに対向する位置に配置されていることが好ましい。更に、対物レンズはアクチュエータにより少なくとも光軸方向に一体的に変位可能であることが好ましい。対物レンズは、二つ以上の複数のレンズ及び光学素子から構成されていてもよいし、単玉の対物レンズのみでもよいが、好ましくは単玉の対物レンズである。
 対物レンズがプラスチックレンズであり、屈折面のみを有する屈折レンズや、異なる光ディスクの互換用の回折構造を有する回折レンズであるが、温度変化によって発生する球面収差を補正する回折構造を有さない場合は、温度変化に応じて発生する球面収差を補正するために対物レンズの倍率を変化させなければならない可能性が増えるため、本発明の効果がより顕著となる。
 また、対物レンズは、その外周に光軸に対し垂直方向に延びた面を持つフランジ部を有することが好ましい。このフランジ部により、対物レンズを光ピックアップ装置に精度よく取り付けることができる。
(対物レンズのNA)
 第1光ディスクに対して記録/再生を行う光ピックアップ装置に必要な対物レンズの開口数をNA1とし、第2光ディスクに対して記録/再生を行う光ピックアップ装置に必要な対物レンズの開口数をNA2(NA1>NA2)とし、第3光ディスクに対して記録/再生を行う光ピックアップ装置に必要な対物レンズの開口数をNA3(NA2>NA3)とする。NA1は、0.7以上であり、0.8以上、0.9以下であることが好ましい。特にNA1は0.85であることが好ましい。NA2は、0.55以上、0.7以下であることが好ましい。特にNA2は0.60であることが好ましい。また、NA3は、0.4以上、0.55以下であることが好ましい。特にNA3は0.45又は0.53であることが好ましい。
 光ディスクの情報記録面上に形成されたスポットの球面収差は、対物レンズの開口数NAと光源の波長λにより決まり、NA/λに比例して増大する。そのため、光ディスクの高密度化のために対物レンズの開口数を大きくしたり、光源の波長を短くした場合には、温度変化に起因して発生する球面収差がより大きくなり、安定した記録/再生特性が得るべく球面収差を補正するために、対物レンズの倍率を変更しなければならない可能性が増える。よって、NAが0.7以上(好ましくは0.8以上)の場合には、本発明の効果がより顕著となる。
(対物レンズの材料)
 本発明に係る光ピックアップ装置の対物レンズは、プラスチックの素材から形成されていると、温度変化に起因して発生する球面収差がより大きくなり、安定した記録/再生特性が得るべく球面収差を補正するために、対物レンズの倍率を変更しなければならない可能性が増える。よって、対物レンズがプラスチックレンズである場合には、本発明の効果がより顕著となる。但し、対物レンズがガラスレンズであっても、多層光ディスクに対応する場合や、波長変動に対応する場合は、対物レンズの倍率を変更しなければならない可能性があるため、本発明の効果を享受できる。
(レンズの製造方法)
 対物レンズの製造方法は、特に限定されないが、例えば、射出成形法、圧縮成形法、マイクロモールド法、フローティングモールド法、ローリンクス法等の公知の方法が可能である。生産性の容易さから射出成形法が好ましい。
(対物レンズの性能)
 対物レンズは、以下の式(1)を満たす。
 1.0<|LTR3|/|DTR3|   (1)
 LTR3は、対物レンズを単位角度だけ傾けて、光ディスクを傾けず、対物レンズに平行光束を入射させたときに発生する3次コマ収差を表す。また、DTR3は、対物レンズを傾けず、光ディスクを単位角度だけ傾けて、対物レンズに平行光束を入射させたときに発生する3次コマ収差を表す。尚、傾け角度に対する3次コマ収差の発生量は比例関係にあるため、単位角度をある値に設定する必要はないが、測定等の際の便宜上、例えば、単位角度を0.5°としてもよい。
 以下の式(1’)を満たすことがより好ましい。
 1.1≦|LTR3|/|DTR3|≦2.0   (1’)
 以下の式(1A)を満たすことが好ましい。
 0.4≦|LTR3(+)|/|DTR3(+)|≦1.2  (1A)
 LTR3(+)は、基準状態の光学系に比して球面収差が+0.20λrms以上発生する光学系において、対物レンズの倍率補正にて発生した球面収差を最小に補正した場合における、対物レンズを単位角度だけ傾け、光ディスクを傾けないときに発生する3次コマ収差を表す。DTR3(+)は、基準状態の光学系に比して球面収差が+0.20λrms以上発生する光学系において、対物レンズの倍率補正にて発生した球面収差を最小に補正した場合における、対物レンズを傾けず、光ディスクを単位角度だけ傾けたときに発生する3次コマ収差を表す。尚、「基準状態の光学系に比して球面収差が+0.20λrms以上発生する光学系」とは、基準状態の光学系に比して高温及び光ディスクの保護基板の厚さが厚い場合の光学系であることが好ましい。例えば、基準状態の光学系を、室温、2層の光ディスクの2つの情報記録面の間の値を仮想の保護基板厚における光学系とし、+0.20λrms以上発生する光学系を、基準状態よりも40℃高い温度、2層の光ディスクの2つの情報記録面のうち、深いところにある情報記録面までの保護基板厚における光学系とするようにしてもよい。
