WO2008046785A2 - Verfahren zur stabilisierung und funktionalisierung von porösen metallischen schichten - Google Patents

Verfahren zur stabilisierung und funktionalisierung von porösen metallischen schichten Download PDF

Info

Publication number
WO2008046785A2
WO2008046785A2 PCT/EP2007/060865 EP2007060865W WO2008046785A2 WO 2008046785 A2 WO2008046785 A2 WO 2008046785A2 EP 2007060865 W EP2007060865 W EP 2007060865W WO 2008046785 A2 WO2008046785 A2 WO 2008046785A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbide
silicide
ceramic material
oxide
metallic matrix
Prior art date
Application number
PCT/EP2007/060865
Other languages
English (en)
French (fr)
Other versions
WO2008046785A3 (de
Inventor
Oliver Wolst
Markus Widenmeyer
Alexander Martin
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2009532777A priority Critical patent/JP2010507018A/ja
Priority to EP07821232A priority patent/EP2104752A2/de
Publication of WO2008046785A2 publication Critical patent/WO2008046785A2/de
Publication of WO2008046785A3 publication Critical patent/WO2008046785A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Definitions

  • the invention relates to a method for stabilizing and functionalizing porous metallic layers, wherein the porous metallic layer comprises a matrix with pores contained therein.
  • porous metallic layers are used, for example, as gate electrodes of semiconductor transistors.
  • Transistors with such a porous gate electrode can be used for example as gas sensors.
  • the porous metallic gate electrode is produced, for example, by wet-chemical deposition of nanomaterials. Gate electrodes made of nanomaterials may exhibit advantageous properties in terms of stability, gas sensitivity, and response time as compared to metallizations produced in conventional semiconductor processes, for example, by vapor deposition or sputtering. However, especially at higher temperatures, the structures of such electrodes can also degenerate, thereby impairing the function of the sensor. The degeneration of the electrodes results, for example, from sintering processes and a structural enlargement.
  • the electrochemical properties of the electrodes are determined by the selection of the metal and the interface material, for example, the semiconductor device.
  • the method according to the invention for the stabilization and functionalization of porous metallic layers, wherein the porous metallic layer comprises a matrix with pores contained therein comprises the following steps: (a) introducing ceramic material or precursors of the ceramic material into the pores of the metallic matrix,
  • Porous metallic layers produced according to the invention can be used, for example, as gate electrodes of semiconductor transistors which are used as chemosensitive components, for example as gas sensors.
  • the material for the metallic layer is preferably selected from platinum, palladium, iridium, nickel, gold, silver, rhodium, copper, osmium, rhenium and alloys thereof.
  • the type of metallic layer has a significant influence on the chemosensitive function.
  • high porosity of the metallic layer promotes desired sensor functions such as high sensitivity and fast response time.
  • the selection of the ceramic material which is introduced into the pores, the electrochemical properties, that is, the sensitivity, selectivity and the operating range of the sensor can be adjusted.
  • suitable ceramic materials are the oxides, nitrides, carbides or suicides of magnesium, aluminum, silicon, indium, tin, zinc, iron, titanium, zirconium, scanidum, yttrium, lanthanum, cerium, boron, tungsten, vanadium, tantalum. Niobium, hafnium or molybdenum and the mixtures of these compounds.
  • the ceramic material is preferably selected from the group consisting of aluminum oxide, silicon oxide, indium oxide, tin oxide, zinc oxide, iron oxide, titanium oxide, zirconium oxide, scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, aluminum nitride, silicon nitride, indium nitride, titanium nitride, boron nitride, aluminum silicide, tungsten silicide, Vanadium silicide, tantalum silicide, niobium silicide, zirconium silicide, hafnium silicide, molybdenum silicide, titanium silicide, silicon carbide, aluminum carbide, tungsten carbide, vanadium carbide, tantalum carbide, niobium carbide, zirconium carbide, hafnium carbide, molybdenum carbide and titanium carbide, as well as mixtures of these compounds
  • the ceramic material also promotes the adsorptive and catalytic properties of the metal.
  • the above-mentioned ceramic materials themselves have adsorptive or catalytic properties that can be utilized.
  • the ceramic material is introduced into the pores of the matrix by a wet-chemical method.
  • the ceramic material may in this case be in the form of nanoparticles, for example, which are dispersed in a liquid and applied as a suspension to the metallic matrix.
  • the suspension contains at least one stabilizer additive. This stabilizes the nanocolloids in the suspension. Sedimentation or agglomeration of the colloids is thus restricted or prevented.
  • Suitable solvents in which the ceramic nanocolloids are dispersed are, for example, water, alcohol or other polar organic solvents and mixtures thereof.
  • Suitable additives for stabilizing the suspension are, for example, acids, diethylene glycol monobutyl ether or surfactants.
  • Suitable acids are, for example, hydrochloric acid, acetic acid, nitric acid, oxalic acid and hydroxycarboxylic acid.
  • Suitable surfactants are, for example, AOT (bis (2-ethyl-1-hexyl) sulfosuccinate), polyethylene oxide-polypropylene oxide block copolymers and tetraalkylammonium salts.
  • the ceramic nanoparticles preferably have an average diameter in the range of 1 to 1000 nm. Preferably, the average diameter is in the range of 2 to 250 nm.
  • precursors of the ceramic material are introduced into the pores of the metallic matrix, they are preferably introduced as a suspension or as a solution.
  • a precursor of a ceramic which is incorporated as a suspension is, for example, boehmite, a hydroxyaluminum oxide AIO (OH).
  • the boehmite is introduced into the cavities of the metallic matrix in the form of nanoparticles in an acidic suspension.
  • a subsequent heat treatment at a temperature in the range between 300 and 500 0 C converts the AIO (OH) nanoparticles in sintered Al 2 O 3 .
  • the precursors of the ceramic material are introduced as a solution into the pores of the metallic matrix.
  • Suitable precursors of the ceramic material are preferably dissolved metal salts which are converted in step (b) into their corresponding metal oxides.
  • salt solutions of magnesium, aluminum, silicon, indium, tin, zinc, iron, titanium, zirconium, scandium, yttrium, lanthanum or cerium are introduced into the metallic matrix.
  • These salts may be, for example, nitrates, oxinitrates, halides, carbonates, acetylacetonates, acetates, carboxylic acid derivatives, alcoholates or organometallic compounds.
  • the precursor is transferred to the actual ceramic. This is done for example by calcination at a temperature in the range between 250 and 650 0 C or by other methods of a chemical or physical nature, such as acidic or basic treatment, treatment with reactive plasma or low-temperature treatment, especially drying.
  • the application of the solutions or the suspension is realized, for example, by dipping, spin-coating, dispensing or thick-film printing of a paste.
  • a multiple coating is possible.
