WO2008053820A1 - Procédé d'estérification d'une résine de cellulose, résine de cellulose modifiée obtenue au moyen du procédé d'estérification, et procédé de production de la résine de cellulose modifiée - Google Patents

Procédé d'estérification d'une résine de cellulose, résine de cellulose modifiée obtenue au moyen du procédé d'estérification, et procédé de production de la résine de cellulose modifiée Download PDF

Info

Publication number
WO2008053820A1
WO2008053820A1 PCT/JP2007/070999 JP2007070999W WO2008053820A1 WO 2008053820 A1 WO2008053820 A1 WO 2008053820A1 JP 2007070999 W JP2007070999 W JP 2007070999W WO 2008053820 A1 WO2008053820 A1 WO 2008053820A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose resin
reaction
esterifying
esterification
resin
Prior art date
Application number
PCT/JP2007/070999
Other languages
English (en)
French (fr)
Inventor
Daisuke Nitta
Toshifumi Matsuoka
Original Assignee
Japan Vam & Poval Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vam & Poval Co., Ltd. filed Critical Japan Vam & Poval Co., Ltd.
Publication of WO2008053820A1 publication Critical patent/WO2008053820A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/06Cellulose acetate, e.g. mono-acetate, di-acetate or tri-acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/20Post-etherification treatments of chemical or physical type, e.g. mixed etherification in two steps, including purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B13/00Preparation of cellulose ether-esters

Definitions

  • the present invention relates to a method for esterifying a cellulose resin and a cell mouth ester resin obtained thereby.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-339301 (Page 2, Claim 1)
  • Patent Document 2 Japanese Patent No. 2883911 (Page 1, Claim 5)
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-26601 (Page 2, Claim 1)
  • Patent Document 4 JP-A-7-70202 (Page 2, Claim 2)
  • a first object of the present invention is to provide a method for esterifying a cellulose resin, which can be carried out with mild reaction conditions and relatively simple reaction equipment.
  • the second object of the present invention is to provide a low-cost modified cellulose resin.
  • the present invention provides:
  • a method for producing a modified cellulose resin characterized in that a bull ester is used as an esterifying agent in a method for producing a modified cellulose resin from a cellulose resin by an esterification reaction using an esterifying agent.
  • the type of cellulosic resin used in the present invention is not particularly limited, and a wide range of cellulosic resins can be used.
  • the cellulosic resin used for esterification is interpreted in a broad sense, and its category includes, for example, ano-reno-reno-rerose, such as methenoresenorelose and ethino-resenorelose, Examples include those in which the hydroxyl group in the glucose structure is partially substituted, such as sialkylcellulose, which can be used in the present invention. Of these, hydroxypropylmethylcellulose, which is preferable to hydroxyalkylcellulose, is more preferable because of its good reactivity.
  • the shape of the cellulosic resin is not particularly limited.
  • Cellulosic resins may be used alone or in combination of two or more.
  • the present invention it is important to use a bull ester as the esterifying power of the cellulose resin by an esterification reaction using an esterifying agent.
  • carboxylic acid anhydrides or carboxylic acid anhydrides the harsh reaction conditions with strong acids and the need to remove side reactants have led to high plant costs and complicated operations.
  • the reaction conditions are milder than those of the conventional methods described above, and the bull alcohol that is eliminated during the esterification reaction is immediately chemically stable. It changes to acetoaldehyde, which is an isomer, and this acetoaldehyde is easy to remove out of the system because of its low boiling point. For this reason, the method of the present invention is advantageous in terms of cost and operability.
  • the vinyl ester used as an esterifying agent for the cellulose resin used in the present invention includes, for example, a butyl ester of an organic carboxylic acid, and the organic carboxylic acid is an aliphatic carboxylic acid.
  • the organic carboxylic acid is an aliphatic carboxylic acid.
  • aliphatic carboxylic acids are preferable from the viewpoint of reactivity.
  • Aliphatic carboxylic acids are saturated carboxylic acids Either an acid or an unsaturated carboxylic acid may be used. Further, it may be linear, branched or cyclic, and among them, linear carboxylic acid is preferable.
  • organic carboxylic acids may have a substituent such as an alkyl group, an alkoxy group, a halogen atom, a hydroxyl group, an aryl group, an amino group, or a substituted amino group in the molecule.
  • aliphatic carboxylic acid bull ester examples include, for example, butyl acetate, propionate, butyrate, valerate, caproate, enanthate, force prillate, pelargonate, Power bull purate, octyl bull, laurate bull, myristic acid bull, palmitate bull, stearic acid bull, behenic acid bull, monochrome oral acetate bull, monobromoacetate bull, neodecanoate bull, 2-methylbutyrate bull, Bivalate, 2,2-Dimethylbutanoate, 2-Ethyl-2-methylbutanoate, 2,2-Dimethylpentanoate, Isobutyrate, Isovalerate, Adipate, Adipate Monobule, Sebacate , Methylbutyrate sebacate, cyclohexaneca Saturated carboxylic acids such as rubonic acid bull, para-tert-butylcyclohexane carb
  • acetate acetate, butyrate, and bivalate are preferred, such as butyl acetate, butyrate, bivalinate, octinolate, laurate, palmitate, monochlorobutyrate, methacrylate, and crotonate.
  • Monoacetate butyl acetate, methacrylic acid butyl and crotonate butyl are more preferred, and butyl acetate butyl, monochrome butyl acetate and crotonate butyl are even more preferred.
  • aromatic carboxylic acid bull ester examples include, for example, vinyl benzoate, b-butyl butyl benzoate, b-dimethylamino benzoate, meta-hydroxybenzoate, para-hydroxybenzoate. Acid bur, nor-methyl benzoate, meta methoxy benzoate, cinnamate bur, para methoxy cinnamate vinyl acrylate, biphenyl bis (4) strong rubonic acid bur, 1 naphthoic acid bur, 2 naphthoic acid bur etc. Also mentioned are aromatic carboxylic acids. Among them, benzoic acid bull, benzoic acid bull, cinnamate bull are preferred, and benzoic acid benzoate is preferred. Nil is even more preferred.
  • each of the bull esters may be used alone or in combination of two or more.
  • limiting in particular in the usage-amount of the bull ester as an esterifying agent According to the reactivity and reaction conditions of the said bull ester, it can set suitably.
  • the target substitution degree that is, an amount equivalent to about 1.0 to 10-fold mol, preferably about 1. with respect to the average number of hydroxyl groups (greater than 0 and 3 or less) to be ester-substituted in the glucose structure;
  • An amount equivalent to ⁇ 3.0 times mole, more preferably about 1.5 to 2.5 times mole equivalent of Buester can be used as an esterifying agent.
  • the reaction method of the esterification reaction in the present invention is not particularly limited as long as the esterifying agent is used, and can be freely selected according to the required characteristics of the modified cellulose resin that is the target product of the esterification reaction.
  • the following homogeneous reaction method and heterogeneous reaction method can be mentioned.
  • DMSO lithium chloride / dimethyl sulfoxide
  • the degree of substitution means the average number of substituted hydroxyl groups per glucose unit (0 to 3).
  • Examples of the heterogeneous reaction method include a solid-liquid heterogeneous reaction method.
  • cellulose resin is used in a bisester as an esterifying agent, or a solvent (for example, dimethyl alcohol) used in an esterification reaction.
  • a reaction method in which an esterifying agent and an esterification catalyst are added all at once or while the cellulose resin is stirred with a kneader or the like while being dispersed in a setamide or the like. This is the preferred method to choose.
  • the reaction efficiency can be further enhanced by adding an appropriate amount of lithium chloride / DMSO solution or the like to swell the surface of the cellulose resin.
  • the esterification reaction of the present invention does not require any special reaction equipment. did Therefore, as the reaction equipment for the esterification reaction in the present invention, known reaction equipment can be used, and any equipment equipped with a general temperature adjusting means, a stirrer, and a reflux cooling device is sufficient. It is. In addition, when using a monochrome mouth acetic acid bur, it is desirable to use a material equivalent to SUS316 for the part of the reaction equipment that comes into contact with it!
  • the esterification reaction in the present invention is preferably carried out in the presence of an esterification catalyst.
  • an esterification catalyst known esterification catalysts can be used.
  • metal compounds such as alkali metal compounds, zirconium compounds, hafnium compounds, titanium compounds and tin compounds, tetramethylammonium hydride ports, and the like.
  • ammonium compounds such as oxide, pyridine, dimethylaminopyridine, triethylamine, trimethylamine, and lipase.
  • an esterification catalyst made of an alkaline substance is preferably used in the present invention.
  • an esterification catalyst composed of a strong alkaline substance an ester catalyst composed of an alkali metal compound or an ammonium compound is preferred.
  • sodium hydroxide, sodium acetate, potassium hydroxide, potassium acetate, tetramethylammonium Umuhide mouth oxide, etc. are particularly excellent in terms of reaction rate and economy.
  • alkali metal compounds halides are excluded because they are not suitable as an esterification catalyst in the present invention.
  • alkali metal compounds other than the halogenated compounds such as sodium hydroxide described above exhibit basicity when dissolved, and easily react with hydroxyl groups in the cellulose resin from the reactivity to produce alcoholates, and ester esters.