 更に、対物レンズの有効径内のいかなる位置においても、以下の条件式(2)を満たすことが好ましい。
 -0.02≦OSC≦0.01   (2)
但し、光源からの光束において、対物レンズの有効径内の任意の位置に入射する光線が光軸となす入射角をαとし、その光線が対物レンズから出射する際に光軸となす出射角をαとしたときに、正弦条件違反量OSC=(sinα/sinα’-m1)と表される。また、m1は、光ディスクに対して情報の記録又は再生を行う際の対物レンズの倍率を表す。
 また、対物レンズは以下の条件式を満たすことが好ましい。
  0.007<|N-P|/(M×2×ΔT)<0.028
 温度T(℃)において対物レンズが1°傾いた場合に発生する3次コマ収差をM、温度T+ΔT(℃)において対物レンズが1°傾いた場合に発生する3次コマ収差をN、温度T-ΔT(℃)において対物レンズが1°傾いた場合に発生する3次コマ収差をPとする。但し、M、N、P、はそれぞれ、光ディスク上の3次球面収差がゼロとなるように、球面収差補正素子により対物レンズの倍率を変化させた状態における値とする。
 対物レンズの焦点距離は、以下の式を満たすことが好ましい。
  1.0≦f(mm)≦2.4
 対物レンズの焦点距離が長い場合は、球面収差補正のためにスキュー調整後の対物レンズの倍率を変更した際に、コマ収差の発生が大きくなる。従って、上記の条件式の下限を満たすことにより、本発明の課題がより大きなものとなり、本発明の効果がより顕著になるといえる。より好ましくは以下の条件を満たすことである。
  1.2≦f(mm)≦2.2
(対物レンズの取付)
 また、対物レンズを光ピックアップ装置に取り付ける際は、製造時に発生した対物レンズの残留コマ収差を補正するために、スキュー調整をし、対物レンズが傾いて取り付けられていることが好ましい。より詳細に述べるならば、対物レンズの光軸(対物レンズ光学面頂点での接平面に対して垂直な線)が光ピックアップ装置の光軸(光源からの光線の光軸)に対して傾いた状態で取り付けられていることが好ましい。この様な状態で対物レンズが取り付けられている場合、対物レンズの倍率変化によってコマ収差が発生するため、本発明の課題がより大きなものとなり、本発明の効果が顕著なものとなる。別の言い方をすると、対物レンズの光軸が、後述する球面収差補正手段のレンズの光軸を含む光源から光ディスク上に延伸する光ピックアップ装置の基準軸に対して傾いている、と表現することもできる。
(球面収差補正手段)
 本発明に係る光ピックアップ装置は、光源から出射された光束の光路中に、対物レンズにより情報記録面上に集光される光束における、温度変化によって発生する球面収差を補正する球面収差補正手段を有することが好ましい。
 球面収差補正手段は、温度変化によって発生する球面収差だけでなく、異なる種類の光ディスクにおいて、情報記録面までの保護基板の厚さに起因して発生する球面収差や、厚さ方向に複数の情報記録面を有する光ディスクにおいて、それぞれの情報記録面までの保護基板の厚さに起因して発生する球面収差や、波長変動によって発生する球面収差を補正することが好ましい。特に好ましくは、温度変化によって発生する球面収差を補正する球面収差補正手段が、厚さ方向に複数の情報記録面を有する光ディスクにおいて、それぞれの情報記録面までの保護基板の厚さに起因して発生する球面収差を補正することを兼ねていることである。BDにおいては、2つの情報記録面を有するものが普及しており、光ピックアップ装置は、BDのそれぞれの情報記録面までの保護基板の厚さに起因して発生する球面収差を補正するための球面収差補正手段を有していることが多い。この様なBD用の光ピックアップ装置が有している、それぞれの情報記録面までの保護基板の厚さに起因して発生する球面収差を補正する球面収差補正手段に、温度変化によって発生する球面収差を補正する手段を兼ねさせることにより、従来の光ピックアップ装置の構成を殆ど変更することなく、プラスチック製の対物レンズを用いることが可能となるため、非常に好ましい態様である。なお、温度変化はサーミスタ等の温度検出手段を用いて検出することができる。
 更には、球面収差補正手段によって、湿度変化、光ディスクの保護基板の厚さの誤差等の少なくとも一つに起因して発生する球面収差等も補正することが好ましい。
 上述のように、光源から出射された光束の光路中に、上述の球面収差を補正する球面収差補正手段を有することで、安定した光ディスクに対する記録/再生特性を得ることが出来る。
(レンズを光軸方向に移動)
 球面収差補正手段の例としては、光源と対物レンズとの間の光路中に配置したレンズまたはレンズ群を光軸方向に移動して、対物レンズに入射する光束の発散角を変更することにより、球面収差を補正する構成が挙げられる。
 光源と対物レンズとの間の光路中に配置したレンズまたはレンズ群を光軸方向に移動して、対物レンズに入射する光束の発散角を変更する例としては、光源と対物レンズとの間の光路中に、光源から出射された発散光が入射される正の屈折力を有する正レンズを有し、かかる正レンズを光軸方向に移動して、対物レンズに入射する光束の発散角を変更するものが挙げられる。
 かかる正レンズとしては、光源から射出された発散光束を平行光束に変換して対物レンズに導くコリメートレンズや、光源から射出された発散光束の発散度を変換して対物レンズに導くカップリングレンズが好ましく用いられる。
 また、光源と対物レンズとの間の光路中に配置したレンズまたはレンズ群を光軸方向に移動して、対物レンズに入射する光束の発散角を変更する別の例としては、光源と対物レンズとの間の光路中に、光源から出射された発散光が入射される正の屈折力を有する正レンズと、この正レンズと対物レンズとの間に配置された、負の屈折力を有する負レンズとを有し、かかる負レンズを光軸方向に移動して、対物レンズに入射する光束の発散角を変更するものが挙げられる。
 正の屈折力を有する正レンズと負の屈折力を有する負レンズとしては、ビームエキスパンダが好ましく用いられる。
 なお、レンズまたはレンズ群を光軸方向に移動する球面収差補正手段は、上述の例に限られるものではなく、球面収差補正手段が正レンズと負レンズを有しているが、正レンズを移動する態様や、2枚の正レンズからなるリレーレンズを有し、平行光をリレーレンズの一方の正レンズに入射させ、当該正レンズを移動する態様等も含まれる。尚、ここでは、ビームエキスパンダやリレーレンズ等もカップリングレンズに含まれるものとする。
 尚、上述のレンズを光軸方向に移動させるアクチュエータとしては、ステッピングモーターやボイスコイルアクチュエータや圧電素子を利用したアクチュエータ等を使用することが出来る。
 球面収差補正手段として、光軸方向に移動可能なレンズを使用すれば、光軸方向への移動量に比例して球面収差を補正することが出来るので、球面収差の補正範囲が広いという利点がある。また、球面収差補正手段として、光軸方向に移動可能なレンズを使用する場合、対物レンズの倍率が変化するため、本発明の課題が大きなものとなり、結果として本発明の効果が顕著なものとなる。
(光情報記録再生装置)
 本発明に係る光情報記録再生装置は、上述の光ピックアップ装置を有する光ディスクドライブ装置を有する。
 ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明すると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録再生装置本体から光ディスクを搭載した状態で保持可能なトレイのみが外部に取り出される方式と、光ピックアップ装置等が収納されている光ディスクドライブ装置本体ごと、外部に取り出される方式とがある。
 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備されているがこれに限られるものではない。ハウジング等に収納された光ピックアップ装置、光ピックアップ装置をハウジングごと光ディスクの内周あるいは外周に向けて移動させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジングを光ディスクの内周あるいは外周に向けてガイドするガイドレールなどを有した光ピックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等である。
 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可能なトレイおよびトレイを摺動させるためのローディング機構等が設けられ、後者の方式にはトレイおよびローディング機構がなく、各構成部材が外部に引き出し可能なシャーシに相当するドロワーに設けられていることが好ましい。
 以上説明したように、本発明によれば、温度変化時や多層ディスク使用時や波長変動時に、適切に情報の記録/再生を行える光ピックアップ装置、及び、それに用いる対物レンズを提供することができる。
本発明を説明するための図である。 本実施の形態の光ピックアップ装置の概略構成図である。 図3(a)は、実施例1の縦球面収差図であり、縦軸は光軸からの高さ、横軸は球面収差量(mm)である。図3(b)は、実施例1の正弦条件違反量を示す図であり、縦軸は光軸からの高さ、横軸は正弦条件違反量(mm)である。 実施例1のレンズティルト感度を示すグラフである。 図5(a)は、実施例2の縦球面収差図であり、縦軸は光軸からの高さ、横軸は球面収差量(mm)である。図5(b)は、実施例2の正弦条件違反量を示す図であり、縦軸は光軸からの高さ、横軸は正弦条件違反量(mm)である。 実施例2のレンズティルト感度を示すグラフである。
 以下、図面を参照して本発明の実施の形態を説明する。図2は、BDに対して適切に情報の記録/再生を行うことができる光ピックアップ装置の構成を概略的に示す図である。かかる光ピックアップ装置PU1は、光情報記録再生装置に搭載できる。なお、本発明は本実施の形態に限られるものではない。
 光ピックアップ装置PU1は、対物レンズOBJ、絞りST、1/4波長板AP、コリメートレンズCL、ビームスプリッタBS、シリンドリカルレンズSEN、波長405nmのレーザ光束を射出する半導体レーザLD1(光源)と、BDの情報記録面RL1からの反射光束を受光する受光素子PD1と、コリメートレンズを光軸方向へ移動させる1軸アクチュエータAC1と、を有する。なお、対物レンズは、樹脂で構成されており、回折構造を設けていない屈折面からなる光学面を有している。
 また、対物レンズOBJは、その外周に光軸に対し垂直方向に延びた面を持つフランジ部FLを有する。組み付け時には、残留コマ収差の排除のため、このフランジ部FLにより、対物レンズOBJを光ピックアップ装置に傾けて精度よく取り付けることができる。
 対物レンズOBJは、BDの情報記録面RLに記録および/または再生を行うのに必要な所定の像側開口数が0.7以上であり、以下の式(1),(1A)を満たす。
 1.0<│LTR3│/│DTR3│   (1)
但し
 LTR3:前記対物レンズを単位角度だけ傾けて、前記光ディスクを傾けず、前記対物レンズに平行光束を入射させたときに発生する3次コマ収差
 DTR3:前記対物レンズを傾けず、前記光ディスクを単位角度だけ傾けて、前記対物レンズに平行光束を入射させたときに発生する3次コマ収差
 0.4≦│LTR3(+)│/│DTR3(+)│≦1.2  (1A)
 LTR3(+):基準状態の光学系に比して球面収差が+0.20λrms以上発生する光学系において、前記対物レンズの倍率補正にて発生した球面収差を最小に補正した場合における、前記対物レンズを単位角度だけ傾け、前記光ディスクを傾けないときに発生する3次コマ収差
 DTR3(+):基準状態の光学系に比して球面収差が+0.20λrms以上発生する光学系において、前記対物レンズの倍率補正にて発生した球面収差を最小に補正した場合における、前記対物レンズを傾けず、前記光ディスクを単位角度だけ傾けたときに発生する3次コマ収差
 青紫色半導体レーザLD1から射出された光束(λ1=405nm)の発散光束は、ビームスプリッタBSを透過し、コリメートレンズCLにより平行光束とされた後、1/4波長板APにより直線偏光から円偏光に変換され、絞りSTによりその光束径が規制され、対物レンズOBJによって厚さ0.1mmの保護基板PL1を介して、BDの情報記録面RL1上に形成されるスポットとなる。
 情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りSTを透過した後、1/4波長板APにより円偏光から直線偏光に変換され、コリメートレンズCLにより収斂光束とされ、ビームスプリッタBSで反射され、シリンドリカルレンズSENによって、受光素子PD1の受光面上に収束される。そして、受光素子PD1の出力信号を用いて、2軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、BDに記録された情報を読み取ることができる。
 尚、温度変化が生じた場合、対物レンズOBJにおける屈折率変化に起因して球面収差が増大するので、1軸アクチュエータAC1により、コリメートレンズCLを光軸方向へ移動させることによって、有限光束を対物レンズOBJに入射させ、それにより球面収差を抑制している。又、BDが多層光ディスクの場合、複数の情報記録面の1層から他層へ層間ジャンプを行う際にも球面収差が増大するので、それに応じて、コリメートレンズCLを光軸方向へ移動させている。本実施の形態によれば、上記式(1)を満たすように対物レンズOBJのチルト感度を増大させているので、残留コマ収差を補正するため対物レンズを傾けて取り付けたい状態で有限光束を対物レンズOBJに入射させた場合でも、3次コマ収差の発生を有効に抑制している。
 次に、本実施の形態にかかる光ピックアップ装置に好適な対物レンズの実施例について説明する。
 なお、これ以降において、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5E-3)を用いて表すものとする。
 また、本実施例における対物光学素子の光学面は、それぞれ数1式に、表に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。但し、Kを円錐係数、A2iを非球面係数とする。
Figure JPOXMLDOC01-appb-M000001
(実施例1)
 対物レンズの実施例1のレンズデータを表1に示す。図3(a)は、実施例1の縦球面収差図(λ=405nm)であり、図3(b)は、実施例1の正弦条件違反量(λ=405nm)を示す図である。なお、瞳座標1.0がNA0.85に相当する。図4は、実施例1のレンズティルト感度を示すグラフである。図4の実線、点線、二点鎖線は図1で説明した通りである。本実施例においては、│LTR3│/│DTR3│=1.8であり、│LTR3(+)│/│DTR3(+)│=0.9である。正弦条件違反量OSCは、最小が-0.013であり、最大が0.005である。但し、対物レンズの素材における温度による屈折率変化:dn/dT=-9×10-5、半導体レーザの温度変化による波長変動:dλ/dT=0.05nm/℃として、温度変化や保護基板厚差に起因した球面収差劣化を最小にする倍率を表2に示す条件で計算した。図4に示すように、本実施例で、対物レンズの光軸を入射光に対して最大でも0.12度傾けてやれば、35℃の温度条件下で平行光束を入射させ、保護基板の厚さが設計基準の0.0875mmの仮想光ディスクの情報記録面に集光させる際における3次コマ収差はゼロとなる。かかる場合、-10℃の温度条件下で、保護基板厚さ0.075mmである1層目の情報記録面に対して集光する際における3次コマ収差は0.01λrmsと許容範囲内である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(実施例2)
 対物レンズの実施例2のレンズデータを表3に示す。図5(a)は、実施例2の縦球面収差図(λ=405nm)であり、図5(b)は、実施例2の正弦条件違反量(λ=405nm)を示す図である。なお、瞳座標1.0がNA0.85に相当する。図6は、実施例1のレンズティルト感度を示すグラフである。図6の実線、点線、二点鎖線は図1で説明した通りである。本実施例においては、│LTR3│/│DTR3│=1.3であり、│LTR3(+)│/│DTR3(+)│=0.5である。正弦条件違反量OSCは、最小が0であり、最大が0.007である。但し、対物レンズの素材における温度による屈折率変化:dn/dT=-9×10-5、半導体レーザの温度変化による波長変動:dλ/dT=0.05nm/℃として、温度変化や保護基板厚さに起因した球面収差劣化を最小にする倍率を表4に示す条件で計算した。図6に示すように、本実施例で、対物レンズの光軸を入射光に対して最大でも0.16度傾けてやれば、35℃の温度条件下で平行光束を入射させ、保護基板の厚さが設計基準の0.0875mmの仮想光ディスクの情報記録面に集光させる際における3次コマ収差はゼロとなる。かかる場合、-10℃の温度条件下で、保護基板厚さ0.075mmである1層目の情報記録面に対して集光する際における3次コマ収差は、0.012λrmsと許容範囲内である。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 AC1 1軸アクチュエータ
 AC2 2軸アクチュエータ
 AP 1/4波長板
 BS ビームスプリッタ
 CL コリメートレンズ
 DP ダイクロイックプリズム
 FL フランジ部
 LD1 青紫色半導体レーザ
 OBJ 対物レンズ
 PD1 受光素子
 PL1 保護基板
 PU1 光ピックアップ装置
 RL1 情報記録面
 SEN シリンドリカルレンズ
 ST 絞り

Claims (18)

  1.  500nm以下の波長λ1の光束を出射する光源と、前記光源からの光束を厚さt1の保護基板を介して光ディスクの情報記録面上に集光する対物レンズと、前記情報記録面で反射され前記対物レンズを通過した光束を受光する受光素子と、を有し、前記光ディスクに対して情報の記録及び/又は再生を行う光ピックアップ装置用の対物レンズであって、
     前記光ディスクに記録および/または再生を行うのに必要な所定の像側開口数が0.7以上であり、以下の式を満たすことを特徴とする対物レンズ。
     1.0<|LTR3|/|DTR3|   (1)
    但し、
     LTR3:前記対物レンズを単位角度だけ傾けて、前記光ディスクを傾けず、前記対物レンズに平行光束を入射させたときに発生する3次コマ収差
     DTR3:前記対物レンズを傾けず、前記光ディスクを単位角度だけ傾けて、前記対物レンズに平行光束を入射させたときに発生する3次コマ収差
  2.  以下の式を満たすことを特徴とする請求項1に記載の対物レンズ。
     1.1≦|LTR3|/|DTR3|≦2.0   (1’)
  3.  以下の式を満たすことを特徴とする請求項1又は2に記載の対物レンズ。
     0.4≦|LTR3(+)|/|DTR3(+)|≦1.2  (1A)
     LTR3(+):基準状態の光学系に比して球面収差が+0.20λrms以上発生する光学系において、前記対物レンズの倍率補正にて発生した球面収差を最小に補正した場合における、前記対物レンズを単位角度だけ傾け、前記光ディスクを傾けないときに発生する3次コマ収差
     DTR3(+):基準状態の光学系に比して球面収差が+0.20λrms以上発生する光学系において、前記対物レンズの倍率補正にて発生した球面収差を最小に補正した場合における、前記対物レンズを傾けず、前記光ディスクを単位角度だけ傾けたときに発生する3次コマ収差
  4.  前記光源からの光束において、前記対物レンズの有効径内の任意の位置に入射する光線が光軸となす入射角をα’とし、前記光線が前記対物レンズから出射する際に光軸となす出射角をαとしたときに、OSC=(sinα/sinα’-m1)で表される正弦条件違反量OSCは、前記対物レンズの有効径内のいかなる位置においても、以下の式を満たすことを特徴とする請求項1~3のいずれかに記載の対物レンズ。
     -0.02≦OSC≦0.01   (2)
    但し、
     m1:前記光ディスクに対して情報の記録又は再生を行う際の前記対物レンズの倍率
  5.  前記対物レンズは、屈折面からなる光学面を有していることを特徴とする請求項1~4のいずれかに記載の対物レンズ。
  6.  前記対物レンズは、回折構造を備えた光学面を有していることを特徴とする請求項1~4のいずれかに記載の対物レンズ。
  7.  前記対物レンズはプラスチック製であることを特徴とする請求項1~6のいずれかに記載の対物レンズ。
  8.  光ディスクに対して情報の記録及び/又は再生を行う光ピックアップ装置であって、
     500nm以下の波長λ1の光束を出射する光源と、
     前記光源からの光束を厚さt1の保護基板を介して光ディスクの情報記録面上に集光する対物レンズと、
