WO2008047553A1 - Procédé de fabrication en continu de monosilane - Google Patents

Procédé de fabrication en continu de monosilane Download PDF

Info

Publication number
WO2008047553A1
WO2008047553A1 PCT/JP2007/068860 JP2007068860W WO2008047553A1 WO 2008047553 A1 WO2008047553 A1 WO 2008047553A1 JP 2007068860 W JP2007068860 W JP 2007068860W WO 2008047553 A1 WO2008047553 A1 WO 2008047553A1
Authority
WO
WIPO (PCT)
Prior art keywords
monosilane
reaction tower
dichlorosilane
trichlorosilane
catalyst
Prior art date
Application number
PCT/JP2007/068860
Other languages
English (en)
French (fr)
Inventor
Toshiaki Otsu
Takashi Tachiyama
Mineto Kobayashi
Kazuyuki Yubune
Takao Takeuchi
Yusuke Wakuda
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to EP07828606.9A priority Critical patent/EP2085358A4/en
Priority to JP2008539715A priority patent/JP5419456B2/ja
Priority to US12/443,310 priority patent/US20100074824A1/en
Priority to CN2007800325891A priority patent/CN101511732B/zh
Priority to KR1020097003733A priority patent/KR101397349B1/ko
Publication of WO2008047553A1 publication Critical patent/WO2008047553A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0239Quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • C01B33/043Monosilane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/10773Halogenated silanes obtained by disproportionation and molecular rearrangement of halogenated silanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a continuous production method of monosilane, which has recently been increasing in demand as a raw material for high purity silicon epitaxy and amorphous silicon for solar cells.
  • Patent Document 3 a method is known in which a monosilane gas is produced by packing a solid catalyst in a reaction tower and disproportionating dichlorosilane.
  • Patent Document 3 since the conversion reaction to monosilane is an equilibrium reaction, a large apparatus is required in order to obtain the desired production amount which is not necessarily as high as 10 to 18%. It was.
  • Patent Document 1 Japanese Patent Publication No. 64-3804
  • Patent Document 2 Japanese Patent Publication No. 63-33422
  • Patent Document 3 Japanese Patent No. 2648615
  • the inventors of the present invention are simple and efficient, and the amount of trichlorosilane and dichlorosilane, which are raw materials, to monosilane (the amount of production per hour when using an apparatus having the same reaction ability)
  • the present invention provides a continuous production method of monosilane having a large size. Means for solving the problem
  • the gist of the present invention is as follows.
  • a reaction tower a plurality of upper condensers with a reflux liquid supply conduit connected in series to the top of the reaction tower, a bottom reboiler of the reaction tower, and an evaporation tank connected to the bottom of the reaction tower
  • the product mixture containing dichlorosilane and trichlorosilane is introduced into the plurality of upper condensers, and the upper condenser at a temperature of 50 to -50 ° C. from the condensate containing silane, dichlorosilane and trichlorosilane to monosilane.
  • the condensate from which the monosilane has been separated is returned to the upper stage of the reaction tower through the reflux liquid supply conduit and brought into contact with the catalyst in the reaction tower, and the bottom part containing tetrachlorosilane and the catalyst is recovered from the bottom of the reaction tower.
  • a monosilane continuous characterized in that a liquid is obtained and introduced into the evaporation tank, and the catalyst recovered from the bottom of the evaporation tank is returned to the reaction tower. Manufacturing method.
  • the number of the upper condensers is 2 to 5 and the temperature of the condensate of the i-th condenser (i is an integer of 1 or more) counted from the reaction tower is T, and the (i + 1) -th upper condenser 2.
  • T 1 T ⁇ 10 ° C where T is the temperature of the condensate in the condenser.
  • the number of upper condensers is 3 or 4, and T 1 T ⁇ 15 ° C.
  • Trichlorosilane and dichlorosilane are supplied to the middle stage of the reaction tower, and the supplied dichlorosilane force S is 2 to 100 mol% with respect to the total of supplied trichlorosilane and supplied dichlorosilane.
  • the method for producing monosilane according to any one of 1 to 4 above is supplied to the middle stage of the reaction tower, and the supplied dichlorosilane force S is 2 to 100 mol% with respect to the total of supplied trichlorosilane and supplied dichlorosilane.
  • Trichlorosilane and dichlorosilane are supplied to the middle part of the reaction tower, and the supplied dichlorosilane force S is 5 to 50 mol% with respect to the total of supplied trichlorosilane and supplied dichlorosilane. 5.
  • the bottom recovery solution contains 50 to 100 moles of tetrachlorosilane in the bottom recovery solution (excluding the catalyst). / 0 including manufacturing method of monosilane according to any one of the above 1-6.
  • the tertiary aliphatic hydrocarbon-substituted amine is represented by the following formula (1), and the hydrochloride of the tertiary aliphatic hydrocarbon-substituted amine is represented by the following formula (2): Monosilane according to item Manufacturing method.
  • Formula (1) RRRN tertiary aliphatic hydrocarbon-substituted amine
  • 1 2 3 1 2 3 has 2 or more carbon atoms, and R, R, and R may be the same or different.
  • FIG. 1 is an explanatory diagram showing an example of an apparatus used in Examples 1 to 5 and Comparative Examples 3 and 4 of the present invention.
  • trichlorosilane and dichlorosilane are used as a raw material.
  • the amount of Axis Roroshiran 2 100 mole 0/0 good Mashigu 5 50 mole% based on the total of trichlorosilane and dichlorosilane is more preferable. If it is less than 2 mol%, monosilane productivity may not be improved! /. From the economical point of view, dichlorosilane does not exceed 50 mol%! /, And the range is more preferable.
  • At least one of a tertiary aliphatic hydrocarbon-substituted amine and a tertiary aliphatic hydrocarbon-substituted amine hydrochloride is used.
  • the compounds represented by the following formulas (1) and (2) can be preferably used.
  • R R R is an aliphatic hydrocarbon group, each of R R and R
  • R R R may be the same or different, respectively.
  • Examples of the tertiary aliphatic hydrocarbon-substituted amine include tri-n-octylamine, tri-n-butylamine and the like.
  • the number of carbon atoms of the aliphatic hydrocarbon group is preferably 2 or more, more preferably 6 to 15; If the carbon number of the aliphatic hydrocarbon group is less than 3%, the catalyst may come into contact with trichlorosilane and become a solid substance. If it becomes solid, it may block the column of the reaction tower, packing, etc., and smooth continuous operation may not be possible.