  • alkali metal halides eg, lithium chloride, sodium chloride, etc.
  • halogenated compounds of ammonium compounds are excluded.
  • the exclusion of halides in the above means that these halides are not included in the category of esterification catalysts in the present invention! /, Meaning that they are not included as esterification catalysts in the present invention.
  • lithium chloride which is an alkali metal halide
  • the addition of lithium chloride to an aprotic solvent improves the solubility of the cellulosic resin, so that lithium chloride, which is an alkali metal halide, is not used as an esterification catalyst. Prefer to Used frequently.
  • an aprotic polar solvent is preferred as a solvent used in the esterification reaction (hereinafter referred to as “reaction solvent”).
  • reaction solvent a solvent used in the esterification reaction
  • the solubility or affinity of the cellulose-based resin or the solubility of Büster as the esterifying agent is high! /
  • the solubility or affinity of cellulosic resins and the solubility of the butyl ester are high! /,
  • the deviation is high! /
  • Non-protonic polar solvents are preferred in terms of reaction efficiency.
  • DMSO dimethylacetate Mido isotropic S is preferred, and DMSO is particularly preferred.
  • lithium chloride it is preferable to add lithium chloride to an aprotic solvent such as DMSO to obtain a mixed system of lithium chloride / non-protonic solvent because the solubility of the cellulose resin is improved. This is presumably because the interaction between the salt and the hydroxyl group hinders crystallization in the cellulosic resin and facilitates dissolution.
  • aprotic solvent such as DMSO
  • a homogeneous reaction method is carried out by completely dissolving the cellulosic resin using any of the above-mentioned highly aprotic polar solvents such as DMSO. Can do.
  • the reaction solvent is not necessarily an aprotic polar solvent as described above, or depending on the type of cellulosic resin selected for use in the reaction.
  • the cellulosic resin can be sufficiently contacted with the bull ester as the esterifying agent by stirring or the like. If present, the esterification reaction can proceed sufficiently.
  • the amount of the reaction solvent to be used is not particularly limited, and may be appropriately set according to a known esterification reaction. Further, a butyl ester as an esterifying agent may also serve as the reaction solvent.
  • cellulose resin is put into a suitable reaction vessel together with a reaction solvent and a reaction catalyst used as necessary, and heated or / and stirred. Dissolve or disperse cellulose. Then, a predetermined amount of bures as an esterifying agent is maintained in a state where the reaction temperature is maintained.
  • the esterification reaction is started by adding tellurium, and the reaction is terminated after a predetermined reaction time.
  • the reaction temperature is preferably about 30 to 120 ° C but usually about 40 to 100 ° C although it depends on the conditions.
  • a force based on the target reaction yield and the reactivity of the ester ester, buyl ester is usually;! To 24 hours is sufficient, and the esterification reaction proceeds sufficiently within this range.
  • the method for esterifying a cellulose resin of the present invention is carried out by the esterification reaction as described above, and as a result, a modified cellulose resin is obtained.
  • a modified cellulose resin obtained by the esterification reaction of the present invention is also one of the present invention.
  • a novel method for producing a modified cellulose resin is provided. Is done. Such a manufacturing method is also one aspect of the present invention.
  • the method for recovering the modified cellulose resin from the reaction solution is not particularly limited as long as it is a method capable of recovering the modified cellulose resin obtained in the present invention! For example, it can be carried out according to a known method as described below.
  • the modified cellulose resin is precipitated by reprecipitation treatment using a large amount of water, a poor solvent such as methyl alcohol, acetone, methyl acetate, and ethyl acetate.
  • a resin solid is obtained.
  • a mixer for example, a high shear mixer manufactured by SILVERSON
  • slurrying by simultaneous mixing of the reaction solution / poor solvent and cutting of the precipitated resin, or a method using a dry and wet spinning device can be adopted.
  • the obtained slurry is separated with a centrifugal filter or the like, and acetone, methyl alcohol or the like as necessary. After washing with an organic solvent, it may be dried with a blow dryer or the like and, if desired, powdered with a pulverizer.
  • the esterification reaction is a solid-liquid heterogeneous system
  • the modified cellulose resin is separated with a centrifugal filter or the like, and if necessary, operations such as washing, drying, and pulverization are performed. You can choose the work appropriately! /.
  • the modified cellulosic resin obtained by the present invention is given various characteristics by appropriately selecting the type of the bull ester used as the esterifying agent, and can be expected to be used in various applications accordingly.
  • a modified cellulose resin obtained by esterification with a bull ester having a long-chain alkyl group such as bull stearate or bull laurate has internal plasticity and can be expected to be used for melt molding.
  • a modified cellulose type obtained by esterification with a reactive double bond such as acryl acrylate, methacrylate, crotonate, cinnamate and p-methoxycinnamate.
  • the resin can be used as polymerizable cellulose when a thermal polymerization initiator such as ammonium persulfate is used.
  • grafting with other functional monomers facilitates the introduction of a wide variety of functional groups.
  • substitution degree in Examples 1 and 2 is the cellulosic system which was washed with water after completion of the reaction using a PLS method (partial least squares) calibration curve with a Fourier transform infrared spectrophotometer (MAGNA-IR560 manufactured by Nicolet). It calculated
  • the degree of substitution in Examples 3 and 4 was determined by using a gas chromatograph (GC-1 14B manufactured by SHIMADZU) as an esterifying agent remaining in the reaction solution immediately after the reaction was completed. It was measured by a simple method of calculating the degree of substitution from the consumption amount of the bull ester.
  • GC-1 14B manufactured by SHIMADZU
  • Alkaline cellulose was prepared by pretreatment of 20 g of aqueous alkali cellulose solution (5 g of cellulose microcrystals (MERCK)) with 40% aqueous sodium hydroxide solution in a 250 ml three round bottom flask equipped with a stirrer and reflux condenser. ), A solution of 3 g of lithium chloride in 200 g of DMSO was added and heated, and stirred at a temperature of 60 ° C. to swell the cellulose, and then butyl acetate as an esterifying agent. The esterification reaction (reaction temperature 60 ° C) was started by adding 3.0 mol per mol). Six hours after the addition of the esterifying agent, the reaction solution was put into a water bath to obtain a white resin solid. Thereafter, the same treatment as in Example 1 was performed, and the degree of substitution was calculated to be 1.2.
  • aqueous alkali cellulose solution 5 g of cellulose microcrystals (MERCK)
  • Hydroxypropyl methylcellulose 60SH4000: manufactured by Shin-Etsu Chemical Co., Ltd.
  • 2g and DMSO 198g were added to a 250ml three round bottom flask equipped with a stirrer and reflux condenser and heated to a temperature of 40 ° C.
  • 10% aqueous sodium hydroxide solution lg and 1,4 g butyl methacrylate (equivalent to 1.0 mole per glucose ring unit) were added.
  • the esterification reaction (reaction temperature 40 ° C) was started by the addition.
  • the reaction was completed after 2 hours, and the degree of substitution calculated from the gas chromatographic analysis value of the collected reaction mixture was 0.7.
  • reaction temperature 40 ° C is achieved by adding 10% aqueous sodium hydroxide solution lg and 2.8 g of lauric acid butyl (equivalent to 1.0 mol per glucose ring unit). Started. The reaction was completed after 2 hours, and the degree of substitution calculated from the gas chromatographic analysis value of the collected reaction solution was 0.4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