     前記情報記録面で反射され前記対物レンズを通過した光束を受光する受光素子と、を有し、
     前記光ディスクに記録および/または再生を行うのに必要な所定の像側開口数が0.7以上であり、
     以下の式を満たすことを特徴とする光ピックアップ装置。
     1.0<|LTR3|/|DTR3|   (1)
    但し、
     LTR3:前記対物レンズを単位角度だけ傾けて、前記光ディスクを傾けず、前記対物レンズに平行光束を入射させたときに発生する3次コマ収差
     DTR3:前記対物レンズを傾けず、前記光ディスクを単位角度だけ傾けて、前記対物レンズに平行光束を入射させたときに発生する3次コマ収差
  9.  以下の式を満たすことを特徴とする請求項8に記載の光ピックアップ装置。
     1.1≦|LTR3|/|DTR3|≦2.0   (1’)
  10.  以下の式を満たすことを特徴とする請求項8又は9に記載の光ピックアップ装置。
     0.4≦|LTR3(+)|/|DTR3(+)|≦1.2  (1A)
     LTR3(+):基準状態の光学系に比して球面収差が+0.20λrms以上発生する光学系において、前記対物レンズの倍率補正にて発生した球面収差を最小に補正した場合における、前記対物レンズを単位角度だけ傾け、前記光ディスクを傾けないときに発生する3次コマ収差
     DTR3(+):基準状態の光学系に比して球面収差が+0.20λrms以上発生する光学系において、前記対物レンズの倍率補正にて発生した球面収差を最小に補正した場合における、前記対物レンズを傾けず、前記光ディスクを単位角度だけ傾けたときに発生する3次コマ収差
  11.  前記光源からの光束において、前記対物レンズの有効径内の任意の位置に入射する光線が光軸となす入射角をαとし、前記光線が前記対物レンズから出射する際に光軸となす出射角をαとしたときに、OSC=(sinα/sinα’-m1)で表される正弦条件違反量OSCは、前記対物レンズの有効径内のいかなる位置においても、以下の式を満たすことを特徴とする請求項8~10のいずれかに記載の光ピックアップ装置。
     -0.02≦OSC≦0.01   (2)
    但し、
     m1:前記光ディスクに対して情報の記録又は再生を行う際の前記対物レンズの倍率
  12.  前記対物レンズは、屈折面からなる光学面を有していることを特徴とする請求項8~11のいずれかに記載の光ピックアップ装置。
  13.  前記対物レンズは、回折構造を備えた光学面を有していることを特徴とする請求項8~11のいずれかに記載の光ピックアップ装置。
  14.  前記光源と前記対物レンズとの間に配置され光軸方向に変位可能なカップリングレンズとを有し、
     前記カップリングレンズを光軸方向に変位することにより、前記カップリングレンズと前記対物レンズを有する光学系において発生した球面収差を補正することを特徴とする請求項8~13のいずれかに記載の光ピックアップ装置。
  15.  前記カップリングレンズを光軸方向に変位することにより、温度変化によって前記光学系において発生した球面収差を補正することを特徴とする請求項14に記載の光ピックアップ装置。
  16.  前記光ディスクは複数の情報記録面を有し、
     ある情報記録面とは異なる他の情報記録面に対して情報の記録及び/又は再生を行う際に発生する球面収差を、前記カップリングレンズを光軸方向に変位することにより補正することを特徴とする請求項14又は15に記載の光ピックアップ装置。
  17.  前記対物レンズの光軸は前記光ピックアップ装置の光軸に対して傾いて取り付けられていることを特徴とする請求項8~16のいずれかに記載の光ピックアップ装置。
  18.  前記対物レンズはプラスチック製であることを特徴とする請求項8~17のいずれかに記載の光ピックアップ装置。
PCT/JP2009/067404 2008-10-17 2009-10-06 対物レンズ及び光ピックアップ装置 WO2010044355A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010533875A JPWO2010044355A1 (ja) 2008-10-17 2009-10-06 対物レンズ及び光ピックアップ装置
EP09820533A EP2346041A1 (en) 2008-10-17 2009-10-06 Objective lens and optical pickup device
CN2009801406768A CN102187392A (zh) 2008-10-17 2009-10-06 物镜及光拾取装置
US13/124,391 US20110199882A1 (en) 2008-10-17 2009-10-06 Objective Lens and Optical Pickup Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008268663 2008-10-17
JP2008-268663 2008-10-17

Publications (1)

Publication Number Publication Date
WO2010044355A1 true WO2010044355A1 (ja) 2010-04-22

Family

ID=42106519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067404 WO2010044355A1 (ja) 2008-10-17 2009-10-06 対物レンズ及び光ピックアップ装置

Country Status (5)

Country Link
US (1) US20110199882A1 (ja)
EP (1) EP2346041A1 (ja)
JP (1) JPWO2010044355A1 (ja)
CN (1) CN102187392A (ja)
WO (1) WO2010044355A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123214A (ja) * 2008-11-20 2010-06-03 Sony Corp 対物レンズ、光ピックアップ及び光ディスク装置
JP2010153016A (ja) * 2008-11-19 2010-07-08 Hoya Corp 光情報記録再生装置用対物レンズ、および光情報記録再生装置
JP2010153015A (ja) * 2008-11-19 2010-07-08 Hoya Corp 光情報記録再生装置
JP2010250876A (ja) * 2009-04-13 2010-11-04 Hitachi Maxell Ltd 光ピックアップレンズ
JP2011238321A (ja) * 2010-05-12 2011-11-24 Hoya Corp 対物レンズの傾き角調整方法、及び光情報記録再生装置
WO2012133361A1 (ja) * 2011-03-30 2012-10-04 コニカミノルタアドバンストレイヤー株式会社 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
US8456979B2 (en) 2008-11-19 2013-06-04 Hoya Corporation Objective lens and optical information recording/reproducing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082280A (ja) 2000-05-12 2002-03-22 Konica Corp 光ピックアップ装置、対物レンズ及びビームエキスパンダー
JP2005108398A (ja) * 2003-09-08 2005-04-21 Ricoh Co Ltd 対物レンズ、光ピックアップ及び光情報処理装置
JP2007133967A (ja) * 2005-11-10 2007-05-31 Canon Inc 光学式情報記録再生装置
JP2007328886A (ja) * 2006-06-09 2007-12-20 Konica Minolta Opto Inc 光ピックアップ装置及び光情報記録媒体記録再生装置
JP2009211775A (ja) * 2008-03-05 2009-09-17 Hitachi Maxell Ltd 対物レンズ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3791778B2 (ja) * 1999-07-30 2006-06-28 松下電器産業株式会社 光ヘッド装置及び光ヘッド装置の製造方法
US8009526B2 (en) * 2007-10-10 2011-08-30 Panasonic Corporation Optical pickup device and collimate lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082280A (ja) 2000-05-12 2002-03-22 Konica Corp 光ピックアップ装置、対物レンズ及びビームエキスパンダー
JP2005108398A (ja) * 2003-09-08 2005-04-21 Ricoh Co Ltd 対物レンズ、光ピックアップ及び光情報処理装置
JP2007133967A (ja) * 2005-11-10 2007-05-31 Canon Inc 光学式情報記録再生装置
JP2007328886A (ja) * 2006-06-09 2007-12-20 Konica Minolta Opto Inc 光ピックアップ装置及び光情報記録媒体記録再生装置
JP2009211775A (ja) * 2008-03-05 2009-09-17 Hitachi Maxell Ltd 対物レンズ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153016A (ja) * 2008-11-19 2010-07-08 Hoya Corp 光情報記録再生装置用対物レンズ、および光情報記録再生装置
JP2010153015A (ja) * 2008-11-19 2010-07-08 Hoya Corp 光情報記録再生装置
US8456979B2 (en) 2008-11-19 2013-06-04 Hoya Corporation Objective lens and optical information recording/reproducing apparatus
JP2010123214A (ja) * 2008-11-20 2010-06-03 Sony Corp 対物レンズ、光ピックアップ及び光ディスク装置
JP2010250876A (ja) * 2009-04-13 2010-11-04 Hitachi Maxell Ltd 光ピックアップレンズ
JP2011238321A (ja) * 2010-05-12 2011-11-24 Hoya Corp 対物レンズの傾き角調整方法、及び光情報記録再生装置
WO2012133361A1 (ja) * 2011-03-30 2012-10-04 コニカミノルタアドバンストレイヤー株式会社 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
JP5713248B2 (ja) * 2011-03-30 2015-05-07 コニカミノルタ株式会社 光ピックアップ装置用の対物レンズ及び光ピックアップ装置

Also Published As

Publication number Publication date
JPWO2010044355A1 (ja) 2012-03-15
US20110199882A1 (en) 2011-08-18
EP2346041A1 (en) 2011-07-20
CN102187392A (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
WO2010044355A1 (ja) 対物レンズ及び光ピックアップ装置
JPWO2007010770A1 (ja) 光ピックアップ装置及び光情報記録媒体の記録・再生装置
JP5131640B2 (ja) 光ピックアップ装置及び対物レンズ
JP4193915B2 (ja) 光ピックアップ装置及び光ピックアップ装置用の対物光学素子
JP2004145907A (ja) 光ピックアップ装置、集光光学素子及び補正素子
WO2011099329A1 (ja) 光ピックアップ装置の対物レンズ及び光ピックアップ装置
JP5152524B2 (ja) 光ピックアップ装置及び対物レンズユニット
JP5083621B2 (ja) 対物レンズ及び光ピックアップ装置
JP2009037719A (ja) 光ピックアップ装置及び対物光学素子
WO2010004858A1 (ja) 対物レンズ及び光ピックアップ装置
JP2013206496A (ja) 光ピックアップ装置及び対物レンズ
JP5713248B2 (ja) 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
WO2011052469A1 (ja) 光ピックアップ装置
JPWO2008146675A1 (ja) 光ピックアップ装置用の対物光学素子及び光ピックアップ装置
JP5582421B2 (ja) 光ピックアップ装置及び光情報記録再生装置
US20120163142A1 (en) Objective Lens Element and Optical Pickup Device Using the Same
JP4706481B2 (ja) 光ピックアップ装置
JP2010097664A (ja) 対物レンズ
JP2001159731A (ja) カップリングレンズ、光ピックアップ装置及び半導体レーザコリメート装置
WO2012070438A1 (ja) 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
WO2011122275A1 (ja) 光ピックアップ装置及び光ピックアップ装置のカップリングレンズ
JPWO2008120594A1 (ja) 光ピックアップ装置用のレンズユニット及び光ピックアップ装置
WO2011065276A1 (ja) 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
WO2011099317A1 (ja) 光ピックアップ装置
WO2009122896A1 (ja) 光ピックアップ装置用の対物光学素子及び光ピックアップ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140676.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820533

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010533875

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009820533

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13124391

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE