WO2010116852A1 - 対物レンズ、カップリング素子及び光ピックアップ装置 - Google Patents

対物レンズ、カップリング素子及び光ピックアップ装置 Download PDF

Info

Publication number
WO2010116852A1
WO2010116852A1 PCT/JP2010/054200 JP2010054200W WO2010116852A1 WO 2010116852 A1 WO2010116852 A1 WO 2010116852A1 JP 2010054200 W JP2010054200 W JP 2010054200W WO 2010116852 A1 WO2010116852 A1 WO 2010116852A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
information recording
light
information
coupling element
Prior art date
Application number
PCT/JP2010/054200
Other languages
English (en)
French (fr)
Inventor
喬則 白石
博之 新藤
英和 戸塚
徹 木村
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011508298A priority Critical patent/JPWO2010116852A1/ja
Publication of WO2010116852A1 publication Critical patent/WO2010116852A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers

Definitions

  • the present invention relates to an optical pickup device capable of recording and / or reproducing information with respect to a high-density optical disc and an objective lens or a coupling element of a condensing optical system used therefor.
  • a BD having a plurality of information recording surfaces has also been developed, and information can be recorded / reproduced on each information recording surface of the DVD or BD.
  • Optical pickup devices are already on the market. By the way, in a DVD optical pickup device having a plurality of information recording surfaces, when recording / reproducing information on / from each information recording surface of the DVD, the optical axis direction from the optical disk surface to each information recording surface Therefore, it is not necessary to correct spherical aberration caused by the difference in distance, and focusing of the objective lens is sufficient.
  • the present invention has been made in consideration of the above-described problems, and an object of the present invention is to provide an optical pickup device capable of reducing the size and energy of the optical pickup device and an optical element suitable for the optical pickup device.
  • the objective lens according to claim 1 includes a first light source that emits a light beam having a wavelength ⁇ 1 (390 nm ⁇ 1 ⁇ 420 nm), and a condensing optical system including at least the objective lens, and has at least two information recording surfaces.
  • Objective lens of a condensing optical system for an optical pickup device that records and / or reproduces information by condensing information on a Blu-ray Disc (BD) information recording surface so that information can be recorded and / or reproduced
  • the objective lens has at least a first focal point and a second focal point, and condenses the light beam having the wavelength ⁇ 1 on the first focal point, whereby information is recorded on a certain information recording surface of the BD.
  • the information can be recorded and / or reproduced on the other information recording surface of the BD by condensing the light beam having the wavelength ⁇ 1 on the second focal point. It performed as can condensing, the second focal point and the first focal point, and satisfies the following expression.
  • ⁇ f distance in the optical axis direction ( ⁇ m) between the first focus and the second focus tA: thickness ( ⁇ m) of the protective layer from the surface of the BD to the certain information recording surface of the BD tB: thickness of protective layer ( ⁇ m) from the surface of the BD to the other information recording surface of the BD n: Refractive index NA of the protective layer of the BD: Image-side numerical aperture of the objective lens.
  • the objective lens has at least a first focus and a second focus, and collects information on a certain information recording surface of the BD by condensing the light beam having the wavelength ⁇ 1 on the first focus. So that the information can be recorded and / or reproduced, and by collecting the light beam having the wavelength ⁇ 1 at the second focus, information can be recorded and / or reproduced on the other information recording surface of the BD. Since the light can be condensed, the coupling lens or the like is moved in the optical axis direction in order to correct spherical aberration depending on whether the light is condensed on a certain information recording surface of the BD or the other information recording surface. Instead, only by moving the objective lens in the optical axis direction, it becomes possible to make the light beam having the wavelength ⁇ 1 incident and condensed on the desired information recording surface, and record and / or record information on the desired information recording surface. Playback can be performed.
  • the light beam having the wavelength ⁇ 1 is condensed on the first focal point to record information on the information recording surface of the BD and / or Alternatively, when the light is condensed so that it can be reproduced, the light beam having the wavelength ⁇ 1 is not condensed so that information can be recorded and / or reproduced on the other information recording surface of the BD. As a result, it is possible to suppress simultaneous condensing on a plurality of information recording surfaces of the BD, and to prevent erroneous detection.
  • ⁇ f is the distance in the optical axis direction between the best focus position of the first focus and the best focus position of the second focus.
  • the objective lens according to claim 2 is the following formula in the invention according to claim 1, 20 ⁇ m ⁇
  • the objective lens has a plurality of focal points formed by the diffractive structure, the pitch of the diffractive structure can be prevented from becoming too fine, and there is no manufacturing error and high. It is possible to provide an objective lens capable of maintaining light utilization efficiency.
  • the objective lens according to claim 3 is the objective lens according to claim 1 or 2, wherein the objective lens has a diffractive structure within an effective diameter of at least one optical surface, and the diffractive structure is When the light flux having the wavelength ⁇ 1 passes through the diffractive structure, more m-order diffracted light and n-order diffracted light (m ⁇ n) are generated than diffracted light of other diffraction orders, and the m
  • the next diffracted light is condensed so that information can be recorded and / or reproduced on a certain information recording surface of the BD, and the nth order diffracted light is recorded on the other information recording surface of the BD.
  • the light is condensed so that recording and / or reproduction can be performed.
  • FIG. 1 is a cross-sectional view of the objective lens of the present invention.
  • a diffractive structure is formed on the entire surface within the effective diameter of the optical surface S1 on the light source side of the objective lens OBJ.
  • a light beam having a wavelength ⁇ 1 is incident on such a diffractive structure, more m-order diffracted light and n-th order diffracted light are generated than diffracted light of other diffraction orders.
  • the m-th order diffracted light (shown upward from the optical axis) is condensed on the first information recording surface RL1 of the BD, and the n-th order diffracted light (shown below from the optical axis) is condensed on the second information recording surface RL2. It is supposed to be. (In FIG. 1, for convenience, it is described that the objective lens is focused on the first information recording surface and the second information recording surface at the same position in the optical axis direction. The light is not condensed on the surface and the second information recording surface, but when the light is condensed on the first information recording surface, the light is not condensed on the second information recording surface but is condensed on the second information recording surface.
  • ⁇ f is the distance ( ⁇ m) in the optical axis direction between the first focus and the second focus
  • tA is the thickness ( ⁇ m) of the protective layer from the surface of the BD to the first information recording surface RL1
  • tB is the thickness ( ⁇ m) of the protective layer from the surface of the BD to the second information recording surface RL2
  • n is the refractive index of the protective layer of the BD
  • the objective lens described in claim 4 is characterized in that, in the invention described in claim 3, m ⁇ 0 and n ⁇ 0 are satisfied.
  • the 0th order As the diffraction order, it is possible to provide an objective lens that can prevent the pitch of the diffractive structure from becoming too fine, has no manufacturing error, and can maintain high light utilization efficiency. Further, when the 0th order is used as the diffraction order, the depth of the diffractive structure in the optical axis direction tends to be deep. When the depth of the diffractive structure in the optical axis direction is increased, the variation in light utilization efficiency when the wavelength of the light source varies minutely is not preferable. However, by not using the 0th order as the diffraction order, it is possible to use a diffractive structure having a shallow depth in the optical axis direction, such as a first order, second order, third order, etc. It is preferable because fluctuations in efficiency can be suppressed.
  • the objective lens according to claim 6 is the objective lens according to claim 1 or 2, wherein the objective lens divides at least one optical surface into a plurality of concentric regions, and The light beam having the wavelength ⁇ 1 that has passed through a certain region is condensed so that information can be recorded and / or reproduced on a certain information recording surface of the BD, and the light beam having passed through another region of the plurality of regions. The light beam having the wavelength ⁇ 1 is condensed so that information can be recorded and / or reproduced on the other information recording surface of the BD.
  • FIG. 3 is a cross-sectional view of the objective lens of the present invention.
  • the light source side optical surface S1 is not provided with a diffractive portion, but instead is divided into an annular region MD and an outer region OT centered on the optical axis, and each has a different aspheric shape.
  • the light beam having the wavelength ⁇ 1 that has passed through the inner region MD of the objective lens OBJ is condensed on the first information recording surface RL1 of the BD, and the remaining light beam that has passed through the outer region OT is condensed on the second information recording surface RL2. It has become. That is, the objective lens of the present invention has a first focal point and a second focal point. (In FIG.
  • the objective lens is focused on the first information recording surface and the second information recording surface at the same position in the optical axis direction.
  • the light is not condensed on the surface and the second information recording surface, but when the light is condensed on the first information recording surface, the light is not condensed on the second information recording surface but is condensed on the second information recording surface. It is necessary to move the objective lens in the optical axis direction.Naturally, when the light is focused on the second information recording surface, it is not focused on the first information recording surface.) ,
  • the objective lens according to claim 7 is the objective lens according to any one of claims 1 to 6, wherein the light utilization efficiency of the objective lens is substantially uniform throughout the effective diameter of the optical surface. It is characterized by that.
  • the spot performance may deteriorate, such as the NA of the light spot increasing or decreasing, but the light utilization efficiency is within the effective diameter of the optical surface. By making it substantially uniform as a whole, a better light spot can be obtained.
  • the objective lens according to claim 8 is the objective lens according to any one of claims 1 to 7, wherein the objective lens is made of plastic, and the third order when the temperature of the objective lens changes by 30 ° C. It has a temperature characteristic correction structure for correcting temperature characteristics so that the amount of change in spherical aberration is within ⁇ 0.040 ⁇ rms.
  • the condensing optical system has a plastic optical element, particularly when the objective lens is a plastic lens, there is a high possibility that aberrations will occur due to temperature changes.
  • the coupling element is moved in the optical axis direction.
  • it is also necessary to move the coupling element in the optical axis direction in order to correct aberration associated with a temperature change. This eliminates the need to move the coupling element in the direction of the optical axis in both of the multiple layers of information recording surfaces and in response to temperature changes, and even in optical pickup devices having plastic optical elements, fixed coupling An element can be used.
  • the coupling element is a general term for a collimating lens, a coupling lens, and the like.
  • a coupling lens is a single lens or a lens group that is disposed between an objective lens and a light source and changes a divergence angle of a light beam.
  • the collimating lens is a type of coupling lens, and is a lens that emits incident light as parallel light.
  • the coupling element according to claim 9 includes a first light source that emits a light beam having a wavelength ⁇ 1 (390 nm ⁇ 1 ⁇ 420 nm), and a condensing optical system including at least the coupling element and a single-focus objective lens.
  • a condensing optical system including at least the coupling element and a single-focus objective lens.
  • the condensing optical system has at least a first focal point and a second focal point on which the light beam having the wavelength ⁇ 1 that has passed through the coupling element and the objective lens is condensed.
  • the light beam having the wavelength ⁇ 1 that has passed through the coupling element and the objective lens is condensed on the first focal point, so that a certain information recording surface of the BD is formed.
  • Other information on the BD can be collected so that information can be recorded and / or reproduced, and the light beam having the wavelength ⁇ 1 that has passed through the coupling element and the objective lens is condensed on the second focal point.
  • the light can be condensed so that information can be recorded and / or reproduced on the recording surface, and the first focus and the second focus satisfy the following expressions.
  • ⁇ f distance in the optical axis direction ( ⁇ m) between the first focus and the second focus tA: thickness ( ⁇ m) of the protective layer from the surface of the BD to the certain information recording surface of the BD tB: thickness of protective layer ( ⁇ m) from the surface of the BD to the other information recording surface of the BD n: Refractive index of the protective layer of the BD.
  • FIG. 2 is a cross-sectional view of a coupling element and an objective lens which are an example of the present invention.
  • a diffractive structure is formed on the entire surface within the effective diameter of the optical surface CS1 on the light source side of the coupling lens CUL which is a coupling element.
  • a light beam having a wavelength ⁇ 1 is incident on such a diffractive structure, more m-order diffracted light and n-th order diffracted light are generated than diffracted light of other diffraction orders.
  • the mth order diffracted light (shown upward from the optical axis) passes through the objective lens OBJ and is condensed on the first information recording surface RL1 of the BD, and the nth order diffracted light (shown below the optical axis) is the objective lens.
  • the light passes through the OBJ and is condensed on the second information recording surface RL2. That is, the coupling element and objective lens of the present invention have a first focal point and a second focal point. (In FIG. 2, for the sake of convenience, it is described that the objective lens is focused on the first information recording surface and the second information recording surface at the same position in the optical axis direction.
  • the light is not condensed on the surface and the second information recording surface, but when the light is condensed on the first information recording surface, the light is not condensed on the second information recording surface but is condensed on the second information recording surface. It is necessary to move the objective lens in the direction of the optical axis.Of course, when the light is focused on the second information recording surface, it is not focused on the first information recording surface.)
  • ⁇ f is the first focus. Is the distance ( ⁇ m) between the first focal point and the second focal point, tA is the thickness ( ⁇ m) of the protective layer from the surface of the BD to the first information recording surface RL1, and tB is the second information from the surface of the BD.
  • a coupling element according to a tenth aspect is the invention according to the ninth aspect, in which: 20 ⁇ m ⁇
  • the coupling element according to claim 11 is the invention according to claim 9 or claim 10, wherein the coupling element has a diffractive structure within an effective diameter of at least one optical surface, and the diffractive structure. Generates a larger number of mth-order diffracted light and nth-order (m ⁇ n) diffracted light than diffracted light of other diffraction orders when the light flux having the wavelength ⁇ 1 passes through the diffractive structure, The m-order diffracted light is condensed by the coupling element and the objective lens so that information can be recorded and / or reproduced on an information recording surface of the BD, and the n-order diffracted light is The light is condensed by the coupling element and the objective lens so that information can be recorded and / or reproduced on another information recording surface of the BD.
  • a coupling element according to a twelfth aspect is characterized in that, in the invention according to the eleventh aspect, m ⁇ 0 and n ⁇ 0 are satisfied.
  • the coupling element according to claim 14 is the invention according to claim 9 or claim 10, wherein the coupling element divides at least one optical surface into a plurality of concentric regions, and The light beam having the wavelength ⁇ 1 that has passed through a certain region of the region is condensed by the coupling element and the objective lens so that information can be recorded and / or reproduced on a certain information recording surface of the BD, The light flux having the wavelength ⁇ 1 that has passed through the other areas of the plurality of areas is collected so that information can be recorded and / or reproduced on the other information recording surface of the BD by the coupling element and the objective lens. It is characterized by being illuminated.
  • the coupling element according to claim 15 is the invention according to any one of claims 9 to 14, wherein the light utilization efficiency of the coupling element is substantially uniform throughout the effective diameter of the optical surface. It is characterized by being.
  • a coupling element according to claim 16 is the invention according to any one of claims 9 to 15, wherein the coupling element and the objective lens are made of plastic, and the coupling element and the objective lens It has a temperature characteristic correction structure for correcting the temperature characteristic so that the amount of change of the third-order spherical aberration when the temperature of the lens changes by 30 ° C. is within ⁇ 0.040 ⁇ rms.
  • An optical pickup device has the objective lens according to any one of claims 1 to 8.
  • An optical pickup device includes the coupling element according to any one of the ninth to sixteenth aspects.
  • the optical pickup device is the optical pickup device according to claim 17, wherein the optical pickup device has a coupling element, and can record and / or reproduce information on a certain information recording surface of the BD.
  • the position of the coupling element in the optical axis direction is the same between the case where the light is condensed and the case where the light is condensed so that information can be recorded and / or reproduced on the other information recording surface of the BD. It is characterized by.
  • An optical pickup device is the optical pickup device according to the eighteenth aspect, wherein the coupling element condenses information on a certain information recording surface of the BD so that information can be recorded and / or reproduced. And in the case where the light is condensed so that information can be recorded and / or reproduced on the other information recording surface of the BD, the position in the optical axis direction is the same.
  • the optical pickup device according to claim 21 is characterized in that, in the invention according to claim 19 or 20, the position of the coupling element is always fixed in the optical axis direction.
  • the optical pickup device has a light source (hereinafter referred to as a first light source) that emits a light beam having a wavelength ⁇ 1 (hereinafter referred to as a first light source), and in addition, a second light beam that emits a second light beam at a wavelength ⁇ 2.
  • a 3rd light source which radiate
  • the optical pickup device of the present invention has a condensing optical system for condensing the first light flux on each information recording surface of the BD having a plurality of information recording surfaces, but the second light flux is on the information recording surface of the DVD.
  • the optical pickup device of the present invention may include a light receiving element that receives a reflected light beam from an information recording surface of a BD, DVD, or CD.
  • BD preferably used in the present invention is a multi-layer BD having a plurality of information recording surfaces.
  • BDs having two information recording surfaces are on the market, and such BDs are included.
  • the optical pickup device of the present invention may be capable of recording / reproducing a BD having only a single information recording surface in addition to a BD having a plurality of information recording surfaces.
  • the DVD may be the same.
  • the thickness of the protective substrate includes the case of 0, and when the protective film having a thickness of several to several tens of ⁇ m is applied to the optical disk, the thickness thereof is also included.
  • DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67, and the thickness t2 of the protective substrate is about 0.6 mm.
  • ROM, DVD-Video, DVD-Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW and the like are included.
  • a CD is a CD series optical disc in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.53, and the protective substrate thickness t3 is about 1.2 mm. It is a generic term and includes CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like. As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
  • the first light source, the second light source, and the third light source are preferably laser light sources.
  • the laser light source a semiconductor laser, a silicon laser, or the like can be preferably used.
  • the wavelength ⁇ 3 ( ⁇ 3> ⁇ 2) is the following conditional expression: 1.5 ⁇ ⁇ 1 ⁇ 2 ⁇ 1.7 ⁇ ⁇ 1 1.8 ⁇ ⁇ 1 ⁇ 3 ⁇ 2.0 ⁇ ⁇ 1 It is preferable to satisfy.
  • the wavelength of the first light beam is larger than the wavelength of the second light beam or the wavelength of the third light beam. It needs to be shortened.