  • the amount of the ceramic material can be adjusted independently of the concentration of the fluid.
  • Schich- tabfolen different ceramic materials can be produced.
  • the ceramic material or precursors of the ceramic material into the pores of the metallic matrix, for example by sputtering processes or by vapor deposition processes.
  • FIG. 1 shows a schematic representation of a metallic matrix with pores contained therein
  • FIG. 2 shows a metallic matrix with pores contained therein, wherein the pores are filled with ceramic material
  • Figure 3 is a schematic representation of a metallic matrix with pores contained therein, which are filled with ceramic material, wherein the metallic matrix is additionally covered with ceramic material.
  • FIG. 1 shows a metallic matrix with cavities contained therein.
  • a porous structure 1 contains a metallic matrix 3, in which pores 5 are formed. Through the pores 5 results in a sponge-like structure of the metallic matrix 3.
  • a porous structure 1 as shown in Figure 1, is already known from the prior art.
  • the metallic matrix 3 also contains at least one ceramic material in addition to the at least one metal.
  • the metallic matrix 3 contains metal and ceramic material, it is necessary that the proportion of metal be so large as to ensure the electrical conductivity of the porous structure 1. This is particularly necessary when the porous structure 1 is used as a gate electrode for semiconductor transistors.
  • metals of the 8th to 11th group of the Periodic Table of the Elements are preferably used. Particular preference is given to platinum, palladium, iridium, nickel, gold, silver, rhodium, copper, osmium, rhenium and alloys thereof.
  • a suspension containing particles of the metallic material is applied to a carrier.
  • the suspension also contains at least one organic component which can harden to a polymer matrix.
  • the viscosity of the suspension can be adjusted.
  • the application of the suspension takes place, for example, by dripping or printing. Any further, known to the expert Way to apply the suspension is also possible.
  • the viscosity of the suspension is adjusted depending on the type of job.
  • the suspension After the suspension has been applied, it is optionally pre-dried to remove the solvent. Furthermore, at least one organic component is cured to the polymer matrix. This is preferably also at elevated temperature. The particles of the metallic material are uniformly distributed in the polymer matrix. In a next step, the polymer matrix is removed. This is preferably done by a thermolysis or pyrolysis. Due to the temperatures which occur during the thermolysis or pyrolysis, the metallic particles which form the porous layer are sintered together. This creates a porous layer with evenly distributed pores.
  • the metallic matrix 3 with the pores formed therein in any other manner known to those skilled in the art.
  • the metal particles of the metallic matrix 3 may converge on an oxide surface.
  • the oxidic surface is generally the surface of the semiconductor transistor on which the gate electrode is formed.
  • the stabilization takes place by introducing ceramic material into the pores 5 of the metallic matrix 3. This is shown in FIG.
  • the ceramic material 7 is, for example, introduced into the pores 5 by a wet-chemical method, as already described above.
  • the ceramic material 7 is dispersed in a solvent and the suspension is applied to the porous structure 1.
  • the suspension also penetrates into the pores 5 of the metallic matrix 3.
  • a heat treatment is performed in which the ceramic material is sintered to the metallic matrix 3.
  • the metallic matrix 3 and thus the porous structure 1 is stabilized.
  • the sintering the ceramic material 7 in the pores 5 of the metallic matrix 3 the sintering paths of the metallic matrix 3 are closed. As a result, the convergence of metal particles observed in particular at relatively high temperatures is prevented or restricted.
  • the ceramic material 7 can also be applied initially in the form of its precursors as a suspension or in solution to the metallic matrix 3.
  • the precursors may be present on the one hand, for example, as nanoparticles or, on the other hand, may be dissolved in the form of the corresponding metal salts in a solvent.
  • the heat treatment is carried out, for example, at a temperature in the range of 250 to 650 ° C. It is possible that the heat treatment lasts up to several hours.
  • a coating 9 containing the ceramic material 7 is also possible for a coating 9 containing the ceramic material 7 to be applied to the metallic matrix 3. Also by the coating 9, which is applied to the metallic matrix 3, the metallic matrix 3 and thus the porous structure 1 is stabilized.
  • the thickness of the coating 9 is generally in the range of 1 to 500 nm.
  • the ceramic material 7 also gives a porous structure
  • the metallic matrix 3 is also not sealed by the coating 9 or the filling of the pores 5 with the ceramic material 7 against surrounding gases.
  • a 200 nm thick porous metallic matrix 23 of platinum with cavities 5 having a diameter in the range of approximately 5 to 500 nm is provided with a zirconium dioxide coating.
  • a dilute alcoholic solution of zirconium tetraisopropoxide is added to the porous structure 1. This is followed by drying and heat treatment at 500 0 C in air. The zirconium tetraisopropoxide is converted to zirconia by the heat treatment.
  • the cavities of the metallic matrix 3 are filled with zirconia.
  • a coating 9 is produced on the metallic matrix 3 of zirconium dioxide.
  • Example 2 Alternatively, to obtain a zirconia coating, it is also possible to use, for example, a dilute, acidic, aqueous-alcoholic solution of zirconium nitrate. In this case as well, the zirconium nitrate is converted into zirconia by the heat treatment.
  • a layer of a dilute zirconia sol wherein the particle size of the zirconia particles is in the range between 2 and 50 nm, is applied to the metallic matrix 3 on platinum , then dried and burned out at 500 0 C in air.
  • the zirconia sinters to the metallic matrix 3 and thus stabilizes the metallic matrix 3.
  • tetraethyl orthosilicate is first dissolved in ethanol.
  • the amount of tetraethyl orthosilicate is chosen to result in 1 wt% SiO 2 in the solution.
  • This solution is pipetted onto the metallic matrix 3.
  • the metallic matrix with the solution contained on it is heated to 250 0 C in the presence of air.
  • the tetraethylorthosilicate is thereby converted into silicon dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Catalysts (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Stabilisierung und Funktionalisierung einer porösen metallischen Schicht (1), wobei die poröse, metallische Schicht (1) eine metallische Matrix (3) mit darin enthaltenen Poren (5) enthält. In einem ersten Schritt wird keramisches Material (7) oder Vorstufen die keramisches Material (7) in die Poren (5) der metallischen Matix (3) eingebracht, in einem zweiten Schritt werden die Vorstufen des keramischen Materials gegebenenfalls in das keramische Material (7) umgewandelt und anschliessend erfolgt gegebenenfalls eine thermische oder chemische Nachbehandlung der porösen metallischen Schicht. Die Erfindung betrifft weiterhin eine poröse metallische Struktur, insbesondere für Gateelektroden von Halbleitertransistoren, die Poren (5) in einer metallischen Matrix (3) umfasst. In den Poren (5) der metallischen Matrix (3) ist keramisches Material enthalten.

Description

Beschreibung
Titel
Verfahren zur Stabilisierung und Funktionalisierung von porösen metallischen Schichten
Stand der Technik
Die Erfindung betrifft ein Verfahren zur Stabilisierung und Funktionalisierung von porösen metallischen Schichten, wobei die poröse metallische Schicht eine Matrix mit darin enthaltenen Poren umfasst.
Derartige poröse metallische Schichten werden zum Beispiel als Gateelektroden von Halbleitertransistoren eingesetzt. Transistoren mit derart poröser Gateelektrode können zum Beispiel als Gassensoren eingesetzt werden. Die poröse metallische Gateelektrode wird zum Beispiel durch nasschemische Abscheidung von Nanomaterialien hergestellt. Aus Nanomaterialien hergestellte Gateelektroden können vorteilhafte Eigenschaften im Hinblick auf Stabilität, Gasempfindlichkeit und Ansprechzeit zeigen, im Vergleich zu Metallisierungen, die in herkömmlichen Halbleiterprozessen, zum Beispiel durch Aufdampfen oder Aufsputtern, hergestellt werden. Jedoch können - insbesondere bei höheren Temperaturen - auch die Strukturen solcher Elektroden degenerieren, wodurch die Funktion des Sensors beeinträchtigt wird. Das Degenerieren der Elektroden resultiert zum Beispiel aus Sinterprozessen und einer Strukturvergrößerung. Die elektrochemischen Eigenschaften der Elektroden werden durch die Auswahl des Metalls und des Grenzflächenmaterials, zum Beispiel dem Halbleiterbauteil, bestimmt.
Offenbarung der Erfindung
Vorteile der Erfindung
Das erfindungsgemäße Verfahren zur Stabilisierung und Funktionalisierung von porösen metallischen Schichten, wobei die poröse metallische Schicht eine Matrix mit darin enthaltenen Poren umfasst, umfasst folgende Schritte: (a) Einbringen von keramischem Material oder von Vorstufen des keramischen Materials in die Poren der metallischen Matrix,
(b) gegebenenfalls Umwandeln der Vorstufen des keramischen Materials in das kerami- sehe Material,
(c) gegebenenfalls thermische oder chemische Nachbehandlung der Schicht.
Erfindungsgemäß hergestellte poröse, metallische Schichten können zum Beispiel als Gateelektroden von Halbleitertransistoren eingesetzt werden, die als chemosensitive Bauelemente, zum Beispiel als Gassensoren, verwendet werden. Das Material für die metallische Schicht ist vorzugsweise ausgewählt aus Platin, Palladium, Iridium, Nickel, Gold, Silber, Rhodium, Kupfer, Osmium, Rhenium und Legierungen daraus. Insbesondere bei der Verwendung der porösen metallischen Schicht für chemosensitive Bauelemente hat die Art der metallischen Schicht einen wesentlichen Einfluss auf die chemosensitive Funktion. Allgemein ist eine hohe Porosität der metallischen Schicht den angestrebten Sensorfunktionen, zum Beispiel einer hohen Empfindlichkeit und einer schnellen Ansprechzeit, förderlich.
Durch das Einbringen von keramischem Material oder von Vorstufen des keramischen Materials in die Poren der metallischen Matrix werden - zumindest teilweise - mögliche Sinterwege des Metalls geschlossen. Der metallische Sinterprozess wird damit begrenzt und die poröse Schicht stabilisiert. Hierdurch werden zum Beispiel gasempfindliche Transistoren mit Gateelektroden, die nach dem erfindungsgemäßen Verfahren hergestellt wur- den, hinsichtlich ihrer elektrochemischen Eigenschaften stabilisiert. Hierdurch wird die Lebensdauer verlängert. Zudem wird der Einsatz bei ungünstigeren Bedingungen, zum Beispiel bei hohen Temperaturen oder in korrosiver Gasumgebung, ermöglicht.
Weiterhin können durch die Auswahl des keramischen Materials, welches in die Poren eingebracht wird, die elektrochemischen Eigenschaften, das heißt die Empfindlichkeit, Selektivität und der Arbeitsbereich des Sensors eingestellt werden. Als keramisches Material eignen sich zum Beispiel die Oxide, Nitride, Karbide oder Suizide von Magnesium, Aluminium, Silizium, Indium, Zinn, Zink, Eisen, Titan, Zirkon, Scanidum, Yttrium, Lanthan, Cer, Bor, Wolram, Vanadium, Tantal, Niob, Hafnium oder Molybdän sowie die Mischungen aus diesen Verbindungen. Bevorzugt ist das keramische Material ausgewählt aus der Gruppe bestehend aus Aluminiumoxid, Siliziumoxid, Indiumoxid, Zinnoxid, Zinkoxid, Eisenoxid, Titanoxid, Zirkonoxid, Scandiumoxid, Yttriumoxid, Lanthanoxid, Ceroxid, Aluminiumnitrid, Siliziumnitrid, Inidumnitrid, Titannitrid, Bornitrid, Aluminiumsilizid, Wolframsilizid, Vanadiumsilizid, Tantalsilizid, Niobsilizid, Zirkonsilizid, Hafniumsilizid, Molybdänsilizid, Ti- tansilizd, Siliziumcarbid, Aluminiumcarbid, Wolframcarbid, Vanadiumcarbid, Tantalcarbid, Niobcarbid, Zirkoncarbid, Hafniumcarbid, Molybdäncarbid und Titancarbid sowie aus Mischungen dieser Verbindungen
Neben der Stabilisierung der porösen, metallischen Schicht können zum Beispiel auch Stofftransportprozesse verschiedener Spezies unterschiedlich begrenzt werden. Hierbei besteht die Möglichkeit, parasitäre Reaktionspfade, die die Konzentration signalbildender Spezies mindern, zu diskriminieren. Ferner promoviert das keramische Material auch ad- sorptive und katalytische Eigenschaften des Metalls. Zudem besitzen die oben genannten keramischen Materialien in vielen Fällen selbst adsorptive oder katalytische Eigenschaften, die nutzbar gemacht werden können.
In einer bevorzugten Ausführungsform wird das keramische Material durch ein nasschemi- sches Verfahren in die Poren der Matrix eingebracht. Das keramische Material kann hierbei zum Beispiel in Form von Nanoteilchen vorliegen, die einer Flüssigkeit dispers vorliegen und als Suspension auf die metallische Matrix aufgebracht werden.
In einer Ausführungsform enthält die Suspension mindestens einen Zusatz zum Stabilisie- ren. Dadurch werden die Nanokolloide in der Suspension stabilisiert. Ein Sedimentieren oder Agglomerieren der Kolloide wird so eingeschränkt bzw. verhindert.
Als Lösungsmittel, in das die keramischen Nanokolloide dispergiert werden, eignen sich zum Beispiel Wasser, Alkohol oder andere polare organische Lösungsmittel und Mischun- gen daraus.
Geeignete Zusätze zum Stabilisieren der Suspension sind zum Beispiel Säuren, Diethy- lenglykolmonobuthylether oder Tenside. Geeignete Säuren sind zum Beispiel Salzsäure, Essigsäure, Salpetersäure, Oxalsäure und Hydroxycarbonsäure. Geeignete Tenside sind zum Beispiel AOT (Bis(2-ethyl-l-hexyl)sulfosuccinat), Polyethylenoxid-Polypropylenoxid- Block-Copolymere und Tetraalkylammoniumsalze.
Die keramischen Nanopartikel weisen vorzugsweise einen mittleren Durchmesser im Bereich von 1 bis 1000 nm auf. Bevorzugt liegt der mittlere Durchmesser im Bereich von 2 bis 250 nm. Wenn Vorstufen des keramischen Materials in die Poren der metallischen Matrix eingebracht werden, so werden diese vorzugsweise als Suspension oder als Lösung eingebracht.
Eine Vorstufe einer Keramik, welche als Suspension eingebracht wird, ist zum Beispiel Böhmit, ein Hydroxyaluminiumoxid AIO(OH). Das Böhmit wird in Form von Nanopartikeln in einer sauren Suspension in die Hohlräume der metallischen Matrix eingebracht. Eine sich daran anschließende Wärmebehandlung bei einer Temperatur im Bereich zwischen 300 und 5000C überführt die AIO(OH)-Nanopartikel in gesintertes AI2O3.
In einer weiteren Ausführungsform werden die Vorstufen des keramischen Materials als Lösung in die Poren der metallischen Matrix eingebracht. Geeignete Vorstufen des keramischen Materials sind vorzugsweise gelöste Metallsalze, die in Schritt (b) in ihre korrespondierenden Metalloxide umgewandelt werden. Hierzu werden zum Beispiel Salzlösun- gen des Magnesiums, Aluminiums, Siliziums, Indiums, Zinns, Zinks, Eisens, Titans, Zir- kons, Skandiums, Yttriums, Lanthans oder Cer in die metallische Matrix eingebracht. Diese Salze können zum Beispiel Nitrate, Oxinitrate, Halogenide, Carbonate, Acetylacetona- te, Acetate, Carbonsäurederivate, Alkoholate oder Organometallverbindungen sein. Diese werden zum Beispiel in Wasser, Alkohol, einem polaren organischen Lösungsmittel oder Mischungen davon gelöst. Nach erfolgter Imprägnierung wird die Vorstufe in die eigentliche Keramik überführt. Dies geschieht beispielsweise durch eine Kalzinierung bei einer Temperatur im Bereich zwischen 250 und 6500C oder durch andere Verfahren chemischer oder physikalischer Art, wie saure oder basische Behandlung, Behandlung mit reaktivem Plasma oder Niedertemperaturbehandlung, insbesondere Trocknung.
Das Aufbringen der Lösungen oder der Suspension wird zum Beispiel durch Tauchen, Aufschleudern, Dispensen oder über Dickschichtdruck einer Paste realisiert. Generell ist eine Mehrfachbeschichtung möglich. Hierdurch lässt sich die Menge des keramischen Materials unabhängig von der Konzentration des Fluids einstellen. Zudem können Schich- tabfolen unterschiedlicher keramischer Materialien erzeugt werden.
Alternativ ist es auch möglich, das keramische Material oder Vorstufen des keramischen Materials zum Beispiel durch Sputterprozesse oder durch Aufdampfprozesse in die Poren der metallischen Matrix einzubringen.
Kurze Beschreibung der Zeichnungen Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.
Es zeigen:
Figur 1 eine schematische Darstellung einer metallischen Matrix mit darin enthaltenen Poren,
Figur 2 eine metallische Matrix mit darin enthaltenen Poren, wobei die Poren mit Ke- ramischem Material gefüllt sind,
Figur 3 eine schematische Darstellung einer metallischen Matrix mit darin enthaltenen Poren, die mit keramischem Material gefüllt sind, wobei die metallische Matrix zusätzlich mit keramischem Material bedeckt ist.
In Figur 1 ist eine metallische Matrix mit darin enthaltenen Hohlräumen dargestellt.
Eine poröse Struktur 1 enthält eine metallische Matrix 3, in der Poren 5 ausgebildet sind. Durch die Poren 5 ergibt sich eine schwammartige Struktur der metallischen Matrix 3. Eine derartige poröse Struktur 1, wie sie in Figur 1 dargestellt ist, ist bereits aus dem Stand der Technik bekannt. In einer Ausführungsform ist es möglich, dass die metallische Matrix 3 zusätzlich zu dem mindestens einen Metall auch mindestens ein keramisches Material enthält. Wenn die metallische Matrix 3 Metall und keramisches Material enthält, ist es jedoch erforderlich, dass der Anteil an Metall so groß ist, dass die elektrische Leitfähigkeit der porösen Struktur 1 gewährleistet ist. Dies ist insbesondere dann erforderlich, wenn die poröse Struktur 1 als Gateelektrode für Halbleitertransistoren eingesetzt wird.
Als Material für die metallische Matrix 3 werden bevorzugt Metalle der 8. bis 11. Gruppe des Periodensystems der Elemente eingesetzt. Insbesondere bevorzugt sind Platin, PaI- ladium, Iridium, Nickel, Gold, Silber Rhodium, Kupfer, Osmium, Rhenium und Legierungen daraus.
Zur Herstellung der metallischen Matrix 3 wird zum Beispiel eine Suspension, die Partikel aus dem metallischen Material enthält, auf einen Träger aufgebracht. In der Suspension ist weiterhin mindestens eine organische Komponente enthalten, die zu einer Polymermatrix aushärten kann. Über ein gegebenenfalls in der Suspension enthaltenes Lösungsmittel lässt sich die Viskosität der Suspension einstellen. Das Auftragen der Suspension erfolgt zum Beispiel durch Auftropfen oder Aufdrucken. Jede weitere, dem Fachmann bekannte Art, die Suspension aufzubringen ist ebenfalls möglich. Die Viskosität der Suspension wird dabei abhängig von der Art des Auftrags eingestellt.
Nach dem Auftragen der Suspension wird diese gegebenenfalls zum Entfernen des Lö- sungsmittels vorgetrocknet. Weiterhin wird auch mindestens eine organische Komponente zur Polymermatrix ausgehärtet. Dies erfolgt vorzugsweise ebenfalls bei erhöhter Temperatur. Die Partikel aus dem metallischen Material sind gleichmäßig in der Polymermatrix verteilt. In einem nächsten Schritt wird die Polymermatrix entfernt. Dies erfolgt vorzugsweise durch eine Thermolyse oder Pyrolyse. Durch die bei der Thermolyse bzw. Pyrolyse auftre- tenden Temperaturen werden die metallischen Partikel, die die poröse Schicht bilden, zusammengesintert. Hierbei entsteht eine poröse Schicht mit gleichmäßig darin verteilten Poren.
Neben der vorstehend beschriebenen Art ist es jedoch auch möglich, die metallische Mat- rix 3 mit den darin ausgebildeten Poren auf jede andere, dem Fachmann bekannte Art herzustellen. Wenn eine derartige poröse Struktur 1 als Gateelektrode für einen Halbleitertransistor verwendet wird, können die Metallpartikel der metallischen Matrix 3 auf einer oxidischen Oberfläche zusammenlaufen. Die oxidische Oberfläche ist dabei im Allgemeinen die Oberfläche des Halbleitertransistors, auf welchem die Gateelektrode ausgebildet ist. Durch das Zusammenlaufen der Metallpartikel wird die Lebensdauer des Halbleitertransistors, der zum Beispiel als Gassensor eingesetzt werden kann, reduziert.
Um die Lebensdauer des Halbleitertransistors mit der als poröse Struktur ausgebildeten Gateelektrode zu erhöhen, ist es erforderlich, die metallische Matrix 3 zu stabilisieren. Erfindungsgemäß erfolgt die Stabilisierung durch Einbringen von keramischem Material in die Poren 5 der metallischen Matrix 3. Dies ist in Figur 2 dargestellt.
Das keramische Material 7 wird zum Beispiel wie bereits vorstehend beschrieben durch ein nasschemisches Verfahren in die Poren 5 eingebracht. Hierzu ist es zum Beispiel möglich, dass das keramische Material 7 in einem Lösungsmittel dispergiert wird und die Suspension auf die poröse Struktur 1 aufgetragen wird. Die Suspension dringt dabei auch in die Poren 5 der metallischen Matrix 3 ein. Nach dem Auftragen der Suspension, die das keramische Material enthält, erfolgt eine Wärmebehandlung, bei der das keramische Material an die metallische Matrix 3 angesintert wird. Hierdurch wird die metallische Matrix 3 und damit die poröse Struktur 1 stabilisiert. Durch das Ansintern des keramischen Materials 7 in den Poren 5 der metallischen Matrix 3 werden die Sinterwege der metallischen Matrix 3 geschlossen. Hierdurch wird das insbesondere bei höheren Temperaturen beobachtete Zusammenlaufen von Metallpartikeln verhindert bzw. eingeschränkt. Alternativ kann das keramische Material 7 auch zunächst in Form seiner Vorstufen als Suspension oder in Lösung auf die metallische Matrix 3 aufgebracht werden. Die Vorstufen können dabei einerseits zum Beispiel als Nanoteilchen vorliegen oder andererseits in Form der korrespondierenden Metallsalze in einem Lösungsmittel gelöst sein. Nach dem Auftragen der Vorstufen des keramischen Materials 7 werden diese in das keramische Material 7 überführt. Dies erfolgt im Allgemeinen durch eine Wärmebehandlung. Die Wärmebehandlung wird zum Beispiel bei einer Temperatur im Bereich von 250 bis 6500C durchgeführt. Dabei ist es möglich, dass die Wärmebehandlung bis zu mehrere Stunden andauert.
Zusätzlich zum Einbringen des keramischen Materials 7 in die Hohlräume 5 der metallischen Matrix 3 ist es auch möglich, dass eine Beschichtung 9, die das keramische Material 7 enthält, auf die metallische Matrix 3 aufgetragen wird. Auch durch die Beschichtung 9, die auf die metallische Matrix 3 aufgetragen wird, wird die metallische Matrix 3 und damit die poröse Struktur 1 stabilisiert. Die Dicke der Beschichtung 9 liegt im Allgemeinen im Bereich von 1 bis 500 nm.
Da das keramische Material 7 ebenfalls eine poröse Struktur ergibt, wird die metallische Matrix 3 auch durch die Beschichtung 9 bzw. das Auffüllen der Poren 5 mit dem keramischen Material 7 nicht gegen umgebende Gase abgedichtet. Somit ist auch weiterhin ein Detektieren von Gasen möglich, wenn die poröse Struktur 1 als Gateelektrode von Halbleitertransistoren, die als Gassensoren eingesetzt werden, verwendet wird.
Beispiel 1
Eine 200 nm dicke poröse metallische Matrix 23 aus Platin mit Hohlräumen 5 mit einem Durchmesser im Bereich von ungefähr 5 bis 500 nm wird mit einem Zirkondioxid-Überzug versehen. Hierzu wird eine verdünnte alkoholische Lösung von Zirkoniumtetraisopropoxid auf die poröse Struktur 1 gegeben. Daran anschließend erfolgt eine Trocknung und eine Wärmebehandlung bei 5000C an Luft. Das Zirkoniumtetraisopropoxid wird durch die Wärmebehandlung in Zirkondioxid umgewandelt. Die Hohlräume der metallischen Matrix 3 werden mit dem Zirkondioxid gefüllt. Zusätzlich wird eine Beschichtung 9 auf der metallischen Matrix 3 aus Zirkondioxid erzeugt.
Beispiel 2 Um eine Zirkondioxid-Beschichtung zu erhalten ist es alternativ auch möglich, zum Beispiel eine verdünnte, saure, wässrig-alkoholische Lösung von Zirkoniumnitrat zu verwenden. Auch in diesem Fall wird das Zirkoniumnitrat durch die Wärmebehandlung in Zirkon- dioxid umgewandelt.
Beispiel 3
Um die Poren 5 der metallischen Matrix 3 und die Beschichtung 9 zu erzeugen wird eine Schicht aus einem verdünnten Zirkoniumdioxid-Sol, wobei die Teilchengröße der Zirkoni- umdioxid- Partikel im Bereich zwischen 2 und 50 nm liegt, auf die metallische Matrix 3 auf Platin aufgetragen, anschließend getrocknet und bei 5000C an Luft ausgebrannt. Das Zirkoniumdioxid sintert an der metallischen Matrix 3 an und stabilisiert so die metallische Matrix 3.
Beispiel 4
Um die Poren 5 der metallischen Matrix 3 mit Siliziumdioxid zu füllen und eine Siliziumdioxid- Beschichtung zu erzeugen, wird zunächst Tetraethylorthosilikat in Ethanol gelöst. Die Menge des Tetraethylorthosilikats wird so gewählt, dass 1 Gew.-% SiO2 in der Lösung resultiert. Diese Lösung wird auf die metallische Matrix 3 pipettiert. Anschließend wird die metallische Matrix mit der darauf enthaltenen Lösung auf 2500C in Gegenwart von Luft aufgeheizt. Das Tetraethylorthosilikat wird dabei in Siliziumdioxid überführt.

Claims

Patentansprüche
1. Verfahren zur Stabilisierung oder Funktionalisierung einer porösen, metallischen Schicht, wobei die poröse metallische Schicht (1) eine metallische Matrix (3) mit darin enthaltenen Poren (5) umfasst, folgende Schritte umfassend:
(a) Einbringen von keramischem Material (7) oder Vorstufen des keramischen Materials in die Poren (5) der metallischen Matrix (3),
(b) gegebenenfalls Umwandeln der Vorstufen des keramischen Materials (7) in das keramische Material,
(c) gegebenenfalls thermische oder chemische Nachbehandlung der porösen metallischen Schicht (1).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das keramische Material (7) in Form von keramischen Partikeln mit einem Partikeldurchmesser im Bereich von 1 nm bis 1000 nm ausgebildet ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das keramische Material (7) als Suspension, die dispergierte keramische Partikel enthält, auf die metallische Matrix aufgebracht wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Suspension auf die metallische Matrix aufgeschleudert oder aufgetropft wird oder dass die metallische Matrix in die Suspension getaucht wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Suspension als Lösungsmittel Wasser, mindestens ein organisches Lösungsmittel oder Mischungen davon enthält.
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Suspension mindestens einen Zusatz zur Stabilisierung enthält, vorzugsweise eine Säure, ein Tensid oder Diethylenglykolmonobutylether.
7. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Vorstufen des keramischen Materials in gelöster Form, vorzugsweise als Salzlösung, vorliegen.
8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das keramische Material oder die Vorstufen des keramischen Materials durch Sputter- oder Aufdampfprozesse auf die metallische Matrix aufgebracht werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das keramische Material mindestens ein Oxid, mindestens ein Nitrid, mindestens ein Silizid, mindestens ein Carbid oder Mischungen davon enthält.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Oxid ein Aluminium- oxid, Siliziumoxid, Indiumoxid, Zinnoxid, Zinkoxid, Eisenoxid, Titanoxid, Zirkonoxid,
Scandiumoxid, Yttriumoxid, Lanthanoxid oder Ceroxid ist, das Nitrit ein Aluminiumnitrit, Siliziumnitrit, Indiumnitrit, Titannitrit oder Bornitrit, das Silizid ein Aluminiumsilizid, Wolframsilizid, Vanadiumsilizid, Tantalsilizid, Niobsilizid, Zirkonsilizid, Hafniumsilizid, Molybdänsilizid oder Titansilizid und das Carbid ein Siliziumcarbid, Aluminiumcarbid, Wolframcarbid, Vanadiumcarbid, Tantalcarbid, Neobcarbid, Zirkoncarbid, Hafniumcar- bid, Molybdäncarbid oder Titancarbid ist.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die poröse, metallische Schicht ein Element der 8. bis 11. Gruppe des Periodensystems der Elemente enthält.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die poröse metallische Schicht Platin, Palladium, Iridium, Nickel, Gold, Silber, Rhodium, Kupfer, Osmium, Rhenium oder Legierungen daraus enthält.
13. Poröse, metallische Schicht, insbesondere für Gateelektroden für Halbleitertransistoren, Poren (5) in einer metallischen Matrix (3) umfassend, dadurch gekennzeichnet, dass in den Poren (5) der metallischen Matrix (3) keramisches Material (7) enthalten ist.
14. Struktur nach Anspruch 13, dadurch gekennzeichnet, dass die metallische Matrix (3) aus einem Element der 8., 9., 10. oder 11. Gruppe des Periodensystems der Elemente gefertigt ist.
15. Struktur nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass das keramische Material ausgewählt ist aus der Gruppe, bestehend aus Aluminiumoxid, Siliziumoxid, Indiumoxid, Zinnoxid, Zinkoxid, Eisenoxid, Titanoxid, Zirkonoxid, Scandiumoxid, Yttri- umoxid, Lanthanoxid, Ceroxid, Aluminiumnitrid, Siliziumnitrid, Inidumnitrid, Titannitrid,
Bornitrid, Aluminiumsilizid, Wolframsilizid, Vanadiumsilizid, Tantalsilizid, Niobsilizid, Zirkonsilizid, Hafniumsilizid, Molybdänsilizid, Titansilizd, Siliziumcarbid, Aluminiumcar- bid, Wolframcarbid, Vanadiumcarbid, Tantalcarbid, Niobcarbid, Zirkoncarbid, Hafnium- carbid, Molybdäncarbid und Titancarbid sowie aus Mischungen dieser Verbindungen.
PCT/EP2007/060865 2006-10-17 2007-10-12 Verfahren zur stabilisierung und funktionalisierung von porösen metallischen schichten WO2008046785A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009532777A JP2010507018A (ja) 2006-10-17 2007-10-12 多孔質の金属層を安定化しかつ機能化する方法
EP07821232A EP2104752A2 (de) 2006-10-17 2007-10-12 Verfahren zur stabilisierung und funktionalisierung von porösen metallischen schichten

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006048906.3 2006-10-17
DE200610048906 DE102006048906A1 (de) 2006-10-17 2006-10-17 Verfahren zur Stabilisierung und Funktionalisierung von porösen metallischen Schichten

Publications (2)

Publication Number Publication Date
WO2008046785A2 true WO2008046785A2 (de) 2008-04-24
WO2008046785A3 WO2008046785A3 (de) 2009-05-07

Family

ID=39183155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/060865 WO2008046785A2 (de) 2006-10-17 2007-10-12 Verfahren zur stabilisierung und funktionalisierung von porösen metallischen schichten

Country Status (5)

Country Link
EP (1) EP2104752A2 (de)
JP (1) JP2010507018A (de)
CN (1) CN101535526A (de)
DE (1) DE102006048906A1 (de)
WO (1) WO2008046785A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011095257A1 (de) 2010-02-05 2011-08-11 Robert Bosch Gmbh Verfahren zur detektion von zwei oder mehr gasspezies

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010038725A1 (de) 2010-07-30 2012-02-02 Robert Bosch Gmbh Vorrichtung und Verfahren zur Gasdetektion
US20140242374A1 (en) * 2013-02-22 2014-08-28 Infineon Technologies Ag Porous Metal Coating
CN103231185B (zh) * 2013-04-03 2014-12-10 株洲宏大高分子材料有限公司 一种HFSi焊销及其制备方法
CN108700544A (zh) * 2016-02-24 2018-10-23 田中贵金属工业株式会社 用于形成气体传感器电极的金属糊
CN106350058B (zh) * 2016-08-22 2019-01-22 上海朗研光电科技有限公司 基于纳米多孔金的荧光增强基底的制备方法
EP3296428B1 (de) * 2016-09-16 2019-05-15 ATOTECH Deutschland GmbH Verfahren zur abscheidung eines metalls oder einer metallischen legierung auf einer oberfläche
CN112028652B (zh) * 2020-09-10 2021-11-02 刘树峰 一种超硅粉胶泥复合材料及其制备方法
CN115772662A (zh) * 2022-11-24 2023-03-10 西北有色金属研究院 一种多孔钯膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773549A (en) 1971-11-30 1973-11-20 Union Carbide Corp Ceramic coated porous metal structure and process therefor
US5186833A (en) 1991-10-10 1993-02-16 Exxon Research And Engineering Company Composite metal-ceramic membranes and their fabrication
GB2273672A (en) 1992-12-24 1994-06-29 Atomic Energy Authority Uk Process for making ceramic membrane filters
WO2003021004A1 (en) 2001-08-30 2003-03-13 The University Of Dundee Process for making thin film porous ceramic-metal composites and composites obtained by this process
WO2007057166A2 (de) 2005-11-15 2007-05-24 Atech Innovations Gmbh Verfahren zur herstellung eines keramikbeschichteten metallischen trägersubstrates

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752736B2 (ja) * 1985-10-02 1995-06-05 工業技術院長 化合物半導体装置の製造方法
GB8606045D0 (en) * 1986-03-12 1986-04-16 Emi Plc Thorn Gas sensitive device
JPS63128246A (ja) * 1986-11-19 1988-05-31 Seitai Kinou Riyou Kagakuhin Shinseizou Gijutsu Kenkyu Kumiai 電界効果トランジスタ型酸素ガスセンサ
JP3883646B2 (ja) * 1997-02-14 2007-02-21 日本碍子株式会社 膜の形成方法と膜形成部品
JP4429145B2 (ja) * 2004-11-16 2010-03-10 キヤノン株式会社 半導体素子の製造方法
JP4555116B2 (ja) * 2005-02-18 2010-09-29 大日本印刷株式会社 積層体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773549A (en) 1971-11-30 1973-11-20 Union Carbide Corp Ceramic coated porous metal structure and process therefor
US5186833A (en) 1991-10-10 1993-02-16 Exxon Research And Engineering Company Composite metal-ceramic membranes and their fabrication
GB2273672A (en) 1992-12-24 1994-06-29 Atomic Energy Authority Uk Process for making ceramic membrane filters
WO2003021004A1 (en) 2001-08-30 2003-03-13 The University Of Dundee Process for making thin film porous ceramic-metal composites and composites obtained by this process
WO2007057166A2 (de) 2005-11-15 2007-05-24 Atech Innovations Gmbh Verfahren zur herstellung eines keramikbeschichteten metallischen trägersubstrates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011095257A1 (de) 2010-02-05 2011-08-11 Robert Bosch Gmbh Verfahren zur detektion von zwei oder mehr gasspezies
DE102010001624A1 (de) 2010-02-05 2011-08-11 Robert Bosch GmbH, 70469 Verfahren zur Detektion von zwei oder mehr Gasspezies

Also Published As

Publication number Publication date
JP2010507018A (ja) 2010-03-04
EP2104752A2 (de) 2009-09-30
WO2008046785A3 (de) 2009-05-07
CN101535526A (zh) 2009-09-16
DE102006048906A1 (de) 2008-04-30

Similar Documents

Publication Publication Date Title
WO2008046785A2 (de) Verfahren zur stabilisierung und funktionalisierung von porösen metallischen schichten
KR100853599B1 (ko) 니켈분말, 도체 페이스트 및 그것을 이용한 적층 전자부품
JP4963393B2 (ja) 低温焼成型銀ペースト
CA2622974C (en) Nickel powder, method for manufacturing same, conductor paste, and multilayer ceramic electronic component using same
DE102010001567A1 (de) Elektrisch leitfähiges Material
EP3153254B1 (de) Verfahren zum brennen einer kupferpaste
KR101251567B1 (ko) 니켈 분말 및 그 제조 방법, 그리고 도전성 페이스트
EP1454689A1 (de) Oberflächenbehandeltes ultrafeines Metallpulver
EP1868962B1 (de) Keramische glühstiftkerze
DE102006014999A1 (de) Verfahren zur Herstellung eines Filterelements und einer Trägerstruktur für einen Katalysator mit verbesserter Beständigkeit gegen Alkali- und Erdalkaliionen
WO2016038959A1 (ja) タングステンコンデンサ素子及びその製造方法
JPWO2008041541A1 (ja) ニッケル−レニウム合金粉末及びそれを含有する導体ペースト
JP6630208B2 (ja) 金属粉ペーストの製造方法、金属粉ペーストのスクリーン印刷方法、電極の製造方法、チップ積層セラミックコンデンサーの製造方法および金属粉ペースト
WO2007125026A2 (de) Verfahren zur herstellung einer beschichtung eines porösen, elektrisch leitfähigen trägermaterials mit einem dielektrikum und herstellung von kondensatoren hoher kapazitätsdichte unter einsatz dieses verfahrens
WO2008090023A1 (de) Elektronisches bauteil
CN105621432B (zh) 一种改性β分子筛及其制备方法
WO2012175668A2 (de) Giesstechnisches bauteil und verfahren zum aufbringen einer korrosionsschutzschicht
JP4070397B2 (ja) ニッケル超微粉及びその製造方法
DE102008002436A1 (de) Verfahren zur Herstellung eines keramischen Schichtverbundes
DE19935271C2 (de) Matrixmaterial für Brennstoffzellen sowie Verfahren zu seiner Herstellung und seine Verwendung
EP1978132B1 (de) Verfahren zur Herstellung einer porösen Schicht
JP4276031B2 (ja) チタン化合物被覆ニッケル粉末およびこれを用いた導電ペースト
WO2008110562A1 (de) Verfahren zur herstellung einer beschichtung eines porösen, elektrisch leitfähigen trägermaterials mit einem dielektrikum
DE2036832C3 (de) Verfahren zum Metallisieren von Oberflächen keramischer Körper
WO2024024793A1 (ja) ナノ粒子集団、印刷可能な組成物、およびナノ粒子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780038868.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07821232

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007821232

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009532777

Country of ref document: JP

Kind code of ref document: A