  • Monosilane is efficiently obtained by separating monosilane from the resulting mixture and returning the remaining condensate to the reaction tower. Furthermore, the condensate is preferable because the force S for returning to the upper part of the reaction tower (the region above about 2/3 of the reaction tower) and the conversion rate are improved so as to contact the catalyst. When the condensate is returned to the middle part of the reaction tower (about 1/3 to 2/3 of the reaction tower), the disproportionation reaction does not proceed sufficiently and the yield of monosilane is low.
  • the ratio between the tertiary aliphatic hydrocarbon-substituted amine and its hydrochloride is 100 to 0 mol% of the tertiary aliphatic hydrocarbon-substituted amine, and the hydrochloride of the tertiary aliphatic hydrocarbon-substituted amine. It is preferable to be set to ⁇ 100 mol%.
  • the tertiary aliphatic hydrocarbon-substituted amine is preferably 98 to 50 mol%, particularly preferably 98 to 60 mol%, and the tertiary aliphatic hydrocarbon-substituted amine hydrochloride is preferably 2-50 mole 0/0, and particularly preferably it is preferable to 2 to 40 mole 0/0.
  • the reaction tower is a distillation tower type reaction tower.
  • a column tower partitioned by a sieve tray or a bubble cap tray, or a packed tower packed with a packing such as Raschig ring or ball ring is preferably used. It can.
  • Monosilane production is a liquid phase reaction through a disproportionation reaction, so the liquid holdup is great!
  • the reaction temperature at the top of the tower is low and the temperature at the bottom of the tower is high. Since the temperature distribution is generated in the reaction tower, the reaction temperature is not constant. For example, the reaction temperature is 10 to 150 ° C, preferably 30 to 120 ° C. If the reaction temperature is less than 10 ° C, the reaction temperature may be low and the disproportionation reaction may not proceed substantially. Since the reaction is preferably carried out in a boiling state, the gauge pressure is preferably about 100 to 2000 kPaG in order to maintain the above reaction temperature.
  • the temperature at the bottom of the column is controlled by the bottom reboiler. It is preferable to selectively recover tetrachlorosilane from the bottom which does not need to be returned to the reaction column. For this reason, the temperature of the bottom reboiler is preferably 100 to 150 ° C force S, more preferably 90 to 120 ° C.
  • the bottom recovery liquid contains 50 to 100 mol% of tetrachlorosilane in the bottom recovery liquid (excluding the catalyst).
  • the bottom recovery liquid contains 60 to 100 mol% of tetrachlorosilane in the bottom recovery liquid (excluding the catalyst).
  • the mixture produced by the reaction contains monochlorosilane, dichlorosilane, and trichlorosilane chlorosilanes and monosilanes.
  • monosilane is separated and removed from the mixture, and the chlorosilane Class is returned to the reaction tower. Separation of the monosilane from the mixture is carried out by condensing the mixture in a condenser, and this condensation is carried out in the condensate temperature range of 50 to -50 ° C. In the present invention, this condensation is carried out in a plurality of stages.
  • the temperature of the condensate in the condenser exceeds 50 ° C, chlorosilanes such as dichlorosilane and monochlorosilane are not sufficiently separated from monosilane, and the amount of condensate returned to the reaction tower is small. Decreases. On the other hand, if the temperature is less than 50 ° C, monosilane is included Since the condensate returns to the reaction tower and the reaction (4) occurs, the reaction rate decreases. Among them, the temperature of the condensate is preferably 40-50 ° C, particularly preferably 4045 ° C.
  • the present invention uses a plurality of upper condensers with a reflux liquid supply conduit connected in series to the upper stage of the reaction tower, and the condensate having a temperature of 50 ° C. and 50 ° C. is refluxed to the reaction tower.
  • the number of upper condensers with reflux liquid supply conduits is at least two.
  • the production amount of monosilane depends on the number of condensers. For example, even if the number of condensers is too large, the production amount of monosilane decreases. End up. In the study of the present inventor, it was found that considering the economy, the number of condensers is preferably 25, and more preferably 34.
  • the temperature difference between the condensates of adjacent upper condensers is appropriately set according to the number of upper condensers with reflux liquid supply conduits.
  • the temperature of the condensate in the upper condenser of the i + 1th (i is an integer of 1 or more) counted from the top of the reaction column is T, and the temperature of the i + 1st is T
  • the number of upper condensers is 2
  • T 1 T ⁇ 10 ° C, more preferably 15 to; range of 100 ° C
  • T 1 T T ⁇ 15 ° C, more preferably in the range of 20-60 ° C.
  • the recovered monochlorosilane, dichlorosilane and trichlorosilane are preferably returned to the upper stage of the reaction column so as to come into contact with the catalyst.
  • the condensate is returned to the middle stage of the reaction tower, the disproportionation reaction does not proceed sufficiently, and the yield of monosilane does not improve.
  • FIG. 1 is an explanatory diagram showing an example of an apparatus used in an embodiment of the present invention.
  • a mixture of trichlorosilane and dichlorosilane is supplied to the middle part of the reaction tower 1 through the raw material supply conduit 4 (region of about 1/3 to 2/3 of the reaction tower).
  • the reaction tower 1 is a stainless steel distillation tower, and each tray is a sieve tray.
  • a stainless steel upper condenser 3, an upper condenser 5, and an upper condenser 6 are continuously provided at the top of the reaction tower 1 (the area above the upper tray). Cooling water, calcium chloride aqueous solution, and liquid nitrogen can be cooled respectively in the ket.
  • reaction tower 1 a disproportionation reaction and separation by distillation occur simultaneously, and a gas rich in low-boiling components such as monosilane generated by the disproportionation reaction moves upward.
  • the product mixture taken out from the top of the reaction tower is sequentially supplied to the upper condenser 3, the upper condenser 5, and the upper condenser 6, and cooled sequentially.
  • the entrained high-boiling components are condensed, and the condensate is supplied as reflux liquid to the upper stage of the reaction tower (the area about 1/3 of the reaction tower) through the reflux liquid supply pipes 8, 9, and 10, respectively.
  • Monosilane accounts for many of the low-boiling components obtained through the upper condenser 6.
  • High-boiling components such as tetrachlorosilane move to the bottom of the reaction tower (lower than the lowermost tray) and are extracted together with the catalyst from the bottom reboiler 2 to the evaporation tank 12 while adjusting the liquid level.
  • the evaporating tank 12 has a capacity of 3 liters of stainless steel container with a stirrer and is equipped with a jacket. Heated heat transfer oil is circulated through the tank, and the evaporation tank 12 is heated. This evaporating tank 12 is operated at a temperature higher than the boiling point of tetrachlorosilane generated by the disproportionation reaction and lower than the boiling point of the catalyst.
  • Tetrachlorosilane and the like are evaporated and collected by a lower condenser 13 cooled with methanol dry ice. And collected in storage tank 14.
  • the catalyst remaining in the evaporation tank 12 is extracted by the pump 11 and returned to the upper stage of the reaction tower 1 again. In this case, if the concentration of the tertiary aliphatic hydrocarbon-substituted amine hydrochloride in the catalyst does not reach the predetermined concentration, hydrogen chloride is replenished from the replenishment pipe 15 as necessary.
  • FIG. 2 is an explanatory diagram showing an example of an apparatus used in a comparative example of the present invention.
  • reaction tower 1 is a stainless steel distillation tower, and each tray is a sieve tray.
  • a stainless steel upper condenser 3 is provided at the top of the reaction tower 1 so that the jacket can be cooled with methanol dry ice.
  • a bottom reboiler 2 At the bottom of the reaction tower 1 is a bottom reboiler 2 with a built-in heater with a maximum output of 1 KW.
  • reaction tower 1 a disproportionation reaction and separation by distillation occur simultaneously, and a gas rich in low-boiling components such as monosilane generated by the disproportionation reaction moves upward and is cooled in the upper condenser 3.
  • Stainless steel condenser cooled with liquid nitrogen after condensing accompanying high-boiling components 5 It is condensed in and collected in collection tank 26 as liquid.
  • High-boiling components such as tetrachlorosilane move to the bottom of the column and are extracted together with the catalyst from the bottom reboiler 2 to the evaporation tank 29 while adjusting the liquid level.
  • the evaporating tank 29 consists of a stainless steel container with a stirrer with an internal volume of 3 liters, which is provided with a jacket.
  • the heated heat transfer oil is circulated through the evaporating tank 29 so that it is heated.
  • This evaporation tank 29 is operated at a temperature higher than the boiling point of tetrachlorosilane generated by the disproportionation reaction and lower than the boiling point of the catalyst.
  • Tetrachlorosilane and the like are evaporated and trapped by a lower condenser 20 cooled with methanol dry ice. Collected and collected in storage tank 21. The catalyst remaining in the evaporation tank 29 is extracted by the pump 28 and returned to the upper stage of the reaction tower 1 again. In this case, if the concentration of the tertiary aliphatic hydrocarbon-substituted amine hydrochloride in the catalyst is not a predetermined concentration, hydrogen chloride is replenished from the replenishment pipe 22 as necessary.
  • the reaction tower 1 is a stainless steel distillation tower having a tower diameter of 100 mm, a tower height of 60 Omm, and a number of stages of 5. Each tray is a sieve tray.
  • Evaporation tank 12 was filled with 3.6 mol of tri-n-octylamine, and 0.6 mol of hydrogen chloride gas was injected to prepare a catalyst containing 14 mol% of tri-n-octylamine hydrochloride. Was heated and kept at 100 ° C.
  • the upper condenser 3 connected to the top of the reaction tower was cooled with 15 ° C cooling water, the upper condenser 5 was cooled with -15 ° C calcium chloride, and the upper condenser 6 was cooled with liquid nitrogen.
  • the temperature of the condensate in Fig. 1 was 35 ° C for condensate 8, 13 ° C for 9, and 45 ° C for 10.
  • the bottom reboiler 2 of the reaction tower was heated by an electric heater, and a mixture of trichlorosilane and dichlorosilane was continuously supplied from the raw material supply pipe 4 at a flow rate of 16 mol / hour in the third stage from the bottom of the reaction tower 1.
  • the amount of dichlorosilane in the mixture was the molar ratio shown in Table 1 with respect to the total of trichlorosilane and dichlorosilane.
  • the pump 11 that circulates the catalyst is driven, and the catalyst in the evaporation tank 12 is converted to 3.6 mol / h of trioctylamine, 0.6 mol of hydrogen chloride gas. It circulated in the 4th stage from the bottom of the reaction tower 1 at a flow rate of 1 liter / hour.
  • the internal pressure of the reaction tower 1 was maintained at 260 kPaG with a gauge pressure while being adjusted with a control valve.
  • the liquid level of the bottom reboiler 2 was adjusted by the control valve 7 so as to keep the liquid level constant, and the reaction liquid containing the catalyst in the bottom reboiler 2 was taken out into the evaporation tank 12.
  • the recovered catalyst was continuously returned to the fourth stage from the bottom of the reaction tower while appropriately supplying hydrogen chloride gas from the supply pipe 15.
  • the reaction tower 1 is a stainless steel distillation tower having a tower diameter of 100 mm, a tower height of 600 mm and a number of 5 plates, and each tray is a sieve tray.
  • Evaporation tank 29 was filled with 3.6 mol of tri-octylamine, and 0.6 mol of hydrogen chloride gas was blown into it to prepare a catalyst containing 14 mol% of tri-n-octylamine hydrochloride. Was heated and kept at 100 ° C.
  • the pump 28 for circulating the catalyst is driven, and the catalyst in the evaporation tank 29 is fed into the reactor 1 at a flow rate of 3.6 mol / hour of tri-n-octylamine and 0.6 mol / hour of hydrogen chloride gas. 4th row from the bottom Circulated to.
  • the internal pressure of the reaction tower 1 was maintained at 260 kPaG with a gauge pressure while being adjusted with a control valve.
  • the bottom reboiler 2 was adjusted by the control valve 7 to keep the liquid level constant, and the reaction liquid containing the catalyst in the bottom reboiler was taken out into the evaporation tank 29.
  • the recovered catalyst was continuously returned to the fourth stage from the bottom of the reaction tower while appropriately supplying hydrogen chloride gas from the supply pipe 22.
  • the condensate temperature is set at the temperature shown in Table 3, and the amount of dichlorosilane in the feed mixture is trimethylated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Description

明 細 書
モノシランの連続的製造方法
技術分野
[0001] 本発明は、高純度のシリコンエピタキシーや太陽電池のアモルファスシリコンなどの 原料として近年需要が増大しているモノシランの連続的製造方法に関する。
背景技術
[0002] モノシランの製造方法としては、第 3級ァミンの塩酸塩を触媒として、トリクロロシラン などの水素化塩化珪素を不均化反応させてモノシランガスを製造する方法が知られ てレ、る(特許文献 1、特許文献 2)。
また、反応塔に固体触媒を充填し、ジクロロシランを不均化反応させてモノシランガ スを製造する方法が知られている(特許文献 3)。し力、しながら、モノシランへの転換 反応は平衡反応のために、平衡転換率は、従来 10〜; 18%と必ずしも高くなぐ所望 の生産量を得るためには、大型の装置を必要とされていた。
[0003] 特許文献 1:特公昭 64— 3804号公報
特許文献 2:特公昭 63— 33422号公報
特許文献 3:特許第 2648615号公報
発明の開示
発明が解決しょうとする課題
[0004] 本発明者らは、簡便かつ効率良ぐまた、原料である、トリクロロシラン及びジクロロ シランからのモノシランへの生成量(同じ反応能力を有する装置を用いた場合の時間 あたりの生成量)が大きいモノシランの連続的製造方法を提供するものである。 課題を解決するための手段
[0005] 本発明は、以下を要旨とするものである。
1.反応塔と、該反応塔の頂部に直列に連結された還流液供給導管付の複数の上 段凝縮器と、該反応塔の底部リボイラーと、該反応塔の底部に連結された蒸発槽と、 、前記反応塔の上段部に触媒として第 3級脂肪族炭化水素置換アミン及び第 3級脂 肪族炭化水素置換ァミンの塩酸塩の少なくとも一方を供給し、前記反応塔の頂部より モノシラン、モノクロロシラン、ジクロロシラン及びトリクロロシランを含む生成混合物を 前記複数の上段凝縮器に導入し、上段凝縮器にて 50〜― 50°Cの温度でモノクロ口 シラン、ジクロロシラン及びトリクロロシランを含む凝縮液からモノシランを分離し、モノ シランを分離した凝縮液を前記還流液供給導管により反応塔の上段部に戻し、前記 反応塔内で触媒と接触せしめ、前記反応塔の底部よりテトラクロロシラン及び触媒を 含む底部回収液を取得して前記蒸発槽に導入し、前記蒸発槽の底部から回収した 触媒を前記反応塔に戻すことを特徴とするモノシランの連続的製造方法。
2.前記上段凝縮器の数が 2〜5であり、かつ反応塔から数えて i番目(iは 1以上の 整数)の凝縮器の凝縮液の温度を Tとし、 i+1個目の上段凝縮器の凝縮液の温度を T としたときに、 T一 T ≥10°Cである上記 1に記載のモノシランの製造方法。
i+1 i i+1
3.前記上段凝縮器の数が 3又は 4であり、かつ T一 T ≥15°Cである上記 2に記
i i+1
載のモノシランの製造方法。
4.前記反応塔の底部リボイラーの温度が 100〜150°Cである、上記;!〜 3の何れ か一項に記載のモノシランの製造方法。
5.前記反応塔の中段部にトリクロロシラン及びジクロロシランを供給し、かつ供給さ れるジクロロシラン力 S、供給されるトリクロロシランと供給されるジクロロシランの合計に 対して 2〜; 100モル%である上記 1〜4の何れか一項に記載のモノシランの製造方法
6.前記反応塔の中段部にトリクロロシラン及びジクロロシランを供給し、かつ供給さ れるジクロロシラン力 S、供給されるトリクロロシランと供給されるジクロロシランの合計に 対して 5〜50モル%である上記 1〜4の何れか一項に記載のモノシランの製造方法。
7.前記底部回収液が、テトラクロロシランを前記底部回収液 (ただし、前記触媒を のぞく)中に 50〜100モル。 /0含む上記 1〜6の何れか一項に記載のモノシランの製 造方法。
8.第 3級脂肪族炭化水素置換ァミンが下式(1)であり、第 3級脂肪族炭化水素置 換ァミンの塩酸塩が下式(2)で示される上記 1〜7の何れか一項に記載のモノシラン の製造方法。 式(1) RRRN
1 2 3
式(2) RRRNH C1 上記(式(1)及び式(2)中、 R、 R、 Rは脂肪族炭化水素基、その R、 R及び R
1 2 3 1 2 3 の各炭素数は 2以上であり、 R、 R、 Rはそれぞれ同種又は異種のものであってもよ
1 2 3
い。
発明の効果
[0006] 本発明によれば、工業的に非常に有用なモノシランを簡便かつ効率良く連続的に 製造すること力 Sでさる。
図面の簡単な説明
[0007] [図 1]本発明の実施例 1〜5並びに比較例 3、 4に用いる装置の一例を示す説明図で ある。
園 2]本発明の比較例 1、 2に用
符号の説明
[0008] 1 : 反応塔
2 : 底部リボイラー
3 : 上段凝縮器
4 : 原料供給導管
5 : 上段凝縮器
6 : 上段凝縮器
7 : 調節弁
8 : 還流液供給導管
9 : 還流液供給導管
10: 還流液供給導管
11、 28: ホ ス
12、 29: 蒸発槽 13 20 : 下段凝縮器
14 21 26 : 貯槽
15 22 : 補給管
発明を実施するための最良の形態
[0009] 原料としては、トリクロロシラン及びジクロロシランの少なくとも一方を使用する。ジク ロロシランの量はトリクロロシランとジクロロシランの合計に対して 2 100モル0 /0が好 ましぐ 5 50モル%がより好ましい。 2モル%未満であるとモノシランの生産性が向 上しな!/、おそれがある。経済性の観点からジクロロシランが 50モル%を越えな!/、範囲 がより好ましい。
[0010] 触媒としては、第 3級脂肪族炭化水素置換アミン及び第 3級脂肪族炭化水素置換 ァミンの塩酸塩の少なくとも一方を用いる。それぞれ、下記式(1)及び式(2)で示さ れる化合物を好適に用いることができる。 式(1) R R R N
1 2 3
式(2) R R R NH C1 上式(1)及び式(2)中、 R R Rは脂肪族炭化水素基、その R R及び Rの各
1 2 3 1 2 3 炭素数は 2以上であり、また、 R R Rはそれぞれ同種又は異種のものであっても
1 2 3
よい。
[0011] 第 3級脂肪族炭化水素置換ァミンとしては、例えば、トリ— n—ォクチルァミン、トリ— n—プチルァミン等が挙げられる。前記(1)及び式 (2)において、脂肪族炭化水素基 の各炭素数は 2以上が好ましぐ 6〜; 15がより好ましい。脂肪族炭化水素基の炭素数 力 ¾未満だと触媒がトリクロロシランと接触して固形物になりやすくなるおそれがある。 固形物になると、反応塔の段、充填物などを閉塞させ、円滑な連続運転ができなくな るおそれがある。
[0012] 本発明において、上記の触媒を使って、トリクロロシラン、ジクロロシランと接触させ ると次の(1)、(2)、(3)の不均化反応式に従ってジクロロシラン、モノクロロシラン及 びモノシランが生成する。 2SiHCl ^ SiCl + SiH CI (1)
3 4 2 2
2SiH CI ^ SiHCl + SiH CI (2)
2 2 3 3
2SiH CI ^ SiH Cl + SiH (3)
[0013] これら(1)、 (2)及び(3)は平衡反応であるので、トリクロロシラン、ジクロロシランを 出発物質として、反応時間を長くとっても最終生成物であるモノシランが 100%生成 することはできず、生成物中にモノシラン、モノクロロシラン、ジクロロシラン、トリクロ口 シラン及びテトラクロロシランの混在した状態となる。
生成した混合物からモノシランを分離し、残りの凝縮液を反応塔に戻すことにより、 効率的にモノシランが得られる。更に、凝縮液は、触媒と接触するように反応塔上段 部(反応塔の約 2/3より上の領域)に戻す方力 S、転換率が向上し好ましい。凝縮液を 反応塔中段部 (反応塔の約 1/3〜2/3の領域)に戻した場合、不均化反応は十分 に進まずモノシランの収率の向上は低レ、。
[0014] 第 3級脂肪族炭化水素置換ァミンとその塩酸塩との割合は、第 3級脂肪族炭化水 素置換アミン 100〜0モル%、第 3級脂肪族炭化水素置換ァミンの塩酸塩 0〜100モ ル%とするのが好ましい。なかでも、第 3級脂肪族炭化水素置換ァミンが好ましくは 9 8〜50モル%、特に好ましくは 98〜60モル%であり、また、第 3級脂肪族炭化水素 置換ァミンの塩酸塩が好ましくは 2〜50モル0 /0、特に好ましくは 2〜40モル0 /0とする のが好適である。
[0015] 後者の割合が 2モル%未満では触媒作用が小さぐ又 40モル%を越えると反応中 に塩酸が離脱し、次のような反応を生じ、モノシランを効率良く生成することはできな い。
SiH +HC1 → SiH Cl + H (4)
4 3 2
SiH C1 + HC1 → SiH CI +H (5)
SiH2Cl2 + HCl → SiHCl3 + H2 (6)
SiHCl +HC1 → SiCl +H (7) [0016] 反応塔は蒸留塔形式の反応塔であり、例えば、シーブトレイ又はバブルキャップトレ ィ等で仕切られた段塔、ラシヒリング又はボールリング等の充填物を充填した充填塔 を好適に用いることができる。モノシランの生成は不均化反応を通じた液相反応であ るので、液ホールドアップの大き!/、反応塔が好ましレ、。
[0017] 反応塔内は反応と同時に蒸留による分離操作を行わせるので、塔頂部の温度は低 ぐ塔底部の温度は高くなる。反応塔内に温度分布が生じるので、反応温度も一定で はないが、例えば、 10〜; 150°C、好ましくは 30〜; 120°Cの範囲で行われる。反応温 度が 10°C未満であると反応温度が低く不均化反応が実質的に進行しないおそれが あり、 150°Cを超えると触媒の熱分解が生じやすいので好ましくない。反応は好ましく は沸騰状態で行われるので上記反応温度を保っために、ゲージ圧力は好ましくは 100〜2000kPaG程度になる。
[0018] 塔底部の温度は、底部リボイラーにより制御される力 反応塔に戻す必要のないテ トラクロロシランを選択的に底部より回収することが好ましい。このため、底部リボイラ 一の温度は、 100〜; 150°C力 S好ましく、より好ましくは 90〜120°Cである。底部リボイ ラーの温度を、 100〜; 150°Cとすることにより、前記底部回収液が、テトラクロロシラン を前記底部回収液(ただし、前記触媒をのぞく)中に 50〜; 100モル%含むこととなり 好ましい。前記底部回収液が、テトラクロロシランを前記底部回収液 (ただし、前記触 媒をのぞく)中に 60〜; 100モル%含むことがより好ましい。
[0019] 反応により生成する混合物には、モノクロロシラン、ジクロロシラン及びトリクロロシラ ンのクロロシラン類及びモノシラン類が含有される力 S、本発明では、該混合物からモノ シランを分離して取り出し、上記クロロシラン類は反応塔に戻す。混合物からモノシラ ンの分離は、混合物を凝縮器にて凝縮させることにより行われるが、この凝縮は、凝 縮液の温度が 50〜― 50°Cの範囲で行われる。本発明において、この凝縮は、複数 段に分けて実施される。
[0020] 上記凝縮器における凝縮液の温度が 50°C超では、ジクロロシラン、モノクロロシラン 等のクロロシラン類とモノシランとの分離が不十分であり、反応塔に戻す凝縮液の量 少なぐ反応率が低下する。逆に力、かる温度が— 50°C未満では、モノシランを含む 凝縮液が反応塔に戻ることになり、前記 (4)の反応を生ずるため、反応率は低下する 。なかでも、上記凝縮液の温度は好ましくは 40 ― 50°C、特に好ましくは 40 45 °Cが好適である。
[0021] 本発明は、反応塔の上段部に直列に連結された還流液供給導管付の複数の上段 凝縮器を用い、温度 50 50°Cの凝縮液が反応塔に還流される。還流液供給導 管付の上段凝縮器の数は、少なくとも 2である。本発明では、凝縮器の数により、 目 的物のモノシランの生成量(1時間当りのモル生成量)が左右され、例えば、凝縮器 の数が多過ぎてもモノシランの生成量は低下してしまう。本発明者の研究では経済性 を考慮すると、凝縮器の数は 2 5が好ましぐ 3 4がより好ましいことが判明した。隣 り合う上段凝縮器の凝縮液の温度差は、還流液供給導管付の上段凝縮器の数によ り適切に設定される。
[0022] 本発明では、反応塔の頂部から数えて i+1個目(iは 1以上の整数)の上段凝縮器の 凝縮液の温度を Tとし、 i+ 1個目の温度を T としたとき、上段凝縮器の数が 2
i+1 〜5で i
ある場合は、 T一 T ≥10°Cであるのが好ましぐより好ましくは 15〜; 100°Cの範囲
i i+1
で、上段凝縮器の具体的な数によって決められる。また、上段凝縮器の数が 3又は 4 である場合は、 T一 T ≥15°Cであるのが好ましぐより好ましくは 20〜60°Cの範囲
i i+1
で、上段凝縮器の具体的な数によって決められる。上段凝縮器における温度差が少 なすぎると、モノシラン、モノクロロシラン、ジクロロシラン及びトリクロロシランを含む混 合物からのモノシランの分離効率や収率が低下したり、モノクロロシラン、ジクロロシラ ン及びトリクロロシランの回収効率が低下する場合がある。
分離 '回収したモノクロロシラン、ジクロロシラン及びトリクロロシランは、反応塔上段 部に触媒と接触するように戻すのが好ましい。凝縮液を反応塔中段部に戻した場合 、不均化反応は十分に進まず、モノシランの収率は向上しない。
[0023] 図 1は、本発明の実施例に用いる装置の一例を示す説明図である。
トリクロロシランとジクロロシランの混合物を原料供給導管 4を通じて反応塔 1の中段 部 (反応塔の約 1/3〜2/3の領域)に供給する。反応塔 1はステンレス製蒸留塔で 、各トレィはシ一ブトレイである。反応塔 1の頂部(上段トレイより上の領域)にはステン レス鋼製の上段凝縮器 3、上段凝縮器 5、上段凝縮器 6を連続して設けており、ジャ ケットにそれぞれ冷却水、塩化カルシウム水溶液、液体窒素を通じて冷却出来るよう になっている。反応塔 1の下部には最大出力 1KWのヒーターを内蔵する底部リボイ ラー 2が設けられている。
[0024] 反応塔 1では不均化反応と蒸留による分離が同時に起こり、不均化反応で生じたモ ノシラン等の低沸点成分に富んだガスは上方に移動する。反応塔の頂部から取り出 された生成混合物は、上段凝縮器 3、上段凝縮器 5、上段凝縮器 6に順次供給され、 順次冷却される。同伴する高沸点成分は凝縮され、凝縮液は各々還流液として還流 液供給導管 8、 9、 10を通じて反応塔の上段部 (反応塔の約 1/3の上の領域)に供 給される。モノシランは上段凝縮器 6を通過して得られる低沸点成分の多くを占める。
[0025] テトラクロロシラン等の高沸点成分は反応塔の底部(最下段トレイより下部)に移行 し、触媒と共に底部リボイラー 2よりその液面を調節しつつ蒸発槽 12に抜き取られる。 蒸発槽 12は内容積 3リットルの攪拌器付きステンレス鋼製容器力、らなり、これにジャケ ットが設けられている。それに加熱された熱媒油を循環させ、蒸発槽 12が加温される ようになつている。この蒸発槽 12は不均化反応で生じたテトラクロロシランの沸点より 高く触媒の沸点より低い温度で操作され、テトラクロロシラン等は蒸発し、メタノールド ライアイスで冷却された下段凝縮器 13で捕集され、貯槽 14に回収される。蒸発槽 12 に残った触媒はポンプ 11により抜き取られ、再び反応塔 1の上段部に戻される。この 場合、触媒中の第 3級脂肪族炭化水素置換ァミンの塩酸塩の濃度が所定濃度にな つていないときは、補給管 15から塩化水素を必要に応じて補給する。
[0026] 図 2は、本発明の比較例に用いる装置の一例を示す説明図である。
トリクロロシランとジクロロシランの混合物を原料供給導管 4を通じて反応塔 1の中段 部に供給する。反応塔 1はステンレス製蒸留塔で、各トレィはシ一ブトレイである。反 応塔 1の頂部にはステンレス鋼製の上段凝縮器 3を設けており、ジャケットにメタノー ルドライアイスを通じて冷却出来るようになつている。反応塔 1の下部には最大出力 1 KWのヒーターを内蔵する底部リボイラー 2が設けられている。
[0027] 反応塔 1では不均化反応と蒸留による分離が同時に起こり、不均化反応で生じたモ ノシラン等の低沸点成分に富んだガスは上方に移動し、上段凝縮器 3で冷却され、 同伴する高沸点成分を凝縮した後、液体窒素で冷却されたステンレス鋼製凝縮器 5 で凝縮させ、液体で捕集貯槽 26に回収される。
[0028] テトラクロロシラン等の高沸点成分は塔底に移行し、触媒と共に底部リボイラー 2より その液面を調節しつつ蒸発槽 29に抜き取られる。蒸発槽 29は内容積 3リットルの攪 拌器付きステンレス鋼製容器からなり、これにジャケットが設けられている。それに加 熱された熱媒油を循環させ、蒸発槽 29が加温されるようになっている。この蒸発槽 2 9は不均化反応で生じたテトラクロロシランの沸点より高く触媒の沸点より低い温度で 操作され、テトラクロロシラン等は蒸発し、メタノールドライアイスで冷却された下段凝 縮器 20で捕集され、貯槽 21に回収される。蒸発槽 29に残った触媒はポンプ 28によ り抜き取られ、再び反応塔 1の上段部に戻される。この場合、触媒中の第 3級脂肪族 炭化水素置換ァミンの塩酸塩の濃度が所定濃度になっていないときは、補給管 22か ら塩化水素を必要に応じて補給する。
実施例
[0029] 本発明を実施例により説明するが、本発明はこれらの実施例に限定して解釈される ものではない。
[0030] 実施例;!〜 5
図 1に示されるフローの装置を用いて実験した。反応塔 1は塔径 100mm、塔高 60 Ommで 5の段数を有するステンレス製蒸留塔で、各トレィはシ一ブトレイである。蒸発 槽 12にトリ— n ォクチルァミンを 3. 6モル充填し、塩化水素ガスを 0. 6モル吹き込 み、 14モル%のトリ— n ォクチルァミン塩酸塩を含む触媒を調製し、ジャケットの熱 媒油を加熱して、 100°Cに保った。
[0031] 反応塔の頂部に接続された上段凝縮器 3を 15°Cの冷却水で、上段凝縮器 5を— 1 5°Cの塩化カルシウムで、上段凝縮器 6を液体窒素でそれぞれ冷却し、図 1中の凝縮 液の温度を凝縮液 8で 35°C、 9で 13°C、 10で 45°Cとした。反応塔の底部リボイ ラー 2を電気ヒーターにより加熱し、反応塔 1の下から 3段目にトリクロロシランとジクロ ロシランの混合物を 16モル/時間の流量で原料供給導管 4から連続的に供給した。 但し、混合物中のジクロロシランの量は、トリクロロシランとジクロロシランの合計に対し て表 1に記載するモル比とした。同時に、触媒を循環させるポンプ 11を駆動して、蒸 発槽 12内の触媒を、トリー n ォクチルァミン 3. 6モル/時間、塩化水素ガス 0. 6モ ル/時間の流量で反応塔 1の下から 4段目に循環した。
[0032] 反応塔 1の内部圧力は調節弁により調節しつつゲージ圧力で 260kPaGに保った。
又、底部リボイラー 2の液面を一定に保つべく調節弁 7により調節し、底部リボイラー 2 内の触媒を含んだ反応液を蒸発槽 12に抜き取った。回収触媒に補給管 15より塩化 水素ガスを適宜補給しながら連続的に反応塔の下から 4段目に戻した。
反応塔の底部リボイラー 2の温度を 130°Cに保持して 20時間の連続運転を行った ところ、塔頂から低沸点ガスが取得された。上段凝縮器 6を通過して得られるガスをガ スクロマトグラフィーにより分析したところ、表 1に記載する生成量のモノシランが取得 された。貯槽 14中の凝縮液中のテトラクロロシランの含有量をガスクロマトグラフィー により分析したところ、 55モル0 /。であった。
[0033] [表 1] 表 1
Figure imgf000012_0001
比較例
[0034] 比較例;!〜 2
図 2に示される装置を用いて実験した。反応塔 1は塔径 100mm、塔高 600mmで 5 の段数を有するステンレス製蒸留塔で、各トレィはシ一ブトレイである。蒸発槽 29にト リ— n ォクチルァミンを 3· 6モル充填し、塩化水素ガス 0· 6モルを吹き込み、 14モ ル%のトリ—n ォクチルァミン塩酸塩を含む触媒を調製し、ジャケットの熱媒油を加 熱して、 100°Cに保った。
[0035] 一方、反応塔の頂部に接続された上段凝縮器 3を 60°Cのメタノールドライアイス で冷却した後、反応塔の底部リボイラー 2を電気ヒーターにより加熱し、反応塔 1の下 力、ら 3段目にトリクロロシランとジクロロシランの原料混合物を 16モル/時間の流量で 原料供給導管 4から連続的に供給した。但し、混合物中のジクロロシランの量は、トリ クロロシランとジクロロシランの合計に対して表 2に記載するモル比とした。同時に、触 媒を循環させるポンプ 28を駆動して、蒸発槽 29内の触媒を、トリ— n ォクチルアミ ン 3. 6モル/時間、塩化水素ガス 0. 6モル/時間の流量で反応塔 1の下から 4段目 に循環した。
[0036] 反応塔 1の内部圧力は調節弁により調節しつつゲージ圧力で 260kPaGに保った。
又、底部リボイラー 2の液面を一定に保つべく調節弁 7により調節し、底部リボイラー 内の触媒を含んだ反応液を蒸発槽 29に抜き取った。回収触媒に補給管 22より塩化 水素ガスを適宜補給しながら連続的に反応塔の下から 4段目に戻した。
反応塔の底部リボイラー 2の温度を 130°Cに保持して 20時間の連続運転を行った ところ、塔頂から低沸点ガスが取得された。捕集貯槽 26の捕集液をガスクロマトダラ フィ一により分析したところ、表 2に記載する生成量のモノシランが取得された。
[0037] [表 2] 表 2
Figure imgf000013_0001
[0038] 実施例 6、 7
凝縮液温度を表 3の温度で行ない、供給する混合物中のジクロロシランの量を、トリ
〜5と同様に行った。捕集液から表 3に記載する生成量のモノシランが取得された。
[0039] [表 3]
表 3
Figure imgf000013_0002
産業上の利用可能性
[0040] 本発明の製造方法によれば、工業的に有用なモノシランを、トリクロロシラン及びジ クロロシランの少なくとも一方を原料として、簡便かつ効率良く連続的に製造すること ができるので有用である。 なお、 2006年 9月 27曰に出願された曰本特許出願 2006— 261716号の明細書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲
[1] 反応塔と、該反応塔の頂部に直列に連結された還流液供給導管付の複数の上段 凝縮器と、該反応塔の底部リボイラーと、該反応塔の底部に連結された蒸発槽と、を 有するモノシラン製造装置を用い、
前記反応塔の中段部にトリクロロシラン及びジクロロシランの少なくとも一方を供給し
、前記反応塔の上段部に触媒として第 3級脂肪族炭化水素置換アミン及び第 3級脂 肪族炭化水素置換ァミンの塩酸塩の少なくとも一方を供給し、前記反応塔の上段部 よりモノシラン、モノクロロシラン、ジクロロシラン及びトリクロロシランを含む生成混合 物を前記複数の上段凝縮器に導入し、上段凝縮器にて 50 50°Cの温度でモノク ロロシラン、ジクロロシラン及びトリクロロシランを含む凝縮液力もモノシランを分離し、 モノシランを分離した凝縮液を前記還流液供給導管により反応塔の上段部に戻し、 前記反応塔内で触媒と接触せしめ、前記反応塔の底部よりテトラクロロシラン及び触 媒を含む底部回収液を取得して前記蒸発槽に導入し、前記蒸発槽の底部から回収 した触媒を前記反応塔に戻すことを特徴とするモノシランの連続的製造方法。
[2] 前記上段凝縮器の数が 2 5であり、かつ頂部から数えて i+1個目(iは 1より大きな 整数)の上段凝縮器の凝縮液の温度を T としたときに、 T一 T ≥10°Cである請求
i+1 i i+1
項 1に記載のモノシランの製造方法。
[3] 前記上段凝縮器の数が 3又は 4であり、かつ T一 T ≥15°Cである請求項 2に記載
i i+1
のモノシランの製造方法。
[4] 前記反応塔の底部リボイラーの温度が 100 150°Cである、請求項;!〜 3の何れか 一項に記載のモノシランの製造方法。
[5] 前記反応塔の中段部にトリクロロシラン及びジクロロシランを供給し、かつ供給され るジクロロシラン力 S、供給されるトリクロロシランとジクロロシランの合計に対して 2 10
0モル%である請求項 1 4の何れか一項に記載のモノシランの製造方法。
[6] 前記反応塔の中段部にトリクロロシラン及びジクロロシランを供給し、かつ供給され るジクロロシラン力 S、供給されるトリクロロシランと供給されるジクロロシランの合計に対 して 5 50モル%である請求項 1 4の何れか一項に記載のモノシランの製造方法。
[7] 前記底部回収液が、テトラクロロシランを前記底部回収液 (ただし、前記触媒をのぞ く)中に 50〜; 100モル%含む請求項 1〜6の何れか一項に記載のモノシランの製造 方法。
第 3級脂肪族炭化水素置換ァミンが下式(1)、第 3級脂肪族炭化水素置換ァミンの 塩酸塩が下式(2)で示される請求項 1〜7の何れか一項に記載のモノシランの製造 方法。
式(1) RR R N
1 2 3
式(2) RR R NHTC厂
1 2 3
(式(1)及び式(2)中、 R、 R、 Rは脂肪族炭化水素基、その R、 R及び Rの各炭
1 2 3 1 2 3 素数は 2以上であり、し力、も R、 R、 Rはそれぞれ同種又は異種のものである。 )
PCT/JP2007/068860 2006-09-27 2007-09-27 Procédé de fabrication en continu de monosilane WO2008047553A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07828606.9A EP2085358A4 (en) 2006-09-27 2007-09-27 PROCESS FOR THE CONTINUOUS PRODUCTION OF MONOSILANE
JP2008539715A JP5419456B2 (ja) 2006-09-27 2007-09-27 モノシランの連続的製造方法
US12/443,310 US20100074824A1 (en) 2006-09-27 2007-09-27 Process for continuously producing monosilane
CN2007800325891A CN101511732B (zh) 2006-09-27 2007-09-27 甲硅烷的连续式制造方法
KR1020097003733A KR101397349B1 (ko) 2006-09-27 2007-09-27 모노실란의 연속적 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-261716 2006-09-27
JP2006261716 2006-09-27

Publications (1)

Publication Number Publication Date
WO2008047553A1 true WO2008047553A1 (fr) 2008-04-24

Family

ID=39313800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068860 WO2008047553A1 (fr) 2006-09-27 2007-09-27 Procédé de fabrication en continu de monosilane

Country Status (7)

Country Link
US (1) US20100074824A1 (ja)
EP (1) EP2085358A4 (ja)
JP (1) JP5419456B2 (ja)
KR (1) KR101397349B1 (ja)
CN (1) CN101511732B (ja)
TW (1) TWI404676B (ja)
WO (1) WO2008047553A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248067A (ja) * 2009-04-15 2010-11-04 Air Products & Chemicals Inc クロロシランの製造方法
WO2011132621A1 (ja) * 2010-04-22 2011-10-27 電気化学工業株式会社 水素化ハロゲン化シランの不均化反応用の触媒及びそれを用いたモノシランの製造方法
JP2015504838A (ja) * 2011-12-16 2015-02-16 アールイーシー シリコン インコーポレイテッド シランおよびヒドロハロシランの製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100022454A (ko) * 2007-03-30 2010-03-02 레브 리뉴어블 에너지 벤쳐스 인코포레이티드 촉매 수소화 반응
CN101905887B (zh) * 2010-07-28 2012-05-30 化学工业第二设计院宁波工程有限公司 从硅烷蒸馏釜液中回收硅烷的方法
CN101920178B (zh) * 2010-08-30 2012-04-25 哈尔滨工业大学 制备甲硅烷气体的管式反应器系统及使用其制备甲硅烷的方法
EP2426088A1 (en) 2010-09-03 2012-03-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for producing monosilane from dichlorosilane
EP2426089A1 (en) 2010-09-03 2012-03-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for separating monosilane from chlorosilanes-rich mixture
CN102633262B (zh) * 2012-04-01 2014-03-26 多氟多化工股份有限公司 一种甲硅烷的制备方法
CN103979544B (zh) * 2013-12-13 2017-10-17 江苏中能硅业科技发展有限公司 利用反应精馏生产硅烷及三氯氢硅的方法
CN112174996B (zh) * 2019-07-03 2023-06-30 新疆硅基新材料创新中心有限公司 一种连续化生产硅烷偶联剂的方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215513A (ja) * 1984-04-06 1985-10-28 Denki Kagaku Kogyo Kk シラン化合物の連続的製造方法
JPS61191513A (ja) * 1985-02-19 1986-08-26 Denki Kagaku Kogyo Kk シラン化合物の連続的製造方法
JPS6333422B2 (ja) 1984-04-06 1988-07-05 Denki Kagaku Kogyo Kk
JP2648615B2 (ja) 1988-06-14 1997-09-03 三井東圧化学株式会社 モノシランの簡便な製造方法
JP2002533293A (ja) * 1998-12-24 2002-10-08 ソーラーワールド・アクチエンゲゼルシヤフト シランを製造する方法と設備
JP2003530290A (ja) * 2000-04-07 2003-10-14 ソーラーワールド・アクチエンゲゼルシヤフト シラン製造方法および装置
JP2006261716A (ja) 2005-03-15 2006-09-28 Fuji Xerox Co Ltd 文書処理装置及び方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3968199A (en) * 1974-02-25 1976-07-06 Union Carbide Corporation Process for making silane
US4676967A (en) * 1978-08-23 1987-06-30 Union Carbide Corporation High purity silane and silicon production
US4340574A (en) * 1980-08-28 1982-07-20 Union Carbide Corporation Process for the production of ultrahigh purity silane with recycle from separation columns
US4610858A (en) * 1984-04-06 1986-09-09 Denki Kagaku Kogyo Kabushiki Kaisha Chlorosilane disproportionation catalyst and method for producing a silane compound by means of the catalyst
JPS6153108A (ja) * 1984-08-22 1986-03-17 Denki Kagaku Kogyo Kk モノシランの連続的製造方法
JPS61191516A (ja) * 1985-02-18 1986-08-26 Union Showa Kk 結晶性ゼオライト
TW555690B (en) * 2001-08-14 2003-10-01 Jsr Corp Silane composition, silicon film forming method and solar cell production method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215513A (ja) * 1984-04-06 1985-10-28 Denki Kagaku Kogyo Kk シラン化合物の連続的製造方法
JPS6333422B2 (ja) 1984-04-06 1988-07-05 Denki Kagaku Kogyo Kk
JPS643804B2 (ja) 1984-04-06 1989-01-23 Denki Kagaku Kogyo Kk
JPS61191513A (ja) * 1985-02-19 1986-08-26 Denki Kagaku Kogyo Kk シラン化合物の連続的製造方法
JP2648615B2 (ja) 1988-06-14 1997-09-03 三井東圧化学株式会社 モノシランの簡便な製造方法
JP2002533293A (ja) * 1998-12-24 2002-10-08 ソーラーワールド・アクチエンゲゼルシヤフト シランを製造する方法と設備
JP2003530290A (ja) * 2000-04-07 2003-10-14 ソーラーワールド・アクチエンゲゼルシヤフト シラン製造方法および装置
JP2006261716A (ja) 2005-03-15 2006-09-28 Fuji Xerox Co Ltd 文書処理装置及び方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248067A (ja) * 2009-04-15 2010-11-04 Air Products & Chemicals Inc クロロシランの製造方法
WO2011132621A1 (ja) * 2010-04-22 2011-10-27 電気化学工業株式会社 水素化ハロゲン化シランの不均化反応用の触媒及びそれを用いたモノシランの製造方法
JPWO2011132621A1 (ja) * 2010-04-22 2013-07-18 電気化学工業株式会社 水素化ハロゲン化シランの不均化反応用の触媒及びそれを用いたモノシランの製造方法
JP2015504838A (ja) * 2011-12-16 2015-02-16 アールイーシー シリコン インコーポレイテッド シランおよびヒドロハロシランの製造方法

Also Published As

Publication number Publication date
EP2085358A1 (en) 2009-08-05
TW200831404A (en) 2008-08-01
JP5419456B2 (ja) 2014-02-19
US20100074824A1 (en) 2010-03-25
CN101511732A (zh) 2009-08-19
KR20090064534A (ko) 2009-06-19
TWI404676B (zh) 2013-08-11
KR101397349B1 (ko) 2014-05-19
EP2085358A4 (en) 2015-06-17
JPWO2008047553A1 (ja) 2010-02-25
CN101511732B (zh) 2011-12-07

Similar Documents

Publication Publication Date Title
WO2008047553A1 (fr) Procédé de fabrication en continu de monosilane
US8298490B2 (en) Systems and methods of producing trichlorosilane
US4610858A (en) Chlorosilane disproportionation catalyst and method for producing a silane compound by means of the catalyst
EP1928591A1 (en) Process for producing monosilane
US20120177559A1 (en) Apparatus and method for producing polycrystalline silicon having a reduced amount of boron compounds by forming phosphorus-boron compounds
WO2014100705A1 (en) Conserved off gas recovery systems and processes
JPS60145907A (ja) シラン化合物の連続的製造方法
US9242868B2 (en) Process for separating monosilane from chlorosilanes-rich mixture
JP5573852B2 (ja) 不活性ガスを用いたベンディングシステムによるホウ素化合物量を低減した多結晶シリコンの製造装置および製造方法
JPS643807B2 (ja)
US8871168B2 (en) Process for producing monosilane from dichlorosilane
JPS643804B2 (ja)
JPS61151017A (ja) シラン化合物の連続的製造法
JPH0470249B2 (ja)
EP0213215B1 (en) Chlorosilane disproportionation catalyst and method for producing a silane compound by means of the catalyst
CA1254716A (en) Chlorosilane dispropotionation catalyst and method for producing a silane compound by means of the catalyst
JP2014227322A (ja) モノシランの製造装置および製造方法
CN116808958A (zh) 氯硅烷歧化反应制备硅烷的装置及方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780032589.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828606

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097003733

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008539715

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007828606

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12443310

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE