WO2010067733A1 - 対物レンズ及び光ピックアップ装置 - Google Patents

対物レンズ及び光ピックアップ装置 Download PDF

Info

Publication number
WO2010067733A1
WO2010067733A1 PCT/JP2009/070159 JP2009070159W WO2010067733A1 WO 2010067733 A1 WO2010067733 A1 WO 2010067733A1 JP 2009070159 W JP2009070159 W JP 2009070159W WO 2010067733 A1 WO2010067733 A1 WO 2010067733A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
region
information
optical disc
optical
Prior art date
Application number
PCT/JP2009/070159
Other languages
English (en)
French (fr)
Inventor
喬則 白石
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2010542084A priority Critical patent/JPWO2010067733A1/ja
Publication of WO2010067733A1 publication Critical patent/WO2010067733A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • Patent Document 1 discloses an objective lens used in an optical pickup device capable of recording / reproducing information with respect to a plurality of optical discs having two or more substrate thicknesses using light of three types of wavelengths. It is disclosed.
  • information is recorded / reproduced with respect to optical disks having only two substrate thicknesses of 0.6 mm and 1.2 mm using light having wavelengths of 405 nm, 657 nm, and 788 nm.
  • Light having a wavelength of 405 nm and wavelength of 657 nm is used for an optical disc having a substrate thickness of 0.6 mm
  • light having a wavelength of 788 nm is used for an optical disc having a substrate thickness of 1.2 mm.
  • a surface on which laser light is incident on the objective lens is divided into at least three regions in order to support a plurality of types of optical disks.
  • the laser light is condensed on the information recording surface of the corresponding optical disk.
  • the objective lens is divided into four regions, and the innermost region of the objective lens is a refractive surface capable of condensing each of three types of wavelengths on each information recording surface of three types of optical disks.
  • the outer region is a refracting surface that allows light of 405 nm wavelength and 788 nm wavelength to be condensed on the information recording surfaces of the two types of optical discs, and the outer region is irradiated with light of 405 nm wavelength and 657 nm wavelength.
  • a diffraction surface that allows light to be condensed on each information recording surface of the two types of optical disks, and a light diffraction surface that allows light of a wavelength of 405 nm to be condensed on the information recording surface of one type of optical disk are provided outside.
  • the objective lens is divided into three regions, and the innermost region is made a refracting surface capable of condensing each of the three types of wavelengths on the information recording surfaces of the three types of optical discs.
  • the outer side is a diffractive surface that allows light of 657 nm wavelength and 788 nm wavelength to be condensed on the information recording surfaces of the two types of optical discs, and the outer side is light of wavelengths of 405 nm and 657 nm.
  • Each information recording surface has a diffractive surface capable of condensing light.
  • the 785 nm luminous flux that has passed is made a diffractive surface that is not condensed on the information recording surface of the CD, and the 405 nm luminous flux that has passed through the outside is recorded on the BD. It is possible to condense on the surface, and each of the passed 658 nm and 785 nm light fluxes is a surface that is not condensed on the information recording surface of the DVD and CD, and in Examples 1, 2, and 3, the outermost region is a refractive surface, In Examples 4 and 5, the outermost region is a diffractive surface.
  • JP 2006-40512 A Japanese Patent No. 4033240
  • Patent Document 2 it is described that even if the annular zone is removed, if the pitch width is 5 ⁇ m or less, the optical performance is not greatly affected. There is a possibility that a narrow-width annular zone still remains difficult in actual shape and manufacture. Of course, if such removal is not performed, it will become more difficult to make a real shape and manufacture.
  • the optical disk substrate thickness of the CD is larger than other optical disks. Therefore, it is necessary to increase the distance from the image side principal point of the objective lens to the image side focal point. Furthermore, when recording / reproducing a CD, the focal length of the objective lens is sufficient to ensure a sufficient amount of working distance (the distance from the position closest to the optical disc on the surface where the laser light exits from the objective lens to the optical disc). Tend to be longer.
  • the focal length of the objective lens is as long as 3.118 mm, and the axial thickness of the objective lens is as thick as 2.3 mm. Furthermore, the effective diameter is as large as 3.9 mm.
  • the focal length of the objective lens is as long as 2.43 mm, and the axial thickness of the objective lens is also as thick as 2.37 mm.
  • the focal length of the CD is the shortest in Patent Document 2
  • the focal length is as long as 2.24 mm. That is, in Patent Document 2, the focal length and the working distance in the CD are ensured by increasing the axial thickness of the objective lens.
  • An objective lens for an optical pickup device that performs reproduction
  • the objective lens is a single lens, and at least one optical surface includes a first region including an optical axis, a second region provided outside the first region, and an outside of the second region. And the third region is provided to satisfy the following expression.
  • the working distance WD3 which is the value obtained by subtracting the distance to the surface and the substrate thickness from the focal length f3, can be ensured, in order to optimize the focused spot diameter on the information recording surface of the third optical disk, There is a margin when the objective lens is displaced along the optical axis by an actuator or the like. Further, in order to maintain the focal length f3 long and to maintain the optical performance such as the condensing characteristic and to make it applicable to a thin optical disk drive, while satisfying the conditional expressions (1) and (2) The present inventor has found that the object can be achieved by satisfying the expression (3). Note that “1.7” in the equation (2) corresponds to twice the image-side numerical aperture NA of the first optical disc.
  • the focal length of the CD is ensured by making ⁇ smaller than 1.7 ⁇ f3.
  • an objective lens with a reduced ⁇ is obtained.
  • WD3 Working distance when using the third optical disk If the working distance of the third optical disk is too long, the thickness of the objective lens (minimum thickness in the optical axis direction) decreases, and as a result, the thickness deviation ratio increases. There is a problem that it is difficult to ensure a length suitable for manufacturing. In addition, by increasing the working distance in the third optical disc, the focal length for the third light flux is also increased. However, if the working distance is too long, there arises a problem that the change in aberration increases due to a temperature change when the objective lens is a plastic lens. Therefore, by adopting the above-described configuration, it is possible to provide an objective lens that can be easily manufactured with a small thickness deviation ratio and that has a small change in aberration due to a temperature change even if the objective lens is a plastic lens. It becomes.
  • the objective lens according to the third aspect wherein the third light beam that has passed through the region can be recorded and / or reproduced on the information recording surface of the third optical disc.
  • the difference from the paraxial radius of curvature of the mother aspherical surface in a region where the second light flux is condensed so that information can be recorded and / or reproduced on the information recording surface of the second optical disc is 0.1 mm or more; It is 7 mm or less.
  • the third optical disc When the surface shape of the lens is a surface shape that prioritizes condensing on the third optical disc, the third optical disc has a larger substrate thickness than other optical discs, and therefore condenses from the incident surface of the third light flux. Since the distance to the point is long and the paraxial radius of curvature of the mother aspheric surface in the region through which the light beam condensed on the information recording surface of the third optical disc passes is large, the surface shape also becomes loose.
  • the focal length of the region where the light flux for CD is not collected is increased, the axial thickness of the objective lens is increased, and the effective diameter of the objective lens is increased accordingly.
  • the axial thickness of the objective lens is at least 2.37 mm in Example 3 as a minimum. Since the on-axis thickness of the objective lens is thick, it is difficult to use it for a thin optical disk drive.
  • the configuration according to claim 3 or claim 4 can maintain a large paraxial radius of curvature of the third optical disk area, so that the focal length of the third optical disk can be maintained long. it can. Furthermore, since the paraxial radius of curvature of the first optical disk / second optical disk combined area and the first optical disk dedicated area can be reduced, the axial thickness of the objective lens can be reduced. Therefore, in the region through which the light beam condensed on the information recording surface of the third optical disk passes, the light beam that condenses the third light beam well on the information recording surface of the third optical disk and condenses on the information recording surface of the third optical disk. In the region where the light beam does not pass, the first light beam or the second light beam is preferably focused on the information recording surface of the first optical disk or the second optical disk, and the axial thickness of the objective lens is reduced. it can.
  • the objective lens according to any one of the first to fourth aspects, wherein the first luminous flux that has passed therethrough is collected so that information can be recorded and / or reproduced on the information recording surface of the first optical disc.
  • the region of the objective lens that illuminates and the region of the objective lens that condenses the passed third light beam so that information can be recorded and / or reproduced on the information recording surface of the third optical disc are different regions.
  • the paraxial radius of curvature of the third optical disc region can be maintained large, and the paraxial radius of curvature of the first optical disc region can be reduced, so that the focal length of the third optical disc can be maintained long.
  • the paraxial radius of curvature of the third optical disc region can be maintained large, and the paraxial radius of curvature of the first optical disc region can be reduced, so that the focal length of the third optical disc can be maintained long.
  • the focal distance for the third optical disk is extended and a long working distance is secured.
  • the pitch of the diffractive structure for distributing the light beams becomes very fine, and it becomes difficult to form the objective lens. Therefore, it is not necessary to provide the first optical disk / second optical disk / third optical disk combined area. It is not necessary to provide a diffraction structure with a very fine pitch, and an objective lens that is easy to manufacture can be obtained.
  • the refracting surface having no diffractive structure as the third optical disc dedicated area, it is possible to increase the light utilization efficiency and to easily form the objective lens.
  • the objective lens according to claim 8 is characterized in that, in the invention according to claim 6 or 7, the number of the third optical disk dedicated area is 1 or more and 3 or less.
  • the objective lens described in claim 9 is the objective lens according to any one of claims 1 to 8, wherein the first region records the passed first light beam on the information recording surface of the first optical disc, and records information.
  • the second light flux that has been condensed so that it can be reproduced and passed is condensed so that information can be recorded and / or reproduced on the information recording surface of the second optical disc, but the third light flux that has passed therethrough Is an area for both the first optical disk and the second optical disk that is not condensed so that information can be recorded and / or reproduced on the information recording surface of the third optical disk.
  • the paraxial radius of curvature of the third optical disc region can be maintained large, and the paraxial radius of curvature of the first optical disc region can be reduced, so that the focal length of the third optical disc can be maintained long.
  • it is not necessary to provide a first optical disk / second optical disk / third optical disk combined area corresponding to all of the first optical disk, the second optical disk, and the third optical disk it is not necessary to provide a diffraction structure with a very fine pitch. Therefore, an objective lens that is easy to manufacture can be obtained.
  • the objective lens according to claim 10 is the invention according to claim 8, wherein the first region has a first diffractive structure, and the first diffractive structure passes through the first light flux.
  • the structure is characterized in that 0-order diffracted light (transmitted light) is generated most as compared with other orders of diffracted light.
  • the region including the optical axis of the objective lens is used as a common region through which the first, second, and third light beams pass and is focused on the first, second, and third optical discs, respectively.
  • the paraxial radius of curvature of the first area can be set to the paraxial radius of curvature similar to that of the first optical disc dedicated area, and the paraxial radius of curvature of the first area can be reduced. It is possible to reduce the axial thickness of the objective lens. This makes it possible to lengthen the CD working distance.
  • an optical disk using a light beam having a short wavelength has a high information recording density and a diameter of each information pit is small. Therefore, in an optical disk using a light beam having a short wavelength, the diameter of a focused spot corresponding to each information pit is small. In addition, a highly accurate light collecting characteristic is required.
  • the light beam that has passed through the region near the optical axis has little change in the traveling direction of light due to refraction or diffraction, and can exhibit good light condensing characteristics. Therefore, in the present invention, the aberration characteristic is improved by using the region including the optical axis of the objective lens as a region for condensing the first light beam and the second light beam having a shorter wavelength than the third light beam.
  • An objective lens according to an eleventh aspect is the objective lens according to any one of the first to tenth aspects, wherein the second area is configured to transmit the third light flux that has passed through the information recording surface of the third optical disc.
  • the first light flux that has been condensed so as to be able to be recorded and / or reproduced is not condensed so that information can be recorded and / or reproduced on the information recording surface of the first optical disc.
  • the second optical disk is an area dedicated to the third optical disk that does not collect the two light beams so that information can be recorded and / or reproduced on the information recording surface of the second optical disk.
  • the paraxial radius of curvature of the area for the third optical disc can be maintained large, and the focal length of the third optical disc can be maintained long. Further, it becomes easy to cope with a relatively small image-side numerical aperture when the third optical disc is used, and appropriate information recording / reproduction can be performed.
  • the third optical disc is a CD
  • a CD-dedicated area can be provided within the required numerical aperture of the CD, so that recording / reproduction with respect to the CD can be performed appropriately.
  • An objective lens according to a twelfth aspect is the objective lens according to any one of the first to eleventh aspects, wherein the third region passes the first light flux that has passed through the information recording surface of the first optical disc. Condensed so that information can be recorded and / or reproduced, and the second light flux that has passed through is condensed so that information can be recorded and / or reproduced on the information recording surface of the second optical disc, but has passed.
  • the third optical flux is a first optical disc / second optical disc combined area that does not collect information so that information can be recorded and / or reproduced on an information recording surface of the third optical disc.
  • the first optical disc is a BD and the second optical disc is a DVD
  • a BD / DVD combined area can be provided within the required numerical aperture of the BD and DVD, so that recording on the BD and DVD can be performed appropriately.
  • Playback can be performed.
  • the third area is a first optical disk / second optical disk combined area, it is possible to prevent a decrease in the utilization efficiency of the first light flux and the second light flux.
  • the objective lens according to claim 13 is the objective lens according to any one of claims 1 to 12, wherein the objective lens has a fourth region outside the third region, and outside the fourth region.
  • the fifth region condenses the passed first light beam so that information can be recorded and / or reproduced on the information recording surface of the first optical disk, and the passed second light beam is reflected on the second optical disk.
  • the third light flux that is focused on the information recording surface so that information can be recorded and / or reproduced is not condensed on the information recording surface of the third optical disc so that information can be recorded and / or reproduced.
  • the second region and the fourth region condense the passed third light flux so that information can be recorded and / or reproduced on the information recording surface of the third optical disc, and the passed first light flux is It is possible to record and / or reproduce information on the information recording surface of the second optical disc without condensing the information on the information recording surface of the first optical disc so that information can be recorded and / or reproduced.
  • the sixth area is a third optical disk dedicated area that does not collect light, and the sixth area condenses and passes the first light flux that has passed therethrough so that information can be recorded and / or reproduced on the information recording surface of the first optical disk.
  • the second light flux is not condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the passed third light flux is recorded on the information recording surface of the third optical disc.
  • / or playback Characterized in that it is a first optical disk dedicated area is not focused as obtain.
  • the third optical disc is a CD
  • a CD-dedicated area can be provided within the required numerical aperture of the CD, so that recording / reproduction with respect to the CD can be performed appropriately.
  • a BD / DVD combined area can be provided within the required numerical aperture of the BD and DVD, so that recording / reproduction with respect to the BD and DVD can be performed appropriately. Can be performed.
  • six regions it is possible to design with a balanced light utilization efficiency for three light beams having different wavelengths.
  • the objective lens according to claim 14 is the objective lens according to claim 13, wherein the sixth region is a refractive surface.
  • the first optical disk / second optical disk combined area that does not collect the light so that information can be recorded and / or reproduced, and the second area transmits the passed third light flux to the information recording surface of the third optical disk. Records and / or Collects the first luminous flux that has passed through the information recording surface of the first optical disc so that it can be recorded and / or reproduced, and passes the second luminous flux that has passed through the first optical flux.
  • An area dedicated to the third optical disk that is not focused so that information can be recorded and / or reproduced on the information recording surface of the second optical disk, and the fourth area records the first light flux that has passed through the information recording surface of the first optical disk.
  • the light is condensed so that information can be recorded and / or reproduced on the surface, and the second light flux that has passed therethrough passes without being condensed so that information can be recorded and / or reproduced on the information recording surface of the second optical disc.
  • the third light flux is an area dedicated to the first optical disc that does not collect the information so that information can be recorded and / or reproduced on the information recording surface of the third optical disc.
  • the same effect as that of the configuration described in claim 13 can be obtained, and the light amount loss of the first light beam condensed on the first optical disc can be further suppressed as compared with the configuration described in claim 13.
  • the structure of the objective lens can be made simpler, an objective lens that is easy to manufacture can be obtained.
  • the objective lens according to claim 16 is characterized in that, in the invention according to claim 15, the fourth region is a refractive surface.
  • the objective lens according to claim 17 has a step between the first region and the second region in a cross section including an optical axis in the invention according to any one of claims 1 to 16, and the step The portion where the first region intersects with the first region is located closer to the light source in the optical axis direction than the region where the step and the second region intersect.
  • the objective lens according to claim 18 is the objective lens according to claim 17, wherein the first region condenses the passed first light beam on the information recording surface of the first optical disc and passes the second light beam.
  • a first optical disc / second optical disc combined area that collects a light beam on the information recording surface of the second optical disc and does not collect the passed third light beam on the information recording surface of the third optical disc; Condenses the passed third light flux on the information recording surface of the third optical disc, and does not concentrate the passed first light flux on the information recording surface of the first optical disc, and passes the passed second light flux. It is a third optical disc dedicated area that does not concentrate on the information recording surface of the second optical disc.
  • the objective lens described in Item 19 is characterized in that, in the invention described in Items 1-18, the following conditional expression (5) is satisfied.
  • d axial thickness of the objective lens
  • minimum thickness in the optical axis direction of the objective lens
  • An optical pickup device includes the objective lens according to any one of the first to nineteenth aspects.
  • the first optical disc has a protective substrate having a thickness t1 and an information recording surface.
  • the second optical disc has a protective substrate having a thickness of 2 (t1 ⁇ t2) and an information recording surface.
  • the third optical disc has a protective substrate having a thickness t3 (t2 ⁇ t3) and an information recording surface.
  • the first optical disc is preferably a BD (Blu-ray Disc), the second optical disc is preferably a DVD, and the third optical disc is preferably a CD, but is not limited thereto.
  • the first optical disc, the second optical disc, or the third optical disc may be a multi-layer optical disc having a plurality of information recording surfaces.
  • the thickness of the protective substrate includes the case of 0, and when the protective film having a thickness of several to several tens of ⁇ m is applied to the optical disk, the thickness thereof is also included.
  • the thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
  • the first light source, the second light source, and the third light source are preferably laser light sources.
  • the laser light source a semiconductor laser, a silicon laser, or the like can be preferably used.
  • the wavelength ⁇ 3 ( ⁇ 3> ⁇ 2) preferably satisfies the following conditional expressions (9) and (10).
  • the wavelength of the first light beam is the wavelength of the second light beam, It is necessary to make it shorter than the wavelength of the third light beam.
  • the wavelength of the emitted light changes due to the temperature change.
  • the first wavelength ⁇ 1 of the first light source is preferably 350 nm or more and 440 nm or less, more preferably 390 nm.
  • the second wavelength ⁇ 2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less, and the third wavelength ⁇ 3 of the third light source is preferably 750 nm.
  • the thickness is 850 nm or less, more preferably 760 nm or more and 820 nm or less.
  • a photodetector such as a photodiode is preferably used.
  • Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it.
  • the light receiving element may comprise a plurality of photodetectors.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors.
  • a light receiving element may be used (so-called three beam method or the like).
  • the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
  • the condensing optical system used in the optical pickup device has an objective lens.
  • the condensing optical system may include only the objective lens, but the condensing optical system may include a coupling lens such as a collimator lens in addition to the objective lens.
  • the coupling lens is a single lens or a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam.
  • the collimating lens is a kind of coupling lens, and is a lens that emits light incident on the collimating lens as parallel light.
  • the objective lens is a glass lens
  • a glass material having a glass transition point Tg of 500 ° C. or lower molding at a relatively low temperature is possible, so that the life of the mold can be extended.
  • the specific gravity of a glass lens is generally larger than that of a resin lens, if the objective lens is a glass lens, the weight increases and a load is imposed on the actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity. Specifically, the specific gravity is preferably 3.0 or less, and more preferably 2.75 or less.
  • the objective lens is a plastic lens
  • the refractive index at a temperature of 25 ° C. with respect to a wavelength of 405 nm is 1.52 to 1.60.
  • the refractive index change rate dN / dT (° C. ⁇ 1 ) is ⁇ 20 ⁇ 10 ⁇ 5 to ⁇ 5 ⁇ 10 ⁇ with respect to the wavelength of 405 nm accompanying the temperature change within the temperature range of ⁇ 5 ° C. to 70 ° C.
  • the coupling lens is preferably a plastic lens.
  • the Abbe number of the material constituting the objective lens is preferably 50 or more.
  • At least one optical surface of the objective lens includes at least a first region, a second region provided outside the first region, and a third region provided outside the second region. Moreover, you may have a 4th area
  • the fourth region may be a region farthest from the optical axis. Alternatively, the fourth region may be further provided outside the third region, and the fifth region may be further provided outside the fourth region. Further, a sixth region may be provided outside the fifth region, and the sixth region may be a region farthest from the optical axis.
  • the number of regions is preferably 10 or less, and more preferably 8 or less.
  • the optical surface having the first region, the second region, and the third region is preferably an optical surface on the light source side, and is preferably an optical surface with a smaller radius of curvature.
  • the first area is preferably an area including the optical axis of the objective lens, but a minute area including the optical axis may be an unused area or a special purpose area, and the surrounding area may be the first area.
  • the regions are provided on the same optical surface.
  • FIG. 1 showing an example divided into three regions, the first region CN, the second region MD, and the third region OT are provided concentrically around the optical axis on the same optical surface. It is preferable that The first region CN, the second region MD, and the third region OT are preferably adjacent to each other, but there may be a slight gap between them.
  • an objective lens having a first optical disk / second optical disk combined area, a third optical disk dedicated area, and a first optical disk dedicated area, a first optical disk dedicated area, a second optical disk / third optical disk combined area, and a first optical disk dedicated is an objective lens having a region.
  • the passed third light beam is condensed so that information can be recorded and / or reproduced on the information recording surface of the third optical disk in a plurality of areas, and the passed first light beam is recorded on the information recording surface of the first optical disk.
  • the third optical disk dedicated area may be a diffractive surface, but from the viewpoint of ease of manufacture and improvement of light utilization efficiency, the third optical disk dedicated area is preferably a refractive surface.
  • the number of the third optical disc dedicated area is preferably 1 or more and 3 or less.
  • the second region condenses the passed third light beam so that information can be recorded and / or reproduced on the information recording surface of the third optical disk, and the passed first light beam is applied to the information recording surface of the first optical disk.
  • a third optical disc dedicated area that does not collect light so that information can be recorded and / or reproduced, and does not collect the second light flux that has passed through the information recording surface of the second optical disk so that information can be recorded and / or reproduced.
  • the first to sixth diffractive structures may be provided in each of the first to sixth regions.
  • the second region, the fourth region, and the sixth region may be refractive surfaces.
  • the first diffractive structure, the second diffractive structure, the third diffractive structure, the fourth diffractive structure, the fifth diffractive structure, and the sixth diffractive structure are respectively the first region, the second region, the third region, and the fourth diffractive structure of the objective lens. It is preferably provided in a region of 70% or more of the area of each of the region, the fifth region, and the sixth region, and more preferably 90% or more. More preferably, the ⁇ -th diffractive structure ( ⁇ is an integer of 1 to 6) is provided on the entire surface of the ⁇ -th region. Since the diffractive structure suitable for each region is provided on the entire surface of each region, the light use efficiency can be increased.
  • the diffractive structure in this specification is a general term for structures that generate diffracted light with respect to a light beam having a certain wavelength.
  • the diffractive structure is a general term for a structure having a step and having an effect of converging or diverging a light beam by diffraction for at least a light beam having a certain wavelength.
  • the diffractive structure preferably has a plurality of steps. The steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the optical surface of the objective lens has a plurality of annular zones centered on the optical axis and divided by steps, and each aspherical surface is constituted by an individual aspheric surface, the light beam is caused by diffraction action.
  • the objective lens that is converged or diverged is an objective lens having a diffractive structure.
  • a light beam having a wavelength of ⁇ A that has passed through a plurality of annular zones of an objective lens having a structure composed of individual aspheric surfaces for each annular zone is condensed on an information recording surface of an optical disc having a protective substrate having a thickness tA.
  • the diffractive structure preferably has a plurality of concentric annular zones around the optical axis.
  • the diffractive structure can take various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shapes including the optical axis are roughly classified into a blazed structure and a staircase structure.
  • the blazed structure is a sawtooth shape in cross section including the optical axis of an optical element having a diffractive structure. It has an oblique surface that is neither perpendicular nor parallel to the spherical surface.
  • the upper side is the light source side and the lower side is the optical disk side, and a diffractive structure is formed on a plane as a mother aspherical surface.
  • the staircase structure is a structure in which the cross-sectional shape including the optical axis of an optical element having a diffractive structure is a small staircase (referred to as a staircase unit). That is to have more than one.
  • the “X level” means an annular surface corresponding to (or facing) the optical axis vertical direction in one step unit of the staircase structure (hereinafter sometimes referred to as an optical function surface). Is divided by X steps, and is divided into X ring zones.
  • a three-level or higher staircase structure has a small step and a large step.
  • the smallest step in the optical axis direction is meant, and the “large step” means the largest step in the optical axis direction in one staircase unit.
  • the diffractive structure is preferably a structure in which a certain unit shape is periodically repeated.
  • unit shape is periodically repeated” naturally includes shapes in which the same shape is repeated in the same cycle.
  • the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”.
  • the sawtooth shape as a unit shape is repeated.
  • the same sawtooth shape may be repeated, and as shown in FIG. 2 (b), the shape of the sawtooth shape gradually increases as it proceeds in the direction of the mother aspheric surface. It may be a shape that increases in size or a shape that decreases. Moreover, it is good also as a shape which combined the shape where the magnitude
  • the diffractive structure has a staircase structure
  • the shape of the staircase gradually increases as it advances in the direction of the mother aspheric surface, or the shape of the staircase gradually decreases. It is preferable that the level difference in the direction of the light beam to be changed hardly changes.
  • the first diffractive structure, the third diffractive structure, and the fifth diffractive structure are structures that enable at least compatibility between the first optical disc and the second optical disc. Therefore, the first diffractive structure, the third diffractive structure, and the fifth diffractive structure are different from the first diffractive structure, the third diffractive structure, or the fifth diffractive structure in the first optical disc.
  • the first diffractive structure, the third diffractive structure, and the fifth diffractive structure generate the most n-th order diffracted light when the first light beam passes and generate the most m-th order diffracted light when the second light beam passes.
  • Preferred combinations of (n, m) include (0,1), (1, -2), (2,1) and the like.
  • n 0 is preferable because the first region can have a small paraxial radius of curvature suitable for the first optical disk, and the axial thickness of the objective lens can be reduced.
  • the third light beam that has passed through the region other than the third light beam dedicated region is not used for recording and / or reproduction of the third optical disk. It is preferable that the third light flux that has passed through an area other than the area dedicated to the third optical disk does not contribute to the formation of a focused spot on the information recording surface of the third optical disk. That is, when the objective lens is provided with a diffractive structure in the first optical disc / second optical disc combined area, the third light flux passing through the diffractive structure in the first optical disc / second optical disc combined area is information on the third optical disc. It is preferable to form a flare on the recording surface. As shown in FIG.
  • the spot peripheral portion is also referred to as flare even when a spot has a spot peripheral portion around the center portion of the spot and there is a spot peripheral portion, that is, when a light spot with a large light is formed around the condensed spot. That is, the third light beam that has passed through the diffraction structure of the shared region of the first light beam and the second light beam of the objective lens forms a spot peripheral portion on the information recording surface of the third optical disk.
  • the diffractive structure When the region farthest from the optical axis has a diffractive structure, the diffractive structure causes spherochromatism (colored spherical surface) generated by slight fluctuations in the wavelength of the first light source with respect to the first light flux that has passed through the diffractive structure. (Aberration) may be corrected.
  • a slight change in wavelength refers to a change within ⁇ 10 nm.
  • the seventh diffractive structure is used as the temperature characteristic correcting structure, the first diffractive structure, the third diffractive structure, the fourth diffractive structure, the fifth diffractive structure, or the sixth diffractive structure. You may use what further piled up. Or you may make it provide a 7th diffractive structure in the 4th area
  • the first area R1 including the optical axis is the first optical disk / second optical disk combined area
  • the second area R2 around the outside is the third optical disk dedicated area
  • the outer peripheral third region R3 is the first optical disc / second optical disc combined region
  • the outer peripheral fourth region R4 is the third optical disc dedicated region
  • the first region R1 and the third region R3 Is located on the same first mother aspheric surface BL1
  • the second region R2 and the fourth region R4 are located on the same second mother aspheric surface BL.
  • the objective lens OBJ generally has a flange portion FL having a minimum thickness of the objective lens on the outer side in the optical axis orthogonal direction of the region OT farthest from the optical axis.
  • the ratio of the minimum thickness ⁇ in the optical axis direction to the on-axis thickness d of the objective lens OBJ (d / ⁇ : referred to as thickness deviation ratio) is preferably 5 or less.
  • the objective-side numerical aperture of the objective lens necessary for reproducing and / or recording information on the first optical disk is NA1
  • the objective lens necessary for reproducing and / or recording information on the second optical disk is NA2 (NA1 ⁇ NA2)
  • NA3 NA2> NA3
  • NA1 is preferably 0.6 or more and 0.9 or less, more preferably 0.75 or more and 0.9 or less.
  • NA1 is preferably 0.85.
  • NA2 is preferably 0.55 or more and 0.7 or less.
  • NA2 is preferably 0.60 or 0.65.
  • NA3 is preferably 0.4 or more and 0.55 or less.
  • NA3 is preferably 0.45 or 0.53.
  • the outer boundary of the third optical disc dedicated area farthest from the optical axis of the objective lens is 0.9 ⁇ NA 3 or more and 1.2 ⁇ NA 3 or less (more preferably 0.95 ⁇ NA 3) when the third light beam is used. It is preferably formed in a portion corresponding to the range of 1.15 ⁇ NA3 or less. More preferably, the outer boundary of the third optical disk dedicated region farthest from the optical axis of the objective lens is formed in a portion corresponding to NA3. Further, the inner boundary of the region used for the second optical disc farthest from the optical axis of the objective lens is 0.9 ⁇ NA 2 or more and 1.2 ⁇ NA 2 or less (more preferably 0) when the second light beam is used. .95 ⁇ NA2 or more and 1.15 ⁇ NA2 or less). More preferably, the inner boundary of the region used for the second optical disk farthest from the optical axis of the objective lens is formed in a portion corresponding to NA2.
  • the spherical aberration has at least one discontinuous portion.
  • the discontinuous portion has a range of 0.9 ⁇ NA 3 or more and 1.2 ⁇ NA 3 or less (more preferably 0.95 ⁇ NA 3 or more and 1.15 ⁇ NA 3 or less) when the third light flux is used. It is preferable that it exists in.
  • NA2 it is preferable that the absolute value of the spherical aberration is 0.03 ⁇ m or more, and in NA3, the absolute value of the longitudinal spherical aberration is 0.02 ⁇ m or less. More preferably, in NA2, the absolute value of longitudinal spherical aberration is 0.08 ⁇ m or more, and in NA3, the absolute value of longitudinal spherical aberration is 0.01 ⁇ m or less.
  • the objective lens satisfies the following conditional expression.
  • ⁇ 1 represents the effective diameter of the surface on which the first light beam enters the objective lens
  • f3 represents the focal length of the objective lens when the third light beam is used
  • d represents the axial thickness of the objective lens.
  • the focal length of the third optical disk is sufficiently secured, the focal length is prevented from becoming too long, and the change in spherical aberration due to temperature change is reduced even if the objective lens is a plastic lens. Is preferable.
  • f2 represents the focal length of the objective lens when the second light beam is used.
  • conditional expressions (13) and (14) By satisfying conditional expressions (13) and (14), the working distance of the CD as the third optical disk can be secured without reducing the pitch of the diffractive structure, and the objective lens can be easily manufactured. Thus, it is possible to maintain high light use efficiency.
  • ⁇ 2 represents the effective diameter of the objective lens when the second optical disk is used.
  • WD2 represents the working distance when the second optical disc is used.
  • WD1 represents a working distance when the first optical disc is used.
  • the first of the preferred embodiments is an embodiment in which the optical surface of the objective lens is divided into four regions.
  • the fourth region is a region farthest from the optical axis in the objective lens.
  • the first area and the third area are areas for both the first optical disk and the second optical disk.
  • the second area is a third optical disk dedicated area.
  • the fourth region condenses the passed first light flux so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the passed second light flux is applied to the information recording surface of the second optical disc.
  • the first optical disc dedicated area that does not collect the information so that it can be recorded and / or reproduced, and does not collect the passed third light beam on the information recording surface of the third optical disc so that information can be recorded and / or reproduced. is there.
  • the first area of the objective lens which is the first optical disk / second optical disk combined area, has the first diffractive structure.
  • the first diffractive structure generates the most n-th order diffracted light when the first light beam passes and generates the most m-th order diffracted light when the second light beam passes.
  • Preferred combinations of (n, m) include (0,1), (1, -2), (2,1) and the like.
  • n 0 is preferable because the first region can have a small paraxial radius of curvature suitable for the first optical disk, and the axial thickness of the objective lens can be reduced.
  • the third region of the objective lens which is the first optical disc / second optical disc combined region, has a third diffractive structure.
  • the third diffractive structure is preferably the same structure as the first diffractive structure.
  • the second region of the objective lens which is the third optical disk dedicated region, is preferably a refracting surface, but a second diffractive structure may be provided.
  • the refracting surface is preferably a surface that does not have a structure that gives an optical path difference to the light beam incident on the objective lens.
  • the fourth region of the objective lens which is the first optical disk dedicated region, is preferably a refractive surface, but a fourth diffractive structure may be provided.
  • the difference between the paraxial curvature radius of the mother aspheric surface in the first region and the third region and the paraxial curvature radius of the mother aspheric surface in the second region may be 0.1 mm or more and 0.7 mm or less. preferable.
  • Six-region objective lens A second preferred embodiment is an embodiment in which the optical surface of the objective lens is divided into six regions.
  • the sixth region is a region farthest from the optical axis in the objective lens.
  • the first area, the third area, and the fifth area are areas for both the first optical disk and the second optical disk.
  • the second area and the fourth area are areas dedicated to the third optical disc.
  • the sixth area is a first optical disk dedicated area.
  • the first area of the objective lens which is the first optical disk / second optical disk combined area, has the first diffractive structure.
  • the first diffractive structure generates the most n-th order diffracted light when the first light beam passes and generates the most m-th order diffracted light when the second light beam passes.
  • Preferred combinations of (n, m) include (0,1), (1, -2), (2,1) and the like.
  • n 0 is preferable because the first region can have a small paraxial radius of curvature suitable for the first optical disk, and the axial thickness of the objective lens can be reduced.
  • the third region of the objective lens which is the first optical disc / second optical disc combined region, has a third diffractive structure.
  • the third diffractive structure is preferably the same structure as the first diffractive structure.
  • the fifth area of the objective lens which is the first optical disk / second optical disk combined area, has the fifth diffractive structure.
  • the fifth diffractive structure is preferably the same structure as the first diffractive structure and the third diffractive structure.
  • the second region of the objective lens which is the third optical disk dedicated region, is preferably a refracting surface, but a second diffractive structure may be provided.
  • the fourth area of the objective lens which is the third optical disk dedicated area, is preferably a refractive surface, but a fourth diffractive structure may be provided.
  • the sixth area of the objective lens which is the first optical disk dedicated area, is preferably a refractive surface, but a sixth diffractive structure may be provided.
  • the difference between the paraxial curvature radius of the mother aspheric surface in the first region, the third region, and the fifth region and the paraxial curvature radius of the mother aspheric surface in the second region and the fourth region is 0.1 mm or more, It is preferable that it is 0.7 mm or less.
  • the first light beam, the second light beam, and the third light beam may be incident on the objective lens as parallel light, or may be incident on the objective lens as divergent light or convergent light.
  • the imaging magnification m1 of the objective lens when the first light beam enters the objective lens satisfies the following formula (18).
  • the imaging magnification m1 of the objective lens when the first light flux is incident on the objective lens preferably satisfies the following formula (18 ′).
  • the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens satisfies the following formula (19). Is preferred.
  • the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens preferably satisfies the following equation (19 ′). .
  • the imaging magnification m3 of the objective lens when the third light beam is incident on the objective lens satisfies the following expression (20). Is preferred.
  • the third light flux is parallel light, a problem easily occurs in tracking. However, even if the third light flux is parallel light, the present invention can obtain good tracking characteristics, and can be used for three different optical disks. On the other hand, recording and / or reproduction can be appropriately performed.
  • the imaging magnification m3 of the objective lens when the third light beam enters the objective lens satisfies the following expression (20 ′).
  • An optical information recording / reproducing apparatus includes an optical disc drive apparatus having the optical pickup device described above.
  • the optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
  • the optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc include a transfer means of an optical pickup device having a guide rail or the like for guiding toward the head, a spindle motor for rotating the optical disk, and the like.
  • the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
  • an optical pickup device that can be used in a thin optical disk drive while ensuring a sufficient working distance of a CD and can appropriately record / reproduce information on different optical disks such as BD, DVD, and CD. And it is possible to provide an objective lens suitable for it.
  • FIG. 4 is a cross-sectional view schematically showing several examples (a) to (d) of a diffractive structure provided in the objective lens OBJ according to the present invention. It is the figure which showed the shape of the spot by the objective lens which concerns on this invention. It is an expanded sectional view of an example of objective lens OBJ concerning the present invention. It is a figure which shows schematically the structure of the optical pick-up apparatus which concerns on this invention.
  • FIG. 3 is a cross-sectional view of the objective lens of Example 1.
  • FIG. 7A is a diagram showing longitudinal spherical aberration (solid line) and sine condition (dotted line) when using the BD of Example 1
  • FIG. 7B is a vertical spherical surface when using DVD of Example 1.
  • FIG. 7C illustrates aberrations (solid line) and sine conditions (dotted line)
  • FIG. 7C illustrates longitudinal spherical aberration (solid line) and sine conditions (dotted line) when the CD of Example 1 is used.
  • 6 is a cross-sectional view of an objective lens according to Example 2.
  • FIG. FIG. 9A is a diagram showing longitudinal spherical aberration (solid line) and a sine condition (dotted line) when using the BD of Example 2
  • FIG. 9B is a longitudinal spherical surface when using the DVD of Example 2.
  • FIG. 9A is a diagram showing longitudinal spherical aberration (solid line) and a sine condition (dotted line) when using the BD of Example 2
  • FIG. 9B is a longitudinal spher
  • FIG. 9C is a diagram illustrating the aberration (solid line) and the sine condition (dotted line), and FIG. 9C is a diagram illustrating the longitudinal spherical aberration (solid line) and the sine condition (dotted line) when the CD of Example 2 is used.
  • 6 is a cross-sectional view of an objective lens according to Example 3.
  • FIG. 11A is a diagram showing longitudinal spherical aberration (solid line) and sine condition (dotted line) when using the BD of Example 3
  • FIG. 11B is a longitudinal spherical surface when using the DVD of Example 3.
  • FIG. 11C is a diagram showing aberration (solid line) and a sine condition (dotted line)
  • FIG. 11C is a diagram showing longitudinal spherical aberration (solid line) and a sine condition (dotted line) when using the CD of Example 3.
  • 10 is a cross-sectional view of an objective lens according to Example 4.
  • FIG. 13A is a diagram showing the longitudinal spherical aberration (solid line) and the sine condition (dotted line) when using the BD of Example 4, and
  • FIG. 13B is the longitudinal spherical surface when using the DVD of Example 4.
  • FIG. 13C shows aberration (solid line) and sine condition (dotted line)
  • FIG. 13C shows longitudinal spherical aberration (solid line) and sine condition (dotted line) when the CD of Example 4 is used.
  • 10 is a cross-sectional view of an objective lens according to Example 5.
  • FIG. FIG. FIG. 13A is a diagram showing the longitudinal spherical aberration (solid line) and the sine condition (dotted line) when using the BD of Example 4
  • FIG. 13B is the longitudinal spherical surface when using
  • FIG. 15A is a diagram showing longitudinal spherical aberration (solid line) and sine condition (dotted line) when using the BD of Example 5, and FIG. 15B is a longitudinal spherical surface when using the DVD of Example 5.
  • FIG. 15C illustrates aberrations (solid line) and sine conditions (dotted line), and FIG. 15C illustrates longitudinal spherical aberration (solid line) and sine conditions (dotted line) when the CD of Example 5 is used.
  • 10 is a cross-sectional view of an objective lens according to Example 6.
  • FIG. FIG. 17A is a diagram showing longitudinal spherical aberration (solid line) and sine condition (dotted line) when using the BD of Example 6, and FIG. 17B is a longitudinal spherical surface when using the DVD of Example 6.
  • FIG. 17A is a diagram showing longitudinal spherical aberration (solid line) and sine condition (dotted line) when using the BD of Example 6
  • FIG. 17B is a longitudinal spherical surface when using the DVD
  • FIG. 17C is a diagram illustrating aberration (solid line) and a sine condition (dotted line), and FIG. 17C is a diagram illustrating longitudinal spherical aberration (solid line) and a sine condition (dotted line) when the CD of Example 6 is used.
  • 10 is a cross-sectional view of an objective lens according to Example 7.
  • FIG. 19A is a diagram showing longitudinal spherical aberration (solid line) and a sine condition (dotted line) when using the BD of Example 7, and
  • FIG. 19B is a vertical spherical surface when using the DVD of Example 7.
  • FIG. 19C is a diagram showing aberration (solid line) and a sine condition (dotted line)
  • FIG. 19C is a diagram showing longitudinal spherical aberration (solid line) and a sine condition (dotted line) when the CD of Example 7 is used.
  • 10 is a cross-sectional view of an objective lens according to Example 8.
  • FIG. FIG. 21A is a diagram showing longitudinal spherical aberration (solid line) and a sine condition (dotted line) when using the BD of Example 8
  • FIG. 21B is a vertical spherical surface when using the DVD of Example 8.
  • FIG. 21C is a diagram showing aberration (solid line) and a sine condition (dotted line)
  • FIG. 21C is a diagram showing longitudinal spherical aberration (solid line) and a sine condition (dotted line) when the CD of Example 8 is used.
  • FIG. 5 is a diagram schematically showing a configuration of the optical pickup device PU1 of the present embodiment that can appropriately record and / or reproduce information on BD, DVD, and CD, which are different optical disks.
  • Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device.
  • the first optical disc is a BD
  • the second optical disc is a DVD
  • the third optical disc is a CD.
  • the present invention is not limited to the present embodiment.
  • the unit includes a unit MD1, a laser module LM, and the like in which a first semiconductor laser LD1 (first light source) to be emitted and a first light receiving element PD1 that receives a reflected light beam from the information recording surface RL1 of the BD are integrated.
  • a first region including the optical axis, a second region (refractive surface) around the first region, and a second region around the first region. It has three regions (having a diffractive structure) and a fourth region (refractive surface) farthest from the optical axis around it.
  • the objective lens OBJ satisfies the following formula.
  • ⁇ 1 represents the effective diameter of the surface on which the first light beam enters the objective lens
  • f3 represents the focal length of the objective lens when the third light beam is used
  • d represents the axial thickness of the objective lens.
  • the polarized light is converted into circularly polarized light, the diameter of the light beam is regulated by the stop ST, and is incident on the objective lens OBJ.
  • the first and second optical disk combined areas of the objective lens OBJ and the first optical disk dedicated area (the light flux that has passed through the third optical disk dedicated area is flared to form a spot peripheral portion). Are spots formed on the information recording surface RL1 of the BD through the protective substrate PL1 having a thickness of 0.1 mm.
  • the reflected light beam modulated by the information pits on the information recording surface RL1 is transmitted again through the objective lens OBJ and the aperture stop ST, converted from circularly polarized light to linearly polarized light by a quarter wave plate (not shown), and converged by the collimating lens CL. After being transmitted through the polarization dichroic prism PPS, it is converged on the light receiving surface of the first light receiving element PD1. Then, by using the output signal of the first light receiving element PD1 to focus or track the objective lens OBJ by the biaxial actuator AC, it is possible to read information recorded on the BD.
  • the light is converted from linearly polarized light to circularly polarized light by the quarter wavelength plate and enters the objective lens OBJ.
  • the first optical disk / second optical disk combined area of the objective lens OBJ (the light beam that has passed through the first optical disk dedicated area and the third optical disk dedicated area is flared to form a spot peripheral portion). It becomes a spot formed on the information recording surface RL2 of the DVD through the 6 mm protective substrate PL2, and forms the center of the spot.
  • the third optical disk dedicated area of the objective lens OBJ (the light beam that has passed through the first optical disk / second optical disk combined area and the first optical disk dedicated area is flared to form a spot peripheral portion). It becomes a spot formed on the information recording surface RL3 of the CD through the protective substrate PL3 of 2 mm.
  • the reflected light beam modulated by the information pits on the information recording surface RL3 is again transmitted through the objective lens OBJ and the aperture stop ST, converted from circularly polarized light to linearly polarized light by a quarter wave plate (not shown), and converged by the collimating lens CL. After being reflected by the polarization dichroic prism PPS and then reflected twice in the prism, it is converged on the third light receiving element DS2.
  • the information recorded on the CD can be read using the output signal of the third light receiving element DS2.
  • the objective lens is configured by combining the BD / DVD shared area, the CD dedicated area, and the BD dedicated area, the BD / DVD shared area, the BD dedicated area, and the CD dedicated in the lens data table.
  • the area is shown separately. (The same table is used because the shape of the mother aspherical surface of the BD / DVD combined area and the BD exclusive area is the same.)
  • the light source side optical surface of the objective lens is divided into 4 areas or 6 areas. Although it is divided into regions, the optical surface on the optical disc side is not divided and is a common aspherical surface.
  • the first light beam and the second light beam that have passed through the objective lens may be emitted from the surface on the optical disk side in the CD-dedicated area. Since there is a possibility that the third light flux that has passed through the optical disc side of the BD / DVD combined area may be emitted from the optical disk side optical surface of the BD / DVD combined area and the CD dedicated area.
  • the optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in Table 1 are substituted into Formula 1.
  • X (h) is an axis in the optical axis direction (the light traveling direction is positive)
  • is a conic constant
  • a i is an i-th order aspheric coefficient
  • h is a height from the optical axis
  • r is The paraxial radius of curvature.
  • the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted into the optical path difference function of Formula 2. .
  • Example 1 shows lens data of Example 1. 6 is a cross-sectional view of the objective lens of Example 1.
  • FIG. 7A is a diagram showing longitudinal spherical aberration (solid line) and sine condition (dotted line) when using the BD of Example 1
  • FIG. 7B is a vertical spherical surface when using DVD of Example 1.
  • FIG. 7C illustrates aberrations (solid line) and sine conditions (dotted line)
  • FIG. 7C illustrates longitudinal spherical aberration (solid line) and sine conditions (dotted line) when the CD of Example 1 is used.
  • the first region R1 including the optical axis is a BD / DVD shared region
  • the second region R2 around the outside is a CD dedicated region
  • the outside periphery The third area R3 is a BD / DVD shared area
  • the outer area surrounding the fourth area R4 is a dedicated CD area
  • the outer area surrounding the fifth area R5 is a BD / DVD shared area
  • the sixth region R6 farthest from the optical axis is a BD dedicated region.
  • the paraxial curvature radius of the mother aspheric surface in the BD / DVD common area is 0.949 mm, and the paraxial curvature radius of the mother aspheric surface in the CD dedicated area is 1.347 mm, and the difference is 0.398 mm.
  • a (0/1) diffraction structure (the diffraction order is BD is 0th order, DVD is 1st order, the same notation format hereinafter) is formed.
  • the diffractive structure is a five-level staircase type diffractive structure as shown in FIG. 2 (c), which is composed of four steps giving an optical path difference of one step 2 ⁇ 1.
  • each value is as follows.
  • FIG. 8 is a sectional view of the objective lens of Example 2.
  • FIG. 9A is a diagram showing longitudinal spherical aberration (solid line) and a sine condition (dotted line) when using the BD of Example 2
  • FIG. 9B is a longitudinal spherical surface when using the DVD of Example 2.
  • FIG. 9C is a diagram illustrating the aberration (solid line) and the sine condition (dotted line)
  • FIG. 9C is a diagram illustrating the longitudinal spherical aberration (solid line) and the sine condition (dotted line) when the CD of Example 2 is used.
  • the second embodiment uses the lens data of the first embodiment and has the same number of areas, but the divided positions of the areas are different.
  • FIG. 10 is a sectional view of the objective lens of Example 3.
  • the lens has four areas.
  • the first area R1 including the optical axis is used as a BD / DVD shared area
  • the second area R2 is a CD dedicated area
  • the surrounding third area R3 is a BD / DVD shared area
  • the fourth area R4 farthest from the optical axis is the BD dedicated area.
  • FIG. 11A is a diagram showing longitudinal spherical aberration (solid line) and sine condition (dotted line) when using the BD of Example 3
  • FIG. 11B is a longitudinal spherical surface when using the DVD of Example 3.
  • FIG. 11C is a diagram showing aberration (solid line) and a sine condition (dotted line)
  • FIG. 11C is a diagram showing longitudinal spherical aberration (solid line) and a sine condition (dotted line) when using the CD of Example 3.
  • the third embodiment uses the lens data of the first embodiment, but the number of areas and the division positions are different. The other points are the same as those in the first embodiment including the numerical values of the formulas, and thus the description thereof is omitted.
  • Example 4 Table 2 shows lens data of Example 4.
  • FIG. 4 shows lens data of Example 4.
  • FIG. 12 is a sectional view of the objective lens of Example 4.
  • FIG. 13A is a diagram showing the longitudinal spherical aberration (solid line) and the sine condition (dotted line) when using the BD of Example 4, and FIG. 13B is the longitudinal spherical surface when using the DVD of Example 4.
  • FIG. 13C shows aberration (solid line) and sine condition (dotted line), and FIG. 13C shows longitudinal spherical aberration (solid line) and sine condition (dotted line) when the CD of Example 4 is used.
  • FIG. 13C shows aberration (solid line) and sine condition (dotted line) when the CD of Example 4 is used.
  • the first area R1 including the optical axis is a BD / DVD shared area
  • the second area R2 around the outside is a CD dedicated area
  • the outside circumference The third area R3 is a BD / DVD shared area
  • the outer area surrounding the fourth area R4 is a dedicated CD area
  • the outer area surrounding the fifth area R5 is a BD / DVD shared area
  • the sixth region R6 farthest from the optical axis is a BD dedicated region.
  • the paraxial curvature radius of the mother aspheric surface in the BD / DVD common area is 0.955 mm
  • the paraxial curvature radius of the mother aspheric surface in the CD dedicated area is 1.342 mm
  • the difference is 0.386 mm.
  • a (1 / -2) diffraction structure is formed in the BD / DVD shared area.
  • the diffractive structure is a seven-level step diffractive structure having six steps. Moreover, in Example 3, each value is as follows.
  • FIG. 14 is a sectional view of the objective lens of Example 5.
  • FIG. 15A is a diagram showing longitudinal spherical aberration (solid line) and sine condition (dotted line) when using the BD of Example 5
  • FIG. 15B is a longitudinal spherical surface when using the DVD of Example 5.
  • FIG. 15C illustrates aberrations (solid line) and sine conditions (dotted line)
  • FIG. 15C illustrates longitudinal spherical aberration (solid line) and sine conditions (dotted line) when the CD of Example 5 is used.
  • the fifth embodiment uses the lens data of the fourth embodiment and has the same number of regions, but the divided positions of the regions are different.
  • FIG. 16 is a cross-sectional view of the objective lens according to Example 6.
  • the lens has four areas.
  • the first area R1 including the optical axis is a BD / DVD shared area
  • the surrounding first area is a CD dedicated area
  • the surrounding third area R3 is a BD / DVD shared area
  • the fourth area R4 farthest from the optical axis is the BD dedicated area.
  • FIG. 17A is a diagram showing longitudinal spherical aberration (solid line) and sine condition (dotted line) when using the BD of Example 6, and FIG. 17B is a longitudinal spherical surface when using the DVD of Example 6.
  • FIG. 17C is a diagram illustrating aberration (solid line) and a sine condition (dotted line)
  • FIG. 17C is a diagram illustrating longitudinal spherical aberration (solid line) and a sine condition (dotted line) when the CD of Example 6 is used.
  • the sixth embodiment uses the lens data of the fourth embodiment, but the number of areas and the division positions are different. The other points are the same as those in the fourth embodiment including the numerical values of the formulas, and thus the description thereof is omitted.
  • Table 3 shows lens data of Example 7.
  • FIG. 18 is a sectional view of the objective lens of Example 7.
  • FIG. 19A is a diagram showing longitudinal spherical aberration (solid line) and a sine condition (dotted line) when using the BD of Example 7, and
  • FIG. 19B is a vertical spherical surface when using the DVD of Example 7.
  • FIG. 19C is a diagram showing aberration (solid line) and a sine condition (dotted line), and
  • FIG. 19C is a diagram showing longitudinal spherical aberration (solid line) and a sine condition (dotted line) when the CD of Example 7 is used.
  • Example 7 as shown in the enlarged view of FIG.
  • the first region R1 including the optical axis is a BD / DVD shared region
  • the second region R2 around the outside is a CD-dedicated region
  • the outside periphery The third area R3 is a BD / DVD shared area
  • the outer area surrounding the fourth area R4 is a dedicated CD area
  • the outer area surrounding the fifth area R5 is a BD / DVD shared area
  • the sixth region R6 farthest from the optical axis is a BD dedicated region.
  • the paraxial curvature radius of the mother aspheric surface in the BD / DVD common area is 1.504 mm
  • the paraxial curvature radius of the mother aspheric surface in the CD dedicated area is 1.339 mm
  • the difference is 0.165 mm.
  • a (2/1) diffraction structure is formed in the BD / DVD shared area.
  • the diffractive structure is a blazed diffractive structure as shown in FIG. 2B having a step of 2 ⁇ 1.
  • each value is
  • FIG. 20 is a cross-sectional view of the objective lens according to the eighth embodiment.
  • FIG. 21A is a diagram showing longitudinal spherical aberration (solid line) and a sine condition (dotted line) when using the BD of Example 8
  • FIG. 21B is a vertical spherical surface when using the DVD of Example 8.
  • FIG. 21C is a diagram showing aberration (solid line) and a sine condition (dotted line)
  • FIG. 21C is a diagram showing longitudinal spherical aberration (solid line) and a sine condition (dotted line) when the CD of Example 8 is used.
  • Example 8 uses the lens data of Example 7 and has the same number of areas, but the division positions of the areas are different.
  • FIG. 22 is a sectional view of the objective lens according to Example 9.
  • the lens has four areas.
  • the first area R1 including the optical axis is a BD / DVD shared area
  • the surrounding first area is a CD dedicated area
  • the surrounding third area R3 is a BD / DVD shared area
  • the fourth area R4 farthest from the optical axis is the BD dedicated area.
  • FIG. 23A is a diagram showing longitudinal spherical aberration (solid line) and a sine condition (dotted line) when using the BD of Example 9, and FIG. 23B is a vertical spherical surface when using the DVD of Example 9.
  • FIG. 23C is a diagram showing aberration (solid line) and a sine condition (dotted line), and FIG. 23C is a diagram showing longitudinal spherical aberration (solid line) and a sine condition (dotted line) when the CD of Example 9 is used.
  • the ninth embodiment uses the lens data of the seventh embodiment, but the number of areas and the division positions are different. In other respects, the numerical value of the formula is the same as that of the seventh embodiment, and the description thereof is omitted. (Example 10) Table 4 shows lens data of Example 10.
  • FIG. 10 Table 4 shows lens data of Example 10.
  • the first region R1 including the optical axis is a BD / DVD shared region
  • the surrounding second region R2 is a CD dedicated region
  • the surrounding third region R3 is a BD / DVD shared area
  • the fourth area R4 farthest from the optical axis is a BD dedicated area.
  • the radius of curvature of the mother aspheric surface in the BD / DVD shared area is 0.836 mm
  • the radius of curvature of the mother aspheric surface in the CD dedicated area is 1.2475 mm
  • the difference is 0.4115 mm.
  • a (0/1) diffraction structure is formed in the BD / DVD shared area.
  • each value is as follows.
  • Example 11 Table 5 shows lens data of Example 11.
  • FIG. 25 is a cross-sectional view of the objective lens according to the eleventh embodiment.
  • the first region R1 including the optical axis is a BD / DVD shared region
  • the surrounding second region R2 is a CD dedicated region
  • the surrounding third region R3 is a BD / DVD shared area
  • the fourth area R4 farthest from the optical axis is a BD dedicated area.
  • the radius of curvature of the mother aspherical surface in the BD / DVD shared area is 0.8721 mm
  • the radius of curvature of the mother aspherical surface in the CD dedicated area is 1.2513 mm
  • the difference is 0.3792 mm.
  • each value is as follows.
  • FIG. 26 is a cross-sectional view of the objective lens according to the twelfth embodiment.
  • the first region R1 including the optical axis is a BD / DVD shared region
  • the surrounding second region R2 is a CD dedicated region
  • the surrounding third region R3 is a BD / DVD shared area
  • the fourth area R4 farthest from the optical axis is a BD dedicated area.
  • the radius of curvature of the mother aspheric surface in the BD / DVD common area is 1.0150 mm
  • the radius of curvature of the mother aspheric surface in the CD dedicated area is 1.1598 mm
  • the difference is 0.1448 mm.
  • a (2/1) diffraction structure is formed in the BD / DVD shared area.
  • each value is as follows.
  • FIGS. 27 to 28 are diagrams showing modifications of the objective lens.
  • the region R1 including the optical axis is a BD / DVD shared region (having the diffraction structure of (0/1)), and the surrounding region R2 is a CD-dedicated region (refractive surface).
  • the outer peripheral region R3 is a BD / DVD shared region (having a (0/1) diffraction structure), and the outer peripheral region R4 is a BD dedicated region (refractive surface).
  • FIG. 28 shows a modification.
  • the region R1 including the optical axis is a BD / DVD shared region (having a (1 / -2) diffraction structure), and the outer peripheral region R2 is a CD-dedicated region (refractive surface).
  • the outer peripheral region R3 is a BD / DVD shared region (having a (1 / -2) diffraction structure).
  • the region R1 including the optical axis is a BD / DVD shared region (having the diffraction structure of (2/1)), and the surrounding region R2 is a CD dedicated region (refractive
  • the outer peripheral region R3 is a BD / DVD shared region (having a (2/1) diffraction structure).

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Lenses (AREA)

Abstract

 本発明は、薄型の光ディスクドライブで用いることが出来、異なる光ディスクに対して適切に情報の記録/再生を行える光ピックアップ装置及びそれに好適な対物レンズを提供する。  (1)式を満たす小径の対物レンズにし、(2)式を満たすことにより、第3光ディスク使用時の焦点距離f3を長くし、加えて、(3)式を満たすことにより、集光特性等の光学性能もさらに維持しつつ、薄型の光ディスクドライブに適用可能とする。  1.5(mm)≦φ1≦3.4(mm) (1)  1.7×f3>φ1 (2)  0.7≦d/f3≦1.42(mm) (3) 但し、  φ1:第1光束が前記対物レンズに入射する面の有効径  f3:第3光束使用時の前記対物レンズの焦点距離  d:対物レンズの軸上

Description

対物レンズ及び光ピックアップ装置
 本発明は、異なる種類の光ディスクに対して互換可能に情報の記録及び/又は再生を行える光ピックアップ装置及びそれに用いる対物レンズに関する。
 近年、波長400nm程度の青紫色半導体レーザを用いて、情報の記録及び/又は再生(以下、「記録及び/又は再生」を「記録/再生」と記載する)を行える高密度光ディスクシステムの研究・開発が急速に進んでいる。一例として、NA0.85、光源波長405nmの仕様で情報記録/再生を行う光ディスク、いわゆるBlu-ray Disc(以下、BDという)では、DVD(NA0.6、光源波長650nm、記憶容量4.7GB)と同じ大きさである直径12cmの光ディスクに対して、1層あたり25GBの情報の記録が可能である。
 ところで、かかるタイプの高密度光ディスク、例えばBDに対して適切に情報の記録/再生ができると言うだけでは、光ディスクプレーヤ/レコーダ(光情報記録再生装置)の製品としての価値は十分なものとはいえない。現在において、多種多様な情報を記録したDVDやCD(コンパクトディスク)が販売されている現実をふまえると、BDに対して情報の記録/再生ができるだけでは足らず、例えばユーザが所有しているDVDやCDに対しても同様に適切に情報の記録/再生ができるようにすることが、BD用の光ディスクプレーヤ/レコーダとしての商品価値を高めることに通じるのである。このような背景から、BD用の光ディスクプレーヤ/レコーダに搭載される光ピックアップ装置は、BDとDVD、更にはCDとの何れに対しても互換性を維持しながら適切に情報を記録/再生できる性能を有することが望まれる。
 BDとDVD、更にはCDとの何れに対しても互換性を維持しながら適切に情報を記録/再生できるようにする方法として、BD用の光学系とDVDやCD用の光学系とを情報を記録/再生する光ディスクの記録密度に応じて選択的に切り替える方法が考えられるが、複数の光学系が必要となるので、小型化に不利であり、またコストが増大する。
 従って、光ピックアップ装置の構成を簡素化し、低コスト化を図るためには、互換性を有する光ピックアップ装置においても、BD用の光学系とDVDやCD用の光学系とを共通化して、光ピックアップ装置を構成する光学部品点数を極力減らすのが好ましい。そして、光ディスクに対向して配置される対物レンズを共通化することが光ピックアップ装置の構成の簡素化、低コスト化に最も有利となる。
 ここで、特許文献1には、3種類の波長の光を用いて、2種類以上の基板厚の複数の光ディスクに対して情報を記録/再生することができる光ピックアップ装置に用いられる対物レンズが開示されている。特許文献1の実施例では、405nm、657nm,788nmの波長の光を用いて、0.6mm,1.2mmの2種類のみの基板厚の光ディスクに対して情報の記録/再生を行っている。波長405nmと波長657nmの光は、基板厚0.6mmの光ディスクに使用し、波長788nmの光は基板厚1.2mmの光ディスクに使用している。かかる対物レンズでは、複数種類の光ディスクに対応させるために、レーザ光が対物レンズに入射する面を少なくとも3つの領域に分割している。複数の波長のレーザ光のいずれかが対物レンズの対応する領域を通過した場合、対応する光ディスクの情報記録面上に集光するようにしている。特許文献1の実施例1では対物レンズを4領域に分割し、対物レンズの最内領域を3種類の波長の光それぞれを3種類の光ディスクのそれぞれの情報記録面に集光可能とする屈折面にし、その外側の領域を405nmの波長と788nmの波長の光を2種類の光ディスクのそれぞれの情報記録面に集光可能とする屈折面にし、その外側を405nmの波長と657nmの波長の光を2種類の光ディスクのそれぞれの情報記録面に集光可能とする回折面にし、その外側を405nmの波長の光を1種類の光ディスクの情報記録面に集光可能とする回折面にしている。又、実施例2,3では対物レンズを3領域に分割し、最内領域を3種類の波長の光それぞれを3種類の光ディスクのそれぞれの情報記録面に集光可能とする屈折面にし、その外側を657nmの波長と788nmの波長の光を2種類の光ディスクのそれぞれの情報記録面に集光可能とする回折面にし、その外側を405nmの波長と657nmの波長の光を2種類の光ディスクのそれぞれの情報記録面に集光可能とする回折面にしている。
 次に、特許文献2には、3種類の波長の光を用いて、基板厚の異なるBD,DVD,CDの3種類の規格の光ディスク情報を記録/再生することができる光ピックアップ装置に用いられる対物レンズが開示されている。特許文献2の実施例では波長405nm、658nm,785nmの光を用いて、基板厚0.0875mm,0.6mm,1.2mmの光ディスクに対して情報の記録/再生を行っている。かかる対物レンズでは、複数種類の光ディスクに対応させるために、レーザ光が対物レンズに入射する面を少なくとも3つの領域に分割している。複数の波長のレーザ光のいずれかが対物レンズの対応する領域を通過した場合、回折光を利用して振り分けて、対応する光ディスクの情報記録面上に集光するようにしている。具体的には、対物レンズの最内領域を通過した3種類の光束のそれぞれを、BD、DVD,CDそれぞれの情報記録面に集光可能とする回折面にし、その外側を通過した405nmと658nmの光束をBD、DVDそれぞれの情報記録面に集光可能とし、通過した785nmの光束をCDの情報記録面には集光させない回折面にし、その外側を通過した405nmの光束をBDの情報記録面に集光可能とし、通過した658nmと785nmの光束のそれぞれを、DVD,CDの情報記録面上には集光させない面にし、実施例1,2,3では最外領域を屈折面にし、実施例4,5では最外領域を回折面にしている。
特開2006-40512号公報 特許第4033240号明細書
 ここで、特許文献1では、全ての実施例において、情報の記録/再生を行える光ディスクの種類は基板厚が0.6mmまたは1.2mmのものである。従って、特許文献1に記載されている対物レンズでは、基板厚が0.1mmであるBDに対して情報の記録/再生を行うことができない。
 また、特許文献2に記載の対物レンズにおいては、最も中心の領域が、通過した第1光束をBDに集光し、第2光束をDVDに集光し、第3光束をCDに集光することができる領域となっている。当該領域においてBD,DVD,CDの3種類の規格の光ディスクに対応するために、レーザ光が対物レンズに入射する面に回折次数の異なる回折構造を重畳している。そのため、回折構造の凹凸1つ分の幅であるピッチ幅が狭い輪帯が発生してしまう可能性が高い。特許文献2においては、ピッチ幅が5μm以下であればその輪帯を除去しても光学的性能に大きな影響を及ぼすことがない旨記載されているが、5μm以下の輪帯を除去しても、実形状化及び製造に際してはまだ困難性がある狭い幅の輪帯が残存する可能性がある。また、当然ながら、そのような除去を行わない場合は、更に実形状化及び製造が困難となる。
 また、1つの対物レンズでそれぞれ異なる基板厚を有する光ディスクに対応させる場合であって、情報を記録/再生しようとする光ディスクがCDの場合、CDは他の光ディスクに比べて光ディスクの基板厚が大きいので、対物レンズの像側主点から像側焦点までの距離を長くする必要がある。さらに、CDの記録/再生に際しては、十分な量のワーキングディスタンス(レーザ光が対物レンズから射出する面の最も光ディスク寄りの位置から、光ディスクまでの距離)を確保するために、対物レンズの焦点距離が長くなる傾向がある。例えば、特許文献1の全ての実施例において、光ディスクがCDの場合、対物レンズの焦点距離が3.118mmと長く、対物レンズの軸上厚も2.3mmと厚くなっている。更に、有効径も3.9mmと大きくなっている。また、特許文献2の実施例3において光ディスクがCDの場合、対物レンズの焦点距離が2.43mmとやはり長く、対物レンズの軸上厚も2.37mmと厚くなっている。また、特許文献2においてCDの焦点距離が最短となる実施例においてもその焦点距離は2.24mmとやはり長い。即ち、特許文献2において、対物レンズの軸上厚を厚くすることにより、CDでの焦点距離とワーキングディスタンスを確保している。
 しかしながら、上述のような厚肉の対物レンズではノートパソコン等に搭載するための薄型の光ディスクドライブに用いることが困難である。
 更に、特許文献2に記載されているように、対物レンズの光軸を含む領域を、BD、DVD、CD用の光束が通過する共用領域として用いると、他の光ディスクと比較して基板厚が厚いCDのワーキングディスタンスが不足気味となり、使い勝手が悪くなるという問題もある。
 本発明は、上述の問題を考慮したものであり、CDのワーキングディスタンスを十分に確保しながらも薄型の光ディスクドライブで用いることが出来、BD,DVD,CDといった異なる光ディスクに対して適切に情報の記録/再生を行える光ピックアップ装置及びそれに好適な対物レンズを提供することを目的とする。
 請求項1に記載の対物レンズは、波長λ1の第1光束を出射する第1光源と、波長λ2(λ1<λ2)の第2光束を出射する第2光源と、波長λ3(λ2<λ3)の第3光束を出射する第3光源と、対物レンズとを有し、前記対物レンズは、前記第1光束を厚さt1の保護層を有する第1光ディスクの情報記録面上に情報の記録及び/又は再生を行えるように集光させ、前記第2光束を厚さt2(t1<t2)の保護層を有する第2光ディスクの情報記録面上に情報の記録及び/又は再生を行えるように集光させ、前記第3光束を厚さt3(t2<t3)の保護層を有する第3光ディスクの情報記録面上に情報の記録及び/又は再生を行えるように集光させることによって情報の記録及び/又は再生を行う光ピックアップ装置用の対物レンズであって、前記対物レンズは単玉レンズであり、少なくとも一つの光学面が、光軸を含む第1領域と、前記第1領域の外側に設けられた第2領域と、前記第2領域の外側に設けられた第3領域とを有し、以下の式を満たすことを特徴とする。
 1.5(mm)≦φ1≦3.4(mm)   (1)
 1.7×f3>φ1   (2)
 0.7≦d/f3≦1.42(mm)   (3)
但し、
 φ1:前記第1光束が前記対物レンズに入射する面の有効径
 f3:前記第3光束使用時の前記対物レンズの焦点距離
 d:前記対物レンズの軸上厚
 本発明によれば、(1)式を満たす小径の対物レンズにし、且つ、(2)式を満たすことにより、第3光ディスク使用時の焦点距離f3を長くすることで、対物レンズの像側主点からレーザ光が対物レンズから射出する面までの距離と基板厚を、焦点距離f3から引いた値であるワーキングディスタンスWD3を確保できるので、第3光ディスクの情報記録面上での集光スポット径を最適な状態にするために、アクチュエータ等で対物レンズを光軸に沿って変位させる際の余裕が生じる。更に、焦点距離f3を長く維持した上で、集光特性等の光学性能もさらに維持しつつ、薄型の光ディスクドライブに適用可能とするためには、条件式(1)、(2)を満たしつつ、(3)式も満たすことによって、当該目的を達成できることを本発明者が見出した。尚、(2)式中の「1.7」は、第1光ディスクの像側開口数NAの2倍に相当する。通常の第1光ディスク用屈折レンズにおいては、Φ=1.7×fを満たすことになるが、本発明においてはΦを1.7×f3よりも小さくすることにより、CDの焦点距離を確保しながら、Φを小さくした対物レンズを得ている。
 請求項2に記載の対物レンズは、請求項1に記載の発明において、以下の式を満たすことを特徴とする。
 0.15(mm)≦WD3≦0.5(mm)   (4)
但し、
 WD3:前記第3光ディスク使用時のワーキングディスタンス
 第3光ディスクにおけるワーキングディスタンスをあまり長くすると、対物レンズのふち厚(光軸方向の最小肉厚)が小さくなり、その結果、偏肉比が大きくなり、製造上好適な長さだけ確保することが困難となってしまうという問題がある。また、第3光ディスクにおけるワーキングディスタンスを長くすることにより、第3光束に対する焦点距離も長くなる。しかし、ワーキングディスタンスが長くなりすぎると、対物レンズがプラスチックレンズである場合に、温度変化によって収差の変化が大きくなるという問題が生じる。そこで、上記構成にすることにより、偏肉比を小さく抑え、製造が容易に行え、しかも、対物レンズがプラスチックレンズであっても、温度変化によって収差の変化が小さい対物レンズを提供することが可能となる。
 請求項3に記載の対物レンズは、請求項1又は2に記載の発明において、前記領域の内、ある領域における母非球面の近軸曲率半径と、他の領域における母非球面の近軸曲率半径との差が、0.1mm以上、0.7mm以下であることを特徴とする。
 請求項4に記載の対物レンズは、請求項3に記載の発明において、前記領域の内、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光する領域における母非球面の近軸曲率半径と、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光する領域又は通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光する領域における母非球面の近軸曲率半径との差が、0.1mm以上、0.7mm以下であることを特徴とする。
 レンズの面形状を、第3光ディスクに集光させることを優先とした面形状とした場合、第3光ディスクは、他の光ディスクに比べて基板厚が大きいので、第3光束の入射面から集光点までの距離が長く、第3光ディスクの情報記録面に集光する光束が通過する領域の母非球面の近軸曲率半径は大きいので、面形状もゆるくなる。領域間の近軸曲率半径の差が小さい場合、第3光ディスクの情報記録面に集光する光束が通過しない領域(例えば、第1光ディスク・第2光ディスク兼用の領域や第1光ディスク専用の領域)の母非球面の近軸曲率半径も大きくなってしまうので面形状がゆるくなり、これらの領域の焦点距離も長くなり、ひいては、対物レンズの軸上厚が厚くなってしまう。例えば、特許文献1の実施例では、CD用の光束が通過する領域の母非球面の曲率半径の差は、実施例1では0.0172mm、実施例2では0.0119mmと小さい。このため、CD用の光束を集光しない領域の焦点距離が長くなり、その分対物レンズの軸上厚が厚くなってしまう。また、特許文献2では、CD用の光束を集光する領域の母非球面の曲率半径を大きくし、CD用の光束を集光する領域とCD用の光束を集光しない領域の母非球面の曲率半径の差が小さくなっているので、CD用の光束を集光しない領域の母非球面の近軸曲率半径も大きくなっている。例えば、曲率半径の差は最大でも実施例5で0.0701mmという小さい値となっている。そのため、CD用の光束を集光しない領域の焦点距離が長くなり、対物レンズの軸上厚も長くなり、それに伴い対物レンズの有効径も大きくなる。対物レンズの軸上厚は最小でも実施例3で2.37mmと厚くなっている。対物レンズの軸上厚が厚くなることで、薄型の光ディスクドライブに用いることが困難となっている。
 即ち、上記請求項3や請求項4の構成とすることにより、第3光ディスク用の領域の近軸曲率半径を大きく維持することができるため、第3光ディスクにおける焦点距離を長めに維持することができる。更に、第1光ディスク・第2光ディスク兼用領域や第1光ディスク専用領域の近軸曲率半径を小さくすることが可能となるため、対物レンズの軸上厚を薄くすることが可能となる。従って、第3光ディスクの情報記録面に集光する光束が通過する領域は、第3光束を第3光ディスクの情報記録面に良好に集光し、第3光ディスクの情報記録面に集光する光束が通過しない領域は、第1光束又は第2光束を、第1光ディスク又は第2光ディスクの情報記録面上に良好に集光させるようにした上で、対物レンズの軸上厚を薄くすることができる。
 請求項5に記載の対物レンズは、請求項1~4のいずれかに記載の発明において、通過した第1光束を第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光する対物レンズの領域と、通過した第3光束を第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光する対物レンズの領域とは、異なる領域であることを特徴とする。
 上記構成により、第3光ディスク用の領域の近軸曲率半径を大きく維持し、第1光ディスク用の領域の近軸曲率半径を小さくすることができるため、第3光ディスクにおける焦点距離を長めに維持しながら、対物レンズの軸上厚を薄くすることが可能となる。
 請求項6に記載の対物レンズは、請求項1~5のいずれかに記載の発明において、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光せず、通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第3光ディスク専用領域を有することを特徴とする。
 上記構成により、第3光ディスク用の領域の近軸曲率半径を大きく維持し、第1光ディスク用の領域の近軸曲率半径を小さくすることができるため、第3光ディスクにおける焦点距離を長めに維持しながら、対物レンズの軸上厚を薄くすることが可能となる。また、第1光ディスク、第2光ディスク、第3光ディスクの全てに対応した第1光ディスク・第2光ディスク・第3光ディスク兼用領域を設けながら、第3光ディスク用の焦点距離を伸ばし、ワーキングディスタンスを長く確保しようとすると、各光束を振り分けるための回折構造のピッチが非常に細かくなり、対物レンズの成形が困難となるところ、第1光ディスク・第2光ディスク・第3光ディスク兼用領域を設ける必要がなくなるため、ピッチの非常に細かい回折構造を設ける必要がなくなり、製造しやすい対物レンズを得ることが可能となる。
 請求項7に記載の対物レンズは、請求項6に記載の発明において、前記第3光ディスク専用領域は、屈折面であることを特徴とする。
 前記第3光ディスク専用領域を、回折構造を有しない屈折面とすることで、光の利用効率を高めることができると共に、対物レンズの成形を容易にできる。
 請求項8に記載の対物レンズは、請求項6又は7に記載の発明において、前記第3光ディスク専用領域の数は、1以上3以下であることを特徴とする。
 上記構成により、第1光ディスクに集光される第1光束の光量ロスを抑えることが出来ると共に、対物レンズの構造を単純とできるため、製造しやすい対物レンズを得ることができる。
 請求項9に記載の対物レンズは、請求項1~8のいずれかに記載の発明において、前記第1領域は、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第2光束を、前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光するが、通過した前記第3光束を、前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第1光ディスク・第2光ディスク兼用領域であることを特徴とする。
 上記構成により、第3光ディスク用の領域の近軸曲率半径を大きく維持し、第1光ディスク用の領域の近軸曲率半径を小さくすることができるため、第3光ディスクにおける焦点距離を長めに維持しながら、対物レンズの軸上厚を薄くすることが可能となる。また、第1光ディスク、第2光ディスク、第3光ディスクの全てに対応した第1光ディスク・第2光ディスク・第3光ディスク兼用領域を設ける必要がなくなるため、ピッチの非常に細かい回折構造を設ける必要がなくなるため、製造しやすい対物レンズを得ることが可能となる。
 請求項10に記載の対物レンズは、請求項8に記載の発明において、前記第1領域は、第1回折構造を有し、前記第1回折構造は、前記第1光束が通過した際に、0次回折光(透過光)を他の次数の回折光に比して最も多く発生させる構造であることを特徴とする。
 対物レンズの光軸を含む領域を、第1、第2、第3の光束が通過し、それぞれ第1、第2、第3光ディスクに集光する共用領域として用いると、他の光ディスクと比較して基板厚が厚いCDのワーキングディスタンスが不足気味となり、使い勝手が悪くなるという問題がある。そこで、上記構成により、第1領域の近軸曲率半径を第1光ディスク専用領域と同様の近軸曲率半径にすることが可能となり、第1領域の近軸曲率半径を小さくすることが可能となり、対物レンズの軸上厚を薄くすることが可能となる。それによって、CDのワーキングディスタンスを長くすることが可能となる。
 また、波長が短い光束を用いる光ディスクでは情報記録密度が高く、各情報ピットの直径は小さいため、波長が短い光束を用いる光ディスクでは各情報ピットに合わせた集光スポットの直径が小さくなり、一般的に高い精度の集光特性が要求される。これに対し、光軸寄りの領域を通過した光束は屈折や回折による光の進行方向への変化が小さく、良好な集光特性を発揮できる。そこで本発明においては、対物レンズの光軸を含む領域を、第3光束よりも波長が短い第1光束及び第2光束の集光の為の領域として、収差特性を向上させている。
 請求項11に記載の対物レンズは、請求項1~10のいずれかに記載の対物レンズであって、前記第2領域は、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光せず、通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第3光ディスク専用領域であることを特徴とする。
 上記構成により、第3光ディスク用の領域の近軸曲率半径を大きく維持でき、第3光ディスクにおける焦点距離を長めに維持することが可能となる。また、第3光ディスクの使用時における比較的小さな像側開口数に対応させやすくなり、適切な情報の記録/再生を行える。例えば、第3光ディスクがCDである場合に、CDの必要開口数内にCD専用領域を設けることができるため、適切にCDに対する記録/再生を行うことが可能となる。
 請求項12に記載の対物レンズは、請求項1~11のいずれかに記載の対物レンズであって、前記第3領域は、通過した前記第1光束を、前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第2光束を、前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光するが、通過した前記第3光束を、前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第1光ディスク・第2光ディスク兼用領域であることを特徴とする。
 上記構成により、第1光ディスクがBDであって第2光ディスクがDVDである場合に、BDおよびDVDの必要開口数内にBD/DVD兼用領域を設けることができるため、適切にBDおよびDVDに対する記録/再生を行うことが可能となる。
 また、第3領域を、第1光ディスク・第2光ディスク兼用領域とすれば、第1光束及び第2光束の利用効率の低下を防ぐことができる。
 請求項13に記載の対物レンズは、請求項1~12のいずれかに記載の発明において、前記対物レンズは、前記第3領域の外側に第4領域を有し、前記第4領域の外側に第5領域を有し、前記第5領域の外側に第6領域を有し、前記第6領域は、前記対物レンズにおいて光軸から最も離れた領域であり、前記第1領域、前記第3領域及び前記第5領域は、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第1光ディスク・第2光ディスク兼用領域であり、前記第2領域及び前記第4領域は、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光せず、通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第3光ディスク専用領域であり、前記第6領域は、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光せず、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第1光ディスク専用領域であることを特徴とする。
 上記構成により、第3光ディスク用の領域の近軸曲率半径を大きく維持し、第1光ディスク用の領域の近軸曲率半径を小さくすることができるため、第3光ディスクにおける焦点距離を長めに維持しながら、対物レンズの軸上厚を薄くすることが可能となる。また、第1光ディスク、第2光ディスク、第3光ディスクの全てに対応した第1光ディスク・第2光ディスク・第3光ディスク兼用領域を設ける必要がなくなるため、ピッチの非常に細かい回折構造を設ける必要がなくなるため、製造しやすい対物レンズを得ることが可能となる。更に、第1光ディスクに集光される第1光束の光量ロスを抑えることが出来ると共に、対物レンズの構造を単純とできるため、製造しやすい対物レンズを得ることができる。また、第3光ディスクがCDである場合に、CDの必要開口数内にCD専用領域を設けることができるため、適切にCDに対する記録/再生を行うことが可能となる。更に、第1光ディスクがBDであって第2光ディスクがDVDである場合に、BDおよびDVDの必要開口数内にBD/DVD兼用領域を設けることができるため、適切にBDおよびDVDに対する記録/再生を行うことが可能となる。又、6領域にすることで、波長の異なる3つの光束について光利用効率のバランスがとれた設計が可能になる。
 請求項14に記載の対物レンズは、請求項13に記載の対物レンズにおいて、前記第6領域は、屈折面であることを特徴とする。
 光軸から最も遠い領域は光軸に対する面法線の傾きが大きいので、ここに回折構造を設けると、ケラレ等による光の利用効率の低下が生じる恐れがあるが、屈折面とすることで光の利用効率の低下を抑制できる。
 請求項15に記載の対物レンズは、請求項1~12に記載の対物レンズにおいて、前記対物レンズは、前記第3領域の外側に、第4領域を有し、前記第4領域は、前記対物レンズにおいて光軸から最も離れた領域であり、前記第1領域及び前記第3領域は、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第1光ディスク・第2光ディスク兼用領域であり、前記第2領域は、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光せず、通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第3光ディスク専用領域であり、前記第4領域は、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光せず、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第1光ディスク専用領域であることを特徴とする。
 上記構成により、請求項13に記載の構成と同様の効果を得ることができると共に、請求項13の記載の構成に比べて、第1光ディスクに集光される第1光束の光量ロスを更に抑えることが可能となると共に、対物レンズの構造をより単純とできるため、製造しやすい対物レンズを得ることができる。
 請求項16に記載の対物レンズは、請求項15に記載の発明において、前記第4領域は、屈折面であることを特徴とする。
 光軸から最も遠い領域は面法線の傾きが大きいので、ここに回折構造を設けると、ケラレ等による光の利用効率の低下が生じる恐れがあるが、屈折面とすることで光の利用効率の低下を抑制できる。
 請求項17に記載の対物レンズは、請求項1~16のいずれかに記載の発明において、光軸を含む断面において、前記第1領域と前記第2領域の間に段差を有し、前記段差と前記第1領域が交差する部分は、前記段差と前記第2領域が交差する領域に比して、光軸方向光源側に位置することを特徴とする。
 この様な形状とすると、第2領域は、第1領域に対して光ディスク側に位置することになり、第3光束を第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光させる面から、レーザ光が対物レンズから射出される面までの距離が短くなり、ワーキングディスタンスWD3を確保することが出来、薄型の光ディスクドライブ用の光ピックアップ装置に好適な対物レンズを得ることができる。
 請求項18に記載の対物レンズは、請求項17に記載の発明において、前記第1領域は、通過した前記第1光束を前記第1光ディスクの情報記録面に集光し、通過した前記第2光束を前記第2光ディスクの情報記録面に集光し、通過した前記第3光束を前記第3光ディスクの情報記録面に集光しない第1光ディスク・第2光ディスク兼用領域であり、前記第2領域は、通過した前記第3光束を前記第3光ディスクの情報記録面に集光し、通過した前記第1光束を前記第1光ディスクの情報記録面に集光せず、通過した前記第2光束を前記第2光ディスクの情報記録面に集光しない第3光ディスク専用領域であることを特徴とする。
 請求項19に記載の対物レンズは、請求項1~18に記載の発明において、以下の条件式(5)を満たすことを特徴とする。
 d/δ≦5   (5)
ただし、
d:前記対物レンズの軸上厚
δ:前記対物レンズの光軸方向最小厚
 対物レンズの集光性能を維持しつつ対物レンズの軸上厚を小さくした場合、対物レンズのふち厚が小さくなり、前記対物レンズの光軸方向最小厚さと前記対物レンズの軸上厚さとの比、すなわち偏肉比が小さくなる傾向がある。偏肉比が小さくなると、対物レンズのふちが欠けやすくなる。さらに、対物レンズをプラスチックの射出成形で製造する場合、溶解したプラスチックを金型へ射出する際の通路が狭まり成形が困難になる。本発明では偏肉比を5以下にし、対物レンズのふち厚の大幅な低下を抑え、対物レンズのふちの欠けを防ぐと共に成形性を向上させている。
 請求項20に記載の光ピックアップ装置は、請求項1~19のいずれかに記載の対物レンズを有することを特徴とする。
 本発明に係る光ピックアップ装置は、第1光源、第2光源、第3光源の3つの光源を有している。さらに、本発明の光ピックアップ装置は、第1光束を第1光ディスクの情報記録面上に集光させ、第2光束を第2光ディスクの情報記録面上に集光させ、第3光束を第3光ディスクの情報記録面上に集光させるための集光光学系を有する。また、本発明の光ピックアップ装置は、第1光ディスク、第2光ディスク又は第3光ディスクの情報記録面からの反射光束を受光する受光素子を有する。
 第1光ディスクは、厚さt1の保護基板と情報記録面とを有する。第2光ディスクは、厚さ2(t1<t2)の保護基板と情報記録面とを有する。第3光ディスクは、厚さt3(t2<t3)の保護基板と情報記録面とを有する。第1光ディスクはBD(Blu-ray Disc)、第2光ディスクはDVDである事が好ましく、第3光ディスクはCDであることが好ましいが、これに限られない。第1光ディスク、第2光ディスク、又は第3光ディスクは、複数の情報記録面を有する複数層の光ディスクでもよい。尚、保護基板の厚さというときは、0の場合も含み、或いは光ディスクに厚さ数~数十μmの保護膜が塗布されている場合には、その膜厚も含むものとする。
 BDは、NA0.85の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.1mm程度である。更に、DVDとは、NA0.60~0.67程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.6mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD-Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。また、本明細書においては、CDとは、NA0.45~0.53程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが1.2mm程度であるCD系列光ディスクの総称であり、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVD、CDの順に低くなる。
 なお、保護基板の厚さt1、t2、t3に関しては、以下の条件式(6)、(7)、(8)を満たすことが好ましいが、これに限られない。尚、ここで言う、保護基板の厚さとは、光ディスク表面に設けられた保護基板の厚さのことである。即ち、光ディスク表面から、表面に最も近い情報記録面までの保護基板の厚さのことをいう。
 0.05mm≦t1≦0.1125mm    (6)
 0.5mm≦t2≦0.7mm      (7)
 1.0mm≦t3≦1.3mm      (8)
 本明細書において、第1光源、第2光源、第3光源は、好ましくはレーザ光源である。レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出来る。第1光源から出射される第1光束の第1波長λ1、第2光源から出射される第2光束の第2波長λ2(λ2>λ1)、第3光源から出射される第3光束の第3波長λ3(λ3>λ2)は以下の条件式(9)、(10)を満たすことが好ましい。
 1.5×λ1<λ2<1.7×λ1   (9)
 1.8×λ1<λ3<2.0×λ1   (10)
 第1光ディスクに対して情報の記録/再生を行う場合、第2光ディスクや第3光ディスクに比べて集光スポットを小さくする必要が有り、そのためには第1光束の波長は第2光束の波長や第3光束の波長より短くする必要がある。光源に用いるレーザ装置は温度変化によって射出する光の波長に変化が生じる。そのうえで温度変化及び波長変化に対して発生する球面収差を、光ディスクの情報の記録/再生が行える程度に抑えるために条件式(9)、(10)を満たすことが好ましい。
 また、第1光ディスク、第2光ディスク、第3光ディスクとして、それぞれ、BD、DVD及びCDが用いられる場合、第1光源の第1波長λ1は好ましくは、350nm以上、440nm以下、より好ましくは、390nm以上、420nm以下であって、第2光源の第2波長λ2は好ましくは570nm以上、680nm以下、より好ましくは630nm以上、670nm以下であって、第3光源の第3波長λ3は好ましくは、750nm以上、850nm以下、より好ましくは、760nm以上、820nm以下である。
 また、第1光源、第2光源、第3光源のうち少なくとも2つの光源をユニット化してもよい。ユニット化とは、例えば第1光源と第2光源とが1パッケージに固定収納されているようなものをいう。また、光源に加えて、後述する受光素子を1パッケージ化してもよい。
 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポットの形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラッキングのために対物レンズを移動させることが出来る。受光素子は、複数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いられるメイン光を受光する光検出器の両脇に2つのサブの光検出器を設け、当該2つのサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよい(いわゆるスリービーム法等)。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。
 光ピックアップ装置で用いられる集光光学系は、対物レンズを有する。集光光学系は、対物レンズのみを有していても良いが、集光光学系は、対物レンズの他にコリメートレンズ等のカップリングレンズを有していてもよい。カップリングレンズとは、対物レンズと光源の間に配置され、光束の発散角を変える単レンズ又はレンズ群のことをいう。コリメートレンズは、カップリングレンズの一種で、コリメートレンズに入射した光を平行光にして出射するレンズである。更に集光光学系は、光源から射出された光束を、情報の記録再生に用いられるメイン光束と、トラッキング等に用いられる二つのサブ光束とに分割する回折光学素子などの光学素子を有していてもよい。本明細書において、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。対物レンズは、単玉の対物レンズである。また、対物レンズは、ガラスレンズであってもプラスチックレンズであっても、又は、ガラスレンズの上に光硬化性樹脂などで回折構造などを設けたハイブリッドレンズであってもよいが、成形の容易性やコストの低さの点から見てプラスチックレンズが一番好適である。また、対物レンズは、屈折面が非球面であることが好ましい。また、対物レンズは、回折構造が設けられるベース面(母非球面ともいう)が非球面であることが好ましい。対物レンズから母非球面を判断する場合、回折構造の段差の最も光ディスク側の部分をつないだ包絡面を母非球面と捉えることができる。
 また、対物レンズをガラスレンズとする場合は、ガラス転移点Tgが500℃以下であるガラス材料を使用することが好ましく、480℃以下であることがより好ましい。ガラス転移点Tgが500℃以下であるガラス材料を使用することにより、比較的低温での成形が可能となるので、金型の寿命を延ばすことが出来る。
 さらに、ガラスレンズは一般的に樹脂レンズよりも比重が大きいため、対物レンズをガラスレンズとすると、重量が大きくなり対物レンズを駆動するアクチュエータに負担がかかる。そのため、対物レンズをガラスレンズとする場合には、比重が小さいガラス材料を使用するのが好ましい。具体的には、比重が3.0以下であるのが好ましく、2.75以下であるのがより好ましい。
 このようなガラス材料として具体的には、特開2005-306627号の実施例1~12を例示することができる。例えば、特開2005-306627号の実施例1は、ガラス転移点Tgが460℃、比重が2.58、屈折率ndが1.594、アッベ数が59.8である。
 また、対物レンズをプラスチックレンズとする場合は、環状オレフィン系の樹脂材料を使用するのが好ましく、環状オレフィン系の中でも、波長405nmに対する温度25℃での屈折率が1.52乃至1.60の範囲内であって、-5℃から70℃の温度範囲内での温度変化に伴う波長405nmに対する屈折率変化率dN/dT(℃-1)が-20×10-5乃至-5×10-5(より好ましくは、-10×10-5乃至-8×10-5)の範囲内である樹脂材料を使用するのがより好ましい。また、対物レンズをプラスチックレンズとする場合、カップリングレンズもプラスチックレンズとすることが好ましい。
 また、対物レンズを構成する材料のアッベ数は、50以上であることが好ましい。
 対物レンズについて、以下に記載する。対物レンズの少なくとも一つの光学面が、少なくとも第1領域と、第1領域の外側に設けられた第2領域と、第2領域の外側に設けられた第3領域とを有する。また、第3領域の外側に更に第4領域を有していても良い。第4領域を光軸から最も遠い領域としてもよい。または、第3領域の外側に更に第4領域を有し、第4領域の外側に更に第5領域を有していても良い。さらに、第5領域の外側に第6領域を有し、第6領域を光軸から最も遠い領域としても良い。領域の数は10以下であることが好ましく、8以下であることが更に好ましい。なお、第1領域、第2領域、第3領域を有する光学面は、光源側の光学面であることが好ましく、曲率半径の小さい方の光学面であることが好ましい。
 第1領域は、対物レンズの光軸を含む領域であることが好ましいが、光軸を含む微小な領域を未使用領域や特殊な用途の領域とし、その周りを第1領域としてもよい。第1領域、第2領域、第3領域、及びそれ以外の領域があるときは、その領域は、同一の光学面上に設けられていることが好ましい。3領域に分けられた例を示す図1に示されるように、第1領域CN、第2領域MD、第3領域OTは、同一の光学面上に、光軸を中心とする同心円状に設けられていることが好ましい。第1領域CN、第2領域MD、第3領域OTはそれぞれ隣接していることが好ましいが、間に僅かに隙間があっても良い。
 尚、対物レンズの複数の領域において、通過した第1光束を第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光する対物レンズの領域と、通過した第3光束を第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光する対物レンズの領域とは、異なる領域であることが好ましい。例えば、第1光ディスク・第2光ディスク兼用領域、第3光ディスク専用領域及び第1光ディスク専用領域を有する対物レンズや、第1光ディスク専用領域、第2光ディスク・第3光ディスク兼用領域、及び第1光ディスク専用領域を有する対物レンズ等が好ましい例として挙げられる。
 また、複数の領域の中に、通過した第3光束を第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した第1光束を第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光せず、通過した第2光束を第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第3光ディスク専用領域を有することが好ましい。また、第3光ディスク専用領域は回折面であってもよいが、製造の容易さと光利用効率の向上という観点から、第3光ディスク専用領域は、屈折面であることが好ましい。
 尚、第3光ディスク専用領域の数は、1以上3以下であることが好ましい。
 また、第1領域は、通過した第1光束を第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第2光束を、第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光するが、通過した第3光束を、第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第1光ディスク・第2光ディスク兼用領域であることが好ましい。また、第3領域も第1光ディスク・第2光ディスク兼用領域であることが好ましい。
 更に、第2領域は、通過した第3光束を第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した第1光束を第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光せず、通過した第2光束を第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第3光ディスク専用領域であることが好ましい。
 例えば、対物レンズが6つの領域を有する場合、第1~第6領域のそれぞれに、第1~第6回折構造がそれぞれ設けられていてもよい。
 尚、第2領域、第4領域及び第6領域は屈折面であってもよい。第1回折構造、第2回折構造、第3回折構造、第4回折構造、第5回折構造及び第6回折構造のそれぞれは、対物レンズの第1領域、第2領域、第3領域、第4領域、第5領域及び第6領域のそれぞれの面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第α回折構造(αは1以上6以下の整数)が、第α領域の全面に設けられていることである。それぞれの領域に対して適する回折構造がそれぞれの領域の全面に設けられていることで、光の利用効率を高くすることができる。
 なお、本明細書でいう回折構造とは、少なくともある波長の光束に対して回折光を発生させる構造の総称である。好ましくは、回折構造とは、段差を有し、少なくともある波長の光束に対して、回折によって光束を収束あるいは発散させる作用を持たせる構造の総称である。回折構造は、好ましくは段差を複数有する。段差は、光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。尚、対物レンズの光学面が、光軸を中心とし、段差で区切られた複数の輪帯を有し、輪帯ごとに個別の非球面で構成したものであっても、回折作用によって光束を収束又は発散させている対物レンズは、回折構造を有する対物レンズである。例えば、輪帯ごとに個別の非球面で構成した構造を有する対物レンズの複数の輪帯を通過したλAの波長の光束が、厚さtAの保護基板を有する光ディスクの情報記録面上に集光し、且つ、同複数の輪帯を通過したλB(λA≠λB)の波長の光束が、厚さtB(tA≠tB)の保護基板を有する光ディスクの情報記録面上に集光する場合、その対物レンズは、回折作用によって光束を収束又は発散させており、回折構造を有する。
 回折構造は、光軸を中心とする同心円状の複数の輪帯を有することが好ましい。また、回折構造は、様々な断面形状(光軸を含む面での断面形状)をとり得、光軸を含む断面形状がブレーズ型構造と階段型構造とに大別される。
 ブレーズ型構造とは、図2(a)、(b)に示されるように、回折構造を有する光学素子の光軸を含む断面形状が、鋸歯状の形状ということであり、回折構造が母非球面に対して、直角でも平行でもない、斜めの面を有する。尚、図2の例においては、上方が光源側、下方が光ディスク側であって、母非球面としての平面に回折構造が形成されているものとする。
 また、階段型構造とは、図2(c)、(d)に示されるように、回折構造を有する光学素子の光軸を含む断面形状が、小階段状のもの(階段単位と称する)を複数有するということである。尚、本明細書中、「Xレベル」とは、階段型構造の1つの階段単位において光軸垂直方向に対応する(向いた)輪帯状の面(以下、光学機能面と称することがある)が、段差によって区分けされX個の輪帯面毎に分割されていることをいい、特に3レベル以上の階段型構造は、小さい段差と大きい段差を有し、「小さい段差」とは、1つの階段単位において、最も小さな光軸方向の段差をいい、「大きい段差」とは、1つの階段単位において、最も大きな光軸方向の段差をいうものとする。
 図2(c)に示す回折構造を、5レベルの階段型構造といい、図2(d)に示す回折構造を、2レベルの階段型構造という。第1回折構造は2レベルの階段型構造であって、光軸を中心とした同心円状の複数の輪帯を含み、対物レンズの光軸を含む複数の輪帯の断面の形状は、光軸に平行に延在する複数の段差面Pa、Pbと、隣接する段差面Pa、Pbの光源側端同士を連結する光源側光学機能面Pcと、隣接する段差面Pa、Pbの光ディスク側端同士を連結する光ディスク側光学機能面Pdとから形成され、光源側光学機能面Pcと光ディスク側光学機能面Pdとは、光軸に交差する方向に沿って交互に配置されている。
 また、階段型構造において、1つの階段単位の光軸垂直方向の長さをピッチPという。段差面は光軸に平行又は略平行であることが好ましいが、光学機能面は母非球面に平行である場合だけでなく、母非球面に対して斜めであってもよい。
 尚、回折構造は、ある単位形状が周期的に繰り返されている構造であることが好ましい。ここでいう「単位形状が周期的に繰り返されている」とは、同一の形状が同一の周期で繰り返されている形状は当然含む。さらに、周期の1単位となる単位形状が、規則性を持って、周期が徐々に長くなったり、徐々に短くなったりする形状も、「単位形状が周期的に繰り返されている」ものに含まれているとする。
 回折構造が、ブレーズ型構造を有する場合、単位形状である鋸歯状の形状が繰り返された形状となる。図2(a)に示されるように、同一の鋸歯状形状が繰り返されてもよいし、図2(b)に示されるように、母非球面の方向に進むに従って、徐々に鋸歯状形状の大きさが大きくなっていく形状、又は、小さくなっていく形状であってもよい。また、徐々に鋸歯状形状の大きさが大きくなった形状と、徐々に鋸歯状形状の大きさが小さくなっていく形状を組み合わせた形状としてもよい。但し、鋸歯状形状の大きさが徐々に変化する場合であっても、鋸歯状形状において、光軸方向(又は通過する光線の方向)の段差量の大きさはほとんど変化しないことが好ましい。加えて、ある領域においては、ブレーズ型構造の段差が光軸(中心)側とは逆を向いている形状とし、他の領域においては、ブレーズ型構造の段差が光軸(中心)側を向いている形状とし、その間に、ブレーズ型構造の段差の向きを切り替えるために必要な遷移領域が設けられている形状としてもよい。この遷移領域は、回折構造により付加される光路差を光路差関数で表現した時、光路差関数の極値となる点に相当する領域である。なお、光路差関数が極値となる点を持つと、光路差関数の傾きが小さくなるので、輪帯ピッチを広げることが可能となり、回折構造の形状誤差による透過率低下を抑制できる。
 回折構造が、階段型構造を有する場合、図2(c)で示されるような5レベルの階段単位が、繰り返されるような形状等があり得る。さらに、母非球面の方向に進むに従って、徐々に階段の大きさが大きくなっていく形状や、徐々に階段の大きさが小さくなっていく形状であってもよいが、光軸方向(又は通過する光線の方向)の段差量はほとんど変化しないことが好ましい。
 以下に、第1回折構造、第3回折構造及び第5回折構造について詳述する。第1回折構造、第3回折構造及び第5回折構造は、少なくとも第1光ディスクと第2光ディスクの互換を可能にするための構造である。従って、第1回折構造、第3回折構造及び第5回折構造は、第1回折構造又は第3回折構造又は第5回折構造を通過する第1光束及び第2光束に対して、第1光ディスクの保護基板の厚さt1と第2光ディスクの保護基板の厚さt2の違いにより発生する球面収差及び/又は第1光束と第2光束の波長の違いにより発生する球面収差を補正することが好ましい。
 第1回折構造、第3回折構造及び第5回折構造は、第1光束が通過した際にn次回折光を最も多く発生させ、第2光束が通過した際にm次回折光を最も多く発生させる。(n,m)の好ましい組み合わせとしては、(0,1)、(1、-2)、(2,1)等があげられる。特に、n=0である場合、第1領域を第1光ディスクに適した小さな近軸曲率半径とでき、対物レンズの軸上厚を薄くすることができるため好ましい。
 また、第1回折構造と第3回折構造と第5回折構造に加え、第2回折構造又は第4回折構造又は第6回折構造を設ける場合、対物レンズの異なる光学面に設けてもよいが、同一の光学面に設けることが好ましい。同一の光学面に設けることにより、製造時の偏芯誤差を少なくすることが可能となるため好ましい。また、各回折構造は、対物レンズの光ディスク側の面よりも、対物レンズの光源側の面に設けられることが好ましい。
 また、好ましい態様として、第3光束専用領域以外の領域を通過した第3光束は、第3光ディスクの記録及び/又は再生に用いられない態様が挙げられる。第3光ディスク専用領域以外の領域を通過した第3光束が、第3光ディスクの情報記録面上で集光スポットの形成に寄与しないようにすることが好ましい。つまり、対物レンズに第1光ディスク・第2光ディスク兼用領域に回折構造が設けられた場合、これにより第1光ディスク・第2光ディスク兼用領域の回折構造を通過する第3光束は、第3光ディスクの情報記録面上でフレアを形成することが好ましい。図3に示すように、対物レンズを通過した第3光束が第3光ディスクの情報記録面上で形成するスポットにおいて、光軸側(又はスポット中心部)から外側へ向かう順番で、光量密度が高いスポット中心部SCN、光量密度がスポット中心部より低いスポット中間部SMD、光量密度がスポット中間部よりも高くスポット中心部よりも低いスポット周辺部SOTを有する。スポット中心部が、光ディスクの情報の記録及び/又は再生に用いられ、スポット中間部及びスポット周辺部は、光ディスクの情報の記録及び/又は再生には用いられない。上記において、このスポット周辺部をフレアと言っている。但し、スポット中心部の周りにスポット中間部が存在せずスポット周辺部があるタイプ、即ち、集光スポットの周りに薄く光が大きなスポットを形成する場合も、そのスポット周辺部をフレアと呼ぶ。つまり、対物レンズの第1光束と第2光束の共用領域の回折構造を通過した第3光束は、第3光ディスクの情報記録面上でスポット周辺部を形成する。
 また、最も光軸から遠い領域の好ましい態様として、同領域を通過した第2光束及び第3光束は、第2光ディスク及び第3光ディスクの記録及び/又は再生に用いられない態様が挙げられる。同領域を通過した第2光束及び第3光束が、それぞれ第2光ディスク及び第3光ディスクの情報記録面上での集光スポットの形成に寄与しないようにすることが好ましい。つまり、最も光軸から遠い領域を通過する第2光束及び第3光束は、第2光ディスク及び第3光ディスクの情報記録面上でフレアを形成することが好ましい。言い換えると、最も光軸から遠い領域を通過した第2光束及び第3光束は、第2光ディスク及び第3光ディスクの情報記録面上でスポット周辺部を形成することが好ましい。
 最も光軸から遠い領域が回折構造を有する場合、かかる回折構造が、その回折構造を通過した第1光束に対して、第1光源の波長の僅かな変動によって発生するスフェロクロマティズム(色球面収差)を補正するようにしてもよい。波長の僅かな変動とは、±10nm以内の変動を指す。例えば、第1光束が波長λ1より±5nm変化した際に、その回折構造によって、その回折構造を通過した第1光束の球面収差の変動を補償し、第1光ディスクの情報記録面上での波面収差の変化量が0.001λ1rms以上、0.070λ1rms以下となるようにすることが好ましい。
 対物レンズがプラスチックレンズである場合、温度特性補正用構造として第7回折構造を、第1の回折構造又は第3の回折構造又は第4の回折構造又は第5の回折構造又は第6の回折構造にさらに重ねたものを用いてもよい。または、第7回折構造を屈折面である第4領域や第6領域に設けるようにしても良い。具体的には、第7回折構造の光軸方向の段差量は、第1光束に対して第1波長の略5波長分の光路差を与え、第2光束に対して第2波長の略3波長分の光路差を与えるような段差量、又は、第1光束に対して第1波長の略2波長分の光路差を与え、第2光束に対して第2波長の略1波長分の光路差を与えるような段差量である事が好ましいが、これに限られるものではない。
 又、ある領域における母非球面の近軸曲率半径と、他の領域における母非球面の近軸曲率半径との差が、0.1mm以上、0.7mm以下であると好ましい。特に、図4に示すように、光軸を含む第1領域R1が、第1光ディスク第2光ディスク兼用領域であり、その外側の周囲の第2領域R2が、第3光ディスク専用領域であり、その外側の周囲の第3領域R3が、第1光ディスク第2光ディスク兼用領域であり、その外側の周囲の第4領域R4が、第3光ディスク専用領域である場合、第1領域R1と第3領域R3とは、同じ第1母非球面BL1上に位置し、第2領域R2と第4領域R4とは、同じ第2母非球面BL上に位置する。ここで、第1母非球面BL1が光軸と交差する位置P1は、第2母非球面BL2が光軸と交差する位置P2よりも光源側に位置することが好ましい。別の表現をすると、光軸を含む対物レンズの断面において、第1領域R1と第2領域R2の間に段差STが存在し、当該段差STと第1領域R1が交差する点P3は、当該段差STと第2領域が交差する点P4に比して光軸方向光源側にあるとも言える。また位置P1,P2の距離Δは、近似的には母非球面BL1,BL2の曲率半径の差として表せるので、0.1mm~0.7mmであると好ましい。尚、母非球面BL1,BL2は有効径内で交差していると望ましい。
 更に、図1に示すように、対物レンズOBJは、一般的に最も光軸より遠い領域OTの光軸直交方向外側に、対物レンズの最小肉厚を有するフランジ部FLを有し、フランジ部FLの光軸方向最小厚さδと、対物レンズOBJの軸上厚さdとの比(d/δ:偏肉比という)は、5以下であることが好ましい。
 第1光ディスクに対して情報を再生及び/又は記録するために必要な対物レンズの像側開口数をNA1とし、第2光ディスクに対して情報を再生及び/又は記録するために必要な対物レンズの像側開口数をNA2(NA1≧NA2)とし、第3光ディスクに対して情報を再生及び/又は記録するために必要な対物レンズの像側開口数をNA3(NA2>NA3)とする。NA1は、0.6以上、0.9以下であることが好ましく、より好ましくは、0.75以上、0.9以下である。特にNA1は0.85であることが好ましい。NA2は、0.55以上、0.7以下であることが好ましい。特にNA2は0.60又は0.65であることが好ましい。また、NA3は、0.4以上、0.55以下であることが好ましい。特にNA3は0.45又は0.53であることが好ましい。
 対物レンズの最も光軸より遠い第3光ディスク専用領域の外側の境界は、第3光束の使用時において、0.9・NA3以上、1.2・NA3以下(より好ましくは、0.95・NA3以上、1.15・NA3以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは、対物レンズの最も光軸より遠い第3光ディスク専用領域の外側の境界が、NA3に相当する部分に形成されていることである。また、対物レンズの最も光軸より遠い第2光ディスクに用いられる領域の内側の境界は、第2光束の使用時において、0.9・NA2以上、1.2・NA2以下(より好ましくは、0.95・NA2以上、1.15・NA2以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは、対物レンズの最も光軸より遠い第2光ディスクに用いられる領域の内側の境界が、NA2に相当する部分に形成されていることである。
 対物レンズを通過した第3光束を第3光ディスクの情報記録面上に集光する場合に、球面収差が少なくとも1箇所の不連続部を有することが好ましい。その場合、不連続部は、第3光束の使用時において、0.9・NA3以上、1.2・NA3以下(より好ましくは、0.95・NA3以上、1.15・NA3以下)の範囲に存在することが好ましい。
 また、球面収差が連続していて、不連続部を有さない場合であって、対物レンズを通過した第3光束を第3光ディスクの情報記録面上に集光する場合に、NA2では、縦球面収差の絶対値が0.03μm以上であって、NA3では縦球面収差の絶対値が0.02μm以下であることが好ましい。より好ましくは、NA2では、縦球面収差の絶対値が0.08μm以上であって、NA3では縦球面収差の絶対値が0.01μm以下である。
 更に、対物レンズは、以下の条件式を満たす。
 1.5(mm)≦φ1≦3.4(mm)   (1)
 1.7×f3>φ1   (2)
 0.7≦d/f3≦1.42(mm)   (3)
 但し、φ1は、第1光束が対物レンズに入射する面の有効径を表し、f3は、第3光束使用時の対物レンズの焦点距離を表し、dは、対物レンズの軸上厚を表す。
 好ましくは、以下の条件式を満たすことである。
 2.1(mm)≦φ1≦2.5(mm)   (1)’
 また、好ましくは、以下の条件式を満たすことである。
 0.9≦d/f3≦1.1(mm)   (3)’
 さらに、以下の式を満たすことが好ましい。
 1.4(mm)≦f3≦2.0(mm)   (11)
 上記式を満たすことにより、第3光ディスクにおける焦点距離を十分確保しながら、焦点距離が長くなりすぎることを抑え、対物レンズがプラスチックレンズであっても、温度変化による球面収差の変化を低減することが可能となるため好ましい。
 更に、薄型の光ピックアップ装置に搭載可能な対物レンズとするために、以下の式を満たすことが好ましい。
 d≦2.0(mm)   (12)
 また、対物レンズの第1光束における焦点距離をf1(mm)とし、対物レンズの中心厚さをd(mm)とした際に、下記の式(13)を満たすことが好ましい。
 0.7≦d/f1≦1.5       (13)
 なお、下記の式(13)’を満たすことがより好ましい。
 1.0≦d/f1≦1.3       (13)’
 更に、以下の式を満たすことが好ましい。
 0.7≦d/f2≦1.3   (14)
 但し、f2は、第2光束使用時の対物レンズの焦点距離を表す。
 条件式(13)や(14)を満たすことにより、回折構造のピッチを小さくすることなく、第3光ディスクとしてのCDのワーキングディスタンスを確保でき、対物レンズの製造も容易にする事が出来、加えて、光の利用効率を高く維持することが可能となる。
 また、以下の条件式を満たすことが好ましい。
 0.9≦φ2/φ1≦1.2   (15)
尚、Φ2は、第2光ディスク使用時の対物レンズの有効径を表す。上記範囲を満たすことにより、第3光ディスクとしてのCDのワーキングディスタンスを実使用上問題ないレベルの距離を確保しつつ、例え、対物レンズがプラスチックレンズであったとしても、温度変化時における収差変化を光ディスクの情報の記録及び/又は再生を行うにあたり問題ないレベルに維持することができる。
 更に、以下の式を満たすことが好ましい。
 0.15(mm)≦WD3≦0.5(mm)   (4)
 但し、WD3は、第3光ディスク使用時のワーキングディスタンスを表す。
 好ましくは、以下の式を満たすことである。
  0.15(mm)≦WD3≦0.4(mm)   (4)’
 更に、以下の式を満たすことが好ましい。
 0.2(mm)≦WD2≦0.8(mm)   (16)
 但し、WD2は、第2光ディスク使用時のワーキングディスタンスを表す。
 更に、以下の式を満たすことが好ましい。
 0.4(mm)≦WD1≦1.2(mm)   (17)
 但し、WD1は、第1光ディスク使用時のワーキングディスタンスを表す。
 以下、対物レンズの領域数として好ましい態様を2種類詳述するが、本発明は以下の態様に限られるものではない。
(例1) 4領域対物レンズ
 好ましい態様の第1は、対物レンズの光学面が4領域に分けられている態様である。この態様において第4領域は、対物レンズにおいて光軸から最も離れた領域である。また、第1領域及び第3領域は、第1光ディスク・第2光ディスク兼用領域である。また、第2領域は、第3光ディスク専用領域である。更に、第4領域は、通過した第1光束を第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した第2光束を第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光せず、通過した第3光束を第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第1光ディスク専用領域である。
 第1光ディスク・第2光ディスク兼用領域である対物レンズの第1領域が第1回折構造を有することが好ましい。第1回折構造は、第1光束が通過した際にn次回折光を最も多く発生させ、第2光束が通過した際にm次回折光を最も多く発生させる。(n,m)の好ましい組み合わせとしては、(0,1)、(1、-2)、(2,1)等があげられる。特に、n=0である場合、第1領域を第1光ディスクに適した小さな近軸曲率半径とでき、対物レンズの軸上厚を薄くすることができるため好ましい。
 また、第1光ディスク・第2光ディスク兼用領域である対物レンズの第3領域が第3回折構造を有することが好ましい。第3回折構造は、第1回折構造と同じ構造であると好ましい。
 また、第3光ディスク専用領域である対物レンズの第2領域は屈折面であると好ましいが、第2回折構造が設けられていてもよい。尚、屈折面としては、対物レンズに入射する光束に光路差を付与するような構造を持たない面とすることが好ましい。
 また、第1光ディスク専用領域である対物レンズの第4領域は屈折面であると好ましいが、第4回折構造が設けられていてもよい。
 また、第1領域及び第3領域の母非球面の近軸曲率半径と、第2領域の母非球面の近軸曲率半径との差が、0.1mm以上、0.7mm以下であることが好ましい。
(例2) 6領域対物レンズ
 好ましい態様の第2は、対物レンズの光学面が6領域に分けられている態様である。この態様において第6領域が、対物レンズにおいて光軸から最も離れた領域である。また、第1領域、第3領域及び第5領域は、第1光ディスク・第2光ディスク兼用領域である。また、第2領域及び第4領域は、第3光ディスク専用領域である。更に、第6領域は、第1光ディスク専用領域である。
 第1光ディスク・第2光ディスク兼用領域である対物レンズの第1領域が第1回折構造を有することが好ましい。第1回折構造は、第1光束が通過した際にn次回折光を最も多く発生させ、第2光束が通過した際にm次回折光を最も多く発生させる。(n,m)の好ましい組み合わせとしては、(0,1)、(1、-2)、(2,1)等があげられる。特に、n=0である場合、第1領域を第1光ディスクに適した小さな近軸曲率半径とでき、対物レンズの軸上厚を薄くすることができるため好ましい。
 また、第1光ディスク・第2光ディスク兼用領域である対物レンズの第3領域が第3回折構造を有することが好ましい。第3回折構造は、第1回折構造と同じ構造であると好ましい。
 また、第1光ディスク・第2光ディスク兼用領域である対物レンズの第5領域が第5回折構造を有することが好ましい。第5回折構造は、第1回折構造及び第3回折構造と同じ構造であると好ましい。
 また、第3光ディスク専用領域である対物レンズの第2領域は屈折面であると好ましいが、第2回折構造が設けられていてもよい。
 また、第3光ディスク専用領域である対物レンズの第4領域は屈折面であると好ましいが、第4回折構造が設けられていてもよい。
 また、第1光ディスク専用領域である対物レンズの第6領域は屈折面であると好ましいが、第6回折構造が設けられていてもよい。
 また、第1領域及び第3領域及び第5領域の母非球面の近軸曲率半径と、第2領域及び第4領域の母非球面の近軸曲率半径との差が、0.1mm以上、0.7mm以下であることが好ましい。
 第1光束、第2光束及び第3光束は、平行光として対物レンズに入射してもよいし、発散光若しくは収束光として対物レンズに入射してもよい。好ましくは、第1光束が対物レンズに入射する時の、対物レンズの結像倍率m1が、下記の式(18)を満たすことである。
 -0.02<m1<0.02     (18)
 一方で、第1光束を発散光として対物レンズに入射する場合、第1光束が対物レンズへ入射する時の、対物レンズの結像倍率m1が、下記の式(18’)を満たすことが好ましい。
 -0.10<m1<0.00     (18’)
 また、第2光束を平行光又は略平行光として対物レンズに入射させる場合、第2光束が対物レンズへ入射する時の、対物レンズの結像倍率m2が、下記の式(19)を満たすことが好ましい。
 -0.02<m2<0.02     (19)
 一方で、第2光束を発散光として対物レンズに入射させる場合、第2光束が対物レンズへ入射する時の、対物レンズの結像倍率m2が、下記の式(19’)を満たすことが好ましい。
 -0.10<m2<0.00     (19’)
 また、第3光束を平行光又は略平行光として対物レンズに入射させる場合、第3光束が対物レンズへ入射する時の、対物レンズの結像倍率m3が、下記の式(20)を満たすことが好ましい。第3光束が平行光である場合、トラッキングにおいて問題が発生しやすくなるが、本発明は第3光束が平行光であっても、良好なトラッキング特性を得ることを可能とし、3つの異なる光ディスクに対して記録及び/又は再生を適切に行う事を可能とする。
 -0.02<m3<0.02     (20)
 一方で、第3光束を発散光として対物レンズに入射させる場合、第3光束が対物レンズへ入射する時の、対物レンズの結像倍率m3が、下記の式(20’)を満たすことが好ましい。
 -0.10<m3<0.00     (20’)
 本発明に係る光情報記録再生装置は、上述の光ピックアップ装置を有する光ディスクドライブ装置を有する。
 ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明すると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録再生装置本体から光ディスクを搭載した状態で保持可能なトレイのみが外部に取り出される方式と、光ピックアップ装置等が収納されている光ディスクドライブ装置本体ごと、外部に取り出される方式とがある。
 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備されているがこれに限られるものではない。ハウジング等に収納された光ピックアップ装置、光ピックアップ装置をハウジングごと光ディスクの内周あるいは外周に向けて移動させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジングを光ディスクの内周あるいは外周に向けてガイドするガイドレールなどを有した光ピックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等である。
 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可能なトレイおよびトレイを摺動させるためのローディング機構等が設けられ、後者の方式にはトレイおよびローディング機構がなく、各構成部材が外部に引き出し可能なシャーシに相当するドロワーに設けられていることが好ましい。
 本発明によれば、CDのワーキングディスタンスを十分に確保しながらも薄型の光ディスクドライブで用いることが出来、BD,DVD,CDといった異なる光ディスクに対して適切に情報の記録/再生を行える光ピックアップ装置及びそれに好適な対物レンズを提供することが可能となる。
(a)は、本発明に係る対物レンズOBJの一例を、光軸方向から見た図であり、(b)は断面図である。 本発明に係る対物レンズOBJに設けられる回折構造の幾つかの例(a)~(d)を模式的に示す断面図である。 本発明に係る対物レンズによるスポットの形状を示した図である。 本発明に係る対物レンズOBJの一例の拡大断面図である。 本発明に係る光ピックアップ装置の構成を概略的に示す図である。 実施例1の対物レンズの断面図である。 図7(a)は、実施例1のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図7(b)は、実施例1のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図7(c)は、実施例1のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。 実施例2の対物レンズの断面図である。 図9(a)は、実施例2のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図9(b)は、実施例2のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図9(c)は、実施例2のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。 実施例3の対物レンズの断面図である。 図11(a)は、実施例3のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図11(b)は、実施例3のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図11(c)は、実施例3のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。 実施例4の対物レンズの断面図である。 図13(a)は、実施例4のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図13(b)は、実施例4のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図13(c)は、実施例4のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。 実施例5の対物レンズの断面図である。 図15(a)は、実施例5のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図15(b)は、実施例5のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図15(c)は、実施例5のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。 実施例6の対物レンズの断面図である。 図17(a)は、実施例6のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図17(b)は、実施例6のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図17(c)は、実施例6のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。 実施例7の対物レンズの断面図である。 図19(a)は、実施例7のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図19(b)は、実施例7のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図19(c)は、実施例7のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。 実施例8の対物レンズの断面図である。 図21(a)は、実施例8のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図21(b)は、実施例8のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図21(c)は、実施例8のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。 実施例9の対物レンズの断面図である。 図23(a)は、実施例9のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図23(b)は、実施例9のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図23(c)は、実施例9のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。 実施例10の対物レンズの断面図である。 実施例11の対物レンズの断面図である。 実施例12の対物レンズの断面図である。 対物レンズの変形例を示す図である。 対物レンズの変形例を示す図である。
 以下、本発明の実施の形態を図面を参照して説明する。図5は、異なる光ディスクであるBDとDVDとCDに対して適切に情報の記録及び/又は再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。かかる光ピックアップ装置PU1は、光情報記録再生装置に搭載できる。ここでは、第1光ディスクをBDとし、第2光ディスクをDVDとし、第3光ディスクをCDとする。なお、本発明は、本実施の形態に限られるものではない。
 光ピックアップ装置PU1は、対物レンズOBJ、絞りST、コリメートレンズCL、偏光ダイクロイックプリズムPPS、BDに対して情報の記録/再生を行う場合に発光され波長λ1=405nmのレーザ光束(第1光束)を射出する第1半導体レーザLD1(第1光源)と、BDの情報記録面RL1からの反射光束を受光する第1の受光素子PD1とを一体化したユニットMD1、レーザモジュールLM等を有する。
 また、レーザモジュールLMは、DVDに対して情報の記録/再生を行う場合に発光され波長λ2=658nmのレーザ光束(第2光束)を射出する第2半導体レーザEP1(第2光源)と、CDに対して情報の記録/再生を行う場合に発光され波長λ3=785nmのレーザ光束(第3光束)を射出する第3半導体レーザEP2(第3光源)と、DVDの情報記録面RL2からの反射光束を受光する第2の受光素子DS1と、CDの情報記録面RL3からの反射光束を受光する第3の受光素子DS2と、プリズムPSと、を有している。
 本実施の形態の対物レンズOBJにおいて、光源側の非球面光学面に、光軸を含む第1領域(回折構造を有する)と、その周囲の第2領域(屈折面)と、その周囲の第3領域(回折構造を有する)と、その周囲で最も光軸から遠い第4領域(屈折面)とを有している。対物レンズOBJは、以下の式を満たす。
 1.5(mm)≦φ1≦3.4(mm)   (1)
 1.7×f3>φ1   (2)
 0.7≦d/f3≦1.42(mm)   (3)
 但し、φ1は、第1光束が対物レンズに入射する面の有効径を表し、f3は、第3光束使用時の対物レンズの焦点距離を表し、dは、対物レンズの軸上厚を表す。
 青紫色半導体レーザLD1から射出された第1光束(λ1=405nm)の発散光束は、偏光ダイクロイックプリズムPPSを透過し、コリメートレンズCLにより平行光束とされた後、図示しない1/4波長板により直線偏光から円偏光に変換され、絞りSTによりその光束径が規制され、対物レンズOBJに入射する。ここで、対物レンズOBJの第1光ディスク・第2光ディスク兼用領域及び第1光ディスク専用領域(第3光ディスク専用領域を通過した光束はフレア化され、スポット周辺部を形成する)により集光された光束は、厚さ0.1mmの保護基板PL1を介して、BDの情報記録面RL1上に形成されるスポットとなる。
 情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りSTを透過した後、図示しない1/4波長板により円偏光から直線偏光に変換され、コリメートレンズCLにより収斂光束とされ、偏光ダイクロイックプリズムPPSを透過した後、第1の受光素子PD1の受光面上に収束する。そして、第1の受光素子PD1の出力信号を用いて、2軸アクチュエータACにより対物レンズOBJをフォーカシングやトラッキングさせることで、BDに記録された情報を読み取ることができる。
 赤色半導体レーザEP1から射出された第2光束(λ2=658nm)の発散光束は、プリズムPSで反射された後、偏光ダイクロイックプリズムPPSにより反射され、コリメートレンズCLにより平行光束とされた後、図示しない1/4波長板により直線偏光から円偏光に変換され、対物レンズOBJに入射する。ここで、対物レンズOBJの第1光ディスク・第2光ディスク兼用領域(第1光ディスク専用領域と第3光ディスク専用領域を通過した光束はフレア化され、スポット周辺部を形成する)光束は、厚さ0.6mmの保護基板PL2を介して、DVDの情報記録面RL2に形成されるスポットとなり、スポット中心部を形成する。
 情報記録面RL2上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りSTを透過した後、図示しない1/4波長板により円偏光から直線偏光に変換され、コリメートレンズCLにより収斂光束とされ、偏光ダイクロイックプリズムPPSにより反射された後、その後、プリズム内で2回反射された後、第2の受光素子DS1に収束する。そして、第2の受光素子DS1の出力信号を用いてDVDに記録された情報を読み取ることができる。
 赤外半導体レーザEP2から射出された第3光束(λ3=785nm)の発散光束は、プリズムPSで反射された後、偏光ダイクロイックプリズムPPSにより反射され、コリメートレンズCLにより平行光束とされた後、図示しない1/4波長板により直線偏光から円偏光に変換され、対物レンズOJTに入射する。ここで、対物レンズOBJの第3光ディスク専用領域(第1光ディスク・第2光ディスク兼用領域と第1光ディスク専用領域を通過した光束はフレア化され、スポット周辺部を形成する)光束は、厚さ1.2mmの保護基板PL3を介して、CDの情報記録面RL3上に形成されるスポットとなる。
 情報記録面RL3上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りSTを透過した後、図示しない1/4波長板により円偏光から直線偏光に変換され、コリメートレンズCLにより収斂光束とされ、偏光ダイクロイックプリズムPPSにより反射された後、その後、プリズム内で2回反射された後、第3の受光素子DS2に収束する。そして、第3の受光素子DS2の出力信号を用いてCDに記録された情報を読み取ることができる。
 (実施例)
 以下、上述した実施の形態に用いることができる実施例について説明する。以下の実施例では、BD/DVD兼用領域とCD専用領域とBD専用領域とを組み合わせて対物レンズを構成しているため、レンズデータ表中で、BD/DVD兼用領域及びBD専用領域とCD専用領域とを分けて示す。(BD/DVD兼用領域とBD専用領域の母非球面の形状は同じであるので同一の表を用いている。)また、以下の実施例では、対物レンズの光源側光学面を4領域又は6領域に分割しているが、光ディスク側光学面は分割されておらず、共通の非球面である。対物レンズの光ディスク側の面を共通の非球面にしない場合、対物レンズ中を通過した第1光束及び第2光束がCD専用領域の光ディスク側の面から射出される可能性が有り、対物レンズ中を通過した第3光束がBD/DVD兼用領域の光ディスク側の面から射出される可能性があるため、BD/DVD兼用領域とCD専用領域の光ディスク側光学面を共通にしている。また、対物レンズの光学面は、それぞれ数1式に表に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。
Figure JPOXMLDOC01-appb-M000001
 ここで、X(h)は光軸方向の軸(光の進行方向を正とする)、κはコーニック定数、Aはi次の非球面係数、hは光軸からの高さ、rは近軸曲率半径である。
 また、回折構造を用いた実施例の場合、その回折構造により各波長の光束に対して与えられる光路差は、数2式の光路差関数に、表に示す係数を代入した数式で規定される。
Figure JPOXMLDOC01-appb-M000002
 λは入射光束の波長、λBは規格化波長(ブレーズ化波長)、dorは回折次数、Cはi次の光路差関数の係数である。
(実施例1)
 表1に実施例1のレンズデータを示す。図6は、実施例1の対物レンズの断面図である。図7(a)は、実施例1のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図7(b)は、実施例1のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図7(c)は、実施例1のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。実施例1では、図6の拡大図に示すように、光軸を含む第1領域R1をBD/DVD共用領域とし、その外側の周囲の第2領域R2をCD専用領域とし、その外側の周囲の第3領域R3をBD/DVD共用領域とし、その外側の周囲の第4領域R4をCD専用領域とし、その外側の周囲の第5領域R5をBD/DVD共用領域とし、その外側の周囲で最も光軸から遠い第6領域R6をBD専用領域としている。BD/DVD共用領域における母非球面の近軸曲率半径は、0.949mm、CD専用領域における母非球面の近軸曲率半径は、1.347mmであり、その差は0.398mmである。BD/DVD共用領域には、(0/1)の回折構造(回折次数がBDは0次、DVDが1次。以下同様の表記形式)が形成されている。尚、本回折構造は、1段2λ1の光路差を与える段差4つからなる、図2(c)のような5レベルの階段型回折構造である。また実施例1では、各値は以下の通りである。
 φ1=2.4mm
 WD3=0.2mm
 f3=1.70mm(1.7×f3=2.890mm)
 d=1.750mm
 d/f3=1.029
 偏肉比(d/dmin)=3.50
Figure JPOXMLDOC01-appb-T000003
(実施例2)
 図8は、実施例2の対物レンズの断面図である。図9(a)は、実施例2のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図9(b)は、実施例2のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図9(c)は、実施例2のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。実施例2は、実施例1のレンズデータを用いてなり、同じ領域の数を有するが、領域の分割位置が異なる。それ以外の点では、式の数値も含め実施例1と同様であるため説明を省略する。
(実施例3)
 図10は、実施例3の対物レンズの断面図である。実施例3では、実施例1,2と異なり、4領域のレンズとしており、図10の拡大図に示すように、光軸を含む第1領域R1をBD/DVD共用領域とし、その周囲の第2領域R2をCD専用領域とし、その周囲の第3領域R3をBD/DVD共用領域とし、その周囲で最も光軸から遠い第4領域R4をBD専用領域としている。図11(a)は、実施例3のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図11(b)は、実施例3のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図11(c)は、実施例3のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。実施例3は、実施例1のレンズデータを用いてなるが、領域の数及び分割位置が異なる。それ以外の点では、式の数値も含め実施例1と同様であるため説明を省略する。
(実施例4)
 表2に実施例4のレンズデータを示す。図12は、実施例4の対物レンズの断面図である。図13(a)は、実施例4のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図13(b)は、実施例4のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図13(c)は、実施例4のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。実施例4では、図12の拡大図に示すように、光軸を含む第1領域R1をBD/DVD共用領域とし、その外側の周囲の第2領域R2をCD専用領域とし、その外側の周囲の第3領域R3をBD/DVD共用領域とし、その外側の周囲の第4領域R4をCD専用領域とし、その外側の周囲の第5領域R5をBD/DVD共用領域とし、その外側の周囲で最も光軸から遠い第6領域R6をBD専用領域としている。BD/DVD共用領域における母非球面の近軸曲率半径は、0.955mm、CD専用領域における母非球面の近軸曲率半径は、1.342mmであり、その差は0.386mmである。BD/DVD共用領域には、(1/-2)の回折構造が形成されている。尚、本回折構造は、段差6つからなる、7レベルの階段型回折構造である。また実施例3では、各値は以下の通りである。
 φ1=2.4mm
 WD3=0.2mm
 f3=1.71mm(1.7×f3=2.907mm)
 d=1.750mm
 d/f3=1.023
 偏肉比=2.350
Figure JPOXMLDOC01-appb-T000004
(実施例5)
 図14は、実施例5の対物レンズの断面図である。図15(a)は、実施例5のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図15(b)は、実施例5のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図15(c)は、実施例5のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。実施例5は、実施例4のレンズデータを用いてなり、同じ領域の数を有するが、領域の分割位置が異なる。それ以外の点では、式の数値も含め実施例4と同様であるため説明を省略する。
(実施例6)
 図16は、実施例6の対物レンズの断面図である。実施例6では、実施例4,5と異なり、4領域のレンズとしており、図16の拡大図に示すように、光軸を含む第1領域R1をBD/DVD共用領域とし、その周囲の第2領域R2をCD専用領域とし、その周囲の第3領域R3をBD/DVD共用領域とし、その周囲で最も光軸から遠い第4領域R4をBD専用領域としている。図17(a)は、実施例6のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図17(b)は、実施例6のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図17(c)は、実施例6のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。実施例6は、実施例4のレンズデータを用いてなるが、領域の数及び分割位置が異なる。それ以外の点では、式の数値も含め実施例4と同様であるため説明を省略する。
(実施例7)
 表3に実施例7のレンズデータを示す。図18は、実施例7の対物レンズの断面図である。図19(a)は、実施例7のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図19(b)は、実施例7のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図19(c)は、実施例7のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。実施例7では、図18の拡大図に示すように、光軸を含む第1領域R1をBD/DVD共用領域とし、その外側の周囲の第2領域R2をCD専用領域とし、その外側の周囲の第3領域R3をBD/DVD共用領域とし、その外側の周囲の第4領域R4をCD専用領域とし、その外側の周囲の第5領域R5をBD/DVD共用領域とし、その外側の周囲で最も光軸から遠い第6領域R6をBD専用領域としている。BD/DVD共用領域における母非球面の近軸曲率半径は、1.504mm、CD専用領域における母非球面の近軸曲率半径は、1.339mmであり、その差は0.165mmである。BD/DVD共用領域には、(2/1)の回折構造が形成されている。尚、本回折構造は、2λ1の段差を有する図2(b)のようなブレーズ型回折構造である。また実施例7では、各値は以下の通りである。
 φ1=2.4mm
 WD3=0.2mm
 f3=1.71mm(1.7×f3=2.907mm)
 d=1.750mm
 d/f3=1.023
 偏肉比=3.624
Figure JPOXMLDOC01-appb-T000005
(実施例8)
 図20は、実施例8の対物レンズの断面図である。図21(a)は、実施例8のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図21(b)は、実施例8のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図21(c)は、実施例8のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。実施例8は、実施例7のレンズデータを用いてなり、同じ領域の数を有するが、領域の分割位置が異なる。それ以外の点では、式の数値も含め実施例7と同様であるため説明を省略する。
(実施例9)
 図22は、実施例9の対物レンズの断面図である。実施例9では、実施例7,8と異なり、4領域のレンズとしており、図22の拡大図に示すように、光軸を含む第1領域R1をBD/DVD共用領域とし、その周囲の第2領域R2をCD専用領域とし、その周囲の第3領域R3をBD/DVD共用領域とし、その周囲で最も光軸から遠い第4領域R4をBD専用領域としている。図23(a)は、実施例9のBD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図23(b)は、実施例9のDVD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図であり、図23(c)は、実施例9のCD使用時における縦球面収差(実線)及び正弦条件(点線)を示す図である。実施例9は、実施例7のレンズデータを用いてなるが、領域の数及び分割位置が異なる。それ以外の点では、式の数値も含め実施例7と同様であるため説明を省略する。
(実施例10)
 表4に実施例10のレンズデータを示す。図24は、実施例10の対物レンズの断面図である。実施例10では、図24の拡大図に示すように、光軸を含む第1領域R1をBD/DVD共用領域とし、その周囲の第2領域R2をCD専用領域とし、その周囲の第3領域R3をBD/DVD共用領域とし、その周囲で最も光軸から遠い第4領域R4をBD専用領域としている。BD/DVD共用領域における母非球面の曲率半径は、0.836mm、CD専用領域における母非球面の曲率半径は、1.2475mmであり、その差は0.4115mmである。BD/DVD共用領域には、(0/1)の回折構造が形成されている。また実施例10では、各値は以下の通りである。
 φ1=2.15mm
 WD3=0.2mm
 f3=1.60mm(1.7×f3=2.720mm)
 d=1.490mm
 d/f3=0.93125
 偏肉比(d/dmin)=4.52
Figure JPOXMLDOC01-appb-T000006
(実施例11)
 表5に実施例11のレンズデータを示す。図25は、実施例11の対物レンズの断面図である。実施例11では、図25の拡大図に示すように、光軸を含む第1領域R1をBD/DVD共用領域とし、その周囲の第2領域R2をCD専用領域とし、その周囲の第3領域R3をBD/DVD共用領域とし、その周囲で最も光軸から遠い第4領域R4をBD専用領域としている。BD/DVD共用領域における母非球面の曲率半径は、0.8721mm、CD専用領域における母非球面の曲率半径は、1.2513mmであり、その差は0.3792mmである。BD/DVD共用領域には、(1/-2)の回折構造が形成されている。また実施例11では、各値は以下の通りである。
 φ1=2.15mm
 WD3=0.2mm
 f3=1.55mm(1.7×f3=2.635mm)
 d=1.490mm
 d/f3=0.9613
 偏肉比(d/dmin)=3.77
Figure JPOXMLDOC01-appb-T000007
(実施例12)
 表6に実施例12のレンズデータを示す。図26は、実施例12の対物レンズの断面図である。実施例12では、図26の拡大図に示すように、光軸を含む第1領域R1をBD/DVD共用領域とし、その周囲の第2領域R2をCD専用領域とし、その周囲の第3領域R3をBD/DVD共用領域とし、その周囲で最も光軸から遠い第4領域R4をBD専用領域としている。BD/DVD共用領域における母非球面の曲率半径は、1.0150mm、CD専用領域における母非球面の曲率半径は、1.1598mmであり、その差は0.1448mmである。BD/DVD共用領域には、(2/1)の回折構造が形成されている。また実施例12では、各値は以下の通りである。
 φ1=2.15mm
 WD3=0.2mm
 f3=1.63mm(1.7×f3=2.771mm)
 d=1.490mm
 d/f3=0.9141
 偏肉比(d/dmin)=2.52
Figure JPOXMLDOC01-appb-T000008
 尚、図27~28は、対物レンズの変形例を示す図である。図27の変形例は、光軸を含む領域R1をBD/DVD共用領域((0/1)の回折構造を有する)とし、その外側の周囲の領域R2をCD専用領域(屈折面)とし、その外側の周囲の領域R3をBD/DVD共用領域((0/1)の回折構造を有する)とし、その外側の周囲の領域R4をBD専用領域(屈折面)としている。
 図28は変形例を示す。一つの変形例として、光軸を含む領域R1をBD/DVD共用領域((1/-2)の回折構造を有する)とし、その外側の周囲の領域R2をCD専用領域(屈折面)とし、その外側の周囲の領域R3をBD/DVD共用領域((1/-2)の回折構造を有する)としている。
 図28のもう一つの変形例としては、光軸を含む領域R1をBD/DVD共用領域((2/1)の回折構造を有する)とし、その外側の周囲の領域R2をCD専用領域(屈折面)とし、その外側の周囲の領域R3をBD/DVD共用領域((2/1)の回折構造を有する)としている。
 AC 二軸アクチュエータ
 PPS 偏光ダイクロイックプリズム
 CL コリメートレンズ
 LD1 青紫色半導体レーザ
 LM レーザモジュール
 OBJ 対物レンズ
 PL1 保護基板
 PL2 保護基板
 PL3 保護基板
 PU1 光ピックアップ装置
 RL1 情報記録面
 RL2 情報記録面
 RL3 情報記録面
 CN 中心領域
 MD 周辺領域
 OT 最周辺領域

Claims (20)

  1.  波長λ1の第1光束を出射する第1光源と、波長λ2(λ1<λ2)の第2光束を出射する第2光源と、波長λ3(λ2<λ3)の第3光束を出射する第3光源と、対物レンズとを有し、前記対物レンズは、前記第1光束を厚さt1の保護層を有する第1光ディスクの情報記録面上に情報の記録及び/又は再生を行えるように集光させ、前記第2光束を厚さt2(t1<t2)の保護層を有する第2光ディスクの情報記録面上に情報の記録及び/又は再生を行えるように集光させ、前記第3光束を厚さt3(t2<t3)の保護層を有する第3光ディスクの情報記録面上に情報の記録及び/又は再生を行えるように集光させることによって情報の記録及び/又は再生を行う光ピックアップ装置用の対物レンズにおいて、
     前記対物レンズは単玉レンズであり、
     少なくとも一つの光学面が、光軸を含む第1領域と、前記第1領域の外側に設けられた第2領域と、前記第2領域の外側に設けられた第3領域とを有し、以下の式を満たすことを特徴とする対物レンズ。
     1.5(mm)≦φ1≦3.4(mm)   (1)
     1.7×f3>φ1   (2)
     0.7≦d/f3≦1.42(mm)   (3)
    但し、
     φ1:前記第1光束が前記対物レンズに入射する面の有効径
     f3:前記第3光束使用時の前記対物レンズの焦点距離
     d:前記対物レンズの軸上厚
  2.  以下の式を満たすことを特徴とする請求項1に記載の対物レンズ。
     0.15(mm)≦WD3≦0.5(mm)   (4)
    但し、
     WD3:前記第3光ディスク使用時のワーキングディスタンス
  3.  前記領域の内、ある領域における母非球面の近軸曲率半径と、他の領域における母非球面の近軸曲率半径との差が、0.1mm以上、0.7mm以下であることを特徴とする請求項1又は2に記載の対物レンズ。
  4.  前記領域の内、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光する領域における母非球面の近軸曲率半径と、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光する領域又は通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光する領域における母非球面の近軸曲率半径との差が、0.1mm以上、0.7mm以下であることを特徴とする請求項3に記載の対物レンズ。
  5.  通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光する前記対物レンズの領域と、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光する前記対物レンズの領域とは、異なる領域であることを特徴とする請求項1~4のいずれかに記載の対物レンズ。
  6.  通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光せず、通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第3光ディスク専用領域を有することを特徴とする請求項1~5のいずれかに記載の対物レンズ。
  7.  前記第3光ディスク専用領域は、屈折面であることを特徴とする請求項6に記載の対物レンズ。
  8.  前記第3光ディスク専用領域の数は、1以上3以下であることを特徴とする請求項6又は7に記載の対物レンズ。
  9.  前記第1領域は、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第2光束を、前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光するが、通過した前記第3光束を、前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第1光ディスク・第2光ディスク兼用領域であることを特徴とする請求項1~8のいずれかに記載の対物レンズ。
  10.  前記第1領域は、第1回折構造を有し、
     前記第1回折構造は、前記第1光束が通過した際に、0次回折光(透過光)を他の次数の回折光に比して最も多く発生させる構造であることを特徴とする請求項9に記載の対物レンズ。
  11.  前記第2領域は、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光せず、通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第3光ディスク専用領域であることを特徴とする請求項1~10のいずれかに記載の対物レンズ。
  12.  前記第3領域は、通過した前記第1光束を、前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第2光束を、前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光するが、通過した前記第3光束を、前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第1光ディスク・第2光ディスク兼用領域であることを特徴とする請求項1~11のいずれかに記載の対物レンズ。
  13.  前記対物レンズは、前記第3領域の外側に第4領域を有し、前記第4領域の外側に第5領域を有し、前記第5領域の外側に第6領域を有し、
     前記第6領域は、前記対物レンズにおいて光軸から最も離れた領域であり、
     前記第1領域、前記第3領域及び前記第5領域は、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第1光ディスク・第2光ディスク兼用領域であり、
     前記第2領域及び前記第4領域は、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光せず、通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第3光ディスク専用領域であり、
     前記第6領域は、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光せず、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第1光ディスク専用領域であることを特徴とする請求項1~12のいずれかに記載の対物レンズ。
  14.  前記第6領域は、屈折面であることを特徴とする請求項13に記載の対物レンズ。
  15.  前記対物レンズは、前記第3領域の外側に、第4領域を有し、
     前記第4領域は、前記対物レンズにおいて光軸から最も離れた領域であり、
     前記第1領域及び前記第3領域は、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第1光ディスク・第2光ディスク兼用領域であり、
     前記第2領域は、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光せず、通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第3光ディスク専用領域であり、
     前記第4領域は、通過した前記第1光束を前記第1光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光し、通過した前記第2光束を前記第2光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光せず、通過した前記第3光束を前記第3光ディスクの情報記録面に情報の記録及び/又は再生を行えるように集光しない第1光ディスク専用領域であることを特徴とする請求項1~12のいずれかに記載の対物レンズ。
  16.  前記第4領域は、屈折面であることを特徴とする請求項15に記載の対物レンズ。
  17.  光軸を含む断面において、前記第1領域と前記第2領域の間に段差を有し、前記段差と前記第1領域が交差する部分は、前記段差と前記第2領域が交差する領域に比して、光軸方向光源側に位置することを特徴とする請求項1~16のいずれかに記載の対物レンズ。
  18.  前記第1領域は、通過した前記第1光束を前記第1光ディスクの情報記録面に集光し、通過した前記第2光束を前記第2光ディスクの情報記録面に集光し、通過した前記第3光束を前記第3光ディスクの情報記録面に集光しない第1光ディスク・第2光ディスク兼用領域であり、
     前記第2領域は、通過した前記第3光束を前記第3光ディスクの情報記録面に集光し、通過した前記第1光束を前記第1光ディスクの情報記録面に集光せず、通過した前記第2光束を前記第2光ディスクの情報記録面に集光しない第3光ディスク専用領域であることを特徴とする請求項17に記載の対物レンズ。
  19.  以下の条件式(5)を満たすことを特徴とする請求項1~18のいずれかに記載の対物レンズ。
     d/δ≦5   (5)
    ただし、
    δ:前記対物レンズの光軸方向最小厚
    d:前記対物レンズの軸上厚
  20.  請求項1~19のいずれかに記載の対物レンズを有することを特徴とする光ピックアップ装置。
PCT/JP2009/070159 2008-12-12 2009-12-01 対物レンズ及び光ピックアップ装置 WO2010067733A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010542084A JPWO2010067733A1 (ja) 2008-12-12 2009-12-01 対物レンズ及び光ピックアップ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008316845 2008-12-12
JP2008-316845 2008-12-12

Publications (1)

Publication Number Publication Date
WO2010067733A1 true WO2010067733A1 (ja) 2010-06-17

Family

ID=42242721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070159 WO2010067733A1 (ja) 2008-12-12 2009-12-01 対物レンズ及び光ピックアップ装置

Country Status (2)

Country Link
JP (1) JPWO2010067733A1 (ja)
WO (1) WO2010067733A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014987A1 (ja) * 2010-07-30 2012-02-02 コニカミノルタオプト株式会社 成形装置及び成形方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302437A (ja) * 1994-03-11 1995-11-14 Toshiba Corp 光学ヘッド装置およびレンズ
JPH09145994A (ja) * 1995-11-24 1997-06-06 Konica Corp 光情報記録媒体の記録再生用対物レンズ
JP2006260743A (ja) * 2005-02-15 2006-09-28 Konica Minolta Opto Inc 光学ユニット、ミラー及び光ピックアップ装置
JP2006302483A (ja) * 2004-07-22 2006-11-02 Hitachi Maxell Ltd 光ピックアップ光学系、光ヘッド及び光ディスク装置
JP2008165920A (ja) * 2006-12-28 2008-07-17 Hitachi Maxell Ltd 対物レンズ光学系、光ピックアップ光学系

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302437A (ja) * 1994-03-11 1995-11-14 Toshiba Corp 光学ヘッド装置およびレンズ
JPH09145994A (ja) * 1995-11-24 1997-06-06 Konica Corp 光情報記録媒体の記録再生用対物レンズ
JP2006302483A (ja) * 2004-07-22 2006-11-02 Hitachi Maxell Ltd 光ピックアップ光学系、光ヘッド及び光ディスク装置
JP2006260743A (ja) * 2005-02-15 2006-09-28 Konica Minolta Opto Inc 光学ユニット、ミラー及び光ピックアップ装置
JP2008165920A (ja) * 2006-12-28 2008-07-17 Hitachi Maxell Ltd 対物レンズ光学系、光ピックアップ光学系

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014987A1 (ja) * 2010-07-30 2012-02-02 コニカミノルタオプト株式会社 成形装置及び成形方法
CN103025496A (zh) * 2010-07-30 2013-04-03 柯尼卡美能达先进多层薄膜株式会社 成形装置及成形方法
JP5704172B2 (ja) * 2010-07-30 2015-04-22 コニカミノルタ株式会社 成形装置

Also Published As

Publication number Publication date
JPWO2010067733A1 (ja) 2012-05-17

Similar Documents

Publication Publication Date Title
WO2010013616A1 (ja) 対物レンズ及び光ピックアップ装置
JP5136810B2 (ja) 光ピックアップ装置
JP5071883B2 (ja) 光ピックアップ装置及び対物光学素子
WO2009154072A1 (ja) 対物レンズ、光ピックアップ装置及び光ディスクドライブ装置
JP4502079B2 (ja) 対物レンズ及び光ピックアップ装置
JP2008269786A (ja) 光ピックアップ装置及び光ピックアップ装置用の対物光学素子
JPWO2007123112A1 (ja) 光ピックアップ装置、光学素子及び光情報記録再生装置並びに光学素子の設計方法
JP2009129515A (ja) 対物光学素子及び光ピックアップ装置
JP2009110591A (ja) 対物レンズ及び光ピックアップ装置
WO2009128445A1 (ja) 対物レンズ及び光ピックアップ装置
WO2010089933A1 (ja) 対物レンズ及び光ピックアップ装置
JP2009037717A (ja) 対物光学素子及び光ピックアップ装置
JP2010055683A (ja) 対物光学素子及び光ピックアップ装置
JP2010153006A (ja) 対物光学素子及び光ピックアップ装置
WO2010067733A1 (ja) 対物レンズ及び光ピックアップ装置
JP2010055732A (ja) 対物光学素子及び光ピックアップ装置
JP2009266290A (ja) 対物レンズ及び光ピックアップ装置
WO2011114895A1 (ja) 対物レンズ、光ピックアップ装置及び光情報記録再生装置
WO2011148832A1 (ja) 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
WO2009147942A1 (ja) 対物レンズ及び光ピックアップ装置
WO2010116852A1 (ja) 対物レンズ、カップリング素子及び光ピックアップ装置
JP2012146373A (ja) 光ピックアップ装置用の補正素子、対物レンズユニット、光ピックアップ装置及び光情報記録再生装置
JP2011028808A (ja) 光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP2009015950A (ja) 光ピックアップ装置用の補正素子、対物光学素子ユニット及び光ピックアップ装置
JP2009187626A (ja) 対物光学素子、光学素子ユニット及び光ピックアップ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010542084

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831837

Country of ref document: EP

Kind code of ref document: A1