WO2008059944A1 - Véhicule hybride et son procédé de commande - Google Patents

Véhicule hybride et son procédé de commande Download PDF

Info

Publication number
WO2008059944A1
WO2008059944A1 PCT/JP2007/072247 JP2007072247W WO2008059944A1 WO 2008059944 A1 WO2008059944 A1 WO 2008059944A1 JP 2007072247 W JP2007072247 W JP 2007072247W WO 2008059944 A1 WO2008059944 A1 WO 2008059944A1
Authority
WO
WIPO (PCT)
Prior art keywords
travel distance
hybrid vehicle
setting
vehicle
warm
Prior art date
Application number
PCT/JP2007/072247
Other languages
English (en)
French (fr)
Inventor
Osamu Harada
Daigo Ando
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/311,788 priority Critical patent/US8774993B2/en
Priority to EP07831977.9A priority patent/EP2083156B1/en
Priority to CN2007800425137A priority patent/CN101542095B/zh
Publication of WO2008059944A1 publication Critical patent/WO2008059944A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/18Distance travelled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a hybrid vehicle equipped with an internal combustion engine and an electric motor as a power source for running the vehicle, and a control method therefor.
  • Hybrid vehicles are attracting attention as environmentally friendly vehicles.
  • this hybrid vehicle is equipped with a power storage device, an inverter, and a motor driven by an inverter as a power source for traveling the vehicle.
  • Japanese Laid-Open Patent Publication No. 2 0 3-2 6 9 2 0 8 discloses a control device for a hybrid vehicle equipped with a catalyst converter.
  • This control device drives the engine to charge the battery when the SOC (State of Charge) of the battery falls below the lower limit.
  • the control device preheats the engine, the catalytic converter, and the like when the battery SOC reaches a set value larger than the lower limit value.
  • the present invention has been made to solve such problems, and its purpose is to provide a hybrid vehicle that prevents unnecessary warm-up of the catalyst converter and prevents deterioration of fuel consumption. It is to be.
  • Another object of the present invention is to provide a control method for a hybrid vehicle that prevents unnecessary warm-up of a catalytic converter and prevents deterioration of fuel consumption.
  • the hybrid vehicle is a hybrid vehicle equipped with an internal combustion engine and an electric motor as a power source for driving the vehicle, and includes a catalytic converter, a warm-up unit, a setting unit, an estimation unit, A comparison unit and a control unit are provided.
  • the catalytic converter purifies the exhaust gas discharged from the internal combustion engine.
  • the warm-up section warms up the catalytic converter.
  • the setting unit sets the travel distance of the vehicle.
  • the estimation unit estimates the distance that can be traveled in the motor travel mode in which the internal combustion engine is stopped and the motor is driven based on the state of charge (SOC) of the power storage device that supplies power to the motor.
  • the comparison unit compares the travel distance estimated by the estimation unit with the travel distance set by the setting unit.
  • the control unit controls the warm-up unit based on the comparison result of the comparison unit.
  • control unit prohibits warming up of the catalytic converter by the warm-up unit when the travel distance estimated by the estimation unit is greater than the travel distance set by the setting unit.
  • control unit cancels the prohibition of the warm-up of the catalyst converter by the warm-up unit when the start of the internal combustion engine is requested while the warm-up of the catalytic converter is prohibited.
  • the comparison unit compares the reset travel distance with the travel distance estimated by the estimation unit.
  • the control unit controls the warm-up unit based on the comparison result.
  • the comparison section estimates the travel distance estimated by the estimation section. Compare with distance.
  • the control unit is the mileage estimated by the estimation unit When is greater than the reset travel distance, the warm-up of the catalytic converter by the warm-up unit is stopped.
  • the comparison unit estimates the remaining distance with respect to the set travel distance at the next system startup by the estimation unit. Compare with the distance traveled.
  • the control unit controls the warm-up unit based on the comparison result.
  • the hybrid vehicle further includes a power generation unit and a threshold setting unit.
  • the power generation unit generates electric power for charging the power storage device using the power of the internal combustion engine.
  • the internal combustion engine is started when the state of charge (SOC) of the power storage device falls below a predetermined threshold value.
  • the threshold value setting unit sets the first threshold value to a predetermined threshold value when the travel distance estimated by the estimation unit is greater than the travel distance set by the setting unit. Further, the threshold value setting unit sets a second threshold value larger than the first threshold value when the travel distance estimated by the estimation unit is smaller than the travel distance set by the setting unit. Set to a predetermined threshold.
  • the hybrid vehicle further includes a charging unit for receiving power supplied from outside the vehicle and charging the power storage device.
  • the setting unit includes a navigation device capable of setting a destination of the vehicle.
  • the navigation device calculates the mileage of the vehicle based on the set destination.
  • the setting unit includes an input device capable of inputting a travel distance of the vehicle.
  • the setting unit sets a predetermined fixed value as the travel distance of the vehicle.
  • the hybrid vehicle control method is a hybrid vehicle control method in which an internal combustion engine and an electric motor as a power source for running the vehicle are mounted.
  • the hybrid vehicle includes a catalyst comparator that purifies exhaust gas discharged from the internal combustion engine, and a warm-up unit that warms up the catalytic converter.
  • the control method includes first to fifth steps.
  • the mileage of the vehicle is set.
  • the state of charge of the power storage device that supplies power to the motor (SO C) is estimated.
  • the distance that can be traveled in the motor travel mode in which the internal combustion engine is stopped and the motor is driven is estimated based on the estimated state of charge.
  • the estimated mileage is compared with the mileage set in the first step.
  • the warm-up unit is controlled based on the comparison result.
  • the hybrid vehicle further includes a power generation unit that generates electric power for charging the power storage device using the power of the internal combustion engine.
  • the internal combustion engine is started when the state of charge (SOC) of the power storage device falls below a predetermined threshold value.
  • the control method further includes sixth and seventh steps.
  • the sixth step when the mileage estimated in the third step is greater than the mileage set in the first step, the first threshold is set to a predetermined threshold. To do.
  • the seventh step when the mileage estimated in the third step is smaller than the mileage set in the first step, the second threshold value is larger than the first threshold value. Set to the predetermined threshold.
  • the distance that can be traveled in the motor travel mode is estimated based on the SOC of the power storage device, and the estimated travel distance is compared with the set travel distance of the vehicle. Based on the comparison result, the warming-up unit that warms up the catalytic converter is controlled. Therefore, when the set travel distance can be traveled only in the motor travel mode, the operation of the internal combustion engine is assumed. It is possible to prevent the catalytic converter from warming up. Therefore, according to the present invention, it is possible to prevent unnecessary warm-up of the catalytic converter and prevent deterioration of fuel cost.
  • FIG. 1 is an overall block diagram of a hybrid vehicle according to Embodiment 1 of the present invention.
  • FIG. 2 is a functional block diagram of the HV—ECU shown in FIG.
  • FIG. 3 is a diagram showing the change in SOC of the power storage device.
  • Fig. 4 is a flowchart for the warm-up prohibition control of the catalytic converter by the HV-ECU shown in Fig. 1.
  • Fig. 5 is a flowchart related to the warm-up prohibition control of the catalytic converter that is executed after the system is started.
  • FIG. 6 is a functional block diagram of the HV-ECU in the second embodiment.
  • FIG. 7 is a flowchart related to the setting process of the engine start S0C by the HV—ECU in the second embodiment.
  • Fig. 8 is a flowchart related to the engine startup SOC setting process executed after system startup.
  • Fig. 9 is an overall block diagram of a hybrid vehicle equipped with a separate charging inverter. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is an overall block diagram of a hybrid vehicle according to Embodiment 1 of the present invention.
  • hybrid vehicle 100 includes an engine 2, an exhaust passage 7, a catalytic converter 8, motor generators MG 1 and MG 2, a power split mechanism 4, and wheels 6.
  • the hybrid vehicle 100 includes a power storage device 10, a boost converter 20, inverters 30 and 40, positive lines PL 1 and PL 2, negative lines NL 1 and NL 2, capacitors C 1 and C 2, Power line ACL 1 and ACL 2 and connector 1 10 are further provided.
  • the hybrid vehicle 100 further includes an MG—ECU (Electric Control Unit) 50, an EG—ECU 60, an HV—ECU 70, and a navigation device 80.
  • MG—ECU Electric Control Unit
  • This hybrid vehicle 100 runs using engine 2 and motor generator MG 2 as power sources.
  • Power split device 4 is coupled to engine 2 and motor generators MG1, MG2, and distributes power between them.
  • a planetary gear mechanism having three rotating shafts of a sun gear, a planetary carrier, and a ring gear can be used. These three rotating shafts are connected to the rotating shafts of engine 2 and motor generators MG 1 and MG 2, respectively.
  • engine 2 and motor generators MG 1 and MG 2 can be mechanically connected to power split mechanism 4 by making the rotor of motor generator MG 1 hollow and passing the crankshaft of engine 2 through the center thereof.
  • the rotating shaft of motor generator MG 2 is connected to wheel 6 via a reduction gear and a differential gear (not shown).
  • Motor generator MG 1 operates as a generator driven by engine 2 and is incorporated in hybrid vehicle 100 as an electric motor that can start engine 2.
  • Motor generator MG 2 includes wheels 6 It is installed in hybrid vehicle 100 as an electric motor that drives the vehicle.
  • the catalytic converter 8 is provided in the exhaust passage 7 and purifies harmful components of the exhaust gas discharged from the engine 2. In the catalytic converter 8, if the temperature is low, the catalyst is not sufficiently activated, and the exhaust gas purification action by the catalyst does not function sufficiently. Therefore, in order for the catalytic converter 8 to function sufficiently, it is necessary to warm up the catalytic converter 8.
  • the power storage device 10 is a rechargeable DC power source, and includes, for example, a secondary battery such as a nickel metal hydride battery or a lithium ion battery. Power storage device 10 is connected to boost converter 20 via positive line PL 1 and negative line NL 1. Power storage device 10 includes a voltage sensor and a current sensor (not shown), and outputs detected values of terminal voltage V B and charge / discharge current IB of power storage device 10 to HV-ECU 70. The power storage device 10 may be configured with an electric double layer capacitor.
  • Boost converter 20 is provided between positive line P L 1 and negative line NL 1, and positive line P L 2 and negative line NL 2.
  • Boost converter 20 performs voltage conversion between positive line PL 1 and positive line PL 2 based on drive signal PWC from MG—ECU 50.
  • the boost converter 20 is composed of, for example, a step-up / down booster circuit power.
  • Capacitor C1 is connected between positive electrode line PL1 and negative electrode line NL1, and smoothes voltage fluctuations between positive electrode line PL1 and negative electrode line NL1.
  • Capacitor C2 is connected between positive electrode line PL2 and negative electrode line NL2, and smoothes voltage fluctuations between positive electrode line PL2 and negative electrode line NL2.
  • Inverters 30 and 40 are connected to positive line PL 2 and negative line NL 2 in parallel with each other.
  • the inverter 30 drives the motor generator MG 1 in a row / regenerative manner based on the drive signal PW I 1 from the MG—ECU 50, and the inverter 40 is based on the drive signal PW I 2 from the MG—ECU 50. Motor generator MG 2 is regeneratively driven.
  • the inverters 30 and 40 are each composed of a bridge circuit including switching elements for three phases, for example.
  • Inverters 30 and 40 are connected to connector 1 10, when power storage device 10 is charged from power source 1 20 outside the vehicle, motor generator MG 1 from power source 120 via power lines AC L 1 and AC L 2. , 1 ⁇ 02 neutral power 1 ⁇ 1, N2 is converted to DC power based on the drive signals PW I 1 and PW I 2 from the MG—ECU 50, and the converted DC power is converted to the positive line Output to PL 2.
  • Motor generators MG 1 and MG2 are three-phase AC rotating electric machines, for example, three-phase AC synchronous motors having a rotor in which permanent magnets are embedded.
  • Motor generator MG 1 is regeneratively driven by inverter 30 and outputs a three-phase AC voltage generated using the power of engine 2 to inverter 30. Further, the motor generator MG 1 is driven by the inverter 30 when the engine 2 is started, and cranks the engine 2.
  • Motor generator MG 2 is driven in a row by inverter 40 and generates a driving force for driving wheels 6.
  • Motor generator MG 2 is regeneratively driven by inverter 40 during regenerative braking of the vehicle, and outputs to inverter 40 the three-phase AC voltage generated using the rotational force received from wheel 6.
  • the MG-ECU 50 drives the boost converter 20 based on the torque command value TR of each motor generator from the HV—ECU 70, the signal transmitted from each sensor (not shown), the driving situation, and the accelerator opening.
  • Drive signal PWC and drive signals PW I 1 and PWI 2 for driving inverters 30 and 40, respectively, and the generated drive signals PWC, PWI 1 and PWI 2 are respectively generated by boost converter 20 and inverter Output to 30 and 40.
  • the MG—ECU 50 receives the external charge command EXCG from the HV—ECU 70, and the neutral point N 1 from the power source 120 via the power line ACL 1 and AC L 2.
  • Drive signals PW I 1 and PWI 2 for controlling the inverters 30 and 40 are generated so that AC power applied to N 2 is converted to DC power and output to the positive line PL 2.
  • the MG-ECU 50 performs switching control of each phase arm simultaneously in each of the inverters 30 and 40 according to the input of AC power applied to the neutral points N 1 and N 2.
  • 40 and motor generators MG1 and MG2 are operated as a single-phase PWM converter.
  • the EG—ECU 60 controls the engine 2 based on the state of the ignition key, the accelerator opening, and the vehicle speed.
  • the EG-ECU 60 receives the control signal CTL 1 from the HV-ECU 70, it performs control for warming up the catalytic converter 8 (hereinafter also referred to as “warm-up control”).
  • the EG—ECU 60 starts the engine 2 and operates the engine 2 by retarding the opening / closing timing of the intake valve.
  • the catalyst comparator 8 is warmed up by the amount of heat of the exhaust gas from the engine 2.
  • EG-ECU 60 When EG-ECU 60 receives control signal CTL 2 from HV-ECU 70, it prohibits warm-up control of catalyst converter 8, or stops warm-up control if warm-up control is being executed. To do. Further, when receiving the control signal CTL 3 from the HV-ECU 70, the EG-ECU 60 drives and controls the engine 2 according to the given control command.
  • HV—ECU 70 generates control commands necessary to drive and control motor generators MG1, MG2 and engine 2, and outputs the generated control commands to MG-EC U50 and EG—ECU60.
  • the HV_ECU 70 receives a travel distance L from the current position to the destination from the navigation device 80. Then, the HV-ECU 70 uses the method described below to stop the engine 2 and travel using only the motor generator MG 2. EV mode (hereinafter referred to as “EV traveling” It is also determined whether or not the travel distance L can be traveled, and if the travel distance L can be traveled in the EV mode, the control signal CTL 2 is output to the EG-ECU60.
  • the HV-E CU 70 determines that the travel distance L to the destination is EV travelable, the HV-E CU 70 prohibits the warm-up of the catalytic converter 8, or warms up the catalytic converter 8 if warm-up control is in progress Stop.
  • the HV-ECU 70 deactivates the control signal CTL 2 when it is requested to start the engine 2 in accordance with the traveling state of the vehicle or the decrease in the SOC of the power storage device 10. That is, HV—ECU 70 cancels the prohibition or stop of warm-up of catalyst converter 8 when engine 2 is requested to start.
  • the navigation device 80 detects the current position of the hybrid vehicle 100 using a GPS (Global Positioning System) antenna or a ROM (Read Only Memory) that stores map data.
  • the navigation device 80 also has a destination setting function. When the destination is set by the user, the navigation device 80 outputs a message to that effect to the HV—ECU 70 and the travel distance from the current position to the destination. Calculate L and output to HV—ECU 70. Note that the navigation device 80 also outputs the fact and the travel distance L to the destination to the HV-ECU 70 even when the destination is reset (changed) by the user.
  • the mileage L may be set directly.
  • an input device that can input the travel distance L may be provided. Further, a predetermined fixed value may be set as the travel distance.
  • FIG. 2 is a functional block diagram of the HV-ECU 70 shown in FIG.
  • the HV—ECU 70 includes a 300 estimation unit 210, an EV travelable distance estimation unit 220, a comparison unit 230, a warm-up control unit 240, and a travel mode control unit 250. including.
  • 500 estimator 210 estimates the SOC of power storage device 10 based on the detected values of voltage VB and current IB of power storage device 10. Note that various known methods can be used as a method for estimating the SOC of the power storage device 10.
  • the EV travelable distance estimation unit 220 estimates the distance that can be traveled in the EV mode based on the SOC of the power storage device 10. For example, the EV travelable distance estimation unit 220 determines the EV mode based on the energy amount obtained from the SOC of the power storage device 10 and the energy amount required to travel a unit distance using only the motor generator MG 2. The distance that can be traveled can be estimated. The EV travelable distance estimation unit 220 obtains information on the road gradient to the destination from the navigation device 80, Consider the amount of regenerative energy collected by the power storage device 10, and estimate the EV travelable distance.
  • the comparison unit 230 acquires the travel distance L to the destination from the navigation device 80, and compares the EV travelable distance estimated by the EV travelable distance estimation unit 220 with the travel distance L. Further, the comparison unit 230 obtains the remaining travel distance to the destination from the navigation device 80 as the travel distance L when the signal IG indicating the system start state of the vehicle is switched from OFF to ON, that is, when the vehicle system is started. Then, the EV travelable distance estimated again by the EV travelable distance estimation unit 220 is compared with the travel distance L. Then, the comparison unit 230 outputs a comparison result between the EV travelable distance and the travel distance L to the warm-up control unit 240.
  • the warm-up control unit 240 controls prohibition (or stop) and cancellation of the warm-up control by the EG_ECU 60. Specifically, when the warm-up control unit 240 receives a comparison result from the comparison unit 230 that the EV travelable distance is larger, the warm-up control unit 240 prohibits or stops the warm-up of the catalyst converter 8. Output the command signal CTL 2 to be instructed to EG—E CU60. Further, when the warm-up control unit 240 receives a comparison result opposite to the above from the comparison unit 230, the warm-up control unit 240 deactivates the control signal CTL2.
  • Warm-up control unit 240 also receives mode signal MD indicating the current travel mode from travel mode control unit 250.
  • the traveling mode is the HV mode (the traveling mode in which the engine 2 is operated)
  • the warm-up control unit 240 deactivates the control signal C T L 2. That is, when the start of the engine 2 is requested, the warm-up control unit 240 releases the prohibition or stop of the warm-up control of the catalytic converter 8.
  • traveling mode control unit 250 determines whether to operate engine 2 during traveling, that is, traveling in EV mode or traveling in HV mode. To control. Then, traveling mode control unit 250 generates torque command value TR according to the traveling mode and outputs it to MG-ECU 50. The travel mode control unit 250 outputs a control signal CT L 3 to the EG-ECU 60 when the travel mode is the HV mode. Further, traveling mode control unit 250 outputs a mode signal MD indicating the traveling mode to warm-up control unit 240.
  • FIG. 3 is a diagram showing a change in SOC of power storage device 10.
  • SOC of power storage device 10 At time t 0, it is assumed that running of hybrid vehicle 100 starts when power storage device 10 is fully charged. Until the SOC of power storage device 10 falls below a predetermined threshold value S th at time t1, engine 2 is stopped and EV travel is performed using the power stored in power storage device 10. At time tl, when SOC of power storage device 10 falls below threshold value S th, engine 2 is started, and the traveling mode is switched from the EV mode to the HV mode.
  • threshold value S th may be corrected to be higher in order to secure the power required for starting the engine 2.
  • threshold S th is relatively large, in order to increase the amount of discharge from power storage device 10 and raise power storage device 10, conversely, threshold S th is corrected to be low. Moyore.
  • the travel distance in the EV mode varies depending on the threshold value S th, and therefore, the EV travelable distance estimation unit 220 shown in FIG. 2 stores the EV travelable distance. You can correct it according to the temperature of the device 10.
  • FIG. 4 is a flowchart regarding the warm-up prohibition control of the catalytic converter 8 by the HV-ECU 70 shown in FIG. Note that the processing shown in this flowchart is called from the main routine and executed at regular time intervals or when a predetermined condition is satisfied.
  • the HV—ECU 70 determines that the travel distance L to the destination has been set (including the case where the travel distance L is calculated based on the destination setting).
  • the set travel distance L is acquired from the navigation device 80 (Step S20). Note that the HV-ECU 70 acquires the reset travel distance L from the navigation device 80 even when the travel distance L is reset (changed).
  • the HV-ECU 70 estimates the SOC of the power storage device 10 based on the detected values of the voltage VB and current IB of the power storage device 10 (step S30).
  • HV The ECU 70 estimates the distance that can be traveled in the EV mode based on the estimated SOC (step S40). As described above, the estimated EV travelable distance may be corrected based on the temperature of power storage device 10.
  • the HV-ECU 70 determines whether or not the estimated EV travelable distance is greater than the set travel distance L (step S50). If it is determined that the EV travelable distance is greater than the travel distance L (YES in step S50), the HV—ECU 70 determines that the warm-up of the catalytic converter 8 on the assumption that the engine 2 is used is unnecessary. Then, instruct to prohibit or stop the warm-up of the catalytic converter 8 (Step S60). Specifically, the HV—ECU 70 outputs a control signal CTL 2 instructing prohibition or stop of the warm-up of the catalytic converter 8 to the EG—ECU 60.
  • step S50 if it is determined in step S50 that the EV travelable distance is equal to or less than the travel distance L (NO in step S50), the HV—ECU 70 prohibits or stops warming up of the catalyst comparator 8. Release (Step S70). Specifically, the HV—ECU 70 deactivates the control signal CTL 2 to the EG—ECU 60. Therefore, when the control signal CT L 1 is output to the EG—ECU 60 at the required timing (for example, when the SOC of the power storage device 10 falls below a predetermined value), the engine 2 is started and the catalytic converter 8 Warm-up is performed.
  • HV_ECU 70 If HV_ECU 70 is requested to start engine 2 while the catalytic converter 8 is prohibited from warming up or stopped, HV_ECU 70 deactivates control signal C TL 2 and prohibits warming up of catalytic converter 8 or Release the stop.
  • the travel distance L to the destination is set by the navigation device 80. After that, the vehicle system is stopped at a distance shorter than the travel distance L and the vehicle system is started again (for example, the purpose).
  • the above control is executed without requiring the user to set the mileage L again after the system is started up, when the power storage device 10 is charged from the power source 1 20 outside the vehicle or before taking a break before reaching the ground. Preferably it is.
  • FIG. 5 is a flowchart regarding the warm-up prohibition control of the catalytic converter 8 executed after the system is started. Note that the processing shown in this flowchart is executed only once at a predetermined timing after the system is started.
  • HV—ECU 70 determines whether or not signal IG indicating the system activation state of the vehicle has been switched from OFF to ON (step S 110). If it is determined that the signal IG has been switched from OFF to ON (YES in step S 1 10), the HV—ECU 70 obtains the remaining travel distance to the destination as the travel distance L from the navigation device 80 ( Step S 1 20).
  • step S 1 30 The processing in steps S 1 30 to S 170 is the same as the processing in steps S 30 to S 70 shown in FIG.
  • the distance that can be traveled in the EV mode is estimated based on the SOC of power storage device 10, and the estimated EV travelable distance is set as the set travel distance L (for example, Compared to the distance traveled to the destination). If the EV travelable distance is too large, the warm-up control of the catalytic converter 8 is prohibited or stopped. Therefore, according to the first embodiment, unnecessary warm-up of the catalyst comparator 8 can be prevented and deterioration of fuel consumption can be prevented.
  • the warm-up control of the catalytic converter 8 is controlled.
  • the prohibition or suspension is lifted. Therefore, according to this embodiment 1, the catalytic converter 8 can be appropriately warmed up when necessary.
  • the warm-up prohibition control of the catalytic converter 8 is performed based on the reset travel distance L. A case where the distance L is changed can also be handled.
  • the warm-up prohibition control of the catalyst comparator 8 is executed again at the next system startup. Therefore, the user does not need to set the mileage L again when starting the vehicle system.
  • Embodiment 2 when the EV travelable distance estimated based on the SOC of power storage device 10 is smaller than the set travel distance L, the EV travelable distance is larger than the travel distance L.
  • SOC where engine 2 is started Also referred to as “Dynamic SOC”.
  • hybrid vehicle 10 OA The overall configuration of hybrid vehicle 10 OA according to the second embodiment is the same as hybrid vehicle 100 according to the first embodiment shown in FIG.
  • FIG. 6 is a functional block diagram of the HV—ECU 7 OA in the second embodiment.
  • HV—ECU 7 OA further includes an engine start SOC setting unit 260 in the configuration of HV-ECU 70 in the first embodiment shown in FIG.
  • the engine start SO C setting unit 260 sets the engine start SO C described above. That is, the engine start SOC setting unit 260 sets a threshold value S th (FIG. 3) at which the running mode is switched from the EV mode to the HV mode.
  • S th FOG. 3
  • the engine start SOC setting unit 260 receives the comparison result from the comparison unit 230 that the EV travelable distance is larger, the engine start SOC sets the specified value SO C 1 to the engine start SOC. To do.
  • the engine startup SOC setting unit 260 sets the specified value for the purpose of securing electric power necessary for the catalyst warm-up after the engine startup. Set the specified value SOC 2 larger than SOC 1 to the engine start SOC. Then, travel mode control unit 250 switches the travel mode using engine start SOC set by engine start SOC setting unit 260.
  • FIG. 7 is a flowchart related to the setting process of the engine start SOC by the HV—ECU 7 OA in the second embodiment.
  • the processing shown in this flowchart is also called from the main routine and executed at regular time intervals or when a predetermined condition is satisfied.
  • steps S 210 to S 250 are the same as the processes of steps S 10 to S 50 shown in FIG.
  • step S250 If it is determined in step S250 that the EV travelable distance is greater than the travel distance L (YES in step S250), the HV—ECU 70A sets the specified SOC 1 to the engine start SOC (step S260). ) On the other hand, If it is determined that the EV travel distance is less than or equal to the travel distance L in step S250 (NO in step S250), the HV—ECU 70A starts the engine with a specified value SOC2 that is greater than the specified value SOC1. Set to OC (step S 27 0).
  • the other functions of the HV—ECU 7 OA are the same as those in the first embodiment.
  • the vehicle system stops at a distance shorter than the travel distance L after the travel distance L to the destination is set by the navigation device 80, and the vehicle system is started again, use it after starting the system. It is preferable that the above process is executed without requiring the user to set the travel distance L again.
  • FIG. 8 is a flowchart related to the engine start S OC setting process executed after the system is started. Note that the processing shown in this flowchart is executed only once at a predetermined timing after system startup.
  • HV—ECU 7 OA determines whether or not signal IG indicating the system activation state of the vehicle has been switched from OFF to ON (step S 310). If it is determined that the signal IG has been switched from OFF to ON (YES in step S310), the HV—ECU 7 OA proceeds to step S320.
  • the process of step S320 is the same as the process of step S120 shown in FIG. 5, and the process of steps S330 to S370 is the same as the process of steps S230-S270 shown in FIG. Each is the same.
  • the engine start S0 C is set to a higher value than when the EV travelable separation is larger than the travel distance L.
  • the electric power necessary for running while the catalyst is warming up after starting the engine is secured. That is, the catalytic converter 8 is reliably warmed up. Therefore, according to the second embodiment, it is possible to prevent the exhaust gas purification effect of the catalytic converter 8 from being lowered.
  • Fig. 9 is an overall block diagram of a hybrid vehicle equipped with a separate charging inverter.
  • hybrid vehicle 100 B further includes charging inverter 130 in the configuration of hybrid vehicle 100 shown in FIG.
  • Charging inverter 1 3 0 is connected to positive line PL 2 and negative line NL 2 and converts the AC power supplied from external power source 1 2 0 (for example, system power source) to connector 1 1 0 into DC power. Output to positive line PL 2 and negative line NL 2.
  • external power source 1 2 0 for example, system power source
  • DC power supplied from charging inverter 13 30 to positive line PL 2 and negative line NL 2 can be converted to voltage level of power storage device 10 by boost converter 20 to charge power storage device 10. it can.
  • the other configuration of the hybrid vehicle 1 0 0 B is the same as that of the hybrid vehicle 1 0 0. Also, in Fig. 9, each E CU is not shown.
  • the hybrid vehicle that can charge the power storage device 10 from the power source 12 0 outside the vehicle has been described, but the scope of application of the present invention is a hybrid having such an external charging function. It is not limited to vehicles. However, a hybrid vehicle having an external charging function can travel for a long distance (for example, 10 km or more) in the EV mode from the state where the power storage device 10 is fully charged. In many cases, it is unnecessary to warm up the catalytic converter 8 based on the operation in Step 2. Therefore, the present invention is particularly suitable for a hybrid vehicle having an external charging function.
  • the destination is set in the navigation device 80, and the travel distance L from the current position to the destination is calculated.
  • the user An input device that can directly input the travel distance L may be provided.
  • the actual travel distance after the travel distance was set by the user is stored, and the travel distance set by the user is stored.
  • the remaining travel distance obtained by subtracting the actual travel distance can be used as the travel distance to the destination when the system is started.
  • a predetermined fixed value may be set as the travel distance L. In this case, when the amount of charge of the power storage device 10 at the time of system startup is large, the system startup Warm-up control of the catalytic converter 8 during operation can be prohibited.
  • the warm-up prohibition control of the catalytic converter 8 and the engine start SOC may be performed periodically or every predetermined distance.
  • the catalytic converter 8 is warmed up by the amount of heat of the exhaust gas from the engine 2, but a heater for warming up the catalytic converter 8 is provided to warm up the catalytic converter 8. Good. Also in this case, unnecessary power consumption can be prevented by preventing unnecessary warm-up of the catalytic converter 8, and as a result, deterioration of fuel consumption can be prevented.
  • the hybrid vehicle is a series / parallel type in which the power of the engine 2 can be divided and transmitted to the axle and the motor generator MG 1 by the power split mechanism 4.
  • the present invention can also be applied to a so-called series-type hybrid vehicle that uses engine 2 only to drive motor generator MG1 and generates vehicle driving power only by motor generator MG2.
  • series-type hybrid vehicles when the power storage device is fully charged, EV driving with the engine stopped is started, and when the SOC of the power storage device falls to a predetermined threshold, the engine The vehicle is started to drive the vehicle, and then EV driving is performed while generating electricity with the engine.
  • engine 2 corresponds to “internal combustion engine” in the present invention
  • motor generator MG 2 corresponds to “electric motor” in the present invention
  • Engine 2 and E G—E C U 60 form a “warm-up part” in the present invention
  • navigation device 80 corresponds to the “setting part” in the present invention.
  • EV travelable distance estimation unit 2 20 corresponds to “estimation unit” in the present invention
  • warm-up control unit 2 40 corresponds to “control unit” in the present invention.
  • engine start SOC setting unit 2 60 corresponds to the “threshold setting unit” in the present invention, and includes inverters 30 and 40, motor generators MG 1 and MG 2, power line ACL 1 and ACL 2, and Connector 1 1 0 in this invention A “charging part” is formed. Further, charging inverter 1 30 and connector 1 1 0 also form a “charging part” in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Human Computer Interaction (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

