JPS63128246A - 電界効果トランジスタ型酸素ガスセンサ - Google Patents

電界効果トランジスタ型酸素ガスセンサ

Info

Publication number
JPS63128246A
JPS63128246A JP61274070A JP27407086A JPS63128246A JP S63128246 A JPS63128246 A JP S63128246A JP 61274070 A JP61274070 A JP 61274070A JP 27407086 A JP27407086 A JP 27407086A JP S63128246 A JPS63128246 A JP S63128246A
Authority
JP
Japan
Prior art keywords
film
oxygen gas
solid electrolyte
effect transistor
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61274070A
Other languages
English (en)
Inventor
Yuji Miyahara
裕二 宮原
Keiji Tsukada
啓二 塚田
Hiroyuki Miyagi
宮城 宏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEITAI KINOU RIYOU KAGAKUHIN SHINSEIZOU GIJUTSU KENKYU KUMIAI
Original Assignee
SEITAI KINOU RIYOU KAGAKUHIN SHINSEIZOU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEITAI KINOU RIYOU KAGAKUHIN SHINSEIZOU GIJUTSU KENKYU KUMIAI filed Critical SEITAI KINOU RIYOU KAGAKUHIN SHINSEIZOU GIJUTSU KENKYU KUMIAI
Priority to JP61274070A priority Critical patent/JPS63128246A/ja
Publication of JPS63128246A publication Critical patent/JPS63128246A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電界効果トランジスタ型センサに係り、特に
酸素ガスを検出するのに好適な酸素ガスセンサに関する
〔従来の技術〕
液体中の溶存酸素分圧の測定にはクラーク型酸素電極が
広く使用されている。最近特に医療の分野では小型の酸
素センサの開発が要望されており、例えば「プロシーデ
イングズ・オブ・ザ・サード・センサ・シンポジウム;
  (1983) 、第21頁から第26頁(Proc
eedings of the 3rd Sensor
Symposinm (1983) p p 21−2
6 ) Jに示されているように、半導体技術を適用し
てクラーク型酸素電極を小型化した例が報告されている
一方、電界効果トランジスタ(FET)型センサは、例
えば特開昭60−252253号に示されているように
、FET素子の有する高い入力インピーダンスとその増
幅作用を利用しており、同一基板上に極めて多くの素子
を形成することが可能である。
【発明が解決しようとする問題点〕
従来のクラーク型酸素電極は、内部電解液を有している
ため、製作する場合に従来の半導体プロセスとの整合性
が問題であった。このクラーク型酸素電極は、酸素の還
元反応に基づく還元電流を計測することが基本原理であ
り、アノードが消費されるため、小型にすると長期安定
性に欠けるという問題があった。
また、従来のFET型センサには酸素ガスを良好に検出
し得るものが見られなかった。
本発明の目的は、小型でも長寿命である電界効果トラン
ジスタ型の酸素ガスセンサを提供することにある。
〔問題点を解決するための手段〕
本発明の第1の発明では、半導体基板にソース領域およ
びドレイン領域を形成し、これらの領域上に形成したゲ
ート絶縁膜の上方にゲート電極を配置した電界効果トラ
ンジスタ型センサにおいて、ゲート絶縁膜上に室温で酸
素イオン量に応じた起電力を生じ得る材料からなる固体