明 細 書
セルロース系樹脂のエステル化方法、それにより得られる変性セルロース 系樹脂およびその製造方法
技術分野
[0001] 本発明は、セルロース系樹脂のエステル化方法、およびそれにより得られるセル口 ースエステル系樹脂に関するものである。 背景技術
[0002] セルロース系樹脂にエステル基を導入する公知の方法としては、セルロース系樹脂 のヒドロキシル基にカルボン酸無水物(例えば特許文献;!〜 3参照。)や、カルボン酸 ハライド(例えば特許文献 4参照。)を反応させる方法等がよく知られている。
[0003] 特許文献 1 :特開平 5— 339301号公報(第 2頁、請求項 1)
特許文献 2 :特許第 2883911号公報 (第 1頁、請求項 5)
特許文献 3:特開 2001— 26601号公報(第 2頁、請求項 1 )
特許文献 4:特開平 7— 70202号公報 (第 2頁、請求項 2)
発明の開示
発明が解決しょうとする課題
[0004] セルロース系樹脂にエステル基を導入する公知の方法としては、上記したように力 ルボン酸無水物、カルボン酸ハライドのようなエステル化剤を、セルロース系樹脂のヒ ドロキシル基に反応させる方法がある。しかし、それら公知の方法は、酢酸等の希釈 剤、硫酸や過塩素酸等をエステル化触媒として使用する過酷な酸性の反応方法を 採用するため、多量の未反応物および副生成物の除去を要することや、強酸による 反応装置の腐食等の問題があり、製造工程および装置の複雑化が避けられないとい う問題点を抱えている。
[0005] 本発明の第 1の目的は、温和な反応条件且つ比較的シンプルな反応設備で実施 可能なセルロース系樹脂のエステル化方法を提供することである。本発明の第 2の目 的は低コストの変性セルロース樹脂を提供することである。
課題を解決するための手段 [0006] 本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、セルロース系樹脂 のエステル化剤としてビュルエステルを用いることで、変性セルロース樹脂(セルロー スエステル)が効率良く得られることを見出し、さらに検討を重ねて、本発明を完成さ せるに至った。
[0007] すなわち、本発明は、
〔 1〕 エステル化剤を用レ、るエステル化反応によりセル口ース系樹脂をエステル化す る方法において、エステル化剤としてビュルエステルを用いることを特徴とするセル口 ース系樹脂のエステル化方法、
〔2〕 前記反応に溶媒として非プロトン性極性溶媒を用いることを特徴とする前項〔1〕 に記載のセルロース系樹脂のエステル化方法、
〔3〕 前記反応にアルカリ性物質からなるエステル化触媒を用いることを特徴とする 前項〔1〕または〔2〕に記載のセルロース系樹脂のエステル化方法、
〔4〕 前記アルカリ性物質がハロゲン化物を除くアルカリ金属化合物であることを特徴 とする前項〔3〕に記載のセルロース系樹脂のエステル化方法。
〔5〕 前記アルカリ性物質がハロゲン化物を除くアンモニゥム化合物であることを特徴 とする前項〔3〕に記載のセルロース系樹脂のエステル化方法。
〔6〕 前項〔1〕〜〔5〕のいずれかに記載のエステル化方法により得られる変性セル口 ース系樹脂、および
〔7〕 エステル化剤を用いるエステル化反応によりセルロース系樹脂から変性セル口 ース系樹脂を製造する方法において、エステル化剤としてビュルエステルを用いるこ とを特徴とする変性セルロース系樹脂の製造方法
に関する。
発明の効果
[0008] 本発明によれば、セルロース系樹脂のエステル化剤にビュルエステルを用いること により大部分の副生成物がァセトアルデヒドとなるため、従来のカルボン酸無水物や カルボン酸ハライドを用いる製造方法に比べ副生成物の分離及び精製が容易となる 。したがって、従来の過酷な酸性下での反応方法を採用するエステル化方法に対し 、比較的シンプルな反応設備で簡便にセルロース系樹脂のエステル化が可能となる 発明を実施するための最良の形態
[0009] 以下、本発明を詳細に説明する。
[0010] 本発明において用いられるセルロース系樹脂の種類としては、特に制限されるもの ではなぐ広い範囲のセルロース系樹脂を用いることができる。本発明においてエス テル化に供されるセルロース系樹脂とは、広義に解釈され、その範疇には例えばメチ ノレセノレロース、ェチノレセノレロース等のァノレキノレセノレロースや、ヒドロキシェチノレセノレ口 シアルキルセルロースのようにグルコース構造中の水酸基が部分置換されたものも含 まれ、いずれも本発明に使用可能である。中でも、反応性がよい点でヒドロキシアル キルセルロースが好ましぐヒドロキシプロピルメチルセルロースがより好ましい。 セルロース系樹脂の形状にも特に制限はなぐ微粉末や繊維状であって力、まわな い。
また、セルロース系樹脂は単独で用いても、 2種以上を組み合わせて用いてもかま わない。
[0011] 本発明においては、エステル化剤を用いるエステル化反応によりセルロース系樹脂 をエステル化する力 s、該エステル化剤としてビュルエステルを用いることが重要である 。従来のカルボン酸無水物やカルボン酸ノヽライドを用いる方法では、強酸による過酷 な反応条件と、副反応物の除去の必要から、プラントのコストが高ぐ運転操作も複雑 なものとなっていた。これに対して本発明では、エステル化剤としてビュルエステルを 用いることにより、上記の従来法に比べて反応条件がマイルドであり、エステル化反 応時に脱離するビュルアルコールはすぐさま化学的に安定な異性体であるァセトァ ルデヒドに変化し、このァセトアルデヒドは低沸点ゆえ系外への除去が容易である。こ のため、本発明の方法は、コストや操作性の点で有利な方法である。
[0012] 本発明にお!/、て用いられるセルロース系樹脂のエステル化剤として用いられるビニ ルエステルとしては、例えば、有機カルボン酸のビュルエステルが挙げられ、該有機 カルボン酸は、脂肪族カルボン酸および芳香族カルボン酸が挙げられるが、中でも 反応性の点で、脂肪族カルボン酸が好ましい。脂肪族カルボン酸は、飽和カルボン 酸および不飽和カルボン酸のいずれであってもよい。また、直鎖状や分岐状および 環状のいずれであってもよいが、中でも直鎖状カルボン酸が好ましい。さらに、これら の有機カルボン酸は分子内にアルキル基、アルコキシ基、ハロゲン原子、水酸基、ァ リール基、アミノ基、置換アミノ基などの置換基を有していてもよい。
[0013] 前記脂肪族カルボン酸ビュルエステルの具体例としては、例えば、酢酸ビュル、プ ロピオン酸ビュル、酪酸ビュル、吉草酸ビュル、カプロン酸ビュル、ェナント酸ビュル 、力プリル酸ビュル、ペラルゴン酸ビュル、力プリン酸ビュル、ォクチル酸ビュル、ラウ リン酸ビュル、ミリスチン酸ビュル、パルミチン酸ビュル、ステアリン酸ビュル、ベヘン 酸ビュル、モノクロ口酢酸ビュル、モノブロモ酢酸ビュル、ネオデカン酸ビュル、 2—メ チル酪酸ビュル、ビバリン酸ビュル、 2, 2—ジメチルブタン酸ビュル、 2—ェチルー 2 メチルブタン酸ビュル、 2, 2—ジメチルペンタン酸ビュル、イソ酪酸ビュル、イソ吉 草酸ビュル、アジピン酸ジビュル、アジピン酸モノビュル、セバシン酸ジビュル、セバ シン酸メチルビュル、シクロへキサンカルボン酸ビュル、パラー tーブチルシクロへキ サンカルボン酸ビュル等のような飽和カルボン酸;アクリル酸ビュル、メタクリル酸ビニ ノレ、クロトン酸ビュル、ソルビン酸ビュル、ゥンデシレン酸ビュル等のような不飽和力 ルボン酸が挙げられる。中でも、酢酸ビュル、酪酸ビュル、ビバリン酸ビュル、ォクチ ノレ酸ビュル、ラウリン酸ビュル、パルミチン酸ビュル、モノクロ口酢酸ビュル、メタクリノレ 酸ビュル、クロトン酸ビュルが好ましぐ酢酸ビュル、酪酸ビュル、ビバリン酸ビュル、 モノクロ口酢酸ビュル、メタクリル酸ビュル、クロトン酸ビュルがさらにより好ましぐ酢 酸ビュル、モノクロ口酢酸ビュル、クロトン酸ビュルがさらにより好ましい。
[0014] また、前記芳香族カルボン酸ビュルエステルの具体例としては例えば、安息香酸ビ ニル、パラー t ブチル安息香酸ビュル、パラージメチルァミノ安息香酸ビュル、メタ —ヒドロキシ安息香酸ビュル、パラ—ヒドロキシ安息香酸ビュル、ノ ラ-メチル安息香 酸ビュル、メターメトキシ安息香酸ビュル、桂皮酸ビュル、パラーメトキシ桂皮酸ビニ ノレ、ビフエ二ルー 4一力ルボン酸ビュル、 1 ナフトェ酸ビュル、 2 ナフトェ酸ビュル 等のような芳香族カルボン酸も挙げられる。中でも、安息香酸ビュル、パラ—ヒドロキ シ安息香酸ビュル、桂皮酸ビュル、パラーメトキシ桂皮酸ビュル、安息香酸ビュル、 桂皮酸ビュルが好ましぐ安息香酸ビュル、桂皮酸ビュルがより好ましぐ安息香酸ビ ニルがさらにより好ましい。
[0015] ビュルエステルはそれぞれ単独で用いても、 2種以上を組み合わせて使用してもか まわない。また、エステル化剤としてのビュルエステルの使用量には特に制限は無く 、当該ビュルエステルの反応性および反応条件によって適宜設定することができる。 例えば目的とする置換度、すなわちグルコース構造中でエステル置換したい平均水 酸基数(0より大きく 3以下)に対して約 1. 0-10. 0倍モル相当の量、好ましくは約 1 . ;!〜 3. 0倍モル相当の量、より好ましくは約 1. 5〜2. 5倍モル相当の量のビュルェ ステルをエステル化剤として使用することができる。
[0016] 本発明におけるエステル化反応の反応方法としては、前記エステル化剤を用いさ えすれば特に制限は無ぐ該エステル化反応の目的物である変性セルロース樹脂の 要求特性によって自由に選択可能であり、例えば、次に説明する均一系の反応方法 や、不均一系の反応方法が挙げられる。
[0017] 均一系の反応方法としては、例えば、原料がセルロース微結晶等であれば、あらか じめ水酸化ナトリウム等の水溶液で処理後アルカリセルロースとし、塩化リチウム/ジ メチルスルホキシド(以下 DMSO)溶液等で溶解したのち、エステル化剤を添加する 反応方法が挙げられ、高置換度の変性セルロース樹脂が要求される場合に好ましく 選択される方法である。
なお、本発明において、置換度とは、グルコース単位あたりの置換された水酸基の 平均個数 (0〜3)を意味する。
[0018] 不均一系の反応方法としては、固液不均一系の反応方法が挙げられ、例えばセル ロース樹脂をエステル化剤としてのビュルエステル中、またはエステル化反応に用い る溶媒 (例えばジメチルァセトアミド等)中で分散させながら、またはニーダ一等でセ ルロース樹脂を攪拌しながらエステル化剤とエステル化触媒を一括あるいは分割添 加する反応方法が挙げられ、セルロース樹脂の一部をエステル化する場合に好まし く選択される方法である。なお、そのような固液不均一反応系の場合、塩化リチウム /DMSO溶液等を適量加えて当該セルロース樹脂の表面を膨潤させれば、反応効 率をより高めることが出来る。
[0019] 本発明のエステル化反応は、何ら特殊な反応設備を必要とするものではない。した がって、本発明におけるエステル化反応のための反応設備としては、公知の反応設 備を用いることができ、一般的な温度調節手段、攪拌機、及び還流冷却装置を備え るものであれば十分である。なお、モノクロ口酢酸ビュルを用いる場合には、これと接 触する反応設備の部分に SUS316相当の材質を用いることが望まし!/、。
[0020] 本発明におけるエステル化反応は、エステル化触媒の存在下に行われることが好 ましい。力、かるエステル化触媒としては、公知のエステル化触媒を用いることができ、 例えば、アルカリ金属化合物、ジルコニウム化合物、ハフニウム化合物、チタン化合 物ゃスズ化合物等の金属化合物、テトラメチルアンモニゥムハイド口オキサイド等のァ ンモニゥム化合物、ピリジン、ジメチルァミノピリジン、トリエチルァミン、トリメチルァミン 、リパーゼ等が挙げられる。
[0021] 上記したエステル化触媒の中でも、アルカリ性物質からなるエステル化触媒が本発 明に好ましく用いられる。力、かるアルカリ性物質からなるエステル化触媒としては、ァ ルカリ金属化合物もしくはアンモニゥム化合物からなるエステル触媒が好ましぐ具体 的には、水酸化ナトリウム、酢酸ナトリウム、水酸化カリウム、酢酸カリウム、テトラメチ ルアンモニゥムハイド口オキサイド等が特に好ましぐ反応率および経済性の面で優 れている。ただし、アルカリ金属化合物のうち、ハロゲン化物は本発明におけるエステ ル化触媒として適さないので除外される。これは、上記した水酸化ナトリウム等のハロ ゲン化物以外のアルカリ金属化合物が、溶解時に塩基性を呈し、その反応性からセ ルロース系樹脂中の水酸基と容易に反応してアルコラートを生成し、エステル化が進 行するのに対し、アルカリ金属のハロゲン化物(例えば塩化リチウム、塩化ナトリウム 等)は、溶解時にイオンの状態で安定して中性を呈することにより、エステル化反応 に殆ど寄与しないと考えられるからである。同様に、アンモニゥム化合物のうちハロゲ ン化物は除外される。もっとも、上記においてハロゲン化物が除外されるとは、それら のハロゲン化物を本発明におけるエステル化触媒の範疇に含めな!/、とレ、う意味であ り、本発明においてエステル化触媒として以外にそれらのハロゲン化物を使用するこ とまでをも除外するものではない。例えば後述するように、非プロトン性溶媒に塩化リ チウムを加えることでセルロース系樹脂の溶解性が向上するので、アルカリ金属のハ ロゲン化物である塩化リチウムは、エステル化触媒としてではないが本発明に好まし く用いられる。
[0022] 本発明において、エステル化反応に用いる溶媒 (以下、「反応溶媒」という)としては 、非プロトン性極性溶媒が好ましレ、。反応溶媒としての非プロトン性極性溶媒としては 、セルロース系樹脂の溶解性もしくは親和性あるいはエステル化剤としてのビュルェ ステルの溶解性が高!/、非プロトン性極性溶媒であればよ!/、が、セルロース系樹脂の 溶解性もしくは親和性および前記ビュルエステルの溶解性の!/、ずれもが高!/、非プロ トン性極性溶媒が反応効率のうえで好ましぐ具体的には DMSO、ジメチルァセトァ ミド等力 S好ましく、特に DMSOが好ましい。
[0023] また、 DMSO等の非プロトン性溶媒に塩化リチウムを加え、塩化リチウム/非プロト ン性溶媒の混合系とすることは、セルロース系樹脂の溶解性を向上させるので好まし い。これは、塩と水酸基との相互作用により、セルロース系樹脂における結晶化が阻 害されて溶解しやすくなるためと考えられる。
[0024] セルロース系樹脂の種類にもよる力 DMSOのような前記いずれの溶解性もが高 い非プロトン性極性溶媒を用い、セルロース系樹脂を完全溶解させることにより均一 系の反応方法を行うことができる。
[0025] ただし、本発明にお!/、て、反応溶媒は必ずしも前記のような非プロトン性極性溶媒 でなくてもよぐ反応に供するために選択したセルロース系樹脂の種類により、あるい は選択した反応溶媒の種類により、セルロース系樹脂が溶解しない不均一系の反応 となる場合であっても、攪拌等によって当該セルロース系樹脂とエステル化剤である ビュルエステルとが十分に接触できる条件であれば、エステル化反応は十分に進行 し得る。
[0026] なお、反応溶媒の使用量は特に限定されず、公知のエステル化反応に準じて適宜 設定すればよぐまた、エステル化剤としてのビュルエステルが反応溶媒を兼ねてい てもよい。
[0027] 本発明におけるエステル化反応を行なう好ましい方法としては、例えば前記のよう にセルロース樹脂を反応溶媒および必要に応じて用いられる反応触媒とともに適当 な反応容器に投入し、加熱または/及び攪拌してセルロース溶解もしくは分散させる 。そして、所定の反応温度に保った状態でエステル化剤としての所定量のビュルエス テルを添加することによりエステル化反応を開始し、所定の反応時間経過後に反応 を終了させる。反応温度としては、条件にもよるが 30〜120°C程度でよぐ通常 40〜 100°C程度の範囲が好適である。反応時間としては、 目標の反応収率およびエステ ル化剤であるビュルエステルの反応性にもよる力 通常;!〜 24時間で十分であり、こ の範囲でエステル化反応が十分進行する。
[0028] 本発明のセルロース系樹脂のエステル化方法は、以上説明したようなエステル化 反応により行なわれ、その結果物として変性セルロース系樹脂が得られる。そのよう な、本発明のエステル化反応により得られる変性セルロース系樹脂もまた本発明の ひとつである。また、本発明においては、前記したエステル化剤としてビュルエステル を用いるエステル化反応により、セルロース系樹脂から変性セルロース系樹脂を製造 すること力 Sできるので、新規な変性セルロース系樹脂の製造方法が提供される。その ような製造方法もまた本発明のひとつである。
[0029] 前記のエステル化反応後に、反応液から変性セルロース系樹脂を回収する方法と しては本発明にお!/、て得られた変性セルロース系樹脂を回収できる方法であれば、 特に限定されるものではなぐ例えば以下のように公知の方法に準じて行なうことがで きる。
[0030] 例えば、エステル化反応が均一系の場合は、多量の水、メチルアルコール、ァセト ン、酢酸メチル、酢酸ェチルなどの貧溶媒を用いた再沈処理により、変性セルロース 系樹脂を析出させて樹脂固形物を得る。このとき、ミキサー(例えば、 SILVERSON 社製のハイシァミキサー)を使用して反応液/貧溶媒の混合と析出した樹脂の切断 とを同時的に行うことによるスラリー化や、乾湿式紡糸装置による方法を採用すること 力できる。あるいは、スプレードライ法による微粉化、または流延法ゃダイ等から押し 出して製膜する方法を採用することもできる。さらに、析出した樹脂組成物の精製方 法としては、例えば前記のスラリー化を採用した場合であれば、得られたスラリーを遠 心ろ過器などで分離し、必要に応じてアセトン、メチルアルコールなどの有機溶剤で 洗浄した後、送風乾燥器などで乾燥し、所望により粉砕機で粉末状にすればよい。
[0031] また、例えば、エステル化反応が固液不均一系の場合は、反応終了後、遠心ろ過 器などで変性セルロース系樹脂を分離し、必要に応じて洗浄、乾燥、粉砕などの操 作を適宜選択して行なえばよ!/、。
[0032] 本発明により得られる変性セルロース系樹脂は、エステル化剤として用いるビュル エステルの種類を適宜選択することにより、様々な特性が付与され、それに応じて種 々の用途での利用が期待出来る。例えばステアリン酸ビュル、ラウリン酸ビュルのよう な長鎖アルキル基を有するビュルエステルによってエステル化して得られる変性セル ロース系樹脂は、内部可塑性を有する為、溶融成型などの用途が期待できる。
[0033] また、例えばアクリル酸ビュル、メタクリル酸ビュル、クロトン酸ビュル、桂皮酸ビュル 、 p—メトキシ桂皮酸ビュルのような反応性 2重結合を持つビュルエステルによりエス テル化して得られる変性セルロース系樹脂は、過硫酸アンモユウム等の熱重合開始 剤を使用すると重合性セルロースとして利用することが出来る。また、他の機能性モノ マー併用によりグラフト化ゃ多種多様な官能基の導入が容易となる。
実施例
[0034] 以下に実施例を挙げて本発明をさらに詳しく具体的に説明する力 本発明はこれら の実施例によってなんら限定されるものではない。
なお、実施例 1、 2における置換度は、フーリエ変換赤外分光光度計 (Nicolet社製 MAGNA— IR560)による PLS法(部分最小自乗法)検量線を用い、反応終了後、 水洗処理したセルロース系樹脂の赤外吸収スペクトルより求めた。
また、実施例 3、 4における置換度はガスクロマトグラフ(SHIMADZU社製 GC— 1 4B)を用い、反応終了直後の反応液中に残存するエステル化剤として用レ、た未反応 のビュルエステル量を測定し、該ビュルエステルの消費量から置換度を算出すると いう簡便法により求めた。
[0035] (実施例 1)
攪拌器、還流冷却器を備えた 250mlの三ッロ丸底フラスコに、セルロース微結晶( MERCK社製) 5g、塩化リチウム/ DMSO溶液 203g (DMSO 200gに塩化リチウ ム 3gを溶解させたもの)、およびテトラメチルアンモニゥムハイド口オキサイド(TMAH )のメタノール溶液 (TMAH濃度 25質量%) lgを投入して加温し、温度 60°Cにおい て攪拌しセルロースを膨潤させた後、エステル化剤として酢酸ビュル 8. lg (ダルコ一 ス環単位 1モル当たり 3. 0モル相当)を添加することによりエステル化反応(反応温度 60°C)を開始した。エステル化剤添加 3時間後に反応液を水浴に投入し、白色樹脂 固形物を得た。数回の水洗を経た後、赤外吸収スペクトルの測定をおこなった。測定 結果より置換度を算出したところ 0. 6であった。
[0036] (実施例 2)
攪拌器、還流冷却器を備えた 250mlの三ッロ丸底フラスコに、アルカリセルロース 水溶液 20g (セルロース微結晶(MERCK社製) 5gを 40%水酸化ナトリウム水溶液で あらかじめ処理することによりアルカリセルロース化したもの)、 DMSO 200gに塩化 リチウム 3gを溶解させた溶液を投入して加温し、温度 60°Cにおいて攪拌しセルロー スを膨潤させた後、エステル化剤として酢酸ビュル 8. lg (グルコース環単位 1モル当 たり 3. 0モル相当)を添加することによりエステル化反応(反応温度 60°C)を開始した 。エステル化剤添加 6時間後に反応液を水浴に投入し、白色樹脂固形物を得た。そ の後は実施例 1と同じ処理をおこない、置換度を算出したところ 1. 2であった。
[0037] (実施例 3)
攪拌器、還流冷却器を備えた 250mlの三ッロ丸底フラスコに、ヒドロキシプロピルメ チルセルロース(60SH4000 :信越化学工業株式会社製) 2gおよび DMSO 198g を投入して加温し、温度 40°Cにお!/、て攪拌して前記ヒドロキシプロピルメチルセル口 ースを完全溶解させた後、 10%水酸化ナトリウム水溶液 lg、メタクリル酸ビュル 1 · 4g (グルコース環単位当たり 1 · 0モル相当)を添加することによりエステル化反応(反 応温度 40°C)を開始した。 2時間後に反応を終了し、採取した反応液のガスクロ分析 値から置換度を算出したところ 0. 7であった。
[0038] (実施例 4)
攪拌器、還流冷却器を備えた 250mlの三ッ口丸底フラスコにヒドロキシプロピルメ チルセルロース(60SH4000 :信越化学工業株式会社製) 2gおよび DMSO 198g を投入して加温し、温度 40°Cにおいて攪拌し完全溶解させた後、 10%水酸化ナトリ ゥム水溶液 lg、ラウリン酸ビュル 2· 8g (グルコース環単位当たり 1 · 0モル相当)を 添加することによりエステル化反応(反応温度 40°C)を開始した。 2時間後に反応を 終了し、採取した反応液のガスクロ分析値から置換度を算出したところ 0. 4であった 併せて、前記実施例 3、 4において得られた変性セルロース系樹脂を含有するそれ ぞれの反応液から、常法に従い樹脂固形分を再沈、洗浄および粉砕して樹脂粉末 を得た。これらの変性セルロース樹脂粉末について、 Nicolet社製フーリエ変換赤外 分光光度計(MAGNA— IR560)を用い、赤外吸収スペクトルの測定をおこなった。 その結果、反応後のそれぞれの変性セルロース系樹脂の赤外吸収スペクトルには 1 YSScnT1付近にエステル由来であるカルボニル基の吸収がみられ、間違いなくグル コース環にエステル基が導入されていることが確認された。

Claims

請求の範囲
[1] エステル化剤を用いるエステル化反応によりセルロース系樹脂をエステル化する方 法において、エステル化剤としてビュルエステルを用いることを特徴とするセルロース 系樹脂のエステル化方法。
[2] 前記反応に溶媒として非プロトン性極性溶媒を用いることを特徴とする請求の範囲 第 1項に記載のセルロース系樹脂のエステル化方法。
[3] 前記反応にアルカリ性物質からなるエステル化触媒を用いることを特徴とする請求 の範囲第 1項に記載のセルロース系樹脂のエステル化方法。
[4] 前記アルカリ性物質がハロゲン化物を除くアルカリ金属化合物であることを特徴と する請求の範囲第 3項に記載のセルロース系樹脂のエステル化方法。
[5] 前記アルカリ性物質がハロゲン化物を除くアンモニゥム化合物であることを特徴とす る請求の範囲第 3項に記載のセルロース系樹脂のエステル化方法。
[6] 請求の範囲第 1項に記載のエステル化方法により得られる変性セルロース系樹脂。
[7] エステル化剤を用いるエステル化反応によりセルロース系樹脂から変性セルロース 系樹脂を製造する方法において、エステル化剤としてビュルエステルを用いることを 特徴とする変性セルロース系樹脂の製造方法。
PCT/JP2007/070999 2006-10-30 2007-10-29 Procédé d'estérification d'une résine de cellulose, résine de cellulose modifiée obtenue au moyen du procédé d'estérification, et procédé de production de la résine de cellulose modifiée WO2008053820A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006293542 2006-10-30
JP2006-293542 2006-10-30

Publications (1)

Publication Number Publication Date
WO2008053820A1 true WO2008053820A1 (fr) 2008-05-08

Family

ID=39344161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070999 WO2008053820A1 (fr) 2006-10-30 2007-10-29 Procédé d'estérification d'une résine de cellulose, résine de cellulose modifiée obtenue au moyen du procédé d'estérification, et procédé de production de la résine de cellulose modifiée

Country Status (1)

Country Link
WO (1) WO2008053820A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241848A (ja) * 2009-03-31 2010-10-28 Fujifilm Corp セルロース樹脂組成物、成形体及び電気電子機器用筺体
JP2013043984A (ja) * 2011-08-26 2013-03-04 Olympus Corp セルロースナノファイバーとその製造方法、複合樹脂組成物、成形体
WO2016010016A1 (ja) * 2014-07-14 2016-01-21 中越パルプ工業株式会社 誘導体化cnf、その製造方法、及びポリオレフィン樹脂組成物
KR20190010541A (ko) * 2016-05-25 2019-01-30 사피 네덜란드 서비시즈 비.브이. 화학적으로 변성된 나노셀룰로오스의 제조
CN117343204A (zh) * 2023-12-04 2024-01-05 北京林业大学 一种纤维素表面酯化产物及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188601A (ja) * 1994-11-08 1996-07-23 Nippon Koonsutaac Kk 澱粉エステルの製造方法、澱粉エステル、及び澱粉エステル組成物
JP2000253894A (ja) * 1999-03-05 2000-09-19 Wolff Walsrode Ag 位置選択的に置換されたオリゴ−及びポリサッカリドのエステル並びにそれらの製造方法
JP2006265544A (ja) * 2005-02-28 2006-10-05 Chiba Flour Milling Co Ltd 糖脂肪酸エステルの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188601A (ja) * 1994-11-08 1996-07-23 Nippon Koonsutaac Kk 澱粉エステルの製造方法、澱粉エステル、及び澱粉エステル組成物
JP2000253894A (ja) * 1999-03-05 2000-09-19 Wolff Walsrode Ag 位置選択的に置換されたオリゴ−及びポリサッカリドのエステル並びにそれらの製造方法
JP2006265544A (ja) * 2005-02-28 2006-10-05 Chiba Flour Milling Co Ltd 糖脂肪酸エステルの製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241848A (ja) * 2009-03-31 2010-10-28 Fujifilm Corp セルロース樹脂組成物、成形体及び電気電子機器用筺体
JP2013043984A (ja) * 2011-08-26 2013-03-04 Olympus Corp セルロースナノファイバーとその製造方法、複合樹脂組成物、成形体
WO2013031391A1 (ja) * 2011-08-26 2013-03-07 オリンパス株式会社 セルロースナノファイバーとその製造方法、複合樹脂組成物、成形体
WO2016010016A1 (ja) * 2014-07-14 2016-01-21 中越パルプ工業株式会社 誘導体化cnf、その製造方法、及びポリオレフィン樹脂組成物
JPWO2016010016A1 (ja) * 2014-07-14 2017-06-15 中越パルプ工業株式会社 誘導体化cnf、その製造方法、及びポリオレフィン樹脂組成物
KR20190010541A (ko) * 2016-05-25 2019-01-30 사피 네덜란드 서비시즈 비.브이. 화학적으로 변성된 나노셀룰로오스의 제조
JP2019516832A (ja) * 2016-05-25 2019-06-20 エスエーピーピーアイ ネザーランズ サーヴィシーズ ビー.ヴイ 化学的に誘導体化されたナノセルロースの製造
KR102415082B1 (ko) * 2016-05-25 2022-06-29 사피 네덜란드 서비시즈 비.브이. 화학적으로 변성된 나노셀룰로오스의 제조
JP7126950B2 (ja) 2016-05-25 2022-08-29 エスエーピーピーアイ ネザーランズ サーヴィシーズ ビー.ヴイ 化学的に誘導体化されたナノセルロースの製造
US11485797B2 (en) 2016-05-25 2022-11-01 Sappi Netherlands Services B.V. Production of chemically derivatized nanocellulose
CN117343204A (zh) * 2023-12-04 2024-01-05 北京林业大学 一种纤维素表面酯化产物及其制备方法和应用
CN117343204B (zh) * 2023-12-04 2024-03-12 北京林业大学 一种纤维素表面酯化产物及其制备方法和应用

Similar Documents

Publication Publication Date Title
EP2831121B1 (en) A process of preparing an ester of a cellulose ether
WO2008053820A1 (fr) Procédé d'estérification d'une résine de cellulose, résine de cellulose modifiée obtenue au moyen du procédé d'estérification, et procédé de production de la résine de cellulose modifiée
JP2994857B2 (ja) カルボン酸エステル系セルロース誘導体の製造方法
JP2007308722A (ja) スルホン酸樹脂触媒を用いて製造されるセルロースエステル
WO2007023762A1 (ja) ポリビニルアルコール系樹脂のエステル化方法、それにより得られる変性ポリビニルアルコール系樹脂およびその製造方法
CN109970557A (zh) 一种制备尼泊金酯的方法
JP7190392B2 (ja) ヒプロメロースフタル酸エステル及びその製造方法
CN104448057A (zh) 一种纳米级阿魏酸蔗渣木聚糖酯的制备方法
JPH05501129A (ja) カルボン酸の使用によるセルロースエステルの製造方法
JP7013343B2 (ja) ヒプロメロースフタル酸エステルの製造方法
JP5406643B2 (ja) α−オキソカルボン酸の金属塩の製造方法
JPS6042242B2 (ja) 高置換度カルボキシメチルセルロ−ズエ−テルアルカリ塩の製法
JP2004262999A (ja) アルカリ溶解性カルボン酸エステル系セルロース誘導体及び該誘導体からなるフィルム
JP7023197B2 (ja) ヒプロメロース酢酸エステルコハク酸エステルの製造方法
CN1562966A (zh) 一种新的制备布洛芬精氨酸盐的方法
JP2702249B2 (ja) アクリル酸またはメタクリル酸のアルキルアミノアルキルエステルの製造方法
CN103613754A (zh) 生物相容性温敏聚n-乙酰基谷氨酸/赖氨酸甲酯及制备方法
CN103694288B (zh) 制备2,3,4,6-四-氧-苄基-d-吡喃半乳糖的方法
JP2010007009A (ja) カルボキシメチルセルロースアシル化物の製造方法
JPH06306101A (ja) 耐塩水性に優れたカルボキシメチルセルロース組成物
US3066121A (en) Hydrolysis of polyvinyl esters
CN101314043A (zh) 一种鬼臼毒素的衍生物及其制备方法
JP2005194412A (ja) デキストリンエステル化物およびその製造方法
US2968671A (en) Vinyl 2-ethylhexyl chlorendate
JPH0967441A (ja) 耐ブロッキング性部分けん化ポリビニルアルコール系重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP