WO2008056966A1 - Procedimiento para la preparación de aditivo retardador de flama para recubrimientos y productos resultantes. - Google Patents

Procedimiento para la preparación de aditivo retardador de flama para recubrimientos y productos resultantes. Download PDF

Info

Publication number
WO2008056966A1
WO2008056966A1 PCT/MX2007/000046 MX2007000046W WO2008056966A1 WO 2008056966 A1 WO2008056966 A1 WO 2008056966A1 MX 2007000046 W MX2007000046 W MX 2007000046W WO 2008056966 A1 WO2008056966 A1 WO 2008056966A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
retardant additive
preparation
metal hydroxide
coating
Prior art date
Application number
PCT/MX2007/000046
Other languages
English (en)
French (fr)
Other versions
WO2008056966A8 (es
Inventor
Jesús Manuel MARTÍNEZ MARTÍNEZ
Julio César RANGEL MATA
Ricardo BENAVIDES PÉREZ
José Gertrudis BOCANEGRA ROJAS
Original Assignee
Servicios Industriales Peñoles, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Servicios Industriales Peñoles, S.A. De C.V. filed Critical Servicios Industriales Peñoles, S.A. De C.V.
Priority to EP07747192A priority Critical patent/EP2083053A4/en
Priority to CN2007800497084A priority patent/CN101583673B/zh
Priority to JP2009536174A priority patent/JP2010509430A/ja
Priority to CA2669072A priority patent/CA2669072C/en
Priority to US12/514,314 priority patent/US9771484B2/en
Priority to BRPI0716683-4A priority patent/BRPI0716683A2/pt
Priority to KR1020097011940A priority patent/KR101162183B1/ko
Publication of WO2008056966A1 publication Critical patent/WO2008056966A1/es
Priority to IL198540A priority patent/IL198540A/en
Publication of WO2008056966A8 publication Critical patent/WO2008056966A8/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/02Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D15/00Woodstains
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • the present invention relates to processes for the preparation of additives to be used in coatings to be applied on structural elements or as finishes of materials susceptible to combustion such as wood and its derivatives, in order to provide flame retardant properties to the coating; specifically the invention relates to a process for the preparation of an additive formulated with a metal hydroxide and a mixture of dispersant, compatible carrier (organic solvent), water and resin that allow easy incorporation of the additive into the coating.
  • flame retardant coatings are mainly made from phosphate salts, silanes, borates (intumescent).
  • An intumescent flame retardant such as those mentioned is characterized in that, with the action of fire, it first forms a layer of foamy material, then this layer of foam is transformed into ashes, which form a crust that prevents the penetration of fire.
  • Metal hydroxides are used as flame retardant additives, for example in polymers, with their different applications: cable coating, furniture, roofing panels, etc.
  • Magnesium hydroxide has the advantage over other types of flame retardants, of being friendly to the environment and not releasing toxic fumes also working as a smoke suppressor.
  • EP 1156092 the manufacture of a two component adhesive is described, which in its formulation includes magnesium hydroxide, mentioning that said adhesive can be used as a varnish with flame retardant properties.
  • magnesium hydroxide is included as part of the formulation for a flame retardant coating based on red phosphorus.
  • the use of magnesium hydroxide is specifically to reduce the effect of phosphoric acid generation during the flame inhibition effect.
  • US Patent No. 4849298 describes the use of aluminum hydroxide in the formulation of paints, adding it directly to the paint, and is even used as a substitute for some of the conventional filler loads (TiO 2 , for example ), the patent describes the effect on fire retardant properties of coatings prepared with this addition.
  • magnesium hydroxide By properly integrating properly treated magnesium hydroxide into traditional wood coatings, such as varnishes and sealants, or architectural coatings, such as paints, waterproofing materials, etc., excellent flame retardation and smoke suppression effects are achieved.
  • the coating thus prepared does not change its final appearance (brightness, transparency, covering power, mechanical resistance, etc.).
  • a further object of the present invention is that the additive incorporate as a flame retardant ingredient a material that does not generate toxic residues in case of being exposed to the flame.
  • the flame retardant ingredient be of the family of metal hydroxides.
  • the flame retardant material of the additive of the invention does not form agglomerates within the volume of the coating before application. It is still another object of the present invention, that the flame retardant material of the additive of the invention be distributed evenly (homogeneously) in the final coating film on the surface to be covered and protected.
  • the flame retardant additive does not interfere with the fundamental properties of the coating to which, for example, the transparency of a varnish is intended.
  • the flame retardant material of the additive has a grain fineness consistent with those of the coating in which it is included.
  • the coating additive prepared with the process subject matter of the invention has as its source of flame retardant properties, a metal hydroxide, preferably of magnesium, with its own particle size characteristics, which is subjected to a treatment associated with the nature of the coating to which it is to be incorporated, so that the resulting additive efficiently integrates into the selected coating.
  • the average particle diameter (D 50 ) of the metal hydroxide particle is selected from the range of 1 nanometer to 10 microns, depending on the desired finish on the target coating, b) the concentration of said metal hydroxide particles in the Additive can reach up to 99% by weight.
  • the process of the invention produces a paste or preferably a suspension of metal hydroxide particles treated with compatible vehicles (organic solvents or water), dispersants and possibly surfactants, in a medium consisting of an organic solvent, a dispersant, a resin and in some Water cases, which has the following advantages: 1. It offers greater efficiency in fire retardation than intumescent additives, since in comparative tests of flame retardation better results are obtained in coatings mainly with magnesium hydroxide, than in those based on phosphorus compounds, expressed as a percentage of weight loss per flame action.
  • compatible vehicles organic solvents or water
  • dispersants and possibly surfactants in a medium consisting of an organic solvent, a dispersant, a resin and in some Water cases
  • the surface treatment, given to magnesium hydroxide, is selected from a series of surface additives that help to reconcile magnesium hydroxide with the resin of the additive and that of the target coating, thus maintaining the properties of brightness, transparency, power covering, mechanical resistance, etc., of the target coating.
  • Figure 1 is a block diagram representing the process for the preparation of the additive object of the invention.
  • the additive prepared in accordance with the process of the present invention is made from a metal hydroxide, with an average particle size that is selected in the range of from 1 nanometer to 10 microns, and may preferably be monodispersed, that is, having a very narrow size variability, and with a purity of at least 90%.
  • the metal hydroxide particles are subjected to a treatment for integration into the final coating, so that it can be derived from an aqueous, organic or powdered hydroxide suspension, without the compatibility between the initial hydroxide vehicle and the base of the additive to be formulated is limiting.
  • the metal hydroxide is magnesium hydroxide, which presents as an additional advantage to its flame retardant property, which helps control the emission of fumes by releasing water by the decomposition reaction (1 ):
  • FIG. 1 is a block diagram of the production process of the additive of the invention, two zones are presented: the first, consisting of blocks (10) to (40), which represent a pretreatment of the particles of metal hydroxide, and the area composed of the blocks (50) and (60) that represent the process of preparation of the additive as such.