電解質の膜を積層し、この固体電解質膜上に、酸素分子
を酸素イオンに解離する反応を触媒する材料からなる金
属膜をゲート電極として形成したことを特徴とする。
第2の発明では、上述の第1の発明の構成に加えて、ゲ
ート電極膜上にさらに耐水性の酸素ガス透過性膜を設け
たことを特徴とする。
[作用〕 気体中の酸素分子あるいは′溶液中に溶存していた酸素
分子が、触媒金属膜からなるゲート電極の表面に達する
と、触媒作用によって酸素分子が酸素イオンに解離され
る。この酸素イオンはゲート電極と固体電解質の界面に
おいて電荷が消費され酸素の量に応じた起電力が発生す
る。
この起電力は、ドレインとソースの間に半導体基板表面
のチャネルの導電率を変化させる。したがって、この導
電率変化をドレイン電流変化として測定すれば、気体試
料中の酸素ガス分圧又は液体試料中の溶存酸素濃度を知
ることができる。起電力の発生は酸素の解離平衡に基づ
くものであり、′−t゛′本発明の第1の望ましい実施
例は、気体試料中の酸素ガスの検出に用いられ、ゲート
電極が気体試料と直接接触する。本発明の第2の望まし
い実施例は、液体試料中の溶存酸素の検出に用いられ、
ゲート電極を酸素ガス透過膜で被い、液体試料がゲート
電極と直接的に接触しないように槽成しゲート電極を保
護する。
酸素検出のために効果的な固体電解質膜としては、フッ
化ランタン(LaFa)の膜、フッ化ランタンにストロ
ンチウム(S r)又はユーロピウム(Eu)をドーピ
ングした膜、および酸化ジルコニウム(ZrOz)に酸
化イツトリウム(Y2O2)又は酸化カルシウム(Ca
b)をドーピングした膜の中から選択される。また、酸
素分子を酸素イオンに解離する反応を触媒する金属とし
ては、白金(Pt)、パラジウム(Pd)、イリジウム
(Ir)、金(Au)あるいは白金黒が選択される。固
体電解質膜の膜厚は、10〜10,000人がよく、特
に5,000  Å以下が好ましい。ゲート電極膜の膜
厚は、10〜1,000  人が用い得るが、特に50
0Å以下が好ましい。また、酸素ガス透過性膜としては
、耐水性があって酸素ガス拡散性を有する材料がよく、
例えば、四弗化エチレン。
ポリプロピレン、シリコーン樹脂、ポリジメチルシロキ
サン等の高分子膜を用い得る。この酸素ガス透過性膜の
膜厚は0.1〜30μmが適している。
〔実施例〕
気体試料中の酸素ガス分圧を測定するFETセンサの実
施例を第1図〜第10図を参照して説明する。
第1図は、本発明の第1の実施例の概略断面図である。
この例ではシリコン基板1に不純物を拡散し、ドレイン
2及びソース3領域を形成する。
ドレイン、ソース間のシリコン表面が電界効果トランジ
スタのチャネルとなる。該チャネル上には、ゲート絶縁
膜として酸化膜5iOz4.及び窒化シリコン(Sia
N*)絶縁膜5が形成されており、さらにその上に固体
電解質膜6を積層し、ゲート電極として金属触媒膜7を
形成する。
電界効果トランジスタ型酸素センサが良好な応答特性を
示すためには、固体電解質6及び金属触媒膜7の材料及
び膜厚を充分考慮する必要がある。
電界効果トランジスタの電気的特性を良好にするために
は、固体電解質6の膜厚は薄い方が良く、極力1000
〜2000人が好ましい。また固体電解質6は室温で酸
素イオン伝導率が高く酸素分圧に対して大きい起電力を
発生する材料が望ましい。またゲート電極となる金属触
媒膜7は室温で高い触媒能力を持った材料である必要が
あり、例えば白金、パラジウム、イリジウム、金等の貴
金属、あるいは上記の金属のうちのいくつかを積層また
は合金としたものなどが好ましい。ゲート電極7上で酸
素分子が効率良く分解されるためには、金属膜は多孔性
あるいは酸素分子が拡散しやすい構造であることが望ま
しい。
第2図は本発明の第2の実施例の断面図である。
これはシリコン・オン・サファイア(SO8)基板を用
いて製作した電界効果トランジスタ型酸素ガスセンサの
断面構造を示しており、サファイア、:午板8上のシリ
コンエピタキシャル層を一部エツー′チングしてシリコ
ンアイランド9を形成し、その中に不純物を拡散しドレ
イン2及びソース3領域を形成している。ゲート絶縁膜
及びゲート電極の構造は第1図の実施例と同じである。
このようにSO8基板を用いると、ワンチップに複数の
電界効果トランジスタ型酸素センサや信号処理回路を集
積化した場合、各センサ素子間あるいはセンサと信号処
理回路間を電気的に分離することができ、各センサ素子
間のクロストークをなくすことができる。
第3図は、本発明の第3の実施例の断面図である。ゲー
ト絶縁膜及びゲート電極の構造は第1゜第2の実施例と
同様であるが、シリコン基板1の中にウェル10を形成
し、そのウェル10の中に不純物拡散によりドレイン2
及びソース3領域を形成したことが本実施例の特徴であ
る。このようにウェルの中にセンサ素子を製作すること
により、ワンチップに集積化したセンサ素子間のクロス
ト・′コン基板を用いているので第2の実施例より低価
−格なセンサを提供することができる。
第1図〜第3図の実施例では固体電解質膜6を5iaN
a膜5の上に積層したが、第4図に示した第4の実施例
のように、5isN4膜5を取り除き、S i 02酸
化膜4の上に直接、固体電解質膜6を積層することも可
能である。
次に第1図の実施例の酸素ガスセンサを用いてセンサ特
性について実験した例を説明する。使用したFETセン
サは、チャネル上の酸化膜4の厚さを50OA+ Si
gN+絶縁膜5の厚さを1000人に形成し、その上に
固体電解質膜6としてフッ化ランタン膜をスパッタリン
グ法により1000人形成した。ゲート電極となる金属
触媒7としてスパッタリング法により白金層を100人
形成した。
センサ特性の測定には、第5図のような気体試料用フロ
ーセルを用いた。第5図において、IC用カンパッケー
ジ11に気体試料導入口12と排出口13を設け、カン
パッケージ11の中央に第1図の如きセンサチップ14
を設置し、ワイヤーボンディングを行っている。15は
ボンディング′i用いた金ワイヤーである。このフロー
セル中に酸素ガス又は酸素と窒素の混合ガスを導入しセ
ンサの出力を記録した。
第6図は1 stmの酸素ガスと窒素ガスを用いて雰囲
気ガス中の酸素分圧をステップ状に変化させたときのセ
ンサの時間応答を室温で測定した結果を示しである。図
中のポイントaは酸素ガスを暗箱に導入した時点を示し
、ポイントbは窒素ガスを導入した時点を示す。このよ
うに繰り返しの測定において再現性の良い応答が得られ
た。
第7図は雰囲気中の酸素分圧を変化させたときの出力電
圧変化と酸素分圧の対数の関係をプロットしたものであ
る。酸素分圧に依存してセンサの出力電圧が変化し、同
図よりその傾きは12mV/P02であった。
第8図は、本発明に基づ<FET酸素センサと、従来の
電流計測型酸素センサの安定性(寿命)を比較した図で
ある。各々のセンサの初期の感度を基準(100%)に
して相対感度の経時変化を示しである。第8図において
aが本発明に基づくセンサの特性であり、bが従来のセ
ンサの特性である。このように本発明に基づ<FET型
酸素センサは、従来のものより長期安定性に優れ長寿命
である。
第9図は第1図に示した実施例において固体電解質とし
てSrを8モル%含んだLaFs膜を1000人形成し
たセンサの出力電圧変化と酸素分圧の対数の関係である
。酸素分圧に依存して出力電圧が変化し、その傾きは1
4 m V / P o xであった。
第10図は第1図に示した実施例断面図において固体電
解質としてEuを8モル%含んだLaFa膜を1000
人形成したセンサの出力電圧変化と酸素分圧の対数の関
係である。酸素分圧に依存して出力電圧が変化し、その
傾きは11’mV/PO2であった。
上述した各実施例のFET型酸素ガスセンサは半導体集
積回路技術を利用して製作されるので。
低価格で小型なものであり使い易い。また他の半導体セ
ンサや信号処理回路等と共にワンチップに集積化するこ
とができ、多機能な酸素センサを製作することもできる
。またこのFET型酸素センサは室温で酸素ガス分圧を
安定に測定することができ、使用寿命の点でも優れてい
る。
次に液体試料中の溶存酸素を測定するFETセンサの実
施例を第11図〜虹18図を参照して説明する。センサ
素子において前述した実施例と同じ機能を有するものに
は同じ符号を付してあり、機能説明は省酩しである。
第11図に示す第5の実施例は第1図の実施例に、第1
2図に示す第6の実施例は第2図の実施例に、第13図
に示す第7の実施例は第3図の実施例に、第14図に示
す第8の実施例は第4図の実施例に、それぞれ基本構成
が同様である。これらの実施例の特徴は、ゲート電極膜
7が露出しないように、ゲート電極上に酸素ガス透過性
膜18を積層した点である。
酸素ガス透過性膜18は、酸素を拡散しやすく耐水性の
材料であり、例えば四弗化エチレン膜。
ポリプロピレン膜、シリコーン樹脂膜、ポリジメチルシ
ロキサン膜等の高分子膜を用いることができる。酸素ガ
ス透過性膜18は、液体試料中の酸素をゲート電極7の
方へ移動させる機能の他に、試料中に含まれるイオンや
蛋白質等の不純物からゲート電極を保護する機能を有す
る。
これらの実施例のFET型酸素ガスセンサは、電解液を
必要としない全固体型センサであるので、酸素ガス透過
膜を形成するために、スパッタリング法、スクリーン印
刷法、プラズマ重合法等の膜形成技術を採用することが
できる。従って酸素ガス透過膜の酸素透過率を膜形成条
件を変えることにより制御することができる。
次に第11図の実施例のセンサを液体試料中の酸素検出
に適用するときのセンサ特性について実験した例を説明
する。使用したFETセンサは、チャネル上の5iOz
酸化膜4の膜厚を500人に形成し、5iaNt絶縁膜
5の膜厚を1000人に形成し、上層の固体電解質膜6
は、YxOsを8モル%ドーピングしたZrO2膜をス
パッタリング法により1000人に形成した。ゲート電
極と′; −2する金属触媒膜7としてスパッタリング法により白
金層を100人に形成した。さらに酸素ガス透過膜18
としてシリコーン樹脂をスクリーン印刷法により10μ
mに形成した。このセンサをフローセル中に設置し、各
種濃度の酸素ガスでバブリングした試料液を、窒素ガス
でバブリングしたキヤリア溶液中に注入してセンサの応
答を調べた。
第15図はl atm酸素ガスでバブリングした溶液を
フローセルに注入したときの、センサの時間応答を測定
した結果である。このように繰り返しの測定において再
現性の良い応答が得られた。
第16図は各種濃度の酸素ガスでバブリングした溶液を
注入したときの、酸素濃度とピークにおける出力電圧変
化との関係をプロットしたものである。酸素濃度に依存
してセンサの出力電圧が変化した6 第17図は本発明の電界効果トランジスタ型酸素センサ
と従来のクラーク型酸素電極の長期安定性を比較したも
のである。 latmの酸素ガスでバブリングした試料
液に対する各々のセンサの応答の経時変化を示しており
、初期の応答を100%としたときの相対感度をプロッ
トした。100時間経過時点で本発明の酸素センサは±
5%の再現性で応答が得られたが、クラーク型酸素電極
は初期の値の約50%まで応答が低下した。
第18図は、スパッタリング法で四弗化エチレンの酸素
透過膜を形成したFET型センサの応答時間を検討した
結果を示す、第18図におけるaは、スパッタリング時
のアルゴンガス圧力を2×10−”Torrとしてガス
透過膜を形成した場合を、bは、8 X 10−”To
rrとしてガス透過膜を形成した場合を示す。立上り点
からピーク頂上に達するまでの時間は、aでは3分、b
では1分であった。
これによりスパッタリング時の圧力が高い方がガス透過
膜は多孔質となることが理解される。
第11図〜第14図の各実施例のFET型酸素ガスセン
サも、半導体集積回路技術を利用して製作し得るので、
低価格で小型なものとなる。また他の半導体センサや信
号処理回路等と共にワンチ″一体試料中の溶存酸素濃度
を測定することができ。
使用寿命の点でも従来のクラーク型酸素センサと比較し
、大幅に改善することができる。
〔発明の効果〕
本発明によれば、小型でも長寿命である酸素ガスセンサ
を実現できる。
【図面の簡単な説明】
第1図は本発明の第1の実施例の概略構成断面図、第2
図は本発明の第2の実施例の概略構成断面図、第3図は
本発明の第3の実施例の概略構成断面図、第4図は本発
明の第4の実施例の概略構成断面図、第5図は第1図の
実施例センサチップを適用したフローセルの構成図、第
6図は気体試料に対する応答の再現性を説明する図、第
7図は酸素ガス分圧と出力変化の関係を示す図、第8図
は本発明に基づくセンサと従来のセンサの安定性を比較
した図、第9図および第10図は酸素ガス本発明の第6
の実施例の概略構成断面図、第13図は本発明の第7の
実施例の概略構成断面図、第14図は本発明の第8の実
施例の概略構成断面図、第15図は液体試料に対する応
答の再現性を説明する図、第16図は酸素濃度と出力の
関係を示す図、第17図は本発明に基づくセンサと従来
のセンサの安定性を比較した図、第18図はガス透過膜
製作時の雰囲気ガス圧の影響を説明する図である。 1.8.9・・・基板、2・・・ドレイン、3・・・ソ
ース、6・・・固体電解質膜、7・・・ゲート電極、1
8・・・酸素ガス透過性膜。

Claims (1)

  1. 【特許請求の範囲】 1、半導体基板にソース領域およびドレイン領域を形成
    し、これらの領域上に形成したゲート絶縁膜の上方にゲ
    ート電極を配置した電界効果トランジスタ型センサにお
    いて、上記ゲート絶縁膜上に室温で酸素イオン量に応じ
    た起電力を生じ得る材料からなる固体電解質の膜を積層
    し、上記固体電解質膜上に、酸素分子を酸素イオンに解
    離する反応を触媒する材料からなる金属膜を上記ゲート
    電極として形成したことを特徴とする電界効果トランジ
    スタ型酸素ガスセンサ。 2、特許請求の範囲第1項記載の酸素ガスセンサにおい
    て、上記固体電解質膜は、フッ化ランタンの膜、フッ化
    ランタンにストロンチウム又はユーロピウムをドーピン
    グした膜、および酸化ジルコニウムに酸化イットリウム
    又は酸化カルシウムをドーピングした膜の中から選択さ
    れることを特徴とする電界効果トランジスタ型酸素ガス
    センサ。 3、特許請求の範囲第1項記載の酸素ガスセンサにおい
    て、上記ゲート電極膜は、白金、パラジウム、イリジウ
    ム、金および白金黒の中から選択されることを特徴とす
    る電界効果トランジスタ型酸素ガスセンサ。 4、特許請求の範囲第1項記載の酸素ガスセンサにおい
    て、上記ゲート電極膜は多孔質であることを特徴とする
    電界効果トランジスタ型酸素ガスセンサ。 5、特許請求の範囲第1項記載の酸素ガスセンサにおい
    て、上記固体電解質膜の膜厚は10〜10,000Åで
    あり、上記ゲート電極膜の膜厚は10〜1,000Åで
    あることを特徴とする電界効果トランジスタ型酸素ガス
    センサ。 6、半導体基板にソース領域およびドレイン領域を形成
    し、これらの領域上に形成したゲート絶縁膜の上方にゲ
    ート電極を配置した電界効果トランジスタ型センサにお
    いて、上記ゲート絶縁膜上に室温で酸素イオン量に応じ
    た起電力を生じ得る材料からなる固体電解質の膜を積層
    し、上記固体電解質膜上に、酸素分子を酸素イオンに解
    離する反応を触媒する材料からなる金属膜を上記ゲート
    電極として形成し、上記ゲート電極膜上に耐水性の酸素
    ガス透過性膜を設けたことを特徴とする電界効果トラン
    ジスタ型酸素ガスセンサ。 7、特許請求の範囲第6項記載の酸素ガスセンサにおい
    て、上記酸素ガス透過性膜の膜厚は0.1〜30μmで
    あることを特徴とする電界効果トランジスタ型酸素ガス
    センサ。
JP61274070A 1986-11-19 1986-11-19 電界効果トランジスタ型酸素ガスセンサ Pending JPS63128246A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61274070A JPS63128246A (ja) 1986-11-19 1986-11-19 電界効果トランジスタ型酸素ガスセンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61274070A JPS63128246A (ja) 1986-11-19 1986-11-19 電界効果トランジスタ型酸素ガスセンサ

Publications (1)

Publication Number Publication Date
JPS63128246A true JPS63128246A (ja) 1988-05-31

Family

ID=17536552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61274070A Pending JPS63128246A (ja) 1986-11-19 1986-11-19 電界効果トランジスタ型酸素ガスセンサ

Country Status (1)

Country Link
JP (1) JPS63128246A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6418784B1 (en) * 1999-10-08 2002-07-16 Ford Global Technologies, Inc. Combined combustible gas sensor and temperature detector
JP2009042232A (ja) * 2000-12-11 2009-02-26 Univ Harvard ナノセンサ
JP2010507018A (ja) * 2006-10-17 2010-03-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 多孔質の金属層を安定化しかつ機能化する方法
US9297796B2 (en) 2009-09-24 2016-03-29 President And Fellows Of Harvard College Bent nanowires and related probing of species
WO2019150631A1 (ja) * 2018-01-31 2019-08-08 日立金属株式会社 ガスセンサ
US10429340B2 (en) 2017-03-31 2019-10-01 Hitachi Metals, Ltd. Gas sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6418784B1 (en) * 1999-10-08 2002-07-16 Ford Global Technologies, Inc. Combined combustible gas sensor and temperature detector
JP2009042232A (ja) * 2000-12-11 2009-02-26 Univ Harvard ナノセンサ
US8399339B2 (en) 2000-12-11 2013-03-19 President And Fellows Of Harvard College Nanosensors
JP2010507018A (ja) * 2006-10-17 2010-03-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 多孔質の金属層を安定化しかつ機能化する方法
US9297796B2 (en) 2009-09-24 2016-03-29 President And Fellows Of Harvard College Bent nanowires and related probing of species
US10429340B2 (en) 2017-03-31 2019-10-01 Hitachi Metals, Ltd. Gas sensor
WO2019150631A1 (ja) * 2018-01-31 2019-08-08 日立金属株式会社 ガスセンサ
JP2019132676A (ja) * 2018-01-31 2019-08-08 日立金属株式会社 ガスセンサ

Similar Documents

Publication Publication Date Title
Seals et al. Rapid, reversible, sensitive porous silicon gas sensor
JP6738749B2 (ja) 気体センサ、水素検出方法、及び燃料電池自動車
JP3311218B2 (ja) 炭化水素センサ
US9028671B2 (en) Hydrogen sensing apparatus and method
US20130277217A1 (en) Thin film micromachined gas sensor
JP4162262B2 (ja) ガス混合物中の酸化可能な成分の濃度を測定するためのセンサ
JP2017151091A (ja) 気体センサ及び水素濃度判定方法
US7189364B2 (en) Hydrogen sensor
EP0949505A2 (en) Hydrocarbon sensor
JPS63128246A (ja) 電界効果トランジスタ型酸素ガスセンサ
US4356150A (en) Humidity sensor with electrical rejection of contaminants
JP4241993B2 (ja) 炭化水素センサ
JP3109833B2 (ja) 混合ガス中のno濃度を連続的に監視する装置
JPH07167815A (ja) センサ装置及びその製造方法
TWI386644B (zh) Ion sensing field effect transistor and ion sensing electrode having the ion sensing field effect transistor
TWI342392B (en) Ph-ion selective field effect transistor (ph-isfet) with a miniaturized silver chloride reference electrode
JPS6312252B2 (ja)
JP2932916B2 (ja) ガスセンサ
JPS63128247A (ja) 金属/絶縁物/半導体キヤパシタ型酸素ガスセンサ
Andersson et al. Recent progress in silicon carbide field effect gas sensors
JPS62250352A (ja) 電界効果トランジスタ型酸素ガスセンサ
JP3774059B2 (ja) 炭化水素センサ
JPH03274452A (ja) 電界効果トランジスタ型酸素センサ
JPS63128251A (ja) 電界効果トランジスタ型生化学センサ
Doll et al. Room temperature ozone sensing with conductivity and work function sensors based on indium oxide