  • the wavelength of the emitted light changes due to the temperature change.
  • the first wavelength ⁇ 1 of the first light source is 390 nm to 420 nm
  • the second wavelength ⁇ 2 of the second light source is preferably 570 nm to 680 nm, more preferably.
  • the third wavelength ⁇ 3 of the third light source is preferably 750 nm or more and 850 nm or less, more preferably 760 nm or more and 820 nm or less.
  • the first light source, the second light source, and the third light source may be unitized.
  • the unitization means that the first light source and the second light source are fixedly housed in one package, for example.
  • a light receiving element to be described later may be packaged.
  • a photodetector such as a photodiode is preferably used.
  • Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it.
  • the light receiving element may comprise a plurality of photodetectors.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element.
  • the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
  • the condensing optical system used in the optical pickup device has an objective lens.
  • the condensing optical system may include only the objective lens, but may include a coupling element such as a collimator lens or a coupling lens in addition to the objective lens.
  • the coupling lens is a single lens or a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam.
  • the collimating lens is a kind of coupling lens, and is a lens that emits light incident on the collimating lens as parallel light.
  • an element in which a diffractive structure is formed on a transparent parallel plate is also included in the coupling element.
  • the condensing optical system has an optical element such as a diffractive optical element that divides the light beam emitted from the light source into a main light beam used for recording and reproducing information and two sub light beams used for tracking and the like. May be.
  • an optical element such as a diffractive optical element that divides the light beam emitted from the light source into a main light beam used for recording and reproducing information and two sub light beams used for tracking and the like. May be.
  • the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing a light beam emitted from the light source onto the information recording surface of the optical disk.
  • the objective lens is an optical system which is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source on the information recording surface of the optical disk, and further includes an actuator An optical system that can be integrally displaced at least in the optical axis direction.
  • the objective lens may be a single objective lens or may be composed of a plurality of optical elements. Further, the objective lens may be a glass lens, a plastic lens, or a hybrid lens in which a diffractive structure or the like is provided on a glass lens with a photo-curing resin. A plastic lens is the most suitable from the viewpoint of performance and low cost.
  • the objective lens preferably has a refractive surface that is aspheric. In the case where the objective lens is provided with a diffractive structure, the base surface (also referred to as a mother aspheric surface) is preferably an aspheric surface. When determining the mother aspheric surface from the objective lens, the envelope surface connecting the most optical disc side portions of the steps of the diffractive structure can be regarded as the mother aspheric surface.
  • the objective lens is a glass lens
  • a glass material having a glass transition point Tg of 500 ° C. or lower molding at a relatively low temperature is possible, so that the life of the mold can be extended.
  • the specific gravity of the glass lens is generally larger than that of the resin lens, if the objective lens is a glass lens, the mass is increased and a load is imposed on the actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity. Specifically, the specific gravity is preferably 3.0 or less, and more preferably 2.75 or less.
  • Such a glass material include Examples 1 to 12 in JP-A No. 2005-306627.
  • the glass transition point Tg is 460 ° C.
  • the specific gravity is 2.58
  • the refractive index nd is 1.594
  • the Abbe number is 59.8.
  • the objective lens is a plastic lens
  • the refractive index at a temperature of 25 ° C. with respect to a wavelength of 405 nm is 1.52 to 1.60.
  • the refractive index change rate dN / dT (° C. ⁇ 1 ) is ⁇ 20 ⁇ 10 ⁇ 5 to ⁇ 5 ⁇ 10 ⁇ with respect to the wavelength of 405 nm accompanying the temperature change within the temperature range of ⁇ 5 ° C. to 70 ° C.
  • the coupling lens is preferably a plastic lens.
  • the Abbe number of the material constituting the objective lens is preferably 50 or more.
  • optical element of the present invention is an objective lens
  • the objective lens has at least a first focus and a second focus.
  • the objective lens can focus the light beam having the wavelength ⁇ 1 on the first focal point so that information can be recorded and / or reproduced on an information recording surface of the BD. Further, by condensing the light beam having the wavelength ⁇ 1 on the second focal point, it can be condensed so that information can be recorded and / or reproduced on the other information recording surface of the BD.
  • first focus and the second focus satisfy the following formula.
  • ⁇ f represents the distance ( ⁇ m) in the optical axis direction between the first focus and the second focus.
  • ⁇ f is the distance in the optical axis direction between the best focus position of the first focus and the best focus position of the second focus.
  • tA represents the thickness ( ⁇ m) of the protective layer from the surface of the BD to the certain information recording surface of the BD.
  • tB represents the thickness ( ⁇ m) of the protective layer from the surface of the BD to the other information recording surface of the BD.
  • n represents the refractive index of the protective layer of BD.
  • conditional expression 20 ⁇ m ⁇
  • the pitch of the diffractive structure can be prevented from becoming too fine, and there is no manufacturing error and high. It is possible to provide an objective lens capable of maintaining light utilization efficiency.
  • the pitch of the diffractive structure of the objective lens is preferably 2 ⁇ m or more. More preferably, it is 4 ⁇ m or more.
  • the objective lens may have two focal points by providing a diffractive structure on the objective lens.
  • the objective lens preferably has a diffractive structure throughout the effective diameter of at least one optical surface.
  • the diffractive structure when a light beam having a wavelength ⁇ 1 passes through the diffractive structure, the diffractive structure generates more m-order diffracted light and n-order diffracted light (m ⁇ n) than diffracted light of other diffraction orders. Let At that time, the mth-order diffracted light is condensed so that information can be recorded and / or reproduced on a certain information recording surface of the BD, and the nth-order diffracted light is collected on the other information recording surface of the BD.
  • m-th order diffracted light and the n-th order diffracted light are not simultaneously condensed on a certain information recording surface and other information recording surfaces of the BD.
  • n-order diffracted light is not collected on the other information recording surface of the BD, and n-order diffracted light is collected on the other information recording surface.
  • the n-th order diffracted light is condensed on the other information recording surface of the BD
  • the m-th order diffracted light is not condensed on a certain information recording surface of the BD.
  • the diffractive structure referred to in this specification is a general term for structures having a step and having a function of converging or diverging a light beam by diffraction.
  • the diffractive structure preferably has a plurality of steps.
  • the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the optical surface of the objective lens has a plurality of annular zones centered on the optical axis and separated by steps, and each of the annular zones is constituted by an individual aspheric surface,
  • the objective lens that is converged or diverged is an objective lens having a diffractive structure.
  • the diffractive structure preferably has a plurality of concentric annular zones around the optical axis.
  • the diffractive structure can take various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shapes including the optical axis are roughly classified into a blazed structure and a staircase structure.
  • the blazed structure is a sawtooth shape in cross section including the optical axis of an optical element having a diffractive structure. It has an oblique surface that is neither perpendicular nor parallel to the spherical surface.
  • the upper side is the light source side and the lower side is the optical disk side, and a diffractive structure is formed on a plane as a mother aspherical surface.
  • the staircase structure is a structure in which the cross-sectional shape including the optical axis of an optical element having a diffractive structure is a small staircase (referred to as a staircase unit). That is to have more than one.
  • the “X level” means an annular surface corresponding to (or facing) the optical axis vertical direction in one step unit of the staircase structure (hereinafter sometimes referred to as an optical function surface). Is divided by X steps, and is divided into X ring zones.
  • a three-level or higher staircase structure has a small step and a large step.
  • the smallest step in the optical axis direction is meant, and the “large step” means the largest step in the optical axis direction in one staircase unit.
  • the diffraction structure shown in FIG. 4C is called a five-level step structure, and the diffraction structure shown in FIG. 4D is called a two-level step structure.
  • the first diffractive structure is a two-level staircase structure, which includes a plurality of concentric ring zones centered on the optical axis, and the cross-sectional shape of the plurality of ring zones including the optical axis of the objective lens is the optical axis.
  • a plurality of step surfaces Pa and Pb extending in parallel with each other, a light source side optical functional surface Pc connecting the light source side ends of adjacent step surfaces Pa and Pb, and optical disc side ends of adjacent step surfaces Pa and Pb.
  • the optical source side optical functional surface Pc and the optical disc side optical functional surface Pd are alternately arranged along the direction intersecting the optical axis.
  • the length of one staircase unit in the direction perpendicular to the optical axis is called a pitch P.
  • the step surface is preferably parallel or substantially parallel to the optical axis, but the optical functional surface may be inclined with respect to the mother aspheric surface as well as when it is parallel to the mother aspheric surface.
  • the diffractive structure is preferably a structure in which a certain unit shape is periodically repeated.
  • unit shape is periodically repeated” naturally includes shapes in which the same shape is repeated in the same cycle.
  • the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”.
  • the sawtooth shape as a unit shape is repeated.
  • the same sawtooth shape may be repeated, and as shown in FIG. 4 (b), the shape of the sawtooth shape gradually increases as it proceeds in the direction of the mother aspheric surface. It may be a shape that increases in size or a shape that decreases. Moreover, it is good also as a shape which combined the shape where the magnitude
  • the size of the step amount in the optical axis direction (or the direction of the passing light beam) hardly changes in the serrated shape.
  • the blazed structure has a step opposite to the optical axis (center) side, and in other areas, the blazed structure has a step toward the optical axis (center). It is good also as a shape in which the transition area
  • mold structure is provided in the meantime.
  • the diffractive structure has a staircase structure
  • the shape of the staircase gradually increases as it advances in the direction of the mother aspheric surface, or the shape of the staircase gradually decreases. It is preferable that the level difference in the direction of the light beam to be changed hardly changes.
  • the 0th order As the diffraction order, it is possible to provide an objective lens that can prevent the pitch of the diffractive structure from becoming too fine, has no manufacturing error, and can maintain high light utilization efficiency. Further, when the 0th order is used as the diffraction order, the depth of the diffractive structure in the optical axis direction tends to be deep. When the depth of the diffractive structure in the optical axis direction is increased, the variation in light utilization efficiency when the wavelength of the light source varies minutely is not preferable.
  • the objective lens may have two focal points by dividing at least one optical surface into a plurality of concentric regions.
  • the light beam having the wavelength ⁇ 1 that has passed through a certain area of the plurality of areas is condensed so that information can be recorded and / or reproduced on a certain information recording surface of the BD.
  • the light beam having the wavelength ⁇ 1 that has passed through is condensed so that information can be recorded and / or reproduced on the other information recording surface of the BD.
  • the light beam that has passed through a certain region and the light beam that has passed through another region are not simultaneously condensed on a certain information recording surface and another information recording surface of the BD.
  • the light beam that has passed through the other area is not collected on the other information recording surface of the BD, and the other information recording surface
  • the light beam that has passed through the other area is condensed on the other information recording surface of the BD, the light beam that has passed through the certain area is not collected on the information recording surface of the BD.
  • An example of a specific embodiment is as described above with reference to FIG.
  • the plurality of regions may be two regions as shown in FIG. 3, but is preferably divided into three or more regions, more preferably four or more regions. Further, if the region is excessively increased, the processing becomes difficult, and if the step is increased, the influence of the diffraction phenomenon increases, so that it is preferably 10 regions or less.
  • the objective lens has a substantially uniform light utilization efficiency throughout the effective diameter of the optical surface.
  • the light use efficiency is obtained by multiplying the diffraction efficiency by the diffraction structure and the transmittance of the lens.
  • substantially uniform means that the difference between the light utilization efficiency near the optical axis and the light utilization efficiency near the effective diameter outermost region is 30% or less. Preferably, it is 15% or less.
  • the NA of the light spot may increase or decrease.
  • the light utilization efficiency of the optical element is substantially the same throughout the effective diameter. By doing so, a better light spot can be obtained. If the light use efficiency is uneven in the optical design, install a transmittance adjustment film such as a filter to reduce the transmittance in the area where the light use efficiency is high, or the area where the light use efficiency is high It is desirable to provide a diffractive structure that flares part of the light beam.
  • the condensing optical system has at least one optical element made of plastic, particularly when it has a plastic objective lens
  • the objective lens has a temperature characteristic correction structure in which the amount is within +0.040 ⁇ rms.
  • a specific example of the temperature characteristic correction structure is a diffraction structure.
  • the diffractive structure in the peripheral region for forming a plurality of focal points may be overlapped with the diffractive structure in the temperature characteristic correcting structure.
  • a diffractive structure having a temperature characteristic correction structure may be provided on each refracting surface of a peripheral region divided into a plurality of regions in order to form a plurality of focal points.
  • the diffractive structure of the temperature characteristic correction structure is preferably a diffractive structure that generates a fifth or lower diffraction order from the viewpoint of reducing the depth of the step.
  • the optical element of the present invention is an objective lens
  • the optical element of the present invention is a coupling element such as a coupling lens or a flat plate element.
  • the objective lens is preferably a single focal point.
  • the coupling element has at least a first focal point and a second focal point on which the light beam having the wavelength ⁇ 1 that has passed through the coupling element and the objective lens is condensed. Then, by condensing the light beam having the wavelength ⁇ 1 that has passed through the coupling element and the objective lens at the first focal point, it can be condensed so that information can be recorded and / or reproduced on a certain information recording surface of the BD.
  • the light beam having the wavelength ⁇ 1 that has passed through the coupling element and the objective lens can be condensed so that information can be recorded and / or reproduced on the other information recording surface of the BD by condensing it on the second focal point. It is.
  • An example of the embodiment when the optical element of the present invention is a coupling element is as described above with reference to FIG.
  • an objective lens capable of recording / reproducing information on any of BD, DVD, and CD can be obtained.
  • NA1 The numerical aperture on the image side of the objective lens necessary for reproducing and / or recording information on the BD is NA1, but in addition to this, when using DVD and CD interchangeably, the information is reproduced and reproduced on the DVD.
  • the image side numerical aperture of the objective lens required for recording is NA2 (NA1 ⁇ NA2)
  • NA3 NA2> NA3
  • NA1 is preferably 0.75 or more and 0.9 or less.
  • NA1 is preferably 0.85.
  • NA2 is preferably 0.55 or more and 0.7 or less.
  • NA2 is preferably 0.60 or 0.65.
  • NA3 is preferably 0.4 or more and 0.55 or less.
  • NA3 is preferably 0.45 or 0.53.
  • the objective lens has the following conditional expression from the viewpoint of suppressing astigmatism and decentration coma: 1.0 ⁇ d / f ⁇ 3.0 It is preferable to satisfy.
  • d (mm) is the axial thickness of the objective lens
  • f (mm) is the focal length of the light beam having the wavelength ⁇ 1 of the objective lens.
  • the optical pickup device When the optical pickup device has a coupling element, it is possible to collect information so that information can be recorded / reproduced on a certain information recording surface of the optical disc, and to record / reproduce information on another information recording surface of the optical disc. It is preferable that the position of the coupling element in the optical axis direction is the same as in the case of condensing light. More preferably, the position of the coupling element is always fixed in the optical axis direction.
  • the optical element of the present invention is an objective lens
  • the first light beam may be incident on the objective lens as parallel light, or may be incident on the objective lens as divergent light or convergent light, but the divergence angle or convergence angle of the light beam incident on the objective lens is fixed.
  • the imaging magnification m1 of the objective lens when the first light beam enters the objective lens is expressed by the following formula (8), -0.02 ⁇ m1 ⁇ 0.02 (8) Is to satisfy.
  • the optical information recording / reproducing apparatus has an optical disc drive apparatus having the above optical pickup apparatus.
  • the optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
  • the optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc include a transfer means of an optical pickup device having a guide rail or the like for guiding toward the head, a spindle motor for rotating the optical disk, and the like.
  • the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
  • the present invention it is possible to record and reproduce information satisfactorily after correcting spherical aberration for a BD having a plurality of layers without moving the coupling element in the optical axis direction. It is possible to provide an optical pickup device and an optical element that do not collect light simultaneously on a plurality of information recording surfaces and can prevent erroneous detection.
  • FIG. 5 schematically shows a configuration of an optical pickup device capable of appropriately recording and / or reproducing information on a BD having a plurality of (for example, two layers) information recording surfaces, a DVD, and a CD.
  • FIG. 5 Such an optical pickup device can be mounted on an optical information recording / reproducing device.
  • the present invention is not limited to the present embodiment.
  • the optical pickup device shown in FIG. 5 includes a BD-dedicated first objective lens OL1, a CD / DVD second objective lens OL2, a dichroic mirror DM having a first reflecting surface RP1 and a second reflecting surface RP2, ⁇ / 4.
  • the first objective lens OL1 is made of plastic, and a diffractive structure is formed on the entire surface within the effective diameter of the optical surface on the light source side as shown in FIG.
  • a diffractive structure generates m-th order diffracted light and n-th order diffracted light when a light beam having a wavelength ⁇ 1 is incident.
  • An example of a single lens is shown as the first objective lens OL1, but an objective optical element composed of a plurality of optical elements may be used instead of the objective optical element.
  • the second objective lens OL2 a well-known objective optical element for DVD / CD compatibility can be used.
  • the configuration of the optical pickup device can be simplified if the light beam having the wavelength ⁇ 1 is incident on the first objective lens OL1 and the light beams having the wavelengths ⁇ 2 and ⁇ 3 are incident on the second objective lens OL2.
  • the beam diameter is regulated and enters the first objective lens OL1.
  • the light beam that has passed through the diffractive structure of the first objective lens OL1 that has been adjusted in the optical axis direction (first position) by the focusing operation and has been converted into m-order light is transmitted to the BD via the protective substrate PL1.
  • Incident light becomes a spot formed on the first information recording surface RL1 at the first depth from the surface.
  • the light beam that has passed through the diffractive structure of the first objective lens OL1 and has been converted into n-order light is incident on the BD via the protective substrate PL1 ′, and the second information at the second depth from the surface. No spots are formed on the recording surface RL1 ′.
  • the reflected light beam modulated by the information pits on the first information recording surface RL1 passes through the first objective lens OL1 and the aperture again, and then is reflected by the second reflection surface RP2 of the dichroic mirror DM and passes through the first reflection surface RP1. Then, after being converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, converted into a convergent light beam by the coupling lens CUL, reflected by the polarizing beam splitter PBS, and then on the light receiving surface of the light receiving element PD by the sensor lens SL Converge to. Then, using the output signal of the light receiving element PD, the information recorded on the first information recording surface RL1 of the BD can be read by focusing or tracking the first objective lens OL1 by an actuator (not shown).
  • the beam diameter is regulated and enters the first objective lens OL1.
  • the light beam that has passed through the diffraction structure of the first objective lens OL1 adjusted in the optical axis direction (second position different from the first position) by the focusing operation and has been converted into n-order light is protected.
  • the light enters the BD via the substrate PL1 ′ and becomes a spot formed on the second information recording surface RL1 ′ at a second depth different from the first depth from the surface.
  • the light beam that has passed through the diffractive structure of the first objective lens OL1 and has been converted into m-order light is incident on the BD via the protective substrate PL1, and the first information recording at the first depth from the surface. No spot is formed on the surface RL1.
  • the reflected light flux modulated by the information pits on the second information recording surface RL1 ′ is again transmitted through the first objective lens OL1 and the aperture, and then reflected by the second reflecting surface RP2 of the dichroic mirror DM, and passes through the first reflecting surface RP1. Passed, converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, converted into a convergent light beam by the coupling lens CUL, reflected by the polarizing beam splitter PBS, and then received by the sensor lens SL by the light receiving surface of the light receiving element PD Converge on top. Then, the information recorded on the first information recording surface RL1 'of the BD can be read by using the output signal of the light receiving element PD to focus and track the first objective lens OL1 by an actuator (not shown).
  • the BD has a plurality of information recording surfaces
  • information is recorded / reproduced on different information recording surfaces while the coupling lens is fixed. Therefore, simplification of the configuration of the optical pickup device and energy saving can be achieved.
  • the first objective lens OL1 is focused and driven to a first position different from the second position in the optical axis direction.
  • the coupling lens CUL may be provided with a diffractive structure.
  • the coupling lens CUL After being converted into a parallel light beam by the coupling lens CUL, it is converted from linearly polarized light to circularly polarized light by the ⁇ / 4 wave plate QWP, reflected by the first reflecting surface RP1 of the dichroic mirror DM, and the light beam diameter by a diaphragm (not shown).
  • the reflected light beam modulated by the information pits on the information recording surface RL2 is transmitted again through the second objective lens OL2 and the aperture, and then reflected by the first reflecting surface RP1 of the dichroic mirror DM, and is reflected by the ⁇ / 4 wavelength plate QWP.
  • the light is converted from polarized light into linearly polarized light, converted into a convergent light beam by the coupling lens CUL, reflected by the polarization beam splitter PBS, and then converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the DVD can be read by focusing or tracking the second objective lens OL2 by an actuator (not shown).
  • the reflected light beam modulated by the information pits on the information recording surface RL3 passes through the second objective lens OL2 and the aperture again, and is then reflected by the first reflecting surface RP1 of the dichroic mirror DM, and is reflected by the ⁇ / 4 wavelength plate QWP.
  • the light is converted from polarized light into linearly polarized light, converted into a convergent light beam by the coupling lens CUL, reflected by the polarization beam splitter PBS, and then converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the CD can be read by causing the second objective lens OL2 to be focused or tracked by an actuator (not shown).
  • Optical path difference function ⁇ / ⁇ B ⁇ dor ⁇ (C 2 y 2 + C 4 y 4 + C 6 y 6 + C 8 y 8 + C 10 y 10 )
  • optical path difference function ⁇ : wavelength of light beam incident on the diffractive structure
  • ⁇ B manufacturing wavelength dor: diffraction order of diffracted light used for recording / reproducing on optical disc
  • y distance from optical axis
  • C 2 , C 4 , C 6 , C 8 , C 10 Diffraction surface coefficients.
  • optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in the table are substituted into the following aspheric expression.
  • [Aspherical expression] z (y 2 / R) / [1 + ⁇ ⁇ 1- (K + 1) (y / R) 2 ⁇ ] + A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 + A 12 y 12 + A 14 y 14 + A 16 y 16 + A 18 y 18 + A 20 y 20
  • z Aspherical shape (distance in the direction along the optical axis from the apex of the aspherical surface)
  • y distance from the optical axis
  • R radius of curvature
  • K conic coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 , A 20 : aspherical coefficients.
  • a power of 10 (for example, 2.5 ⁇ 10 ⁇ 3 ) is expressed using E (for example, 2.5 ⁇ E ⁇ 3).
  • Example 1 shows lens data of Example 1.
  • the diffractive structure provided over the entire effective diameter of the optical surface on the light source side of the objective lens is different from the first diffractive structure for light beam distribution (indicated by the optical path difference function ⁇ 1 in the table) and the temperature change.
  • This is a superposition of a second diffractive structure (indicated by the optical path difference function ⁇ 2 in the table), which is a temperature characteristic correcting structure that corrects the resulting spherical aberration.
  • the first diffractive structure generates second-order diffracted light and third-order diffracted light when a light beam with wavelength ⁇ 1 is incident, and the second diffractive structure generates fourth-order diffracted light when a light beam with wavelength ⁇ 1 is incident.
  • the third-order diffracted light generated in the first diffractive structure is condensed on the information recording layer having a depth of 75 ⁇ m from the BD surface, and the second-order diffracted light is collected on the information recording layer having a depth of 100 ⁇ m from the BD surface.
  • 72.32 ⁇ m, but
  • /n 15.41 ⁇ m.
  • the protective substrate thickness of the BD when the protective substrate thickness of the BD is 0.075 mm, the amount of change in the third-order spherical aberration that occurs is 0.017 ⁇ rms, and when the protective substrate thickness is 0.100 mm, The amount of change in third-order spherical aberration that occurs is -0.0147 ⁇ rms.
  • the minimum pitch of the first diffractive structure is 4.9 ⁇ m.
  • Example 2 shows lens data of Example 2.
  • the diffractive structure provided over the entire effective diameter of the optical surface on the light source side of the objective lens is different from the first diffractive structure for light beam distribution (indicated by the optical path difference function ⁇ 1 in the table) and the temperature change.
  • the first diffractive structure generates second-order diffracted light and third-order diffracted light when a light beam with wavelength ⁇ 1 is incident, and the second diffractive structure generates fourth-order diffracted light when a light beam with wavelength ⁇ 1 is incident.
  • the second-order diffracted light generated in the first diffractive structure is condensed on the information recording layer having a depth of 75 ⁇ m from the BD surface, and the third-order diffracted light is collected on the information recording layer having a depth of 100 ⁇ m from the BD surface.
  • 76.98 ⁇ m, but
  • /n 15.41 ⁇ m. When a temperature increase of + 30 ° C.
  • the protective substrate thickness of the BD when the protective substrate thickness of the BD is 0.075 mm, the amount of change in the third-order spherical aberration that occurs is 0.0171 ⁇ rms, and when the protective substrate thickness is 0.100 mm, The amount of change in third-order spherical aberration that occurs is -0.0174 ⁇ rms.
  • the minimum pitch of the first diffractive structure is 4.92 ⁇ m.
  • Example 3 shows lens data of Example 3.
  • the diffractive structure provided on the entire effective diameter of the optical surface on the light source side of the objective lens is different from the first diffractive structure for distributing the light beam (indicated by the optical path difference function ⁇ 1 in the table) and the temperature change.
  • This is a superposition of a second diffractive structure (indicated by the optical path difference function ⁇ 2 in the table), which is a temperature characteristic correcting structure that corrects the resulting spherical aberration.
  • the first diffractive structure generates second-order diffracted light and third-order diffracted light when a light beam with wavelength ⁇ 1 is incident, and the second diffractive structure generates fourth-order diffracted light when a light beam with wavelength ⁇ 1 is incident.
  • the third-order diffracted light generated in the first diffractive structure is condensed on the information recording layer having a depth of 75 ⁇ m from the BD surface, and the second-order diffracted light is collected on the information recording layer having a depth of 100 ⁇ m from the BD surface. Shine. Further,
  • 66.77 ⁇ m, but
  • /n 15.41 ⁇ m.
  • the protective substrate thickness of the BD is 0.075 mm
  • the amount of change of the third-order spherical aberration generated is ⁇ 0.0043 ⁇ rms
  • the protective substrate thickness is 0.100 mm
  • the amount of change in third-order spherical aberration that occurs is 0.0076 ⁇ rms.
  • the minimum pitch of the first diffractive structure is 4.48 ⁇ m.
  • Example 4 shows lens data of Example 4.
  • the diffractive structure provided on the entire surface within the effective diameter of the light source side optical surface of the objective lens is different from the first diffractive structure for light beam distribution (indicated by the optical path difference function ⁇ 1 in the table) and the temperature change.
  • This is a superposition of a second diffractive structure (indicated by the optical path difference function ⁇ 2 in the table), which is a temperature characteristic correcting structure that corrects the resulting spherical aberration.
  • the first diffractive structure generates second-order diffracted light and third-order diffracted light when a light beam with wavelength ⁇ 1 is incident
  • the second diffractive structure generates fourth-order diffracted light when a light beam with wavelength ⁇ 1 is incident.
  • the second-order diffracted light generated in the first diffractive structure is condensed on the information recording layer having a depth of 75 ⁇ m from the BD surface, and the third-order diffracted light is collected on the information recording layer having a depth of 100 ⁇ m from the BD surface.
  • 69.45 ⁇ m, but
  • /n 15.41 ⁇ m.
  • the protective substrate thickness of the BD is 0.075 mm
  • the amount of change of the third-order spherical aberration generated is ⁇ 0.006 ⁇ rms
  • the protective substrate thickness is 0.100 mm
  • the amount of change in the third-order spherical aberration that occurs is 0.007 ⁇ rms.
  • the minimum pitch of the first diffractive structure is 4.5 ⁇ m.
  • Example 5 shows lens data of Example 5.
  • the diffractive structure provided on the entire effective diameter of the optical surface on the light source side of the objective lens is different from the first diffractive structure for light beam distribution (indicated by the optical path difference function ⁇ 1 in the table) and the temperature change.
  • the first diffractive structure generates 0th-order diffracted light and first-order diffracted light when a light beam having a wavelength ⁇ 1 is incident
  • the second diffractive structure generates fourth-order diffracted light when a light beam having a wavelength ⁇ 1 is incident.
  • the first-order diffracted light generated in the first diffractive structure is condensed on the information recording layer having a depth of 75 ⁇ m from the BD surface, and the zero-order diffracted light is collected on the information recording layer having a depth of 100 ⁇ m from the BD surface. Shine. Further,
  • 26.83 ⁇ m, but
  • /n 15.41 ⁇ m.
  • the protective substrate thickness of the BD is 0.075 mm
  • the amount of change in the third-order spherical aberration is ⁇ 0.001 ⁇ rms
  • the protective substrate thickness is 0.100 mm
  • the amount of change in third-order spherical aberration that occurs is 0.0007 ⁇ rms.
  • the minimum pitch of the first diffractive structure is 10.69 ⁇ m.
  • Example 6 Table 6 shows lens data of Example 6.
  • the diffractive structure provided on the entire surface within the effective diameter of the optical surface on the light source side of the objective lens is different from the first diffractive structure for light beam distribution (indicated by the optical path difference function ⁇ 1 in the table) and the temperature change.
  • the first diffractive structure generates 0th-order diffracted light and first-order diffracted light when a light beam having a wavelength ⁇ 1 is incident
  • the second diffractive structure generates fourth-order diffracted light when a light beam having a wavelength ⁇ 1 is incident.
  • the first-order diffracted light generated in the first diffractive structure is condensed on the information recording layer having a depth of 75 ⁇ m from the BD surface, and the zero-order diffracted light is collected on the information recording layer having a depth of 100 ⁇ m from the BD surface. Shine. Also,
  • 65.67 ⁇ m, but
  • /n 15.41 ⁇ m.
  • the protective substrate thickness of the BD is 0.075 mm
  • the amount of change in the third-order spherical aberration is ⁇ 0.0048 ⁇ rms
  • the protective substrate thickness is 0.100 mm
  • the amount of change in the third-order spherical aberration that occurs is 0.0058 ⁇ rms.
  • the minimum pitch of the first diffractive structure is 4.52 ⁇ m.
  • Example 7 shows lens data of Example 7.
  • the diffractive structure provided on the entire surface within the effective diameter of the optical surface on the light source side of the objective lens is different from the first diffractive structure for distributing light beams (indicated by the optical path difference function ⁇ 1 in the table) and the temperature change.
  • This is a superposition of a second diffractive structure (indicated by the optical path difference function ⁇ 2 in the table), which is a temperature characteristic correcting structure that corrects the resulting spherical aberration.
  • the first diffractive structure generates 0th-order diffracted light and first-order diffracted light when a light beam having a wavelength ⁇ 1 is incident
  • the second diffractive structure generates fourth-order diffracted light when a light beam having a wavelength ⁇ 1 is incident.
  • the first-order diffracted light generated in the first diffractive structure is condensed on the information recording layer having a depth of 75 ⁇ m from the BD surface, and the zero-order diffracted light is collected on the information recording layer having a depth of 100 ⁇ m from the BD surface. Shine. Further,
  • 88.17 ⁇ m, but
  • /n 15.41 ⁇ m.
  • the protective substrate thickness of the BD is 0.075 mm
  • the amount of change in the third-order spherical aberration is ⁇ 0.0036 ⁇ rms
  • the protective substrate thickness is 0.100 mm
  • the amount of change in third-order spherical aberration that occurs is 0.0054 ⁇ rms.
  • the minimum pitch of the first diffractive structure is 3.55 ⁇ m.
  • Example 8 shows lens data of Example 8.
  • the diffractive structure provided on the entire surface within the effective diameter of the optical surface on the light source side of the objective lens is different from the first diffractive structure for light beam distribution (indicated by the optical path difference function ⁇ 1 in the table) and the temperature change.
  • This is a superposition of a second diffractive structure (indicated by the optical path difference function ⁇ 2 in the table), which is a temperature characteristic correcting structure that corrects the resulting spherical aberration.
  • the first diffractive structure generates 0th-order diffracted light and first-order diffracted light when a light beam having a wavelength ⁇ 1 is incident
  • the second diffractive structure generates fourth-order diffracted light when a light beam having a wavelength ⁇ 1 is incident.
  • the first-order diffracted light generated in the first diffractive structure is condensed on the information recording layer having a depth of 75 ⁇ m from the BD surface, and the zero-order diffracted light is collected on the information recording layer having a depth of 100 ⁇ m from the BD surface. Shine. Also,
  • 174.22 ⁇ m, but
  • /n 15.41 ⁇ m.
  • the protective substrate thickness of the BD is 0.075 mm
  • the amount of change of the third-order spherical aberration is ⁇ 0.0002 ⁇ rms
  • the protective substrate thickness is 0.100 mm
  • the amount of change in the third-order spherical aberration that occurs is 0.0027 ⁇ rms.
  • the minimum pitch of the first diffractive structure is 2.48 ⁇ m.
  • Example 9 shows lens data of Example 9.
  • the diffractive structure provided on the entire effective diameter of the optical surface on the light source side of the objective lens is different from the first diffractive structure for distributing the light beam (indicated by the optical path difference function ⁇ 1 in the table) and the temperature change.
  • This is a superposition of a second diffractive structure (indicated by the optical path difference function ⁇ 2 in the table), which is a temperature characteristic correcting structure that corrects the resulting spherical aberration.
  • the first diffractive structure generates first-order diffracted light and zero-order diffracted light when a light beam with wavelength ⁇ 1 is incident
  • the second diffractive structure generates fourth-order diffracted light when a light beam with wavelength ⁇ 1 is incident.
  • the first-order diffracted light generated in the first diffractive structure is condensed on the information recording layer having a depth of 75 ⁇ m from the BD surface, and the zero-order diffracted light is collected on the information recording layer having a depth of 100 ⁇ m from the BD surface. Shine. Further,
  • 191.98 ⁇ m, but
  • /n 15.41 ⁇ m.
  • the protective substrate thickness of the BD is 0.075 mm
  • the amount of change of the third-order spherical aberration is ⁇ 0.0002 ⁇ rms
  • the protective substrate thickness is 0.100 mm
  • the amount of change in the third-order spherical aberration that occurs is 0.0025 ⁇ rms.
  • the minimum pitch of the first diffractive structure is 2.3 ⁇ m.
  • Example 10 shows lens data of Example 10.
  • the diffractive structure provided over the entire effective diameter of the optical surface on the light source side of the objective lens is different from the first diffractive structure for distributing light beams (indicated by the optical path difference function ⁇ 1 in the table) and the temperature change.
  • the first diffractive structure generates first-order diffracted light and second-order diffracted light when a light beam with wavelength ⁇ 1 is incident, and the second diffractive structure generates fourth-order diffracted light when a light beam with wavelength ⁇ 1 is incident.
  • the first-order diffracted light generated by the first diffractive structure is condensed on the information recording layer having a depth of 75 ⁇ m from the BD surface, and the second-order diffracted light is collected on the information recording layer having a depth of 100 ⁇ m from the BD surface. Shine. Also,
  • 68.35 ⁇ m, but
  • /n 15.41 ⁇ m.
  • the protective substrate thickness of the BD is 0.075 mm
  • the amount of change of the third-order spherical aberration is ⁇ 0.027 ⁇ rms
  • the protective substrate thickness is 0.100 mm
  • the amount of change of the third-order spherical aberration that occurs is -0.0136 ⁇ rms.
  • the minimum pitch of the first diffractive structure is 4.6 ⁇ m.
  • Example 11 shows lens data of Example 11.
  • a diffractive structure is formed on the coupling lens.
  • the diffractive structure provided on the entire effective diameter of the optical surface on the light source side of the coupling lens includes a first diffractive structure for light beam distribution (indicated by the optical path difference function ⁇ 1 in the table) and spherical aberration due to temperature change.
  • a second diffraction structure (indicated by the optical path difference function ⁇ 2 in the table), which is a temperature characteristic correction structure for correcting the above.
  • the first diffractive structure generates first-order diffracted light and second-order diffracted light when a light beam with wavelength ⁇ 1 is incident, and the second diffractive structure generates fourth-order diffracted light when a light beam with wavelength ⁇ 1 is incident.
  • the first-order diffracted light generated by the first diffractive structure is condensed on the information recording layer having a depth of 75 ⁇ m from the BD surface, and the second-order diffracted light is collected on the information recording layer having a depth of 100 ⁇ m from the BD surface.
  • 33.68 ⁇ m, but
  • /n 15.41 ⁇ m. When a temperature increase of + 30 ° C.
  • the minimum pitch of the first diffractive structure is 29.0 ⁇ m.
  • Example 12 shows lens data of Example 12.
  • a diffractive structure is formed on the coupling lens.
  • the diffractive structure provided on the entire effective diameter of the optical surface on the light source side of the coupling lens includes a first diffractive structure for light beam distribution (indicated by the optical path difference function ⁇ 1 in the table) and spherical aberration due to temperature change.
  • a second diffraction structure (indicated by the optical path difference function ⁇ 2 in the table), which is a temperature characteristic correction structure for correcting the above.
  • the first diffractive structure generates second-order diffracted light and third-order diffracted light when a light beam with wavelength ⁇ 1 is incident, and the second diffractive structure generates fourth-order diffracted light when a light beam with wavelength ⁇ 1 is incident.
  • the second-order diffracted light generated in the first diffractive structure is condensed on the information recording layer having a depth of 75 ⁇ m from the BD surface, and the third-order diffracted light is collected on the information recording layer having a depth of 100 ⁇ m from the BD surface.
  • 55.38 ⁇ m, but
  • /n 15.41 ⁇ m. When a temperature increase of + 30 ° C.
  • the minimum pitch of the first diffractive structure is 30.2 ⁇ m.
  • an objective lens and an optical pickup device suitable for an optical disk drive device that is suitable for energy saving with a simple configuration.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

 複数の情報記録面を有する光ディスクを使用する光ピックアップ装置に好適な光学素子を提供するために、光学素子の光学面の有効径内に入射した波長λ1の光束を振り分け、カップリングレンズを固定したまま、異なる情報記録面に対して情報の記録/再生を行うことができる光学素子とすることで、光ピックアップ装置の構成の簡素化と省エネを図ることができる。

Description

対物レンズ、カップリング素子及び光ピックアップ装置
 本発明は、高密度光ディスクに対して情報の記録及び/又は再生を行える光ピックアップ装置及びそれに用いる集光光学系の対物レンズ又はカップリング素子に関する。
 近年、波長400nm程度の青紫色半導体レーザを用いて、情報の記録及び/又は再生(以下、「記録及び/又は再生」を「記録/再生」と記載する)を行える高密度光ディスクシステムの研究・開発が急速に進んでいる。一例として、NA0.85、光源波長405nmの仕様で情報の記録/再生を行う光ディスク、いわゆるBlu-ray Disc(以下、BDという)では、DVD(NA0.6、光源波長650nm、記憶容量4.7GB)と同じ大きさである直径12cmの光ディスクに対して、1層あたり25GBの情報の記録が可能である。
 更に、従来から存在した複数の情報記録面を有するDVDと同様に、複数の情報記録面を有するBDも開発され、かかるDVDやBDの各情報記録面に情報の記録/再生を行うことができる光ピックアップ装置も既に上市されている。ところで、複数の情報記録面を有するDVD用の光ピックアップ装置においては、DVDの各情報記録面に対して情報の記録/再生を行う際には、光ディスク表面から各情報記録面までの光軸方向の距離の違いにより生じる球面収差を補正する必要がなく、対物レンズのフォーカシングで充分であった。しかし、DVDに比べ像側開口数NAが大きく、使用波長の短いBDにおいては、複数の情報記録面の各情報記録面に対して情報の記録/再生を行う際には、光ディスク表面から各情報記録面までの光軸方向の距離の違いにより生じる球面収差の発生量が多いため、対物レンズのフォーカシングだけでは充分な集光スポットを得ることが出来ず、球面収差を補正する必要があった。そこで、特許文献1等に記載されている光ピックアップ装置においては、カップリングレンズを光軸方向に移動させることにより対物レンズに入射する光束の発散角又は収束角を変化させ、それにより球面収差の補正を行っている。
特許第4144763号明細書
 しかしながら、この様にカップリングレンズを光軸方向に移動させる機構として、モーターや圧電変換素子を光ピックアップ装置に設ける場合、大幅なコストの増加、また対応速度の低下に繋がるため、カップリングレンズを光軸方向に移動させずに、複数層を有するBDに対して良好に情報の記録/再生を行える光ピックアップ装置が求められている。
 本発明は、上述の問題を考慮したものであり、光ピックアップ装置の小型化や省エネ化を図ることができる光ピックアップ装置及びそれに好適な光学素子を提供することを目的とする。
 請求項1に記載の対物レンズは、波長λ1(390nm<λ1<420nm)の光束を出射する第1光源と、少なくとも対物レンズを含む集光光学系とを有し、少なくとも2つの情報記録面を有するBlu-ray Disc(BD)の情報記録面に情報の記録及び/又は再生を行えるように集光させることによって情報の記録及び/又は再生を行う光ピックアップ装置用の集光光学系の対物レンズにおいて、前記対物レンズは、少なくとも第1の焦点と第2の焦点を有し、前記波長λ1の光束を前記第1の焦点に集光させることにより、前記BDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光でき、前記波長λ1の光束を前記第2の焦点に集光させることにより、前記BDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光でき、前記第1の焦点と前記第2の焦点は、以下の式を満たすことを特徴とする。
|Δf|≠|tA-tB|/n
0.75≦NA≦0.9
但し、
Δf:前記第1の焦点と前記第2の焦点の間の光軸方向の距離(μm)
tA:前記BDの表面から前記BDの前記或る情報記録面までの保護層の厚み(μm)
tB:前記BDの表面から前記BDの前記他の情報記録面までの保護層の厚み(μm)
n:前記BDの前記保護層の屈折率
NA:前記対物レンズの像側開口数
である。
 本発明によれば、対物レンズが、少なくとも第1の焦点と第2の焦点を有し、波長λ1の光束を第1の焦点に集光させることにより、BDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光でき、波長λ1の光束を第2の焦点に集光させることにより、BDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光できるので、BDの或る情報記録面に集光させる場合と他の情報記録面に集光させる場合とで、球面収差を補正するためにカップリングレンズ等を光軸方向に移動させることなく、対物レンズを光軸方向に移動させることのみによって、所望の情報記録面上に波長λ1の光束を入射・集光させることが可能となり、所望の情報記録面上に情報の記録及び/又は再生を行うことができる。
 また、BDの複数の情報記録層の記録/再生を行う際に発生する特有の課題としては、或る情報記録面に集光させて、情報の記録/再生を行っている際に、他の情報記録層から反射した光が迷光となり、誤検出の原因となってしまうことが挙げられる。しかしながら、上記条件式|Δf|≠|tA-tB|/n、を満たすことにより、波長λ1の光束を第1の焦点に集光させてBDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光している際に、同時に、波長λ1の光束がBDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光しないこととなる。このことにより、BDの複数の情報記録面に同時に集光することを抑制でき、誤検出を防止することが可能となる。尚、Δfは、第1の焦点のベストフォーカス位置と、第2の焦点のベストフォーカス位置との間の光軸方向の距離である。
 請求項2に記載の対物レンズは、請求項1に記載の発明において、以下の式、
 20μm≦|Δf|≦200μm
を満たすことを特徴とする。
 上記条件式を満たすことにより、複数の焦点を形成した際に、或る焦点を形成する光束を使用する際に、他の焦点を形成する光束が悪影響を及ぼすことを回避でき、誤検出をより防止でき、安定した記録/再生を可能とすると共に、対物レンズが回折構造によって複数の焦点を形成している場合は、回折構造のピッチが細かくなりすぎることを防止でき、製造誤差がなく、高い光利用効率を保つことが可能な対物レンズを提供することを可能とする。
 請求項3に記載の対物レンズは、請求項1又は請求項2に記載の発明において、前記対物レンズは、少なくとも1つの光学面の有効径内全体に回折構造を有し、前記回折構造は、前記回折構造を前記波長λ1の光束が通過した際に、m次の回折光とn次(m≠n)の回折光とを他の回折次数の回折光に比して多く発生させ、前記m次の回折光は、前記BDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光され、前記n次の回折光は前記BDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光されることを特徴とする。
 更に、回折部を設けた対物レンズの具体例について説明する。図1は、本発明の対物レンズの断面図である。本例においては、対物レンズOBJの光源側の光学面S1の有効径内全面に回折構造が形成されている。かかる回折構造に波長λ1の光束が入射すると、m次の回折光とn次の回折光が、他の回折次数の回折光に比してより多く発生する。m次の回折光(光軸から上方に図示)はBDの第1情報記録面RL1に集光し、n次の回折光(光軸から下方に図示)は第2情報記録面RL2に集光するようになっている。(尚、図1では、便宜上、対物レンズが光軸方向上同じ位置で、第1情報記録面と第2情報記録面に集光するように記載されているが、実際は、同時に第1情報記録面と第2情報記録面に集光することはない。第1情報記録面に集光する場合は、第2情報記録面には集光せず、第2情報記録面に集光するためには、対物レンズを光軸方向に移動する必要がある。当然、第2情報記録面に集光する場合は、第1情報記録面には集光しない。)即ち、本発明の対物レンズは第1の焦点と第2の焦点とを有する。ここで、Δfを第1の焦点と第2の焦点の間の光軸方向の距離(μm)とし、tAをBDの表面から第1情報記録面RL1までの保護層の厚み(μm)とし、tBをBDの表面から第2情報記録面RL2までの保護層の厚み(μm)とし、nをBDの保護層の屈折率とすると、
 |Δf|≠|tA-tB|/n
を満たす関係が成立する。
 請求項4に記載の対物レンズは、請求項3に記載の発明において、m≠0、n≠0を満たすことを特徴とする。
 請求項5に記載の対物レンズは、請求項4に記載の発明において、(m,n)=(2,1)、(1,2)、(3,2)又は(2,3)であることを特徴とする。
 回折次数として0次を用いないことにより、回折構造のピッチが細かくなりすぎることを防止でき、製造誤差がなく、高い光利用効率を保つことが可能な対物レンズを提供することが可能となる。また、回折次数として0次を用いる場合は、回折構造の光軸方向の深さが深くなりがちである。回折構造の光軸方向の深さが深くなると、光源の波長が微小変動した際の光利用効率の変動が大きくなってしまい、好ましくない。しかし、回折次数として0次を用いないことにより、1次、2次、3次等、回折構造の光軸方向の深さが浅い回折構造を用いることが可能となり、波長微小変動時の光利用効率の変動を抑えることができ、好ましい。
 請求項6に記載の対物レンズは、請求項1又は請求項2に記載の発明において、前記対物レンズは、少なくとも1つの光学面を、同心円状の複数の領域に分割し、前記複数の領域の或る領域を通過した前記波長λ1の光束は、前記BDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光され、前記複数の領域の他の領域を通過した前記波長λ1の光束は、前記BDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光されることを特徴とする。
 図3は、本発明の対物レンズの断面図である。図3において、光源側光学面S1は回折部を設けておらず、その代わり光軸を中心とした輪帯状の内側領域MDと外側領域OTに分けられており、それぞれ異なる非球面形状となっている。対物レンズOBJの内側領域MDを通過した波長λ1の光束はBDの第1情報記録面RL1に集光し、外側領域OTを通過した残りの光束は第2情報記録面RL2に集光するようになっている。即ち、本発明の対物レンズは第1の焦点と第2の焦点とを有する。(尚、図3では、便宜上、対物レンズが光軸方向上同じ位置で、第1情報記録面と第2情報記録面に集光するように記載されているが、実際は、同時に第1情報記録面と第2情報記録面に集光することはない。第1情報記録面に集光する場合は、第2情報記録面には集光せず、第2情報記録面に集光するためには、対物レンズを光軸方向に移動する必要がある。当然、第2情報記録面に集光する場合は、第1情報記録面には集光しない。)かかる場合にも、上述した条件式、
 |Δf|≠|tA-tB|/n
が成立する。
 請求項7に記載の対物レンズは、請求項1から請求項6までのいずれかに記載の発明において、前記対物レンズの光利用効率は、前記光学面の有効径内全体で略一様であることを特徴とする。
 光利用効率が光学面内の大きく不均一となる場合、光スポットのNAが大きくなったり、小さくなったりする等、スポット性能が悪化する恐れがあるが、光利用効率を光学面の有効径内全体で略一様にすることにより、より良好な光スポットを得ることが可能となる。
 請求項8に記載の対物レンズは、請求項1から請求項7までのいずれかに記載の発明において、前記対物レンズはプラスチック製であり、前記対物レンズの温度が30℃変化した際の3次球面収差の変化量が±0.040λrms以内となるような、温度特性を補正する温度特性補正構造を有することを特徴とする。
 集光光学系がプラスチック製の光学素子を有する場合、特に対物レンズがプラスチックレンズである場合、温度変化によって収差を生じる可能性が高くなる。当該収差を補正するために、カップリング素子を光軸方向に動かすことが行なわれているが、本発明により、温度変化に伴う収差補正のためにもカップリング素子を光軸方向に動かす必要もなくなるため、複数層の情報記録面対応においても、温度変化対応のいずれにおいても、カップリング素子を光軸方向に動かす必要がなくなり、プラスチック製の光学素子を有する光ピックアップ装置においても、固定カップリング素子を用いることが可能となる。なお、カップリング素子とは、コリメートレンズやカップリングレンズ等の総称であり、カップリングレンズとは、対物レンズと光源の間に配置され、光束の発散角を変える単レンズ又はレンズ群のことをいう。コリメートレンズは、カップリングレンズの一種で、入射した光を平行光にして射出するレンズである。
 請求項9に記載のカップリング素子は、波長λ1(390nm<λ1<420nm)の光束を出射する第1光源と、少なくともカップリング素子と単焦点の対物レンズを含む集光光学系とを有し、少なくとも2つの情報記録面を有するBlu-ray Disc(BD)の情報記録面に情報の記録及び/又は再生を行えるように集光させることによって情報の記録及び/又は再生を行う光ピックアップ装置用の集光光学系のカップリング素子において、前記集光光学系は、前記カップリング素子と前記対物レンズを通過した前記波長λ1の光束が集光する少なくとも第1の焦点と第2の焦点を有し、前記カップリング素子と前記対物レンズを通過した前記波長λ1の光束を前記第1の焦点に集光させることにより、前記BDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光でき、前記カップリング素子と前記対物レンズを通過した前記波長λ1の光束を前記第2の焦点に集光させることにより、前記BDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光でき、前記第1の焦点と前記第2の焦点は、以下の式を満たすことを特徴とする。
|Δf|≠|tA-tB|/n
但し、
Δf:前記第1の焦点と前記第2の焦点の間の光軸方向の距離(μm)
tA:前記BDの表面から前記BDの前記或る情報記録面までの保護層の厚み(μm)
tB:前記BDの表面から前記BDの前記他の情報記録面までの保護層の厚み(μm)
n:前記BDの前記保護層の屈折率
である。
 図2は、本発明の一例であるカップリング素子及び対物レンズの断面図である。本例においては、カップリング素子であるカップリングレンズCULの光源側の光学面CS1の有効径内全面に回折構造が形成されている。かかる回折構造に波長λ1の光束が入射すると、m次の回折光とn次の回折光が、他の回折次数の回折光に比してより多く発生する。m次の回折光(光軸から上方に図示)は対物レンズOBJを通過してBDの第1情報記録面RL1に集光し、n次の回折光(光軸から下方に図示)は対物レンズOBJを通過して第2情報記録面RL2に集光するようになっている。即ち、本発明のカップリング素子及び対物レンズは第1の焦点と第2の焦点とを有する。(尚、図2では、便宜上、対物レンズが光軸方向上同じ位置で、第1情報記録面と第2情報記録面に集光するように記載されているが、実際は、同時に第1情報記録面と第2情報記録面に集光することはない。第1情報記録面に集光する場合は、第2情報記録面には集光せず、第2情報記録面に集光するためには、対物レンズを光軸方向に移動する必要がある。当然、第2情報記録面に集光する場合は、第1情報記録面には集光しない。)ここで、Δfを第1の焦点と第2の焦点の間の光軸方向の距離(μm)とし、tAをBDの表面から第1情報記録面RL1までの保護層の厚み(μm)とし、tBをBDの表面から第2情報記録面RL2までの保護層の厚み(μm)とし、nをBDの保護層の屈折率とすると、
 |Δf|≠|tA-tB|/n
を満たす関係が成立する。
 請求項10に記載のカップリング素子は、請求項9に記載の発明において、以下の式、
 20μm≦|Δf|≦200μm
を満たすことを特徴とする。
 請求項11に記載のカップリング素子は、請求項9又は請求項10に記載の発明において、前記カップリング素子は、少なくとも1つの光学面の有効径内全体に回折構造を有し、前記回折構造は、前記回折構造を前記波長λ1の光束が通過した際に、m次の回折光とn次(m≠n)の回折光とを他の回折次数の回折光に比して多く発生させ、前記m次の回折光は、前記カップリング素子と前記対物レンズによって、前記BDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光され、前記n次の回折光は、前記カップリング素子と前記対物レンズによって、前記BDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光されることを特徴とする。
 請求項12に記載のカップリング素子は、請求項11に記載の発明において、m≠0、n≠0を満たすことを特徴とする。
 請求項13に記載のカップリング素子は、請求項12に記載の発明において、(m,n)=(2,1)、(1,2)、(3,2)又は(2,3)であることを特徴とする。
 請求項14に記載のカップリング素子は、請求項9又は請求項10に記載の発明において、前記カップリング素子は、少なくとも1つの光学面を、同心円状の複数の領域に分割し、前記複数の領域の或る領域を通過した前記波長λ1の光束は、前記カップリング素子と前記対物レンズによって、前記BDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光され、前記複数の領域の他の領域を通過した前記波長λ1の光束は、前記カップリング素子と前記対物レンズによって、前記BDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光されることを特徴とする。
 請求項15に記載のカップリング素子は、請求項9から請求項14までのいずれかに記載の発明において、前記カップリング素子の光利用効率は、前記光学面の有効径内全体で略一様であることを特徴とする。
 請求項16に記載のカップリング素子は、請求項9から請求項15までのいずれかに記載の発明において、前記カップリング素子及び前記対物レンズはプラスチック製であり、前記カップリング素子及び前記対物レンズの温度が30℃変化した際の3次球面収差の変化量が±0.040λrms以内となるような、温度特性を補正する温度特性補正構造を有することを特徴とする。
 請求項17に記載の光ピックアップ装置は、請求項1から請求項8までのいずれかに記載の対物レンズを有することを特徴とする。
 請求項18に記載の光ピックアップ装置は、請求項9から請求項16までのいずれかに記載のカップリング素子を有することを特徴とする。
 請求項19に記載の光ピックアップ装置は、請求項17に記載の発明において、前記光ピックアップ装置はカップリング素子を有し、前記BDの或る情報記録面に情報の記録及び/又は再生ができるように集光する場合と、前記BDの他の情報記録面に情報の記録及び/又は再生ができるように集光する場合とで、前記カップリング素子の光軸方向の位置が同じであることを特徴とする。
 請求項20に記載の光ピックアップ装置は、請求項18に記載の発明において、前記カップリング素子は、前記BDの或る情報記録面に情報の記録及び/又は再生ができるように集光する場合と、前記BDの他の情報記録面に情報の記録及び/又は再生ができるように集光する場合とで、光軸方向の位置が同じであることを特徴とする。
 請求項21に記載の光ピックアップ装置は、請求項19又は請求項20に記載の発明において、前記カップリング素子は、常に光軸方向の位置が固定されていることを特徴とする。
 本発明に係る光ピックアップ装置は、波長λ1の光束(以下、第1光束という)を出射する光源(以下、第1光源という)を有するが、そのほかに波長λ2の第2光束を出射する第2光源、波長λ3の第3光束を出射する第3光源を有していてもよい。さらに、本発明の光ピックアップ装置は、第1光束を複数の情報記録面を有するBDの各情報記録面上に集光させる集光光学系を有するが、第2光束をDVDの情報記録面上に集光させ、第3光束をCDの情報記録面上に集光させるための集光光学系を共通もしくは別個に有していても良い。また、本発明の光ピックアップ装置は、BD、DVD又はCDの情報記録面からの反射光束を受光する受光素子を有していて良い。
 本発明において好ましく用いられるBDは、複数の情報記録面を有する複数層のBDである。2009年3月時点では、2つの情報記録面を有するBDが市場に出回っているが、そのようなものを含むものである。本発明の光ピックアップ装置は、複数の情報記録面を有するBDに加えて、単一の情報記録面のみを有するBDの記録/再生を行えるものであっても良い。DVDも同様であってもよい。尚、保護基板の厚さというときは、0の場合も含み、或いは光ディスクに厚さ数~数十μmの保護膜が塗布されている場合には、その膜厚も含むものとする。
 BDは、NA0.85の対物レンズにより情報の記録/再生が行われ、保護基板の厚さt1が情報記録面によって0.03~0.12mm程度である。更に、DVDとは、NA0.60~0.67程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さt2が0.6mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD-Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。また、本明細書においては、CDとは、NA0.45~0.53程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さt3が1.2mm程度であるCD系列光ディスクの総称であり、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVD、CDの順に低くなる。
 本明細書において、第1光源、第2光源、第3光源は、好ましくはレーザ光源である。レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出来る。第1光源から出射される第1光束の第1波長λ1、第2光源から出射される第2光束の第2波長λ2(λ2>λ1)、第3光源から出射される第3光束の第3波長λ3(λ3>λ2)は以下の条件式、
 1.5×λ1<λ2<1.7×λ1
 1.8×λ1<λ3<2.0×λ1
を満たすことが好ましい。
 BDに対して情報の記録/再生を行う場合、DVDやCDに比べて集光スポットを小さくする必要が有り、そのためには第1光束の波長は第2光束の波長や第3光束の波長より短くする必要がある。光源に用いるレーザ装置は温度変化によって射出する光の波長に変化が生じる。そのうえで温度変化及び波長変化に対して発生する球面収差を、光ディスクの情報の記録/再生が行える程度に抑えるために上記条件式を満たすことが好ましい。
 また、BD、DVD及びCDが用いられる場合、第1光源の第1波長λ1は、390nm以上、420nm以下であって、第2光源の第2波長λ2は好ましくは570nm以上、680nm以下、より好ましくは630nm以上、670nm以下であって、第3光源の第3波長λ3は好ましくは、750nm以上、850nm以下、より好ましくは、760nm以上、820nm以下である。
 また、第1光源、第2光源、第3光源のうち少なくとも2つの光源をユニット化してもよい。ユニット化とは、例えば第1光源と第2光源とが1パッケージに固定収納されているようなものをいう。また、光源に加えて、後述する受光素子を1パッケージ化してもよい。
 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポットの形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラッキングのために対物レンズを移動させることが出来る。受光素子は、複数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いられるメイン光を受光する光検出器の両脇に2つのサブの光検出器を設け、当該2つのサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよい。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。
 光ピックアップ装置で用いられる集光光学系は、対物レンズを有する。集光光学系は、対物レンズのみを有していても良いが、対物レンズの他にコリメートレンズやカップリングレンズ等のカップリング素子を有していてもよい。
 カップリングレンズとは、対物レンズと光源の間に配置され、光束の発散角を変える単レンズ又はレンズ群のことをいう。コリメートレンズは、カップリングレンズの一種で、コリメートレンズに入射した光を平行光にして出射するレンズである。但し、透明な平行平板上に回折構造を形成したような素子もカップリング素子に含まれる。
 更に集光光学系は、光源から射出された光束を、情報の記録再生に用いられるメイン光束と、トラッキング等に用いられる二つのサブ光束とに分割する回折光学素子などの光学素子を有していてもよい。
 本明細書において、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。好ましくは、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系であって、更に、アクチュエータにより少なくとも光軸方向に一体的に変位可能とされた光学系を指す。
 対物レンズは、単玉の対物レンズであっても良いし、複数の光学素子から構成されていても良い。また、対物レンズは、ガラスレンズであってもプラスチックレンズであっても、又は、ガラスレンズの上に光硬化性樹脂などで回折構造などを設けたハイブリッドレンズであってもよいが、成形の容易性やコストの低さの点から見てプラスチックレンズが一番好適である。また、対物レンズは、屈折面が非球面であることが好ましい。また、対物レンズは、回折構造が設けられる場合、そのベース面(母非球面ともいう)が非球面であることが好ましい。対物レンズから母非球面を判断する場合、回折構造の段差の最も光ディスク側の部分をつないだ包絡面を母非球面と捉えることができる。
 また、対物レンズをガラスレンズとする場合は、ガラス転移点Tgが500℃以下であるガラス材料を使用することが好ましく、480℃以下であることがより好ましい。ガラス転移点Tgが500℃以下であるガラス材料を使用することにより、比較的低温での成形が可能となるので、金型の寿命を延ばすことが出来る。
 さらに、ガラスレンズは一般的に樹脂レンズよりも比重が大きいため、対物レンズをガラスレンズとすると、質量が大きくなり対物レンズを駆動するアクチュエータに負担がかかる。そのため、対物レンズをガラスレンズとする場合には、比重が小さいガラス材料を使用するのが好ましい。具体的には、比重が3.0以下であるのが好ましく、2.75以下であるのがより好ましい。
 このようなガラス材料として具体的には、特開2005-306627号公報の実施例1~12を例示することができる。例えば、特開2005-306627号公報の実施例1は、ガラス転移点Tgが460℃、比重が2.58、屈折率ndが1.594、アッベ数が59.8である。
 また、対物レンズをプラスチックレンズとする場合は、環状オレフィン系の樹脂材料を使用するのが好ましく、環状オレフィン系の中でも、波長405nmに対する温度25℃での屈折率が1.52乃至1.60の範囲内であって、-5℃から70℃の温度範囲内での温度変化に伴う波長405nmに対する屈折率変化率dN/dT(℃-1)が-20×10-5乃至-5×10-5(より好ましくは、-10×10-5乃至-8×10-5)の範囲内である樹脂材料を使用するのがより好ましい。また、対物レンズをプラスチックレンズとする場合、カップリングレンズもプラスチックレンズとすることが好ましい。
 また、対物レンズを構成する材料のアッベ数は、50以上であることが好ましい。
 本発明の光学素子が対物レンズである場合について、以下に記載する。
 対物レンズは、少なくとも第1の焦点と第2の焦点を有する。対物レンズは、波長λ1の光束を第1の焦点に集光させることにより、BDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光できる。更に、波長λ1の光束を第2の焦点に集光させることにより、BDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光できる。
 更に、第1の焦点と第2の焦点は、以下の式を満たす。
|Δf|≠|tA-tB|/n
但し、Δfは、第1の焦点と第2の焦点の間の光軸方向の距離(μm)を表す。尚、Δfは、第1の焦点のベストフォーカス位置と、第2の焦点のベストフォーカス位置との間の光軸方向の距離である。tAは、BDの表面からBDの前記或る情報記録面までの保護層の厚み(μm)を表す。tBは、BDの表面からBDの他の情報記録面までの保護層の厚み(μm)を表す。nは、BDの保護層の屈折率を表す。この条件式を満たすことにより、波長λ1の光束を第1の焦点に集光させてBDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光している際に、同時に、波長λ1の光束が光ディスクの他の情報記録面上に情報の記録及び/又は再生が行えるように集光しないこととなる。このことにより、BDの複数の情報記録面に同時に集光することを抑制でき、誤検出を防止することが可能となる。
 また、以下の条件式、
 20μm≦|Δf|≦200μm
を満たすことが好ましい。
 上記条件式を満たすことにより、複数の焦点を形成した際に、或る焦点を形成する光束を使用する際に、他の焦点を形成する光束が悪影響を及ぼすことを回避でき、誤検出をより防止でき、安定した記録/再生を可能とすると共に、対物レンズが回折構造によって複数の焦点を形成している場合は、回折構造のピッチが細かくなりすぎることを防止でき、製造誤差がなく、高い光利用効率を保つことが可能な対物レンズを提供することを可能とする。尚、対物レンズの回折構造のピッチは、2μm以上であることが好ましい。より好ましくは4μm以上である。
 対物レンズに回折構造を設けることにより、対物レンズが2つの焦点を有するようにしても良い。その場合、対物レンズは、少なくとも1つの光学面の有効径内全体に回折構造を有することが好ましい。また、回折構造は、回折構造を波長λ1の光束が通過した際に、m次の回折光とn次(m≠n)の回折光とを他の回折次数の回折光に比して多く発生させる。その際に、m次の回折光は、BDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光され、n次の回折光はBDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光される。但し、m次回折光とn次回折光とが、同時にBDの或る情報記録面と他の情報記録面に集光することはない。BDの或る情報記録面にm次回折光を集光する場合は、BDの他の情報記録面にはn次回折光は集光せず、当該他の情報記録面にn次回折光を集光するためには、対物レンズを光軸方向に移動する必要がある。当然、BDの他の情報記録面にn次回折光を集光する場合は、BDの或る情報記録面にはm次回折光は集光しない。具体的な実施形態の一例については、図1を用いて先述した通りである。
 なお、本明細書でいう回折構造は段差を有し、回折によって光束を収束あるいは発散させる作用を持たせる構造の総称である。回折構造は、好ましくは段差を複数有する。段差は、光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。又、対物レンズの光学面が、光軸を中心とし、段差で区切られた複数の輪帯を有し、輪帯ごとに個別の非球面で構成したものであっても、回折作用によって光束を収束又は発散させている対物レンズは、回折構造を有する対物レンズである。
 回折構造は、光軸を中心とする同心円状の複数の輪帯を有することが好ましい。また、回折構造は、様々な断面形状(光軸を含む面での断面形状)をとり得、光軸を含む断面形状がブレーズ型構造と階段型構造とに大別される。
 ブレーズ型構造とは、図4(a)、(b)に示されるように、回折構造を有する光学素子の光軸を含む断面形状が、鋸歯状の形状ということであり、回折構造が母非球面に対して、直角でも平行でもない、斜めの面を有する。尚、図4の例においては、上方が光源側、下方が光ディスク側であって、母非球面としての平面に回折構造が形成されているものとする。
 また、階段型構造とは、図4(c)、(d)に示されるように、回折構造を有する光学素子の光軸を含む断面形状が、小階段状のもの(階段単位と称する)を複数有するということである。尚、本明細書中、「Xレベル」とは、階段型構造の1つの階段単位において光軸垂直方向に対応する(向いた)輪帯状の面(以下、光学機能面と称することがある)が、段差によって区分けされX個の輪帯面毎に分割されていることをいい、特に3レベル以上の階段型構造は、小さい段差と大きい段差を有し、「小さい段差」とは、1つの階段単位において、最も小さな光軸方向の段差をいい、「大きい段差」とは、1つの階段単位において、最も大きな光軸方向の段差をいうものとする。
 図4(c)に示す回折構造を、5レベルの階段型構造といい、図4(d)に示す回折構造を、2レベルの階段型構造という。第1回折構造は2レベルの階段型構造であって、光軸を中心とした同心円状の複数の輪帯を含み、対物レンズの光軸を含む複数の輪帯の断面の形状は、光軸に平行に延在する複数の段差面Pa、Pbと、隣接する段差面Pa、Pbの光源側端同士を連結する光源側光学機能面Pcと、隣接する段差面Pa、Pbの光ディスク側端同士を連結する光ディスク側光学機能面Pdとから形成され、光源側光学機能面Pcと光ディスク側光学機能面Pdとは、光軸に交差する方向に沿って交互に配置されている。
 また、階段型構造において、1つの階段単位の光軸垂直方向の長さをピッチPという。段差面は光軸に平行又は略平行であることが好ましいが、光学機能面は母非球面に平行である場合だけでなく、母非球面に対して斜めであってもよい。
 尚、回折構造は、ある単位形状が周期的に繰り返されている構造であることが好ましい。ここでいう「単位形状が周期的に繰り返されている」とは、同一の形状が同一の周期で繰り返されている形状は当然含む。さらに、周期の1単位となる単位形状が、規則性を持って、周期が徐々に長くなったり、徐々に短くなったりする形状も、「単位形状が周期的に繰り返されている」ものに含まれているとする。
 回折構造が、ブレーズ型構造を有する場合、単位形状である鋸歯状の形状が繰り返された形状となる。図4(a)に示されるように、同一の鋸歯状形状が繰り返されてもよいし、図4(b)に示されるように、母非球面の方向に進むに従って、徐々に鋸歯状形状の大きさが大きくなっていく形状、又は、小さくなっていく形状であってもよい。また、徐々に鋸歯状形状の大きさが大きくなった形状と、徐々に鋸歯状形状の大きさが小さくなっていく形状を組み合わせた形状としてもよい。但し、鋸歯状形状の大きさが徐々に変化する場合であっても、鋸歯状形状において、光軸方向(又は通過する光線の方向)の段差量の大きさはほとんど変化しないことが好ましい。加えて、ある領域においては、ブレーズ型構造の段差が光軸(中心)側とは逆を向いている形状とし、他の領域においては、ブレーズ型構造の段差が光軸(中心)側を向いている形状とし、その間に、ブレーズ型構造の段差の向きを切り替えるために必要な遷移領域が設けられている形状としてもよい。この様な形状とすることにより、輪帯ピッチを広げることが可能となり、回折構造の形状誤差による透過率低下を抑制できる。
 回折構造が、階段型構造を有する場合、図4(c)で示されるような5レベルの階段単位が、繰り返されるような形状等があり得る。さらに、母非球面の方向に進むに従って、徐々に階段の大きさが大きくなっていく形状や、徐々に階段の大きさが小さくなっていく形状であってもよいが、光軸方向(又は通過する光線の方向)の段差量はほとんど変化しないことが好ましい。
 本発明の光学素子に用いられる回折構造は、m≠0、n≠0を満たすことが好ましい。更に好ましくは、(m,n)=(2,1)、(1,2)、(3,2)又は(2,3)である。
 回折次数として0次を用いないことにより、回折構造のピッチが細かくなりすぎることを防止でき、製造誤差がなく、高い光利用効率を保つことが可能な対物レンズを提供することを可能とする。また、回折次数として0次を用いる場合は、回折構造の光軸方向の深さが深くなりがちである。回折構造の光軸方向の深さが深くなると、光源の波長が微小変動した際の光利用効率の変動が大きくなってしまい、好ましくない。しかし、回折次数として0次を用いないことにより、回折構造の光軸方向の深さが浅い回折構造を用いることが可能となり、波長微小変動時の光利用効率の変動を抑えることができ、好ましい。また、0次の回折光を用いなくても、(m、n)=(1、-1)、(2、-2)のような場合は、回折構造の深さが深くなりがちであるが、(m,n)=(2,1)、(1,2)、(3,2)又は(2,3)とすることにより、より確実に回折構造の深さを浅くでき、波長微小変動時の光利用効率の変動を抑えることができる。
 また、対物レンズは、少なくとも1つの光学面を、同心円状の複数の領域に分割することにより、対物レンズが2つの焦点を有するようにしても良い。この場合、複数の領域の或る領域を通過した波長λ1の光束は、BDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光され、複数の領域の他の領域を通過した波長λ1の光束は、BDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光される。但し、或る領域を通過した光束と他の領域を通過した光束とが、同時にBDの或る情報記録面と他の情報記録面に集光することはない。BDの或る情報記録面に或る領域を通過した光束を集光する場合は、BDの他の情報記録面には他の領域を通過した光束は集光せず、当該他の情報記録面に他の領域を通過した光束を集光するためには、対物レンズを光軸方向に移動する必要がある。当然、BDの他の情報記録面に他の領域を通過した光束を集光する場合は、BDの或る情報記録面には或る領域を通過した光束は集光しない。具体的な実施形態の一例については、図3を用いて先述した通りである。複数の領域は、図3に示すように2領域でもよいが、3領域以上に分割されることが好ましく、より好ましくは4領域以上である。また、領域を増やしすぎると加工が困難となり、また段差が増えると回折現象の影響が増加するため、10領域以下であることが好ましい。
 また、対物レンズは、光利用効率が光学面の有効径内全体で略一様であることが好ましい。なお、光利用効率とは、回折構造による回折効率とレンズの透過率とを掛け合わしたものとする。また、略一様とは、光軸付近の光利用効率と、有効径最外領域付近の光利用効率の差が、30%以下であることをいう。好ましくは、15%以下である。
 光学素子の有効径内で光量が不均一となる場合、光スポットのNAが大きくなってしまったり、小さくなってしまう可能性があるが、光学素子の光利用効率を有効径内全体で略一様とすることにより、より良好な光スポットを得ることが可能となる。光利用効率が不均一な箇所が、光学設計上発生してしまう場合は、光利用効率が高い領域に透過率を低減するフィルター等の透過率調整膜を設けることや、光利用効率が高い領域に回折構造であって、一部の光束をフレアにしてしまう回折構造などを設けることが望ましい。
 次に、集光光学系がプラスチック製の光学素子を少なくとも一つ有する場合、特に、プラスチック製の対物レンズを有する場合、集光光学系の温度が+30℃変化したときの3次球面収差の変化量が+0.040λrms以内となるような温度特性補正構造を対物レンズが有することが好ましい。温度特性補正構造の具体例としては回折構造が挙げられる。複数の焦点を形成するための周辺領域の回折構造と温度特性補正構造の回折構造とを重畳するようにしてもよい。また、複数の焦点を形成するために複数の領域に分割した周辺領域の各屈折面に、温度特性補正構造の回折構造を設けてもよい。温度特性補正構造の回折構造は、段差の深さを浅くするという観点から、5次以下の回折次数を発生させる回折構造であることが好ましい。
 以上、本発明の光学素子が対物レンズである場合について説明をしてきたが、本発明の光学素子がカップリングレンズや平板素子などのカップリング素子である場合も、上述の説明を適用可能である。但し、この場合、対物レンズは単焦点であることが好ましい。また、カップリング素子は、カップリング素子と対物レンズを通過した波長λ1の光束が集光する少なくとも第1の焦点と第2の焦点を有するものとなる。そして、カップリング素子と対物レンズを通過した波長λ1の光束を第1の焦点に集光させることにより、BDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光でき、カップリング素子と対物レンズを通過した波長λ1の光束を第2の焦点に集光させることにより、BDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光できるものである。本発明の光学素子がカップリング素子である場合の実施態様の一例は、図2を用いて先述した通りである。
 更に、対物レンズに互換用の回折構造を設けることで、BD、DVD、CDのいずれに対しても情報の記録/再生が可能な対物レンズとすることができる。
 BDに対して情報を再生及び/又は記録するために必要な対物レンズの像側開口数をNA1とするが、これに加えてDVD、CDを互換使用する場合、DVDに対して情報を再生及び/又は記録するために必要な対物レンズの像側開口数をNA2(NA1≧NA2)とし、CDに対して情報を再生及び/又は記録するために必要な対物レンズの像側開口数をNA3(NA2>NA3)とする。NA1は、好ましくは、0.75以上、0.9以下である。特にNA1は0.85であることが好ましい。NA2は、0.55以上、0.7以下であることが好ましい。特にNA2は0.60又は0.65であることが好ましい。また、NA3は、0.4以上、0.55以下であることが好ましい。特にNA3は0.45又は0.53であることが好ましい。
 また、対物レンズは、非点収差や偏心コマ収差を抑えるという観点から、以下の条件式、
 1.0<d/f<3.0
を満たすことが好ましい。d(mm)は、対物レンズの軸上厚であり、f(mm)は、対物レンズの波長λ1の光束における焦点距離である。
 尚、以下の条件式、
 1.1<d/f<2.0
を満たすことが更に好ましい。
 光ピックアップ装置がカップリング素子を有する場合、光ディスクの或る情報記録面に情報の記録/再生ができるように集光する場合と、光ディスクの他の情報記録面に情報の記録/再生ができるように集光する場合とで、カップリング素子の光軸方向の位置が同じであることが好ましい。更に好ましくは、カップリング素子が、常に光軸方向の位置が固定されていることである。尚、本発明の光学素子が対物レンズである場合、或る情報記録面上に情報の記録/再生を行う場合と、他の情報記録面上に情報の記録/再生を行う場合とで、対物レンズに入射する光束の入射角度を変化させないことが好ましい。この様な構成とすることで、カップリング素子を可動するアクチュエータを設ける必要がなくなるため、光ピックアップ装置のコストを低減することが可能となる。
 第1光束は平行光として対物レンズに入射してもよいし、発散光若しくは収束光として対物レンズに入射してもよいが、対物レンズに入射する光束の発散角又は収束角は固定されている。好ましくは、第1光束が対物レンズに入射する時の、対物レンズの結像倍率m1が、下記の式(8)、
 -0.02<m1<0.02     (8)
を満たすことである。
 光情報記録再生装置は、上述の光ピックアップ装置を有する光ディスクドライブ装置を有する。
 ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明すると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録再生装置本体から光ディスクを搭載した状態で保持可能なトレイのみが外部に取り出される方式と、光ピックアップ装置等が収納されている光ディスクドライブ装置本体ごと、外部に取り出される方式とがある。
 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備されているがこれに限られるものではない。ハウジング等に収納された光ピックアップ装置、光ピックアップ装置をハウジングごと光ディスクの内周あるいは外周に向けて移動させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジングを光ディスクの内周あるいは外周に向けてガイドするガイドレールなどを有した光ピックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等である。
 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可能なトレイおよびトレイを摺動させるためのローディング機構等が設けられ、後者の方式にはトレイおよびローディング機構がなく、各構成部材が外部に引き出し可能なシャーシに相当するドロワーに設けられていることが好ましい。
 本発明によれば、カップリング素子を光軸方向に移動させず、複数層を有するBDに対して、球面収差を補正した上で、良好に情報の記録再生を行うことが可能となると共に、複数の情報記録面に同時に集光することがなくなり、誤検出を防止することができる光ピックアップ装置及び光学素子を提供することが可能となる。
本発明の対物レンズの断面図である。 本発明のカップリング素子の一例であるカップリングレンズ及び対物レンズの断面図である。 本発明の対物レンズの断面図である。 回折構造の例を示す拡大断面図である。 BDとDVDとCDとに対して、適切に情報の記録及び/又は再生を行うことができる光ピックアップ装置の構成を概略的に示す図である。
 以下、本発明の実施の形態を、図面を参照して説明する。図5は、複数(例えば二層)の情報記録面を有するBDと、DVDとCDとに対して、適切に情報の記録及び/又は再生を行うことができる光ピックアップ装置の構成を概略的に示す図である。かかる光ピックアップ装置は、光情報記録再生装置に搭載できる。なお、本発明は、本実施の形態に限られるものではない。
 図5に示す光ピックアップ装置は、BD専用の第1対物レンズOL1、CD/DVD用の第2対物レンズOL2、第1反射面RP1と第2反射面RP2とを有するダイクロイックミラーDM、λ/4波長板QWP、光ピックアップ装置に固定された(光軸方向に移動しない)カップリングレンズCUL、偏光ビームスプリッタPBS、波長λ1=405nmのレーザ光束(第1光束)を射出する半導体レーザLD1(第1光源)と、波長λ2=650nmのレーザ光束(第2光束)を射出する半導体レーザ(第2光源)と波長λ3=785nmのレーザ光束(第3光束)を射出する半導体レーザ(第3光源)とを共通のパッケージに収容した2レーザ1パッケージ2L1P、センサ用レンズSL、BDの情報記録面RL1、RL1’、DVDの情報記録面RL2、CDの情報記録面RL3からの反射光束を受光する受光素子PDとを有する。
 尚、ここでは第1対物レンズOL1は、プラスチック製であり、図1に示すように光源側の光学面の有効径内全面に回折構造が形成されている。かかる回折構造は、波長λ1の光束が入射したときに、m次の回折光とn次の回折光とを発生させるようになっている。第1対物レンズOL1は、単玉のレンズの例が示されているが、この対物光学素子に代えて、複数の光学素子からなる対物光学素子を使用してもよい。第2対物レンズOL2としては、良く知られているDVD/CD互換用の対物光学素子を用いることができる。このように、波長λ1の光束は第1対物レンズOL1に入射させ、波長λ2,λ3の光束は第2対物レンズOL2に入射させると、光ピックアップ装置の構成を簡素化できる。
 BDの第1情報記録面に対して記録/再生を行う場合について説明する。まず、青紫色半導体レーザLD1を発光させると、青紫色半導体レーザLD1から射出された第1光束(λ1=405nm)の発散光束は、ダイクロイックプリズムDP、偏光ビームスプリッタPBSを透過し、カップリングレンズCULにより平行光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、ダイクロイックミラーDMの第1反射面RP1を通過し第2反射面RP2で反射され、図示しない絞りによりその光束径が規制され、第1対物レンズOL1に入射する。ここで、フォーカシング動作により光軸方向(第1の位置)に位置調整された第1対物レンズOL1の回折構造を通過してm次光に変換された光束は、保護基板PL1を介してBDに入射し、表面から第1の深さにある第1情報記録面RL1に形成されるスポットとなる。その際に、第1対物レンズOL1の回折構造を通過してn次光に変換された光束は、保護基板PL1′を介してBDに入射し、表面から第2の深さにある第2情報記録面RL1′にはスポットを形成しない。
 第1情報記録面RL1上で情報ピットにより変調された反射光束は、再び第1対物レンズOL1、絞りを透過した後、ダイクロイックミラーDMの第2反射面RP2で反射され第1反射面RP1を通過し、λ/4波長板QWPにより円偏光から直線偏光に変換され、カップリングレンズCULにより収斂光束とされ、偏光ビームスプリッタPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、不図示のアクチュエータにより第1対物レンズOL1をフォーカシングやトラッキングさせることで、BDの第1情報記録面RL1に記録された情報を読み取ることができる。
 次に、BDの第2情報記録面に対して記録/再生を行う場合について説明する。まず、青紫色半導体レーザLD1を発光させると、青紫色半導体レーザLD1から射出された第1光束(λ1=405nm)の発散光束は、ダイクロイックプリズムDP、偏光ビームスプリッタPBSを透過し、カップリングレンズCULにより平行光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、ダイクロイックミラーDMの第1反射面RP1を通過し第2反射面RP2で反射され、図示しない絞りによりその光束径が規制され、第1対物レンズOL1に入射する。ここで、フォーカシング動作により光軸方向(第1の位置とは異なる第2の位置)に位置調整された第1対物レンズOL1の回折構造を通過してn次光に変換された光束は、保護基板PL1’を介してBDに入射し、表面から、第1の深さとは異なる第2の深さにある第2情報記録面RL1’に形成されるスポットとなる。その際に、第1対物レンズOL1の回折構造を通過してm次光に変換された光束は、保護基板PL1を介してBDに入射し、表面から第1の深さにある第1情報記録面RL1にはスポットを形成しない。
 第2情報記録面RL1’上で情報ピットにより変調された反射光束は、再び第1対物レンズOL1、絞りを透過した後、ダイクロイックミラーDMの第2反射面RP2で反射され第1反射面RP1を通過し、λ/4波長板QWPにより円偏光から直線偏光に変換され、カップリングレンズCULにより収斂光束とされ、偏光ビームスプリッタPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、不図示のアクチュエータにより第1対物レンズOL1をフォーカシングやトラッキングさせることで、BDの第1情報記録面RL1’に記録された情報を読み取ることができる。
 このように、本実施の形態によれば、BDが複数の情報記録面を有する場合であっても、カップリングレンズを固定したまま、異なる情報記録面に対して情報の記録/再生を行うことができるため、光ピックアップ装置の構成の簡素化と省エネを図ることができる。更に、第1情報記録面RL1に対して情報の記録/再生を行う場合、第1の対物レンズOL1を光軸方向における第2の位置とは異なる第1の位置へとフォーカシング駆動するので、第2情報記録面RL1’に信号の読み取り可能な集光スポットを形成することが抑制され、又、第2情報記録面RL1’に対して情報の記録/再生を行う場合、第1の対物レンズOL1を光軸方向における第1の位置とは異なる第2の位置へとフォーカシング駆動するので、第1情報記録面RL1に信号の読み取り可能な集光スポットを形成することが抑制され、誤検出を有効に回避できる。尚、対物レンズに回折構造を設ける代わりに、カップリングレンズCULに回折構造を設けても良い。
 次に、DVDの記録/再生を行う場合について説明する。まず、2レーザ1パッケージ2L1Pの赤色半導体レーザを発光させると、その赤色半導体レーザから射出された第2光束(λ2=650nm)の発散光束は、ダイクロイックプリズムDPで反射され、偏光ビームスプリッタPBSを透過し、カップリングレンズCULにより平行光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、ダイクロイックミラーDMの第1反射面RP1で反射され、図示しない絞りによりその光束径が規制され、第2対物レンズOL2によって厚さ0.6mmの保護基板PL2を介して、DVDの情報記録面RL2上に形成されるスポットとなる。
 情報記録面RL2上で情報ピットにより変調された反射光束は、再び第2対物レンズOL2、絞りを透過した後、ダイクロイックミラーDMの第1反射面RP1で反射され、λ/4波長板QWPにより円偏光から直線偏光に変換され、カップリングレンズCULにより収斂光束とされ、偏光ビームスプリッタPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、不図示のアクチュエータにより第2対物レンズOL2をフォーカシングやトラッキングさせることで、DVDに記録された情報を読み取ることができる。
 次に、CDの記録/再生を行う場合について説明する。まず、2レーザ1パッケージ2L1Pの赤外半導体レーザを発光させると、その赤外半導体レーザから射出された第3光束(λ3=785nm)の発散光束は、ダイクロイックプリズムDPで反射され、偏光ビームスプリッタPBSを透過し、カップリングレンズCULにより平行光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、ダイクロイックミラーDMの第1反射面RP1で反射され、図示しない絞りによりその光束径が規制され、第2対物レンズOL2によって厚さ1.2mmの保護基板PL3を介して、CDの情報記録面RL3上に形成されるスポットとなる。
 情報記録面RL3上で情報ピットにより変調された反射光束は、再び第2対物レンズOL2、絞りを透過した後、ダイクロイックミラーDMの第1反射面RP1で反射され、λ/4波長板QWPにより円偏光から直線偏光に変換され、カップリングレンズCULにより収斂光束とされ、偏光ビームスプリッタPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、不図示のアクチュエータにより第2対物レンズOL2をフォーカシングやトラッキングさせることで、CDに記録された情報を読み取ることができる。
 以下、上述した実施の形態に用いることができる実施例について説明する。以下に述べる実施例において設けられた回折構造は、以下の光路差関数φ(mm)に表の係数を代入して表せる。
 [光路差関数]
φ=λ/λ×dor×(C+C+C+C
  C1010
但し、
φ:光路差関数
λ:回折構造に入射する光束の波長
λ:製造波長
dor:光ディスクに対する記録/再生に使用する回折光の回折次数
y:光軸からの距離
,C,C,C,C10:回折面係数
である。
 又、対物レンズの光学面は、それぞれ以下の非球面表現式に表に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。
 [非球面表現式]
z=(y/R)/[1+√{1-(K+1)(y/R)}]+
  A+A+A+A1010+A1212+A1414
  A1616+A1818+A2020
但し、
z:非球面形状(非球面の面頂点から光軸に沿った方向の距離)
y:光軸からの距離
R:曲率半径
K:コーニック係数
,A,A,A10,A12,A14,A16,A18,A20:非球面係数
である。
 これ以降(表のレンズデータ含む)において、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-3)を用いて表すものとする。
 (実施例1)
 実施例1のレンズデータを表1に示す。実施例1では、対物レンズの光源側光学面の有効径内全面に設けられた回折構造は、光束振り分け用の第1回折構造(表中の光路差関数φ1で示される)と、温度変化に起因した球面収差を補正する温度特性補正構造である第2回折構造(表中の光路差関数φ2で示される)とを重畳したものである。第1回折構造は、波長λ1の光束が入射したときに2次回折光と3次回折光とを発生し、第2回折構造は、波長λ1の光束が入射したときに4次回折光を発生する。第1回折構造で発生した3次の回折光は、BD表面から75μmの深さの情報記録層に集光し、2次の回折光は、BD表面から100μmの深さの情報記録層に集光する。又、|Δf|=72.32μmであるのに対し、|tA-tB|/n=15.41μmと異なっている。基準温度から+30℃温度上昇が生じた場合、BDの保護基板厚が0.075mmの場合、発生する3次球面収差の変化量は0.017λrmsであり、保護基板厚が0.100mmの場合、発生する3次球面収差の変化量は-0.0147λrmsである。また、第1回折構造の最小ピッチは、4.9μmとなる。
Figure JPOXMLDOC01-appb-T000001
 (実施例2)
 実施例2のレンズデータを表2に示す。実施例2では、対物レンズの光源側光学面の有効径内全面に設けられた回折構造は、光束振り分け用の第1回折構造(表中の光路差関数φ1で示される)と、温度変化に起因した球面収差を補正する温度特性補正構造である第2回折構造(表中の光路差関数φ2で示される)とを重畳したものである。第1回折構造は、波長λ1の光束が入射したときに2次回折光と3次回折光とを発生し、第2回折構造は、波長λ1の光束が入射したときに4次回折光を発生する。第1回折構造で発生した2次の回折光は、BD表面から75μmの深さの情報記録層に集光し、3次の回折光は、BD表面から100μmの深さの情報記録層に集光する。又、|Δf|=76.98μmであるのに対し、|tA-tB|/n=15.41μmと異なっている。基準温度から+30℃温度上昇が生じた場合、BDの保護基板厚が0.075mmの場合、発生する3次球面収差の変化量は0.0171λrmsであり、保護基板厚が0.100mmの場合、発生する3次球面収差の変化量は-0.0174λrmsである。また、第1回折構造の最小ピッチは、4.92μmとなる。
Figure JPOXMLDOC01-appb-T000002
 (実施例3)
 実施例3のレンズデータを表3に示す。実施例3では、対物レンズの光源側光学面の有効径内全面に設けられた回折構造は、光束振り分け用の第1回折構造(表中の光路差関数φ1で示される)と、温度変化に起因した球面収差を補正する温度特性補正構造である第2回折構造(表中の光路差関数φ2で示される)とを重畳したものである。第1回折構造は、波長λ1の光束が入射したときに2次回折光と3次回折光とを発生し、第2回折構造は、波長λ1の光束が入射したときに4次回折光を発生する。第1回折構造で発生した3次の回折光は、BD表面から75μmの深さの情報記録層に集光し、2次の回折光は、BD表面から100μmの深さの情報記録層に集光する。又、|Δf|=66.77μmであるのに対し、|tA-tB|/n=15.41μmと異なっている。基準温度から+30℃温度上昇が生じた場合、BDの保護基板厚が0.075mmの場合、発生する3次球面収差の変化量は-0.0043λrmsであり、保護基板厚が0.100mmの場合、発生する3次球面収差の変化量は0.0076λrmsである。また、第1回折構造の最小ピッチは、4.48μmとなる。
Figure JPOXMLDOC01-appb-T000003
 (実施例4)
 実施例4のレンズデータを表4に示す。実施例4では、対物レンズの光源側光学面の有効径内全面に設けられた回折構造は、光束振り分け用の第1回折構造(表中の光路差関数φ1で示される)と、温度変化に起因した球面収差を補正する温度特性補正構造である第2回折構造(表中の光路差関数φ2で示される)とを重畳したものである。第1回折構造は、波長λ1の光束が入射したときに2次回折光と3次回折光とを発生し、第2回折構造は、波長λ1の光束が入射したときに4次回折光を発生する。第1回折構造で発生した2次の回折光は、BD表面から75μmの深さの情報記録層に集光し、3次の回折光は、BD表面から100μmの深さの情報記録層に集光する。又、|Δf|=69.45μmであるのに対し、|tA-tB|/n=15.41μmと異なっている。基準温度から+30℃温度上昇が生じた場合、BDの保護基板厚が0.075mmの場合、発生する3次球面収差の変化量は-0.006λrmsであり、保護基板厚が0.100mmの場合、発生する3次球面収差の変化量は0.007λrmsである。また、第1回折構造の最小ピッチは、4.5μmとなる。
Figure JPOXMLDOC01-appb-T000004
 (実施例5)
 実施例5のレンズデータを表5に示す。実施例5では、対物レンズの光源側光学面の有効径内全面に設けられた回折構造は、光束振り分け用の第1回折構造(表中の光路差関数φ1で示される)と、温度変化に起因した球面収差を補正する温度特性補正構造である第2回折構造(表中の光路差関数φ2で示される)とを重畳したものである。第1回折構造は、波長λ1の光束が入射したときに0次回折光と1次回折光とを発生し、第2回折構造は、波長λ1の光束が入射したときに4次回折光を発生する。第1回折構造で発生した1次の回折光は、BD表面から75μmの深さの情報記録層に集光し、0次の回折光は、BD表面から100μmの深さの情報記録層に集光する。又、|Δf|=26.83μmであるのに対し、|tA-tB|/n=15.41μmと異なっている。基準温度から+30℃温度上昇が生じた場合、BDの保護基板厚が0.075mmの場合、発生する3次球面収差の変化量は-0.001λrmsであり、保護基板厚が0.100mmの場合、発生する3次球面収差の変化量は0.0007λrmsである。また、第1回折構造の最小ピッチは、10.69μmとなる。
Figure JPOXMLDOC01-appb-T000005
 (実施例6)
 実施例6のレンズデータを表6に示す。実施例6では、対物レンズの光源側光学面の有効径内全面に設けられた回折構造は、光束振り分け用の第1回折構造(表中の光路差関数φ1で示される)と、温度変化に起因した球面収差を補正する温度特性補正構造である第2回折構造(表中の光路差関数φ2で示される)とを重畳したものである。第1回折構造は、波長λ1の光束が入射したときに0次回折光と1次回折光とを発生し、第2回折構造は、波長λ1の光束が入射したときに4次回折光を発生する。第1回折構造で発生した1次の回折光は、BD表面から75μmの深さの情報記録層に集光し、0次の回折光は、BD表面から100μmの深さの情報記録層に集光する。又、|Δf|=65.67μmであるのに対し、|tA-tB|/n=15.41μmと異なっている。基準温度から+30℃温度上昇が生じた場合、BDの保護基板厚が0.075mmの場合、発生する3次球面収差の変化量は-0.0048λrmsであり、保護基板厚が0.100mmの場合、発生する3次球面収差の変化量は0.0058λrmsである。また、第1回折構造の最小ピッチは、4.52μmとなる。
Figure JPOXMLDOC01-appb-T000006
 (実施例7)
 実施例7のレンズデータを表7に示す。実施例7では、対物レンズの光源側光学面の有効径内全面に設けられた回折構造は、光束振り分け用の第1回折構造(表中の光路差関数φ1で示される)と、温度変化に起因した球面収差を補正する温度特性補正構造である第2回折構造(表中の光路差関数φ2で示される)とを重畳したものである。第1回折構造は、波長λ1の光束が入射したときに0次回折光と1次回折光とを発生し、第2回折構造は、波長λ1の光束が入射したときに4次回折光を発生する。第1回折構造で発生した1次の回折光は、BD表面から75μmの深さの情報記録層に集光し、0次の回折光は、BD表面から100μmの深さの情報記録層に集光する。又、|Δf|=88.17μmであるのに対し、|tA-tB|/n=15.41μmと異なっている。基準温度から+30℃温度上昇が生じた場合、BDの保護基板厚が0.075mmの場合、発生する3次球面収差の変化量は-0.0036λrmsであり、保護基板厚が0.100mmの場合、発生する3次球面収差の変化量は0.0054λrmsである。また、第1回折構造の最小ピッチは、3.55μmとなる。
Figure JPOXMLDOC01-appb-T000007
 (実施例8)
 実施例8のレンズデータを表8に示す。実施例8では、対物レンズの光源側光学面の有効径内全面に設けられた回折構造は、光束振り分け用の第1回折構造(表中の光路差関数φ1で示される)と、温度変化に起因した球面収差を補正する温度特性補正構造である第2回折構造(表中の光路差関数φ2で示される)とを重畳したものである。第1回折構造は、波長λ1の光束が入射したときに0次回折光と1次回折光とを発生し、第2回折構造は、波長λ1の光束が入射したときに4次回折光を発生する。第1回折構造で発生した1次の回折光は、BD表面から75μmの深さの情報記録層に集光し、0次の回折光は、BD表面から100μmの深さの情報記録層に集光する。又、|Δf|=174.22μmであるのに対し、|tA-tB|/n=15.41μmと異なっている。基準温度から+30℃温度上昇が生じた場合、BDの保護基板厚が0.075mmの場合、発生する3次球面収差の変化量は-0.0002λrmsであり、保護基板厚が0.100mmの場合、発生する3次球面収差の変化量は0.0027λrmsである。また、第1回折構造の最小ピッチは、2.48μmとなる。
Figure JPOXMLDOC01-appb-T000008
 (実施例9)
 実施例9のレンズデータを表9に示す。実施例9では、対物レンズの光源側光学面の有効径内全面に設けられた回折構造は、光束振り分け用の第1回折構造(表中の光路差関数φ1で示される)と、温度変化に起因した球面収差を補正する温度特性補正構造である第2回折構造(表中の光路差関数φ2で示される)とを重畳したものである。第1回折構造は、波長λ1の光束が入射したときに1次回折光と0次回折光とを発生し、第2回折構造は、波長λ1の光束が入射したときに4次回折光を発生する。第1回折構造で発生した1次の回折光は、BD表面から75μmの深さの情報記録層に集光し、0次の回折光は、BD表面から100μmの深さの情報記録層に集光する。又、|Δf|=191.98μmであるのに対し、|tA-tB|/n=15.41μmと異なっている。基準温度から+30℃温度上昇が生じた場合、BDの保護基板厚が0.075mmの場合、発生する3次球面収差の変化量は-0.0002λrmsであり、保護基板厚が0.100mmの場合、発生する3次球面収差の変化量は0.0025λrmsである。また、第1回折構造の最小ピッチは、2.3μmとなる。
Figure JPOXMLDOC01-appb-T000009
 (実施例10)
 実施例10のレンズデータを表10に示す。実施例10では、対物レンズの光源側光学面の有効径内全面に設けられた回折構造は、光束振り分け用の第1回折構造(表中の光路差関数φ1で示される)と、温度変化に起因した球面収差を補正する温度特性補正構造である第2回折構造(表中の光路差関数φ2で示される)とを重畳したものである。第1回折構造は、波長λ1の光束が入射したときに1次回折光と2次回折光とを発生し、第2回折構造は、波長λ1の光束が入射したときに4次回折光を発生する。第1回折構造で発生した1次の回折光は、BD表面から75μmの深さの情報記録層に集光し、2次の回折光は、BD表面から100μmの深さの情報記録層に集光する。又、|Δf|=68.35μmであるのに対し、|tA-tB|/n=15.41μmと異なっている。基準温度から+30℃温度上昇が生じた場合、BDの保護基板厚が0.075mmの場合、発生する3次球面収差の変化量は-0.027λrmsであり、保護基板厚が0.100mmの場合、発生する3次球面収差の変化量は-0.0136λrmsである。また、第1回折構造の最小ピッチは、4.6μmとなる。
Figure JPOXMLDOC01-appb-T000010
 (実施例11)
 実施例11のレンズデータを表11に示す。実施例11では、カップリングレンズに回折構造が形成されている。カップリングレンズの光源側光学面の有効径内全面に設けられた回折構造は、光束振り分け用の第1回折構造(表中の光路差関数φ1で示される)と、温度変化に起因した球面収差を補正する温度特性補正構造である第2回折構造(表中の光路差関数φ2で示される)とを重畳したものである。第1回折構造は、波長λ1の光束が入射したときに1次回折光と2次回折光とを発生し、第2回折構造は、波長λ1の光束が入射したときに4次回折光を発生する。第1回折構造で発生した1次の回折光は、BD表面から75μmの深さの情報記録層に集光し、2次の回折光は、BD表面から100μmの深さの情報記録層に集光する。又、|Δf|=33.68μmであるのに対し、|tA-tB|/n=15.41μmと異なっている。基準温度から+30℃温度上昇が生じた場合、BDの保護基板厚が0.075mmの場合、発生する3次球面収差の変化量は0.0264λrmsであり、保護基板厚が0.100mmの場合、発生する3次球面収差の変化量は0.021λrmsである。また、第1回折構造の最小ピッチは、29.0μmとなる。
Figure JPOXMLDOC01-appb-T000011
 (実施例12)
 実施例12のレンズデータを表12に示す。実施例12では、カップリングレンズに回折構造が形成されている。カップリングレンズの光源側光学面の有効径内全面に設けられた回折構造は、光束振り分け用の第1回折構造(表中の光路差関数φ1で示される)と、温度変化に起因した球面収差を補正する温度特性補正構造である第2回折構造(表中の光路差関数φ2で示される)とを重畳したものである。第1回折構造は、波長λ1の光束が入射したときに2次回折光と3次回折光とを発生し、第2回折構造は、波長λ1の光束が入射したときに4次回折光を発生する。第1回折構造で発生した2次の回折光は、BD表面から75μmの深さの情報記録層に集光し、3次の回折光は、BD表面から100μmの深さの情報記録層に集光する。又、|Δf|=55.38μmであるのに対し、|tA-tB|/n=15.41μmと異なっている。基準温度から+30℃温度上昇が生じた場合、BDの保護基板厚が0.075mmの場合、発生する3次球面収差の変化量は0.0165λrmsであり、保護基板厚が0.100mmの場合、発生する3次球面収差の変化量は0.0217λrmsである。また、第1回折構造の最小ピッチは、30.2μmとなる。
Figure JPOXMLDOC01-appb-T000012
 本発明によれば、簡素な構成で省エネに適した光ディスクドライブ装置に好適な対物レンズ及び光ピックアップ装置を提供できる。
 CUL カップリングレンズ
 DM ダイクロイックミラー
 DP ダイクロイックプリズム
 LD1 青紫色半導体レーザ
 OL1 第1対物レンズ
 OL2 第2対物レンズ
 PBS 偏光ビームスプリッタ
 PD 受光素子
 PL1、PL1’ BDの保護基板
 PL2 DVDの保護基板
 PL3 CDの保護基板
 QWP λ/4波長板
 RL1、RL1’ BDの情報記録面
 RL2 DVDの情報記録面
 RL3 CDの情報記録面
 RP1 第1反射面
 RP2 第2反射面
 SL センサ用レンズ

Claims (21)

  1.  波長λ1(390nm<λ1<420nm)の光束を出射する第1光源と、少なくとも対物レンズを含む集光光学系とを有し、少なくとも2つの情報記録面を有するBlu-ray Disc(BD)の情報記録面に情報の記録及び/又は再生を行えるように集光させることによって情報の記録及び/又は再生を行う光ピックアップ装置用の集光光学系の対物レンズにおいて、
     前記対物レンズは、少なくとも第1の焦点と第2の焦点を有し、
     前記波長λ1の光束を前記第1の焦点に集光させることにより、前記BDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光でき、
     前記波長λ1の光束を前記第2の焦点に集光させることにより、前記BDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光でき、
     前記第1の焦点と前記第2の焦点は、以下の式を満たすことを特徴とする対物レンズ。
     |Δf|≠|tA-tB|/n
     0.75≦NA≦0.9
    但し、
    Δf:前記第1の焦点と前記第2の焦点の間の光軸方向の距離(μm)
    tA:前記BDの表面から前記BDの前記或る情報記録面までの保護層の厚み(μm)
    tB:前記BDの表面から前記BDの前記他の情報記録面までの保護層の厚み(μm)
    n:前記BDの前記保護層の屈折率
    NA:前記対物レンズの像側開口数
  2.  以下の式を満たすことを特徴とする請求項1に記載の対物レンズ。
     20μm≦|Δf|≦200μm
  3.  前記対物レンズは、少なくとも1つの光学面の有効径内全体に回折構造を有し、
     前記回折構造は、前記回折構造を前記波長λ1の光束が通過した際に、m次の回折光とn次(m≠n)の回折光とを他の回折次数の回折光に比して多く発生させ、
     前記m次の回折光は、前記BDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光され、前記n次の回折光は前記BDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光されることを特徴とする請求項1又は請求項2に記載の対物レンズ。
  4.  m≠0、n≠0を満たすことを特徴とする請求項3に記載の対物レンズ。
  5.  (m,n)=(2,1)、(1,2)、(3,2)又は(2,3)であることを特徴とする請求項4に記載の対物レンズ。
  6.  前記対物レンズは、少なくとも1つの光学面を、同心円状の複数の領域に分割し、前記複数の領域の或る領域を通過した前記波長λ1の光束は、前記BDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光され、前記複数の領域の他の領域を通過した前記波長λ1の光束は、前記BDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光されることを特徴とする請求項1又は請求項2に記載の対物レンズ。
  7.  前記対物レンズの光利用効率は、前記光学面の有効径内全体で略一様であることを特徴とする請求項1から請求項6までのいずれか一項に記載の対物レンズ。
  8.  前記対物レンズはプラスチック製であり、
     前記対物レンズの温度が30℃変化した際の3次球面収差の変化量が±0.040λrms以内となるような、温度特性を補正する温度特性補正構造を有することを特徴とする請求項1から請求項7までのいずれか一項に記載の対物レンズ。
  9.  波長λ1(390nm<λ1<420nm)の光束を出射する第1光源と、少なくともカップリング素子と単焦点の対物レンズを含む集光光学系とを有し、少なくとも2つの情報記録面を有するBlu-ray Disc(BD)の情報記録面に情報の記録及び/又は再生を行えるように集光させることによって情報の記録及び/又は再生を行う光ピックアップ装置用の集光光学系のカップリング素子において、
     前記集光光学系は、前記カップリング素子と前記対物レンズを通過した前記波長λ1の光束が集光する少なくとも第1の焦点と第2の焦点を有し、
     前記カップリング素子と前記対物レンズを通過した前記波長λ1の光束を前記第1の焦点に集光させることにより、前記BDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光でき、
     前記カップリング素子と前記対物レンズを通過した前記波長λ1の光束を前記第2の焦点に集光させることにより、前記BDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光でき、
     前記第1の焦点と前記第2の焦点は、以下の式を満たすことを特徴とするカップリング素子。
     |Δf|≠|tA-tB|/n
    但し、
    Δf:前記第1の焦点と前記第2の焦点の間の光軸方向の距離(μm)
    tA:前記BDの表面から前記BDの前記或る情報記録面までの保護層の厚み(μm)
    tB:前記BDの表面から前記BDの前記他の情報記録面までの保護層の厚み(μm)
    n:前記BDの前記保護層の屈折率
  10.  以下の式を満たすことを特徴とする請求項9に記載のカップリング素子。
     20μm≦|Δf|≦200μm
  11.  前記カップリング素子は、少なくとも1つの光学面の有効径内全体に回折構造を有し、
     前記回折構造は、前記回折構造を前記波長λ1の光束が通過した際に、m次の回折光とn次(m≠n)の回折光とを他の回折次数の回折光に比して多く発生させ、
     前記m次の回折光は、前記カップリング素子と前記対物レンズによって、前記BDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光され、前記n次の回折光は、前記カップリング素子と前記対物レンズによって、前記BDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光されることを特徴とする請求項9又は請求項10に記載のカップリング素子。
  12.  m≠0、n≠0を満たすことを特徴とする請求項11に記載のカップリング素子。
  13.  (m,n)=(2,1)、(1,2)、(3,2)又は(2,3)であることを特徴とする請求項12に記載のカップリング素子。
  14.  前記カップリング素子は、少なくとも1つの光学面を、同心円状の複数の領域に分割し、前記複数の領域の或る領域を通過した前記波長λ1の光束は、前記カップリング素子と前記対物レンズによって、前記BDの或る情報記録面上に情報の記録及び/又は再生を行えるように集光され、前記複数の領域の他の領域を通過した前記波長λ1の光束は、前記カップリング素子と前記対物レンズによって、前記BDの他の情報記録面上に情報の記録及び/又は再生を行えるように集光されることを特徴とする請求項9又は請求項10に記載のカップリング素子。
  15.  前記カップリング素子の光利用効率は、前記光学面の有効径内全体で略一様であることを特徴とする請求項9から請求項14までのいずれか一項に記載のカップリング素子。
  16.  前記カップリング素子及び前記対物レンズはプラスチック製であり、
     前記カップリング素子及び前記対物レンズの温度が30℃変化した際の3次球面収差の変化量が±0.040λrms以内となるような、温度特性を補正する温度特性補正構造を有することを特徴とする請求項9から請求項15までのいずれか一項に記載のカップリング素子。
  17.  請求項1から請求項8までのいずれか一項に記載の対物レンズを有することを特徴とする光ピックアップ装置。
  18. 請求項9から請求項16までのいずれか一項に記載のカップリング素子を有することを特徴とする光ピックアップ装置。
  19.  前記光ピックアップ装置はカップリング素子を有し、
     前記BDの或る情報記録面に情報の記録及び/又は再生ができるように集光する場合と、前記BDの他の情報記録面に情報の記録及び/又は再生ができるように集光する場合とで、前記カップリング素子の光軸方向の位置が同じであることを特徴とする請求項17に記載の光ピックアップ装置。
  20.  前記カップリング素子は、
     前記BDの或る情報記録面に情報の記録及び/又は再生ができるように集光する場合と、前記BDの他の情報記録面に情報の記録及び/又は再生ができるように集光する場合とで、光軸方向の位置が同じであることを特徴とする請求項18に記載の光ピックアップ装置。
  21.  前記カップリング素子は、常に光軸方向の位置が固定されていることを特徴とする請求項19又は請求項20に記載の光ピックアップ装置。
PCT/JP2010/054200 2009-03-30 2010-03-12 対物レンズ、カップリング素子及び光ピックアップ装置 WO2010116852A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011508298A JPWO2010116852A1 (ja) 2009-03-30 2010-03-12 対物レンズ、カップリング素子及び光ピックアップ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-082301 2009-03-30
JP2009082301 2009-03-30

Publications (1)

Publication Number Publication Date
WO2010116852A1 true WO2010116852A1 (ja) 2010-10-14

Family

ID=42936139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054200 WO2010116852A1 (ja) 2009-03-30 2010-03-12 対物レンズ、カップリング素子及び光ピックアップ装置

Country Status (2)

Country Link
JP (1) JPWO2010116852A1 (ja)
WO (1) WO2010116852A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315402A (ja) * 1995-05-15 1996-11-29 Fuji Photo Optical Co Ltd 光ピックアップ装置
JPH09159808A (ja) * 1995-12-06 1997-06-20 Sony Corp 二重焦点レンズおよびこれを用いた光ディスク記録再生装置
JP2000214383A (ja) * 1999-01-20 2000-08-04 Fuji Photo Optical Co Ltd 多焦点光学系およびこれを用いた光学装置
JP2004139672A (ja) * 2002-10-18 2004-05-13 Funai Electric Co Ltd 光ピックアップ装置及びそれを備えた光ディスク再生装置
JP2006139246A (ja) * 2004-10-15 2006-06-01 Riverbell Kk 多焦点レンズおよび撮像システム
JP2009037723A (ja) * 2007-07-06 2009-02-19 Konica Minolta Opto Inc 光ピックアップ装置及び対物レンズ
JP2009054218A (ja) * 2007-08-24 2009-03-12 Hitachi Maxell Ltd 対物光学素子及び光ヘッド装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315402A (ja) * 1995-05-15 1996-11-29 Fuji Photo Optical Co Ltd 光ピックアップ装置
JPH09159808A (ja) * 1995-12-06 1997-06-20 Sony Corp 二重焦点レンズおよびこれを用いた光ディスク記録再生装置
JP2000214383A (ja) * 1999-01-20 2000-08-04 Fuji Photo Optical Co Ltd 多焦点光学系およびこれを用いた光学装置
JP2004139672A (ja) * 2002-10-18 2004-05-13 Funai Electric Co Ltd 光ピックアップ装置及びそれを備えた光ディスク再生装置
JP2006139246A (ja) * 2004-10-15 2006-06-01 Riverbell Kk 多焦点レンズおよび撮像システム
JP2009037723A (ja) * 2007-07-06 2009-02-19 Konica Minolta Opto Inc 光ピックアップ装置及び対物レンズ
JP2009054218A (ja) * 2007-08-24 2009-03-12 Hitachi Maxell Ltd 対物光学素子及び光ヘッド装置

Also Published As

Publication number Publication date
JPWO2010116852A1 (ja) 2012-10-18

Similar Documents

Publication Publication Date Title
JP2011014236A (ja) 光ピックアップ装置用の対物光学系、光ピックアップ装置、光情報記録媒体のドライブ装置、集光レンズ、及び光路合成素子
JP5136810B2 (ja) 光ピックアップ装置
WO2010013616A1 (ja) 対物レンズ及び光ピックアップ装置
JP5071883B2 (ja) 光ピックアップ装置及び対物光学素子
WO2007123112A1 (ja) 光ピックアップ装置、光学素子及び光情報記録再生装置並びに光学素子の設計方法
JP2009110591A (ja) 対物レンズ及び光ピックアップ装置
JPWO2008044475A1 (ja) 対物光学素子ユニット及び光ピックアップ装置
WO2009128445A1 (ja) 対物レンズ及び光ピックアップ装置
JPWO2005088625A1 (ja) 対物光学素子及び光ピックアップ装置
JP2010055683A (ja) 対物光学素子及び光ピックアップ装置
JP2009037718A (ja) 光ピックアップ装置及び対物光学素子
JP2010153006A (ja) 対物光学素子及び光ピックアップ装置
JP5083621B2 (ja) 対物レンズ及び光ピックアップ装置
WO2010089933A1 (ja) 対物レンズ及び光ピックアップ装置
JP2010055732A (ja) 対物光学素子及び光ピックアップ装置
WO2010116852A1 (ja) 対物レンズ、カップリング素子及び光ピックアップ装置
WO2011114895A1 (ja) 対物レンズ、光ピックアップ装置及び光情報記録再生装置
WO2010067733A1 (ja) 対物レンズ及び光ピックアップ装置
WO2010116828A1 (ja) 光ピックアップ装置用の集光光学系の光学素子、集光光学系及び光ピックアップ装置
JP5441014B2 (ja) 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
JP2009181645A (ja) 対物光学素子及び光ピックアップ装置
JP2009187626A (ja) 対物光学素子、光学素子ユニット及び光ピックアップ装置
JP2009015950A (ja) 光ピックアップ装置用の補正素子、対物光学素子ユニット及び光ピックアップ装置
JP2009015951A (ja) 光ピックアップ装置用の補正素子、対物光学素子ユニット及び光ピックアップ装置
JP2009134791A (ja) 光ピックアップ装置及び対物光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761553

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011508298

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761553

Country of ref document: EP

Kind code of ref document: A1