WO2007123112A1 - 光ピックアップ装置、光学素子及び光情報記録再生装置並びに光学素子の設計方法 - Google Patents

光ピックアップ装置、光学素子及び光情報記録再生装置並びに光学素子の設計方法 Download PDF

Info

Publication number
WO2007123112A1
WO2007123112A1 PCT/JP2007/058325 JP2007058325W WO2007123112A1 WO 2007123112 A1 WO2007123112 A1 WO 2007123112A1 JP 2007058325 W JP2007058325 W JP 2007058325W WO 2007123112 A1 WO2007123112 A1 WO 2007123112A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
basic structure
light
order
light beam
Prior art date
Application number
PCT/JP2007/058325
Other languages
English (en)
French (fr)
Inventor
Kentarou Nakamura
Kohei Ota
Jun Egashira
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to US12/297,534 priority Critical patent/US20090103419A1/en
Priority to JP2008512113A priority patent/JPWO2007123112A1/ja
Publication of WO2007123112A1 publication Critical patent/WO2007123112A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • Optical pickup device optical element, optical information recording / reproducing device, and optical element design method
  • the present invention relates to an optical pickup apparatus, an optical element, an optical information recording / reproducing apparatus, and a method for designing an optical element that can perform information recording and Z or reproduction compatible with different types of optical disks.
  • laser light sources used as light sources for reproducing information recorded on optical discs and recording information on optical discs have become shorter, for example Laser light sources with wavelengths of 400 to 420 nm are being put into practical use, such as blue-violet semiconductor lasers and blue SHG lasers that convert the wavelength of infrared semiconductor lasers using the second harmonic.
  • blue-violet laser light sources it is possible to record 15 to 20 GB of information on an optical disk with a diameter of 12 cm when using an objective lens with the same numerical aperture (NA) as DVD (digital versatile disk). If the NA of the objective lens is increased to 0.85, 23 to 25 GB of information can be recorded on an optical disk with a diameter of 12 cm.
  • an optical disk and a magneto-optical disk using a blue-violet laser light source are collectively referred to as a “high density optical disk”.
  • all cases including both are collectively referred to as “recording Z playback” or “recording and Z or playback” t, Mah.
  • optical disk player Z recorder for high density optical disks.
  • the optical pickup device installed in the optical disk player Z recorder for high-density optical discs can appropriately provide information while maintaining compatibility with both high-density optical discs, DVDs, and even CDs. Recording Z It is desirable to have the ability to reproduce.
  • optical systems for high-density optical discs and DVDs can be used.
  • a method of selectively switching the optical system for CDs according to the recording density of the optical disk on which information is recorded and reproduced can be considered, but since multiple optical systems are required, it is disadvantageous for miniaturization and cost. Will increase.
  • an optical system for high-density optical discs and an optical system for DVDs and CDs are also used in compatible optical pickup devices. It is advantageous to simplify the configuration of the optical pickup device and reduce the cost by reducing the number of optical components constituting the optical pickup device as much as possible.
  • an optical path difference providing structure having a wavelength dependency of spherical aberration is provided in at least one optical element of the condensing optical system. Need to form.
  • Patent Document 1 includes a diffractive structure as an optical path difference providing structure, and an objective optical system that can be used in common for high-density optical discs and conventional DVDs and CDs, and this objective optical system.
  • An optical pickup device is described.
  • Patent Document 1 European Published Patent No. 1304689
  • the objective lens used in the optical pickup device described in Patent Document 1 described above which records and Z or reproduces information in a manner compatible with three different optical discs, is an optical pickup. Used for recording and Z or playback depending on device design specifications There is a problem that the amount of light may be insufficient, or that unnecessary light may adversely affect the tracking sensor when performing CD tracking, making it difficult to perform CD tracking accurately. is there.
  • the infinite optical system when used, that is, when a parallel light beam is incident on the objective lens, the above-described problem is remarkable.
  • the objective lens is a plastic lens, the problem that the change in spherical aberration based on the temperature change becomes significant.
  • the present invention takes the above-mentioned problems into consideration, and appropriately records and Z or reproduces information on three types of discs having different recording densities, such as a high-density optical disc, a DVD, and a CD.
  • An optical pickup device, an objective lens, and an optical information recording / reproducing device that can be realized and have a simple configuration, and can realize low cost that is unlikely to cause an eccentricity error during assembly.
  • an optical information recording / reproducing apparatus an optical pickup device, an objective lens, and an optical information recording / reproducing device that can maintain tracking accuracy even when an infinite optical system is used for all three different optical discs. The purpose is to provide.
  • An object is to provide an apparatus, an objective lens, and an optical information recording / reproducing apparatus.
  • the invention described in claim 1 includes a first light source that emits a first light flux having a first wavelength ⁇ 1, and a second wavelength ⁇ 2 ( ⁇ 2> a second light source that emits a second light beam of ⁇ 1), a third light source that emits a third light beam of a third wavelength ⁇ 3 ( ⁇ 3> ⁇ 2), and the first light beam having a thickness of tl Information is recorded on the second optical disc having the protective substrate having a thickness t2 (tl ⁇ t2) by condensing the information on the information recording surface of the first optical disc having the protective substrate.
  • the first light beam is condensed on the information recording surface of the first optical disk
  • the second light beam is condensed on the information recording surface of the second optical disk
  • the third light beam is condensed on the third optical disk.
  • the condensing optical system has at least one optical element, and the optical element has its optical element.
  • optical path difference providing structure on a surface, wherein the optical path difference providing structure is a structure in which at least a first basic structure, a second basic structure, and a third basic structure are superimposed on the same surface, and the first basic structure Is the amount of diffracted light of r-th order (r is an integer) of the first light flux that has passed through the first basic structure Is larger than any other order of the diffracted light amount, and the second light flux has an sth order (where s is an integer) greater than any other order of the diffracted light amount, and the third light flux has the tth order ( t is an optical path difference providing structure that makes the amount of diffracted light of an integer) larger than the amount of diffracted light of any other order, and the second base structure is the u-th order (u of the first light flux that has passed through the second base structure Is an integer) greater than any other order of diffracted light, and the second light beam (where V is an integer) is greater than any other order of diffracted light.
  • An optical path difference providing structure that makes the w-order (w is an integer) diffracted light quantity of the light beam larger than any other order diffracted light quantity
  • the third basic structure is the first light flux that has passed through the third basic structure. Diffracted light of the Xth order (X is an integer) is larger than any other order of diffracted light
  • the y-order (y is an integer) diffracted light quantity of the second light flux is made larger than any other order diffracted light quantity
  • the z-order (z is an integer) diffracted light quantity of the third light flux is diffracted in any other order. It is characterized by an optical path difference providing structure that is larger than the amount of light.
  • the optical pickup device according to claim 2 is the optical pickup device according to claim 1, wherein the first basic structure, the second basic structure, and the third basic structure are provided.
  • the optical element provided with the optical path difference providing structure formed by superimposing is formed from a single material.
  • the optical pickup device is the optical pickup device according to claim 1 or 2, wherein the first basic structure, the second basic structure, The optical element having the optical path difference providing structure formed by superimposing a third basic structure, It is an objective lens that also has a plastic force.
  • the optical pickup device described in claim 4 is the optical pickup device described in claim 3 characterized by satisfying the following conditions.
  • the ASA collects the first light flux (the first wavelength ⁇ 1 is the use reference wavelength ⁇ 10 at the use reference temperature TO) on the information recording surface of the first optical disc at the use reference temperature TO.
  • the first light flux (the first wavelength ⁇ ⁇ is the same as the operating temperature ⁇
  • the first light flux (the first wavelength ⁇ ⁇ is the same as the operating temperature ⁇
  • the optical pickup device described in claim 5 is the optical pickup device described in claim 4.
  • the value of A SAZfl is expressed by the conditional expression ( It is possible to satisfy 1).
  • the optical pickup device according to claim 6 is the optical pickup device according to claims 1 to 5.
  • the optical pickup device described in item 1 satisfies the following conditional expression.
  • optical pickup device described in claim 7 is the optical pickup device described in claim 6, characterized by satisfying the following conditional expression.
  • the optical pickup device is the optical pickup device according to any one of claims 1 to 7, wherein the second basic structure has a plurality of steps.
  • the third basic structure is a structure having a plurality of steps, and the second basic structure and the third basic structure, in which the pitch width between the steps is larger than the second basic structure, are overlapped.
  • the optical pickup device according to claim 9, wherein the position of at least one step of the second foundation structure is overlapped so as not to coincide with the position of the step of the third foundation structure.
  • the optical pickup device according to any one of claims 1 to 8, wherein at least one of the first basic structure, the second basic structure, and the third basic structure is a blaze type. This is the shape The features.
  • the optical pickup device is the optical pickup device according to claim 9, wherein the first basic structure, the second basic structure, and the third basic structure are overlapped with each other.
  • the optical path difference providing structure thus formed is characterized by having an inclined surface that is neither perpendicular nor parallel to the base surface of the optical element.
  • the optical element according to claim 11 is a first light source that emits a first light beam having a first wavelength ⁇ 1 and a second light beam that emits a second light beam having a second wavelength ⁇ 2 ( ⁇ 2> ⁇ 1).
  • Information recording surface of first optical disc having two light sources, a third light source that emits a third light beam having a third wavelength ⁇ 3 ( ⁇ 3> ⁇ 2), and a protective substrate having a thickness of tl for the first light beam
  • the second light flux is condensed on the information recording surface of the second optical disc having a protective substrate with a thickness of t2 (tl ⁇ t2), and the third light flux has a thickness of t3 (t2 and a condensing optical system for condensing on the information recording surface of the third optical disc having the protective substrate of ⁇ t3), and condensing the first light flux on the information recording surface of the first optical disc.
  • the second light flux is condensed on the information recording surface of the second optical disc
  • the third light flux is condensed on the information recording surface of the third optical disc, thereby recording and recording information.
  • Optical used in Z or the light converging optical system of the optical pickup apparatus for reproducing The optical element has an optical path difference providing structure on an optical surface thereof, and the optical path difference providing structure overlaps at least the first basic structure, the second basic structure, and the third basic structure on the same surface.
  • the first basic structure has a diffracted light amount of r order (r is an integer) of the first light flux that has passed through the first basic structure larger than any other order of diffracted light amount, Make the s-order (s is an integer) diffracted light quantity of the second light flux larger than any other order diffracted light quantity, and the t-order (t is an integer) diffracted light quantity of the third light flux
  • An optical path difference providing structure that makes the light amount larger than the light amount, wherein the second basic structure is configured to change the u-order (u is an integer) diffracted light amount of the first light flux that has passed through the second basic structure to another!
  • the amount of diffracted light in the Vth order (V is an integer) of the second light flux is set to any other order.
  • the optical path difference providing structure for making the w-order (w is an integer) diffracted light quantity of the third light flux larger than any other order diffracted light quantity.
  • the X-order (X is an integer) diffracted light amount of the first light beam that has passed through the third basic structure is made larger than any other order diffracted light amount
  • the y-order (y is an integer) diffraction amount of the second light beam is an optical path difference providing structure in which the amount of light is made larger than any other order of diffracted light, and the z-order (z is an integer) of the third light flux is made larger than any other order of diffracted light.
  • An optical element according to claim 12 is the optical element according to claim 11, which overlaps the first basic structure, the second basic structure, and the third basic structure.
  • the optical element to which the optical path difference providing structure is formed is formed from a single material!
  • the optical element according to claim 13 is the optical element according to claim 11 or 12, wherein the first basic structure, the second basic structure, and the first optical element are the same.
  • the optical element having the optical path difference providing structure formed by superimposing three basic structures is an objective lens made of plastic.
  • optical element described in claim 14 is the optical element described in claim 13, characterized in that the following condition is satisfied.
  • a SA is used at the reference temperature TO, and the optical pickup device A spherical aberration when the bundle (the first wavelength ⁇ 1 is the use reference wavelength ⁇ 10 at the use reference temperature TO) on the information recording surface of the first optical disc, and the optical pickup device uses
  • the first light flux (the first wavelength ⁇ 1 is the use wavelength ⁇ 11 at the use temperature ⁇ ) is The difference in spherical aberration when focused on the information recording surface of the first optical disk is represented, and fl represents the focal length of the objective lens included in the focusing optical system when the first light beam is used.
  • the value of A SAZfl is expressed by the conditional expression (1) by superimposing the third basic structure. ) Can be satisfied.
  • optical element described in claim 17 is the optical element described in claim 16, characterized by satisfying the following conditional expression.
  • the optical element according to claim 18 is the optical element according to any one of claims 11 to 17, wherein the second basic structure has a plurality of steps.
  • the third basic structure is a structure having a plurality of steps, and When the second foundation structure and the third foundation structure having a pitch width larger than that of the second foundation structure are overlapped, the position of at least one step of the second foundation structure is a step of the third foundation structure. It is characterized by overlapping so as not to coincide with the position of.
  • An optical element according to claim 19 is the optical element according to any one of claims 11 to 18, wherein the first foundation structure and the second foundation are provided. At least one of the structure and the third basic structure has a blazed shape.
  • the optical element according to claim 20 is the optical element according to claim 19.
  • the optical path difference providing structure formed by superimposing the first basic structure, the second basic structure, and the third basic structure is not perpendicular to or parallel to the base surface of the optical element. It has a surface.
  • the optical information recording / reproducing apparatus is a first light source that emits a first light beam having a first wavelength ⁇ 1 and a second light beam that has a second wavelength ⁇ 2 ( ⁇ 2> ⁇ 1).
  • the second light flux is condensed on the information recording surface of the second optical disk having a protective substrate with a thickness of t2 (tl ⁇ t2), and the third light flux is made thick.
  • a condensing optical system for condensing on the information recording surface of the third optical disk having a protective substrate of t3 (t2 ⁇ t3), and recording the information on the first optical disk with the first light flux.
  • Information is collected by focusing on the surface, condensing the second light flux on the information recording surface of the second optical disc, and condensing the third light flux on the information recording surface of the third optical disc.
  • the condensing optical system of the optical pickup device has at least one optical element, and the optical element
  • the optical surface has an optical path difference providing structure, and the optical path difference providing structure is a structure in which at least a first basic structure, a second basic structure, and a third basic structure are superimposed on the same plane, and the first basic structure
  • the diffracted light amount of the first light flux that has passed through the first basic structure is made larger than the diffracted light amount of any other order, and the sth order (s is an integer) of the second light flux.
  • the diffracted light amount of the third light beam is made larger than any other diffracted light amount, and the t-order (t is an integer) diffracted light amount of the third light flux
  • An optical path difference providing structure that makes the light amount larger than the light amount, wherein the second basic structure is configured to change the U-order (U is an integer) diffracted light amount of the first light flux that has passed through the second basic structure to another! Diffracted light quantity of the second light flux is made larger than the diffracted light quantity of any other order, and the W-order (W is an integer) diffraction quantity of the third light flux.
  • An optical path difference providing structure that makes the light quantity larger than any other order diffracted light quantity
  • the third basic structure is a diffraction of the Xth order (X is an integer) of the first light beam that has passed through the third basic structure.
  • the amount of diffracted light is made larger than any other order of diffracted light
  • the yth order (y is an integer) of the second light flux is made larger than any other order of diffracted light
  • the zth order (where z is an integer) is an optical path difference providing structure that makes the amount of diffracted light larger than that of any other order.
  • the optical pickup device emits a first light source that emits a first light beam having a first wavelength ⁇ 1 and a second light beam that has a second wavelength ⁇ 2 ( ⁇ 2> ⁇ 1).
  • the second light flux is condensed on the surface, and the second light flux is condensed on the information recording surface of the second optical disk having a protective substrate with a thickness t2 (tl ⁇ t2), and the third light flux is t3 (t2 a condensing optical system for condensing on the information recording surface of the third optical disk having the protective substrate of ⁇ t3), and condensing the first light flux on the information recording surface of the first optical disk.
  • the second light beam is condensed on the information recording surface of the second optical disk, and the third light beam is condensed on the information recording surface of the third optical disk.
  • the condensing optical system has at least one optical element, and the optical element has an optical path providing structure on an optical surface thereof, and the optical path difference
  • the grant structure is a structure in which at least the first basic structure, the second basic structure, and the third basic structure are superimposed on the same surface, and the first basic structure, the second basic structure, and the third basic structure are , A structure having a step in substantially the same direction as the optical axis, and at least one of the first basic structure, the second basic structure, and the third basic structure is a structure having a blazed shape
  • the optical path difference providing structure formed by overlapping the first basic structure, the second basic structure, and the third basic structure has an oblique surface that is neither perpendicular nor parallel to the base surface of the optical element.
  • An optical pickup device is the optical pickup device according to claim 22, wherein at least one of the first basic structure, the second basic structure, and the third basic structure.
  • the third light flux is condensed on the information recording surface of the third optical disc having a protective substrate with a thickness of t3 (t2 ⁇ t3).
  • the first optical flux is condensed on the information recording surface of the first optical disc
  • the second optical flux is condensed on the information recording surface of the second optical disc
  • the optical element Has an optical path difference providing structure on its optical surface
  • the optical path difference providing structure is a structure in which at least a first basic structure, a second basic structure, and a third basic structure are superimposed on the same plane
  • the one basic structure, the second basic structure, and the third basic structure are structures having steps in the same direction as the optical axis, and the first basic structure, the second basic structure, and the third basic structure. At least one of them has a blazed shape
  • the optical path difference providing structure formed by superimposing the first basic structure, the second basic structure, and the third basic structure is neither perpendicular nor parallel to the base surface of the optical element. And having an inclined surface.
  • An optical element according to claim 25 is the optical element according to claim 24, wherein there are few of the first basic structure, the second basic structure, and the third basic structure. Both are characterized by a structure having a stepped shape.
  • An optical information recording / reproducing apparatus wherein a first light source that emits a first light beam with a first wavelength ⁇ 1 and a second light beam with a second wavelength ⁇ 2 ( ⁇ 2> ⁇ 1) are provided.
  • the second optical flux is focused on the information recording surface of the second optical disk having the protective substrate with a thickness of t2 (tl ⁇ t2).
  • the first light beam is condensed on the information recording surface of the first optical disk
  • the second light beam is condensed on the information recording surface of the second optical disk
  • the third light beam is collected on the information of the third optical disk.
  • the condensing optical system includes at least one optical element, and the optical The element has an optical path difference providing structure on its optical surface, and the optical path difference providing structure is at least The first basic structure, the second basic structure, and the third basic structure are superimposed on the same plane, and the first basic structure, the second basic structure, and the third basic structure are substantially the same as the optical axis.
  • a structure having steps in the same direction, and at least one of the first basic structure, the second basic structure, and the third basic structure is a structure having a blaze shape;
  • the optical path difference providing structure formed by superimposing the second basic structure and the third basic structure has an inclined surface that is neither perpendicular nor parallel to the base surface of the optical element. .
  • the present invention there are three types of recording densities, such as a high-density optical disc, a DVD, and a CD, which have a simple configuration and can realize a low cost that is unlikely to cause an eccentricity error during assembly. It is possible to provide an optical pickup apparatus, an optical element, and an optical information recording / reproducing apparatus that can appropriately perform information recording and Z or reproduction on a disc. In addition, tracking accuracy can be maintained even when an infinite optical system is used for all three different optical disks. Furthermore, even if a plastic lens is used as the optical element for the condensing optical system, the temperature characteristics are improved, and information can be recorded and Z or reproduced appropriately for three types of discs. Become.
  • FIG. 1 is a view of an example of an objective lens OBJ according to the present invention as seen from the optical axis direction.
  • FIG. 2 is a cross-sectional view schematically showing examples (a) to (e) of several forces of the foundation structure according to the present invention.
  • FIG. 3 is a diagram schematically showing a configuration of an optical pickup device according to the present invention.
  • FIG. 4 is a cross-sectional view schematically showing an example of an objective lens OBJ according to the present invention.
  • FIG. 5 is a cross-sectional view showing an optical path difference providing structure of an objective lens according to an embodiment of the present invention.
  • FIG. 6 is longitudinal spherical aberration diagrams (a) to (c) relating to BD, DVD, and CD of examples according to the present invention.
  • FIG. 7 is a diagram schematically showing a spot shape.
  • the optical pickup device of the present invention has at least three light sources: a first light source, a second light source, and a third light source. Furthermore, the optical pickup device of the present invention condenses the first light flux on the information recording surface of the first optical disk, condenses the second light flux on the information recording surface of the second optical disk, and causes the third light flux to converge on the third light flux.
  • a condensing optical system for condensing on the information recording surface of the optical disc The optical pickup device of the present invention includes a light receiving element that receives a reflected light beam from the information recording surface of the first optical disc, the second optical disc, or the third optical disc.
  • the first optical disc has a protective substrate having a thickness of tl and an information recording surface.
  • the second optical disk has a protective substrate having a thickness t2 (tl ⁇ t2) and an information recording surface.
  • the third optical disc has a protective substrate having a thickness t3 (t2 ⁇ t3) and an information recording surface.
  • the first optical disk is preferably a high-density optical disk
  • the second optical disk is a DVD
  • the third optical disk is preferably a CD, but is not limited thereto.
  • the first optical disc, the second optical disc, or the third optical disc may be a multi-layer optical disc having a plurality of information recording surfaces.
  • a high-density optical disc information recording Z reproduction is performed by an objective lens of NAO. 85, and a standard light with a protective substrate thickness of about 0.1 mm is used.
  • Discs for example, BD: Blu-ray Disc
  • a standard optical disc for example, having a protective substrate thickness of about 0.6 mm, in which information is recorded and played back by an objective lens of NAO. 65 to 0.67.
  • HD DVD also simply HD).
  • a high-density optical disc includes an optical disc having a protective film with a thickness of several to several tens of nanometers on the information recording surface (in this specification, the protective substrate includes the protective film), and the thickness of the protective substrate. Also includes optical discs with a length of zero.
  • High-density optical disks include magneto-optical disks that use blue-violet semiconductor lasers or blue-violet SHG lasers as light sources for recording and reproducing information.
  • DVD is a general term for DVD-series optical discs in which information is recorded and played back with an objective lens of NAO. 60 to 0.67 and the thickness of the protective substrate is about 0.6 mm.
  • CD means a CD series optical disc in which information recording Z reproduction is performed by an objective lens of NA 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm.
  • Generic name including CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW, etc.
  • the recording density is high density optical The recording density of discs is the highest, followed by DVD and CD.
  • the first light source, the second light source, and the third light source are preferably laser light sources.
  • the laser light source it is preferable to use a semiconductor laser, a silicon laser, or the like.
  • the third wave of the luminous flux 3 ⁇ 4 3 ( ⁇ 3> 2) preferably satisfies the following condition! /
  • the first wavelength ⁇ 1 of the first light source is preferably 350 ⁇ m or more, 440nm or less, More preferably, it is 380 nm or more and 415 nm or less
  • the second wavelength 2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less.
  • the three wavelengths 3 are preferably 750 nm or more and 88 Onm or less, more preferably 760 nm or more and 820 nm or less.
  • At least two of the first light source, the second light source, and the third light source may be unitized.
  • Unitization refers to, for example, a case where the first light source and the second light source are fixedly housed in one package, but is not limited to this, and the two light sources are fixed so as not to be able to correct aberrations. It includes the state widely.
  • a light receiving element described later may be provided in one package.
  • a photodetector such as a photodiode is preferably used.
  • the light reflected on the information recording surface of the optical disk enters the light receiving element, and the read signal of the information recorded on each optical disk is obtained using the output signal.
  • it detects focus changes and track detection by detecting changes in the shape of the spot on the light receiving element and changes in the amount of light due to position changes. Based on this detection, the objective lens can be moved for focusing and tracking.
  • the light receiving element may also have a plurality of photodetector forces.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors.
  • a light receiving element may be used.
  • the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
  • the condensing optical system has at least one optical element such as an objective lens.
  • the condensing optical system may have only an objective lens.