明細書 ハイプリッド車両およびその制御方法 技術分野
この発明は、 内燃機関と車両走行用の動力源としての電動機とを搭載するハイ ブリツド車両およびその制御方法に関する。
背景技術
環境に配慮した自動車としてハイブリッド車両 (Hybrid Vehicle) が注目され ている。 このハイブリッド車両は、 従来のエンジンに加え、 蓄電装置とインバー タとインバータによって駆動されるモータとを車両走行用の動力源として搭載す る。
このようなハイブリッド車両においても、 エンジンを搭載している以上、 従来 のエンジンのみを動力源とする車両と同様に、 エンジンからの排気ガスを浄化す る触媒コンバータが一般に搭載されている。
特開 2 0 0 3— 2 6 9 2 0 8号公報は、 触媒コンバ一タを搭載したハイブリッ ド車両の制御装置を開示する。 この制御装置は、 バッテリの S O C (State of Charge) が下限値以下になると、 エンジンを駆動させてバッテリの充電を行なう。 そして、 この制御装置は、 バッテリの S O Cが上記の下限値よりも大きい設定値 になると、 エンジンや触媒コンバータなどをプレヒートさせる。
この制御装置によれば、 エンジンの始動時にエンジンや触媒コンバータが既に 暖機されているので、 エミッシヨンの悪化を防止することができる。
しかしながら、 上記公報に開示される制御装置では、 エンジンを駆動させるこ となくモータのみで走行する走行モード (以下 「E Vモード」 とも称する。 ) で 目的地まで到達できるような場合においても、 エンジンや触媒コンバータの暖機 が行なわれ得るので、 燃費を悪化させる可能性がある。
特に、 車両外部の電源 (系統電源など) から蓄電装置を充電可能なハイブリツ ド車両では、 たとえば従来数 k m程度であった E Vモードでの走行距離が 1 0 k m以上に拡大され、 E Vモードでの走行が大半を占める可能性があるので、 上記 の問題が顕著に現われることが想定される。 発明の開示
そこで、 この発明は、 かかる問題点を解決するためになされたものであり、 そ の目的は、 触媒コンバ一タの不必要な暖機を防止して燃費の悪化を防止するハイ プリッド車両を提供することである。
また、 この発明の別の目的は、 触媒コンバータの不必要な暖機を防止して燃費 の悪化を防止するハイプリッド車両の制御方法を提供することである。
この発明によれば、 ハイブリッド車両は、 内燃機関と車両走行用の動力源とし ての電動機とを搭載するハイブリッド車両であって、 触媒コンバータと、 暖機部 と、 設定部と、 推定部と、 比較部と、 制御部とを備える。 触媒コンバータは、 内 燃機関から排出される排気ガスを浄化する。 暖機部は、 触媒コンバータを暖機す る。 設定部は、 当該車両の走行距離を設定する。 推定部は、 内燃機関を停止させ、 かつ、 電動機を駆動して走行する電動機走行モードで走行可能な距離を、 電動機 に電力を供給する蓄電装置の充電状態 (S O C ) に基づいて推定する。 比較部は、 推定部により推定された走行距離を設定部により設定された走行距離と比較する。 制御部は、 比較部の比較結果に基づいて暖機部を制御する。
好ましくは、 制御部は、 推定部により推定された走行距離の方が設定部により 設定された走行距離よりも大きいとき、 暖機部による触媒コンバータの暖機を禁 止する。
さらに好ましくは、 制御部は、 触媒コンバータの暖機禁止中に内燃機関の始動 が要求されたとき、 暖機部による触媒コンバ一タの暖機の禁止を解除する。
好ましくは、 比較部は、 設定部により当該車両の走行距離が再設定されると、 その再設定された走行距離を推定部により推定された走行距離と比較する。 制御 部は、 その比較結果に基づいて暖機部を制御する。
好ましくは、 比較部は、 暖機部による触媒コンバータの暖機中に設定部により 当該車両の走行距離が再設定されると、 その再設定された走行距離を推定部によ り推定された走行距離と比較する。 制御部は、 推定部により推定された走行距離 の方が再設定された走行距離よりも大きいとき、 暖機部による触媒コンバータの 暖機を停止する。
好ましくは、 設定部により設定された走行距離よりも短い距離で当該車両のシ ステムが停止した場合、 比較部は、 次回のシステム起動時、 設定された走行距離 に対する残存距離を推定部により推定された走行距離と比較する。 制御部は、 そ の比較結果に基づいて暖機部を制御する。
好ましくは、 ハイブリッド車両は、 発電部と、 しきい値設定部とをさらに備え る。 発電部は、 蓄電装置を充電するための電力を内燃機関の動力を用いて発生す る。 内燃機関は、 蓄電装置の充電状態 (S O C ) が所定のしきい値を下回ると起 動される。 しきい値設定部は、 推定部により推定された走行距離の方が設定部に より設定された走行距離よりも大きいとき、 所定のしきい値に第 1のしきい値を 設定する。 また、 しきい値設定部は、 推定部により推定された走行距離の方が設 定部により設定された走行距離よりも小さいとき、 第 1のしきい値よりも大きい 第 2のしきい値を所定のしきい値に設定する。
好ましくは、 ハイブリッド車両は、 当該車両の外部から与えられる電力を受け て蓄電装置を充電するための充電部をさらに備える。
好ましくは、 設定部は、 当該車両の目的地を設定可能なナビゲーシヨン装置を 含む。 ナビゲーシヨン装置は、 設定された目的地に基づいて当該車両の走行距離 を算出する。
また、 好ましくは、 設定部は、 当該車両の走行距離を入力可能な入力装置を含 む。
また、 好ましくは、 設定部は、 予め定められた固定値を当該車両の走行距離と して設定する。
また、 この発明によれば、 ハイブリッド車両の制御方法は、 内燃機関と車両走 行用の動力源としての電動機とを搭載するハイプリッド車両の制御方法である。 ハイプリッド車両は、 内燃機関から排出される排気ガスを浄化する触媒コンパ一 タと、 触媒コンバータを暖機する暖機部とを備える。 そして、 制御方法は、 第 1 から第 5のステップを含む。 第 1のステップでは、 当該車両の走行距離を設定す る。 第 2のステップでは、 電動機に電力を供給する蓄電装置の充電状態 (S O C ) を推定する。 第 3のステップでは、 内燃機関を停止させ、 かつ、 電動機を駆 動して走行する電動機走行モードで走行可能な距離を、 推定された充電状態に基 づいて推定する。 第 4のステップでは、 その推定された走行距離を第 1のステツ プにおいて設定された走行距離と比較する。 第 5のステップでは、 その比較結果 に基づいて暖機部を制御する。
好ましくは、 ハイプリッド車両は、 蓄電装置を充電するための電力を内燃機関 の動力を用いて発生する発電部をさらに備える。 内燃機関は、 蓄電装置の充電状 態 (S O C ) が所定のしきい値を下回ると起動される。 制御方法は、 第 6および 第 7のステップをさらに含む。 第 6のステップでは、 第 3のステップにおいて推 定された走行距離の方が第 1のステップにおいて設定された走行距離よりも大き いとき、 所定のしきい値に第 1のしきい値を設定する。 第 7のステップでは、 第 3のステップにおいて推定された走行距離の方が第 1のステップにおいて設定さ れた走行距離よりも小さいとき、 第 1のしきい値よりも大きい第 2のしきい値を 所定のしきい値に設定する。
この発明においては、 電動機走行モードで走行可能な距離が蓄電装置の S O C に基づいて推定され、 その推定された走行距離が、 設定された当該車両の走行距 離と比較される。 そして、 その比較結果に基づいて、 触媒コンバータを暖機する 暖機部が制御されるので、 設定された走行距離を電動機走行モードのみで走行可 能な場合には、 内燃機関の動作を前提とした触媒コンバータの暖機を防止し得る。 したがって、 この発明によれば、 触媒コンバータの不必要な暖機を防止して燃 費の悪化を防止することが可能となる。 図面の簡単な説明
図 1は、 この発明の実施の形態 1によるハイプリッド車両の全体ブロック図で ある。
図 2は、 図 1に示す H V— E C Uの機能ブロック図である。
図 3は、 蓄電装置の S O Cの変化を示した図である。
図 4は、 図 1に示す H V— E C Uによる触媒コンバータの暖機禁止制御に関す るフローチヤ一トである。 図 5は、 システム起動後に実行される触媒コンバータの暖機禁止制御に関する フローチヤ一トである。
図 6は、 実施の形態 2における HV— ECUの機能ブロック図である。
図 7は、 実施の形態 2における HV— ECUによるエンジン起動 S〇Cの設定 処理に関するフロ一チヤ一トである。
図 8は、 システム起動後に実行されるエンジン起動 SO Cの設定処理に関する フローチヤ一トである。
図 9は、 充電用インバータを別途備えたハイブリッド車両の全体ブロック図で ある。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を参照しながら詳細に説明する。 な お、 図中同一または相当部分には同一符号を付してその説明は繰返さない
[実施の形態 1]
図 1は、 この発明の実施の形態 1によるハイブリッド車両の全体ブロック図で ある。 図 1を参照して、 ハイブリッド車両 100は、 エンジン 2と、 排気通路 7 と、 触媒コンバータ 8と、 モータジェネレータ MG 1, MG2と、 動力分割機構 4と、 車輪 6とを備える。 また、 ハイブリッド車両 100は、 蓄電装置 10と、 昇圧コンバータ 20と、 インバータ 30, 40と、 正極線 PL 1, PL 2と、 負 極線 NL 1, NL 2と、 コンデンサ C l, C 2と、 電力線 ACL 1, ACL 2と、 コネクタ 1 10とをさらに備える。 さらに、 ハイブリッド車両 100は、 MG— ECU (Electric Control Unit) 50と、 EG— ECU60と、 HV— ECU 70と、 ナビゲーシヨン装置 80とをさらに備える。
このハイブリッド車両 100は、 エンジン 2およびモータジェネレータ MG 2 を動力源として走行する。 動力分割機構 4は、 エンジン 2とモータジェネレータ MG 1, MG 2とに結合されてこれらの間で動力を分配する。 たとえば、 動力分 割機構 4としては、 サンギヤ、 プラネタリキヤリャおよびリングギヤの 3つの回 転軸を有する遊星歯車機構を用いることができる。 この 3つの回転軸がエンジン 2およびモータジェネレータ MG 1, MG 2の各回転軸にそれぞれ接続される。 たとえば、 モータジェネレータ MG 1のロータを中空としてその中心にエンジン 2のクランク軸を通すことで動力分割機構 4にエンジン 2とモータジェネレータ MG 1, MG 2とを機械的に接続することができる。 なお、 モータジェネレータ MG 2の回転軸は、 図示されない減速ギヤや差動ギヤを介して車輪 6に連結され る。
そして、 モータジェネレータ MG 1は、 エンジン 2によって駆動される発電機 として動作し、 かつ、 エンジン 2の始動を行ない得る電動機として動作するもの としてハイブリッド車両 100に組込まれ、 モータジェネレータ MG 2は、 車輪 6を駆動する電動機としてハイプリッド車両 100に組込まれる。
触媒コンバータ 8は、 排気通路 7に設けられ、 エンジン 2から排出される排気 ガスの有害成分を浄化する。 触媒コンバータ 8は、 温度が低いと触媒が十分に活 性化されず、 触媒による排気浄化作用が十分に機能しない。 したがって、 触媒コ ンバータ 8を十分に機能させるためには、 触媒コンバータ 8を暖機することが必 要である。
蓄電装置 10は、 充電可能な直流電源であり、 たとえば、 ニッケル水素電池や リチウムイオン電池などの二次電池から成る。 蓄電装置 10は、 正極線 PL 1お よび負極線 NL 1を介して昇圧コンバータ 20に接続される。 蓄電装置 10は、 図示されない電圧センサおよび電流センサを含み、 蓄電装置 10の端子間電圧 V Bおよび充放電電流 I Bの検出値を HV— ECU 70へ出力する。 なお、 蓄電装 置 10を電気二重層キャパシタで構成してもよい。
昇圧コンバータ 20は、 正極線 P L 1および負極線 NL 1と正極線 P L 2およ び負極線 NL 2との間に設けられる。 昇圧コンバータ 20は、 MG— ECU50 からの駆動信号 PWCに基づいて、 正極線 PL 1と正極線 PL 2との間で電圧変 換を行なう。 なお、 この昇圧コンバータ 20は、 たとえば、 昇降圧チヨツバ回路 力 ら成る。
コンデンサ C 1は、 正極線 P L 1と負極線 NL 1との間に接続され、 正極線 P L 1と負極線 NL 1との間の電圧変動を平滑化する。 コンデンサ C2は、 正極線 P L 2と負極線 NL 2との間に接続され、 正極線 P L 2と負極線 NL 2との間の 電圧変動を平滑化する。 インバータ 30, 40は、 互いに並列して正極線 P L 2および負極線 NL 2に 接続される。 そして、 インバータ 30は、 MG— ECU 50からの駆動信号 PW I 1に基づいてモータジェネレータ MG 1をカ行/回生駆動し、 インバータ 40 は、 MG— ECU 50からの駆動信号 PW I 2に基づいてモータジェネレータ M G 2をカ行 回生駆動する。 なお、 インバータ 30, 40は、 たとえば、 三相分 のスィツチング素子を含むプリッジ回路から成る。
また、 インバータ 30, 40は、 コネクタ 1 10に接続される車両外部の電源 1 20から蓄電装置 10の充電が行なわれるとき、 電源 120から電力線 AC L 1, AC L 2を介してモータジェネレータ MG 1 , 1^02の中性点1^1, N2に 与えられる電力を MG— ECU 50からの駆動信号 PW I 1, PW I 2に基づい て直流電力に変換し、 その変換した直流電力を正極線 P L 2へ出力する。
モータジェネレータ MG 1 , MG2は、 三相交流回転電機であり、 たとえば、 永久磁石が埋設されたロータを備える三相交流同期電動機から成る。 モータジェ ネレ一タ MG 1は、 インバータ 30によって回生駆動され、 エンジン 2の動力を 用いて発電した三相交流電圧をインバータ 30へ出力する。 また、 モータジエネ レータ MG 1は、 エンジン 2の始動時、 インバータ 30によってカ行駆動され、 エンジン 2をクランキングする。 モータジェネレータ MG 2は、 インバータ 40 によってカ行駆動され、 車輪 6を駆動するための駆動力を発生する。 また、 モー タジェネレータ MG 2は、 車両の回生制動時、 インバータ 40によって回生駆動 され、 車輪 6から受ける回転力を用いて発電した三相交流電圧をインバータ 40 へ出力する。
MG-ECU 50は、 HV— ECU 70からの各モータジェネレータのトルク 指令値 TR、 ならびに図示されない各センサから送信された信号、 走行状況およ びアクセル開度などに基づいて、 昇圧コンバータ 20を駆動するための駆動信号 PWCおよびインバータ 30, 40をそれぞれ駆動するための駆動信号 PW I 1, PWI 2を生成し、 その生成した駆動信号 PWC, PWI 1, PWI 2をそれぞ れ昇圧コンバータ 20およびィンバータ 30, 40へ出力する。
また、 MG— ECU 50は、 HV— ECU 70から外部充電指令 EXCGを受 けているとき、 電源 120から電力線 ACL 1, AC L 2を介して中性点 N 1, N 2に与えられる交流電力を直流電力に変換して正極線 P L 2へ出力するように、 インバータ 30, 40を制御するための駆動信号 PW I 1 , PWI 2を生成する。 具体的には、 MG— ECU 50は、 中性点 N l, N 2に与えられる交流電力の入 力に応じて、 インバータ 30, 40の各々において各相アームを同時にスィッチ ング制御し、 インバータ 30, 40およびモータジェネレータ MG 1, MG2の コイルを単相 PWMコンバータとして動作させる。
EG— ECU60は、 イグニッションキーの状態やアクセル開度、 車両速度な どに基づいてエンジン 2を制御する。 ここで、 EG— ECU 60は、 HV— EC U 70から制御信号 CTL 1を受けると、 触媒コンバータ 8を暖機するための制 御 (以下 「暖機制御」 とも称する。 ) を行なう。 具体的には、 EG— ECU 60 は、 エンジン 2を始動させ、 吸気バルブの開閉タイミングを遅角させてエンジン 2を動作させる。 これにより、 エンジン 2からの排気ガスの熱量で触媒コンパ一 タ 8が暖機される。 また、 EG— ECU 60は、 HV— ECU 70から制御信号 C T L 2を受けると、 .触媒コンバ一タ 8の暖機制御を禁止し、 または暖機制御実 行中であれば暖機制御を停止する。 さらに、 EG— ECU60は、 HV— ECU 70から制御信号 CTL 3を受けると、 与えられる制御指令に従ってエンジン 2 を駆動制御する。
HV— ECU70は、 モータジェネレータ MG 1, MG2およびエンジン 2を 駆動制御するのに必要な制御指令を生成し、 その生成した制御指令を M G -EC U50および EG— ECU60へ出力する。
また、 HV_ ECU 70は、 現在位置から目的地までの走行距離 Lをナビゲー シヨン装置 80から受ける。 そして、 HV— ECU 70は、 後述の方法により、 エンジン 2を停止させてモ一タジエネレータ MG 2のみを用いて走行する E Vモ ード (なお、 以下では、 EVモードでの走行を 「EV走行」 とも称する。 ) で走 行距離 Lを走行可能か否かを判定し、 EVモードで走行距離 Lを走行可能と判断 すると、 EG— ECU60へ制御信号 CTL 2を出力する。 すなわち、 HV— E CU70は、 目的地までの走行距離 Lを EV走行可能と判断すると、 触媒コンパ —タ 8の暖機を禁止し、 または暖機制御中であれば触媒コンバータ 8の暖機を停 止する。 なお、 HV— ECU70は、 車両の走行状況や蓄電装置 10の SOCの低下に 応じてエンジン 2の始動が要求されると、 制御信号 CTL 2を非活性化する。 す なわち、 HV— ECU 70は、 エンジン 2の始動が要求されると、 触媒コンバー タ 8の暖機の禁止または停止を解除する。
ナビゲーシヨン装置 80は、 GP S (Global Positioning System) アンテナ や地図データを蓄えた ROM (Read Only Memory) などを用いてハイブリッド車 両 100の現在位置を検出する。 また、 ナビゲーシヨン装置 80は、 目的地の設 定機能を有し、 利用者により目的地が設定されると、 その旨を HV— ECU 70 へ出力するとともに、 現在位置から目的地までの走行距離 Lを算出して HV— E CU 70へ出力する。 なお、 ナビゲーシヨン装置 80は、 利用者により目的地が 再設定 (変更) された場合にも、 その旨および目的地までの走行距離 Lを HV— ECU70へ出力する。
なお、 ナビゲーシヨン装置 80において、 目的地を設定する代わりに走行距離 Lを直接設定できるようにしてもよレ、。 あるいは、 ナビゲーシヨン装置 80に代 えて、 走行距離 Lを入力可能な入力装置を設けてもよい。 さらに、 走行距離 と して、 予め定められた固定値が設定されるようにしてもよい。
図 2は、 図 1に示した HV— ECU 70の機能ブロック図である。 図 2を参照 して、 HV— ECU 70は、 30〇推定部210と、 EV走行可能距離推定部 2 20と、 比較部 230と、 暖機制御部 240と、 走行モ一ド制御部 250とを含 む。
50〇推定部210は、 蓄電装置 10の電圧 VBおよび電流 I Bの検出値に基 づいて、 蓄電装置 10の SOCを推定する。 なお、 蓄電装置 10の SOCの推定 手法については、 種々の公知の手法を用いることができる。
EV走行可能距離推定部 220は、 蓄電装置 10の SOCに基づいて、 EVモ 一ドで走行可能な距離を推定する。 たとえば、 E V走行可能距離推定部 220は、 蓄電装置 10の SOCから求まるエネルギー量と、 モータジェネレータ MG 2の みを用いて単位距離走行するのに必要なエネルギー量とに基づいて、 EVモ一ド で走行可能な距離を推定することができる。 なお、 EV走行可能距離推定部 22 0は、 目的地までの走路勾配に関する情報をナビゲーシヨン装置 80から取得し、 蓄電装置 10に回収される回生エネルギー量を加味して E V走行可能距離を推定 してもよレ、。
比較部 230は、 目的地までの走行距離 Lをナビゲーション装置 80から取得 し、 EV走行可能距離推定部 220によって推定された EV走行可能距離をその 走行距離 Lと比較する。 また、 比較部 230は、 車両のシステム起動状態を示す 信号 I Gがオフからオンとなったとき、 すなわち車両システムの起動時、 目的地 までの残存走行距離を走行距離 Lとしてナビゲーシヨン装置 80から取得し、 E V走行可能距離推定部 220によって改めて推定される EV走行可能距離をその 走行距離 Lと比較する。 そして、 比較部 230は、 EV走行可能距離と走行距離 Lとの比較結果を暖機制御部 240へ出力する。
暖機制御部 240は、 EG_ ECU 60による暖機制御の禁止 (または停止) およびその解除を制御する。 具体的には、 暖機制御部 240は、 EV走行可能距 離の方が走行距離しょりも大きいとの比較結果を比較部 230から受けると、 触 媒コンバータ 8の暖機の禁止または停止を指示する制御信号 CTL 2を EG— E CU60へ出力する。 また、 暖機制御部 240は、 上記と反対の比較結果を比較 部 230カゝら受けると、 制御信号 CTL 2を非活性化する。
また、 暖機制御部 240は、 走行モード制御部 250から現在の走行モードを 示すモード信号 MDを受ける。 そして、 走行モードが HVモード (エンジン 2を 動作させて走行する走行モード) のとき、 暖機制御部 240は、 制御信号 C T L 2を非活性化する。 すなわち、 エンジン 2の始動が要求されると、 暖機制御部 2 40は、 触媒コンバータ 8の暖機制御の禁止または停止を解除する。
走行モード制御部 250は、 アクセル開度、 車両速度、 シフト位置、 蓄電装置 10の SOC等に基づいて、 走行時にエンジン 2を作動させるか否か、 すなわち EVモードで走行するか HVモードで走行するかを制御する。 そして、 走行モー ド制御部 250は、 走行モードに応じてトルク指令値 TRを生成して MG— EC U 50へ出力する。 また、 走行モード制御部 250は、 走行モ一ドが HVモード のとき、 制御信号 CT L 3を EG— ECU 60へ出力する。 さらに、 走行モード 制御部 250は、 走行モードを示すモード信号 MDを暖機制御部 240へ出力す る。 なお、 特に図示していないが、 車両外部の電源 1 20から蓄電装置 10の充電 時、 HV— ECU70は、 外部充電指令 EXCGを EG— ECU 50へ出力する。 図 3は、 蓄電装置 10の SOCの変化を示した図である。 図 3を参照して、 時 刻 t 0において、 蓄電装置 10が満充電の状態からハイブリッド車両 100の走 行が開始されたとする。 時刻 t 1において蓄電装置 10の SOCが所定のしきい 値 S t hを下回るまでは、 エンジン 2は停止し、 蓄電装置 10に蓄えられている 電力を用いて走行する EV走行が行なわれる。 そして、 時刻 t lにおいて、 蓄電 装置 10の SOCがしきい値 S t hを下回ると、 エンジン 2が起動され、 走行モ 一ドは EVモードから HVモードに切替わる。
なお、 蓄電装置 10の温度が低いときは、 蓄電装置 10の出力が低下するので、 エンジン 2の始動に必要な電力を確保するためにしきい値 S t hを高めに補正し てもよレ、。 あるいは、 しきい値 S t hが比較的大きい場合には、 蓄電装置 10か らの放電量を多くして蓄電装置 10を昇温するために、 逆にしきい値 S t hを低 めに補正してもよレ、。 そして、 図 3からもわかるように、 EVモードでの走行距 離は、 しきい値 S t hによって変化するので、 図 2に示した EV走行可能距離推 定部 220において、 EV走行可能距離を蓄電装置 10の温度に応じて補正する ようにしてもよレ、。
図 4は、 図 1に示した HV— ECU70による触媒コンバータ 8の暖機禁止制 御に関するフローチャートである。 なお、 このフローチャートに示される処理は、 一定時間ごとまたは所定の条件の成立時にメィンルーチンから呼出されて実行さ れる。
図 4を参照して、 HV— ECU70は、 目的地までの走行距離 Lの設定 (目的 地の設定に基づいて走行距離 Lが算出された場合を含む。 ) があったことをナビ ゲ一シヨン装置 80から受けると (ステップ S 10において YE S) 、 その設定 された走行距離 Lをナビゲーシヨン装置 80から取得する (ステップ S 20) 。 なお、 HV— ECU70は、 走行距離 Lの再設定 (変更) があったときも、 再設 定された走行距離 Lをナビゲ一ション装置 80から取得する。
次いで、 HV— ECU 70は、 蓄電装置 10の電圧 VBおよび電流 I Bの検出 値に基づいて、 蓄電装置 10の SOCを推定する (ステップ S 30) 。 続いて、 HV— ECU70は、 その推定した SO Cに基づいて、 EVモードで走行可能な 距離を推定する (ステップ S 40) 。 なお、 上述のように、 蓄電装置 10の温度 に基づいて、 推定された EV走行可能距離を補正してもよい。
そして、 HV— ECU 70は、 推定された EV走行可能距離が、 設定された走 行距離 Lよりも大きいか否かを判定する (ステップ S 50) 。 EV走行可能距離 が走行距離 Lよりも大きいと判定されると (ステップ S 50において YES) 、 HV— ECU 70は、 エンジン 2の使用を前提とする触媒コンバータ 8の暖機は 不要であると判断し、 触媒コンバータ 8の暖機の禁止または停止を指示する (ス テツプ S 60) 。 具体的には、 HV— ECU 70は、 触媒コンバータ 8の暖機の 禁止または停止を指示する制御信号 CTL 2を EG— ECU 60へ出力する。 一方、 ステップ S 50において EV走行可能距離が走行距離 L以下であると判 定されると (ステップ S 50において NO) 、 HV— ECU 70は、 触媒コンパ ータ 8の暖機の禁止または停止を解除する (ステップ S 70) 。 具体的には、 H V— ECU70は、 EG— ECU60への制御信号 CTL 2を非活性化する。 し たがって、 必要なタイミング (たとえば蓄電装置 10の SOCが所定値を下回つ たとき) で制御信号 CT L 1が EG— ECU 60へ出力されると、 エンジン 2が 始動され、 触媒コンバータ 8の暖機が行なわれる。
なお、 HV_ ECU 70は、 触媒コンバータ 8の暖機の禁止または停止中にェ ンジン 2の始動が要求されると、 制御信号 C TL 2を非活性化して触媒コンバー タ 8の暖機の禁止または停止を解除する。
なお、 ナビゲーシヨン装置 80によって目的地までの走行距離 Lが設定された. 後、 その走行距離 Lよりも短い距離で車両システムが停止し、 再度車両システム が起動されるような場合 (たとえば、 目的地に到達する前に、 車両外部の電源 1 20から蓄電装置 10を充電したり、 休憩するような場合) 、 システム起動後に 利用者に走行距離 Lの設定を再度要求することなく上記制御が実行されることが 好ましい。
図 5は、 システム起動後に実行される触媒コンバータ 8の暖機禁止制御に関す るフローチャートである。 なお、 このフローチャートに示される処理は、 システ ム起動後の所定のタイミングに一度だけ実行される。 図 5を参照して、 HV— ECU70は、 車両のシステム起動状態を示す信号 I Gがオフからオンに切替わったか否かを判定する (ステップ S 1 10) 。 信号 I Gがオフからオンに切替わったと判定されると (ステップ S 1 10において YE S) 、 HV— ECU 70は、 目的地までの残存走行距離を走行距離 Lとしてナビ ゲーシヨン装置 80から取得する (ステップ S 1 20) 。
その後、 HV— ECU 70は、 ステップ S 1 30へ処理を移行する。 なお、 ス テツプ S 1 30〜S 170の処理は、 図 4に示したステップ S 30〜S 70の処 理とそれぞれ同じである。
以上のように、 この実施の形態 1においては、 EVモードで走行可能な距離が 蓄電装置 10の SOCに基づいて推定され、 その推定された EV走行可能距離が、 設定された走行距離 L (たとえば目的地までの走行距離) と比較される。 そして、 EV走行可能距離が走行距離しょりも大きいと、 触媒コンバータ 8の暖機制御が 禁止または停止される。 したがって、 この実施の形態 1によれば、 触媒コンパ一 タ 8の不必要な暖機を防止して燃費の悪化を防止することが可能となる。
また、 この実施の形態 1においては、 触媒コンバータ 8の暖機制御が禁止また は停止されている場合にも、 エンジン 2の始動要求があった場合には、 触媒コン バータ 8の暖機制御の禁止または停止が解除される。 したがって、 この実施の形 態 1によれば、 必要な場合に触媒コンバータ 8を適切に暖機することができる。 さらに、 この実施の形態 1によれば、 走行距離 Lが再設定された場合にも、 再 設定された走行距離 Lに基づいて触媒コンバータ 8の暖機禁止制御が行なわれる ので、 走行中に走行距離 Lが変更された場合にも対応することができる。
また、 さらに、 この実施の形態 1によれば、 設定された走行距離 Lよりも短い 距離で車両システムが停止した場合、 次回のシステム起動時に再度触媒コンパ一 タ 8の暖機禁止制御が実行されるので、 利用者は、 車両システムの起動時に走行 距離 Lを再度設定する必要はない。
[実施の形態 2]
実施の形態 2では、 蓄電装置 10の SOCに基づいて推定された EV走行可能 距離の方が設定された走行距離 Lよりも小さいとき、 EV走行可能距離が走行距 離 Lより大きい場合よりも、 エンジン 2が起動される SOC (以下 「エンジン起 動 SOC」 とも称する。 ) が高い値に設定される。 これにより、 エンジン起動後 の触媒暖機中の走行に必要な電力が確保される。
この実施の形態 2によるハイブリッド車両 10 OAの全体構成は、 図 1に示し た実施の形態 1によるハイプリッド車両 100と同じである。
図 6は、 実施の形態 2における HV— ECU 7 OAの機能ブロック図である。 図 6を参照して、 HV— ECU 7 OAは、 図 2に示した実施の形態 1における H V-ECU 70の構成において、 エンジン起動 SO C設定部 260をさらに備え る。
エンジン起動 SO C設定部 260は、 上記のエンジン起動 SO Cを設定する。 すなわち、 エンジン起動 SOC設定部 260は、 EVモードから HVモードへ走 行モードが切替わるしきい値 S t h (図 3) を設定する。 ここで、 エンジン起動 SOC設定部 260は、 EV走行可能距離の方が走行距離しょりも大きいとの比 較結果を比較部 230から受けると、 エンジン起動 SO Cに規定値 SO C 1を設 定する。
また、 エンジン起動 SO C設定部 260は、 比較部 230から上記と反対の比 較結果を受けると、 エンジン起動後の触媒暖機中の走行に必要な電力を確保する ことを目的として、 規定値 SOC 1よりも大きい規定値 SOC 2をエンジン起動 SOCに設定する。 そして、 走行モード制御部 250は、 エンジン起動 SO C設 定部 260によって設定されたエンジン起動 SO Cを用いて、 走行モードの切替 を実施する。
図 7は、 実施の形態 2における HV— ECU 7 OAによるエンジン起動 SO C の設定処理に関するフローチャートである。 なお、 このフローチャートに示され る処理も、 一定時間ごとまたは所定の条件の成立時にメィンル一チンから呼出さ れて実行される。
図 7を参照して、 ステップ S 210〜S 250の処理は、 図 4に示したステツ プ S 10〜S 50の処理とそれぞれ同じである。
ステップ S 250において EV走行可能距離が走行距離 Lよりも大きいと判定 されると (ステップ S 250において YE S) 、 HV— ECU70Aは、 ェンジ ン起動 SOCに規定値 SOC 1を設定する (ステップ S 260) 。 一方、 ステツ 'プ S 250において EV走行可能距離が走行距離 L以下であると判定されると (ステップ S 250において NO) 、 HV— ECU70Aは、 規定値 SOC 1よ りも大きい規定値 SOC 2をエンジン起動 S OCに設定する (ステップ S 27 0) 。
なお、 HV— ECU 7 OAのその他の機能は、 実施の形態 1における H V— E
CU 70と同じである。
なお、 ナビゲーシヨン装置 80によって目的地までの走行距離 Lが設定された 後、 その走行距離 Lよりも短い距離で車両システムが停止し、 再度車両システム が起動されるような場合、 システム起動後に利用者に走行距離 Lの設定を再度要 求することなく上記処理が実行されることが好ましい。
図 8は、 システム起動後に実行されるエンジン起動 S O Cの設定処理に関する フローチャートである。 なお、 このフローチャートに示される処理は、 システム 起動後の所定のタイミングに一度だけ実行される。
図 8を参照して、 HV— ECU 7 OAは、 車両のシステム起動状態を示す信号 I Gがオフからオンに切替わったか否かを判定する (ステップ S 310) 。 信号 I Gがオフからオンに切替わったと判定されると (ステップ S 310において Y ES) 、 HV— ECU 7 OAは、 ステップ S 320へ処理を移行する。 なお、 ス テツプ S 320の処理は、 図 5に示したステップ S 120の処理と同じであり、 ステップ S 330〜S 370の処理は、 図 7に示したステップ S 230-S 27 0の処理とそれぞれ同じである。
以上のように、 この実施の形態 2においては、 EV走行可能距離が走行距離 L 以下のとき、 EV走行可能钜離が走行距離 Lより大きい場合よりもエンジン起動 S〇 Cが高い値に設定されるので、 ェンジン起動後の触媒暖機中の走行に必要な 電力が確保される。 すなわち、 触媒コンバータ 8の暖機が確実に行なわれる。 し たがって、 この実施の形態 2によれば、 触媒コンバータ 8の排気浄化作用の低下 を防止することができる。
なお、 上記の各実施の形態においては、 車両外部の電源 1 20から蓄電装置 1 0の充電が行なわれるとき、 モータジェネレータ MG 1, 1^02の中性点1^1, N 2から充電電力を入力するものとしたが、 充電用の専用インバータを別途設け てもよい。
図 9は、 充電用インバータを別途備えたハイブリッド車両の全体ブロック図で ある。 図 9を参照して、 ハイブリッド車両 1 0 0 Bは、 図 1に示したハイブリツ ド車両 1 0 0の構成において、 充電用インバータ 1 3 0をさらに備える。
充電用インバータ 1 3 0は、 正極線 P L 2および負極線 N L 2に接続され、 車 両外部の電源 1 2 0 (たとえば系統電源) からコネクタ 1 1 0に与えられる交流 電力を直流電力に変換して正極線 P L 2および負極線 N L 2へ出力する。
そして、 充電用インバータ 1 3 0から正極線 P L 2および負極線 N L 2に供給 される直流電力を昇圧コンバータ 2 0により蓄電装置 1 0の電圧レベルに変換し て蓄電装置 1 0を充電することができる。
なお、 ハイブリッド車両 1 0 0 Bのその他の構成は、 ハイブリッド車両 1 0 0 と同じである。 また、 この図 9では、 各 E C Uについては図示していない。 なお、 上記の各実施の形態においては、 車両外部の電源 1 2 0から蓄電装置 1 0を充電可能なハイプリッド車両について説明したが、 この発明の適用範囲は、 そのような外部充電機能を有するハイブリッド車両に限定されるものではない。 但し、 外部充電機能を有するハイプリッド車両は、 蓄電装置 1 0が満充電の状態 から E Vモードで長距離 (たとえば 1 0 k m以上) 走行可能であるので、 近距離 使用のユーザのもとでは、 エンジン 2の動作を前提とした触媒コンバータ 8の暖 機が不必要なケースが多くなる。 したがって、 この発明は、 外部充電機能を有す るハイブリッド車両に特に好適である。
また、 上記においては、 ナビゲーシヨン装置 8 0において目的地を設定し、 現 在位置からその目的地までの走行距離 Lを算出するものとしたが、 ナビゲーショ ン装置 8 0に代えて、 利用者が走行距離 Lを直接入力可能な入力装置を設けても よい。 なお、 この場合、 システム起動時の目的地までの走行距離 Lの算出につい ては、 利用者により走行距離が設定されてからの実走行距離を記憶し、 利用者に より設定された走行距離から実走行距離を減算した残存走行距離をシステム起動 時の目的地までの走行距離とすることができる。
また、 走行距離 Lとして予め定められた固定値を設定するようにしてもよい。 この場合、 システム起動時の蓄電装置 1 0の充電量が多いときには、 システム起 動時の触媒コンバータ 8の暖機制御を禁止することができる。
また、 上記においては、 ナビゲーシヨン装置 8 0において目的地が設定された とき、 あるいは目的地に到達する前にシスデム停止 起動が行なわれた場合に、 触媒コンバータ 8の暖機禁止制御やエンジン起動 S O Cの設定処理を行なうもの としたが、 定期的に、 または所定距離走行ごとに、 上記暖機禁止制御やエンジン 起動 S O C設定処理を行なうようにしてもよレ、。
また、 上記においては、 エンジン 2からの排気ガスの熱量で触媒コンバータ 8 を暖機するものとしたが、 触媒コンバータ 8を暖機するためのヒータを設けて触 媒コンバータ 8を暖機してもよい。 この場合にも、 触媒コンバータ 8の不必要な 暖機を防止することによって不要な電力消費を防止することができ、 その結果、 燃費の悪化を防止できる。
また、 上記においては、 ハイブリッド車両は、 動力分割機構 4によりエンジン 2の動力を車軸とモータジェネレータ MG 1とに分割して伝達可能なシリーズ/ パラレル型とした。 しかしながら、 この発明は、 モータジェネレータ MG 1を駆 動するためにのみエンジン 2を用い、 モータジェネレータ MG 2でのみ車両の駆 動力を発生する、 いわゆるシリーズ型のハイプリッド車両にも適用可能である。 なお、 シリーズ型のハイブリッド車両の場合には、 蓄電装置が満充電の状態か ら、 エンジンを停止した E V走行が開始され、 蓄電装置の S O Cが所定のしきい 値まで低下すると、 エンジンが発電機を駆動するために始動し、 その後エンジン で発電しながらの E V走行が行なわれる。
なお、 上記において、 エンジン 2は、 この発明における 「内燃機関」 に対応し、 モータジェネレータ MG 2は、 この発明における 「電動機」 に対応する。 また、 エンジン 2および E G— E C U 6 0は、 この発明における 「暖機部」 を形成し、 ナビゲーシヨン装置 8 0は、 この発明における 「設定部」 に対応する。 さらに、 E V走行可能距離推定部 2 2 0は、 この発明における 「推定部」 に対応し、 暖機 制御部 2 4 0は、 この発明における 「制御部」 に対応する。
また、 さらに、 エンジン起動 S O C設定部 2 6 0は、 この発明における 「しき い値設定部」 に対応し、 インバータ 3 0, 4 0、 モータジェネレータ MG 1, M G 2、 電力線 A C L 1 , A C L 2およびコネクタ 1 1 0は、 この発明における 「充電部」 を形成する。 また、 さらに、 充電用インバータ 1 3 0およびコネクタ 1 1 0も、 この発明における 「充電部」 を形成する。
今回開示された実施の形態は、 すべての点で例示であって制限的なものではな いと考えられるべきである。 本発明の範囲は、 上記した実施の形態の説明ではな くて請求の範囲によって示され、 請求の範囲と均等の意味および範囲内でのすべ ての変更が含まれることが意図される。

Claims

請求の範囲
1 . 内燃機関と車両走行用の動力源としての電動機とを搭載するハイプリッド車 両 あって、
前記内燃機関から排出される排気ガスを浄化する触媒コンバータと、
前記触媒コンバータを暖機する暖機手段と、 .
当該車両の走行距離を設定するための設定手段と、
前記内燃機関を停止させ、 かつ、 前記電動機を駆動して走行する電動機走行モ 一ドで走行可能な距離を、 前記電動機に電力を供給する蓄電装置の充電状態に基 づいて推定する推定手段と、
前記推定手段により推定された走行距離を前記設定手段により設定された走行 距離と比較する比較手段と、
前記比較手段の比較結果に基づいて前記暖機手段を制御する制御手段とを備え るハイブリッド車両。
2 . 前記制御手段は、 前記推定手段により推定された走行距離の方が前記設定手 段により設定された走行距離よりも大きいとき、 前記暖機手段による前記触媒コ ンバータの暖機を禁止する、 請求の範囲 1に記載のハイブリッド車両。
3 . 前記制御手段は、 前記触媒コンバータの暖機禁止中に前記内燃機関の始動が 要求されたとき、 前記暖機手段による前記触媒コンバータの暖機の禁止を解除す る、 請求の範囲 2に記載のハイブリッド車両。
4 . 前記比較手段は、 前記設定手段により当該車両の走行距離が再設定されると、 その再設定された走行距離を前記推定手段により推定された走行距離と比較し、 前記制御手段は、 その比較結果に基づいて前記暖機手段を制御する、 請求の範 囲 1に記載のハイブリッド車両。
5 . 前記比較手段は、 前記暖機手段による前記触媒コンバータの暖機中に前記設 定手段により当該車両の走行距離が再設定されると、 その再設定された走行距離 を前記推定手段により推定された走行距離と比較し、
前記制御手段は、 前記推定手段により推定された走行距離の方が前記再設定さ れた走行距離よりも大きいとき、 前記暖機手段による前記触媒コンバータの暖機 を停止する、 請求の範囲 1に記載のハイブリッド車両。
6 . 前記設定手段により設定された走行距離よりも短い距離で当該車両のシステ ムが停止した場合、
前記比較手段は、 次回のシステム起動時、 前記設定された走行距離に対する残 存距離を前記推定手段により推定された走行距離と比較し、
前記制御手段は、 その比較結果に基づいて前記暖機手段を制御する、 請求の範 囲 1に記載のハイブリッド車両。
7 . 前記蓄電装置を充電するための電力を前記内燃機関の動力を用いて発生する 発電手段をさらに備え、
前記内燃機関は、 前記蓄電装置の充電状態が所定のしきい値を下回ると起動さ れ、
当該ハイブリッド車両は、
前記推定手段により推定された走行距離の方が前記設定手段により設定された 走行距離よりも大きいとき、 前記所定のしきい値に第 1のしきい値を設定し、 前 記推定手段により推定された走行距離の方が前記設定手段により設定された走行 距離よりも小さいとき、 前記第 1のしきい値よりも大きい第 2のしきい値を前記 所定のしきい値に設定するしきい値設定手段をさらに備える、 請求の範囲 1に記 載のハイブリッド車両。
8 . 当該車両の外部から与えられる電力を受けて前記蓄電装置を充電するための 充電手段をさらに備える、 請求の範囲 1に記載のハイズリッド車両。
9 . 前記設定手段は、 当該車両の目的地を設定可能なナビゲーシヨン装置を含み、 前記ナビゲーシヨン装置は、 設定された目的地に基づいて当該車両の走行距離 を算出する、 請求の範囲 1に記載のハイプリッド車両。
1 0 . 前記設定手段は、 当該車両の走行距離を入力可能な入力装置を含む、 請求 の範囲 1に記載のハイブリッド車両。
1 1 . 前記設定手段は、 予め定められた固定値を当該車両の走行距離として設定 する、 請求の範囲 1に記載のハイブリッド車両。
1 2 . 内燃機関と車両走行用の動力源としての電動機とを搭載するハイプリッド 車両の制御方法であって、 前記ハイブリッド車両は、
前記内燃機関から排出される排気ガスを浄化する触媒コンバータと、
前記触媒コンバータを暖機する暖機手段とを備え、
前記制御方法は、
当該車両の走行距離を設定する第 1のステップと、
前記電動機に電力を供給する蓄電装置の充電状態を推定する第 2のステップと、 前記内燃機関を停止させ、 かつ、 前記電動機を駆動して走行する電動機走行モ 一ドで走行可能な距離を、 前記推定された充電状態に基づいて推定する第 3のス テツプと、
その推定された走行距離を前記第 1のステップにおいて設定された走行距離と 比較する第 4のステップと、
その比較結果に基づいて前記暖機手段を制御する第 5のステップとを含む、 ハ イブリツド車両の制御方法。
1 3 . 前記ハイプリッド車両は、 前記蓄電装置を充電するための電力を前記内燃 機関の動力を用いて発生する発電手段をさらに備え、
前記内燃機関は、 前記蓄電装置の充電状態が所定のしきい値を下回ると起動さ れ、
前記制御方法は、
前記第 3のステップにおいて推定された走行距離の方が前記第 1のステップに おいて設定された走行距離よりも大きいとき、 前記所定のしきい値に第 1のしき い値を設定する第 6のステップと、
前記第 3のステップにおいて推定された走行距離の方が前記第 1のステップに おいて設定された走行距離よりも小さいとき、 前記第 1のしきい値よりも大きい 第 2のしきレ、値を前記所定のしきい値に設定する第 7のステップとをさらに含む、 請求の範囲 1 2に記載のハイブリッド車両の制御方法。
1 4 . 内燃機関と車両走行用の動力源としての電動機とを搭載するハイプリッド 車両であって、
前記内燃機関から排出される排気ガスを浄化する触媒コンバータと、
前記触媒コンバータを暖機する暖機装置と、 当該車両の走行距離を設定する設定装置と、
一連の処理を実行する制御装置とを備え、
前記制御装置は、 前記内燃機関を停止させ、 かつ、 前記電動機を駆動して走行 する電動機走行モードで走行可能な距離を、 前記電動機に電力を供給する蓄電装 置の充電状態に基づいて推定し、 その推定された走行距離を前記設定装置により 設定された走行距離と比較し、 その比較結果に基づいて前記暖機装置を制御する、 ハイブリッド車両。
1 5 . 前記制御 置は、.前記推定された走行距離の方が前記設定装置により設定 された走行距離よりも大きいとき、 前記暖機装置による前記触媒コンバータの暖 機を禁止する、 請求の範囲 1 4に記載のハイプリッド車両。
1 6 . 前記制御装置は、 前記触媒コンバータの暖機禁止中に前記内燃機関の始動 が要求されたとき、 前記暖機装置による前記触媒コンバータの暖機の禁止を解除 する、 請求の範囲 1 5に記載のハイプリッド車両。
1 7 . 前記制御装置は、 前記設定装置により当該車両の走行距離が再設定される と、 その再設定された走行距離を前記推定された走行距離と比較し、 その比較結 果に基づいて前記暖機装置を制御する、 請求の範囲 1 4に記載のハイプリッド車 両。
1 8 . 前記制御装置は、 前記暖機装置による前記触媒コンバータの暖機中に前記 設定装置により当該車両の走行距離が再設定されると、 その再設定された走行距 離を前記推定された走行距離と比較し、 前記推定された走行距離の方が前記再設 定された走行距離よりも大きいとき、 前記暖機装置による前記触媒コンバータの 暖機を停止する、 請求の範囲 1 4に記載のハイプリッド車両。
1 9 . 前記設定装置により設定された走行距離よりも短い距離で当該車両のシス テムが停止した場合、
前記制御装置は、 次回のシステム起動時、 前記設定された走行距離に対する残 存距離を前記推定された走行距離と比較し、 その比較結果に基づいて前記暖機装 置を制御する、 請求の範囲 1 4に記載のハイプリッド車両。
2 0 . 前記蓄電装置を充電するための電力を前記内燃機関の動力を用いて発生す る発電装置をさらに備え、 前記内燃機関は、 前記蓄電装置の充電状態が所定のしきレ、値を下回ると起動さ れ、
前記制御装置は、 前記推定された走行距離の方が前記設定装置により設定され た走行距離よりも大きいとき、 前記所定のしきい値に第 1のしきい値を設定し、 前記推定された走行距離の方が前記設定装置により設定された走行距離よりも小 さいとき、 前記第 1のしきい値よりも大きい第 2のしきい値を前記所定のしきい 値に設定する、 請求の範囲 1 4に記載のハイプリッド車両。
2 1 . 当該車両の外部から与えられる電力を受けて前記蓄電装置を充電する充電 装置をさらに備える、 請求の範囲 1 4に記載のハイプリッド車両。
2 2 . 前記設定装置は、 当該車両の目的地を設定可能なナビゲーシヨン装置を含 み、
前記ナビゲーション装置は、 設定された目的地に基づいて当該車両の走行距離 を算出する、 請求の範囲 1 4に記載のハイプリッド車両。
2 3 . 前記設定装置は、 当該車両の走行距離を入力可能な入力装置を含む、 請求 の範囲 1 4に記載のハイブリッド車両。
2 4 . 前記設定装置は、 予め定められた固定値を当該車両の走行距離として設定 する、 請求の範囲 1 4に記載のハイプリッド車両。
PCT/JP2007/072247 2006-11-15 2007-11-09 Véhicule hybride et son procédé de commande WO2008059944A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/311,788 US8774993B2 (en) 2006-11-15 2007-11-09 Hybrid vehicle and method of controlling the same
EP07831977.9A EP2083156B1 (en) 2006-11-15 2007-11-09 Hybrid vehicle and its control method
CN2007800425137A CN101542095B (zh) 2006-11-15 2007-11-09 混合动力车辆及其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006309159A JP4862621B2 (ja) 2006-11-15 2006-11-15 ハイブリッド車両およびその制御方法
JP2006-309159 2006-11-15

Publications (1)

Publication Number Publication Date
WO2008059944A1 true WO2008059944A1 (fr) 2008-05-22

Family

ID=39401746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072247 WO2008059944A1 (fr) 2006-11-15 2007-11-09 Véhicule hybride et son procédé de commande

Country Status (5)

Country Link
US (1) US8774993B2 (ja)
EP (1) EP2083156B1 (ja)
JP (1) JP4862621B2 (ja)
CN (1) CN101542095B (ja)
WO (1) WO2008059944A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011000259A1 (zh) * 2009-07-03 2011-01-06 芜湖普威技研有限公司 电动汽车发电机组的控制方法
EP2404801A1 (en) * 2009-03-05 2012-01-11 Toyota Jidosha Kabushiki Kaisha Charge/discharge control system for hybrid vehicle, and control method therefor
EP2441632A1 (en) * 2009-06-10 2012-04-18 Toyota Jidosha Kabushiki Kaisha Power supply system for electric vehicle and method for controlling same
CN103707878A (zh) * 2013-05-10 2014-04-09 上海埃士工业科技有限公司 基于行程规划的混合动力控制方法及系统
CN106677867A (zh) * 2015-11-11 2017-05-17 福特环球技术公司 用于排气暖机策略的系统和方法

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120207620A1 (en) * 2007-07-12 2012-08-16 Odyne Systems, LLC. Hybrid vehicle drive system and method and idle reduction system and method
US8288885B2 (en) * 2008-06-03 2012-10-16 Honeywell International Inc. Method and system for improving electrical load regeneration management of an aircraft
JP4911128B2 (ja) * 2008-06-30 2012-04-04 トヨタ自動車株式会社 内燃機関の制御装置
JP5537013B2 (ja) * 2008-10-15 2014-07-02 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
JP5077195B2 (ja) 2008-11-11 2012-11-21 アイシン・エィ・ダブリュ株式会社 走行支援装置、方法およびプログラム
JP5217991B2 (ja) * 2008-12-09 2013-06-19 トヨタ自動車株式会社 ハイブリッド車およびその制御方法
JP5245899B2 (ja) * 2009-02-19 2013-07-24 トヨタ自動車株式会社 ハイブリッド車およびその制御方法
JP5201013B2 (ja) * 2009-03-09 2013-06-05 アイシン・エィ・ダブリュ株式会社 温度調整装置、温度調整方法および温度調整プログラム
EP2230119A3 (en) * 2009-03-17 2011-02-23 Yang,, An-Tao Anthony Hybrid propulsion system
JP5218205B2 (ja) * 2009-03-27 2013-06-26 トヨタ自動車株式会社 ハイブリッド車両
US8170737B2 (en) * 2009-04-30 2012-05-01 GM Global Technology Operations LLC Method of controlling vehicle powertrain and vehicle control system
JP5163811B2 (ja) * 2009-05-19 2013-03-13 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
JP2010280250A (ja) * 2009-06-02 2010-12-16 Denso Corp 動力発生源制御装置
RU2519018C2 (ru) * 2009-06-25 2014-06-10 Хонда Мотор Ко., Лтд. Устройство управления выходной мощностью
FR2950593B1 (fr) * 2009-09-28 2012-02-24 Renault Sa Procede de prechauffage du catalyseur d'un prolongateur d'autonomie et dispositif correspondant
JP5177324B2 (ja) * 2010-03-30 2013-04-03 トヨタ自動車株式会社 車両用制御装置および車両用制御方法
JP5418785B2 (ja) * 2010-06-03 2014-02-19 三菱自動車工業株式会社 ハイブリッド車両の蓄電制御装置
AT508065B1 (de) * 2010-06-24 2012-09-15 Avl List Gmbh Verfahren zum betreiben eines elektrofahrzeuges
US20120035792A1 (en) * 2010-08-04 2012-02-09 Daimler Ag Hybrid Motor Vehicle Device
DE102010045032A1 (de) * 2010-09-10 2012-03-15 Audi Hungaria Motor Kft. Kraftwagen mit elektrischem Antrieb und Batterie sowie Verfahren zum Betreiben einer Einrichtung zum Laden einer Batterie
GB2486709B (en) 2010-12-23 2017-10-11 Jaguar Land Rover Ltd Hybrid electric vehicle controller and method of controlling a hybrid electric vehicle
US8670885B2 (en) * 2011-01-06 2014-03-11 Ford Global Technologies, Llc Information display system and method
EP2669131B1 (en) * 2011-01-24 2015-02-25 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
US8818589B2 (en) 2011-01-28 2014-08-26 Ford Global Technologies, Llc System and method for controlling a vehicle
US9610934B2 (en) * 2011-02-21 2017-04-04 Toyota Jidosha Kabushiki Kaisha Control device of hybrid vehicle
JP5899674B2 (ja) * 2011-06-15 2016-04-06 日産自動車株式会社 ハイブリッド車両の制御装置
FR2977404B1 (fr) * 2011-06-28 2017-06-02 Valeo Systemes De Controle Moteur Procede et systeme de gestion de l’energie d’un vehicule hybride
CN103796888B (zh) * 2011-09-13 2016-04-20 丰田自动车株式会社 车辆的控制装置和控制方法
JP5897885B2 (ja) * 2011-11-25 2016-04-06 トヨタ自動車株式会社 ハイブリッド車両
KR101684500B1 (ko) * 2011-12-06 2016-12-09 현대자동차 주식회사 하이브리드 차량의 엔진 제어 방법
DE102012210103A1 (de) * 2012-06-15 2013-12-19 Robert Bosch Gmbh Reichweitenbestimmung für ein Kraftfahrzeug
US9090243B2 (en) * 2012-06-15 2015-07-28 Fca Us Llc Hybrid vehicle control
ES2921479T3 (es) * 2012-07-19 2022-08-26 Fpt Motorenforschung Ag Sistema para controlar la temperatura de un sistema de postratamiento de gases de escape de un motor de combustión
JP5803964B2 (ja) * 2013-03-25 2015-11-04 トヨタ自動車株式会社 ハイブリッド自動車
JP5999057B2 (ja) * 2013-09-24 2016-09-28 トヨタ自動車株式会社 移動支援装置、移動支援方法、及び運転支援システム
JP6217289B2 (ja) * 2013-10-02 2017-10-25 株式会社デンソー ハイブリッド車制御装置
JP5967051B2 (ja) * 2013-10-21 2016-08-10 トヨタ自動車株式会社 移動支援装置、移動支援方法、及び運転支援システム
JP5920315B2 (ja) * 2013-11-06 2016-05-18 トヨタ自動車株式会社 車両
JP6298322B2 (ja) * 2014-02-27 2018-03-20 株式会社ゼンリン 経路探索装置、経路探索方法およびプログラム
US9067589B1 (en) * 2014-02-28 2015-06-30 Ford Global Technologies, Llc Hybrid powertrain mode determination based on spatial domain route segmentation
CN104828075B (zh) * 2014-11-20 2017-08-04 北汽福田汽车股份有限公司 混合动力车辆的能量消耗模式选择方法和系统
JP2016120853A (ja) * 2014-12-25 2016-07-07 トヨタ自動車株式会社 ハイブリッド自動車の制御装置
JP6369327B2 (ja) * 2014-12-25 2018-08-08 株式会社デンソー 電子制御装置
KR102237065B1 (ko) * 2015-07-21 2021-04-06 현대자동차 주식회사 하이브리드 차량의 제어 시스템 및 그 제어 방법
JP6797928B2 (ja) 2015-10-19 2020-12-09 ユニバーシティー・オブ・ノース・テキサス 排出流から脅威と源の点とを位置特定するための可搬型化学物質検出デバイスのための動的な逆気体積層モデル
JP6500817B2 (ja) * 2016-03-15 2019-04-17 トヨタ自動車株式会社 ハイブリッド車両
CN109070874B (zh) 2016-05-03 2022-04-19 沃尔沃卡车集团 用于运行混合动力车辆的方法
US10112597B2 (en) * 2016-08-23 2018-10-30 Ford Global Technologies, Llc Automatic drive mode selection
DE102016222448A1 (de) * 2016-11-16 2018-05-17 Bayerische Motoren Werke Aktiengesellschaft Betriebsverfahren für ein Hybridfahrzeug
KR101923933B1 (ko) * 2016-12-16 2018-11-30 현대자동차주식회사 하이브리드 자동차 및 그를 위한 주행 모드 제어 방법
US10753763B2 (en) * 2017-04-10 2020-08-25 Chian Chiu Li Autonomous driving under user instructions
KR102343956B1 (ko) * 2017-07-31 2021-12-27 현대자동차주식회사 하이브리드 자동차 및 그를 위한 주행 모드 제어 방법
KR102343955B1 (ko) * 2017-07-31 2021-12-27 현대자동차주식회사 하이브리드 자동차 및 그를 위한 주행 모드 제어 방법
JP6992460B2 (ja) * 2017-12-05 2022-01-13 トヨタ自動車株式会社 ハイブリッド自動車およびこれに搭載される制御装置
US10793135B2 (en) * 2018-01-12 2020-10-06 Ford Global Technologies, Llc Hybrid electric vehicle fuel conservation system
US11117566B2 (en) * 2018-05-08 2021-09-14 Ford Global Technologies, Llc Methods and systems of a hybrid vehicle
US11131376B2 (en) * 2018-09-14 2021-09-28 Brian K Ott Multisection speed/torque compensating electro-mechanical energy-conversion device
JP7067387B2 (ja) * 2018-09-21 2022-05-16 トヨタ自動車株式会社 ハイブリッド車両の制御装置
KR102537877B1 (ko) * 2018-11-01 2023-05-30 현대자동차주식회사 하이브리드 자동차 및 그를 위한 주행 제어 방법
DE102019101782A1 (de) * 2019-01-24 2020-07-30 Bayerische Motoren Werke Aktiengesellschaft Systeme und Verfahren zur Steuerung eines Fahrmodus
JP6699766B2 (ja) * 2019-01-29 2020-05-27 トヨタ自動車株式会社 ハイブリッド車両
US11834050B2 (en) 2019-02-28 2023-12-05 Hitachi Astemo, Ltd. System and method for predictive pre-warming control of hybrid electric vehicles (HEV)
JP2021127001A (ja) * 2020-02-13 2021-09-02 本田技研工業株式会社 制御装置及びプログラム
CN113844433A (zh) * 2020-06-25 2021-12-28 丰田自动车株式会社 混合动力车辆的控制系统及控制方法
US11794717B2 (en) * 2021-05-02 2023-10-24 Cummins Inc. Power management for hybrid electric vehicles
CN113847126B (zh) * 2021-09-10 2022-09-27 东风汽车集团股份有限公司 混动车辆及其ecu,gpf的被动再生控制方法和装置
JP2023097029A (ja) 2021-12-27 2023-07-07 スズキ株式会社 ハイブリッド車両の制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343401A (ja) * 2001-05-11 2002-11-29 Toyota Motor Corp 燃料電池を備えるエネルギ出力装置
JP2003032807A (ja) * 2001-07-18 2003-01-31 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2003153402A (ja) * 2001-11-12 2003-05-23 Toyota Motor Corp 二次電池制御装置
JP2003269208A (ja) 2002-03-12 2003-09-25 Toyota Motor Corp 車両制御装置
JP2004162534A (ja) * 2002-11-11 2004-06-10 Nissan Motor Co Ltd ハイブリッド車の駆動制御装置
WO2005012023A1 (en) 2003-07-30 2005-02-10 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method of vehicle
WO2005068245A1 (ja) 2004-01-16 2005-07-28 Yamaha Hatsudoki Kabushiki Kaisha ハイブリッド車両

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2914057B2 (ja) 1992-11-16 1999-06-28 日産自動車株式会社 ハイブリッド自動車
JPH08237810A (ja) 1995-02-27 1996-09-13 Aqueous Res:Kk ハイブリッド車両
JP3264123B2 (ja) * 1995-03-06 2002-03-11 三菱自動車工業株式会社 ハイブリッド電気自動車用ナビゲーションシステム
US5785137A (en) * 1996-05-03 1998-07-28 Nevcor, Inc. Hybrid electric vehicle catalyst control
DE60007917T2 (de) 1999-05-26 2004-10-28 Toyota Jidosha K.K., Toyota Hybrid Kraftfahrzeug mit eingebauten Brennstoffzellen und Steuerverfahren dafür
JP4337188B2 (ja) * 1999-06-25 2009-09-30 トヨタ自動車株式会社 ハイブリッド式移動体およびその制御方法
US6814170B2 (en) 2001-07-18 2004-11-09 Nissan Motor Co., Ltd. Hybrid vehicle
JP2005146910A (ja) * 2003-11-12 2005-06-09 Nissan Motor Co Ltd ハイブリッド車両及びその制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343401A (ja) * 2001-05-11 2002-11-29 Toyota Motor Corp 燃料電池を備えるエネルギ出力装置
JP2003032807A (ja) * 2001-07-18 2003-01-31 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2003153402A (ja) * 2001-11-12 2003-05-23 Toyota Motor Corp 二次電池制御装置
JP2003269208A (ja) 2002-03-12 2003-09-25 Toyota Motor Corp 車両制御装置
JP2004162534A (ja) * 2002-11-11 2004-06-10 Nissan Motor Co Ltd ハイブリッド車の駆動制御装置
WO2005012023A1 (en) 2003-07-30 2005-02-10 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method of vehicle
WO2005068245A1 (ja) 2004-01-16 2005-07-28 Yamaha Hatsudoki Kabushiki Kaisha ハイブリッド車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2083156A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2404801A1 (en) * 2009-03-05 2012-01-11 Toyota Jidosha Kabushiki Kaisha Charge/discharge control system for hybrid vehicle, and control method therefor
EP2404801A4 (en) * 2009-03-05 2012-10-31 Toyota Motor Co Ltd LOAD / DISCHARGE CONTROL SYSTEM FOR A HYBRID VEHICLE AND CONTROL METHOD THEREFOR
EP2441632A1 (en) * 2009-06-10 2012-04-18 Toyota Jidosha Kabushiki Kaisha Power supply system for electric vehicle and method for controlling same
EP2441632A4 (en) * 2009-06-10 2013-10-16 Toyota Motor Co Ltd POWER SUPPLY SYSTEM FOR ELECTRIC VEHICLE AND ITS CONTROL METHOD
WO2011000259A1 (zh) * 2009-07-03 2011-01-06 芜湖普威技研有限公司 电动汽车发电机组的控制方法
CN101596902B (zh) * 2009-07-03 2013-03-06 奇瑞汽车股份有限公司 一种电动汽车发电机组的控制方法
CN103707878A (zh) * 2013-05-10 2014-04-09 上海埃士工业科技有限公司 基于行程规划的混合动力控制方法及系统
CN106677867A (zh) * 2015-11-11 2017-05-17 福特环球技术公司 用于排气暖机策略的系统和方法
CN106677867B (zh) * 2015-11-11 2020-06-26 福特环球技术公司 用于排气暖机策略的系统和方法
US11149614B2 (en) 2015-11-11 2021-10-19 Ford Global Technologies, Llc Systems and method for exhaust warm-up strategy

Also Published As

Publication number Publication date
EP2083156A1 (en) 2009-07-29
US8774993B2 (en) 2014-07-08
JP4862621B2 (ja) 2012-01-25
CN101542095A (zh) 2009-09-23
EP2083156A4 (en) 2011-05-04
US20100185349A1 (en) 2010-07-22
JP2008120333A (ja) 2008-05-29
EP2083156B1 (en) 2014-07-16
CN101542095B (zh) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4862621B2 (ja) ハイブリッド車両およびその制御方法
JP4211831B2 (ja) ハイブリッド車両、ハイブリッド車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP5716779B2 (ja) ハイブリッド自動車
JP4655124B2 (ja) ハイブリッド車両の制御装置
JP4640506B2 (ja) ハイブリッド車両、ハイブリッド車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
CN102883933B (zh) 混合动力车辆的控制装置及具有该控制装置的混合动力车辆
US20090322503A1 (en) Indicator apparatus for hybrid vehicle, hybrid vehicle, indicating method for hybrid vehicle
JP2008087516A (ja) ハイブリッド車両およびハイブリッド車両の走行制御方法
JP2010064499A (ja) ハイブリッド車両
JP2008201262A (ja) ハイブリッド車両
JPWO2012101797A1 (ja) 車両および車両の制御方法
EP2174849B1 (en) Hybrid vehicle, hybrid vehicle control method, and computer-readable recording medium containing a program for causing a computer to execute the control method
JPWO2012131941A1 (ja) 車両、エンジンの制御方法およびエンジンの制御装置
JP5598555B2 (ja) 車両および車両用制御方法
JP2013056614A (ja) ハイブリッド車両および車両用制御方法
EP2762349B1 (en) Vehicle and control method for vehicle
JP5842899B2 (ja) ハイブリッド車両、ハイブリッド車両の制御方法およびエンジンの制御装置
EP2762374B1 (en) Vehicle and control method for vehicle
JP2010280379A (ja) ハイブリッド車両の制御装置
US11318927B2 (en) Control device for hybrid vehicle and control system for hybrid vehicle
JP2010036601A (ja) ハイブリッド車両の制御装置およびそれを備えたハイブリッド車両ならびにハイブリッド車両の制御方法
JP5728447B2 (ja) 車両の制御装置
JP2021175620A (ja) ハイブリッド車両
JP2021175619A (ja) ハイブリッド車両
WO2012081101A1 (ja) 車両および車両の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780042513.7

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12311788

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007831977

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE