WO2012133361A1 - 光ピックアップ装置用の対物レンズ及び光ピックアップ装置 - Google Patents
光ピックアップ装置用の対物レンズ及び光ピックアップ装置 Download PDFInfo
- Publication number
- WO2012133361A1 WO2012133361A1 PCT/JP2012/057849 JP2012057849W WO2012133361A1 WO 2012133361 A1 WO2012133361 A1 WO 2012133361A1 JP 2012057849 W JP2012057849 W JP 2012057849W WO 2012133361 A1 WO2012133361 A1 WO 2012133361A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- objective lens
- optical
- lens
- information recording
- optical pickup
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1372—Lenses
- G11B7/1378—Separate aberration correction lenses; Cylindrical lenses to generate astigmatism; Beam expanders
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/09—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B7/095—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
- G11B7/0956—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for tilt, skew, warp or inclination of the disc, i.e. maintain the optical axis at right angles to the disc
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1392—Means for controlling the beam wavefront, e.g. for correction of aberration
- G11B7/13925—Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
- G11B7/13927—Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means during transducing, e.g. to correct for variation of the spherical aberration due to disc tilt or irregularities in the cover layer thickness
Definitions
- the present invention relates to an objective lens for an optical pickup device and an optical pickup device capable of recording and / or reproducing information with respect to an optical disc having three or more information recording surfaces in the thickness direction.
- a high-density optical disk system capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm.
- the magnification of the objective lens is changed by moving the coupling lens arranged between the light source and the objective lens in the optical axis direction, and the third-order spherical aberration is suppressed with respect to the selected information recording surface.
- An optical pickup device capable of condensing the luminous flux has also been developed. The operation of changing the information recording surface on which information is to be recorded / reproduced from one information recording surface to another information recording surface may be referred to as “focus jump” in this specification.
- a BD multilayer disc having an information recording surface of three or more layers is naturally farthest from the nearest information recording surface when viewed from the surface on the light incident side, as compared with a BD double layer disc having two current information recording surfaces.
- the difference in the cover layer thickness on the information recording surface increases. Therefore, it is expected that the spherical aberration correction is insufficient on each information recording surface of the BD multilayer disc only by means of moving the collimating lens back and forth as described in Patent Document 1, and the light spot in the focused state is expected to be insufficient. There is concern that it is difficult to maintain good quality.
- the reference cover layer thickness (also referred to as the design substrate thickness) of the objective lens for BD is set to the cover layer on the intermediate surface of the BD dual-layer disc having two information recording surfaces.
- the thickness also referred to as substrate thickness
- the principle that a condensing spot can be appropriately formed on the information recording surfaces of different substrate thicknesses by displacing the collimating lens in the optical axis direction will be described. If the incident light to the objective lens becomes divergent light due to the movement of the collimating lens, the spherical aberration becomes negative, whereas if the incident light to the objective lens becomes convergent light, the spherical aberration becomes positive. Further, when the substrate thickness is larger than the design substrate thickness, the spherical aberration becomes positive, whereas when the substrate thickness is thinner than the design substrate thickness, the spherical aberration becomes negative. That is, the spherical aberration that occurs due to the difference in substrate thickness is canceled using the spherical aberration that occurs when the collimating lens is moved in the optical axis direction.
- the collimating lens is displaced to the light source side so that the incident light beam to the objective lens is diverging light, the incident light beam diameter to the collimating lens becomes smaller than that of the parallel light.
- the collimator is displaced toward the objective lens in order to make the incident light beam to the objective lens converge, the diameter of the incident light beam to the collimator lens becomes larger than that of the parallel light.
- the beam diameter in order to reduce the thickness of the optical pickup device, it is desirable to make the beam diameter as small as possible. This is because the size of each element can be suppressed.
- the light beam diameter can be reduced as much as possible by using an optical system that performs magnification correction using divergent light in a plurality of information recording layers as much as possible.
- it can be said that it is preferable to reduce the substrate thickness (design substrate thickness) of the information recording layer of the objective lens whose aberration is corrected by the parallel light flux.
- the present inventor has found that simply reducing the thickness of the design substrate causes a new problem during actual use.
- the objective lens tilt sensitivity becomes dull and a poor optical disk (warped optical disk) was used.
- the function of correcting the coma by tilting the objective lens tilting the objective lens
- An object of the present invention is to provide an objective lens for an optical pickup device and an optical pickup device that can be satisfactorily performed.
- the objective lens according to claim 1 which includes a light source that emits a light beam having a wavelength ⁇ 1 (390 nm ⁇ 1 ⁇ 415 nm) and an objective lens, and information recording surfaces having different distances (transparent substrate thicknesses) from the light beam incident surface.
- the present inventor departed from the conventional common sense that the sine condition should be satisfied in the design of the objective lens, and examined whether the problem of the conventional technique could be solved by deliberately breaking the sine condition.
- the objective lens with the design substrate thickness being thin so as to satisfy the expression (1), it is possible to provide an objective lens suitable for the thinned optical pickup device, but the objective lens tilt sensitivity is lowered. If the objective lens tilt sensitivity is increased by breaking the sine condition, the coma aberration correction amount relative to the objective lens tilt amount can be increased. It was found that it can be secured.
- the term “minimum” includes a value in the range of + 10% with respect to the actual minimum value.
- the present invention by designing to satisfy the conditional expressions (1) and (2), it is possible to reduce the size of the optical pickup device while having the same objective lens tilt characteristic as that of the conventional lens (currently used lens). Objective lens that contributes to realization can be realized.
- the objective lens described in claim 2 is characterized in that, in the invention described in claim 1, the following expression is satisfied. 5 ( ⁇ m) ⁇ Tcmc ⁇ Tcen ⁇ 20 ( ⁇ m) (4)
- the objective lens tilt sensitivity can be sufficiently secured, and the objective lens tilt adjustment function can be enhanced.
- the upper limit of the expression (4) is not exceeded, the objective lens tilt sensitivity does not become too high, for example, the tilt sensitivity is too sensitive to avoid the problem that the initial adjustment of the objective lens becomes difficult (the mounting error becomes large). it can.
- OSC Sine condition violation amount (mm)
- f Focal length of the objective lens (mm)
- the sine condition violation amount is set so as to satisfy the equation (5), the objective lens tilt sensitivity increases, and a good spot diameter can be obtained even if the coma aberration correction amount with respect to the tilt amount of the objective lens increases.
- An optical pickup device includes the objective lens according to any one of the first to third aspects and a coupling lens movable in an optical axis direction, and the coupling lens is disposed in the optical axis direction.
- One of the information recording surfaces of the optical disc is selected by moving the optical disc.
- the state in which a parallel light beam is incident on the objective lens means that the position of the movable lens of the coupling lens is optimized so that the light beam emitted from the coupling lens and directed to the objective lens becomes a parallel light beam. It is synonymous with that.
- the optical pickup device has at least one light source (first light source).
- first light source a plurality of types of light sources may be provided so as to support a plurality of types of optical disks.
- the optical pickup device of the present invention has a condensing optical system for condensing at least the first light flux from the first light source on the information recording surface of the first optical disc.
- the condensing optical system condenses the second light beam on the information recording surface of the second optical disk, and the third light beam on the information recording surface of the third optical disk. You may make it condense.
- the optical pickup device of the present invention includes a light receiving element that receives at least a reflected light beam from the information recording surface of the first optical disc.
- the light receiving element receives a reflected light beam from the information recording surface of the second optical disk and receives a reflected light beam from the information recording surface of the third optical disk. Also good.
- the first optical disc has a protective substrate having a thickness t1 and an information recording surface.
- the second optical disc has a protective substrate having a thickness t2 (t1 ⁇ t2) and an information recording surface.
- the third optical disc has a protective substrate having a thickness t3 (t2 ⁇ t3) and an information recording surface.
- the first optical disc is preferably a BD
- the second optical disc is a DVD
- the third optical disc is preferably a CD, but is not limited thereto.
- the first optical disc has three or more information recording surfaces stacked in the thickness direction. Of course, you may have four or more information recording surfaces.
- the second optical disc and the third optical disc may also have a plurality of information recording surfaces.
- BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm.
- the optical pickup device of the present invention has at least three layers. It is preferable to be able to cope with a BD having the above information recording surface.
- DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm.
- CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm.
- the recording density of BD is the highest, followed by the order of DVD and CD.
- the thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
- the first light source, the second light source, and the third light source are preferably laser light sources.
- the laser light source a semiconductor laser, a silicon laser, or the like can be preferably used.
- the wavelength ⁇ 3 ( ⁇ 3> ⁇ 2) preferably satisfies the following conditional expressions (9) and (10). 1.5 ⁇ ⁇ 1 ⁇ 2 ⁇ 1.7 ⁇ ⁇ 1 (9) 1.8 ⁇ ⁇ 1 ⁇ 3 ⁇ 2.0 ⁇ ⁇ 1 (10)
- the first wavelength ⁇ 1 of the first light source is preferably 350 nm or more and 440 nm or less, more preferably 390 nm.
- the second wavelength ⁇ 2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less, and the third wavelength ⁇ 3 of the third light source is preferably 415 nm or less. It is 750 nm or more and 880 nm or less, More preferably, it is 760 nm or more and 820 nm or less.
- the first light source, the second light source, and the third light source may be unitized.
- the unitization means that the first light source and the second light source are fixedly housed in one package, for example.
- a light receiving element to be described later may be packaged.
- a photodetector such as a photodiode is preferably used.
- Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it.
- the light receiving element may comprise a plurality of photodetectors.
- the light receiving element may have a main photodetector and a sub photodetector.
- two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors.
- a light receiving element may be used.
- the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
- the condensing optical system has a coupling lens and an objective lens.
- the coupling lens is a lens that is arranged between the objective lens and the light source and changes the divergence angle of the light beam.
- the coupling lens preferably includes a positive lens and a negative lens.
- the positive lens includes at least one positive lens, but may include only one positive lens or a plurality of lenses.
- the negative lens includes at least one negative lens, but may include only one negative lens or a plurality of lenses.
- An example of a preferable coupling lens is a combination of one positive lens and one negative lens.
- the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing a light beam emitted from the light source onto the information recording surface of the optical disk.
- the objective lens is preferably a single lens, but may be formed of a plurality of optical elements.
- the objective optical element may be a glass lens, a plastic lens, or a hybrid lens in which a diffractive structure or the like is provided on a glass lens with a photocurable resin or the like.
- the objective optical element preferably has a refractive surface that is aspheric. Further, when the objective lens is provided with an optical path difference providing structure, the base surface is preferably an aspherical surface.
- the objective lens is a glass lens, it is not necessary to move the coupling lens to correct spherical aberration caused by temperature changes, so the amount of movement of the coupling lens can be reduced, and the optical pickup device can be downsized. This is preferable because it is possible.
- the objective lens is a glass lens
- a glass material having a glass transition point Tg of 500 ° C. or lower more preferably 400 ° C. or lower.
- a glass material having a glass transition point Tg of 500 ° C. or lower molding at a relatively low temperature is possible, so that the life of the mold can be extended.
- Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
- the specific gravity of the glass lens is generally larger than that of the resin lens, if the objective lens is a glass lens, the weight increases and a load is imposed on the actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity.
- the specific gravity is preferably 4.0 or less, more preferably the specific gravity is 3.0 or less.
- one of the important physical properties when molding and manufacturing a glass lens is the linear expansion coefficient ⁇ . Even if a material having a Tg of 400 ° C. or lower is selected, the temperature difference from room temperature is still larger than that of a plastic material. When lens molding is performed using a glass material having a large linear expansion coefficient ⁇ , cracks are likely to occur when the temperature is lowered.
- the linear expansion coefficient ⁇ of the glass material is preferably 200 (10E-7 / K) or less, more preferably 120 or less.
- the objective lens is a plastic lens
- an alicyclic hydrocarbon polymer material such as a cyclic olefin resin material.
- the resin material has a refractive index within a range of 1.54 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm associated with a temperature change within a temperature range of ⁇ 5 ° C. to 70 ° C.
- the refractive index change rate dN / dT (° C. ⁇ 1 ) is -20 ⁇ 10 ⁇ 5 to ⁇ 5 ⁇ 10 ⁇ 5 (more preferably ⁇ 10 ⁇ 10 ⁇ 5 to ⁇ 8 ⁇ 10 ⁇ 5 ). It is more preferable to use a certain resin material.
- the coupling lens is preferably a plastic lens.
- cycloolefin resin is preferably used.
- ZEONEX manufactured by Nippon Zeon Co., Ltd. APEL manufactured by Mitsui Chemicals, Inc.
- TOPAS® ADVANCED® POLYMERS manufactured by TOPAS, JSR manufactured by ARTON, etc. are preferable examples. Can be mentioned.
- the Abbe number of the material constituting the objective lens is preferably 50 or more.
- NA1 The numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the first optical disc is NA1, and the numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the second optical disc.
- NA2 NA1> NA2
- NA3 NA2> NA3
- NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less.
- NA1 is preferably 0.85.
- NA2 is preferably 0.55 or more and 0.7 or less.
- NA2 is preferably 0.60 or 0.65.
- NA3 is preferably 0.4 or more and 0.55 or less.
- NA3 is preferably 0.45 or 0.53.
- the objective lens preferably satisfies the following conditional expression (11). 0.9 ⁇ d / f ⁇ 1.5 (11)
- d represents the thickness (mm) on the optical axis of the objective lens
- f represents the focal length of the objective lens in the first light flux. Note that f is preferably 1.0 mm or more and 1.8 mm or less.
- the working distance of the objective lens when using the first optical disk is preferably 0.15 mm or more and 1.0 mm or less.
- An optical information recording / reproducing apparatus includes an optical disc drive apparatus having the above-described optical pickup apparatus.
- the optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
- the optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto.
- An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
- the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
- an optical pickup device and a coupling lens that are capable of recording / reproducing information with respect to an optical disc having a multilayer information recording surface while being compact and low in cost.
- FIG. 1 shows that information is appropriately recorded on a BD that is an optical disk having three information recording surfaces RL1 to RL3 (referred to as RL1, RL2, and RL3 in order of increasing distance from the light beam incident surface of the optical disk) in the thickness direction.
- FIG. 2 is a diagram schematically showing a configuration of an optical pickup device PU1 of the present embodiment that can perform reproduction.
- the present invention is not limited to the present embodiment. For example, FIG.
- FIG. 3 shows an optical pickup device dedicated to BD, but the objective lens OBJ is made compatible with BD / DVD / CD, or the objective lens for DVD / CD is separately arranged, so that BD / DVD is used. / An optical pickup device compatible with CD can be used.
- the optical pickup device PU1 moves the objective lens OBJ, the objective lens OBJ in the focusing direction and the tracking direction, and tilts in the radial direction and / or tangential direction of the optical disc, the ⁇ / 4 wavelength plate QWP, Raising mirror MR, coupling CL having positive lens L2 having positive refractive power and negative lens L3 having negative refractive power, uniaxial actuator AC1 for moving only positive lens L2 in the optical axis direction, polarizing prism PBS, 405 nm And a light receiving element PD that receives reflected light beams from the information recording surfaces RL1 to RL3 of the semiconductor laser LD, the sensor lens SL, and the BD.
- the coupling lens CL is disposed between the polarizing prism PBS and the ⁇ / 4 wavelength plate QWP.
- the semiconductor laser LD is arranged in the order of the negative lens L3 and the positive lens L2.
- the semiconductor laser LD may be arranged in the order of the positive lens L2 and the negative lens L3.
- the negative lens L3 is movable in the optical axis direction, and the positive lens L2 is fixed to the optical pickup device.
- the positive lens L2 of the coupling lens CL is moved to the position of the solid line by the uniaxial actuator AC1.
- the reflected light beam modulated by the information pits on the first information recording surface RL1 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, and is raised to the rising mirror MR. , And passes through the positive lens L2 and the negative lens L3 of the collimator lens CL to be a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
- the positive lens L2 of the coupling lens CL is moved to the position of the alternate long and short dash line by the uniaxial actuator AC1.
- the reflected light beam modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the stop, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and the rising mirror MR , And passes through the positive lens L2 and the negative lens L3 of the collimator lens CL to be a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
- the positive lens L2 of the coupling lens CL is moved to the dotted line position by the uniaxial actuator AC1.
- the spot is formed on the third information recording surface RL3 by the OBJ through the transparent substrate PL3 having a third thickness (thicker than the second thickness) as indicated by a dotted line.
- the reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and the rising mirror MR , And passes through the positive lens L2 and the negative lens L3 of the collimator lens CL to be a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
- the focal length of the objective lens OBJ is preferably in the range of 1.0 mm to 1.8 mm.
- the design wavelength is 405 nm
- ri in the following table is the radius of curvature
- di is the position in the optical axis direction from the i-th surface to the (i + 1) -th surface
- ni is the refractive index of each surface at the design wavelength 405 nm.
- a power of 10 for example, 2.5 ⁇ 10 ⁇ 3
- E for example, 2.5 ⁇ E-3
- the optical surface of the objective lens is formed as an aspherical surface that is axisymmetric about the optical axis, each of which is defined by an equation in which the coefficient shown in Table 1 is substituted into Equation (1).
- X (h) is an axis in the optical axis direction (the light traveling direction is positive)
- ⁇ is a conical coefficient
- a i is an aspheric coefficient
- h is a height from the optical axis
- r is a paraxial curvature. Radius.
- Example 1 shows lens data of Example 1.
- the objective lens of this example is made of plastic, suitable for the above embodiment, and has an aspherical surface obtained by substituting the aspherical coefficient in Table 1 into Equation (1).
- FIG. As shown in FIG. 2, the third-order spherical aberration is minimum, but the sine condition is greatly broken.
- Example 2 shows lens data of Example 2.
- the objective lens of the present example is made of glass, is suitable for the above embodiment, and has an aspheric surface obtained by substituting the aspheric coefficient in Table 2 into equation (1).
- FIG. 3 shows the third-order spherical aberration is minimum, but the sine condition is greatly broken.
- FIG. 4 is a diagram showing the objective lens tilt sensitivity with respect to the substrate thickness.
- the values indicated by dotted lines are generated when the optical disk is tilted by the absolute value of the coma aberration LT generated when the objective lens is tilted by a unit angle and the optical disk is tilted by the unit angle.
- This line matches the absolute value of the coma aberration DT, and if it is located on this line, the sine condition is satisfied.
- substrate thickness 87.5 micrometers (similar to the characteristic of the objective lens for 2 layer type BD) is shown.
- the objective lens tilt sensitivity is 0.07 ⁇ rms / deg, and the coma aberration can be sufficiently corrected by the objective lens tilt, but the optical pickup device can be made thin. Is a difficult example.
- the plotted point B in FIG. 4 is according to Comparative Example 2, and the magnification in the combination (M, T) in which ⁇ LT ⁇ - ⁇ DT ⁇ is minimized so that the third-order spherical aberration is minimized.
- the characteristic of the objective lens which does not satisfy the designed sine condition is shown. It can be seen that the objective lens tilt sensitivity is increased by about 0.03 ⁇ rms / deg with respect to the point B, and has an objective lens tilt sensitivity substantially equal to the point A, so that the coma aberration is sufficiently corrected by the objective lens tilt, Further, the optical pickup device can be thinned.
- OBJ Objective lens PU1 Optical pickup device LD Blue-violet semiconductor laser AC1 1-axis actuator AC2 3-axis actuator PBS Polarizing prism CL Coupling lens L2 Positive lens L3 Negative lens MR Rising mirror PL1 First transparent substrate PL2 Second transparent substrate PL3 Third transparent substrate RL1 First information recording surface RL2 Second information recording surface RL3 Third information recording surface QWP ⁇ / 4 wavelength plate
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Head (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
光ピックアップ装置の薄型化に貢献しつつも、対物レンズティルトによりコマ収差補正を行える機能を確保することで、コマ収差の補正を良好に行うことができる光ピックアップ装置用の対物レンズ及び光ピックアップ装置を提供する。倍率をM、光ディスクの基板厚をTとしたときに、3次球面収差が最小になる組み合わせ(M、T)において、M=0のとき、T=Tcen(μm)であり、又、対物レンズティルトに対する3次コマ収差の値をLT、光ディスクティルトに対する3次コマ収差の値をDTとしたときに、││LT│-│DT││が最小となる前記組み合わせ(M、T)は、M=Mcmc、T=Tcmc(μm)であり、(1)式を満たすように、設計基板厚が薄い状態で対物レンズを設計することで、薄形化した光ピックアップ装置に好適な対物レンズを提供できるが、対物レンズティルト感度が低下する。これに対し、(2)式を満たすように正弦条件を崩すことで、対物レンズティルト感度が向上すれば、対物レンズのティルト量に対するコマ収差補正量が増大し、これにより粗悪光ディスク等にも対応できるのである。 0.5・T0≦Tcen≦0.85・T0 (1) Tcen<Tcmc (2) 但し、T0:光ディスクの基板厚のうち最大の基板厚(μm)
Description
本発明は、厚さ方向に3つ以上の情報記録面を有する光ディスクに対して情報の記録及び/又は再生を行える光ピックアップ装置用の対物レンズ及び光ピックアップ装置に関する。
波長400nm程度の青紫色半導体レーザを用いて、情報の記録及び/又は再生(以下、「記録及び/又は再生」を「記録/再生」と記載する)を行える高密度光ディスクシステムが知られており、その一例であるNA0.85、光源波長405nmの仕様で情報記録/再生を行う光ディスク、いわゆるBlu-ray Disc(以下、BDという)では、DVD(NA0.6、光源波長650nm、記憶容量4.7GB)と同じ大きさである直径12cmの光ディスクに対して、1層あたり25GBの情報の記録が可能である。
ところで、従来のBDは1層もしくは2層の情報記録面を有しているものが多いが、1枚のBDに、より大きなデータを保存したいという市場の要求から、3層以上の情報記録面を有するBDについても実用化を目指して研究が進んでいる。しかるに、情報の記録/再生を行う際の光束のNAが0.85と大きいため、複数の情報記録面を有するBDでは、一の情報記録面に対して最小の球面収差を付与するようにすると、基板厚さが異なる他の情報記録面においては球面収差が増大し、適切に情報の記録/再生を行えなくなるという問題がある。かかる球面収差の問題は情報記録面の数が多くなるほど(すなわち、表面からの距離が最も小さい情報記録面と表面からの距離が最も大きい情報記録面との間隔が大きくなるほど)顕在化する。一方、例えば薄形テレビの背面等に設置すべく、光ピックアップ装置の薄形化の要求もある。
これに対し、光源と対物レンズとの間に配置したカップリングレンズを光軸方向に移動させることで対物レンズの倍率を変更し、選択した情報記録面に対して、3次球面収差を抑えた光束を集光させることができる光ピックアップ装置も開発されている。尚、情報の記録/再生を行うべき情報記録面をある情報記録面から他の情報記録面へと変える動作を、本明細書では「フォーカスジャンプ」と呼ぶことがある。
ところで、3層以上の情報記録面を持つBD多層ディスクでは当然、現在の2面の情報記録面を持つBD2層ディスクに比べて、光入射側の表面から見て最も近い情報記録面と最も遠い情報記録面のカバー層厚さの差が大きくなる。そのため、上記特許文献1記載のようにコリメートレンズを前後に動かすという手段のみではBD多層ディスクの各情報記録面において、球面収差補正が不十分であることが予想され、合焦点状態における光スポットの品質を良好に保つことが難しいという懸念がある。
これに対し、特許文献1に示す技術では、BD用の対物レンズの基準カバー層厚さ(設計基板厚ともいう)を、2層の情報記録面を持つBD2層ディスクの中間面でのカバー層厚さ(基板厚ともいう)より薄く設定し、例えば最小のカバー層厚さ=75μm、最大のカバー層厚さ=100μmとしたときに、基準カバー層厚さ=(75+100)/2=87.5μmとすることによって、各情報記録層における集光スポットの波面収差を良好なものとしている。
ここで、コリメートレンズを光軸方向に変位させることで、異なる基板厚の情報記録面に、適切に集光スポットを形成できる原理を説明する。コリメートレンズの移動により対物レンズへの入射光が発散光となると球面収差は負になる一方、対物レンズへの入射光が収束光となると球面収差は正となる。又、設計基板厚よりも基板厚が厚くなると球面収差は正となる一方、設計基板厚よりも基板厚が薄くなると球面収差は負となる。つまり、コリメートレンズを光軸方向に移動させることで発生する球面収差を用いて、基板厚が異なることにより生じる球面収差をキャンセルしているのである。
ところで、対物レンズへの入射光束を発散光とする為に、コリメートレンズを光源側へ変位させると、コリメートレンズへの入射光束径が平行光よりも小さくなる。一方、対物レンズへの入射光束を収束光にする為に、コリメータを対物レンズ側へ変位させると、コリメートレンズへの入射光束径が平行光よりも大きくなる。
ここで、光ピックアップ装置の薄型化を図るには、光束径を極力小さくすることが望ましいとされている。それにより各素子の大きさを抑えられるからである。つまり、コリメートレンズの変位と入射光束の上記の関係から、出来る限り複数の情報記録層にて発散光を利用して倍率補正するような光学系にすれば、それだけ光束径を小さく出来るといえる。かかる観点からは、平行光束で収差補正される対物レンズの情報記録層の基板厚(設計基板厚)を薄くする方が好ましいといえる。ところが、設計基板厚を単に薄くしたのみでは、実使用時に新たな問題が生じることを本発明者が見出した。
より具体的には、正弦条件を満たした状態で、平行光束を用いて薄目の設計基板厚で対物レンズを最適に設計すると、対物レンズティルト感度が鈍くなり、粗悪光ディスク(反り光ディスク)を使用した場合に、対物レンズを傾けて(対物レンズティルトさせて)コマ収差を補正できる機能が制限されてしまうということである。
本発明は、上述の問題を考慮してなされたものであり、光ピックアップ装置の薄型化に貢献しつつも、対物レンズティルトによりコマ収差補正を行える機能を確保することで、コマ収差の補正を良好に行うことができる光ピックアップ装置用の対物レンズ及び光ピックアップ装置を提供することを目的とする。
請求項1に記載の対物レンズは、波長λ1(390nm<λ1<415nm)の光束を出射する光源と対物レンズとを有し、光束入射面からの距離(透明基板厚)が互いに異なる情報記録面を厚さ方向に3つ以上有する光ディスクにおけるいずれかの情報記録面を選択して、前記光源から出射された波長λ1の光束を前記対物レンズにより前記選択された情報記録面に集光することによって、情報の記録及び/または再生を行う光ピックアップ装置に使用される対物レンズであって、
像側開口数(NA)は0.8以上、0.95以下であり、
倍率をM、光ディスクの基板厚をTとしたときに、3次球面収差が最小になる組み合わせ(M、T)のうち、1つの組み合わせは、M=0、T=Tcen(μm)であり、
又、それとは別な組み合わせであって、対物レンズティルトに対する単位角度あたりの3次コマ収差の値をLT、光ディスクティルトに対する単位角度あたりの3次コマ収差の値をDTとしたときに、││LT│-│DT││が最小となるものは、M=Mcmc、T=Tcmc(μm)であり、更に以下の式を満たすことを特徴とする。
0.5・T0≦Tcen≦0.85・T0 (1)
Tcen<Tcmc (2)
Mcmc<0 (3)
但し、T0:前記光ディスクの基板厚のうち最大の基板厚(μm)
像側開口数(NA)は0.8以上、0.95以下であり、
倍率をM、光ディスクの基板厚をTとしたときに、3次球面収差が最小になる組み合わせ(M、T)のうち、1つの組み合わせは、M=0、T=Tcen(μm)であり、
又、それとは別な組み合わせであって、対物レンズティルトに対する単位角度あたりの3次コマ収差の値をLT、光ディスクティルトに対する単位角度あたりの3次コマ収差の値をDTとしたときに、││LT│-│DT││が最小となるものは、M=Mcmc、T=Tcmc(μm)であり、更に以下の式を満たすことを特徴とする。
0.5・T0≦Tcen≦0.85・T0 (1)
Tcen<Tcmc (2)
Mcmc<0 (3)
但し、T0:前記光ディスクの基板厚のうち最大の基板厚(μm)
本発明者は、対物レンズの設計において正弦条件を満たすべきとする従来の技術常識から離れ、正弦条件をあえて崩すことによって従来技術の問題を解消できないか検討した。つまり、(1)式を満たすように、設計基板厚が薄い状態で対物レンズを設計することで、薄形化した光ピックアップ装置に好適な対物レンズを提供できるが、対物レンズティルト感度が低下するという問題に対し、敢えて正弦条件を崩すことで対物レンズティルト感度を増大させれば、対物レンズのティルト量に対するコマ収差補正量を増大させることができ、これにより粗悪光ディスク等にも対応できる許容度を確保できることを見出したのである。
尚、正弦条件を満たす対物レンズの場合、一般的には、M=0,設計基板厚Tcenのときに、単位角度だけ対物レンズを傾けた際に発生するコマ収差LTの絶対値と、単位角度だけ光ディスクを傾けた際に発生するコマ収差DTの絶対値とがほぼ一致する(│LT│≒│DT│)。ところが、正弦条件を満たさない場合には、(│LT│≠│DT│)となる。一方、3次球面収差が最小になる前記組み合わせ(M、T)として、M=Mcmc、T=Tcmcであるとき、││LT│-│DT││が最小となれば、かかる状態ではTcen<Tcmcとなり、つまり(2)式を満たせば正弦条件を満たしていないことになる。これにより上述の効果を得ることができる。本明細書中、「最小」というときは、実際の最小値に対して+10%の範囲の値も含むものとする。
本発明によれば、条件式(1)、(2)を満たすように設計することで、従来(現在使用しているレンズ)と同じ対物レンズティルト特性を有しながらも、光ピックアップ装置の小型化に貢献する対物レンズを実現できる。
請求項2に記載の対物レンズは、請求項1に記載の発明において、以下の式を満たすことを特徴とする。
5(μm)<Tcmc-Tcen<20(μm) (4)
5(μm)<Tcmc-Tcen<20(μm) (4)
(4)式の下限を上回れば、十分に対物レンズティルト感度を確保でき、対物レンズティルト調整機能を高めることができる。一方、(4)式の上限を下回れば、対物レンズティルト感度が大きくなりすぎることがなく、例えばティルト感度が敏感すぎて対物レンズの初期調整が難しくなる(取り付け誤差が大きくなる)といった問題を回避できる。
請求項3に記載の対物レンズは、請求項1又は2に記載の発明において、M=0、T=Tcenのとき、以下の式を満たすことを特徴とする。
h/(OSC+f)>0.845 (5)
但し、
h:前記対物レンズの有効径の半径(mm)
OSC:正弦条件違反量(mm)
f:前記対物レンズの焦点距離(mm)
h/(OSC+f)>0.845 (5)
但し、
h:前記対物レンズの有効径の半径(mm)
OSC:正弦条件違反量(mm)
f:前記対物レンズの焦点距離(mm)
(5)式を満たすように正弦条件違反量を設定すれば、対物レンズティルト感度が増大し、対物レンズのティルト量に対するコマ収差補正量が増大しても良好なスポット径を得る事が出来る。
請求項4に記載の光ピックアップ装置は、請求項1乃至3のいずれかに記載の対物レンズと、光軸方向に移動可能なカップリングレンズとを有し、前記カップリングレンズを光軸方向に移動させることによって、光ディスクにおけるいずれかの情報記録面を選択することを特徴とする。
尚、「対物レンズに対して平行光束が入射する状態」とは、カップリングレンズから射出されて対物レンズに向かう光束が平行光束となるように、カップリングレンズの可動レンズの位置を最適化することと同義である。
本発明に係る光ピックアップ装置は、少なくとも1つの光源(第1光源)を有する。勿論、複数種類の光ディスクに対応できるように、複数種類の光源を有していてもよい。さらに、本発明の光ピックアップ装置は、少なくとも第1光源からの第1光束を第1光ディスクの情報記録面上に集光させるための集光光学系を有する。複数種類の光ディスクに対応可能な光ピックアップ装置においては、集光光学系が、第2光束を第2光ディスクの情報記録面上に集光させ、第3光束を第3光ディスクの情報記録面上に集光するようにしてもよい。また、本発明の光ピックアップ装置は、少なくとも第1光ディスクの情報記録面からの反射光束を受光する受光素子を有する。複数種類の光ディスクに対応可能な光ピックアップ装置においては、受光素子が、第2光ディスクの情報記録面からの反射光束を受光し、第3光ディスクの情報記録面からの反射光束を受光するようにしてもよい。
第1光ディスクは、厚さがt1の保護基板と情報記録面とを有する。第2光ディスクは厚さがt2(t1<t2)の保護基板と情報記録面とを有する。第3光ディスクは、厚さがt3(t2<t3)の保護基板と情報記録面とを有する。第1光ディスクがBDであり、第2光ディスクがDVDであり、第3光ディスクがCDであることが好ましいが、これに限られるものではない。
第1光ディスクは、厚み方向に重ねて3つ以上の情報記録面を有するものである。当然、4つ以上の情報記録面を有していてもよい。また、第2光ディスクや第3光ディスクも複数の情報記録面を有していてもよい。
本明細書において、BDとは、波長390~415nm程度の光束、NA0.8~0.9程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.05~0.125mm程度であるBD系列光ディスクの総称であり、単一の情報記録面のみ有するBDや、3層以上の情報記録面を有するBD等を含むものであるが、本発明の光ピックアップ装置は、少なくとも3層以上の情報記録面を有するBDに対応可能であることが好ましい。更に、本明細書においては、DVDとは、NA0.60~0.67程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.6mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD- Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。また、本明細書においては、CDとは、NA0.45~0.51程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが1.2mm 程度であるCD系列光ディスクの総称であり、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVD、CDの順に低くなる。
なお、保護基板の厚さt1、t2、t3に関しては、以下の条件式(6)、(7)、(8)を満たすことが好ましいが、これに限られない。尚、ここで言う、保護基板の厚さとは、光ディスク表面に設けられた保護基板の厚さのことである。即ち、光ディスク表面から、表面に最も近い情報記録面までの保護基板の厚さのことをいう。
0.050mm ≦ t1 ≦ 0.125mm (6)
0.5mm ≦ t2 ≦ 0.7mm (7)
1.0mm ≦ t3 ≦ 1.3mm (8)
0.5mm ≦ t2 ≦ 0.7mm (7)
1.0mm ≦ t3 ≦ 1.3mm (8)
本明細書において、第1光源、第2光源、第3光源は、好ましくはレーザ光源である。レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出来る。第1光源から出射される第1光束の第1波長λ1、第2光源から出射される第2光束の第2波長λ2(λ2>λ1)、第3光源から出射される第3光束の第3波長λ3(λ3>λ2)は以下の条件式(9)、(10)を満たすことが好ましい。
1.5・λ1 < λ2 < 1.7・λ1 (9)
1.8・λ1 < λ3 < 2.0・λ1 (10)
1.5・λ1 < λ2 < 1.7・λ1 (9)
1.8・λ1 < λ3 < 2.0・λ1 (10)
また、第1光ディスク、第2光ディスク、第3光ディスクとして、それぞれ、BD、DVD及びCDが用いられる場合、第1光源の第1波長λ1は好ましくは、350nm以上、440nm以下、より好ましくは、390nm以上、415nm以下であって、第2光源の第2波長λ2は好ましくは570nm以上、680nm以下、より好ましくは、630nm以上、670nm以下であって、第3光源の第3波長λ3は好ましくは、750nm以上、880nm以下、より好ましくは、760nm以上、820nm以下である。
また、第1光源、第2光源、第3光源のうち少なくとも2つの光源をユニット化してもよい。ユニット化とは、例えば第1光源と第2光源とが1パッケージに固定収納されているようなものをいう。また、光源に加えて、後述する受光素子を1パッケージ化してもよい。
受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポットの形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラッキングのために対物レンズを移動させることが出来る。受光素子は、複数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いられるメイン光を受光する光検出器の両脇に2つのサブの光検出器を設け、当該2つのサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよい。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。
集光光学系は、カップリングレンズと対物レンズを有する。カップリングレンズとは、対物レンズと光源の間に配置され、光束の発散角を変えるレンズのことをいう。カップリングレンズは、正レンズと負レンズとを有すると好ましい。正レンズは少なくとも1枚の正レンズを有するが、正レンズ1枚のみでもよいし、複数のレンズを有していてもよい。負レンズは少なくとも1枚の負レンズを有するが、負レンズ1枚のみでもよいし、複数のレンズを有していてもよい。好ましいカップリングレンズの例は、正レンズ1枚と負レンズ1枚との組み合わせからなるものである。
本明細書において、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。対物レンズは、単玉のレンズであることが好ましいが、複数の光学素子から形成されていても良い。また、対物光学素子は、ガラスレンズであってもプラスチックレンズであっても、又は、ガラスレンズの上に光硬化性樹脂などで回折構造などを設けたハイブリッドレンズであってもよい。また、対物光学素子は、屈折面が非球面であることが好ましい。また、対物レンズは、光路差付与構造が設けられる場合、そのベース面が非球面であることが好ましい。
対物レンズがガラスレンズであると、温度変化によって発生する球面収差を補正するためにカップリングレンズを移動させる必要がないため、カップリングレンズの移動量を減らすことができ、光ピックアップ装置を小型化できるため好ましい。
また、対物レンズをガラスレンズとする場合は、ガラス転移点Tgが500℃以下、更に好ましくは400℃以下であるガラス材料を使用することが好ましい。ガラス転移点Tgが500℃以下であるガラス材料を使用することにより、比較的低温での成形が可能となるので、金型の寿命を延ばすことが出来る。このようなガラス転移点Tgが低いガラス材料としては、例えば(株)住田光学ガラス製のK-PG325や、K-PG375(共に製品名) がある。
ところで、ガラスレンズは一般的に樹脂レンズよりも比重が大きいため、対物レンズをガラスレンズとすると、重量が大きくなり対物レンズを駆動するアクチュエータに負担がかかる。そのため、対物レンズをガラスレンズとする場合には、比重が小さいガラス材料を使用するのが好ましい。具体的には、比重が4.0以下であるのが好ましく、更に好ましくは比重が3.0以下であるものである。
加えて、ガラスレンズを成形して製作する際に重要となる物性値の一つが線膨張係数αである。仮にTgが400℃以下の材料を選んだとしても、プラスチック材料と比較して室温との温度差は依然大きい。線膨張係数αが大きい硝材を用いてレンズ成形を行った場合、降温時に割れが発生しやすくなる。硝材の線膨張係数αは、200(10E-7/K)以下にあることが好ましく、更に好ましくは120以下であることが好ましい。
また、対物レンズをプラスチックレンズとする場合は、環状オレフィン系の樹脂材料等の脂環式炭化水素系重合体材料を使用するのが好ましい。また、当該樹脂材料は、波長405nmに対する温度25℃ での屈折率が1.54乃至1.60の範囲内であって、-5℃から70℃の温度範囲内での温度変化に伴う波長405nmに対する屈折率変化率dN/dT(℃ -1) が-20×10-5乃至-5×10-5(より好ましくは、-10×10-5乃至-8×10-5)の範囲内である樹脂材料を使用するのがより好ましい。また、対物レンズをプラスチックレンズとする場合、カップリングレンズもプラスチックレンズとすることが好ましい。
プラスチックとしては、シクロオレフィン樹脂が好適に用いられ、具体的には、日本ゼオン社製のZEONEXや、三井化学社製のAPEL、TOPAS ADVANCED POLYMERS社製のTOPAS、JSR社製ARTONなどが好ましい例として挙げられる。
また、対物レンズを構成する材料のアッベ数は、50以上であることが好ましい。
第1光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA1とし、第2光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA2(NA1>NA2)とし、第3光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA3(NA2>NA3)とする。NA1は、0.75以上、0.9以下であることが好ましく、より好ましくは、0.8以上、0.9以下である。特にNA1は0.85であることが好ましい。NA2は、0.55以上、0.7以下であることが好ましい。特にNA2は0.60又は0.65であることが好ましい。また、NA3は、0.4以上、0.55以下であることが好ましい。特にNA3は0.45又は0.53であることが好ましい。
また、対物レンズは、以下の条件式(11)を満たすことが好ましい。
0.9≦d/f≦1.5 (11)
但し、dは、対物レンズの光軸上の厚さ(mm)を表し、fは、第1光束における対物レンズの焦点距離を表す。なお、fは、1.0mm以上、1.8mm以下となることが好ましい。
0.9≦d/f≦1.5 (11)
但し、dは、対物レンズの光軸上の厚さ(mm)を表し、fは、第1光束における対物レンズの焦点距離を表す。なお、fは、1.0mm以上、1.8mm以下となることが好ましい。
BDのような短波長、高NAの光ディスクに対応する対物レンズの場合、対物レンズの焦点距離に対する光軸上の厚さの比が大きくなりすぎると、対物レンズに対して軸外光束が入射した際に非点収差が発生しやすくなったり、作動距離が確保出来なくなるという課題が生じる。一方、対物レンズの焦点距離に対する光軸上の厚さの比が小さくなりすぎると、面シフト感度が大きくなるという課題が生じる。条件式(11)を満たすことにより非点収差の発生や面シフト感度を抑制することが可能となる。
また、第1光ディスクを用いる際の対物レンズの作動距離は、0.15mm以上、1.0mm以下であることが好ましい。
本発明に係る光情報記録再生装置は、上述の光ピックアップ装置を有する光ディスクドライブ装置を有する。
ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明すると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録再生装置本体から光ディスクを搭載した状態で保持可能なトレイのみが外部に取り出される方式と、光ピックアップ装置等が収納されている光ディスクドライブ装置本体ごと、外部に取り出される方式とがある。
上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備されているがこれに限られるものではない。ハウジング等に収納された光ピックアップ装置、光ピックアップ装置をハウジングごと光ディスクの内周あるいは外周に向けて移動させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジングを光ディスクの内周あるいは外周に向けてガイドするガイドレールなどを有した光ピックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等である。
前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可能なトレイおよびトレイを摺動させるためのローディング機構等が設けられ、後者の方式にはトレイおよびローディング機構がなく、各構成部材が外部に引き出し可能なシャーシに相当するドロワーに設けられていることが好ましい。
本発明によれば、コンパクト且つ低コストでありながら、多層の情報記録面を有する光ディスクに対して情報の記録/再生を行うことができる光ピックアップ装置及びカップリングレンズを提供することができる。
以下、本発明の実施の形態を、図面を参照して説明する。図1は、厚さ方向に3つの情報記録面RL1~RL3(光ディスクの光束入射面からの距離が小さい順にRL1、RL2、RL3とする)を有する光ディスクであるBDに対して適切に情報の記録/再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。かかる光ピックアップ装置PU1は、高さH=8mm以下のスリムタイプの光ピックアップ装置(点線で外形を概略的に示す)である。なお、本発明は、本実施の形態に限られるものではない。例えば、図3ではBD専用の光ピックアップ装置を示しているが、対物レンズOBJをBD/DVD/CD互換用としたり、或いはDVD/CD用の対物レンズを別個に配置することで、BD/DVD/CD互換用の光ピックアップ装置とすることもできる。
光ピックアップ装置PU1は、対物レンズOBJ、対物レンズOBJをフォーカシング方向及びトラッキング方向に移動させ、光ディスクのラジアル方向、及び/または、タンジェンシャル方向に傾ける3軸アクチュエータAC2、λ/4波長板QWP、立ち上げミラーMR、正の屈折力を有する正レンズL2と負の屈折力を有する負レンズL3とを有するカップリングCL、正レンズL2のみ光軸方向に移動させる1軸アクチュエータAC1、偏光プリズムPBS、405nmのレーザ光束(光束)を射出する半導体レーザLD、センサ用レンズSL、BDの情報記録面RL1~RL3からの反射光束を受光する受光素子PDを有する。
本実施の形態においては、カップリングレンズCLは、偏光プリズムPBSとλ/4波長板QWPとの間に配置されている。半導体レーザLDから、負レンズL3、正レンズL2の順で配置されているが、半導体レーザLDから、正レンズL2、負レンズL3の順で配置しても良い。又、負レンズL3が光軸方向に移動可能となっており、正レンズL2は光ピックアップ装置に固定されている。
ここで、像側開口数(NA)は0.8以上、0.95以下であり、倍率をM、光ディスクの基板厚をTとしたときに、3次球面収差が最小になる組み合わせ(M、T)のうち、1つの組み合わせは、M=0、T=Tcen(μm)であり、又、それとは別な組み合わせであって、対物レンズティルトに対する単位角度あたりの3次コマ収差の値をLT、光ディスクティルトに対する単位角度あたりの3次コマ収差の値をDTとしたときに、││LT│-│DT││が最小となるものは、M=Mcmc、T=Tcmc(μm)であり、更に以下の式を満たす。
0.5・T0≦Tcen≦0.85・T0 (1)
Tcen<Tcmc (2)
Mcmc<0 (3)
但し、T0:BDの基板厚のうち最大の基板厚(μm)
0.5・T0≦Tcen≦0.85・T0 (1)
Tcen<Tcmc (2)
Mcmc<0 (3)
但し、T0:BDの基板厚のうち最大の基板厚(μm)
まず、BDの第1の情報記録面RL1に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズL2は、1軸アクチュエータAC1により実線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、コリメートレンズCLの負レンズL3を通過して発散角が増大され、更に正レンズL2を通過して弱い収束光束とされた後、立ち上げミラーMRで反射され、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第1の厚さの透明基板PL1を介して、実線で示すように第1の情報記録面RL1上に形成されるスポットとなる。
第1の情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、立ち上げミラーMRで反射され、コリメートレンズCLの正レンズL2及び負レンズL3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第1の情報記録面RL1に記録された情報を読み取ることができる。
次に、BDの第2の情報記録面RL2に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズL2は、1軸アクチュエータAC1により一点鎖線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、コリメートレンズCLの負レンズL3を通過して発散角が増大され、更に正レンズL2を通過して略平行光束とされた後、立ち上げミラーMRで反射され、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第2の厚さ(第1の厚さより厚い)の透明基板PL2を介して、一点鎖線で示すように第2の情報記録面RL2上に形成されるスポットとなる。
第2の情報記録面RL2上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、立ち上げミラーMRで反射され、コリメートレンズCLの正レンズL2及び負レンズL3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第2の情報記録面RL2に記録された情報を読み取ることができる。
次に、BDの第3の情報記録面RL3に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズL2は、1軸アクチュエータAC1により点線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、コリメートレンズCLの負レンズL3を通過して発散角が増大され、更に正レンズL2を通過して弱い発散光束とされた後、立ち上げミラーMRで反射され、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第3の厚さ(第2の厚さより厚い)の透明基板PL3を介して、点線で示すように第3の情報記録面RL3上に形成されるスポットとなる。
第3の情報記録面RL3上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、立ち上げミラーMRで反射され、コリメートレンズCLの正レンズL2及び負レンズL3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第3の情報記録面RL3に記録された情報を読み取ることができる。
更に、以上の実施の形態において、対物レンズOBJの焦点距離は、1.0mmから1.8mmの範囲であることが好ましい。これにより、小型化が要求される薄型の光ピックアップ装置に対して好適な光ピックアップ装置を得ることができる。
(実施例)
次に、上述の実施の形態に用いることができる対物レンズの実施例について、以下に説明する。ここで、設計波長は405nm、以下の表中のriは曲率半径、diは第i面から第i+1面までの光軸方向の位置、niは設計波長405nmにおける各面の屈折率を表している。尚、これ以降(表のレンズデータ含む)において、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-3)を用いて表すものとする。対物レンズの光学面は、それぞれ数1式に表1に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。
次に、上述の実施の形態に用いることができる対物レンズの実施例について、以下に説明する。ここで、設計波長は405nm、以下の表中のriは曲率半径、diは第i面から第i+1面までの光軸方向の位置、niは設計波長405nmにおける各面の屈折率を表している。尚、これ以降(表のレンズデータ含む)において、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-3)を用いて表すものとする。対物レンズの光学面は、それぞれ数1式に表1に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。
ここで、X(h)は光軸方向の軸(光の進行方向を正とする)、κは円錐係数、Aiは非球面係数、hは光軸からの高さ、rは近軸曲率半径である。
(実施例1)
表1に、実施例1のレンズデータを示す。本実施例の対物レンズは、プラスチック製であり、上記実施の形態に好適であり、表1中の非球面係数を数1式に代入して得られる非球面を有する。図2は、実施例1の対物レンズにおいて、3次球面収差が最小になるように、倍率M=0,設計基板厚Tcen=70μmのときの、3次球面収差SAと、正弦条件違反量SCを示す図である。図2に示すように、3次球面収差は最小であるが、正弦条件は大きく崩れている。尚、3次球面収差が最小になり、││LT│-│DT││が最小となる組み合わせ(M、T)におけるMcmc=-1/166.14,Tcmc=83.7μm、h/(OSC+f)=0.850、T0=100μmである。
表1に、実施例1のレンズデータを示す。本実施例の対物レンズは、プラスチック製であり、上記実施の形態に好適であり、表1中の非球面係数を数1式に代入して得られる非球面を有する。図2は、実施例1の対物レンズにおいて、3次球面収差が最小になるように、倍率M=0,設計基板厚Tcen=70μmのときの、3次球面収差SAと、正弦条件違反量SCを示す図である。図2に示すように、3次球面収差は最小であるが、正弦条件は大きく崩れている。尚、3次球面収差が最小になり、││LT│-│DT││が最小となる組み合わせ(M、T)におけるMcmc=-1/166.14,Tcmc=83.7μm、h/(OSC+f)=0.850、T0=100μmである。
(実施例2)
表2に、実施例2のレンズデータを示す。本実施例の対物レンズは、ガラス製であり、上記実施の形態に好適であり、表2中の非球面係数を数1式に代入して得られる非球面を有する。図3は、実施例2の対物レンズにおいて、3次球面収差が最小になるように、倍率M=0,設計基板厚Tcen=70μmのときの、3次球面収差SAと、正弦条件違反量SCを示す図である。図3に示すように、3次球面収差は最小であるが、正弦条件は大きく崩れている。尚、3次球面収差が最小になり、││LT│-│DT││が最小となる組み合わせ(M、T)におけるMcmc=-1/211.8,Tcmc=80.8μm、h/(OSC+f)=0.850、T0=100μmである。
表2に、実施例2のレンズデータを示す。本実施例の対物レンズは、ガラス製であり、上記実施の形態に好適であり、表2中の非球面係数を数1式に代入して得られる非球面を有する。図3は、実施例2の対物レンズにおいて、3次球面収差が最小になるように、倍率M=0,設計基板厚Tcen=70μmのときの、3次球面収差SAと、正弦条件違反量SCを示す図である。図3に示すように、3次球面収差は最小であるが、正弦条件は大きく崩れている。尚、3次球面収差が最小になり、││LT│-│DT││が最小となる組み合わせ(M、T)におけるMcmc=-1/211.8,Tcmc=80.8μm、h/(OSC+f)=0.850、T0=100μmである。
図4は、基板厚に対する対物レンズティルト感度を示す図である。図4中、点線で示す値は、NA=0.85の対物レンズにおいて、単位角度だけ対物レンズを傾けた際に発生するコマ収差LTの絶対値と、単位角度だけ光ディスクを傾けた際に発生するコマ収差DTの絶対値とが一致するラインであり、このライン上に位置すれば正弦条件を満たすこととなる。
図4のプロットした点Aは、比較例1にかかるものであり、3次球面収差が最小になるように、倍率M=0,Tcen=(最大の基板厚+最小の基板厚)/2を設計基板厚=87.5μmとして設計した正弦条件を満たす対物レンズの特性(2層式のBD用の対物レンズの特性と同様)を示す。かかる対物レンズでは、基板厚が最大の100μmのときにも、対物レンズティルト感度が0.07λrms/degあり、対物レンズティルトによりコマ収差を十分補正できるが、光ピックアップ装置の薄形化を図るのは困難な例である。
図4のプロットした点Bは、比較例2にかかるものであり、3次球面収差が最小になるように、││LT│-│DT││が最小となる組み合わせ(M、T)における倍率M=0,Tcen=Tcmc=70μmを設計基板厚として設計した正弦条件を満たす対物レンズの特性を示す。かかる対物レンズを用いれば、光ピックアップ装置の薄形化に貢献するが、基板厚が最大の100μmのときに、対物レンズティルト感度が0.025λrms/deg程度しか余裕がなく、対物レンズティルトによりコマ収差を十分に補正できるとはいえないものである。
これに対し、図4のプロットした点C、Dは、実施例1、2にかかるものであり、3次球面収差が最小になるように、倍率M=0,Tcen=70μmを設計基板厚として設計した正弦条件を満たさない対物レンズの特性を示す。点Bに対して、対物レンズティルト感度が0.03λrms/deg程度増大していることが分かり、点Aとほぼ等しい対物レンズティルト感度を持つので、対物レンズティルトによりコマ収差を十分補正しつつ、更に光ピックアップ装置の薄形化を図ることができる。
本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。
OBJ 対物レンズ
PU1 光ピックアップ装置
LD 青紫色半導体レーザ
AC1 1軸アクチュエータ
AC2 3軸アクチュエータ
PBS 偏光プリズム
CL カップリングレンズ
L2 正レンズ
L3 負レンズ
MR 立ち上げミラー
PL1 第1の透明基板
PL2 第2の透明基板
PL3 第3の透明基板
RL1 第1の情報記録面
RL2 第2の情報記録面
RL3 第3の情報記録面
QWP λ/4波長板
PU1 光ピックアップ装置
LD 青紫色半導体レーザ
AC1 1軸アクチュエータ
AC2 3軸アクチュエータ
PBS 偏光プリズム
CL カップリングレンズ
L2 正レンズ
L3 負レンズ
MR 立ち上げミラー
PL1 第1の透明基板
PL2 第2の透明基板
PL3 第3の透明基板
RL1 第1の情報記録面
RL2 第2の情報記録面
RL3 第3の情報記録面
QWP λ/4波長板
Claims (4)
- 波長λ1(390nm<λ1<415nm)の光束を出射する光源と対物レンズとを有し、光束入射面からの距離(基板厚)が互いに異なる情報記録面を厚さ方向に3つ以上有する光ディスクにおけるいずれかの情報記録面を選択して、前記光源から出射された波長λ1の光束を前記対物レンズにより前記選択された情報記録面に集光することによって、情報の記録及び/または再生を行う光ピックアップ装置に使用される対物レンズであって、
像側開口数(NA)は0.8以上、0.95以下であり、
倍率をM、光ディスクの基板厚をTとしたときに、3次球面収差が最小になる組み合わせ(M、T)のうち、1つの組み合わせは、M=0、T=Tcen(μm)であり、
又、それとは別な組み合わせであって、対物レンズティルトに対する単位角度あたりの3次コマ収差の値をLT、光ディスクティルトに対する単位角度あたりの3次コマ収差の値をDTとしたときに、││LT│-│DT││が最小となるものは、M=Mcmc、T=Tcmc(μm)であり、更に以下の式を満たすことを特徴とする対物レンズ。
0.5・T0≦Tcen≦0.85・T0 (1)
Tcen<Tcmc (2)
Mcmc<0 (3)
但し、T0:前記光ディスクの基板厚のうち最大の基板厚(μm) - 以下の式を満たすことを特徴とする請求項1に記載の対物レンズ。
5(μm)<Tcmc-Tcen<20(μm) (4) - M=0、T=Tcenのとき、以下の式を満たすことを特徴とする請求項1又は2に記載の対物レンズ。
h/(OSC+f)>0.845 (5)
但し、
h:前記対物レンズの有効径の半径(mm)
OSC:正弦条件違反量(mm)
f:前記対物レンズの焦点距離(mm) - 請求項1乃至3のいずれか1項に記載の対物レンズと、光軸方向に移動可能なカップリングレンズとを有し、前記カップリングレンズを光軸方向に移動させることによって、光ディスクにおけるいずれかの情報記録面を選択することを特徴とする光ピックアップ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013507579A JP5713248B2 (ja) | 2011-03-30 | 2012-03-27 | 光ピックアップ装置用の対物レンズ及び光ピックアップ装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-074512 | 2011-03-30 | ||
JP2011074512 | 2011-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012133361A1 true WO2012133361A1 (ja) | 2012-10-04 |
Family
ID=46931078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/057849 WO2012133361A1 (ja) | 2011-03-30 | 2012-03-27 | 光ピックアップ装置用の対物レンズ及び光ピックアップ装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5713248B2 (ja) |
WO (1) | WO2012133361A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016097331A (ja) * | 2014-11-19 | 2016-05-30 | 東洋紡株式会社 | 造水システムおよび造水方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010044355A1 (ja) * | 2008-10-17 | 2010-04-22 | コニカミノルタオプト株式会社 | 対物レンズ及び光ピックアップ装置 |
WO2011033786A1 (ja) * | 2009-09-17 | 2011-03-24 | パナソニック株式会社 | 光ピックアップ光学系 |
-
2012
- 2012-03-27 JP JP2013507579A patent/JP5713248B2/ja not_active Expired - Fee Related
- 2012-03-27 WO PCT/JP2012/057849 patent/WO2012133361A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010044355A1 (ja) * | 2008-10-17 | 2010-04-22 | コニカミノルタオプト株式会社 | 対物レンズ及び光ピックアップ装置 |
WO2011033786A1 (ja) * | 2009-09-17 | 2011-03-24 | パナソニック株式会社 | 光ピックアップ光学系 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016097331A (ja) * | 2014-11-19 | 2016-05-30 | 東洋紡株式会社 | 造水システムおよび造水方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5713248B2 (ja) | 2015-05-07 |
JPWO2012133361A1 (ja) | 2014-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010044355A1 (ja) | 対物レンズ及び光ピックアップ装置 | |
JPWO2007010770A1 (ja) | 光ピックアップ装置及び光情報記録媒体の記録・再生装置 | |
JP4193915B2 (ja) | 光ピックアップ装置及び光ピックアップ装置用の対物光学素子 | |
WO2011099329A1 (ja) | 光ピックアップ装置の対物レンズ及び光ピックアップ装置 | |
JP5713248B2 (ja) | 光ピックアップ装置用の対物レンズ及び光ピックアップ装置 | |
JP5152524B2 (ja) | 光ピックアップ装置及び対物レンズユニット | |
JP2010238277A (ja) | 光ピックアップ装置及び対物レンズユニット | |
JP2013206496A (ja) | 光ピックアップ装置及び対物レンズ | |
WO2010004858A1 (ja) | 対物レンズ及び光ピックアップ装置 | |
WO2011052469A1 (ja) | 光ピックアップ装置 | |
JP2009266290A (ja) | 対物レンズ及び光ピックアップ装置 | |
JP5582421B2 (ja) | 光ピックアップ装置及び光情報記録再生装置 | |
WO2011122275A1 (ja) | 光ピックアップ装置及び光ピックアップ装置のカップリングレンズ | |
JP5441014B2 (ja) | 光ピックアップ装置用の対物レンズ及び光ピックアップ装置 | |
JP2010097664A (ja) | 対物レンズ | |
WO2012070438A1 (ja) | 光ピックアップ装置用の対物レンズ及び光ピックアップ装置 | |
JP2011198446A (ja) | 光ピックアップ装置 | |
WO2011099317A1 (ja) | 光ピックアップ装置 | |
JP2012164401A (ja) | 対物レンズ、光ピックアップ装置及びその調整方法 | |
WO2011065276A1 (ja) | 光ピックアップ装置用の対物レンズ及び光ピックアップ装置 | |
WO2012111552A1 (ja) | 光ピックアップ装置及び光情報記録再生装置 | |
WO2011078022A1 (ja) | 光ピックアップ装置用の対物レンズ及び光ピックアップ装置 | |
WO2013077071A1 (ja) | 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置 | |
WO2010116852A1 (ja) | 対物レンズ、カップリング素子及び光ピックアップ装置 | |
JP2009015951A (ja) | 光ピックアップ装置用の補正素子、対物光学素子ユニット及び光ピックアップ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12765319 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013507579 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12765319 Country of ref document: EP Kind code of ref document: A1 |