  • the condensing optical system may include other coupling lenses such as a collimator and a flat optical element having an optical function, in addition to the objective lens. You may have an optical element.
  • the coupling lens refers to a single lens or a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam.
  • the condensing optical system has an optical element such as a diffractive optical element that divides the emitted light beam into a main light beam used for information recording / reproduction and two sub light beams used for tracking and the like. It may be.
  • the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source cover onto the information recording surface of the optical disk.
  • the objective lens is an optical system that is disposed at a position facing the optical disc in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disc.
  • it refers to an optical system that can be integrally changed at least in the optical axis direction by an actuator.
  • An optical element used in a condensing optical system and provided with an optical path difference providing structure may include two or more lenses and optical element forces, or may be a single lens alone.
  • a single lens or a single optical element is preferable.
  • the optical element may be made of glass or plastic, or a hybrid in which an optical path difference providing structure or the like is provided on a glass optical element with a photocurable resin.
  • a glass lens and a plastic lens may be mixed and used.
  • a flat having an optical path difference providing structure is provided.
  • a combination of a plate optical element and an aspherical lens (having an optical path difference providing structure, which may or may not be necessary!) May be used.
  • the refractive surface is preferably an aspherical surface.
  • the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface or a flat surface.
  • the base surface refers to that plane, and the optical surface of the optical element provided with the optical path difference providing structure is a curved surface. In some cases, the base surface refers to the envelope surface of the optical path difference providing structure.
  • An envelope surface is a curve that connects the portions that protrude most in the direction of the optical axis for each unit region.
  • the unit region for example, the unit region may be divided every 0.05 mm in the direction orthogonal to the optical axis.
  • An optical element provided with an optical path difference providing structure is particularly preferably a single objective lens having plastic force or a single flat optical element made of plastic.
  • the optical element is made of glass
  • a glass material having a glass transition point Tg force of 00 ° C or less By using a glass material with a glass transition point Tg force of 00 ° C or lower, molding at a relatively low temperature is possible, so that the life of the mold can be extended.
  • Examples of such a glass material having a low glass transition point Tg include K-PG325 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
  • glass optical elements generally have a specific gravity greater than that of a resin lens.
  • the objective lens is a glass lens
  • the weight increases and a burden is imposed on the actuator that drives the objective lens.
  • the optical element is made of glass, it is preferable to use a glass material having a small specific gravity.
  • the specific gravity is preferably 3.0 or less, more preferably 2.8 or less.
  • the temperature at a wavelength of 405 nm is 25 ° C.
  • There - 20 X 10- 5 to - 5 X 10 _5 (more preferably, -10 X 10- 5 to - 8 X 10-5) and more preferred to use ⁇ material is within range of.
  • the coupling lens is preferably a plastic lens.
  • a resin material suitable for the objective lens of the present invention there is "Asamal resin" other than the above-described cyclic olefin type.
  • Assumal resin is a resin material in which particles with a diameter of 30 nm or less and having a refractive index change rate opposite to that of the base resin are changed.
  • the optical path difference providing structure is a structure in which at least the first basic structure, the second basic structure, and the third basic structure are superimposed on the same surface.
  • “Superimposition” means literally overlapping. In this specification, even if the first basic structure and the second basic structure are provided on other optical surfaces, or the first basic structure and the second basic structure are on the same optical surface, These are provided in different areas, and when there is no overlapping area, this is not a superposition in this specification.
  • the optical path difference providing structure may overlap another basic structure as long as at least three basic structures overlap. For example, in addition to the first basic structure, the second basic structure, and the third basic structure, a fourth basic structure may be further overlapped, or a fifth basic structure may be further overlapped.
  • the basic structure is an optical path difference providing structure.
  • the optical path difference providing structure in this specification is a general term for structures that add an optical path difference to an incident light beam.
  • the optical path difference providing structure also includes a phase difference providing structure for providing a phase difference.
  • the phase difference providing structure includes a diffractive structure.
  • the optical path difference providing structure has a step substantially parallel to the direction of the optical axis, and preferably has a plurality of steps. This step adds an optical path difference and Z or phase difference to the incident beam.
  • the optical path difference added by the optical path difference providing structure may be an integer multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam.
  • the basic structures such as the first basic structure, the second basic structure, and the third basic structure are preferably concentric structures around the optical axis when viewed from the optical axis direction.
  • the first basic structure makes the r-th order (r is an integer) diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order diffracted light quantity, and the second light beam has the s-order (s is an integer number). ) Is greater than any other order, and the t-order (t is an integer) of the third light beam is greater than any other order. .
  • Second group The foundation structure makes the U-order (U is an integer) diffracted light quantity of the first light flux that has passed through the second basic structure larger than any other order diffracted light quantity, and the V-order (V is an integer) of the second light flux.
  • the diffracted light quantity is made larger than any other order diffracted light quantity
  • the W-order (W is an integer) diffracted light quantity of the third light flux is made larger than any other order diffracted light quantity.
  • the amount of diffracted light in the Xth order (X is an integer) of the first light beam that has passed through the third basic structure is made larger than the amount of diffracted light in any other order
  • the yth order An optical path that makes the diffracted light amount (y is an integer) larger than any other order diffracted light amount, and makes the z-order (z is an integer) diffracted light amount of the third light beam larger than any other order diffracted light amount It is a difference giving structure.
  • r, s, t, u, v, w, x, y, and z may be the same integer, or all may be different integers. However, not all are the same integer.
  • At least one of r, s, and t is not 0.
  • One or two of r, s, and t may be O.
  • at least one of u, V, and w is not 0. More preferably, none of u, V, and w is 0.
  • at least one of X, y and z is not 0. More preferably, none of X, y and z is zero. Further, it is preferable that the following conditional expression is satisfied.
  • the first basic structure, the second basic structure, and the third basic structure are preferably structures in which a certain unit shape is periodically repeated.
  • unit shape is periodically repeated naturally includes shapes in which the same shape is repeated in the same cycle.
  • the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually becomes longer or gradually becomes shorter as the unit shape is “periodically repeated”. It is assumed that it is included.
  • the first basic structure, the second basic structure, and the third basic structure has a blazed shape.
  • the blazed shape means that the cross-sectional shape including the optical axis of an optical element having an optical path difference providing structure is a sawtooth shape.
  • the optical path difference providing structure has an oblique surface that is neither perpendicular nor parallel to the base surface.
  • the base surface has already been described above.
  • the first basic structure, the second basic structure, the third basic structure in the present invention All the basic structures such as the structure may be limited to a blazed-type basic structure.
  • the 1st foundation structure, the 2nd foundation structure, or the 3rd foundation structure has a blaze type shape, it becomes the shape by which the triangle which is a unit shape was repeated.
  • the same triangle may be repeated, and as shown in Fig. 2 (b), the triangle gradually increases in size as it goes in the direction of the base surface. It may be a shape that goes down or a shape that goes down. Alternatively, a shape in which the size of the triangle gradually increases and a shape in which the size of the triangle gradually decreases may be combined. However, even in the case where the size of the triangle changes gradually, it is preferable that the size of the optical axis direction (or the direction of the light beam passing through) in the triangle hardly changes.
  • the length in the optical axis direction of one triangle (may be the length in the direction of light rays passing through the triangle) is called the pitch depth, and the length of one triangle in the direction perpendicular to the optical axis is called the pitch depth.
  • the length is called the pitch width.
  • the blazed shape step is opposite to the optical axis (center) side, and in other regions, the blazed shape step is directed toward the optical axis (center) side. It is also possible to adopt a shape in which a transition region necessary for switching the direction of the step of the blaze shape is provided.
  • This transition region is a region corresponding to a point where the optical path difference function added to the transmitted wavefront by the diffractive structure becomes an extreme value of the optical path difference function when expressed by the optical path difference function. If the optical path difference function has an extreme point, the inclination of the optical path difference function becomes small, so that the annular zone pitch can be widened, and the decrease in transmittance due to the shape error of the diffractive structure can be suppressed. Even if the order of r, s, t, etc. is the same, if the base structures with different shapes or the base structures with the same order are shifted and overlapped, they may be regarded as different base structures. ⁇ .
  • the staircase shape means that the cross-sectional shape including the optical axis of an optical element having an optical path difference providing structure is a staircase shape.
  • the optical path difference providing structure is a plane parallel to the base surface.
  • the length in the direction of the optical axis changes step by step as it goes in the direction of the base surface. It is.
  • the first foundation structure has a staircase shape as shown in Fig. 2 (d), but this shape can be said to be the superposition of two blaze-type shapes. It may be regarded as a superstructure of the structure.
  • the shape is a unit shape, which is a repeated staircase shape.
  • the shape of the staircase gradually increases, and the same small staircase shape of several steps (for example, 4 and 5 steps) as shown in Fig. 2 (d).
  • the shape of the staircase gradually increases in size or the shape of the staircase gradually decreases as it advances in the direction of the base surface. It is preferred that the length of the light beam) does not change.
  • any one of the first basic structure, the second basic structure, and the third basic structure may have a binary shape as shown in FIG.
  • the shape of the binary gradually increases or the size of the staircase gradually decreases and the shape of the staircase gradually passes. It is preferable that the length in the direction of the light beam hardly changes.
  • the first basic structure has a binary shape as shown in FIG. 2 (e), but this shape has two blaze types. In order to obtain a superposition of shapes, this shape can be regarded as a superposition of two basic structures.
  • the first basic structure, the second basic structure, or the third basic structure is blazed. It is preferable that a remnant of the mold shape remains. In other words, even if the optical path difference providing structure formed by superimposing the first basic structure, the second basic structure, and the third basic structure is perpendicular to the base surface on which the optical path difference providing structure of the optical element is provided, It is preferred to have a beveled surface that is neither parallel nor parallel.
  • the optical function intended to be added to the first basic structure, the second basic structure, or the third basic structure for example, improvement of temperature characteristics, improvement of wavelength characteristics, Further, the reduction or disappearance of the function of diffracting only a specific wavelength can be further prevented, and the intended optical function can be exhibited even in the superimposed optical path difference providing structure.
  • a larger pitch width The basic structure of the blazed shape having (or the width of the period) and the basic structure of the blazed shape having a smaller pitch width (or the width of the period) are compared to the two basic structures.
  • at least one of the positions of the steps of the foundation structure having a large pitch width (or periodic width) (a plane substantially perpendicular to the base surface) has a small pitch width (or periodic width). It is preferable not to coincide with the position of the step of the underlying structure. More preferably, it is preferable that more than half of the positions of the steps of the large foundation structure do not coincide with the positions of the steps of the small foundation structure.
  • the first basic structure and the second basic structure have spherical aberrations that occur when the first optical disk is used, spherical aberrations that occur when the second optical disk is used, and spherical aberrations that occur when the third optical disk is used, respectively.
  • a structure that imparts a diffractive action to be adjusted is referred to as a compatible structure.
  • the first basic structure uses the difference in the wavelength of the first and third light fluxes based on the difference in the thickness of the transparent substrate between the first and third optical disks.
  • a structure to be corrected is preferable.
  • the second basic structure corrects the spherical aberration generated based on the difference in thickness between the transparent substrates of the first optical disc and the second optical disc, using the difference in wavelength between the first light flux and the second light flux.
  • a structure is preferred.
  • the third basic structure and the fourth and fifth basic structures described later are preferably structures that correct aberrations that occur when the environmental temperature changes.
  • a structure is referred to as a temperature change compensation structure.
  • the refractive index of the objective lens changes due to changes in the environmental temperature
  • aberrations that occur due to the changes in the refractive index are slightly affected by changes in the environmental temperature.
  • It may be a structure that corrects using a wavelength change that changes (within about ⁇ 10 nm).
  • the third, fourth, and fifth foundation structures use the refractive index that changes with changes in environmental temperature to cause a change in phase difference at the level difference of the foundation structure.
  • the 1st foundation structure and the 2nd foundation structure have the same base surface structure, and only the 3rd foundation structure has a different base surface structure.
  • a preferable design method is described below.
  • a reference aspheric surface is designed, and the base structure with the largest pitch width is designed so that the structure with the r, s, and t values set is placed as the first base structure.
  • the foundation structure having the next largest pitch width after the first foundation structure and having the values of u, v, and w set respectively. It is designed to be stacked on the first foundation structure as a two foundation structure.
  • a foundation structure having the second largest pitch width after the second foundation structure and having the values of x, y, and z respectively set are set for each surface within each pitch width of the first foundation structure.
  • a foundation structure having the second largest pitch width after the second foundation structure and having the values of x, y, and z respectively set are set for each surface within each pitch width of the first foundation structure.
  • a foundation structure having the second largest pitch width after the second foundation structure and having the values of x, y, and z respectively set Designed to be placed on top of the first and second foundation structures as three foundation structures. If you have a fourth or subsequent foundation structure, you can repeat the above work. As described above, it is preferable to pile up the foundation structure in order of the foundation structure force with a wide pitch width. It is possible to design the first foundation structure, the second foundation structure, and the third foundation structure, respectively, and finally superimpose these foundation structures on the reference plane, but the above method is preferred.
  • the first foundation structure and the second foundation structure are preferably designed using an optical path difference function, and the third foundation structure is preferably designed also for an aspheric formula force using an aspheric coefficient, It is not limited to this design method.
  • the optical element having the optical path difference providing structure is a single objective lens made of plastic, it is preferable that the optical pickup device satisfies the following conditional expression.
  • the A SA applies the first light flux (where the first wavelength ⁇ ⁇ is the use reference wavelength ⁇ 10 at the use reference temperature TO) at the use reference temperature TO on the information recording surface of the first optical disc.
  • Spherical aberration at the time of focusing on the lens, and the first luminous flux (here, the first wavelength ⁇ ) at the operating temperature ⁇ ⁇ ⁇ (here IT-TO I is 60 [° C]) different from the reference temperature TO ⁇ represents the difference in spherical aberration when the used wavelength ⁇ 11 at the used temperature ⁇ is condensed on the information recording surface of the first optical disc.
  • fl is the objective lens included in the condensing optical system when the first light beam is used. Represents the focal length of the screen.
  • TO is preferably in the range of 15 degrees to 25 degrees.
  • the above conditional expression is caused by providing at least one of the first basic structure, the second basic structure, and the third basic structure. It is preferable to be able to satisfy.
  • the third basic structure by setting the above X value to 10, y value to 6, and z value to 5.
  • the optical element having the optical path providing structure in which the first basic structure, the second basic structure, and the third basic structure are superimposed is a single objective lens made of plastic. Embodiments are described below.
  • the objective lens has at least one optical surface force central region and a peripheral region around the central region. More preferably, the objective lens has an outermost peripheral region around the peripheral region of at least one optical surface force. By providing the outermost peripheral area, it becomes possible to perform recording and Z or reproduction on a high NA optical disc more appropriately.
  • the central region is preferably a region including the optical axis of the objective lens, but may be a region not including the optical axis. It is preferable that the central region, the peripheral region, and the most peripheral region are provided on the same optical surface. As shown in FIG. 1, it is preferable that the central region CN, the peripheral region MD, and the most peripheral region OT are provided concentrically around the optical axis on the same optical surface.
  • the central region of the objective lens is provided with a first optical path difference providing structure that is an optical path difference providing structure according to the present invention in which the first basic structure, the second basic structure, and the third basic structure are overlapped.
  • a second optical path difference providing structure is provided in the region.
  • the second optical path difference providing structure may be configured by superimposing three basic structures, or may be configured by superimposing two basic structures, or only a single basic structure can be used.
  • An optical path difference providing structure may be used.
  • the outermost peripheral region may be a refractive surface, or the third optical path providing structure may be provided in the outermost peripheral region.
  • the third optical path difference providing structure may have a configuration in which three basic structures are superimposed, or may have a configuration in which two basic structures are superimposed, It may be an optical path difference providing structure in which only a single basic structure has a force.
  • the central region, the peripheral region, and the outermost peripheral region are preferably adjacent to each other, but there may be a slight gap between them.
  • the first optical path difference providing structure is preferably provided in a region of 70% or more of the area of the central region of the objective lens, more preferably 90% or more. More preferably, the first optical path difference providing structure is provided on the entire surface of the central region.
  • the second optical path difference providing structure is preferably 90% or more, more preferably 70% or more of the area of the peripheral region of the object lens. More preferably, the second optical path difference providing structure is provided on the entire peripheral region.
  • the third optical path difference providing structure is preferably provided in an area of 70% or more of the area of the outermost peripheral area of the objective lens, more preferably 90% or more. More preferably, the third optical path difference providing structure is provided on the entire surface of the outermost peripheral region.
  • the first optical path difference providing structure provided in the central area of the objective lens and the second optical path difference providing structure provided in the peripheral area of the objective lens may be provided on different optical surfaces of the objective lens. Although it is good, it is preferable to be provided on the same optical surface. By providing them on the same optical surface, it is possible to reduce the eccentricity error during manufacturing, which is preferable. Further, the first optical path difference providing structure and the second optical path difference providing structure are preferably provided on the light source side surface of the objective lens rather than the surface of the objective lens on the optical disk side.
  • the objective lens condenses the first light flux, the second light flux, and the third light flux that pass through the central region where the first optical path difference providing structure of the objective lens is provided so as to form a condensed spot.
  • the objective lens is capable of recording and / or reproducing information on the information recording surface of the first optical disc with the first light beam passing through the central region provided with the first optical path difference providing structure of the objective lens.
  • the objective lens is configured so that the second light flux passing through the central region where the first optical path providing structure of the objective lens is provided can be recorded and / or reproduced on the information recording surface of the second optical disc. Condensate.
  • the objective lens can record and Z or reproduce information on the information recording surface of the third optical disc by using the third light beam that passes through the central region where the first optical path difference providing structure of the object lens is provided. Condensate. Also, the thickness tl of the protective substrate of the first optical disk is different from the thickness t2 of the protective substrate of the second optical disk.
  • the first optical path difference providing structure has a thickness tl of the protective substrate of the first optical disc and a thickness of the protective substrate of the second optical disc with respect to the first light flux and the second light flux that have passed through the first optical path difference providing structure.
  • the first optical path difference providing structure has a thickness tl of the protective substrate of the first optical disk and a protective substrate of the third optical disk with respect to the first and third light fluxes that have passed through the first optical path difference providing structure. It is preferable to correct the spherical aberration caused by the difference between the thickness t3 and the spherical aberration caused by the difference between the wavelengths of Z or the first light flux and the third light flux.
  • the first best focus in which the spot diameter of the spot formed by the third beam is minimized by the third beam having passed through the first optical path difference providing structure of the objective lens, and the spot formed by the third beam.
  • a second best focus is formed in which the spot diameter becomes smaller than the first best focus.
  • the best focus here refers to the point where the beam waist is minimized within a certain defocus range. In other words, when the first best focus and the second best focus are formed by the third light flux, this means that the beam waist is minimized within a certain defocus range in the third light flux. Power There are at least two points.
  • the diffracted light with the maximum light amount forms the first best focus
  • the diffracted light with the second largest light amount forms the second best focus.
  • the difference between the diffraction efficiency of the diffracted light forming the first best focus and the diffraction efficiency of the diffracted light forming the second best focus is 20% or less, the effect of the present invention is more remarkable. Become.
  • the spot formed by the third light beam in the first best focus is used for recording and / or reproduction of the third optical disc, and the spot formed by the third light beam in the second best focus is the spot of the third optical disc. It is preferable not to be used for recording and / or reproduction.
  • the spot formed by the third light beam in the first best focus is not used for recording and Z or reproduction of the third optical disc, and the third light beam is used in the second best focus. This does not deny that the spot to be formed is used for recording and Z or reproduction of the third optical disk.
  • the second best focus is more objective than the first best focus. It is preferable to be closer to the center.
  • the first best focus and the second best focus satisfy the following conditional expressions.
  • f [mm] refers to the focal length of the third light flux that passes through the first optical path difference providing structure and forms the first best focus
  • L [mm] is between the first best focus and the second best focus. Refers to the distance.
  • L is preferably 0.18 mm or more and 0.63 mm or less.
  • f is preferably 1.8 mm or more and 3. Omm or less.
  • the objective lens condenses the first light flux and the second light flux that pass through the peripheral area where the second optical path difference providing structure of the objective lens is provided so as to form a condensed spot.
  • the objective lens is capable of recording and / or reproducing information on the information recording surface of the first optical disc with the first light beam passing through the peripheral area provided with the second optical path difference providing structure of the objective lens.
  • the objective lens collects the second light flux that passes through the peripheral area where the second optical path difference providing structure of the objective lens is provided so that information can be recorded and Z or reproduced on the information recording surface of the second optical disc. Shine.
  • the second optical path difference providing structure includes the first light flux that has passed through the second optical path difference providing structure, and the second optical path difference providing structure.
  • Spherical aberration caused by the difference between the thickness tl of the protective substrate of the first optical disk and the thickness t2 of the protective substrate of the second optical disk with respect to the light flux, and Z or the difference between the wavelengths of the first light flux and the second light flux It is preferable to correct the spherical convergence.
  • the third light flux that has passed through the peripheral region is recorded on the third optical disk. And z or an embodiment not used for regeneration. It is preferable that the third light flux that has passed through the peripheral region does not contribute to the formation of a focused spot on the information recording surface of the third optical disc. In other words, it is preferable that the third light beam passing through the peripheral region provided with the second optical path difference providing structure of the objective lens forms a flare on the information recording surface of the third optical disk. As shown in FIG. 7, in the spot formed on the information recording surface of the third optical disk by the third light beam that has passed through the objective lens, the light intensity is increased in the order from the optical axis side (or the center of the spot) to the outside.
  • Spot center force Used for recording and Z or reproduction of information on the optical disc, and the spot intermediate portion and spot peripheral portion are not used for recording and Z or reproduction of information on the optical disc.
  • this spot periphery is called flare. That is, the third light flux that has passed through the second optical path difference providing structure provided in the peripheral region of the objective lens forms a spot peripheral portion on the information recording surface of the third optical disc.
  • the condensing spot or spot of a 3rd light beam here is a spot in the 1st best focus.
  • the spot formed on the information recording surface of the second optical disk preferably has a spot center portion, a spot intermediate portion, and a spot peripheral portion.
  • the second optical path difference providing structure is a spherical chromate that is generated by a slight variation in the wavelength of the first light source or the second light source with respect to the first light flux and the second light flux that have passed through the second optical path difference providing structure. It is preferable to correct the ism (chromatic spherical aberration).
  • a slight change in wavelength means a change of ⁇ 10 nm or less.
  • the second optical path difference providing structure compensates for the variation in spherical aberration of the first light beam that has passed through the peripheral region, so that the first optical disk has an information recording surface.
  • the amount of change in the wavefront aberration at 0 is at least 0.0 OlO lrms and not more than 0.095 ⁇ lrms.
  • the second optical path difference providing structure compensates for the variation in spherical aberration of the second light beam that has passed through the peripheral region, so that the second optical disk has an information recording surface.
  • the amount of change in the wavefront aberration at 0.002 is not less than 0.002 rms and not more than 0.03 ⁇ 2 rms. This causes manufacturing errors in the wavelength of the laser that is the light source and wavelength fluctuations due to individual differences. The aberration caused by this can be corrected.
  • the objective lens When the objective lens has the outermost peripheral area, the objective lens can record and Z or reproduce information on the information recording surface of the first optical disc by using the first light flux passing through the outermost peripheral area of the objective lens. Condensate like so. In addition, it is preferable that the spherical aberration is corrected at the time of recording and Z or reproduction of the first optical disk in the first light flux that has passed through the most peripheral area.
  • the second light flux that has passed through the outermost peripheral region is not used for recording and Z or reproduction of the second optical disc
  • the third light flux that has passed through the outermost peripheral region is the third light flux. Examples include those not used for optical disk recording and Z or reproduction. It is preferable that the second light flux and the third light flux that have passed through the outermost peripheral region do not contribute to the formation of a focused spot on the information recording surfaces of the second optical disc and the third optical disc, respectively. That is, when the objective lens has the outermost peripheral region, it is preferable that the third light flux passing through the outermost peripheral region of the objective lens forms a flare on the information recording surface of the third optical disc.
  • the third light flux that has passed through the outermost peripheral region of the object lens preferably forms a spot peripheral portion on the information recording surface of the third optical disc.
  • the second light flux passing through the outermost peripheral region of the objective lens preferably forms a flare on the information recording surface of the second optical disc.
  • the second light flux that has passed through the most peripheral area of the objective lens preferably forms a spot peripheral portion on the information recording surface of the second optical disc.
  • the third optical path difference providing structure has a slight variation in the wavelength of the first light source with respect to the first light flux that has passed through the third optical path difference providing structure.
  • it may be possible to correct the glaze chromaticity (chromatic spherical aberration) caused by A slight change in wavelength refers to a change of ⁇ 10 nm or less.
  • the third optical path difference providing structure compensates for the variation in the spherical aberration of the first light flux that has passed through the most peripheral region, and the information recording on the first optical disc It is preferable that the amount of change of the wavefront aberration on the surface is not less than 0.30 ⁇ lrms and not more than 0.095 ⁇ lrms.
  • the first optical path difference providing structure is an optical path difference providing structure formed by superimposing the first basic structure, the second basic structure, and the third basic structure, but the first basic structure is the first basic structure.
  • the diffracted light amount of the 0th order (transmitted light) of the first light beam that has passed through is larger than the diffracted light amount of any other order
  • the diffracted light amount of the 0th order (transmitted light) of the second light beam is made larger than any other order of diffracted light amount
  • the ⁇ 1st order diffracted light amount of the third light beam is made larger than any other order of diffracted light amount.
  • An optical path difference providing structure is preferable.
  • the second basic structure makes the second-order diffracted light quantity of the first light beam that has passed through the second basic structure larger than any other order of diffracted light quantity, and the second-order diffracted light quantity of the second light flux is different from the other. It is preferable that the optical path difference providing structure be larger than any order of the diffracted light amount of the third light beam and make the first order diffracted light amount of the third light beam larger than any other order of diffracted light amount.
  • the second-order diffracted light amount of the first light beam that passed through the third basic structure is made larger than any other order diffracted light amount, and the first-order diffracted light amount of the second light beam
  • An optical path difference providing structure in which the first order diffracted light amount of the third light beam is made larger than the other diffracted light amounts may be used.
  • the first foundation structure and the second foundation structure are interchangeable structures
  • the third foundation structure is a temperature change compensation structure.
  • the first foundation structure is a binary structure as shown in FIG. 2 (e), and the second foundation structure is a sawtooth structure as shown in FIG. 2 (a) or (b).
  • the third basic structure is preferably a stepped structure as shown in FIG.
  • the second optical path difference providing structure is preferably a structure in which the second basic structure and the fourth basic structure are overlapped.
  • the fourth basic structure makes the d-order diffracted light quantity of the first light beam passing through the fourth basic structure larger than any other order diffracted light quantity, and the e-order diffracted light quantity of the second light beam is set to any other order.
  • the fourth foundation structure is preferably a stepped structure as shown in FIG.
  • the second foundation structure is an interchangeable structure, and the fourth foundation structure is a temperature change.
  • the compensation structure is preferably a stepped structure as shown in FIG.
  • the objective lens is a plastic lens
  • the third optical path difference providing structure is an optical path difference providing structure in which only a single fourth basic structure or fifth basic structure has a force.
  • the first-order diffracted light amount of the first light beam passing through the fifth basic structure is made larger than any other order diffracted light amount, and the b-order diffracted light amount of the second light beam is set to any other order.
  • a, b and c are each integers other than 0, and the value of a is not particularly limited, but 10, 5, 4, 2 and the like can be preferably applied.
  • the fourth and fifth foundation structures are preferably stepped structures as shown in Figure 2 (c).
  • the fourth foundation structure and the fifth foundation structure are temperature change compensation structures.
  • the basic structure that is the temperature change compensation structure is as a whole.
  • the cross-sectional shape including the optical axis has a predetermined optical axis force
  • the optical path length increases as the distance from the optical axis increases
  • the predetermined height from the optical axis the optical path length decreases as the distance from the optical axis increases.
  • a staircase structure is preferable.
  • the structure is such that as the height from the optical axis increases, it deepens in the optical axis direction, and when it exceeds a certain height, it becomes shallow in the optical axis direction. It can also be said.
  • the third basic structure in the first optical path difference providing structure, the fourth basic structure in the second optical path difference providing structure, and the fourth basic structure or the fifth basic structure in the third optical path difference providing structure are combined.
  • the height of the optical axis force increases, the depth increases in the direction of the optical axis, and when it exceeds a certain height, it becomes shallower in the direction of the optical axis. It is preferable to become a structure! /.
  • the central region is a structure in which the temperature change compensation structure and two types of compatible structures are superimposed, and the peripheral region is one type of compatibility with the temperature change compensation structure.
  • a preferred embodiment is a structure in which the structures for use are overlapped, and the outermost peripheral region has only a temperature change compensation structure.
  • NA1 the image-side numerical aperture of the objective lens required for reproducing and Z-recording information on the second optical disk
  • NA2 NA1 ⁇ NA2
  • N A3 the image-side numerical aperture of the objective lens that is necessary for reproducing, Z, or recording.
  • the boundary between the central region and the peripheral region of the objective lens is in the range of 0.9 ⁇ ⁇ 3 or more and 1.2 ⁇ ⁇ 3 or less (more preferably 0.95 ⁇ ⁇ 3 or more, 1.15 ⁇ ⁇ 3 or less). It is preferably formed in a portion corresponding to. More preferably, the boundary between the central region and the peripheral region of the objective lens is formed in a portion corresponding to ⁇ 3. In addition, the boundary between the peripheral area and the outermost peripheral area of the objective lens is in the range of 0.9 ⁇ 1.2 or more, 1.2 ⁇ ⁇ 2 or less (more preferably 0.95 - ⁇ ⁇ 2 or more, 1.15 ⁇ ⁇ 2 or less). It is preferably formed in a portion corresponding to.
  • the boundary between the peripheral area and the most peripheral area of the objective lens is formed in a portion corresponding to ⁇ 2.
  • the outer boundary of the outermost circumference of the objective lens is formed in a portion corresponding to a range of 0.9 ⁇ ⁇ 1 or more and 1.2NA1 or less (more preferably 0.95 ⁇ ⁇ 1 or more, 1.15 ⁇ ⁇ 1 or less). It is preferable that More preferably, the outer boundary of the outermost periphery of the objective lens is formed in a portion corresponding to NA1.
  • the spherical aberration has at least one discontinuous portion.
  • the discontinuity is in the range of 0.9 ⁇ ⁇ 3 or more and 1.2 ⁇ ⁇ 3 or less (more preferably ⁇ , 0.95 ⁇ ⁇ 3 or more, 1.15 • ⁇ 3 or less).
  • the spherical aberration has at least one discontinuous portion.
  • the discontinuous portion is preferably present in the range of 0.9 ⁇ ⁇ 2 or more and 1.2 ⁇ ⁇ 2 or less (more preferably 0.95 ⁇ 952 or more and 1.1 ⁇ ⁇ 2 or less).
  • the absolute value of longitudinal spherical aberration is 0.03 m or more in ⁇ 2 and the absolute value of longitudinal spherical aberration is 0.02 m or less in NA3. More preferably, NA2 has an absolute value of longitudinal spherical aberration of 0.08 ⁇ m or more, and NA3 has an absolute value of longitudinal spherical aberration of 0.01 ⁇ m or less.
  • NA1 has an absolute value of longitudinal spherical aberration of 0.03 ⁇ m or more
  • NA2 The absolute value of the spherical aberration is preferably 0.005 ⁇ m or less.
  • the diffraction efficiency for each wavelength in the central region can be appropriately set according to the use of the optical pickup device.
  • the diffraction efficiency in the central region and Z or the peripheral region is considered to be focused on the first light flux. It is preferable to do this.
  • the diffraction efficiency in the central region is focused on the second and third light beams. It is preferable that the diffraction efficiency in the peripheral region is focused on the second light flux.
  • r? 11 represents the diffraction efficiency of the first light flux in the central region
  • r? 21 represents the diffraction efficiency of the first light flux in the peripheral region. If the diffraction efficiency of the central region is focused on the light fluxes of the second and third wavelengths, the diffraction efficiency of the first light flux of the central region is low, but the numerical aperture of the first optical disk is the same as that of the third optical disk. When the numerical aperture is large, the reduction in diffraction efficiency in the central region does not have a significant effect when considering the entire effective diameter of the first beam.
  • the transmittance of an objective lens that has the same focal length, lens thickness, and numerical aperture, is formed of the same material, and does not have the first and second optical path difference providing structures is expressed in the central region and the peripheral region. Separately measure. At this time, the transmittance of the central region is measured by blocking the light beam incident on the peripheral region, and the transmittance of the peripheral region is measured by blocking the light beam incident on the central region.
  • the light use efficiency of any two of the first to third light fluxes is 80% or more. Therefore, the light utilization efficiency of the remaining one light beam may be 30% or more and 80% or less. The light utilization efficiency of the remaining one light beam may be 40% or more and 70% or less. In this case, it is preferable that the light beam having a light use efficiency of 30% or more and 80% or less (or 40% or more and 70% or less) is the third light beam.
  • the light utilization efficiency is the objective lens in which the first optical path difference providing structure and the second optical path difference providing structure are formed (the third optical path difference providing structure may be formed).
  • the amount of light in the Airy disk of the focused spot formed on the information recording surface of the optical disk is A, and the same focal length, axial thickness, numerical aperture, wavefront are formed from the same material.
  • the amount of light in the Airy disc is B, it is calculated by A / B.
  • the difference between the light amount of the diffracted light beam having the maximum light amount and the light amount of the diffracted light beam having the next largest light amount If the difference between the amount of diffracted light that forms the first best focus and the amount of diffracted light that forms the second best focus is 0% or more and 20% or less, the tracking characteristics of the third optical disc are particularly good. Although it is difficult to keep good, the present invention makes it possible to improve the tracking characteristics even in such a situation.
  • the first light flux, the second light flux, and the third light flux may be incident on the objective lens as parallel light, or may be incident on the objective lens as divergent light or convergent light.
  • the magnifications ml and m2 of the first light beam and the second light beam incident on the objective lens satisfy the following conditional expression.
  • the magnification m3 of the incident light beam on the objective lens of the third light beam satisfies the following conditional expression. If the third light beam is parallel light, tracking problems are likely to occur.
  • the present invention makes it possible to obtain good tracking characteristics even when the third light beam is parallel light, and to appropriately perform recording and Z or reproduction on three different optical disks.
  • the magnification m3 of the third light beam incident on the objective lens satisfies the following conditional expression.
  • Wavelength aberration on the information recording surface of each optical disc (especially the first optical disc) when the wavelength of the emitted light beam (especially the wavelength of the first light source) is changed by 5 nm It is preferable that the amount of change of is not less than 0.0 ⁇ lrms and not more than 0.095 ⁇ lrms. Also, when the ambient temperature is changed ⁇ 30 ° C from the design reference temperature, the spherical aberration of the first light flux is corrected, and the amount of change in wavefront aberration on the information recording surface of the first optical disc is 0. OlO l lrms As described above, it is preferably 0.095 ⁇ lrms or less.
  • the working distance (WD) of the objective lens when using the third optical disk is preferably 0.20 mm or more and 1.5 mm or less. Preferably, it is 0.3 mm or more and 1.00 mm or less.
  • the WD of the objective lens when using the second optical disk is 0.4 mm or more and 0.7 mm or less.
  • the WD of the objective lens when using the first optical disk is 0.4 mm or more and 0.9 mm or less (in the case of tl ⁇ t2, 0.6 mm or more and 0.9 mm or less are preferable).
  • U prefer that.
  • the entrance pupil diameter of the objective lens is preferably ⁇ 2.8 mm or more and ⁇ 4.5 mm or less when the first optical disk is used.
  • An optical information recording / reproducing apparatus includes an optical disk drive device having the above-described optical pickup device.
  • the optical disk drive apparatus is equipped with an optical information recording / reproducing apparatus main body optical disk containing an optical pickup apparatus and the like. There are a method in which only a tray that can be held in a state is taken out, and a method in which an optical pickup device and the like are housed and taken out to the outside. [0079]
  • An optical information recording / reproducing apparatus using each of the above-described methods is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing, etc. a drive source of an optical pickup device such as a seek motor that moves the optical pickup device toward the inner periphery or outer periphery of the optical disc together with the knowing, and the housing of the optical pickup device within the optical disc.
  • Peripheral ridges are a transfer means of an optical pickup device having a guide rail and the like for guiding toward the outer periphery, and a spindle motor for rotating the optical disk.
  • the former method is provided with a tray that can be held with an optical disc mounted thereon, a loading mechanism for sliding the tray, and the like. Further, it is preferable that there is no loading mechanism and each component member is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
  • FIG. 3 is a diagram schematically showing a configuration of the optical pickup device PU1 of the present embodiment that can appropriately record and Z or reproduce information on BD, DVD, and CD, which are different optical discs.
  • the powerful optical pick-up device PU1 can be installed in an optical information recording / reproducing device.
  • the first optical disc is a BD
  • the second optical disc is a DVD
  • the third optical disc is a CD.
  • the present invention is not limited to this embodiment.
  • the optical pickup device PU1 emits light when performing information recording Z reproduction on the objective lens OBJ, aperture ST, collimating lens CL, polarization dichroic prism PPS, BD.
  • a first semiconductor laser LD1 (first light source) that emits one light beam, a first light-receiving element PD1 that receives a reflected light beam from the information recording surface RL1 of the BD, a laser module LM, and the like.
  • the laser module LM includes a second semiconductor laser EP1 (second light source) that emits a laser beam (second beam) of 658 nm that is emitted when recording and reproducing information on a DVD. Recording of information on a CD Third semiconductor laser EP2 (third light source) that emits a 785 nm laser beam (third beam) when performing Z reproduction, and DVD information recording surface R It has a second light receiving element DS1 for receiving the reflected light beam from L2, a third light receiving element DS2 for receiving the reflected light beam from the information recording surface RL3 of the CD, and a prism PS.
  • the central region CN including the optical axis on the aspherical optical surface on the light source side, and the peripheral region MD arranged around the central region CN
  • the outermost peripheral region OT arranged around the periphery is formed concentrically around the optical axis. Note that the ratios of the area of the central region, the peripheral region, and the most peripheral region in FIGS. 1 and 4 are not accurately represented.
  • a first optical path difference providing structure is provided on the entire surface of the central region CN, and a second optical path difference providing structure is provided on the entire surface of the peripheral region MD. Further, a third optical path difference providing structure is provided in the outermost peripheral region OT.
  • a spot that is converted from linearly polarized light to circularly polarized light by the plate, its beam diameter is regulated by the stop ST, and formed on the information recording surface RL1 of the BD via the protective substrate PL1 having a thickness of 0.0875 mm by the objective lens OBJ It becomes.
  • the reflected light beam modulated by the information pits on the information recording surface RL1 is again transmitted through the objective lens OBJ and the aperture stop ST, and then converted into circularly polarized light and linearly polarized light by a 1Z4 wavelength plate (not shown), and the collimating lens CL As a result, the light beam is converged and is transmitted through the polarization dichroic prism PPS, and then converges on the light receiving surface of the first light receiving element PD1. Then, by using the output signal of the first light receiving element PD 1 to focus and track the objective lens OBJ by the 2-axis actuator AC, the information recorded on the BD can be read.
  • the light beam collected by the central region and the peripheral region of the objective lens OBJ (the light beam that has passed through the most peripheral region is flared and forms a spot peripheral part) is a protective substrate PL2 with a thickness of 0.6 mm. Through this, it becomes a spot formed on the information recording surface RL2 of the DVD and forms the center of the spot.
  • the reflected light flux modulated by the information pits on the information recording surface RL2 is returned to the objective lens OBJ. After passing through the aperture stop ST, it is converted into circularly polarized light linearly polarized light by a 1Z4 wave plate (not shown), converted into a convergent light beam by the collimating lens CL, reflected by the polarization dichroic prism PPS, and then 2 in the prism. After being reflected once, it converges on the second light receiving element DS1. The information recorded on the DVD can be read using the output signal of the second light receiving element DS1.
  • the light beam collected by the central region of the objective lens OBJ (the light beam that has passed through the peripheral region and the most peripheral region is flared to form the spot periphery) is a protective substrate PL3 with a thickness of 1.2 mm This is a spot formed on the CD information recording surface RL3.
  • the reflected light beam modulated by the information pits on the information recording surface RL3 is again transmitted through the objective lens OBJ and the aperture stop ST, and then converted into circularly polarized light and linearly polarized light by a 1Z4 wavelength plate (not shown), and the collimating lens CL After being reflected by the polarization dichroic prism PPS, after being reflected twice in the prism, it is converged on the third light receiving element DS2.
  • the information recorded on the CD can be read using the output signal of the third light receiving element DS2.
  • the first optical path difference providing structure in the central region can appropriately correct the spherical aberration of the first light flux, and appropriately record information and perform Z or reproduction on the BD having the thickness tl of the protective substrate.
  • the first optical path difference providing structure in the central region and the second optical path difference providing structure in the peripheral region are BD and Correcting the spherical aberration of the second light beam caused by the difference in the thickness of the protective substrate of the DVD and the wavelength difference between the first light beam and the second light beam, the third optical path difference providing structure in the most peripheral region is In order to make the second light flux flare on the information recording surface of the DVD, information can be recorded and Z or reproduced appropriately for a DVD with a protective substrate thickness t2. wear.
  • the first optical path difference providing structure in the central region has a difference in the thickness of the protective substrate of BD and CD, and The spherical aberration of the third light beam generated due to the difference in wavelength between the first light beam and the third light beam is corrected appropriately, and the second optical path difference providing structure in the peripheral region and the third optical path difference providing structure in the most peripheral region are Since the third light flux is flare on the information recording surface of the CD, information can be appropriately recorded and Z or reproduced on the CD having the protective substrate thickness t3.
  • the first optical path difference providing structure in the central region separates the condensing spot of the necessary light of the third light beam used for recording and reproduction from the condensing spot of the unnecessary light of the third light beam by an appropriate distance. This also improves the tracking characteristics when using a CD.
  • the second optical path difference providing structure in the peripheral region can be applied to the first light flux and the second light flux when the wavelength deviates from the reference wavelength power due to a laser manufacturing error or the like. Chromatism (chromatic spherical aberration) can be corrected.
  • the objective lens is a single plastic lens.
  • a first optical path difference providing structure is formed on the entire surface of the central region CN of the optical surface of the objective lens.
  • a second optical path difference providing structure is formed on the entire surface of the peripheral area MD of the optical surface.
  • a third optical path difference providing structure is provided on the entire outermost surface OT of the optical surface.
  • the cross-sectional shape of the objective lens is as shown in FIG.
  • the first optical path difference providing structure is a structure in which the first basic structure, the second basic structure, and the third basic structure are superimposed, and two types of sawtooth diffraction structures and binary structures are superimposed. It has a shape.
  • the first basic structure which is a binary structure, is a so-called wavelength selective diffraction structure, in which the light amount of the 0th-order diffracted light (transmitted light) of the first light flux is made larger than the light amount of other diffracted light of any other order. , Make the light intensity of the 0th-order diffracted light (transmitted light) of the second light beam larger than the light quantity of any other order of diffracted light, and change the light intensity of the first light beam of the third light flux to other!
  • the second basic structure which is a sawtooth diffractive structure, makes the amount of the second-order diffracted light of the first light beam larger than the amount of diffracted light of any other order (including the 0th order, that is, the transmitted light).
  • the light quantity of the first-order diffracted light of the light beam is made larger than the light quantity of the diffracted light of any other order (including the 0th order, that is, the transmitted light). It is designed so that the amount of the first-order diffracted light of the light beam is greater than the amount of diffracted light of any other order (including 0th-order or transmitted light).
  • the third basic structure which is a sawtooth diffraction structure
  • the amount of the 10th-order diffracted light of the first light flux is made larger than the amount of diffracted light of any other order (including 0th order, that is, transmitted light), and the amount of the 6th-order diffracted light of the second light flux
  • the amount of the fifth order diffracted light of the third light beam is made larger than the amount of diffracted light of such order (0th order, including transmitted light), and other orders (including 0th order, including transmitted light). ) Is designed to be larger than the amount of diffracted light.
  • the width of the noisy shape is gradually reduced as the optical axis force is also separated.
  • the step is directed to the optical axis side of the central region, and the step is directed to the optical axis side, and the blazed shape is formed on the peripheral region side of the central region. Is a blazed shape with the steps facing away from the optical axis side, and a transition region is provided between them to switch the direction of the steps of the sawtooth structure. .
  • the size of a blazed triangular shape gradually increases and decreases with distance from the optical axis.
  • the size of the third structure varies.
  • the second optical path difference providing structure has a structure in which the second basic structure and the fourth basic structure are superimposed, and has a shape in which a sawtooth-shaped diffraction structure and a rougher sawtooth-shaped diffraction structure are superimposed.
  • the second basic structure which is a sawtooth diffractive structure, makes the amount of second-order diffracted light of the first light beam larger than the amount of diffracted light of any other order (including 0th order, i.e., transmitted light).
  • the amount of the first-order diffracted light of the light beam is made larger than the amount of diffracted light of any other order (including 0th order, that is, transmitted light), and the amount of the first-order diffracted light of the third light beam It is designed to be larger than the diffracted light amount of the order (including 0th order, that is, transmitted light).
  • the fourth basic structure which is a rough sawtooth diffractive structure, makes the light intensity of the fifth-order diffracted light of the first light beam larger than the light quantity of any other order of diffracted light, and the third-order diffraction of the second light flux. Designed to make the amount of light larger than the amount of diffracted light of any other order, and the amount of light of the third and second order diffracted light of the third light beam to be larger than the amount of diffracted light of any other order It has been.
  • the third optical path difference providing structure is a structure in which only the fourth basic structure has a force.
  • the first basic structure and the second basic structure are interchangeable structures
  • the structure and the fourth foundation structure are temperature change compensation structures.
  • the third basic structure of the first optical path difference providing structure, the fourth basic structure of the second optical path difference providing structure, and the fourth basic structure of the third optical path difference providing structure are combined and considered as one structure, As the axial force increases, it grows deeper in the direction of the optical axis, and when it exceeds a certain height, it becomes shallower in the direction of the optical axis!
  • Table 1 shows the lens data.
  • a power of 10 for example, 2.5
  • X 10 _3 is expressed using E (for example, 2.5E-3).
  • the optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in Table 1 are substituted into Equation (1).
  • X (h) is the axis in the optical axis direction (the light traveling direction is positive)
  • is the conical coefficient
  • A2i is the aspherical coefficient
  • h is the height of the optical axis force.
  • optical path length given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted into the optical path difference function of Formula 2.
  • is the wavelength of the incident light beam
  • ⁇ ⁇ is the manufacturing wavelength (blazed wavelength)
  • dor is the diffraction order
  • C 2i is the coefficient of the optical path difference function
  • FIG. 6 shows a longitudinal spherical aberration diagram of the present example.
  • Fig. 6 (a) is a BD
  • Fig. 6 (b) is a DVD
  • Fig. 6 (c) is a longitudinal spherical aberration diagram of a CD.
  • 1.0 on the vertical axis is NA 0.85 in the BD shown in FIG.
  • the DVD shown in Fig. 6 (b) represents a value slightly larger than NAO. 6 or slightly larger than ⁇ 2.7 mm, and is shown in Fig. 6 (c).

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Head (AREA)

Abstract

 記録密度が異なる3種類のディスクに対して情報の記録及び/又は再生を適切に行うことができ、その構成の簡素化、低コスト化を実現可能な光ピックアップ装置、対物光学素子及び光情報記録再生装置を提供するために、第一基礎構造、第二基礎構造、第三基礎構造を重畳させた光路差付与構造を有する光学素子を有する光ピックアップ装置とする。

Description

明 細 書
光ピックアップ装置、光学素子及び光情報記録再生装置並びに光学素 子の設計方法
技術分野
[oooi] 本発明は、異なる種類の光ディスクに対して互換可能に情報の記録及び Z又は再 生を行える光ピックアップ装置、光学素子及び光情報記録再生装置並びに光学素 子の設計方法に関する。
背景技術
[0002] 近年、光ピックアップ装置にお!、て、光ディスクに記録された情報の再生や、光ディ スクへの情報の記録のための光源として使用されるレーザ光源の短波長化が進み、 例えば、青紫色半導体レーザや、第 2高調波を利用して赤外半導体レーザの波長変 換を行う青色 SHGレーザ等、波長 400〜420nmのレーザ光源が実用化されつつあ る。これら青紫色レーザ光源を使用すると、 DVD (デジタルバーサタイルディスク)と 同じ開口数 (NA)の対物レンズを使用する場合で、直径 12cmの光ディスクに対して 、 15〜20GBの情報の記録が可能となり、対物レンズの NAを 0. 85にまで高めた場 合には、直径 12cmの光ディスクに対して、 23〜25GBの情報の記録が可能となる。 以下、本明細書では、青紫色レーザ光源を使用する光ディスク及び光磁気ディスク を総称して「高密度光ディスク」という。また、光ディスクへの情報の記録と光ディスク に記録された情報の再生の、いずれか一方の場合、両方を含む場合の全てを総称 して「記録 Z再生」或いは「記録及び Z又は再生」 t 、う。
[0003] 尚、 NAO. 85の対物レンズを使用する高密度光ディスクでは、光ディスクの傾き (ス キュー)に起因して発生するコマ収差が増大するため、 DVDにおける場合よりも保護 層を薄く設計し(DVDの 0. 6mmに対して、 0. 1mm)、スキューによるコマ収差量を 低減しているものがある。ところで、力かるタイプの高密度光ディスクに対して適切に 情報の記録 Z再生ができると言うだけでは、光ディスクプレーヤ Zレコーダ (光情報 記録再生装置)の製品としての価値は十分なものとはいえない。現在において、多種 多様な情報を記録した DVDや CD (コンパクトディスク)が販売されて!、る現実をふま えると、高密度光ディスクに対して情報の記録 Z再生ができるだけでは足らず、例え ばユーザが所有している DVDや CDに対しても同様に適切に情報の記録 Z再生が できるようにすることが、高密度光ディスク用の光ディスクプレーヤ Zレコーダとしての 商品価値を高めることに通じるのである。このような背景から、高密度光ディスク用の 光ディスクプレーヤ Zレコーダに搭載される光ピックアップ装置は、高密度光ディスク と DVD、更には CDとの何れに対しても互換性を維持しながら適切に情報を記録 Z 再生できる性能を有することが望まれる。
[0004] 高密度光ディスクと DVD、更には CDとの何れに対しても互換性を維持しながら適 切に情報を記録 Z再生できるようにする方法として、高密度光ディスク用の光学系と DVDや CD用の光学系とを、情報を記録 Z再生する光ディスクの記録密度に応じて 選択的に切り替える方法が考えられるが、複数の光学系が必要となるので、小型化 に不利であり、またコストが増大する。
[0005] 従って、光ピックアップ装置の構成を簡素化し、低コスト化を図るためには、互換性 を有する光ピックアップ装置においても、高密度光ディスク用の光学系と DVDや CD 用の光学系とを共通化して、光ピックアップ装置を構成する光学部品点数を極力減 らすことが光ピックアップ装置の構成の簡素化、低コスト化に有利となる。尚、記録 Z 再生波長が互いに異なる複数種類の光ディスクに対して共通な光学系を得るために は、球面収差の波長依存性を有する光路差付与構造を集光光学系の少なくとも一 つの光学素子に形成する必要がある。
[0006] 特許文献 1には、光路差付与構造としての回折構造を有し、高密度光ディスクと従 来の DVD及び CDに対して共通に使用可能な対物光学系、及びこの対物光学系を 搭載した光ピックアップ装置が記載されて 、る。
特許文献 1:ヨーロッパ公開特許第 1304689号
発明の開示
発明が解決しょうとする課題
[0007] 然るに、上記の特許文献 1に記載された、 3つの異なる光ディスクに対して互換可 能に情報の記録及び Z又は再生を行う光ピックアップ装置に使用している対物レン ズは、光ピックアップ装置の設計仕様によっては、記録及び Z又は再生に用いられる 光量が不足する恐れがある力、又は、 CDのトラッキングを行う際にトラッキング用のセ ンサに不要光が悪影響を及ぼし、 CDのトラッキングを正確に行うことが困難になる場 合があるという問題がある。特に、 3つの異なる光ディスクの全てにおいて、無限系の 光学系を用いる場合、即ち、対物レンズに平行光束を入射させる場合、上述の問題 が顕著であった。更に、対物レンズをプラスチックレンズとする場合は、温度変化に基 づく球面収差の変化が大きくなるという問題も顕著になる。
[0008] また、上述の問題を解決するために、それぞれ異なる光学的機能を有する複数の 光路差付与構造を異なる光学面に設けることも考えられる力もしれないが、異なる光 学面に異なる光路差付与構造を設けて、組み合わせて用いる場合は、偏芯による収 差の発生が問題となり、光ピックアップ装置の組み立て精度を非常に高めなければ ならな!/、と!/、う問題が発生してしまう。
[0009] 本発明は、上述の問題を考慮したものであり、高密度光ディスクと DVDと CD等の、 記録密度が異なる 3種類のディスクに対して情報の記録及び Z又は再生を適切に行 うことができる光ピックアップ装置、対物レンズ及び光情報記録再生装置であって、そ の構成が簡素であり、組み立て時に偏芯誤差が発生しにくぐ低コストィ匕を実現可能 な光ピックアップ装置、光学素子及び光情報記録再生装置を提供することを目的と する。 加えて、 3つの異なる光ディスクの全てに対して、無限系の光学系を用いる場 合であっても、トラッキングの正確性を保つことができる光ピックアップ装置、対物レン ズ及び光情報記録再生装置を提供することを目的とする。さらに、集光光学系用の 光学素子として、プラスチックレンズを用いたとしても、温度特性を良好にし、 3種類の ディスクに対して情報の記録及び Z又は再生を適切に行うことができる光ピックアツ プ装置、対物レンズ及び光情報記録再生装置を提供することを目的とする。
課題を解決するための手段
[0010] 以上の課題を解決するために、請求の範囲第 1項に記載の発明は、第一波長 λ 1 の第一光束を射出する第一光源と、第二波長 λ 2 ( λ 2> λ 1)の第二光束を射出す る第二光源と、第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三光源と、前記 第一光束を厚さが tlの保護基板を有する第 1光ディスクの情報記録面上に集光させ 、前記第二光束を厚さが t2 (tl≤t2)の保護基板を有する第 2光ディスクの情報記録 面上に集光させ、前記第三光束を厚さが t3 (t2< t3)の保護基板を有する第 3光ディ スクの情報記録面上に集光させるための集光光学系と、を有し、前記第一光束を前 記第 1光ディスクの情報記録面上に集光させ、前記第二光束を前記第 2光ディスクの 情報記録面上に集光させ、前記第三光束を前記第 3光ディスクの情報記録面上に 集光させることによって情報の記録及び Z又は再生を行う光ピックアップ装置におい て、前記集光光学系は、少なくとも一つの光学素子を有し、前記光学素子は、その光 学面に光路差付与構造を有し、前記光路差付与構造は、少なくとも第一基礎構造、 第二基礎構造及び第三基礎構造を同一面上に重畳させた構造であり、前記第一基 礎構造は、前記第一基礎構造を通過した前記第一光束の r次 (rは整数)の回折光量 を他のいかなる次数の回折光量よりも大きくし、前記第二光束の s次(sは整数)の回 折光量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の t次 (tは整数 )の回折光量を他のいかなる次数の回折光量よりも大きくする光路差付与構造であり 、前記第二基礎構造は、前記第二基礎構造を通過した前記第一光束の u次 (uは整 数)の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 次( Vは整数)の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第三光束 の w次 (wは整数)の回折光量を他のいかなる次数の回折光量よりも大きくする光路 差付与構造であり、前記第三基礎構造は、前記第三基礎構造を通過した前記第一 光束の X次 (Xは整数)の回折光量を他のいかなる次数の回折光量よりも大きくし、前 記第二光束の y次 (yは整数)の回折光量を他のいかなる次数の回折光量よりも大きく し、前記第三光束の z次 (zは整数)の回折光量を他のいかなる次数の回折光量よりも 大きくする光路差付与構造であることを特徴とする。
請求の範囲第 2項に記載の光ピックアップ装置は、請求の範囲第 1項に記載された 光ピックアップ装置であって、前記第一基礎構造と前記第二基礎構造と前記第三基 礎構造を重畳してなる前記光路差付与構造が付与されて ヽる前記光学素子が、単 一の材料から形成されて!ヽることを特徴とする。
請求の範囲第 3項に記載の光ピックアップ装置は、請求の範囲第 1項又は第 2項に 記載された光ピックアップ装置にお!ヽて、前記第一基礎構造と前記第二基礎構造と 前記第三基礎構造を重畳してなる前記光路差付与構造を有する前記光学素子は、 プラスチック力もなる対物レンズであることを特徴とする。
請求の範囲第 4項に記載の光ピックアップ装置は、請求の範囲第 3項に記載された 光ピックアップ装置において、以下の条件を満たすことを特徴とする。
0. 01 く Δ SA/f 1 く 0. 05 (1)
但し、 A SAは、使用基準温度 TOにおいて、前記第一光束 (前記第一波長 λ 1は、 前記使用基準温度 TOにおける使用基準波長 λ 10)を、前記第 1光ディスクの情報 記録面上に集光した際の球面収差と、使用基準温度 TOとは異なる使用温度 Τ( I Τ -TO I < 60 [°C])において、前記第一光束 (前記第一波長 λ ΐは、前記使用温度 Τにおける使用波長 λ 11)を、前記第 1光ディスクの情報記録面上に集光した際の 球面収差の差を表し、 fiは、前記第 1光束を用いた際の前記集光光学系に含まれる 対物レンズの焦点距離を表す。
請求の範囲第 5項に記載の光ピックアップ装置は、請求の範囲第 4項に記載された 光ピックアップ装置において、前記第三基礎構造を重畳することにより、 A SAZflの 値が、前記条件式(1)を満たすことが可能となることを特徴とする。
請求の範囲第 6項に記載の光ピックアップ装置は、請求の範囲第 1項乃至第 5項の
Vヽずれか 1項に記載された光ピックアップ装置にぉ 、て、以下の条件式を満たすこと を特徴とする。
x= 10
y=6
z = 5
請求の範囲第 7項に記載の光ピックアップ装置は、請求の範囲第 6項に記載された 光ピックアップ装置において、以下の条件式を満たすことを特徴とする。
r=0
s = 0
t= ± l
u= 2
v= 1
w= 1 x= 10
y= 6
z = 5
請求の範囲第 8項に記載の光ピックアップ装置は、請求の範囲第 1項乃至第 7項の いずれか 1項に記載された光ピックアップ装置において、前記第二基礎構造は複数 の段差を有する構造であり、前記第三基礎構造は複数の段差を有する構造であり、 前記段差間のピッチ幅が前記第二基礎構造よりも大きぐ前記第二基礎構造と前記 第三基礎構造を重畳させる際に、前記第二基礎構造の少なくとも一つの段差の位置 が、前記第三基礎構造の段差の位置と一致しないように重畳させることを特徴とする 請求の範囲第 9項に記載の光ピックアップ装置は、請求の範囲第 1項乃至第 8項の いずれか 1項に記載された光ピックアップ装置であって、前記第一基礎構造、前記第 二基礎構造及び前記第三基礎構造の少なくとも一つが、ブレーズ型形状であること を特徴とする。
請求の範囲第 10項に記載の光ピックアップ装置は、請求の範囲第 9項に記載された 光ピックアップ装置であって、前記第一基礎構造、前記第二基礎構造及び前記第三 基礎構造を重畳してなる前記光路差付与構造が、前記光学素子のベース面に対し て直角でもなく平行でもない、斜めの面を有することを特徴とする。
請求の範囲第 11項に記載の光学素子は、第一波長 λ 1の第一光束を射出する第一 光源と、第二波長 λ 2 ( λ 2 > λ 1)の第二光束を射出する第二光源と、第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三光源と、前記第一光束を厚さが tlの保護基 板を有する第 1光ディスクの情報記録面上に集光させ、前記第二光束を厚さが t2 (tl ≤t2)の保護基板を有する第 2光ディスクの情報記録面上に集光させ、前記第三光 束を厚さが t3 (t2< t3)の保護基板を有する第 3光ディスクの情報記録面上に集光さ せるための集光光学系と、を有し、前記第一光束を前記第 1光ディスクの情報記録面 上に集光させ、前記第二光束を前記第 2光ディスクの情報記録面上に集光させ、前 記第三光束を前記第 3光ディスクの情報記録面上に集光させることによって情報の 記録及び Z又は再生を行う光ピックアップ装置の前記集光光学系で用いられる光学 素子であって、前記光学素子は、その光学面に光路差付与構造を有し、前記光路 差付与構造は、少なくとも第一基礎構造、第二基礎構造及び第三基礎構造を同一 面上に重畳させた構造であり、前記第一基礎構造は、前記第一基礎構造を通過した 前記第一光束の r次 (rは整数)の回折光量を他のいかなる次数の回折光量よりも大 きくし、前記第二光束の s次 (sは整数)の回折光量を他のいかなる次数の回折光量よ りも大きくし、前記第三光束の t次 (tは整数)の回折光量を他のいかなる次数の回折 光量よりも大きくする光路差付与構造であり、前記第二基礎構造は、前記第二基礎 構造を通過した前記第一光束の u次 (uは整数)の回折光量を他の!、かなる次数の 回折光量よりも大きくし、前記第二光束の V次 (Vは整数)の回折光量を他のいかなる 次数の回折光量よりも大きくし、前記第三光束の w次 (wは整数)の回折光量を他の いかなる次数の回折光量よりも大きくする光路差付与構造であり、前記第三基礎構 造は、前記第三基礎構造を通過した前記第一光束の X次 (Xは整数)の回折光量を 他のいかなる次数の回折光量よりも大きくし、前記第二光束の y次 (yは整数)の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の z次 (zは整数) の回折光量を他のいかなる次数の回折光量よりも大きくする光路差付与構造である ことを特徴とする。
請求の範囲第 12項に記載の光学素子は、請求の範囲第 11項に記載された光学素 子であって、前記第一基礎構造と前記第二基礎構造と前記第三基礎構造を重畳し てなる前記光路差付与構造が付与されている前記光学素子が、単一の材料から形 成されて!/ヽることを特徴とする。
請求の範囲第 13項に記載の光学素子は、請求の範囲第 11項又は第 12項に記載さ れた光学素子にお!、て、前記第一基礎構造と前記第二基礎構造と前記第三基礎構 造を重畳してなる前記光路差付与構造を有する前記光学素子は、プラスチックから なる対物レンズであることを特徴とする。
請求の範囲第 14項に記載の光学素子は、請求の範囲第 13項に記載された光学素 子において、以下の条件を満たすことを特徴とする。
0. 01 く Δ SA/f 1 く 0. 05 (1)
但し、 A SAは、使用基準温度 TOにおいて、前記光ピックアップ装置が、前記第一光 束 (前記第一波長 λ 1は、前記使用基準温度 TOにおける使用基準波長 λ 10)を、 前記第 1光ディスクの情報記録面上に集光した際の球面収差と、前記光ピックアップ 装置が、使用基準温度 TOとは異なる使用温度 τ( I τ-το Iく 60[°C])において、 前記第一光束 (前記第一波長 λ 1は、前記使用温度 Τにおける使用波長 λ 11)を、 前記第 1光ディスクの情報記録面上に集光した際の球面収差の差を表し、 flは、前 記第 1光束を用いた際の前記集光光学系に含まれる対物レンズの焦点距離を表す。 請求の範囲第 15項に記載の光学素子は、請求の範囲第 14項に記載された光学素 子において、前記第三基礎構造を重畳することにより、 A SAZflの値が、前記条件 式(1)を満たすことが可能となることを特徴とする。
請求の範囲第 16項に記載の光学素子は、請求の範囲第 11項乃至第 15項のいず れカ 1項に記載された光学素子において、以下の条件式を満たすことを特徴とする。 x= 10
y=6
z = 5
請求の範囲第 17項に記載の光学素子は、請求の範囲第 16項に記載された光学素 子において、以下の条件式を満たすことを特徴とする。
r=0
s = 0
t= ± l
u= 2
v= 1
w= 1
x= 10
y=6
z = 5
請求の範囲第 18項に記載の光学素子は、請求の範囲第 11項乃至第 17項のいず れカ 1項に記載された光学素子において、前記第二基礎構造は複数の段差を有す る構造であり、前記第三基礎構造は複数の段差を有する構造であり、前記段差間の ピッチ幅が前記第二基礎構造よりも大きぐ前記第二基礎構造と前記第三基礎構造 を重畳させる際に、前記第二基礎構造の少なくとも一つの段差の位置が、前記第三 基礎構造の段差の位置と一致しな 、ように重畳させることを特徴とする。
請求の範囲第 19項に記載の光学素子は、請求の範囲第 11項乃至第 18項のいず れか 1項に記載された光学素子であって、前記第一基礎構造、前記第二基礎構造 及び前記第三基礎構造の少なくとも一つが、ブレーズ型形状であることを特徴とする 請求の範囲第 20項に記載の光学素子は、請求の範囲第 19項に記載された光学素 子であって、前記第一基礎構造、前記第二基礎構造及び前記第三基礎構造を重畳 してなる前記光路差付与構造が、前記光学素子のベース面に対して直角でもなく並 行でもない、斜めの面を有することを特徴とする。
請求の範囲第 21項に記載の光情報記録再生装置は、第一波長 λ 1の第一光束を 射出する第一光源と、第二波長 λ 2 ( λ 2 > λ 1)の第二光束を射出する第二光源と 、第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三光源と、前記第一光束を厚 さが tlの保護基板を有する第 1光ディスクの情報記録面上に集光させ、前記第二光 束を厚さが t2 (tl≤t2)の保護基板を有する第 2光ディスクの情報記録面上に集光さ せ、前記第三光束を厚さが t3 (t2< t3)の保護基板を有する第 3光ディスクの情報記 録面上に集光させるための集光光学系と、を有し、前記第一光束を前記第 1光デイス クの情報記録面上に集光させ、前記第二光束を前記第 2光ディスクの情報記録面上 に集光させ、前記第三光束を前記第 3光ディスクの情報記録面上に集光させることに よって情報の記録及び Z又は再生を行う光ピックアップ装置を有する光情報記録再 生装置において、前記光ピックアップ装置の前記集光光学系は、少なくとも一つの光 学素子を有し、前記光学素子は、その光学面に光路差付与構造を有し、前記光路 差付与構造は、少なくとも第一基礎構造、第二基礎構造及び第三基礎構造を同一 面上に重畳させた構造であり、前記第一基礎構造は、前記第一基礎構造を通過した 前記第一光束の r次 (rは整数)の回折光量を他のいかなる次数の回折光量よりも大 きくし、前記第二光束の s次 (sは整数)の回折光量を他のいかなる次数の回折光量よ りも大きくし、前記第三光束の t次 (tは整数)の回折光量を他のいかなる次数の回折 光量よりも大きくする光路差付与構造であり、前記第二基礎構造は、前記第二基礎 構造を通過した前記第一光束の U次 (Uは整数)の回折光量を他の!、かなる次数の 回折光量よりも大きくし、前記第二光束の V次 (Vは整数)の回折光量を他のいかなる 次数の回折光量よりも大きくし、前記第三光束の W次 (Wは整数)の回折光量を他の いかなる次数の回折光量よりも大きくする光路差付与構造であり、前記第三基礎構 造は、前記第三基礎構造を通過した前記第一光束の X次 (Xは整数)の回折光量を 他のいかなる次数の回折光量よりも大きくし、前記第二光束の y次 (yは整数)の回折 光量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の z次 (zは整数) の回折光量を他のいかなる次数の回折光量よりも大きくする光路差付与構造である ことを特徴とする。
請求の範囲第 22項に記載の光ピックアップ装置は、第一波長 λ 1の第一光束を射 出する第一光源と、第二波長 λ 2 ( λ 2 > λ 1)の第二光束を射出する第二光源と、 第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三光源と、前記第一光束を厚さ が tlの保護基板を有する第 1光ディスクの情報記録面上に集光させ、前記第二光束 を厚さが t2 (tl≤t2)の保護基板を有する第 2光ディスクの情報記録面上に集光させ 、前記第三光束を厚さが t3 (t2<t3)の保護基板を有する第 3光ディスクの情報記録 面上に集光させるための集光光学系と、を有し、前記第一光束を前記第 1光ディスク の情報記録面上に集光させ、前記第二光束を前記第 2光ディスクの情報記録面上に 集光させ、前記第三光束を前記第 3光ディスクの情報記録面上に集光させることによ つて情報の記録及び Z又は再生を行う光ピックアップ装置において、前記集光光学 系は、少なくとも一つの光学素子を有し、前記光学素子は、その光学面に光路差付 与構造を有し、前記光路差付与構造は、少なくとも第一基礎構造、第二基礎構造及 び第三基礎構造を同一面上に重畳させた構造であり、前記第一基礎構造、前記第 二基礎構造及び前記第三基礎構造は、光軸とほぼ同一の方向の段差を有する構造 であり、前記第一基礎構造、前記第二基礎構造及び前記第三基礎構造の少なくとも 一つは、ブレーズ型の形状を有する構造であり、前記第一基礎構造、前記第二基礎 構造及び前記第三基礎構造を重畳してなる前記光路差付与構造が、前記光学素子 のベース面に対して直角でもなく並行でもない、斜めの面を有することを特徴とする。 請求の範囲第 23項に記載の光ピックアップ装置は、請求の範囲第 22項に記載され た光ピックアップ装置であって、前記第一基礎構造、前記第二基礎構造及び前記第 三基礎構造の少なくとも一つは、階段型の形状を有する構造であることを特徴とする 請求の範囲第 24項に記載の光学素子は、第一波長 λ 1の第一光束を射出する第一 光源と、第二波長 λ 2 ( λ 2 > λ 1)の第二光束を射出する第二光源と、第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三光源と、前記第一光束を厚さが tlの保護基 板を有する第 1光ディスクの情報記録面上に集光させ、前記第二光束を厚さが t2 (tl ≤t2)の保護基板を有する第 2光ディスクの情報記録面上に集光させ、前記第三光 束を厚さが t3 (t2< t3)の保護基板を有する第 3光ディスクの情報記録面上に集光さ せるための集光光学系と、を有し、前記第一光束を前記第 1光ディスクの情報記録面 上に集光させ、前記第二光束を前記第 2光ディスクの情報記録面上に集光させ、前 記第三光束を前記第 3光ディスクの情報記録面上に集光させることによって情報の 記録及び Z又は再生を行う光ピックアップ装置の前記集光光学系で用いられる光学 素子であって、前記光学素子は、その光学面に光路差付与構造を有し、前記光路 差付与構造は、少なくとも第一基礎構造、第二基礎構造及び第三基礎構造を同一 面上に重畳させた構造であり、前記第一基礎構造、前記第二基礎構造及び前記第 三基礎構造は、光軸とほぼ同一の方向の段差を有する構造であり、前記第一基礎構 造、前記第二基礎構造及び前記第三基礎構造の少なくとも一つは、ブレーズ型の形 状を有する構造であり、前記第一基礎構造、前記第二基礎構造及び前記第三基礎 構造を重畳してなる前記光路差付与構造が、前記光学素子のベース面に対して直 角でもなく並行でもない、斜めの面を有することを特徴とする。
請求の範囲第 25項に記載の光学素子は、請求の範囲第 24項に記載された光学素 子であって、前記第一基礎構造、前記第二基礎構造及び前記第三基礎構造の少な くとも一つは、階段型の形状を有する構造であることを特徴とする。
請求の範囲第 26項に記載の光情報記録再生装置は、第一波長 λ 1の第一光束を 射出する第一光源と、第二波長 λ 2 ( λ 2 > λ 1)の第二光束を射出する第二光源と 、第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三光源と、前記第一光束を厚 さが tlの保護基板を有する第 1光ディスクの情報記録面上に集光させ、前記第二光 束を厚さが t2 (tl≤t2)の保護基板を有する第 2光ディスクの情報記録面上に集光さ せ、前記第三光束を厚さが t3 (t2<t3)の保護基板を有する第 3光ディスクの情報記 録面上に集光させるための集光光学系と、を有し、前記第一光束を前記第 1光デイス クの情報記録面上に集光させ、前記第二光束を前記第 2光ディスクの情報記録面上 に集光させ、前記第三光束を前記第 3光ディスクの情報記録面上に集光させることに よって情報の記録及び Z又は再生を行う光ピックアップ装置を有する光情報記録再 生装置において、前記集光光学系は、少なくとも一つの光学素子を有し、前記光学 素子は、その光学面に光路差付与構造を有し、前記光路差付与構造は、少なくとも 第一基礎構造、第二基礎構造及び第三基礎構造を同一面上に重畳させた構造であ り、前記第一基礎構造、前記第二基礎構造及び前記第三基礎構造は、光軸とほぼ 同一の方向の段差を有する構造であり、前記第一基礎構造、前記第二基礎構造及 び前記第三基礎構造の少なくとも一つは、ブレーズ型の形状を有する構造であり、 前記第一基礎構造、前記第二基礎構造及び前記第三基礎構造を重畳してなる前記 光路差付与構造が、前記光学素子のベース面に対して直角でもなく並行でもない、 斜めの面を有することを特徴とする。
発明の効果
[0011] 本発明によれば、構成が簡素であり、組み立て時に偏芯誤差が発生しにくぐ低コ ストを実現可能な、高密度光ディスクと DVDと CD等の、記録密度が異なる 3種類の ディスクに対して情報の記録及び Z又は再生を適切に行うことができる光ピックアツ プ装置、光学素子および光情報記録再生装置を提供することが可能となる。加えて 、 3つの異なる光ディスクの全てに対して、無限系の光学系を用いる場合であっても、 トラッキングの正確性を保つことが可能となる。さらに、集光光学系用の光学素子とし て、プラスチックレンズを用いたとしても、温度特性を良好にし、 3種類のディスクに対 して情報の記録及び Z又は再生を適切に行うことが可能となる。
図面の簡単な説明
[0012] [図 1]本発明に係る対物レンズ OBJの一例を、光軸方向から見た図である。
[図 2]本発明に係る基礎構造の幾つ力の例 (a)〜 (e)を模式的に示す断面図である。 [図 3]本発明に係る光ピックアップ装置の構成を概略的に示す図である。
[図 4]本発明に係る対物レンズ OBJの一例を模式的に示す断面図である。
[図 5]本発明に係る実施例の対物レンズの光路差付与構造を示す断面図である。
[図 6]本発明に係る実施例の BD, DVD, CDに関する縦球面収差図(a)〜(c)であ る。
[図 7]スポットの形状を概略的に示す図である。
符号の説明
[0013] AC ニ軸ァクチユエータ
PPS 偏光ダイクロイツクプリズム
CL コリメートレンズ
LD1 青紫色半導体レーザ
LM レーザモジユーノレ
OBJ 対物レンズ
PL1 保護基板
PL2 保護基板
PL3 保護基板
PU1 光ピックアップ装置
RL1 情報記録面
RL2 情報記録面
RL3 情報記録面
CN 中央領域
MD 周辺領域
OT 最周辺領域
発明を実施するための最良の形態
[0014] 本発明の光ピックアップ装置は、第一光源、第二光源、第三光源の少なくとも 3つ の光源を有する。さらに、本発明の光ピックアップ装置は、第一光束を第 1光ディスク の情報記録面上に集光させ、第二光束を第 2光ディスクの情報記録面上に集光させ 、第三光束を第 3光ディスクの情報記録面上に集光させるための集光光学系を有す る。また、本発明の光ピックアップ装置は、第 1光ディスク、第 2光ディスク又は第 3光 ディスクの情報記録面からの反射光束を受光する受光素子を有する。
[0015] 第 1光ディスクは、厚さが tlの保護基板と情報記録面とを有する。第 2光ディスクは 厚さが t2 (tl≤t2)の保護基板と情報記録面とを有する。第 3光ディスクは、厚さが t3 (t2<t3)の保護基板と情報記録面とを有する。第 1光ディスクが高密度光ディスクで あり、第 2光ディスクが、 DVDであり、第 3光ディスクが CDであることが好ましいが、こ れに限られるものではない。また、 tl <t2である場合は、 tl =t2である場合に比して 、一つの集光光学系、特に単玉の対物レンズによって 3つの異なる光ディスクの記録 及び Z又は再生を行うことはより困難であるが、本発明はそれを可能とする。なお、 第 1光ディスク、第 2光ディスク又は第 3光ディスクは、複数の情報記録面を有する複 数層の光ディスクでもよ 、。
[0016] 本明細書においては、高密度光ディスクの例としては、 NAO. 85の対物レンズによ り情報の記録 Z再生が行われ、保護基板の厚さが 0. 1mm程度である規格の光ディ スク(例えば、 BD:ブルーレイディスク)が挙げられる。また、他の高密度光ディスクの 例としては、 NAO. 65乃至 0. 67の対物レンズにより情報の記録 Z再生が行われ、 保護基板の厚さが 0. 6mm程度である規格の光ディスク(例えば、 HD DVD :単に HDともいう)が挙げられる。また、高密度光ディスクには、情報記録面上に数〜数十 nm程度の厚さの保護膜 (本明細書では、保護基板は保護膜も含むものとする)を有 する光ディスクや、保護基板の厚さが 0の光ディスクも含まれる。また、高密度光ディ スクには、情報の記録 Z再生用の光源として、青紫色半導体レーザや青紫色 SHG レーザが用いられる光磁気ディスクも含まれるものとする。更に、本明細書において は、 DVDとは、 NAO. 60〜0. 67程度の対物レンズにより情報の記録 Z再生が行わ れ、保護基板の厚さが 0. 6mm程度である DVD系列光ディスクの総称であり、 DVD -ROM, DVD-Video, DVD-Audio, DVD -RAM, DVD-R, DVD-RW 、 DVD+R、 DVD+RW等を含む。また、本明細書においては、 CDとは、 NA0. 4 5〜0. 51程度の対物レンズにより情報の記録 Z再生が行われ、保護基板の厚さが 1 . 2mm程度である CD系列光ディスクの総称であり、 CD-ROM, CD -Audio, C D- Video, CD-R, CD— RW等を含む。尚、記録密度については、高密度光ディ スクの記録密度が最も高ぐ次いで DVD、 CDの順に低くなる。
[0017] なお、保護基板の厚さ tl、 t2、 t3に関しては、以下の条件式を満たすことが好まし いが、これに限られない。
[0018] 0. 0750mm≤tl≤0. 1125mm 又は 0. 5mm≤tl≤0. 7mm
0. 5mm≤t2≤0. 7mm
1. Omm≥t3≤ 1. 3mm
本明細書において、第一光源、第二光源、第三光源は、好ましくはレーザ光源であ る。レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出 来る。第一光源から出射される第一光束の第一波長 λ 1、第二光源から出射される 第二光束の第二波長 λ 2 ( λ 2 > λ 1)、第三光源から出射される第三光束の第三波 ¾ 3 ( λ 3 > 2)は以下の条件式を満たすことが好まし!/、。
[0019] 1. 5 Χ λ 1 < λ 2< 1. 7 Χ λ 1
1. 9 Χ λ 1 < λ 3< 2. I X λ ΐ
また、第 1光ディスク、第 2光ディスク、第 3光ディスクとして、それぞれ、 BDまたは Η D、 DVD及び CDが用いられる場合、第一光源の第一波長 λ 1は好ましくは、 350η m以上、 440nm以下、より好ましくは、 380nm以上、 415nm以下であって、第二光 源の第二波長え 2は好ましくは 570nm以上、 680nm以下、より好ましくは 630nm以 上、 670nm以下であって、第三光源の第三波長え 3は好ましくは、 750nm以上、 88 Onm以下、より好ましくは、 760nm以上、 820nm以下である。
[0020] また、第一光源、第二光源、第三光源のうち少なくとも 2つの光源をユニット化しても よい。ユニット化とは、例えば第一光源と第二光源とが 1パッケージに固定収納されて いるようなものをいうが、これに限られず、 2つの光源が収差補正不能なように固定さ れている状態を広く含むものである。また、光源に加えて、後述する受光素子を 1パッ ケージィ匕してもよい。
[0021] 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光デイス クの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光 ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポット の形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、 この検出に基づいて、合焦、トラッキングのために対物レンズを移動させることが出来 る。受光素子は、複数の光検出器力もなつていてもよい。受光素子は、メインの光検 出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いられるメ イン光を受光する光検出器の両脇に 2つのサブの光検出器を設け、当該 2つのサブ の光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよ い。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。
集光光学系は、対物レンズ等の光学素子を少なくとも一つ有する。集光光学系は、 対物レンズのみを有していても良いが、集光光学系は、対物レンズの他にコリメータ 一レンズ等のカップリングレンズや、光学機能を有する平板光学素子等、他の光学 素子を有していてもよい。なお、カップリングレンズとは、対物レンズと光源の間に配 置され、光束の発散角を変える単レンズ又はレンズ群のことをいう。更に集光光学系 は、光源力 射出された光束を、情報の記録再生に用いられるメイン光束と、トラツキ ング等に用いられる二つのサブ光束とに分割する回折光学素子などの光学素子を 有していてもよい。本明細書において、対物レンズとは、光ピックアップ装置において 光ディスクに対向する位置に配置され、光源カゝら射出された光束を光ディスクの情報 記録面上に集光する機能を有する光学系を指す。好ましくは、対物レンズとは、光ピ ックアップ装置にお 、て光ディスクに対向する位置に配置され、光源から射出された 光束を光ディスクの情報記録面上に集光する機能を有する光学系であって、更に、 ァクチユエータにより少なくとも光軸方向に一体的に変異可能とされた光学系を指す
集光光学系で用いられる光学素子であって、光路差付与構造が設けられる光学素 子は、二つ以上の複数のレンズ及び光学素子力も構成されていてもよいし、単玉の レンズのみでもよいが、好ましくは単玉のレンズ、又は単体の光学素子である。また、 光学素子は、ガラス力もなるものであってもプラスチックからなるものであっても、又は 、ガラス製の光学素子の上に光硬化性榭脂などで光路差付与構造などを設けたハイ ブリツドの光学素子であってもよいが、単一の材料力 形成されるものが好ましい。光 学素子が複数のレンズからなる場合は、ガラスレンズとプラスチックレンズを混合して 用いてもよい。光学素子が複数のレンズを有する場合、光路差付与構造を有する平 板光学素子と非球面レンズ (光路差付与構造を有して!ヽても ヽなくてもよ!ヽ)の組み 合わせであってもよい。また、光学素子がレンズである場合、屈折面が非球面である ことが好ましい。また、光学素子は、光路差付与構造が設けられるベース面が非球面 又は平面であることが好ましい。なお、光路差付与構造が設けられている光学素子 の光学面が平面である場合、ベース面とは、その平面をいい、光路差付与構造が設 けられている光学素子の光学面が曲面である場合、ベース面とは、光路差付与構造 の包絡面をいう。包絡面とは、ある単位領域毎に最も光軸方向に大きく出っ張つてい る部分をつないだ曲線をいう。単位領域としては、例えば、光軸と直交方向に 0. 05 mmごとに分割するようにしてもよい。光路差付与構造が設けられる光学素子であつ て、特に好ましいものは、プラスチック力もなる単玉の対物レンズか、プラスチックから なる単体の平板光学素子である。
[0023] また、光学素子をガラス製とする場合は、ガラス転移点 Tg力 00°C以下であるガラ ス材料を使用することが好まし ヽ。ガラス転移点 Tg力 00°C以下であるガラス材料を 使用することにより、比較的低温での成形が可能となるので、金型の寿命を延ばすこ とが出来る。このようなガラス転移点 Tgが低いガラス材料としては、例えば (株)住田 光学ガラス製の K— PG325や、 K— PG375 (共に製品名)がある。
[0024] ところで、ガラス製の光学素子は一般的に榭脂レンズよりも比重が大きいため、例え ば、対物レンズをガラスレンズとすると、重量が大きくなり対物レンズを駆動するァクチ ユエータに負担がかかる。そのため、光学素子をガラス製とする場合には、比重が小 さいガラス材料を使用するのが好ましい。具体的には、比重が 3. 0以下であるのが好 ましぐ 2. 8以下であるのがより好ましい。
[0025] また、対物レンズ等の光学素子をプラスチック製とする場合は、環状ォレフィン系の 榭脂材料を使用するのが好ましぐ環状ォレフィン系の中でも、波長 405nmに対す る温度 25°Cでの屈折率が 1. 54乃至 1. 60の範囲内であって、 5°Cから 70°Cの温 度範囲内での温度変化に伴う波長 405nmに対する屈折率変化率 dNZdT (°C— 1) が— 20 X 10—5乃至— 5 X 10_5 (より好ましくは、—10 X 10—5乃至— 8 X 10—5)の範 囲内である榭脂材料を使用するのがより好ましい。また、対物レンズをプラスチックレ ンズとする場合、カップリングレンズもプラスチックレンズとすることが好ま 、。 [0026] 或いは、本発明の対物レンズに適した榭脂材料として、上記環状ォレフィン系以外 にも「アサ一マル樹脂」がある。アサ一マル樹脂とは、母材となる樹脂の温度変化に 伴う屈折率変化率とは、逆符号の屈折率変化率を有する直径が 30nm以下の粒子 を分散させた榭脂材料である。
[0027] 光路差付与構造を有する光学素子について以下に記載する。光路差付与構造は 、少なくとも第一基礎構造、第二基礎構造及び第三基礎構造を同一面上に重畳させ た構造である。「重畳」とは、文字通り重ね合わせるという意味である。本明細書にお いて、第一基礎構造と第二基礎構造がそれぞれ他の光学面に設けられている場合 や、第一基礎構造と第二基礎構造とが同一の光学面にあつたとしても、それぞれ異 なる領域に設けられており、重なる領域が一切ない場合は、本明細書における重畳 ではない。また、本明細書において、光路差付与構造は、少なくとも 3つの基礎構造 が重畳していればよぐ更に他の基礎構造を重畳してもよい。例えば、第一基礎構造 、第二基礎構造、第三基礎構造に加えて、第四基礎構造を更に重畳させてもよいし 、更に第五基礎構造を重畳させてもよい。なお、基礎構造は、全て、光路差付与構 造である。
[0028] なお、本明細書でいう光路差付与構造とは、入射光束に対して光路差を付加する 構造の総称である。光路差付与構造には、位相差を付与する位相差付与構造も含 まれる。また、位相差付与構造には回折構造が含まれる。光路差付与構造は、光軸 の方向とほぼ平行な段差を有し、好ましくは段差を複数有する。この段差により入射 光束に光路差及び Z又は位相差が付加される。光路差付与構造により付加される 光路差は、入射光束の波長の整数倍であっても良いし、入射光束の波長の非整数 倍であっても良い。なお、第一基礎構造、第二基礎構造、第三基礎構造などの基礎 構造は、光軸方向から見た場合、光軸を中心とした同心円状の構造となっていること が好ましい。
第一基礎構造は、第一基礎構造を通過した第一光束の r次 (rは整数)の回折光量を 他のいかなる次数の回折光量よりも大きくし、第二光束の s次 (sは整数)の回折光量 を他のいかなる次数の回折光量よりも大きくし、第三光束の t次 (tは整数)の回折光 量を他のいかなる次数の回折光量よりも大きくする光路差付与構造である。第二基 礎構造は、第二基礎構造を通過した第一光束の U次 (Uは整数)の回折光量を他の いかなる次数の回折光量よりも大きくし、第二光束の V次 (Vは整数)の回折光量を他 のいかなる次数の回折光量よりも大きくし、第三光束の W次 (Wは整数)の回折光量を 他のいかなる次数の回折光量よりも大きくする光路差付与構造である。第三基礎構 造は、第三基礎構造を通過した第一光束の X次 (Xは整数)の回折光量を他のいかな る次数の回折光量よりも大きくし、第二光束の y次 (yは整数)の回折光量を他のいか なる次数の回折光量よりも大きくし、第三光束の z次 (zは整数)の回折光量を他のい かなる次数の回折光量よりも大きくする光路差付与構造である。
[0029] r, s, t, u, v, w, x, y, zは、これらの一部が同じ整数であってもよいし、全てが異な る整数であってもよい。但し、全てが同じ整数であることはない。
r, s, tのうち少なくとも一つは 0ではないことが好ましい。 r, s, tのうち、一つ又は二つ 力 Oであってもよい。 u, V, wのうち少なくとも一つは 0ではないことが好ましい。より好 ましくは、 u, V, wのどれも 0ではない。 X, y, zのうち少なくとも一つは 0ではないことが 好ましい。より好ましくは、 X, y, zのどれも 0ではない。また、以下の条件式を満たすこ とが好ましい。
r + s + t< u+v+w^ x+y+ z
第一基礎構造、第二基礎構造及び第三基礎構造は、ある単位形状が周期的に繰り 返されている構造であることが好ましい。ここでいう「単位形状が周期的に繰り返され ている」とは、同一の形状が同一の周期で繰り返されている形状は当然含む。さらに 、周期の一単位となる単位形状が、規則性を持って、周期が徐々に長くなつたり、徐 々に短くなつたりする形状も、「単位形状が周期的に繰り返されている」ものに含まれ ているとする。
[0030] 例えば、第一基礎構造、第二基礎構造及び第三基礎構造の少なくとも一つが、ブ レーズ型形状を有することが好ましい。ブレーズ型形状とは、図 2 (a)、(b)に示される ように、光路差付与構造を有する光学素子の光軸を含む断面形状が、鋸歯上の形 状ということであり、別の言い方としては、光路差付与構造がベース面に対して、直角 でも平行でもない、斜めの面を有するということである。なお、ベース面については、 既に上述している。また、本発明における第一基礎構造、第二基礎構造、第三基礎 構造などの全ての基礎構造を、ブレーズ型形状の基礎構造に限定するようにしても よい。
第一基礎構造、第二基礎構造又は第三基礎構造が、ブレーズ型形状を有する場合 、単位形状である三角形が繰り返された形状となる。図 2 (a)に示されるように、同一 の三角形が繰り返されてもよいし、図 2 (b)に示されるように、ベース面の方向に進む に従って、徐々に三角形の大きさが大きくなつていく形状、又は、小さくなつていく形 状であってもよい。また、徐々に三角形の大きさが大きくなつた形状と、徐々に三角形 の大きさが小さくなつていく形状を組み合わせた形状としてもよい。但し、三角形の大 きさが徐々に変化する場合であっても、三角形において、光軸方向(又は通過する 光線の方向)の大きさはほとんど変化しないことが好ましい。なお、ブレーズ型形状に おいて、一つの三角形の光軸方向の長さ(三角形を通過する光線の方向の長さとし てもよい)を、ピッチ深さといい、光軸直交方向の一つの三角形の長さをピッチ幅とい う。加えて、ある領域においては、ブレーズ型形状の段差が光軸(中心)側とは逆を向 いている形状とし、他の領域においては、ブレーズ型形状の段差が光軸(中心)側を 向いている形状とし、その間に、ブレーズ型形状の段差の向きを切り替えるために必 要な遷移領域が設けられている形状としてもよい。この遷移領域は、回折構造により 透過波面に付加される光路差を光路差関数で表現した時、光路差関数の極値とな る点に相当する領域である。なお、光路差関数が極値となる点を持つと、光路差関数 の傾きが小さくなるので、輪帯ピッチを広げることが可能となり、回折構造の形状誤差 による透過率低下を抑制できる。なお、 r、 s、 tなどの次数が同一であっても、形状が 異なる基礎構造や、次数が同一の基礎構造をずらして重ねた場合は、それぞれ異な る基礎構造とみなすようにしてもよ ヽ。
また、第一基礎構造、第二基礎構造又は第三基礎構造の少なくとも一つが、図 2 (c )、 (d)で示されるような階段型形状であってもよい。階段型形状とは、光路差付与構 造を有する光学素子の光軸を含む断面形状が、階段状ということであり、別の言い方 としては、光路差付与構造がベース面に対して平行な面と光軸に対して平行な面の みを有し、ベース面に対して斜めの面を有さず、ベース面の方向に進むに従って、 段階的に光軸方向の長さが変化するということである。なお、例えば、 r=0、 s = l、 t =0である場合、第一基礎構造は、図 2 (d)に示すような階段状形状となるが、この形 状は、 2つのブレーズ型形状の重畳ともいえるため、この形状を二つの基礎構造の重 畳とみなしてもよい。
[0032] 第一基礎構造、第二基礎構造又は第三基礎構造が、階段型形状を有する場合、 単位形状である、階段形状が繰り返された形状となる。図 2 (c)に示されるような徐々 に階段のステップが高くなつていく形状や、図 2 (d)で示されるような数段 (例えば、 4 , 5段)の同一の小階段形状が、繰り返されるような形状等があり得る。さらに、ベース 面の方向に進むに従って、徐々に階段の大きさが大きくなつていく形状や、徐々に 階段の大きさが小さくなつていく形状であってもよいが、光軸方向(又は通過する光 線の方向)の長さはほとんど変化しな 、ことが好ま U、。
[0033] さらに、第一基礎構造、第二基礎構造又は第三基礎構造のいずれかが、図 2 (e) に示すように、バイナリ型形状であってもよい。さらに、ベース面の方向に進むに従つ て、徐々にバイナリの大きさが大きくなつていく形状や、徐々に階段の大きさが小さく なって 、く形状であってもよ 、が、通過する光線の方向の長さはほとんど変化しな ヽ ことが好ましい。なお、例えば、 r=0、 s = 0、 t= ± lである場合、第一基礎構造は、 図 2 (e)に示すようなバイナリ状形状となるが、この形状は、 2つのブレーズ型形状の 重畳とも 、えるため、この形状を二つの基礎構造の重畳とみなしてもよ 、。
[0034] また、第一基礎構造、第二基礎構造及び第三基礎構造を重畳させてなる光路差付 与構造の形状において、第一基礎構造、第二基礎構造又は第三基礎構造のブレー ズ型形状の名残が残っていることが好ましい。別の言い方をすると、第一基礎構造、 第二基礎構造及び第三基礎構造を重畳させてなる光路差付与構造が、光学素子の 光路差付与構造が設けられているベース面に対して直角でもなく平行でもない、斜 めの面を有することが好ましい。この様な形状にすることにより、第一基礎構造、第二 基礎構造又は第三基礎構造において、付与することを意図していた光学機能 (例え ば、温度特性の向上や、波長特性の向上や、特定の波長のみ回折させるといった機 能)の減少や消失をより防止することができ、重畳した光路差付与構造においても、 意図していた当該光学機能を発揮することが可能となる。
[0035] また、第一基礎構造、第二基礎構造及び第三基礎構造の中で、より大きなピッチ幅 (もしくは周期の幅)を有するブレーズ型形状の基礎構造と、それに比して小さなピッ チ幅 (もしくは周期の幅)を有するブレーズ型形状の基礎構造の少なくとも二つの基 礎構造について、当該二つの基礎構造を重畳させる際に、大きなピッチ幅 (もしくは 周期幅)を有する基礎構造の段差 (ベース面に対してほぼ直角な面)の位置の少なく とも一つが、小さなピッチ幅 (もしくは周期幅)を有する基礎構造の段差の位置と一致 しないことが好ましい。より好ましくは、大きな基礎構造の段差の位置の半分以上が、 小さな基礎構造の段差の位置と一致しないことが好ましい。別の言い方をすれば、大 きな基礎構造の周期が、小さな基礎構造の周期の整数倍に一致しないように、互い の段差の位置をずらすことが好ましい。このように重畳させることにより、上述のような ブレーズ型形状の名残を残すことが可能となるので好ましい。
[0036] また、第一基礎構造及び第二基礎構造は、第 1光ディスク使用時に発生する球面 収差、第 2光ディスク使用時に発生する球面収差及び第 3光ディスク使用時に発生 する球面収差をそれぞれ所望の値に調整する回折作用を付与する構造であることが 好ましい。以下、この様な構造を互換用構造という。特に、第一基礎構造は、第 1光 ディスクと第 3光ディスクの透明基板の厚さの差に基づ 、て発生する球面収差を、第 1光束と第 3光束の波長の差を利用して補正する構造であることが好ましい。また、第 二基礎構造は、第 1光ディスクと第 2光ディスクの透明基板の厚さの差に基づいて発 生する球面収差を、第 1光束と第 2光束の波長の差を利用して補正する構造であるこ とが好ましい。
[0037] 一方、第三基礎構造並びに後述する第四基礎構造及び第五基礎構造は、環境温 度が変化した際に発生する収差を補正する構造であることが好ましい。以下、この様 な構造を温度変化補償構造という。第三基礎構造、第四基礎構造及び第五基礎構 造は、環境温度の変化によって対物レンズの屈折率が変化し、当該屈折率の変化に 伴って発生する収差を、環境温度の変化によって僅か (約 ± 10nm以内)に変化する 波長変化を利用して補正する構造であってもよい。また、第三基礎構造、第四基礎 構造及び第五基礎構造は、環境温度の変化に伴って変化する屈折率を利用して、 基礎構造の段差において位相差の変化を生じさせ、当該位相差の変化を利用して 環境温度の変化に伴って発生する収差を補正する なお、第一基礎構造及び第二基礎構造を同一のベース面の構造とし、第三基礎構 造のみ異なるベース面の構造としてもょ 、。
[0038] なお、本発明の光学素子として、例えば、非球面の対物レンズを設計する場合、好 ましい設計方法を以下に記載する。まず、基準となる非球面を設計し、そこに最もピッ チ幅が大きい基礎構造であって、 r、 s、 tの値がそれぞれ設定された構造を第一基礎 構造として載せるように設計する。次に、第一基礎構造の各ピッチ幅内のそれぞれの 面について、第一基礎構造の次にピッチ幅が大きい基礎構造であって、 u, v、 wの 値がそれぞれ設定された構造を第二基礎構造として第一基礎構造に重ねて載せる ように設計する。さらに、第一基礎構造の各ピッチ幅内のそれぞれの面について、第 二基礎構造の次にピッチ幅が大きい基礎構造であって、 x、 y、 zの値がそれぞれ設 定された構造を第三基礎構造として第一基礎構造及び第二基礎構造に重ねて載せ るように設計する。 4つめ以降の基礎構造を有する場合は、上述の作業を繰り返して いけばよい。上述に記載するように、ピッチ幅の広い基礎構造力 順々に基礎構造 を重ねていくことが好ましい。なお、第一基礎構造、第二基礎構造、第三基礎構造を それぞれ設計し、最後にそれらの基礎構造を基準面上で重ね合わせるようにしても よいが、上述の方法のほうが好ましい。
[0039] 第一基礎構造及び第二基礎構造は、光路差関数を用いて設計することが好ましく 、第三基礎構造は、非球面係数を用いた非球面の式力も設計することが好ましいが 、この設計方法に限られるものではない。
[0040] また、光路差付与構造を有する光学素子が、プラスチック製の単玉の対物レンズで ある場合、光ピックアップ装置として、以下の条件式を満たすことが好ましい。
0. OK A SA/fl < 0. 05 (1)
なお、 A SAは、使用基準温度 TOにおいて、第一光束 (ここで、第一波長 λ θは、使 用基準温度 TOにおける使用基準波長 λ 10とする)を、第 1光ディスクの情報記録面 上に集光した際の球面収差と、使用基準温度 TOとは異なる使用温度 Τ (ここで、 I T -TO Iく 60 [°C]とする)において、第一光束 (ここで、第一波長 λ θは、前記使用温 度 Τにおける使用波長 λ 11とする)を、第 1光ディスクの情報記録面上に集光した際 の球面収差の差を表す。 flは、第 1光束を用いた際の集光光学系に含まれる対物レ ンズの焦点距離を表す。なお、 TOは 15度以上 25度以下の範囲であることが好まし い。
[0041] 更に好ましくは、以下の条件式を満たすことである。
0. OK A SA/fl < 0. 03 (1 ')
なお、プラスチックの光学素子に設けられた光路差付与構造において、第一基礎 構造、第二基礎構造又は第三基礎構造のうち、少なくとも一つの基礎構造を設けた ことに起因して、上記条件式を満たすことが可能になることが好ましい。例えば、第三 基礎構造において、上述の Xの値を 10とし、 yの値を 6とし、 zの値を 5とすることにより
、上述の条件式(1)又は(1 ')を満たすことが可能となる。
[0042] 次に、第一基礎構造、第二基礎構造および第三基礎構造を重畳させた光路差付 与構造を有する光学素子が、プラスチック製の単玉の対物レンズである場合の好まし い態様について、以下に記載する。
対物レンズの少なくとも一つの光学面力 中央領域と、中央領域の周りの周辺領域と を有する。更に好ましくは、対物レンズの少なくとも一つの光学面力 周辺領域の周り に最周辺領域を有する。最周辺領域を設けることにより、高 NAの光ディスクに対する 記録及び Z又は再生をより適切に行うことが可能となる。中央領域は、対物レンズの 光軸を含む領域であることが好ましいが、含まない領域であってもよい。中央領域、 周辺領域、及び最周辺領域は同一の光学面上に設けられていることが好ましい。図 1に示されるように、中央領域 CN、周辺領域 MD、最周辺領域 OTは、同一の光学 面上に、光軸を中心とする同心円状に設けられていることが好ましい。また、対物レン ズの中央領域には第一基礎構造、第二基礎構造及び第三基礎構造を重畳させてな る本発明の光路差付与構造である第一光路差付与構造が設けられ、周辺領域には 第二光路差付与構造が設けられている。第二光路差付与構造は、 3つの基礎構造 を重畳してなる構成であってもよ ヽし、 2つの基礎構造を重畳してなる構成であっても よいし、単一の基礎構造のみ力 なる光路差付与構造であってもよい。最周辺領域 を有する場合、最周辺領域は屈折面であってもよいし、最周辺領域に第三光路差付 与構造が設けられていてもよい。第三光路差付与構造は、 3つの基礎構造を重畳し てなる構成であってもよ 、し、 2つの基礎構造を重畳してなる構成であってもよ 、し、 単一の基礎構造のみ力もなる光路差付与構造であってもよい。中央領域、周辺領域 、最周辺領域はそれぞれ隣接していることが好ましいが、間に僅かに隙間があっても 良い。
[0043] 第一光路差付与構造は、対物レンズの中央領域の面積の 70%以上の領域に設け られていることが好ましぐ 90%以上がより好ましい。より好ましくは、第一光路差付与 構造が、中央領域の全面に設けられていることである。第二光路差付与構造は、対 物レンズの周辺領域の面積の 70%以上の領域に設けられていることが好ましぐ 90 %以上がより好ましい。より好ましくは、第二光路差付与構造が、周辺領域の全面に 設けられていることである。第三光路差付与構造は、対物レンズの最周辺領域の面 積の 70%以上の領域に設けられていることが好ましぐ 90%以上がより好ましい。よ り好ましくは、第三光路差付与構造が、最周辺領域の全面に設けられていることであ る。
[0044] また、対物レンズの中央領域に設けられる第一光路差付与構造と、対物レンズの周 辺領域に設けられる第二光路差付与構造は、対物レンズの異なる光学面に設けられ ていてもよいが、同一の光学面に設けられることが好ましい。同一の光学面に設けら れることにより、製造時の偏芯誤差を少なくすることが可能となるため好ましい。また、 第一光路差付与構造及び第二光路差付与構造は、対物レンズの光ディスク側の面 よりも、対物レンズの光源側の面に設けられることが好ましい。
[0045] 対物レンズは、対物レンズの第一光路差付与構造が設けられた中央領域を通過す る第一光束、第二光束及び第三光束を、それぞれ集光スポットを形成するように集光 する。好ましくは、対物レンズは、対物レンズの第一光路差付与構造が設けられた中 央領域を通過する第一光束を、第 1光ディスクの情報記録面上に情報の記録及び Z 又は再生ができるように集光する。また、対物レンズは、対物レンズの第一光路差付 与構造が設けられた中央領域を通過する第二光束を、第 2光ディスクの情報記録面 上に情報の記録及び Z又は再生ができるように集光する。さらに、対物レンズは、対 物レンズの第一光路差付与構造が設けられた中央領域を通過する第三光束を、第 3 光ディスクの情報記録面上に情報の記録及び Z又は再生ができるように集光する。 また、第 1光ディスクの保護基板の厚さ tlと第 2光ディスクの保護基板の厚さ t2が異 なる場合、第一光路差付与構造は、第一光路差付与構造を通過した第一光束及び 第二光束に対して、第 1光ディスクの保護基板の厚さ tlと第 2光ディスクの保護基板 の厚さ t2の違いにより発生する球面収差及び Z又は第一光束と第二光束の波長の 違いにより発生する球面収差を補正することが好ましい。さらに、第一光路差付与構 造は、第一光路差付与構造を通過した第一光束及び第三光束に対して、第 1光ディ スクの保護基板の厚さ tlと第 3光ディスクの保護基板の厚さ t3との違いにより発生す る球面収差及び Z又は第一光束と第三光束の波長の違いにより発生する球面収差 を補正することが好ましい。
[0046] また、対物レンズの第一光路差付与構造を通過した第三光束によって、第三光束 が形成するスポットのスポット径が最も小さくなる第一ベストフォーカスと、第三光束が 形成するスポットのスポット径が第一ベストフォーカスの次に小さくなる第二べストフォ 一カスとが形成される。なお、ここでいうベストフォーカスとは、ビームウェストが、ある デフォーカスの範囲で極小となる点を指すものとする。つまり、第三光束によって、第 一べストフォーカス及び第二ベストフォーカスが形成されると!/、うことは、第三光束に おいて、或るデフォーカスの範囲でビームウェストが極小となる点力 少なくとも 2点存 在するということである。なお、第一光路差付与構造を通過した第三光束において、 光量が最大となる回折光が第一ベストフォーカスを形成し、光量が次に大きな回折光 が第二べストフォーカスを形成することが好ましい。また、第一べストフォーカスを形 成する回折光の回折効率と、第二べストフォーカスを形成する回折光の回折効率の 差が 20%以下である場合に、本発明の効果がより顕著となる。
[0047] 尚、第一ベストフォーカスにおいて第三光束が形成するスポットが、第 3光ディスク の記録及び/又は再生に用いられ、第二ベストフォーカスにおいて第三光束が形成 するスポットは、第 3光ディスクの記録及び/又は再生に用いられないことが好ましい 力 第一ベストフォーカスにおいて第三光束が形成するスポットが、第 3光ディスクの 記録及び Z又は再生に用いられず、第二ベストフォーカスにおいて第三光束が形成 するスポットが、第 3光ディスクの記録及び Z又は再生に用いられるような態様を否定 するものではない。なお、第一光路差付与構造が、対物レンズの光源側の面に設け られている場合、第二ベストフォーカスの方が、第一ベストフォーカスに比して対物レ ンズに近い方が好ましい。
[0048] さらに、第一ベストフォーカスと第二べストフォーカスは、下記の条件式を満たすこと が好ましい。
[0049] 0. 05≤L/f≤0. 35
但し、 f [mm]は第一光路差付与構造を通過し、第一べストフォーカスを形成する第 三光束の焦点距離を指し、 L[mm]は第一ベストフォーカスと第二ベストフォーカスの 間の距離を指す。
[0050] なお、下記の条件式を満たすことがより好ましい。
[0051] 0. 10≤L/f≤0. 21
また、 Lは、 0. 18mm以上、 0. 63mm以下であることが好ましい。さらに、 fは、 1. 8 mm以上、 3. Omm以下であることが好ましい。
[0052] 上記構成により、第 3光ディスクの記録及び Z又は再生時に、第三光束のうち第 3 光ディスクの記録及び Z又は再生時に用いられない不要光がトラッキング用の受光 素子に悪影響を及ぼすことを防ぐことが可能となり、第 3光ディスクの記録及び Z又 は再生時に良好なトラッキング性能を維持することが可能となる。
[0053] また、対物レンズは、対物レンズの第二光路差付与構造が設けられた周辺領域を 通過する第一光束及び第二光束を、それぞれ集光スポットを形成するように集光す る。好ましくは、対物レンズは、対物レンズの第二光路差付与構造が設けられた周辺 領域を通過する第一光束を、第 1光ディスクの情報記録面上に情報の記録及び Z又 は再生ができるように集光する。また、対物レンズは、対物レンズの第二光路差付与 構造が設けられた周辺領域を通過する第二光束を、第 2光ディスクの情報記録面上 に情報の記録及び Z又は再生ができるように集光する。また、第 1光ディスクの保護 基板の厚さ tlと第 2光ディスクの保護基板の厚さ t2が異なる場合、第二光路差付与 構造は、第二光路差付与構造を通過した第一光束及び第二光束に対して、第 1光 ディスクの保護基板の厚さ tlと第 2光ディスクの保護基板の厚さ t2の違いにより発生 する球面収差及び Z又は第一光束と第二光束の波長の違いにより発生する球面収 差を補正することが好ましい。
[0054] また、好ま U、態様として、周辺領域を通過した第三光束は、第 3光ディスクの記録 及び z又は再生に用いられない態様が挙げられる。周辺領域を通過した第三光束 が、第 3光ディスクの情報記録面上で集光スポットの形成に寄与しないようにすること が好ましい。つまり、対物レンズの第二光路差付与構造が設けられた周辺領域を通 過する第三光束は、第 3光ディスクの情報記録面上でフレアを形成することが好まし い。図 7に示すように、対物レンズを通過した第三光束が第 3光ディスクの情報記録 面上で形成するスポットにおいて、光軸側(又はスポット中心部)から外側へ向力う順 番で、光量密度が高いスポット中心部 SCN、光量密度がスポット中心部より低いスポ ット中間部 SMD、光量密度がスポット中間部よりも高くスポット中心部よりも低いスポ ット周辺部 SOTを有する。スポット中心部力 光ディスクの情報の記録及び Z又は再 生に用いられ、スポット中間部及びスポット周辺部は、光ディスクの情報の記録及び Z又は再生には用いられない。上記において、このスポット周辺部をフレアと言って いる。つまり、対物レンズの周辺領域に設けられた第二光路差付与構造を通過した 第三光束は、第 3光ディスクの情報記録面上でスポット周辺部を形成する。なお、ここ でいう第三光束の集光スポット又はスポットは、第一ベストフォーカスにおけるスポット であることが好ましい。また、対物レンズを通過した第二光束においても、第 2光ディ スクの情報記録面上で形成するスポットが、スポット中心部、スポット中間部、スポット 周辺部を有することが好まし 、。
また、第二光路差付与構造は、第二光路差付与構造を通過した第一光束及び第 二光束に対して、第一光源又は第二光源の波長の僅かな変動によって発生するスフ エロクロマテイズム (色球面収差)を補正することが好ま 、。波長の僅かな変動とは、 ± 10nm以下の変動を指す。例えば、第一光束が波長 λ 1より ± 5nm変化した際に 、第二光路差付与構造によって、周辺領域を通過した第一光束の球面収差の変動 を補償し、第 1光ディスクの情報記録面上での波面収差の変化量が 0. OlO l lrms 以上、 0. 095 λ lrms以下となるようにすることが好ましい。また、第二光束が波長え 2より ± 5nm変化した際に、第二光路差付与構造によって、周辺領域を通過した第 二光束の球面収差の変動を補償し、第 2光ディスクの情報記録面上での波面収差の 変化量が 0. 002 2rms以上、 0. 03 λ 2rms以下となるようにすることが好ましい。こ れにより、光源であるレーザの波長の製造誤差や個体差による波長のノ ラつきに起 因する収差を補正することができる。
[0056] 対物レンズが最周辺領域を有する場合、対物レンズは、対物レンズの最周辺領域 を通過する第一光束を、第 1光ディスクの情報記録面上に情報の記録及び Z又は再 生ができるように集光する。また、最周辺領域を通過した第一光束において、第 1光 ディスクの記録及び Z又は再生時にその球面収差が補正されて 、ることが好まし 、。
[0057] また、好ま U、態様として、最周辺領域を通過した第二光束は、第 2光ディスクの記 録及び Z又は再生に用いられず、最周辺領域を通過した第三光束は、第 3光デイス クの記録及び Z又は再生に用いられない態様が挙げられる。最周辺領域を通過した 第二光束及び第三光束が、それぞれ第 2光ディスク及び第 3光ディスクの情報記録 面上での集光スポットの形成に寄与しないようにすることが好ましい。つまり、対物レ ンズが最周辺領域を有する場合、対物レンズの最周辺領域を通過する第三光束は、 第 3光ディスクの情報記録面上でフレアを形成することが好ましい。言い換えると、対 物レンズの最周辺領域を通過した第三光束は、第 3光ディスクの情報記録面上でス ポット周辺部を形成することが好ましい。また、対物レンズが最周辺領域を有する場 合、対物レンズの最周辺領域を通過する第二光束は、第 2光ディスクの情報記録面 上でフレアを形成することが好ましい。言い換えると、対物レンズの最周辺領域を通 過した第二光束は、第 2光ディスクの情報記録面上でスポット周辺部を形成すること が好ましい。
[0058] 最周辺領域が第三光路差付与構造を有する場合、第三光路差付与構造が、第三 光路差付与構造を通過した第一光束に対して、第一光源の波長の僅かな変動によ つて発生するスフヱ口クロマテイズム(色球面収差)を補正するようにしてもょ 、。波長 の僅かな変動とは、 ± 10nm以下の変動を指す。例えば、第一光束が波長 λ 1より士 5nm変化した際に、第三光路差付与構造によって、最周辺領域を通過した第一光 束の球面収差の変動を補償し、第 1光ディスクの情報記録面上での波面収差の変化 量が 0. ΟΙΟ λ lrms以上、 0. 095 λ lrms以下となるようにすることが好ましい。
[0059] なお、第一光路差付与構造は、第一基礎構造、第二基礎構造及び第三基礎構造 を重畳してなる光路差付与構造であるが、第一基礎構造は、第一基礎構造を通過し た第一光束の 0次 (透過光)の回折光量を他のいかなる次数の回折光量よりも大きく し、第二光束の 0次 (透過光)の回折光量を他のいかなる次数の回折光量よりも大きく し、第三光束の ± 1次の回折光量を他のいかなる次数の回折光量よりも大きくする光 路差付与構造であることが好ましい。また、第二基礎構造は、第二基礎構造を通過し た第一光束の 2次の回折光量を他のいかなる次数の回折光量よりも大きくし、第二光 束の 1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第三光束の 1次 の回折光量を他のいかなる次数の回折光量よりも大きくする光路差付与構造である ことが好ましい。更に、第三基礎構造は、第三基礎構造を通過した第一光束の 10次 の回折光量を他のいかなる次数の回折光量よりも大きくし、第二光束の 6次の回折光 量を他のいかなる次数の回折光量よりも大きくし、第三光束の 5次の回折光量を他の いかなる次数の回折光量よりも大きくする光路差付与構造であることが好ましい。即 ち、 r=0、 s = 0、 t= ± l、 u= 2、 v= l、 w= l、 x= 10、 y= 6、 z = 5であること力 S好ま しい。尚、第三基礎構造は、第三基礎構造を通過した第一光束の 2次の回折光量を 他のいかなる次数の回折光量よりも大きくし、第二光束の 1次の回折光量を他のいか なる次数の回折光量よりも大きくし、第三光束の 1次の回折光量を他の 、かなる次数 の回折光量よりも大きくする光路差付与構造としてもよい。この場合、 x= 2、 y= l、 z = 1となる。この例において、第一基礎構造及び第二基礎構造は互換用構造であり、 第三基礎構造は温度変化補償構造である。
尚、第一基礎構造は、図 2 (e)に示すようなバイナリ状の構造であって、第二基礎構 造は、図 2 (a)又は (b)に示すような鋸歯状の構造であって、第三基礎構造は、図 2 ( c)に示すような階段状構造であることが好ましい。
また、第二光路差付与構造は、第二基礎構造と第四基礎構造を重ね合わせた構造 とすることが好ましい。第四基礎構造は、第四基礎構造を通過する第一光束の d次の 回折光量を他のいかなる次数の回折光量よりも大きくし、第二光束の e次の回折光量 を他のいかなる次数の回折光量よりも大きくし、第三光束の f次の回折光量を他のい 力なる次数の回折光量よりも大きくする光路差付与構造である。ここで、 u = 2、 v= l 、 w= l、であることが好ましい。また、 d= 5、 e = 3、 £= 3及び2でぁるカ 又は、 d= 2 、 e= l、 f= lであることが好ましい。第四基礎構造は、図 2 (c)に示すような階段状構 造であることが好ましい。第二基礎構造は互換構造であり、第四基礎構造は温度変 化補償構造である。
さら〖こ、対物レンズがプラスチックレンズである場合、第三光路差付与構造を有する 最周辺領域を有することが好ましい。この場合、第三光路差付与構造は、単一の第 四基礎構造又は第五基礎構造のみ力もなる光路差付与構造であることが好ましい。 第五基礎構造は、第五基礎構造を通過する第一光束の a次の回折光量を他のいか なる次数の回折光量よりも大きくし、第二光束の b次の回折光量を他のいかなる次数 の回折光量よりも大きくし、第三光束の c次の回折光量を他の!、かなる次数の回折光 量よりも大きくする光路差付与構造である。 a、 b、 cはそれぞれ 0以外の整数であって 、 aの値は特に限定されるものではないが、 10、 5、 4、 2などを好ましく適用できる。第 四基礎構造及び第五基礎構造は、図 2 (c)に示すような階段状構造であることが好ま しい。第四基礎構造及び第五基礎構造は、温度変化補償構造である。
また、対物レンズ全体において、即ち、第一光路差付与構造、第二光路差付与構造 及び第三光路差付与構造を全て合わせて考えた場合、温度変化補償構造である基 礎構造は全体として、光軸を含む断面形状が、光軸力 所定の高さまでは、光軸か ら離れるに従って光路長が長くなり、光軸から所定の高さ以降は、光軸から離れるに 従って光路長が短くなる階段構造であることが好ましい。別の表現としては、光軸から の高さが大きくなるにつれて、光軸方向に深くなつていき、任意の高さを超えたところ で、光軸方向に浅くなつていく構造であることが好ましいとも言える。例えば、上述の 例においては、第一光路差付与構造における第三基礎構造、第二光路差付与構造 における第四基礎構造及び第三光路差付与構造における第四基礎構造又は第五 基礎構造をあわせて一つの構造として捉えた場合に、光軸力もの高さが大きくなるに つれて、光軸方向に深くなつていき、任意の高さを超えたところで、光軸方向に浅く なって 、く構造となって 、ることが好まし!/、。
以上の様に、対物レンズがプラスチックレンズである場合、中央領域は温度変化補償 構造と二種類の互換用構造とを重ね合わせた構造であって、周辺領域は温度変化 補償構造と一種類の互換用構造を重ね合わせた構造であって、最周辺領域は温度 変化補償構造のみ力もなる態様が好ましい一態様として挙げられる。
第 1光ディスクに対して情報を再生及び Z又は記録するために必要な対物レンズ の像側開口数を NA1とし、第 2光ディスクに対して情報を再生及び Z又は記録する ために必要な対物レンズの像側開口数を NA2 (NA1≥NA2)とし、第 3光ディスクに 対して情報を再生及び Z又は記録するために必要な対物レンズの像側開口数を N A3 (NA2 > NA3)とする。
[0062] 対物レンズの中央領域と周辺領域の境界は、 0. 9 ·ΝΑ3以上、 1. 2·ΝΑ3以下(よ り好ましくは、 0. 95 ·ΝΑ3以上、 1. 15 ·ΝΑ3以下)の範囲に相当する部分に形成さ れていることが好ましい。より好ましくは、対物レンズの中央領域と周辺領域の境界が 、 ΝΑ3に相当する部分に形成されていることである。また、対物レンズの周辺領域と 最周辺領域の境界は、 0. 9 ·ΝΑ2以上、 1. 2·ΝΑ2以下(より好ましくは、 0. 95 -Ν Α2以上、 1. 15 ·ΝΑ2以下)の範囲に相当する部分に形成されていることが好ましい 。より好ましくは、対物レンズの周辺領域と最周辺領域の境界が、 ΝΑ2に相当する部 分に形成されていることである。対物レンズの最外周の外側の境界は、 0. 9 ·ΝΑ1以 上、 1. 2NA1以下(より好ましくは、 0. 95 ·ΝΑ1以上、 1. 15 ·ΝΑ1以下)の範囲に 相当する部分に形成されていることが好ましい。より好ましくは、対物レンズの最外周 の外側の境界が、 NA1に相当する部分に形成されて ヽることである。
[0063] 対物レンズを通過した第三光束を第 3光ディスクの情報記録面上に集光する場合 に、球面収差が少なくとも 1箇所の不連続部を有することが好ましい。その場合、不連 続咅 ま、 0. 9 ·ΝΑ3以上、 1. 2·ΝΑ3以下(より好ましく ίま、 0. 95 ·ΝΑ3以上、 1. 15 •ΝΑ3以下)の範囲に存在することが好ましい。また、対物レンズを通過した第二光 束を第 2光ディスクの情報記録面上に集光する場合にも、球面収差が少なくとも一箇 所の不連続部を有することが好ましい。その場合、不連続部は、 0. 9 ·ΝΑ2以上、 1 . 2·ΝΑ2以下(より好ましくは、 0. 95 ·ΝΑ2以上、 1. 1 ·ΝΑ2以下)の範囲に存在す ることが好ましい。
[0064] また、球面収差が連続して!/、て、不連続部を有さな!/、場合であって、対物レンズを 通過した第三光束を第 3光ディスクの情報記録面上に集光する場合に、 ΝΑ2では、 縦球面収差の絶対値が 0. 03 m以上であって、 NA3では縦球面収差の絶対値が 0. 02 m以下であることが好ましい。より好ましくは、 NA2では、縦球面収差の絶対 値が 0. 08 μ m以上であって、 NA3では縦球面収差の絶対値が 0. 01 μ m以下であ る。また、対物レンズを通過した第二光束を第 2光ディスクの情報記録面上に集光す る場合に、 NA1では、縦球面収差の絶対値が 0. 03 μ m以上であって、 NA2では縦 球面収差の絶対値が 0. 005 μ m以下であることが好ましい。
[0065] また、回折効率は回折構造の輪帯深さに依存するので、光ピックアップ装置の用途 に応じて、中央領域の各波長に対する回折効率を適宜設定可能である。例えば、第 1光ディスクに対して記録及び再生を行い、第二、第 3光ディスクに対して再生のみ 行う光ピックアップ装置の場合には、中央領域及び Z又は周辺領域の回折効率は第 一光束重視とするのが好ましい。一方、第 1光ディスクに対して再生のみを行い、第 二、第 3光ディスクに対して記録及び再生を行う光ピックアップ装置の場合には、中 央領域の回折効率は、第二、第三光束重視とし、周辺領域の回折効率は第二光束 重視とするのが好ましい。
[0066] 何れの場合でも、下記条件式を満たすようにすることで、各領域の面積加重平均に より計算される第一光束の回折効率を高く確保することが可能となる。
[0067] 7? 11≤ 7? 21
但し、 r? 11は中央領域における第一光束の回折効率を表し、 r? 21は周辺領域にお ける第一光束の回折効率を表す。なお、中央領域の回折効率を第二、第三波長の 光束重視とした場合には、中央領域の第一光束の回折効率は低くなるが、第 1光デ イスクの開口数が第 3光ディスクの開口数に比べて大きい場合は、第一光束の有効 径全体で考えると中央領域の回折効率低下はそれほど大きな影響を与えない。
[0068] なお、本明細書における回折効率は、以下のように定義することができる。
(1)同一の焦点距離、レンズ厚さ、開口数を有し、同一の材料で形成され、第一及び 第二光路差付与構造が形成されない対物レンズの透過率を、中央領域、周辺領域 に分けて測定する。この際、中央領域の透過率は、周辺領域に入射する光束を遮断 して測定し、周辺領域の透過率は中央領域に入射する光束を遮断して測定する。
(2)第一及び第二光路差付与構造を有する対物レンズの透過率を、中央領域と周 辺領域に分けて測定する。
(3)上記(2)の結果を(1)の結果で割った値を各領域の回折効率とする。
[0069] また、第一光束乃至第三光束の何れか二つの光束の光利用効率が 80%以上であ つて、残りの一つの光束の光利用効率を 30%以上、 80%以下にするようにしてもよ い。残りの一つの光束の光利用効率を 40%以上、 70%以下にするようにしてもよい 。この場合、光利用効率を 30%以上、 80%以下 (または 40%以上、 70%以下)とす る光束は、第三光束であることが好ましい。
[0070] なお、ここで 、う光利用効率とは、第一光路差付与構造及び第二光路差付与構造 が形成された対物レンズ (第三光路差付与構造が形成されて ヽてもよ ヽ)により光デ イスクの情報記録面上に形成された集光スポットのエアリーディスク内の光量を Aとし 、同一の材料から形成され、且つ、同一の焦点距離、軸上厚さ、開口数、波面収差を 有し、第一光路差付与構造、第二光路差付与構造及び第三光路差付与構造が形 成されない対物レンズにより、光情報記録媒体の情報記録面上に形成された集光ス ポットのエアリーディスク内の光量を Bとしたとき、 A/Bにより算出するものとする。な お、ここでいうエアリーディスクとは、集光スポットの光軸を中心とする半径 r'の円をい う。 r' =0. 61 · λ ΖΝΑで表される。
[0071] また、第一光路差付与構造を通過した第三光束において、最大の光量となる回折 次数の回折光の光量と、次に大きな光量となる回折次数の回折光の光量の差、即ち 、第一べストフォーカスを形成する回折光の光量と、第二べストフォーカスを形成する 回折光の光量の差が、 0%以上、 20%以下である場合、特に第 3光ディスクにおける トラッキング特性を良好に保つことが困難であるが、本発明は、そのような状況におい ても、トラッキング特性を良好にすることを可能とする。
[0072] 第一光束、第二光束及び第三光束は、平行光として対物レンズに入射してもよ 、し 、発散光若しくは収束光として対物レンズに入射してもよい。好ましくは、第一光束及 び第二光束の、対物レンズへの入射光束の倍率 ml、 m2が、下記の条件式を満た すことである。
-0. 02<ml<0. 02
-0. 02<m2<0. 02
また、第三光束を平行光又は略平行光として対物レンズに入射させる場合、第三 光束の対物レンズへの入射光束の倍率 m3が、下記の条件式を満たすことが好まし い。第三光束が平行光である場合、トラッキングにおいて問題が発生しやすくなるが 、本発明は第三光束が平行光であっても、良好なトラッキング特性を得ることを可能と し、 3つの異なる光ディスクに対して記録及び Z又は再生を適切に行う事を可能とす る。
[0073] -0. 02<m3< 0. 02
一方で、第三光束を発散光として対物レンズに入射させる場合、第三光束の対物 レンズへの入射光束の倍率 m3が、下記の条件式を満たすことが好ま 、。
[0074] -0. 10<m3< 0. 00
各光源力 出射される光束の波長 (特に第一光源力 出射される第一光束の波長 )が士 5nm変化した際に、各光ディスク (特に第 1光ディスク)の情報記録面上での波 面収差の変化量が 0. ΟΙΟ λ lrms以上、 0. 095 λ lrms以下となることが好ましい。 また、環境温度を設計基準温度より ± 30°C変化させた際に、第一光束の球面収差 を補正し、第 1光ディスクの情報記録面上での波面収差の変化量が 0. OlO l lrms 以上、 0. 095 λ lrms以下となることが好ましい。
[0075] また、第 3光ディスクを用いる際の対物レンズのワーキングディスタンス (WD)は、 0 . 20mm以上、 1. 5mm以下であることが好ましい。好ましくは、 0. 3mm以上、 1. 00 mm以下である。次に、第 2光ディスクを用いる際の対物レンズの WDは、 0. 4mm以 上、 0. 7mm以下であることが好ましい。さらに、第 1光ディスクを用いる際の対物レン ズの WDは、 0. 4mm以上、 0. 9mm以下(tl <t2である場合は、 0. 6mm以上、 0. 9mm以下が好まし 、)であることが好ま U、。
[0076] 対物レンズの入射瞳径は、第 1光ディスクを用いる際に、 Φ 2. 8mm以上、 φ 4. 5 mm以下であることが好まし 、。
[0077] 本発明に係る光情報記録再生装置は、上述の光ピックアップ装置を有する光ディ スクドライブ装置を有する。
[0078] ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明す ると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録 再生装置本体力 光ディスクを搭載した状態で保持可能なトレイのみが外部に取り 出される方式と、光ピックアップ装置等が収納されて 、る光ディスクドライブ装置本体 毎、外部に取り出される方式とがある。 [0079] 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備さ れて 、るがこれに限られるものではな 、。ハウジング等に収納された光ピックアップ装 置、光ピックアップ装置をノヽウジングごと光ディスクの内周あるいは外周に向けて移動 させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジン グを光ディスクの内周ある ヽは外周に向けてガイドするガイドレールなどを有した光ピ ックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等で ある。
[0080] 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可 能なトレイおよびトレィを摺動させるためのローデイング機構等が設けられ、後者の方 式にはトレイおよびローデイング機構がなく、各構成部材が外部に引き出し可能なシ ヤーシに相当するドロワ一に設けられていることが好ましい。
[0081] 以下、本発明の第一基礎構造、第二基礎構造及び第三基礎構造を重畳してなる 光路差付与構造を有する光学素子が、プラスチック製の単玉の対物レンズである場 合の、実施の形態を図面を参照して説明する。図 3は、異なる光ディスクである BDと DVDと CDに対して適切に情報の記録及び Z又は再生を行うことができる本実施の 形態の光ピックアップ装置 PU1の構成を概略的に示す図である。力かる光ピックアツ プ装置 PU1は、光情報記録再生装置に搭載できる。ここでは、第 1光ディスクを BDと し、第 2光ディスクを DVDとし、第 3光ディスクを CDとする。なお、本発明は、本実施 形態に限られるものではな 、。
[0082] 光ピックアップ装置 PU1は、対物レンズ OBJ、絞り ST、コリメートレンズ CL、偏光ダ ィクロイツクプリズム PPS、BDに対して情報の記録 Z再生を行う場合に発光され 405 nmのレーザ光束 (第一光束)を射出する第一半導体レーザ LD1 (第一光源)と、 BD の情報記録面 RL1からの反射光束を受光する第一の受光素子 PD1と、レーザモジ ユール LM等を有する。
[0083] また、レーザモジュール LMは、 DVDに対して情報の記録 Z再生を行う場合に発 光され 658nmのレーザ光束 (第二光束)を射出する第二半導体レーザ EP1 (第二光 源)と、 CDに対して情報の記録 Z再生を行う場合に発光され 785nmのレーザ光束( 第三光束)を射出する第三半導体レーザ EP2 (第三光源)と、 DVDの情報記録面 R L2からの反射光束を受光する第二の受光素子 DS 1と、 CDの情報記録面 RL3から の反射光束を受光する第三の受光素子 DS2と、プリズム PSと、を有している。
[0084] 図 1及び図 4に示されるように、本実施の形態の対物レンズ OBJにおいて、光源側 の非球面光学面に光軸を含む中央領域 CNと、その周囲に配置された周辺領域 M Dと、更にその周囲に配置された最周辺領域 OTとが、光軸を中心とする同心円状に 形成されている。なお、図 1及び図 4の中央領域、周辺領域、最周辺領域の面積など の比率は正確には表されていない。中央領域 CNの全面には、第一光路差付与構 造が設けられており、周辺領域 MDの全面には第二光路差付与構造が設けられて いる。また、最周辺領域 OTには第三光路差付与構造が設けられている。
[0085] 青紫色半導体レーザ LD1から射出された第一光束( λ l =405nm)の発散光束は 、偏光ダイクロイツクプリズム PPSを透過し、コリメートレンズ CLにより平行光束とされ た後、図示しない 1Z4波長板により直線偏光から円偏光に変換され、絞り STにより その光束径が規制され、対物レンズ OBJによって厚さ 0. 0875mmの保護基板 PL1 を介して、 BDの情報記録面 RL1上に形成されるスポットとなる。
[0086] 情報記録面 RL1上で情報ピットにより変調された反射光束は、再び対物レンズ OBJ 、絞り STを透過した後、図示しない 1Z4波長板により円偏光力 直線偏光に変換さ れ、コリメートレンズ CLにより収斂光束とされ、偏光ダイクロイツクプリズム PPSを透過 した後、第一の受光素子 PD1の受光面上に収束する。そして、第一の受光素子 PD 1の出力信号を用いて、 2軸ァクチユエータ ACにより対物レンズ OBJをフォーカシン グゃトラッキングさせることで、 BDに記録された情報を読み取ることができる。
[0087] 赤色半導体レーザ EP1から射出された第二光束(λ 2 = 658nm)の発散光束は、 プリズム PSで反射された後、偏光ダイクロイツクプリズム PPSにより反射され、コリメ一 トレンズ CLにより平行光束とされた後、図示しない 1Z4波長板により直線偏光から 円偏光に変換され、対物レンズ OJTに入射する。ここで、対物レンズ OBJの中央領域 と周辺領域により集光された (最周辺領域を通過した光束はフレア化され、スポット周 辺部を形成する)光束は、厚さ 0. 6mmの保護基板 PL2を介して、 DVDの情報記録 面 RL2に形成されるスポットとなり、スポット中心部を形成する。
[0088] 情報記録面 RL2上で情報ピットにより変調された反射光束は、再び対物レンズ OBJ 、絞り STを透過した後、図示しない 1Z4波長板により円偏光力 直線偏光に変換さ れ、コリメートレンズ CLにより収斂光束とされ、偏光ダイクロイツクプリズム PPSにより 反射された後、その後、プリズム内で 2回反射された後、第二の受光素子 DS1に収 束する。そして、第二の受光素子 DS1の出力信号を用いて DVDに記録された情報 を読み取ることができる。
[0089] 赤外半導体レーザ EP2から射出された第三光束(λ 3 = 785nm)の発散光束は、 プリズム PSで反射された後、偏光ダイクロイツクプリズム PPSにより反射され、コリメ一 トレンズ CLにより平行光束とされた後、図示しない 1Z4波長板により直線偏光から 円偏光に変換され、対物レンズ OJTに入射する。ここで、対物レンズ OBJの中央領域 により集光された (周辺領域及び最周辺領域を通過した光束はフレア化され、スポッ ト周辺部を形成する)光束は、厚さ 1. 2mmの保護基板 PL3を介して、 CDの情報記 録面 RL3上に形成されるスポットとなる。
[0090] 情報記録面 RL3上で情報ピットにより変調された反射光束は、再び対物レンズ OBJ 、絞り STを透過した後、図示しない 1Z4波長板により円偏光力 直線偏光に変換さ れ、コリメートレンズ CLにより収斂光束とされ、偏光ダイクロイツクプリズム PPSにより 反射された後、その後、プリズム内で 2回反射された後、第三の受光素子 DS2に収 束する。そして、第三の受光素子 DS2の出力信号を用いて CDに記録された情報を 読み取ることができる。
[0091] 青紫色半導体レーザ LD1から出射された第一光束が平行光束で対物レンズ OBJ に入射したときに、中央領域の第一光路差付与構造、周辺領域の第二光路差付与 構造及び最周辺領域の第三光路差付与構造は、第一光束の球面収差を適正に補 正し、保護基板の厚さ tlの BDに対して適切に情報の記録及び Z又は再生を行うこ とができる。又、赤色半導体レーザ EP1から出射された第二光束が平行光束で対物 レンズ OBJに入射したときに、中央領域の第一光路差付与構造、周辺領域の第二光 路差付与構造は、 BDと DVDの保護基板の厚さの差異及び第一光束と第二光束の 波長の差異に起因して発生する第二光束の球面収差を適正に補正し、最周辺領域 の第三光路差付与構造は第二光束を DVDの情報記録面上でフレアとするため、保 護基板の厚さ t2の DVDに対して適切に情報の記録及び Z又は再生を行うことがで きる。又、赤外半導体レーザ EP2から出射された第三光束が平行光束で対物レンズ OBJに入射したときに、中央領域の第一光路差付与構造は、 BDと CDの保護基板の 厚さの差異及び第一光束と第三光束の波長の差異に起因して発生する第三光束の 球面収差を適正に補正し、周辺領域の第二光路差付与構造及び最周辺領域の第 三光路差付与構造は第三光束を CDの情報記録面上でフレアとするため、保護基板 の厚さ t3の CDに対して適切に情報の記録及び Z又は再生を行うことができる。また 、中央領域の第一光路差付与構造は、記録再生に用いられる第三光束の必要光の 集光スポットと、第三光束の不要光の集光スポットとを適正な距離だけ離し、それによ り、 CDを用いた際のトラッキング特性も良好にする。力!]えて、周辺領域の第二光路差 付与構造は、第一光束及び第二光束に対して、レーザの製造誤差等の理由によつ て波長が基準波長力 ずれた際に、スフエロクロマテイズム (色球面収差)を補正する ことができる。
実施例
[0092] 対物レンズは、単玉のプラスチックレンズである。対物レンズの光学面の中央領域 C Nの全面には、第一光路差付与構造が形成されている。光学面の周辺領域 MDの 全面には、第二光路差付与構造が形成されている。光学面の最周辺領域 OTの全 面には、第三光路差付与構造が設けられている。対物レンズの断面形状は、図 5に 示されるような形状となって 、る。
[0093] 第一光路差付与構造は、第一基礎構造、第二基礎構造と第三基礎構造とが重畳 された構造となっており、 2種類の鋸歯状の回折構造とバイナリ構造とが重畳された 形状となっている。バイナリ構造である第一基礎構造は、所謂、波長選択回折構造で あり、第 1光束の 0次の回折光 (透過光)の光量を他の 、かなる次数の回折光の光量 よりも大きくし、第 2光束の 0次の回折光 (透過光)の光量を他のいかなる次数の回折 光の光量よりも大きくし、第 3光束の士 1次の回折光の光量を他の!/、かなる次数 (0次 即ち透過光も含む)の回折光量よりも大きくするように設計されている。鋸歯状の回折 構造である第二基礎構造は、第 1光束の 2次の回折光の光量を他のいかなる次数 (0 次即ち透過光も含む)の回折光の光量よりも大きくし、第 2光束の 1次の回折光の光 量を他のいかなる次数 (0次即ち透過光も含む)の回折光の光量よりも大きくし、第 3 光束の 1次の回折光の光量を他のいかなる次数 (0次即ち透過光も含む)の回折光 量よりも大きくするように設計されている。鋸歯状の回折構造である第三基礎構造は
、第 1光束の 10次の回折光の光量を他のいかなる次数 (0次即ち透過光も含む)の 回折光の光量よりも大きくし、第 2光束の 6次の回折光の光量を他の 、かなる次数 (0 次即ち透過光も含む)の回折光の光量よりも大きくし、第 3光束の 5次の回折光の光 量を他の ヽかなる次数 (0次即ち透過光も含む)の回折光量よりも大きくするように設 計されている。
なお、上述の第一基礎構造において、ノイナリ形状の幅は光軸力も離れていくに従 つて徐々に小さくなつていく構造となっている。第二基礎構造においては、中央領域 の光軸側の領域にぉ 、ては、段差が光軸側を向 、て 、るブレーズド型形状であり、 中央領域の周辺領域側の領域にぉ 、ては、段差が光軸側とは逆を向 、て 、るブレ 一ズド型形状であり、その間には、鋸歯状の構造の段差の向きを切り替えるために必 要な遷移領域が設けられている。ブレーズド型形状の三角形の大きさは、光軸から 離れるにつれて徐々に大きくなつたり小さくなつたりする。なお、第三構造の大きさは まちまちである。
第二光路差付与構造は、第二基礎構造と第四基礎構造を重畳した構造となっており 、鋸歯状の回折構造とより荒い鋸歯状の回折構造とが重畳された形状となっている。 鋸歯状の回折構造である第二基礎構造は、第 1光束の 2次の回折光の光量を他の いかなる次数 (0次即ち透過光も含む)の回折光の光量よりも大きくし、第 2光束の 1 次の回折光の光量を他の 、かなる次数 (0次即ち透過光も含む)の回折光の光量より も大きくし、第 3光束の 1次の回折光の光量を他のいかなる次数 (0次即ち透過光も含 む)の回折光量よりも大きくするように設計されている。また、荒い鋸歯状の回折構造 である第四基礎構造は、第 1光束の 5次の回折光の光量を他のいかなる次数の回折 光の光量よりも大きくし、第 2光束の 3次の回折光の光量を他のいかなる次数の回折 光の光量よりも大きくし、第 3光束の 3次及び 2次の回折光の光量を他の 、かなる次 数の回折光量よりも大きくするように設計されて 、る。
第三光路差付与構造は、第四基礎構造のみ力もなる構造となっている。尚、本実施 の態様において、第一基礎構造及び第二基礎構造は互換用構造であり、第三基礎 構造及び第四基礎構造は温度変化補償構造である。また、第一光路差付与構造の 第三基礎構造、第二光路差付与構造の第四基礎構造及び第三光路差付与構造の 第四基礎構造を、合わせて一つの構造として捉えた場合、光軸力 の高さが大きくな るにつれて、光軸方向に深くなつていき、任意の高さを超えたところで、光軸方向に 浅くなつて!/、く構造となって!/、る。
表 1にレンズデータを示す。なお、これ以降において、 10のべき乗数(例えば、 2. 5
X 10_3)を、 E (例えば、 2. 5E— 3)を用いて表すものとする。
[0094] 対物レンズの光学面は、それぞれ数 1式に、表に示す係数を代入した数式で規定 される、光軸の周りに軸対称な非球面に形成されて 、る。
[0095] [数 1]
Figure imgf000043_0001
[0096] ここで、 X (h)は光軸方向の軸 (光の進行方向を正とする)、 κは円錐係数、 A2iは 非球面係数、 hは光軸力 の高さである。
[0097] また、回折構造により各波長の光束に対して与えられる光路長は、数 2式の光路差 関数に、表に示す係数を代入した数式で規定される。
[0098] [数 2]
Figure imgf000043_0002
[0099] 尚、 λは入射光束の波長、 λ Βは製造波長(ブレーズ化波長)、 dorは回折次数、 C 2iは光路差関数の係数である。
以下の表 1〜表 4に、レンズデータを示す。また、図 6において、本実施例の縦球面 収差図を示す。図 6 (a)は BD、図 6 (b)は DVD、図 6 (c)は CDの縦球面収差図であ る。縦球面収差図の縦軸の 1. 0は、図 6 (a)に示す BDにおいては、 NA0. 85または Φ 3. 74mmを表し、図 6 (b)に示す DVDにおいては、 NAO. 6より僅力に大きな値、 または、 Φ 2. 7mmより僅かに大きな値を表し、図 6 (c)に示す CDにおいては、 NAO . 45より僅かに大きな値、または、 Φ 2. 37mmより僅かに大きな値を表す。なお、実 施 f列にお ヽて、 L = 0. 60mmである。した力 ^つて、 L/f=0. 60/2. 53 = 0. 237で ある。また、本実施 f列【こお ヽて、 A SA=0. 056であるので、 A SA/fl = 0. 056/ 2. 2 = 0. 0254である。
[表 1] 単玉回折レンズ実施例 レンズデ一タ
対物レンズの焦点距離 f i = 2.20mm f 2 = 2.28mm f 3 = 2.53
開口数 腹: 0.85 : 0.60 NA3 0.45 倍率 ml 0 m2: 0 ra3 0
Figure imgf000044_0001
[表 2] 面 No. 2 2 - 1 2-3 領域 h≤0.3982 0.3982≤h≤0.6392 0.6392≤h≤0.9173 0.9173≤h≤1.2020 κ 一 0.545763E+00 -0.544149E+00 -0.543545E+00 -0.540372E + 00
A 0 0.000000E+00 0.723148E-02 0.144639E-01 0.217471E-01
A4 0.173456E-01 0.173456E— 01 0.173456E-01 0.173456E-01 非 A 6 0.161268E-02 0.161268E-02 0.161268E— 02 0.161268E-02 球 A8 0.227272E— 02 0.227272E-02 0.227272E-02 0.227272E-02 面 A 10 -0.176212E-02 -0.176212E-02 -0.176212E-02 -0.176212E-02 係 A12 0.832672E— 03 0.832672E-03 0.832672E-03 0.832672E-03 数 A 14 0.306247 E- 03 0.306247E— 03 0.306247E-03 0.306247 E- 03
A 16 一 0.312510E— 03 — 0.312510E— 03 — 0.312510E— 03 — 0.312510E— 03
A18 0.779196E-04 0.779196E-04 0.779196E-04 0.779196E-04
A 20 一 0.382183E— 05 -0.382183E-05 -0.382183E-05 — 0.382183E— 05 回折
2/1/1 2/1/1 2/1/1 2/1/1 次数
光 製造化
395 395nm 395nm 395nm 路 波長
B 2 -7.9481E-03 一 7.9481E— 03 -7.9481E-03 — 7.9481E— 03 関 B 4 3.1618E— 03 3.1618E— 03 3.1618E-03 3.1618E-03 数 B 6 2.6104E-04 2.6104E— 04 2.6104E-04 2.6104E-04
B 8 -1.5449E-04 -1.5449E-04 -1.5449E-04 -1.5449E-04 0 1.3011E— 04 1.3011E— 04 1.3011E t
B1 -04 1.3011E-04 回折
0/0/1 0/0/1 0/0/1 0/0/1 次数
光 製造化
785nm 785nm 785nm 785nm 路 波長
B 2 3.2600E-02 3.2600E-02 3.2600E— 02 3.2600E— 02 関 B 4 — 3.0280E— 03 一 3.0280E— 03 — 3.0280E— 03 — 3.0280E— 03 数 B 6 2.4526E-03 2.4526E-03 2.4526E-03 2.4526E-03
B 8 -1.0989E-03 -1.0989E-03 — 1.0989E— 03 -1.0989E-03
B10 2.4093E-04 1 2.4093E-04 2.4093E-04 2.4093E-04
面 No. 2-4 2- 6 2 -7 領域 1.2020≤h≤1.2390 1.2390≤h≤1.2677 1.2677≤h≤1.3121 1.3121≤h≤1.3466
— 0.523735E+00 -0.534676E+00 -0.540742E+00 -0.536630E+00
A 0 0.193505E-01 0.150921E-01 0.113044E— 01 0.782945 E- 02
A4 0.173456E-01 0.173485E-01 0.175724E-01 0.172773E-01 非 A 6 0.161268E-02 0.161268E-02 0.161268E-02 0.161268E-02 球 A 8 0.227272E-02 0.227272E-02 0.227272E-02 0.227272E-02 面 A 10 -0.176212E-02 一 0.176212E— 02 一 0.176212E— 02 -0.176212E-02 係 A 12 0.832672E-03 0.832672E— 03 0.832672E-03 0.832672E-03 数 A 14 0.306247 E- 03 0.306247 E- 03 0.306247E-03 0.306247E-03
A 16 一 0.312510E— 03 — 0.312510E— 03 -0.312510E-03 -0.312510E-03
A 18 0.779196E-04 0.779196E-04 0.779196E-04 0.779196E-04
A 20 -0.382183E-05 — 0.382183E— 05 -0.382183E-05 一 0.382183E— 05 回折
2/1/1 2/1/1 2/1/1 2/1/1 次数
光 製造化
395nm 395nm 395nm 395nm 路 波長
B 2 — 7.9481E— 03 -7.9481E-03 — 7.9481E— 03 -7.9481E-03 関 B 4 3.1618E-03 3.1618E-03 3.1618E-03 3.1618E-03 数 B 6 2.6104E-04 2.6104E-04 2.6104E— 04 2.6104E-04
B 8 — 1.5449E— 04 -1.5449E-04 -1.5449E-04 -1.5449E-04
B10 1.3011E— 04 1.3011E— 04 1.3011E— 04 1.3011E— 04 回折
次数
光 製造化
路 波長
B 2
関 B 4
数 B 6
B 8
B10
面 No- 2-8 2-9 3 領域 1.3466≤h≤1.3751 1.3751≤h
κ 一 0.545757 E+ 00 -0.616167E+00 -5.4022E+01
A 0 0.150988E-04 0.341800E— 01 0.0000E + 00
A 4 0.173456E-01 0.132229E-01 1.0541E-01 非 A 6 0.161240E-02 0.544502E— 04 -1.0213E-01 球 A8 0.227272E-02 0.262231E-02 7.4675E-02 面 A 10 -0.176212E-02 -0.156680E-02 -4.3240E-02 係 A 12 0.832672E-03 0.226928 E- 03 1.4629E-02 数 A 14 0.306247E-03 0.239248E-03 — 2.0762E— 03
A 16 一 0.312510E— 03 一 0.165881 E— 03 O.OOOOE+00
A 18 0.779196E-04 0.451501E-04 0.0000E + 00
A 20 — 0.382183E— 05 -0.472873E-05 0.0000E+00 回折
2/1/1 5/3/2
次数
光 製造化
395nm 405nm
路 波長
B 2 — 7.9481E— 03 — 1.0012E— 03
関 B4 3.1618E— 03 — 1.0849E— 04
数 B 6 2.6104E— 04 1.2384E-05
B 8 -1.5449E-04 -5.9681E-06
B10 1.3011E— 04 -8.9463E-06
回折
次数
光 製造化
路 波長
B 2
関 B 4
数 B 6
B 8
B10

Claims

請求の範囲
[1] 第一波長 λ 1の第一光束を射出する第一光源と、第二波長 λ 2 ( λ 2 > λ 1)の第二 光束を射出する第二光源と、第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三 光源と、前記第一光束を厚さが tlの保護基板を有する第 1光ディスクの情報記録面 上に集光させ、前記第二光束を厚さが t2 (tl≤t2)の保護基板を有する第 2光デイス クの情報記録面上に集光させ、前記第三光束を厚さが t3 (t2< t3)の保護基板を有 する第 3光ディスクの情報記録面上に集光させるための集光光学系と、を有し、前記 第一光束を前記第 1光ディスクの情報記録面上に集光させ、前記第二光束を前記第 2光ディスクの情報記録面上に集光させ、前記第三光束を前記第 3光ディスクの情報 記録面上に集光させることによって情報の記録及び Z又は再生を行う光ピックアップ 装置において、
前記集光光学系は、少なくとも一つの光学素子を有し、
前記光学素子は、その光学面に光路差付与構造を有し、
前記光路差付与構造は、少なくとも第一基礎構造、第二基礎構造及び第三基礎構 造を同一面上に重畳させた構造であり、
前記第一基礎構造は、前記第一基礎構造を通過した前記第一光束の r次 (rは整数) の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の s次(sは 整数)の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の t 次 (tは整数)の回折光量を他のいかなる次数の回折光量よりも大きくする光路差付 与構造であり、
前記第二基礎構造は、前記第二基礎構造を通過した前記第一光束の u次 (uは整数 )の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の V次 (V は整数)の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の w次 (wは整数)の回折光量を他のいかなる次数の回折光量よりも大きくする光路差 付与構造であり、
前記第三基礎構造は、前記第三基礎構造を通過した前記第一光束の X次 (Xは整数 )の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の y次 (y は整数)の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の z次 (zは整数)の回折光量を他のいかなる次数の回折光量よりも大きくする光路差付 与構造であることを特徴とする光ピックアップ装置。
[2] 請求の範囲第 1項に記載された光ピックアップ装置であって、前記第一基礎構造と 前記第二基礎構造と前記第三基礎構造を重畳してなる前記光路差付与構造が付与 されて ヽる前記光学素子が、単一の材料から形成されて ヽることを特徴とする光ピッ クアップ装置。
[3] 請求の範囲第 1項又は第 2項に記載された光ピックアップ装置において、前記第一 基礎構造と前記第二基礎構造と前記第三基礎構造を重畳してなる前記光路差付与 構造を有する前記光学素子は、プラスチック力もなる単玉の対物レンズであることを 特徴とする光ピックアップ装置。
[4] 請求の範囲第 3項に記載された光ピックアップ装置において、以下の条件を満たす ことを特徴とする光ピックアップ装置。
0. OK A SA/fl < 0. 05 (1)
但し、 A SAは、使用基準温度 TOにおいて、前記第一光束 (前記第一波長 λ 1は、 前記使用基準温度 TOにおける使用基準波長 λ 10)を、前記第 1光ディスクの情報 記録面上に集光した際の球面収差と、使用基準温度 TOとは異なる使用温度 Τ( I Τ -TO I < 60 [°C])において、前記第一光束 (前記第一波長 λ ΐは、前記使用温度 Τにおける使用波長 λ 11)を、前記第 1光ディスクの情報記録面上に集光した際の 球面収差の差を表し、 fiは、前記第 1光束を用いた際の前記集光光学系に含まれる 対物レンズの焦点距離を表す。
[5] 請求の範囲第 4項に記載された光ピックアップ装置において、前記第三基礎構造を 重畳することにより、 A SAZflの値が、前記条件式(1)を満たすことが可能となるこ とを特徴とする光ピックアップ装置。
[6] 請求の範囲第 1項乃至第 5項のいずれか 1項に記載された光ピックアップ装置にお
V、て、以下の条件式を満たすことを特徴とする光ピックアップ装置。
x= 10
y=o
z = 5 [7] 請求の範囲第 6項に記載された光ピックアップ装置において、以下の条件式を満た すことを特徴とする光ピックアップ装置。
r=0
s = 0
t= ± l
u= 2
v= 1
w= 1
x= 10
y= 6
z = 5
[8] 請求の範囲第 1項乃至第 7項のいずれか 1項に記載された光ピックアップ装置にお いて、前記第二基礎構造は複数の段差を有する構造であり、前記第三基礎構造は 複数の段差を有する構造であり、前記段差間のピッチ幅が前記第二基礎構造よりも 大きぐ前記第二基礎構造と前記第三基礎構造を重畳させる際に、前記第二基礎構 造の少なくとも一つの段差の位置が、前記第三基礎構造の段差の位置と一致しない ように重畳させることを特徴とする光ピックアップ装置。
[9] 請求の範囲第 1項乃至第 8項の 、ずれか 1項に記載された光ピックアップ装置であつ て、前記第一基礎構造、前記第二基礎構造及び前記第三基礎構造の少なくとも一 つ力 ブレーズ型形状であることを特徴とする光ピックアップ装置。
[10] 請求の範囲第 9項に記載された光ピックアップ装置であって、前記第一基礎構造、 前記第二基礎構造及び前記第三基礎構造を重畳してなる前記光路差付与構造が、 前記光学素子のベース面に対して直角でもなく平行でもない、斜めの面を有すること を特徴とする光ピックアップ装置。
[11] 第一波長 λ 1の第一光束を射出する第一光源と、第二波長 λ 2 ( λ 2 > λ 1)の第二 光束を射出する第二光源と、第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三 光源と、前記第一光束を厚さが tlの保護基板を有する第 1光ディスクの情報記録面 上に集光させ、前記第二光束を厚さが t2 (tl≤t2)の保護基板を有する第 2光デイス クの情報記録面上に集光させ、前記第三光束を厚さが t3 (t2< t3)の保護基板を有 する第 3光ディスクの情報記録面上に集光させるための集光光学系と、を有し、前記 第一光束を前記第 1光ディスクの情報記録面上に集光させ、前記第二光束を前記第 2光ディスクの情報記録面上に集光させ、前記第三光束を前記第 3光ディスクの情報 記録面上に集光させることによって情報の記録及び Z又は再生を行う光ピックアップ 装置の前記集光光学系で用いられる光学素子であって、
前記光学素子は、その光学面に光路差付与構造を有し、
前記光路差付与構造は、少なくとも第一基礎構造、第二基礎構造及び第三基礎構 造を同一面上に重畳させた構造であり、
前記第一基礎構造は、前記第一基礎構造を通過した前記第一光束の r次 (rは整数) の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の s次(sは 整数)の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の t 次 (tは整数)の回折光量を他のいかなる次数の回折光量よりも大きくする光路差付 与構造であり、
前記第二基礎構造は、前記第二基礎構造を通過した前記第一光束の u次 (uは整数 )の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の V次 (V は整数)の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の w次 (wは整数)の回折光量を他のいかなる次数の回折光量よりも大きくする光路差 付与構造であり、
前記第三基礎構造は、前記第三基礎構造を通過した前記第一光束の X次 (Xは整数 )の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の y次 (y は整数)の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の z次 (zは整数)の回折光量を他のいかなる次数の回折光量よりも大きくする光路差付 与構造であることを特徴とする光学素子。
[12] 請求の範囲第 11項に記載された光学素子であって、前記第一基礎構造と前記第二 基礎構造と前記第三基礎構造を重畳してなる前記光路差付与構造が付与されてい る前記光学素子が、単一の材料から形成されていることを特徴とする光学素子。
[13] 請求の範囲第 11項又は第 12項に記載された光学素子において、前記第一基礎構 造と前記第二基礎構造と前記第三基礎構造を重畳してなる前記光路差付与構造を 有する前記光学素子は、プラスチック力 なる単玉の対物レンズであることを特徴と する光学素子。
[14] 請求の範囲第 13項に記載された光学素子において、以下の条件を満たすことを特 徴とする光学素子。
0. OK A SA/fl < 0. 05 (1)
但し、 A SAは、使用基準温度 TOにおいて、前記光ピックアップ装置が、前記第一光 束 (前記第一波長 λ 1は、前記使用基準温度 TOにおける使用基準波長 λ 10)を、 前記第 1光ディスクの情報記録面上に集光した際の球面収差と、前記光ピックアップ 装置が、使用基準温度 TOとは異なる使用温度 T( I T-T0 Iく 60[°C])において、 前記第一光束 (前記第一波長 λ 1は、前記使用温度 Τにおける使用波長 λ 11)を、 前記第 1光ディスクの情報記録面上に集光した際の球面収差の差を表し、 flは、前 記第 1光束を用いた際の前記集光光学系に含まれる対物レンズの焦点距離を表す。
[15] 請求の範囲第 14項に記載された光学素子において、前記第三基礎構造を重畳する ことにより、 A SAZflの値が、前記条件式(1)を満たすことが可能となることを特徴と する光学素子。
[16] 請求の範囲第 11項乃至第 15項のいずれか 1項に記載された光学素子において、以 下の条件式を満たすことを特徴とする光学素子。
x= 10
y=o
z = 5
[17] 請求の範囲第 16項に記載された光学素子において、以下の条件式を満たすことを 特徴とする光学素子。
r=0
s = 0
t= ± l
u= 2
v= 1 w= 1
x= 10
y= 6
z = 5
[18] 請求の範囲第 11項乃至第 17項のいずれか 1項に記載された光学素子において、前 記第二基礎構造は複数の段差を有する構造であり、前記第三基礎構造は複数の段 差を有する構造であり、前記段差間のピッチ幅が前記第二基礎構造よりも大きぐ前 記第二基礎構造と前記第三基礎構造を重畳させる際に、前記第二基礎構造の少な くとも一つの段差の位置が、前記第三基礎構造の段差の位置と一致しな!、ように重 畳させることを特徴とする光学素子。
[19] 請求の範囲第 11項乃至第 18項のいずれか 1項に記載された光学素子であって、前 記第一基礎構造、前記第二基礎構造及び前記第三基礎構造の少なくとも一つが、 ブレーズ型形状であることを特徴とする光学素子。
[20] 請求の範囲第 19項に記載された光学素子であって、前記第一基礎構造、前記第二 基礎構造及び前記第三基礎構造を重畳してなる前記光路差付与構造が、前記光学 素子のベース面に対して直角でもなく並行でもない、斜めの面を有することを特徴と する光学素子。
[21] 第一波長 λ 1の第一光束を射出する第一光源と、第二波長 λ 2 ( λ 2 > λ 1)の第二 光束を射出する第二光源と、第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三 光源と、前記第一光束を厚さが tlの保護基板を有する第 1光ディスクの情報記録面 上に集光させ、前記第二光束を厚さが t2 (tl≤t2)の保護基板を有する第 2光デイス クの情報記録面上に集光させ、前記第三光束を厚さが t3 (t2< t3)の保護基板を有 する第 3光ディスクの情報記録面上に集光させるための集光光学系と、を有し、前記 第一光束を前記第 1光ディスクの情報記録面上に集光させ、前記第二光束を前記第 2光ディスクの情報記録面上に集光させ、前記第三光束を前記第 3光ディスクの情報 記録面上に集光させることによって情報の記録及び Z又は再生を行う光ピックアップ 装置を有する光情報記録再生装置において、
前記光ピックアップ装置の前記集光光学系は、少なくとも一つの光学素子を有し、 前記光学素子は、その光学面に光路差付与構造を有し、
前記光路差付与構造は、少なくとも第一基礎構造、第二基礎構造及び第三基礎構 造を同一面上に重畳させた構造であり、
前記第一基礎構造は、前記第一基礎構造を通過した前記第一光束の r次 (rは整 数)の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 3次( sは整数)の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第三光束 の t次 (tは整数)の回折光量を他のいかなる次数の回折光量よりも大きくする光路差 付与構造であり、
前記第二基礎構造は、前記第二基礎構造を通過した前記第一光束の u次 (uは整数 )の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の V次 (V は整数)の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の w次 (wは整数)の回折光量を他のいかなる次数の回折光量よりも大きくする光路差 付与構造であり、
前記第三基礎構造は、前記第三基礎構造を通過した前記第一光束の X次 (Xは整数 )の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の y次 (y は整数)の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の z次 (zは整数)の回折光量を他のいかなる次数の回折光量よりも大きくする光路差付 与構造であることを特徴とする光情報記録再生装置。
第一波長 λ 1の第一光束を射出する第一光源と、第二波長 λ 2 ( λ 2 > λ 1)の第二 光束を射出する第二光源と、第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三 光源と、前記第一光束を厚さが tlの保護基板を有する第 1光ディスクの情報記録面 上に集光させ、前記第二光束を厚さが t2 (tl≤t2)の保護基板を有する第 2光デイス クの情報記録面上に集光させ、前記第三光束を厚さが t3 (t2< t3)の保護基板を有 する第 3光ディスクの情報記録面上に集光させるための集光光学系と、を有し、前記 第一光束を前記第 1光ディスクの情報記録面上に集光させ、前記第二光束を前記第 2光ディスクの情報記録面上に集光させ、前記第三光束を前記第 3光ディスクの情報 記録面上に集光させることによって情報の記録及び Z又は再生を行う光ピックアップ 装置において、 前記集光光学系は、少なくとも一つの光学素子を有し、
前記光学素子は、その光学面に光路差付与構造を有し、
前記光路差付与構造は、少なくとも第一基礎構造、第二基礎構造及び第三基礎構 造を同一面上に重畳させた構造であり、
前記第一基礎構造、前記第二基礎構造及び前記第三基礎構造は、光軸とほぼ同一 の方向の段差を有する構造であり、
前記第一基礎構造、前記第二基礎構造及び前記第三基礎構造の少なくとも一つは 、ブレーズ型の形状を有する構造であり、
前記第一基礎構造、前記第二基礎構造及び前記第三基礎構造を重畳してなる前記 光路差付与構造が、前記光学素子のベース面に対して直角でもなく並行でもない、 斜めの面を有することを特徴とする光ピックアップ装置。
[23] 請求の範囲第 22項に記載された光ピックアップ装置であって、前記第一基礎構造、 前記第二基礎構造及び前記第三基礎構造の少なくとも一つは、階段型の形状を有 する構造であることを特徴とする光ピックアップ装置。
[24] 第一波長 λ 1の第一光束を射出する第一光源と、第二波長 λ 2 ( λ 2> λ 1)の第二 光束を射出する第二光源と、第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三 光源と、前記第一光束を厚さが tlの保護基板を有する第 1光ディスクの情報記録面 上に集光させ、前記第二光束を厚さが t2 (tl≤t2)の保護基板を有する第 2光デイス クの情報記録面上に集光させ、前記第三光束を厚さが t3 (t2<t3)の保護基板を有 する第 3光ディスクの情報記録面上に集光させるための集光光学系と、を有し、前記 第一光束を前記第 1光ディスクの情報記録面上に集光させ、前記第二光束を前記第 2光ディスクの情報記録面上に集光させ、前記第三光束を前記第 3光ディスクの情報 記録面上に集光させることによって情報の記録及び Z又は再生を行う光ピックアップ 装置の前記集光光学系で用いられる光学素子であって、
前記光学素子は、その光学面に光路差付与構造を有し、
前記光路差付与構造は、少なくとも第一基礎構造、第二基礎構造及び第三基礎構 造を同一面上に重畳させた構造であり、
前記第一基礎構造、前記第二基礎構造及び前記第三基礎構造は、光軸とほぼ同一 の方向の段差を有する構造であり、
前記第一基礎構造、前記第二基礎構造及び前記第三基礎構造の少なくとも一つは 、ブレーズ型の形状を有する構造であり、
前記第一基礎構造、前記第二基礎構造及び前記第三基礎構造を重畳してなる前記 光路差付与構造が、前記光学素子のベース面に対して直角でもなく並行でもない、 斜めの面を有することを特徴とする光学素子。
[25] 請求の範囲第 24項に記載された光学素子であって、前記第一基礎構造、前記第二 基礎構造及び前記第三基礎構造の少なくとも一つは、階段型の形状を有する構造 であることを特徴とする光学素子。
[26] 第一波長 λ 1の第一光束を射出する第一光源と、第二波長 λ 2 ( λ 2> λ 1)の第二 光束を射出する第二光源と、第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三 光源と、前記第一光束を厚さが tlの保護基板を有する第 1光ディスクの情報記録面 上に集光させ、前記第二光束を厚さが t2 (tl≤t2)の保護基板を有する第 2光デイス クの情報記録面上に集光させ、前記第三光束を厚さが t3 (t2<t3)の保護基板を有 する第 3光ディスクの情報記録面上に集光させるための集光光学系と、を有し、前記 第一光束を前記第 1光ディスクの情報記録面上に集光させ、前記第二光束を前記第 2光ディスクの情報記録面上に集光させ、前記第三光束を前記第 3光ディスクの情報 記録面上に集光させることによって情報の記録及び Z又は再生を行う光ピックアップ 装置を有する光情報記録再生装置において、
前記集光光学系は、少なくとも一つの光学素子を有し、
前記光学素子は、その光学面に光路差付与構造を有し、
前記光路差付与構造は、少なくとも第一基礎構造、第二基礎構造及び第三基礎構 造を同一面上に重畳させた構造であり、
前記第一基礎構造、前記第二基礎構造及び前記第三基礎構造は、光軸とほぼ同一 の方向の段差を有する構造であり、
前記第一基礎構造、前記第二基礎構造及び前記第三基礎構造の少なくとも一つは 、ブレーズ型の形状を有する構造であり、
前記第一基礎構造、前記第二基礎構造及び前記第三基礎構造を重畳してなる前記 光路差付与構造が、前記光学素子のベース面に対して直角でもなく並行でもない、 斜めの面を有することを特徴とする光情報記録再生装置。
第一波長 λ 1の第一光束を射出する第一光源と、第二波長 λ 2 ( λ 2 > λ 1)の第二 光束を射出する第二光源と、第三波長 λ 3 ( λ 3 > λ 2)の第三光束を射出する第三 光源と、前記第一光束を厚さが tlの保護基板を有する第 1光ディスクの情報記録面 上に集光させ、前記第二光束を厚さが t2 (tl≤t2)の保護基板を有する第 2光デイス クの情報記録面上に集光させ、前記第三光束を厚さが t3 (t2< t3)の保護基板を有 する第 3光ディスクの情報記録面上に集光させるための集光光学系と、を有し、前記 第一光束を前記第 1光ディスクの情報記録面上に集光させ、前記第二光束を前記第 2光ディスクの情報記録面上に集光させ、前記第三光束を前記第 3光ディスクの情報 記録面上に集光させることによって情報の記録及び Z又は再生を行う光ピックアップ 装置の前記集光光学系に用いられる光路差付与構造を有する光学素子の設計方 法であって、
第一基礎構造を設計する工程、
第二基礎構造を設計する工程、
第三基礎構造を設計する工程、
少なくとも前記第一基礎構造、前記第二基礎構造及び前記第三基礎構造を重畳し て、前記光路差付与構造を設計する工程、とを有し、
前記第一基礎構造は、前記第一基礎構造を通過した前記第一光束の r次 (rは整 数)の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の 3次( sは整数)の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第三光束 の t次 (tは整数)の回折光量を他のいかなる次数の回折光量よりも大きくする光路差 付与構造であり、
前記第二基礎構造は、前記第二基礎構造を通過した前記第一光束の u次 (uは整数 )の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の V次 (V は整数)の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の w次 (wは整数)の回折光量を他のいかなる次数の回折光量よりも大きくする光路差 付与構造であり、 前記第三基礎構造は、前記第三基礎構造を通過した前記第一光束の X次 (Xは整数
)の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第二光束の y次 (y は整数)の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第三光束の z次 (zは整数)の回折光量を他のいかなる次数の回折光量よりも大きくする光路差付 与構造であることを特徴とする光学素子の設計方法。
PCT/JP2007/058325 2006-04-21 2007-04-17 光ピックアップ装置、光学素子及び光情報記録再生装置並びに光学素子の設計方法 WO2007123112A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/297,534 US20090103419A1 (en) 2006-04-21 2007-04-17 Optical Pickup Device, Optical Information Recording and Reproducing Device and Design, Method of Optical Element
JP2008512113A JPWO2007123112A1 (ja) 2006-04-21 2007-04-17 光ピックアップ装置、光学素子及び光情報記録再生装置並びに光学素子の設計方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006117855 2006-04-21
JP2006-117855 2006-04-21

Publications (1)

Publication Number Publication Date
WO2007123112A1 true WO2007123112A1 (ja) 2007-11-01

Family

ID=38625012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058325 WO2007123112A1 (ja) 2006-04-21 2007-04-17 光ピックアップ装置、光学素子及び光情報記録再生装置並びに光学素子の設計方法

Country Status (4)

Country Link
US (1) US20090103419A1 (ja)
JP (1) JPWO2007123112A1 (ja)
CN (1) CN101421787A (ja)
WO (1) WO2007123112A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122896A1 (ja) * 2008-04-01 2009-10-08 コニカミノルタオプト株式会社 光ピックアップ装置用の対物光学素子及び光ピックアップ装置
WO2010013616A1 (ja) * 2008-07-30 2010-02-04 コニカミノルタオプト株式会社 対物レンズ及び光ピックアップ装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011114895A1 (ja) * 2010-03-16 2013-06-27 コニカミノルタ株式会社 対物レンズ、光ピックアップ装置及び光情報記録再生装置
US8760990B2 (en) * 2010-11-10 2014-06-24 Konica Minolta, Inc. Objective lens for optical pickup apparatus, optical pickup apparatus, and optical information recording reproducing apparatus
CN112562744B (zh) * 2020-07-03 2021-09-03 暨南大学 一种面向超快超分辨全光磁记录的双脉冲激发方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001195769A (ja) * 1999-01-22 2001-07-19 Konica Corp 光ピックアップ装置、この光ピックアップ装置を備えた記録再生装置、光学素子、情報の記録再生方法、光学系、レンズ、光ディスク用回折光学系、再生装置及び光ピックアップ装置用対物レンズ
JP2004247025A (ja) * 2002-12-18 2004-09-02 Konica Minolta Holdings Inc 光ピックアップ装置及び光学素子
JP2005038585A (ja) * 2003-06-30 2005-02-10 Konica Minolta Opto Inc 光ピックアップ装置、集光光学系及び光学素子
JP2005353261A (ja) * 2004-05-10 2005-12-22 Konica Minolta Opto Inc 光ピックアップ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995813B2 (ja) * 1998-12-09 2007-10-24 ペンタックス株式会社 回折レンズの設計方法
JP4120788B2 (ja) * 2001-10-12 2008-07-16 コニカミノルタホールディングス株式会社 光ピックアップ装置、対物レンズ、回折光学素子、光学素子及び記録・再生装置
US7577077B2 (en) * 2002-09-05 2009-08-18 Konica Corporation Optical pickup apparatus and optical element
DE602005018801D1 (de) * 2004-10-08 2010-02-25 Pioneer Corp Optisches brechungselement, objektivlinsenmodul, optischer abnehmer, und optische informaitonsaufzeichnungs-/-wiedergabevorrichtung
JP4562645B2 (ja) * 2004-12-01 2010-10-13 Hoya株式会社 光学素子の設計方法および光情報記録再生装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001195769A (ja) * 1999-01-22 2001-07-19 Konica Corp 光ピックアップ装置、この光ピックアップ装置を備えた記録再生装置、光学素子、情報の記録再生方法、光学系、レンズ、光ディスク用回折光学系、再生装置及び光ピックアップ装置用対物レンズ
JP2004247025A (ja) * 2002-12-18 2004-09-02 Konica Minolta Holdings Inc 光ピックアップ装置及び光学素子
JP2005038585A (ja) * 2003-06-30 2005-02-10 Konica Minolta Opto Inc 光ピックアップ装置、集光光学系及び光学素子
JP2005353261A (ja) * 2004-05-10 2005-12-22 Konica Minolta Opto Inc 光ピックアップ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122896A1 (ja) * 2008-04-01 2009-10-08 コニカミノルタオプト株式会社 光ピックアップ装置用の対物光学素子及び光ピックアップ装置
JPWO2009122896A1 (ja) * 2008-04-01 2011-07-28 コニカミノルタオプト株式会社 光ピックアップ装置用の対物光学素子及び光ピックアップ装置
WO2010013616A1 (ja) * 2008-07-30 2010-02-04 コニカミノルタオプト株式会社 対物レンズ及び光ピックアップ装置
US8406111B2 (en) 2008-07-30 2013-03-26 Konica Minolta Optp, Inc. Objective lens and optical pickup device

Also Published As

Publication number Publication date
JPWO2007123112A1 (ja) 2009-09-03
US20090103419A1 (en) 2009-04-23
CN101421787A (zh) 2009-04-29

Similar Documents

Publication Publication Date Title
JP5136810B2 (ja) 光ピックアップ装置
WO2010013616A1 (ja) 対物レンズ及び光ピックアップ装置
JP5071883B2 (ja) 光ピックアップ装置及び対物光学素子
WO2007145202A1 (ja) 光学素子の設計方法、光学素子及び光ピックアップ装置
JPWO2005074388A1 (ja) 光ピックアップ装置及び光情報記録及び/又は再生装置
JP2005259332A (ja) 光ピックアップ装置及び光ピックアップ装置用回折光学素子
US20110007622A1 (en) Objective Lens and Optical Pickup Apparatus
WO2007123112A1 (ja) 光ピックアップ装置、光学素子及び光情報記録再生装置並びに光学素子の設計方法
JPWO2009047989A1 (ja) 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
JP2009110591A (ja) 対物レンズ及び光ピックアップ装置
JPWO2005088625A1 (ja) 対物光学素子及び光ピックアップ装置
JPWO2008044475A1 (ja) 対物光学素子ユニット及び光ピックアップ装置
WO2009128445A1 (ja) 対物レンズ及び光ピックアップ装置
JP4348617B2 (ja) 回折光学素子、対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP2010055683A (ja) 対物光学素子及び光ピックアップ装置
JP2009037718A (ja) 光ピックアップ装置及び対物光学素子
WO2010089933A1 (ja) 対物レンズ及び光ピックアップ装置
JP2010055732A (ja) 対物光学素子及び光ピックアップ装置
CN101828225B (zh) 光拾取装置、光拾取装置用物镜光学元件及光信息记录再生装置
JPWO2008146675A1 (ja) 光ピックアップ装置用の対物光学素子及び光ピックアップ装置
WO2011114895A1 (ja) 対物レンズ、光ピックアップ装置及び光情報記録再生装置
WO2010067733A1 (ja) 対物レンズ及び光ピックアップ装置
WO2010116852A1 (ja) 対物レンズ、カップリング素子及び光ピックアップ装置
JPWO2011040225A1 (ja) 回折素子及び光ピックアップ装置
JP2009181645A (ja) 対物光学素子及び光ピックアップ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008512113

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780013664.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12297534

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741761

Country of ref document: EP

Kind code of ref document: A1