  • block (10) represents the flame retardant material that will be used for the preparation of the additive, preferably being a wet paste of metal hydroxide Although for some very specific applications that require absence of water, dry powder hydroxide is preferred. As mentioned before, the hydroxide is formed by particles with an average size in the range of 1 nanometer to 10 microns and with a purity of at least 90%. This material is fed to the next block.
  • the block (20) represents a so-called "vehicle change" operation, in which the wet metal hydroxide paste is washed with the purpose of displacing the contained water and replacing it with a "compatible" organic solvent, that is, incorporating without causing phase separation, with the solvent or thinner of the final application (the “objective” coating), which will prevent the formation of lumps when making contact with the objective coating;
  • the process is carried out with strong agitation, preferably for 5 to 30 minutes, or for as long as necessary.
  • the mixture is kept under turbulent agitation by means of a disperser with cutting disc or other device that allows a peripheral speed of at least 2 m / s and up to 30 m / s maximum. After stirring, phase separation occurs and the process can be repeated until obtain a residual humidity of less than 5% in the solid phase.
  • the "vehicle change" process (20) serves to ensure that the hydroxide particles will not agglomerate in the dispersion phase (50) of zone II, in the incorporation into the coating or in the application thereof on the surface a try.
  • the decision block (30) indicates that in case the residual moisture tolerated in the additive is very low, close to zero, due to the nature of the resin and solvents or thinners in the target coating and once the stage is finished of "vehicle change" (20), the solid phase is subjected to a drying process (40), taking care that the operating temperature in said drying is lower than the boiling temperature of the vehicle. The operation is continued until a residual moisture tolerated by the target coating is obtained.
  • the result of the operation is a "dry" hydroxide powder, which can be stored for subsequent preparation of the additive.
  • the product obtained by this method can remain as a “dry” powder dispersible for periods of 12 months.
  • the drying stage represented by the block (30) is omitted.
  • the product obtained either "dry” or wet, coming from one of the two ways of the first phase of the process is passed to a dispersion process (50), in zone II, which is properly identified with the preparation of the ready additive for use in the objective coating that is the subject of the present invention.
  • the "dry" paste or powder from block (20) or (30) is fed into a dispersion process (50) wherein a resin and a dispersant compatible with the target coating are added, in accordance with the following table:
  • the dispersion (50) is carried out by means of a stirrer or disperser with a peripheral speed of between 15 and 30 m / s.
  • the viscosity of the mixture is adjusted to that of the target coating by the addition of solvent or thinner, which is preferably the same as that used with the coating or at least must be compatible with it.
  • the percentage of dispersant in the mixture is maintained between 0.5 and 10% in relation to hydroxide on a dry basis.
  • the product (60) obtained from the dispersion process (50) is the additive of the invention, which can be, in the preferred embodiment, a formulation with up to 99% by weight of metal hydroxide.
  • the advantages of the additive obtained by the process of the invention are that as a result of the vehicle change treatment of stage (20) and the mixture with resins and dispersants of stage (50), the product is fully compatible with the objective coating for which it was prepared by selecting the appropriate surfactant, resin and dispersant according to the previously included tables, keeping In addition, a high degree of homogeneity in the dispersion of the metal hydroxide particles in the formulation, so that when added to the objective coating, the additive will integrate easily and quickly and it is guaranteed that the particles will maintain their dispersion homogeneity throughout the entire volume and therefore, in the coating layer after application on the surface to be protected.
  • particles with an average size in the range of nanoparticles are used, with a very low variability (monodispersed), with which the transparency properties of the varnish are not altered , which is not guaranteed with larger particles or with a non-homogeneous or wide dispersion.
  • Table 2 summarizes reagent selections and recommended parameter values for a variety of coatings classes conventionally used for common applications, with which it is possible to make additives, following the procedure according to the present invention, which they will offer the characteristics of easy incorporation into the objective coating, homogeneous and uniform distribution of the flame retardant and smoke suppressor particles, preservation of the desirable properties of the coating, to name a few.
  • Example 1 Preparation of the additive to be used in an alkyd base coat with a residual humidity of less than 5%.
  • portion of nanometric magnesium hydroxide with a humidity of 65% having the following particle size distribution: 0 Di, 59.0 nm; D 50 , 92.7 nm; D 90 , 153 nm; measured by laser diffraction, in a COULTER LS230 brand equipment. For illustration purposes, 1200 grams are taken.
  • the magnesium hydroxide is placed in a 6 liter dispersion vessel.
  • liquid phase is removed as much as possible, depending on the separation equipment selected.
  • steps 3 and 4 are repeated until the water content in it is less than 5%.
  • step 6 The paste from step 5 is placed in an appropriate drying equipment and the organic solvent is removed.
  • the dryer must not be operated at a temperature higher than the boiling temperature of the solvent, this guarantees that the magnesium hydroxide powder obtained will not undergo particle size changes and its integration into the flame retardant additive will be efficient.
  • the vessel is placed in a dispersion device equipped with an arrow and a propellant for dispersion.
  • the resin is stirred at moderate speed: peripheral speed between 1 and 5 m / s.
  • the speed of the disperser is increased until it has sufficient shear stress to ensure efficient dispersion: peripheral speed between 15 and 30 m / s.
  • the dispersion is maintained for 15 minutes or the necessary time until the fineness of the application is reached.
  • Example 2 Preparation of the additive to be used in a nitrocellulose based coating with a required residual humidity of less than 5%
  • the vessel is placed in a dispersion device equipped with an arrow and a propellant for dispersion of 7 centimeters in diameter.
  • the speed of the disperser is increased until it has sufficient shear stress to ensure efficient dispersion, this is maintaining a peripheral speed between 150 and 30 m / s.
  • the dispersion is maintained for a period of between 5 and 15 minutes.
  • the flame retardant additive for alkyd varnish, prepared in Example 1 can be mixed in different proportions with any alkyd varnish on the market. Also the flame retardant additive for nitrocellulose sealant prepared in Example 2, can be mixed with any nitrocellulose based sealer that is commercially available.
  • the sealant and varnish are used in the varnishing of a wooden article.
  • Table 3 shows different combinations of sealants and varnishes mixed with the flame retardant additives prepared in Examples 1 and 2, and the results when subjected to the flame retardation test according to ASTM D1360. Table 3. Effect as percentage of weight loss per flame action, of the content of Mg (OH) 2 in a nitrocellulose base sealer and an alkyd resin base varnish applied in a wood sample
  • Table 4 shows the rest of the examples of additives prepared with different types of resins that have application in different types of coatings.
  • the size of the hydroxide particles is important, as well as the uniformity of size and the homogeneity in the distribution of the particles in the final coating layer once applied.
  • the present invention is directed to the preparation of an additive that confers flame retardant and smoke suppression properties, without affecting the properties of the coating to which it is added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Paints Or Removers (AREA)
  • Fireproofing Substances (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

La presente invención se refiere a un procedimiento para la preparación de un aditivo a base de hidróxido metálico y especialmente de hidróxido de magnesio, para integrarse a recubrimientos a fin de otorgarles propiedades superiores de retardo de flama. El hidróxido tiene tamaños promedios de partícula que se seleccionan de entre 1 nanómetro y 10 mieras preferentemente con una variación muy estrecha, el hidróxido de magnesio se somete a un tratamiento de lavado y dispersión principalmente, para que se disperse eficientemente en, y no interfiera con, las propiedades deseables del recubrimiento. En función de la naturaleza del recubrimiento se seleccionan los materiales y condiciones en el tratamiento, así como el tamaño de partícula. El recubrimiento objetivo puede ser del tipo base agua, solventes, aceite y alcohol. Comparado con recubrimientos formulados con otros compuestos retardadores de flama, con el aditivo de la invención se presentan pérdidas de peso por quemado menores en una prueba ASTM D1360.

Description

PROCEDIMIENTO PARA LA PREPARACIÓN DE ADITIVO RETARDADOR DE FLAMA PARA RECUBRIMIENTOS Y PRODUCTOS RESULTANTES.
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se relaciona con procedimientos para la preparación de aditivos a emplearse en recubrimientos para ser aplicados sobre elementos estructurales o como acabados de materiales susceptibles de combustión tales como madera y sus derivados, a fin de proporcionar propiedades de retardo de flama al recubrimiento; específicamente la invención se refiere a un procedimiento para la preparación de un aditivo formulado con un hidróxido metálico y una mezcla de dispersante, vehículo compatible (solvente orgánico) , agua y resina que permiten una fácil incorporación del aditivo al recubrimiento.
ANTECEDENTES DE LA INVENCIÓN
Es bien conocida la necesidad de que las edificaciones para la vivienda o para la realización de otras actividades: laborales, recreativas, etc., incorporen medios que ayuden a controlar los incendios, retardando la expansión del fuego, por ejemplo, de tal manera que en algunos países se han emitido regulaciones sobre los materiales tanto para la construcción de los edificios, como para la fabricación de los muebles que contienen.
La mayoría de los artículos de mobiliario presentan un recubrimiento que tiene funciones estéticas y de protección al material de que están hechos, sin embargo, la mayoría de estos recubrimientos son inflamables, lo cual, aunado a la naturaleza combustible del sustrato, generan una excelente fuente de propagación de fuego.
Si bien se pueden encontrar recubrimientos retardadores de flama, éstos están elaborados principalmente a base de sales de fosfatos, silanos, boratos (intumescentes) . Un retardador de flama intumescente como los mencionados se caracteriza porque, con la acción del fuego, primero forma una capa de material espumoso, luego esta capa de espuma se transforma en cenizas, que forman una costra que impide la penetración del fuego.
Los hidróxidos metálicos, por otra parte, son utilizados como aditivos retardadores de la flama, por ejemplo en polímeros, con sus diferentes aplicaciones: recubrimiento de cables, muebles, paneles para techo ("roofing"), etc. El hidróxido de magnesio tiene la ventaja sobre otros tipos de retardadores de flama, de ser amigable con el ambiente y no desprender humos tóxicos funcionando además como supresor de humos .
Existen en el arte previo una gran variedad de alternativas para controlar el problema de la propagación de fuego, mediante el empleo de hidróxidos metálicos. Algunos ejemplos se mencionan a continuación.
En la patente EP 1156092, se describe la fabricación de un adhesivo de dos componentes, que en su formulación incluye hidróxido de magnesio, mencionando que dicho adhesivo se puede utilizar como barniz con propiedades de retardado de flama.
En la patente US 6448308, se incluye el hidróxido de magnesio como parte de la formulación para un recubrimiento retardador de flama a base de fósforo rojo. El uso del hidróxido de magnesio es, específicamente, para reducir el efecto de la generación de ácido fosfórico durante el efecto de inhibición de la flama. La patente de los Estados Unidos No 4849298, describe el uso de hidróxido de aluminio en la formulación de pinturas, agregándolo directamente a la pintura, e incluso se le emplea como sustituto de algunas de las cargas convencionales de las pinturas (TiO2, por ejemplo) , la patente describe el efecto en las propiedades retardantes al fuego de los recubrimientos preparados con esta adición.
Al integrar adecuadamente el hidróxido de magnesio, debidamente tratado, a los recubrimientos tradicionales para madera, tales como barnices y selladores, o arquitectónicos, tales como pinturas, impermeabilizantes, etc., se logran excelentes efectos de retardo de flama y supresión de humo. El recubrimiento así preparado no cambia su apariencia final (brillo, transparencia, poder cubriente, resistencia mecánica, etc) .
OBJETOS DE LA INVENCIÓN
En vista de los problemas encontrados en el arte previo, es un objeto de la presente invención proporcionar un aditivo para el retardo a la flama y supresión de humos útil en la preparación de recubrimientos destinados a cubrir y proteger superficies susceptibles de combustión, cuya eficiencia sea mayor a la ofrecida por los recubrimientos con retardo a la flama existentes .
Es otro objeto de la presente invención, proporcionar un aditivo para el retardo a la flama, que se incorpore fácilmente al recubrimiento previo a su aplicación a la superficie a proteger.
Un objeto más de la presente invención es que el aditivo incorpore como ingrediente retardador de la flama a un material que no genere residuos tóxicos en caso de ser expuesto a la flama.
Es otro objeto aún de la presente invención, que el ingrediente retardador a la flama sea de la familia de los hidróxidos metálicos.
Es aún otro objeto de la presente invención, que el material retardador a la flama del aditivo de la invención no forme aglomerados al interior del volumen del recubrimiento antes de su aplicación. Es todavía otro objeto de la presente invención, que el material retardador a la flama del aditivo de la invención, se distribuya de manera uniforme (homogénea) en la película de recubrimiento final sobre la superficie a cubrir y proteger.
Es otro objeto de la presente invención, que el aditivo retardador a la flama no interfiera con las propiedades fundamentales del recubrimiento al que se destina, como por ejemplo, la transparencia de un barniz.
Es otro objeto más de la presente invención, que el material retardador a la flama del aditivo, presente una finura de grano congruente con las del recubrimiento en que se incluye.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
El aditivo para recubrimiento preparado con el procedimiento materia de la invención tiene como fuente de sus propiedades de retardado de flama, un hidróxido metálico, preferentemente de magnesio, con características propias de tamaño de partícula, que se somete a un tratamiento asociado con la naturaleza del recubrimiento al que se va a incorporar, de manera que el aditivo resultante se integre eficientemente en el recubrimiento seleccionado.
Algunas características del aditivo obtenido con el procedimiento materia de la invención son:
a) el diámetro promedio (D50) de partícula del hidróxido metálico se selecciona de entre el rango de desde 1 nanómetro hasta 10 mieras, en función del acabado deseado en el recubrimiento objetivo, b) la concentración de dichas partículas de hidróxido metálico en el aditivo puede llegar hasta un 99% en peso.
El procedimiento de la invención produce una pasta o preferentemente una suspensión de partículas de hidróxido metálico tratadas con vehículos compatibles (solventes orgánicos o agua) , dispersantes y eventualmente surfactantes, en un medio constituido por un solvente orgánico, un dispersante, una resina y en algunos casos agua, que presenta las siguientes ventajas: 1. Ofrece mayor eficiencia en el retardo al fuego que los aditivos intumescentes, ya que en pruebas comparativas de retardo de flama se obtienen mejores resultados en los recubrimientos principalmente con hidróxido de magnesio, que en aquellos a base de compuestos fosforados, expresado esto como porcentaje de pérdida de peso por acción de la flama.
2. Es de fácil incorporación a los recubrimientos existentes en el mercado, sin necesidad de utilizar equipos diferentes a los utilizados convencionalmente para la preparación de los recubrimientos, ya que el aditivo tiene una base compatible con aquella del recubrimiento al que se va a incorporar.
3.No altera la apariencia final del recubrimiento, a diferencia de los retardadores de flama a base de compuestos fosforados en donde es necesario aplicar un recubrimiento adicional que proporcione la apariencia final del acabado. Con el aditivo de la invención los parámetros de brillo, transparencia, poder cubriente, resistencia mecánica, etc., del recubrimiento no se alteran. 4. Es amigable con el ambiente y los seres vivos . En varios estudios se ha demostrado que el uso de hidróxidos metálicos en recubrimientos retardadores de flama tiene ventajas sobre otros productos tales como los que emplean compuestos halogenados y fosforados, ya que no desprende gases tóxicos, y la liberación de agua por la reacción de descomposición del hidróxido, ayuda a controlar la emisión de humos.
5. El tratamiento superficial, dado al hidróxido de magnesio, se selecciona de una serie de aditivos de superficie que ayuden a compatibilizar el hidróxido de magnesio con la resina del aditivo y la del recubrimiento objetivo, manteniendo así las propiedades de brillo, transparencia, poder cubriente, resistencia mecánica, etc., del recubrimiento objetivo .
DESCRIPCIÓN DE LAS FIGURAS Para una mejor comprensión de la descripción que sigue, ésta deberá seguirse en conjunción con la figura que se anexa .
La Figura 1 es un diagrama de bloques que representa el procedimiento para la elaboración del aditivo objeto de la invención.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El aditivo preparado de conformidad con el procedimiento de la presente invención, se elabora a partir de un hidróxido metálico, con un tamaño promedio de partícula que se selecciona en el rango de desde 1 nanómetro hasta 10 mieras, pudiendo ser preferentemente monodisperso, esto es, teniendo una variabilidad de tamaño muy estrecha, y con una pureza de por lo menos 90%.
Las partículas de hidróxido metálico se someten a un tratamiento para su integración al recubrimiento final, por lo que puede partirse de un hidróxido en suspensión acuosa, orgánica o en polvo, sin que la compatibilidad entre el vehículo del hidrδxido inicial y la base del aditivo que se formulará sea limitante.
En la modalidad preferida de la presente invención, el hidróxido metálico es hidróxido de magnesio, que presenta como ventaja adicional a su propiedad de retardo a la flama, el que ayuda a controlar la emisión de humos al liberar agua por la reacción de descomposición (1) :
Mg(OH)2^->MgO+H2O (1)
Con referencia a la Figura 1, que es un diagrama de bloques del proceso de producción del aditivo de la invención, se presentan dos zonas: la primera, compuesta por los bloques (10) a (40) , que representan un pretratamiento de las partículas de hidróxido metálico, y la zona compuesta por los bloques (50) y (60) que representan el proceso de preparación del aditivo como tal.
En la zona I o fase de pretratamiento, el bloque (10) representa al material retardador a la flama que se empleará para la preparación del aditivo, siendo preferentemente una pasta húmeda de hidróxido metálico aunque para algunas aplicaciones muy específicas que requieren ausencia de agua, se prefiere el hidróxido en polvo seco. Como se ha mencionado antes, el hidróxido está formado por partículas con un tamaño promedio en el rango de desde 1 nanómetro hasta 10 mieras y con una pureza de por lo menos 90%. Este material es alimentado al siguiente bloque.
El bloque (20) representa una operación denominada de "cambio de vehículo" , en la cual la pasta húmeda de hidróxido metálico es lavada con el propósito de desplazar el agua contenida y substituirla por un solvente orgánico "compatible", esto es, se incorpore sin provocar separación de fases, con el solvente o adelgazador de la aplicación final (el recubrimiento "objetivo"), lo que impedirá en su momento la formación de grumos al tomar contacto con el recubrimiento objetivo; el proceso se lleva a cabo con agitación fuerte preferentemente por entre 5 y 30 minutos, o durante el tiempo que sea necesario. La mezcla se mantiene en agitación en régimen turbulento por medio de un dispersor con disco cortante u otro dispositivo que permita una velocidad periférica de por lo menos 2 m/s y hasta 30 m/s como máximo. Después de la agitación, se produce la separación de fases y el proceso puede repetirse hasta obtener una humedad residual menor del 5% en la fase sólida.
Cuando por la naturaleza del solvente o adelgazador, y de la resina en la aplicación final, el hidróxido metálico pudiera reaccionar, se evalúa como se indica por el bloque
(15) la necesidad de dar a las partículas un tratamiento superficial (16) previo a la operación de "cambio de vehículo" (20) , empleando surfactantes convencionales compatibles con el recubrimiento objetivo.
El proceso de "cambio de vehículo" (20) sirve para garantizar que las partículas del hidróxido no se aglomerarán en la fase de dispersión (50) de la zona II, en la incorporación al recubrimiento o en la aplicación del mismo sobre la superficie a tratar.
El bloque de decisión (30) indica que en el caso de que la humedad residual tolerada en el aditivo sea muy baja, próxima a cero, debido a la naturaleza de la resina y solventes o adelgazadores en el recubrimiento objetivo y una vez concluida la etapa de "cambio de vehículo" (20) , la fase sólida es sometida a un proceso de secado (40) , teniendo cuidado de que la temperatura de operación en dicho secado sea inferior a la temperatura de ebullición del vehículo. La operación se sigue hasta obtener una humedad residual tolerada por el recubrimiento objetivo .
El resultado de la operación es un polvo "seco" de hidróxido, que puede ser almacenado para la posterior preparación del aditivo. El producto obtenido por este método puede permanecer como polvo "seco" dispersable por periodos de 12 meses.
Si en la aplicación final se tolera un contenido de humedad del orden del 5%, la etapa de secado representada por el bloque (30) se omite.
El producto obtenido ya sea "seco" o húmedo, proveniente de alguna de las dos vías de la primera fase del proceso se pasa a un proceso de dispersión (50) , en la zona II, que propiamente se identifica con la preparación del aditivo listo para su uso en el recubrimiento objetivo que es la materia de la presente invención.
En esta etapa, la pasta o el polvo "seco" provenientes del bloque (20) o (30) , se alimentan a un proceso de dispersión (50) en donde se adicionan una resina y un dispersante compatibles con el recubrimiento objetivo, de conformidad con la tabla siguiente :
Tabla 1. Selección recomendada de la resina y el dispersante para la preparación del aditivo, en función de la naturaleza del recubrimiento .
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000020_0001
Figure imgf000021_0001
La dispersión (50) se realiza por medio de un agitador o dispersor con una velocidad periférica de entre 15 y 30 m/s. La viscosidad de la mezcla se ajusta a la del recubrimiento objetivo por la adición de solvente o adelgazador, que preferentemente es el mismo que se empleará con el recubrimiento o al menos deberá ser compatible con aquél. El porcentaje de dispersante en la mezcla se mantiene entre el 0.5 y el 10% en relación al hidróxido en base seca.
El producto (60) obtenido del proceso de dispersión (50) es el aditivo de la invención, mismo que puede ser, en la modalidad preferida, una formulación con hasta el 99% en peso de hidróxido metálico.
Entre las ventajas que tiene el aditivo obtenido por el procedimiento de la invención, están que como consecuencia del tratamiento de cambio de vehículo de la etapa (20) y la mezcla con resinas y dispersantes de la etapa (50) , el producto es completamente compatible con el recubrimiento objetivo para el que se preparó mediante la selección del surfactante, la resina y el dispersante apropiados de acuerdo con las tablas previamente incluidas, manteniendo además un alto grado de homogeneidad en la dispersión de las partículas de hidróxido metálico en la formulación, por lo que al adicionarse al recubrimiento objetivo, el aditivo se integrará fácil y rápidamente y se garantiza que las partículas mantendrán su homogeneidad de dispersión en la totalidad del volumen y por ende, en la capa de recubrimiento después de la aplicación sobre la superficie a proteger.
En una modalidad preferida de la invención, útil en el caso de acabados transparentes, se emplean partículas con un tamaño promedio en el rango de nanopartículas, con una variabilidad muy baja (monodispersas) , con las que las propiedades de transparencia del barniz no son alteradas, lo que no se garantiza con partículas de mayor tamaño o con una dispersión no homogénea o amplia.
Por lo anterior se sugiere que en la preparación de un aditivo para barnices transparentes se empleen partículas de tamaños en el extremo inferior del rango, en tanto que recubrimientos opacos pueden aceptar el uso de partículas de mayor tamaño, y en los acabados texturizados podrá emplearse partículas de tamaños en el extremo superior del rango .
El uso de partículas por encima del extremo superior del rango (10 mieras) no garantiza una dispersión homogénea en la capa de recubrimiento sobre la superficie a proteger, y por tanto, la eficiencia de retardo a la flama disminuye considerablemente .
La Tabla 2 muestra en forma resumida las selecciones de reactivos y los valores de los parámetros recomendados para una variedad de clases de recubrimientos usados convencionalmente para aplicaciones comunes, con los que es posible elaborar aditivos, siguiendo el procedimiento de conformidad con la presente invención, que ofrecerán las características de fácil incorporación al recubrimiento objetivo, distribución homogénea y uniforme de las partículas de material retardador a la flama y supresor de humos, conservación de las propiedades deseables del recubrimiento, por citar algunas. Tabla 2. Materiales y parámetros recomendados para diversas clases de recubrimientos .
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000033_0001
Para una mayor claridad en cuanto al uso de los datos contenidos en las tablas 1 y 2, en los ejemplos siguientes, realizados de conformidad con la norma ASTM D1360, se ofrecen ilustraciones de diversas alternativas para la elaboración de aditivos de conformidad con el procedimiento de la presente invención.
Ejemplo 1. Preparación del aditivo para ser empleado en un recubrimiento de base alquidálica con una humedad residual menor al 5%.
1. Se parte de una hidróxido de magnesio nanométrico con una humedad de 65%, que tiene la siguiente distribución de tamaño de partícula: Di0, 59.0 nm; D50, 92.7 nm; D90, 153 nm; medido por difracción de rayos láser, en un equipo marca COULTER LS230. Para fines de ilustración, se toman 1200 gramos.
2. Se coloca el hidróxido de magnesio en un recipiente para dispersión con capacidad de 6 litros.
3. Se vierten 3600 gramos de etilenglicol butil éter, y se agita (dispersa) con un propulsor de dispersión a una velocidad periférica de entre 5 y 30 m/s. Esta agitación (dispersión) se mantiene por un periodo de entre 5 y 15 minutos .
4. Con ayuda de una centrífuga, decantador, filtro u otro medio de separación sólido líquido, se retira la fase líquida hasta el máximo posible, en función del equipo de separación seleccionado.
5. Con la pasta obtenida se repiten los pasos 3 y 4 hasta que el contenido de agua en ésta sea menor al 5%.
6.La pasta del paso 5 se coloca en un equipo de secado apropiado y se elimina el solvente orgánico. El secador no debe operarse a una temperatura superior a la temperatura de ebullición del solvente, esto garantiza que el polvo de hidróxido de magnesio obtenido no sufrirá cambios en el tamaño de partícula y su integración al aditivo retardador de flama será eficiente .
7. Se colocan 590 gramos de resina alquidálica en un vaso Berzelius sin pico de 1.0 litros.
8. Se coloca el vaso en un equipo de dispersión provisto de flecha y propulsor para dispersión. 9. Se agita la resina a velocidad moderada: velocidad periférica de entre 1 y 5 m/s.
10. Se vierten 10 gramos de dispersante DCM-305 (copolímero con grupos ácidos) , que es compatible con la resina.
11. Se adicionan 400 gramos del hidróxido de magnesio que se obtuvo en el punto 6.
12. Se mantiene la agitación moderada hasta la humectación completa del hidróxido de magnes_io.
13. Una vez homogénea la mezcla se incrementa la velocidad del dispersor hasta tener el suficiente esfuerzo cortante que garantice una eficiente dispersión: velocidad periférica de entre 15 y 30 m/s.
14. Se mantiene la dispersión durante 15 minutos o el tiempo necesario hasta alcanzar la finura de la aplicación.
Ejemplo 2. Preparación del aditivo para ser empleado en un recubrimiento de base nitrocelulósica con una humedad residual requerida menor del 5%
1. Se colocan 590 gramos de resina de nitrocelulosa en un vaso Berzelius sin pico de 1.0 litros.
2. Se coloca el vaso en un equipo de dispersión provisto de flecha y propulsor para dispersión de 7 centímetros de diámetro .
3.La resina se agita a velocidad moderada.
4. Se vierten 10 gramos de dispersante DCM-305, que es compatible con la resina.
5. Se adicionan 400 gramos de hidróxido de magnesio seco con un tamaño de partícula promedio de 100 nanómetros .
6. Se mantiene la agitación moderada hasta la humectación completa del hidróxido de magnesio.
7. Una vez homogénea la mezcla, se incrementa la velocidad del dispersor hasta tener el suficiente esfuerzo cortante que garantice una eficiente dispersión, esto es manteniendo una velocidad periférica entre 150 y 30 m/s.
8. Se mantiene la dispersión por un periodo de entre 5 y 15 minutos.
El aditivo retardador a la flama para barniz alquidálico, preparado en el Ejemplo 1, se puede mezclar en diferentes proporciones con cualquier barniz alquidálico que se encuentre en el mercado. También el aditivo retardador a la flama para sellador de nitrocelulosa preparado en el Ejemplo 2, se puede mezclar con cualquier sellador a base de nitrocelulosa que se encuentre en el mercado.
Lo común es que en el barnizado de un artículo de madera se utilice tanto el sellador como el barniz. En la Tabla 3 se muestran diferentes combinaciones de selladores y barnices mezclados con los aditivos retardadores a la flama preparados en los Ejemplos 1 y 2, y los resultados al someterlos a la prueba de retardo a la flama de acuerdo a la norma ASTM D1360. Tabla 3. Efecto como porcentaje de pérdida de peso por acción de la flama, del contenido de Mg(OH)2 en un sellador base nitrocelulosa y un barniz base resina alquidálica aplicados en una muestra de madera
Figure imgf000039_0001
En la Tabla 4 se muestran el resto de los ejemplos de los aditivos preparados con diferentes tipos de resinas que tienen aplicación en diferentes tipos de recubrimientos.
Tabla 4. Preparación de aditivo retardador de flama.
Figure imgf000040_0001
Tabla 4. Preparación de aditivo retardador de flama, (continúa)
Figure imgf000041_0001
Los efectos del uso del aditivo con hidróxido de magnesio en los recubrimientos para la madera en las pruebas anteriores, se ilustra en la Tabla 5 que muestra el resultado de los ejemplos de aplicación de los aditivos preparados de conformidad con el procedimiento descrito antes .
Se puede observar claramente el efecto del retardo al fuego cuando el recubrimiento incluye hidróxido de magnesio. En las pruebas físicas se aprecia que no hay cambio en la apariencia final del recubrimiento con el aditivo de la invención después de su aplicación con respecto a la apariencia que ofrece el recubrimiento sin aditivo; esto es válido incluso para recubrimientos de alta exigencia de transparencia como son los barnices .
Tabla 5. Efecto del aditivo retardador de flama, como porcentaje de pérdida de peso, aplicados en una muestra de madera de acuerdo a la Norma ASTM D1360
Figure imgf000043_0001
Tabla 5. Efecto del aditivo retardador de flama, como porcentaje de pérdida de peso, aplicados en una muestra de madera de acuerdo a la Norma ASTM D1360. (continúa)
Figure imgf000044_0001
En este aspecto es importante el tamaño de las partículas del hidróxido, así como la uniformidad de tamaño y la homogeneidad en la distribución de las partículas en la capa final de recubrimiento una vez aplicado.
Como se ha descrito e ilustrado mediante los ejemplos anteriores, la presente invención se dirige a la preparación de un aditivo que confiere propiedades de retardo a la flama y supresión de humos, sin afectar las propiedades del recubrimiento al cual se adiciona.
Si bien en los ejemplos se han tomado algunos recubrimientos comunes en la protección de superficies, en particular madera y sus derivados, como puede ser evidente para un técnico con conocimientos en el arte, estos ejemplos no son limitantes de la aplicación de la invención sino que pretenden ser ilustrativos de la misma, y el uso del aditivo en otros recubrimientos, para aplicarse en otras superficies, se encuentra también dentro del alcance de la presente invención que, entonces, deberá considerarse a la luz de las siguientes reivindicaciones.

Claims

REIVINDICACIONESUna vez descritas las modalidades preferidas de la invención, lo que se considera novedoso y por tanto se reclama su propiedad es:
1. Un procedimiento para la preparación de un aditivo retardador de flama a ser incorporado en recubrimientos convencionales para proteger superficies susceptibles de combustión, siendo el aditivo basado en un hidróxido metálico como agente retardador de flama y supresor de humos, dicho procedimiento incluyendo:
a. Una primera fase de pretratamiento del agente retardador de flama, y b. Una segunda fase de preparación del aditivo,
el procedimiento siendo caracterizado porque:
i) el hidróxido metálico tiene un tamaño promedio de partícula que se selecciona en el rango de desde 1 nanómetro hasta 10 mieras,- ii) en la primera fase de pretratamiento, el hidróxido metálico se somete a una operación de disminución de la humedad que porta, si es necesario, mediante el reemplazo de dicha humedad por un vehículo que sea compatible con el solvente o adelgazador que se empleará en el recubrimiento para el que se prepara el aditivo, el recubrimiento objetivo, y la humedad residual se reduce a valores aceptables por dicho recubrimiento objetivo; y
iii) porque en la segunda fase se prepara una dispersión del hidróxido metálico pretratado de acuerdo con la primera fase en una mezcla de una resina, un dispersante y un solvente o adelgazador compatibles con dicho recubrimiento objetivo, para obtener un aditivo que es fácilmente incorporable a dicho recubrimiento objetivo.
2. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 1, caracterizado porque el hidróxido metálico inicial se encuentra en forma de suspensión.
3. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 1, caracterizado porque el hidróxido metálico inicial se encuentra en forma de pasta húmeda .
4. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 1, caracterizado porque el hidróxido metálico inicial se encuentra en forma de sólido substancialmente seco.
5. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 1, caracterizado porque en la primera fase de pretratamiento, la humedad contenida en el hidróxido metálico es reemplazada por un vehículo compatible con el diluyente de la aplicación final, mediante lavado del hidróxido inicial con el vehículo compatible.
6. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 5, caracterizado porque el lavado se realiza con agitación fuerte.
7. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 6, caracterizado porque el dispositivo para la agitación genera una velocidad periférica de entre 5 m/s y 30 m/s .
8. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 5, caracterizado porque la agitación se mantiene por entre 5 y 30 minutos.
9. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 5, caracterizado porque después de la agitación, se permite la separación de fases y se elimina la fase líquida
10. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 5, caracterizado porque el lavado se repite hasta obtener una humedad residual en la fase sólida menor del 5%.
11. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 5, caracterizado porque el vehículo para el lavado se selecciona entre los solventes o adelgazadores empleados en los recubrimientos convencionales, de manera que sea compatible con el solvente o adelgazador del recubrimiento objetivo.
12. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 11, caracterizado porque el vehículo para el lavado es el mismo que el solvente o adelgazador del recubrimiento objetivo.
13. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 5, caracterizado adicionalmente porque si el hidróxido metálico es susceptible de reaccionar con el vehículo seleccionado para el lavado o la resina del recubrimiento, el hidróxido metálico se somete a un tratamiento superficial con surfactantes previo al lavado .
14. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 1, caracterizado porque cuando la humedad residual permitida por el recubrimiento objetivo es próxima a cero, el producto obtenido del "cambio de vehículo" es sometido a un proceso de secado.
15. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 14, caracterizado porque la temperatura de operación en dicho secado debe ser inferior a la temperatura de ebullición del vehículo.
16. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 15, caracterizado porque se mantiene el secado hasta obtener una humedad residual tolerada por el recubrimiento objetivo.
17. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 1, caracterizado porque el hidróxido metálico obtenido de la primera fase de pretratamiento contiene una humedad entre 0% y 5%, y es dispersable en una resina compatible con el recubrimiento objetivo.
18. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 17, caracterizado porque dicho hidróxido metálico es susceptible de ser almacenado por periodos prolongados, hasta que se requiera preparar la dispersión que forma el aditivo retardador de flama.
19. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 1, caracterizado porque la segunda fase del procedimiento consiste en una dispersión del hidróxido metálico de baja humedad, con una resina y un dispersante.
20. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 19, caracterizado porque la alimentación a la segunda fase del procedimiento, es un hidróxido metálico dispersable en la resina del recubrimiento objetivo, con un contenido de humedad entre 0 y 5%, siendo como máximo el tolerado por el recubrimiento objetivo.
21. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 19, caracterizado porque la resina es una resina compatible con la del recubrimiento objetivo .
22. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con las reivindicaciones 1 y 19, caracterizado porque el dispersante es compatible con el del recubrimiento objetivo.
23. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 19, caracterizado porque la dispersión se realiza con una velocidad periférica de entre 15 y 30 m/s.
24. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 19, caracterizado porque el porcentaje de dispersante en la mezcla se mantiene entre el 0.5 y el 10% en relación al hidróxido en base seca.
25. Un procedimiento para la preparación de un aditivo retardador de flama, de conformidad con la reivindicación 19, caracterizado porque el producto obtenido es un aditivo retardador de flama que contiene desde un 5% hasta 99% en peso de hidróxido metálico.
26. Un aditivo retardador de flama a ser incorporado en recubrimientos convencionales para proteger superficies susceptibles de combustión, el aditivo conteniendo un hidróxido metálico como agente retardador de flama y supresor de humos, un vehículo, un dispersante y una resina, dicho aditivo caracterizado porque:
a. el hidróxido metálico tiene un tamaño de partícula promedio en el rango de desde 1 nanómetro a 10 mieras, b. el vehículo es compatible con el del recubrimiento para el que se prepara el aditivo, c. la resina es compatible con la del recubrimiento para el que se prepara el aditivo, d. el dispersante es compatible con el recubrimiento objetivo.
27. Un aditivo retardador de flama a ser incorporado en recubrimientos convencionales, de conformidad con la reivindicación 26, caracterizado porque el hidróxido metálico se encuentra en una proporción desde un 5% hasta 99% en peso.
28. Un aditivo retardador de flama a ser incorporado en recubrimientos convencionales, de conformidad con la reivindicación 26, caracterizado porque el dispersante se encuentra presente en una cantidad de entre el 0.5% y el 10% en base al hidróxido en base seca.
29. Un aditivo retardador de flama a ser incorporado en recubrimientos convencionales, de conformidad con la reivindicación 26, caracterizado porque el aditivo tiene un contenido de humedad igual o inferior al tolerado por el recubrimiento objetivo.
30. Un aditivo retardador de flama a ser incorporado en recubrimientos convencionales, de conformidad con la reivindicación 26, caracterizado porque el hidróxido metálico es preferentemente hidróxido de magnesio.
31. Un aditivo retardador de flama a ser incorporado en recubrimientos convencionales, de conformidad con la reivindicación 26, caracterizado porque dicho aditivo se dispersa homogéneamente en el recubrimiento objetivo una vez que es incorporado al mismo.
32. Un aditivo retardador de flama a ser incorporado en recubrimientos convencionales, de conformidad con la reivindicación 26, caracterizado porque dicho aditivo no interfiere con las propiedades deseables del recubrimiento al que se destina, tales como brillo, transparencia, poder cubriente o resistencia mecánica .
33. Un aditivo retardador de flama a ser incorporado en recubrimientos convencionales, de conformidad con la reivindicación 26, caracterizado porque dicho aditivo presenta una finura de grano congruente con las del recubrimiento en que se incluye.
34. Un aditivo retardador de flama a ser incorporado en recubrimientos convencionales, de conformidad con la reivindicación 26, caracterizado porque el tamaño de partícula del hidróxido metálico se selecciona en el extremo inferior del rango para recubrimientos que exijan transparencia en su acabado.
35. Un aditivo retardador de flama a ser incorporado en recubrimientos convencionales, de conformidad con la reivindicación 26, caracterizado porque el tamaño de partícula del hidróxido metálico se selecciona en el extremo superior del rango para recubrimientos opacos o texturizados .
PCT/MX2007/000046 2006-11-10 2007-04-03 Procedimiento para la preparación de aditivo retardador de flama para recubrimientos y productos resultantes. WO2008056966A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP07747192A EP2083053A4 (en) 2006-11-10 2007-04-03 METHOD FOR PREPARING FLAME RETARDANT ADDITIVE FOR COATINGS AND PRODUCTS THUS OBTAINED
CN2007800497084A CN101583673B (zh) 2006-11-10 2007-04-03 用于涂料的阻燃添加剂的制备方法及其产品
JP2009536174A JP2010509430A (ja) 2006-11-10 2007-04-03 被覆剤に用いられる難燃性添加剤を調製する方法、および該方法によって調製された調製物
CA2669072A CA2669072C (en) 2006-11-10 2007-04-03 Method for preparing a fire retardant additive for coatings and resulting products
US12/514,314 US9771484B2 (en) 2006-11-10 2007-04-03 Method for preparing a fire retardant additive for coatings and resulting products
BRPI0716683-4A BRPI0716683A2 (pt) 2006-11-10 2007-04-03 procedimento para a preparação de um aditivo retardante de chama e aditivo retardante de chama
KR1020097011940A KR101162183B1 (ko) 2006-11-10 2007-04-03 코팅제용 난연성 첨가제의 제조 방법 및 생성된 제품
IL198540A IL198540A (en) 2006-11-10 2009-05-04 A process for making a flame retardant additive for coatings and products created in the process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXNL/A/2006/000089 2006-11-10
MXNL06000089A MX337770B (es) 2006-11-10 2006-11-10 Procedimiento para la preparacion de aditivo retardador de flama para recubrimientos y productos resultantes.

Publications (2)

Publication Number Publication Date
WO2008056966A1 true WO2008056966A1 (es) 2008-05-15
WO2008056966A8 WO2008056966A8 (es) 2009-07-02

Family

ID=39364734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2007/000046 WO2008056966A1 (es) 2006-11-10 2007-04-03 Procedimiento para la preparación de aditivo retardador de flama para recubrimientos y productos resultantes.

Country Status (11)

Country Link
US (1) US9771484B2 (es)
EP (1) EP2083053A4 (es)
JP (2) JP2010509430A (es)
KR (1) KR101162183B1 (es)
CN (1) CN101583673B (es)
BR (1) BRPI0716683A2 (es)
CA (1) CA2669072C (es)
IL (1) IL198540A (es)
MX (1) MX337770B (es)
RU (1) RU2451044C2 (es)
WO (1) WO2008056966A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120315466A1 (en) * 2011-06-09 2012-12-13 Prc-Desoto International, Inc. Coating compositions including magnesium hydroxide and related coated substrates

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2704574C (en) * 2007-11-05 2017-06-27 Servicios Industriales Penoles S.A. De C.V. Method of preparation of an additive for coatings, containing metallic nanoparticles and product obtained
JP5650033B2 (ja) * 2011-03-29 2015-01-07 富士フイルム株式会社 難燃性樹脂組成物、その製造方法、及び成形品
RU2466861C1 (ru) * 2011-05-20 2012-11-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет" (С(А)ФУ) Способ обработки строительных материалов из древесины
RU2573003C2 (ru) * 2013-11-28 2016-01-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Эпоксивинилэфирная смола и огнестойкий полимерный композиционный материал на ее основе
JP2016141728A (ja) * 2015-02-02 2016-08-08 日東電工株式会社 難燃材料、難燃材料から形成される難燃性膜、および難燃性物品とその製造方法
CN113773750A (zh) * 2021-10-08 2021-12-10 四川大学 一种水溶性阻燃超双疏涂料、制备方法及涂层

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145404A (en) * 1975-05-30 1979-03-20 Kyowa Chemical Industry Co., Ltd. Magnesium hydroxides having novel structure, process for production thereof, and resin compositions containing them
US4849298A (en) 1986-09-17 1989-07-18 Vitaly Raevsky Fire-protective coatings, paints and varnishes
US5127950A (en) * 1989-09-14 1992-07-07 Lonza Ltd. Short-prismatic aluminum hydroxide, process for preparing same from supersaturated sodium aluminate-liquor, and compositions containing same
EP1156092A1 (en) 2000-05-19 2001-11-21 Fernando H. Garcia All-purpose adhesive material and process for its production
US6448308B1 (en) 1998-02-23 2002-09-10 Teijin Limited Fire-retardant resin compositions
WO2005110921A1 (en) * 2004-05-13 2005-11-24 Showa Denko K.K. Aluminum hydroxide and use thereof

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2552314A (en) * 1947-07-18 1951-05-08 Marine Magnesium Products Corp Magnesium hydroxide product and process for the manufacture of said magnesium hydroxide product
JPS63182204A (ja) * 1987-01-22 1988-07-27 Nippon Shokubai Kagaku Kogyo Co Ltd 無機酸化物微粒子の有機溶媒単分散体の製法
JP2686254B2 (ja) * 1986-03-20 1997-12-08 日立マクセル株式会社 磁気記録媒体
JPH0745595B2 (ja) * 1986-08-09 1995-05-17 大日精化工業株式会社 ノンハロゲン難燃性熱可塑性合成樹脂組成物
JPS63103823A (ja) * 1986-10-21 1988-05-09 Mitsubishi Mining & Cement Co Ltd 表面処理された水酸化マグネシウムの製造方法
JPH02293317A (ja) * 1989-05-01 1990-12-04 Ube Chem Ind Co Ltd 水酸化マグネシウム粒子
JP2945098B2 (ja) * 1990-08-20 1999-09-06 古河電気工業株式会社 難燃性防水型光ファイバケーブル
JP3027203B2 (ja) * 1991-01-11 2000-03-27 大日本印刷株式会社 電子写真用湿式トナー
IE921328A1 (en) * 1992-04-23 1993-11-03 Defped Ltd Particulate magnesium hydroxide
JP3268506B2 (ja) * 1992-06-29 2002-03-25 三井・デュポンフロロケミカル株式会社 付着水除去用溶剤組成物
JP3339154B2 (ja) * 1993-12-10 2002-10-28 住友電気工業株式会社 難燃性組成物及び電線、ケーブル
US5811069A (en) * 1997-02-25 1998-09-22 Servicios Industriales Penoles, S.A. De C.V. Long term-stabilized magnesium hydroxide suspension and a process for its production
JP3796009B2 (ja) * 1997-06-09 2006-07-12 積水化学工業株式会社 ポリオレフィン系難燃樹脂組成物及びその製造方法
WO2000035808A1 (fr) * 1998-12-14 2000-06-22 Kyowa Chemical Industry Co., Ltd. Particules d'hydroxyde de magnesium, procede de production correspondant, et composition de resine renfermant lesdites particules
JP4649077B2 (ja) * 2001-08-21 2011-03-09 Dic株式会社 難燃性樹脂組成物
JP3892269B2 (ja) 2001-10-17 2007-03-14 コニシ株式会社 一液湿気硬化型可撓性樹脂組成物
DE10248174C1 (de) * 2002-10-16 2003-11-13 Nabaltec Gmbh Flammgeschützte Polymerzusammensetzung und deren Verwendung sowie Verfahren zur Herstellung eines Flammschutzmittels
WO2004074361A1 (en) * 2003-02-18 2004-09-02 Union Carbide Chemicals & Plastics Technology Corporation Flame retardant composition
JP2004307747A (ja) * 2003-04-10 2004-11-04 Sliontec Corp 難燃性粘着テープ
JP4456337B2 (ja) * 2003-04-30 2010-04-28 堺化学工業株式会社 難燃性コーティング剤組成物とその利用
JP2004358772A (ja) * 2003-06-04 2004-12-24 Sekisui Jushi Co Ltd 難燃性積層体
JP4511227B2 (ja) * 2004-03-29 2010-07-28 京セラ株式会社 水酸化物粒子の製造方法
CN1279129C (zh) * 2004-04-09 2006-10-11 中国科学院金属研究所 一种膨胀型超薄钢结构耐候防火纳米涂料及其制备方法
CN1687254A (zh) * 2005-04-18 2005-10-26 四川大学 一种单体系复合型隧道防火涂料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145404A (en) * 1975-05-30 1979-03-20 Kyowa Chemical Industry Co., Ltd. Magnesium hydroxides having novel structure, process for production thereof, and resin compositions containing them
US4849298A (en) 1986-09-17 1989-07-18 Vitaly Raevsky Fire-protective coatings, paints and varnishes
US5127950A (en) * 1989-09-14 1992-07-07 Lonza Ltd. Short-prismatic aluminum hydroxide, process for preparing same from supersaturated sodium aluminate-liquor, and compositions containing same
US6448308B1 (en) 1998-02-23 2002-09-10 Teijin Limited Fire-retardant resin compositions
EP1156092A1 (en) 2000-05-19 2001-11-21 Fernando H. Garcia All-purpose adhesive material and process for its production
WO2005110921A1 (en) * 2004-05-13 2005-11-24 Showa Denko K.K. Aluminum hydroxide and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2083053A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120315466A1 (en) * 2011-06-09 2012-12-13 Prc-Desoto International, Inc. Coating compositions including magnesium hydroxide and related coated substrates
CN103703067A (zh) * 2011-06-09 2014-04-02 Prc-迪索托国际公司 包含氢氧化镁的涂料组合物及相关的经涂覆的基材

Also Published As

Publication number Publication date
RU2451044C2 (ru) 2012-05-20
IL198540A (en) 2014-11-30
MX337770B (es) 2016-03-18
US20120312190A1 (en) 2012-12-13
KR20090082473A (ko) 2009-07-30
CA2669072C (en) 2013-01-29
EP2083053A4 (en) 2010-08-25
CN101583673B (zh) 2013-11-06
CA2669072A1 (en) 2008-05-15
KR101162183B1 (ko) 2012-07-05
US9771484B2 (en) 2017-09-26
WO2008056966A8 (es) 2009-07-02
BRPI0716683A2 (pt) 2013-01-01
IL198540A0 (en) 2010-02-17
JP2013237852A (ja) 2013-11-28
RU2009122193A (ru) 2010-12-20
CN101583673A (zh) 2009-11-18
EP2083053A1 (en) 2009-07-29
JP2010509430A (ja) 2010-03-25

Similar Documents

Publication Publication Date Title
WO2008056966A1 (es) Procedimiento para la preparación de aditivo retardador de flama para recubrimientos y productos resultantes.
ES2296221T3 (es) Composicion ignifugante con una distribucion monomodal del tamaño de particula y particula y basada en un hidroxido metalico y una arcilla.
JP6196670B2 (ja) 鉱物を含有する表面改質された炭酸カルシウムおよびこの使用
ES2391270T3 (es) Polvo de poliamida que contiene un agente ignifugante basado en un fosfonato, procedimiento para su producción y cuerpos moldeados producidos a partir del mismo
TWI565763B (zh) 製造包含表面經反應碳酸鈣之顆粒的方法
JP2754179B2 (ja) 少なくとも1種のアルカリ金属元素を含む希土類金属硫化物基材組成物、その製造法及び着色顔料としてのその使用
ES2668346T3 (es) Mezcla de carbonatos de calcio que comprende partículas de carbonato de calcio modificado superficialmente (MCC) y partículas de carbonato de calcio precipitado (PCC) y sus usos
JP2008510050A6 (ja) 金属水酸化物及び粘土に基づく、モノモーダルな粒径分布を有する難燃剤組成物
JP5446172B2 (ja) 紫外線防除機能を有する複合化ポリアミド多孔質微粒子およびその製造方法
BR112015010907B1 (pt) butilcarbamato de iodopropinila de cor estabilizada
KR20080000631A (ko) 수계 도료 조성물 및 열 차폐 도료
JP2858254B2 (ja) 安全性の高い過炭酸ナトリウム組成物
US8951541B2 (en) Method of modifying dissolution rate of particles by addition of hydrophobic nanoparticles
KR102276087B1 (ko) 3층상 파운데이션 화장료 조성물 및 이의 제조방법
ES2563903B2 (es) Formulación antiestática bicomponente para resinas de poliéster insaturado y de epoxiviniléster
ES2421032T3 (es) Partículas de óxido de zinc modificadas con ácido fosfonocarboxílico y uso de partículas de óxido de zinc
JPH0333753B1 (es)
Nour et al. Preparation and characterisation of polyethylene/clay nanocomposites as a flame retardant materials using ultrasonic technique
HU212052B (en) Distemper paints and plasters with strong initial watertightness, and method for producing the same
JP4800494B2 (ja) 溶剤系美爪料
JP2011140538A (ja) 塗料
JP4846050B1 (ja) 塗料
RU2718870C1 (ru) Огнезащитная вспучивающаяся краска
JP2557224B2 (ja) コ−テイング用粉末状難燃性ポリオレフイン組成物
JP2003267839A (ja) ゲル組成物の製造方法、ゲル組成物及びそれを含有する美爪料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780049708.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07747192

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 843/MUMNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 198540

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2009536174

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2669072

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007747192

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007747192

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097011940

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2009122193

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12514314

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0716683

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090511