JPS63128251A - 電界効果トランジスタ型生化学センサ - Google Patents
電界効果トランジスタ型生化学センサInfo
- Publication number
- JPS63128251A JPS63128251A JP61274067A JP27406786A JPS63128251A JP S63128251 A JPS63128251 A JP S63128251A JP 61274067 A JP61274067 A JP 61274067A JP 27406786 A JP27406786 A JP 27406786A JP S63128251 A JPS63128251 A JP S63128251A
- Authority
- JP
- Japan
- Prior art keywords
- film
- oxygen
- gate electrode
- membrane
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005669 field effect Effects 0.000 title claims description 14
- 239000012528 membrane Substances 0.000 claims abstract description 31
- 239000001301 oxygen Substances 0.000 claims abstract description 18
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 18
- 239000000126 substance Substances 0.000 claims abstract description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000004065 semiconductor Substances 0.000 claims abstract description 13
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims abstract description 6
- -1 oxygen ions Chemical class 0.000 claims abstract description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 16
- 229910001882 dioxygen Inorganic materials 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000012466 permeate Substances 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052710 silicon Inorganic materials 0.000 abstract description 8
- 239000010703 silicon Substances 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract description 5
- 239000003054 catalyst Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 239000012535 impurity Substances 0.000 abstract description 3
- 230000007774 longterm Effects 0.000 abstract description 3
- 230000001419 dependent effect Effects 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910052581 Si3N4 Inorganic materials 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000003863 metallic catalyst Substances 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 10
- 239000008103 glucose Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 229960000587 glutaral Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、電界効果トランジスタ(FET)型生化学セ
ンサに係り、特に液体試料中の化学、物質の濃度を測定
するに好適な生化学センサに関する。
ンサに係り、特に液体試料中の化学、物質の濃度を測定
するに好適な生化学センサに関する。
従来、クラーク型酸素ガスセンサが生化学センサの信号
変換素子として広く使用されており、例えば“プロシー
デイングズ・オブ・ザ・サード・センサ・シンポジウム
(1983)第21頁から第26頁(Proceedi
ngs of the 3rd SensorSymp
osium: (1983) pp21−26) ”
に示されるように半導体技術を用いてこれを小型化
し、酵素固定化膜と組み合わせて、小型の生化学センサ
を製作した例が報告されている。
変換素子として広く使用されており、例えば“プロシー
デイングズ・オブ・ザ・サード・センサ・シンポジウム
(1983)第21頁から第26頁(Proceedi
ngs of the 3rd SensorSymp
osium: (1983) pp21−26) ”
に示されるように半導体技術を用いてこれを小型化
し、酵素固定化膜と組み合わせて、小型の生化学センサ
を製作した例が報告されている。
生化学センサの信号変換素子である上記のクラーク型酸
素電極はその構造中に内部電解液を有しているため、こ
れを半導体を用いて製作する場合、従来の半導体プロセ
スとの整合性が問題であり、従ってこれを用いた生化学
センサの製作法も半導体プロセスとの整合性が問題であ
った。また半導体を用いて小型化したクラーク型酸素電
極は7ノード及びカソードが変化するため、寿命が短か
いという問題があり、これを用いた生化学センサの寿命
も短かかった。
素電極はその構造中に内部電解液を有しているため、こ
れを半導体を用いて製作する場合、従来の半導体プロセ
スとの整合性が問題であり、従ってこれを用いた生化学
センサの製作法も半導体プロセスとの整合性が問題であ
った。また半導体を用いて小型化したクラーク型酸素電
極は7ノード及びカソードが変化するため、寿命が短か
いという問題があり、これを用いた生化学センサの寿命
も短かかった。
本発明の目的は半導体プロセスを利用して製作すること
ができ、長期安定性の優れた生化学センサの構造を提供
することにある。
ができ、長期安定性の優れた生化学センサの構造を提供
することにある。
c問題点を解決するための手段〕
本発明は、半導体基板にソース領域およびドレイン領域
を形成し、これらの領域上に形成したゲート絶縁膜の上
方にゲート電極を配置した電界効果トランジスタ型セン
サにおいて、上記ゲート絶縁股上に固体電解質の膜を形
成し、この同体電解質膜の上に酸素分子を酸素イオンに
解離する反応を触媒する材料からなる金属膜を上記ゲー
ト電極として形成し、上記ゲート電極膜上に酸素ガス透
過膜を形成し、この酸素ガス透過膜上に生体機能性物質
を固定化した膜を設けたことを特徴とする。
を形成し、これらの領域上に形成したゲート絶縁膜の上
方にゲート電極を配置した電界効果トランジスタ型セン
サにおいて、上記ゲート絶縁股上に固体電解質の膜を形
成し、この同体電解質膜の上に酸素分子を酸素イオンに
解離する反応を触媒する材料からなる金属膜を上記ゲー
ト電極として形成し、上記ゲート電極膜上に酸素ガス透
過膜を形成し、この酸素ガス透過膜上に生体機能性物質
を固定化した膜を設けたことを特徴とする。
膜に固定化された生体機能性物質は特定の化学物質と特
異的に反応し、酸素を生成あるいは消費する。この膜は
酸素ガス透過膜上に積層されているので、酸素ガス透過
膜近傍の酸素分圧が反応に応じて増減する。ゲート電極
と固体電解質界面において、酸素分圧に依存した起電力
が発生し、これが半導体表面のチャネルの導電率を変化
させる。
異的に反応し、酸素を生成あるいは消費する。この膜は
酸素ガス透過膜上に積層されているので、酸素ガス透過
膜近傍の酸素分圧が反応に応じて増減する。ゲート電極
と固体電解質界面において、酸素分圧に依存した起電力
が発生し、これが半導体表面のチャネルの導電率を変化
させる。
この導電率変化を測定すれば、特定の化学物質の濃度を
知ることができる。
知ることができる。
本発明の実施例詮図面を参照して詳細に説明する。第1
図は、本発明の第1の実施例の概略構成断面図である。
図は、本発明の第1の実施例の概略構成断面図である。
シリコン基板1に不純物を拡散し、ドレイン2及びソー
ス3領域を形成する。ドレイン、ソース間のシリコン表
面が電界効果トランジスタのチャネルとなる。該チャネ
ル上には、5iOz酸化膜4、及び5iaN4絶縁膜5
が通常の電界効果トランジスタと同様に形成されており
、その上に固体電解質膜6な積層し、ゲート電極として
金属触媒膜7を形成し、さらにゲート電極7上に酸素ガ
ス透過膜8を積層する。酸素ガス透過膜8上には、生体
機能性物質を固定化した膜9を形成する。
ス3領域を形成する。ドレイン、ソース間のシリコン表
面が電界効果トランジスタのチャネルとなる。該チャネ
ル上には、5iOz酸化膜4、及び5iaN4絶縁膜5
が通常の電界効果トランジスタと同様に形成されており
、その上に固体電解質膜6な積層し、ゲート電極として
金属触媒膜7を形成し、さらにゲート電極7上に酸素ガ
ス透過膜8を積層する。酸素ガス透過膜8上には、生体
機能性物質を固定化した膜9を形成する。
電界効果トランジスタ型生化学センサの応答特性が良好
であるためには、膜9の中に活性の高い生体機能性物質
が高密度に固定化されている必要がある。また膜9は酸
素ガスが透過しやすい構造であることが望ましい。
であるためには、膜9の中に活性の高い生体機能性物質
が高密度に固定化されている必要がある。また膜9は酸
素ガスが透過しやすい構造であることが望ましい。
第2図は本発明の第2の実施例の概略構成断面図である
。これはシリコン・オン・サファイア(SOS)基板を
用いて製作した電界効果トランジスタ型生化学センサの
断面構造を示しており、サファイア基板10上のシリコ
ンエピタキシャル層を一部エッチングしてシリコンアイ
ランド11を形成し、その中に不純物を拡散してドレイ
ン2及びソース3領域を形成した。ゲート絶縁膜4゜5
、ゲート電極7.酸素ガス透過膜8.生体機能性物質を
固定化した膜9の構造は第1図の実施例と同様である。
。これはシリコン・オン・サファイア(SOS)基板を
用いて製作した電界効果トランジスタ型生化学センサの
断面構造を示しており、サファイア基板10上のシリコ
ンエピタキシャル層を一部エッチングしてシリコンアイ
ランド11を形成し、その中に不純物を拡散してドレイ
ン2及びソース3領域を形成した。ゲート絶縁膜4゜5
、ゲート電極7.酸素ガス透過膜8.生体機能性物質を
固定化した膜9の構造は第1図の実施例と同様である。
SOS基板を用いると、ワンチップに複数の電界効果ト
ランジスタ型生化学センサや信号処理回路を集積化した
場合、各センサ素子間あるいはセンサと信号処理回路間
を電気的に分離□することができ、各センサ素子間のク
ロストークをなくすことができる。
ランジスタ型生化学センサや信号処理回路を集積化した
場合、各センサ素子間あるいはセンサと信号処理回路間
を電気的に分離□することができ、各センサ素子間のク
ロストークをなくすことができる。
第3図は本発明の第3の実施例の概略構成断面図である
。ゲート絶縁膜、ゲート電極、酸素ガス透過膜、生体機
能性物質を固定化した膜は第1゜第2図の実施例と同様
であるが、シリコン基板1の中にウェル12を形成し、
そのウェルの中にドレイン2及びソース3領域を形成す
る。このようにウェルの中にドレインおよびソースを作
成することにより、ワンチップに集積化したセンサ素子
間のクロストークをなくすことができる。また本実施例
はシリコン基板を用いているので第2の実施例より低価
格なセンサを提供することができる。
。ゲート絶縁膜、ゲート電極、酸素ガス透過膜、生体機
能性物質を固定化した膜は第1゜第2図の実施例と同様
であるが、シリコン基板1の中にウェル12を形成し、
そのウェルの中にドレイン2及びソース3領域を形成す
る。このようにウェルの中にドレインおよびソースを作
成することにより、ワンチップに集積化したセンサ素子
間のクロストークをなくすことができる。また本実施例
はシリコン基板を用いているので第2の実施例より低価
格なセンサを提供することができる。
第1〜第3の実m例は固体電解質膜6は5isNt絶縁
膜5の上に積層したが、第4図に示した本発明の第4の
実施例のように、5iaNi絶縁膜5を取り除き、酸化
膜4の上に直接に固体電解質1i1i6を積層すること
も可能である。この構造は本発明の第2.第3の実施例
にも適用することができる。
膜5の上に積層したが、第4図に示した本発明の第4の
実施例のように、5iaNi絶縁膜5を取り除き、酸化
膜4の上に直接に固体電解質1i1i6を積層すること
も可能である。この構造は本発明の第2.第3の実施例
にも適用することができる。
本発明の第1の実施例を用いてセンサ特性を測定した結
果を第5図〜第7図に示す。第1図に示したセンサにお
いて、チャネル上の酸化膜4の厚さを500人、絶縁膜
5を1000人に形成し。
果を第5図〜第7図に示す。第1図に示したセンサにお
いて、チャネル上の酸化膜4の厚さを500人、絶縁膜
5を1000人に形成し。
固体電解質としてY2O3を8モル%ドーピングしたZ
r0z膜をスパッタリング法により1000人に形成し
た。ゲート電極となる金属触媒膜7としてスパッタリン
グ法により白金を100人に形成した。さらに該白金電
極上に酸素ガス透過膜8としてシリコーンゴム膜を10
μmの厚さに形成し、その上に生体機能性物質を同定化
した膜9として牛血清アルブミン、グルタルアルデヒド
、グルコースオキシダーゼを含む膜を15μmの厚さに
形成した。このセンサをフローセル中に設置し。
r0z膜をスパッタリング法により1000人に形成し
た。ゲート電極となる金属触媒膜7としてスパッタリン
グ法により白金を100人に形成した。さらに該白金電
極上に酸素ガス透過膜8としてシリコーンゴム膜を10
μmの厚さに形成し、その上に生体機能性物質を同定化
した膜9として牛血清アルブミン、グルタルアルデヒド
、グルコースオキシダーゼを含む膜を15μmの厚さに
形成した。このセンサをフローセル中に設置し。
酸素ガスでバブリングしたキャリア溶液中に各種濃度の
グルコース溶液を注入してセンサの応答を記録した。グ
ルコースはゲルコースオキシダーゼの触媒作用で次式に
従って分解される。この反応グルコース でグルコース濃度に依存して酸素が消費されるので、生
体関連物質を固定化した膜9近傍で生じる酸素分圧変化
を計測すればグルコース濃度を知ることができる。
グルコース溶液を注入してセンサの応答を記録した。グ
ルコースはゲルコースオキシダーゼの触媒作用で次式に
従って分解される。この反応グルコース でグルコース濃度に依存して酸素が消費されるので、生
体関連物質を固定化した膜9近傍で生じる酸素分圧変化
を計測すればグルコース濃度を知ることができる。
第5図は100mg/ d Qの濃度のグルコース溶液
を注入したときのセンサの時間応答である。このように
繰り返しの測定において再現性の良い応答が得られた。
を注入したときのセンサの時間応答である。このように
繰り返しの測定において再現性の良い応答が得られた。
第6図はグルコース濃度とピークにおけるセンサの出力
電圧変化の関係を示したものである。 I Qmg/
d Q 〜700mg/ d Qの濃度範囲でグルコー
ス濃度に依存した応答が得られた。
電圧変化の関係を示したものである。 I Qmg/
d Q 〜700mg/ d Qの濃度範囲でグルコー
ス濃度に依存した応答が得られた。
第7図は本発明の電界効果トランジスタ型生化学センサ
を1日8時間連続動作させ、一定時間毎に100mg/
d (1,のグルコースに対する応答を調べた結果で
ある。200時間以上経過時点で、再現性の良い応答が
得られた。
を1日8時間連続動作させ、一定時間毎に100mg/
d (1,のグルコースに対する応答を調べた結果で
ある。200時間以上経過時点で、再現性の良い応答が
得られた。
以上述べたように1本発明に基づく電界効果トランジス
タ型生化学センサは、半導体集積回路技術を利用して製
作することができ、長期安定性の優れた生化学センサで
ある。
タ型生化学センサは、半導体集積回路技術を利用して製
作することができ、長期安定性の優れた生化学センサで
ある。
本発明の電界効果トランジスタ型生化学センサは半導体
集積回路技術を利用して製作されるので、低価格で小型
なものであり使い易い。また他の半導体センサや信号処
理回路等と共にワンチップに集積化することができ、多
機能な生化学センサを製作することもできる。また本発
明の電界効果トランジスタ型生化学センサは使用寿命の
点で従来のクラーク型酸素電極を利用した生化学センサ
と比較し、大幅に改善することができる。
集積回路技術を利用して製作されるので、低価格で小型
なものであり使い易い。また他の半導体センサや信号処
理回路等と共にワンチップに集積化することができ、多
機能な生化学センサを製作することもできる。また本発
明の電界効果トランジスタ型生化学センサは使用寿命の
点で従来のクラーク型酸素電極を利用した生化学センサ
と比較し、大幅に改善することができる。
第1図は本発明の第1の実施例の図、第2図は本発明の
第2の実施例の図、第3図は本発明の第3の実施例の図
、第4図は本発明の第4の実施例の図、第5図は第1図
の実施例による応答の再現性を示す図、第6図はグルコ
ース濃度と出力の関係を示す図、第7図は応答の経時変
化を示す図である。 1.10.11・・・基板、2・・・ドレイン、3・・
・ソース、6・・・固体電解質膜、7・・・金属触媒層
、8・・・酸素ガス透過膜、9・・・生体機能性物質固
定化膜。
第2の実施例の図、第3図は本発明の第3の実施例の図
、第4図は本発明の第4の実施例の図、第5図は第1図
の実施例による応答の再現性を示す図、第6図はグルコ
ース濃度と出力の関係を示す図、第7図は応答の経時変
化を示す図である。 1.10.11・・・基板、2・・・ドレイン、3・・
・ソース、6・・・固体電解質膜、7・・・金属触媒層
、8・・・酸素ガス透過膜、9・・・生体機能性物質固
定化膜。
Claims (1)
- 【特許請求の範囲】 1、半導体基板にソース領域およびドレイン領域を形成
し、これらの領域上に形成したゲート絶縁膜の上方にゲ
ート電極を配置した電界効果トランジスタ型センサにお
いて、上記ゲート絶縁膜上に固体電解質の膜を形成し、
この固体電解質膜の上に酸素分子を酸素イオンに解離す
る反応を触媒する材料からなる金属膜を上記ゲート電極
として形成し、上記ゲート電極膜上に酸素ガス透過膜を
形成し、この酸素ガス透過膜上に生体機能性物質を固定
化した膜を設けたことを特徴とする電界効果トランジス
タ型生化学センサ。 2、特許請求の範囲第1項記載の生化学センサにおいて
、上記生体機能性物質は、特定の化学物質と特異的に反
応して酸素を生成あるいは消費する物質であることを特
徴とする電界効果トランジスタ型生化学センサ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61274067A JPS63128251A (ja) | 1986-11-19 | 1986-11-19 | 電界効果トランジスタ型生化学センサ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61274067A JPS63128251A (ja) | 1986-11-19 | 1986-11-19 | 電界効果トランジスタ型生化学センサ |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63128251A true JPS63128251A (ja) | 1988-05-31 |
Family
ID=17536508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61274067A Pending JPS63128251A (ja) | 1986-11-19 | 1986-11-19 | 電界効果トランジスタ型生化学センサ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63128251A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03186756A (ja) * | 1989-12-15 | 1991-08-14 | Osaka Gas Co Ltd | バイオセンサーによる試料添加式定量方法 |
WO2021125335A1 (ja) * | 2019-12-20 | 2021-06-24 | 三菱マテリアル株式会社 | トランジスタセンサ及び生体物質検出方法 |
-
1986
- 1986-11-19 JP JP61274067A patent/JPS63128251A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03186756A (ja) * | 1989-12-15 | 1991-08-14 | Osaka Gas Co Ltd | バイオセンサーによる試料添加式定量方法 |
WO2021125335A1 (ja) * | 2019-12-20 | 2021-06-24 | 三菱マテリアル株式会社 | トランジスタセンサ及び生体物質検出方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Koudelka et al. | Planar amperometric enzyme-based glucose microelectrode | |
van der Schoot et al. | ISFET based enzyme sensors | |
US4354308A (en) | Method for manufacture of a selective chemical sensitive FET transducer | |
KR970001146B1 (ko) | 가스측정용 바이오센서 및 그 제조방법 | |
Gernet et al. | A planar glucose enzyme electrode | |
Liao et al. | Preliminary investigations on a glucose biosensor based on the potentiometric principle | |
Poghossian | Method of fabrication of ISFET-based biosensors on an Si–SiO2–Si structure | |
Suzuki et al. | Fabrication of an oxygen electrode using semiconductor technology | |
JP2633281B2 (ja) | 電気化学センサ及びその製造方法 | |
Steinkuhl et al. | Micromachined glucose sensor | |
JPS63128251A (ja) | 電界効果トランジスタ型生化学センサ | |
JPS61218932A (ja) | イオン高感度電界効果トランジスタ及びその製造方法 | |
JPH037066B2 (ja) | ||
JPS59206756A (ja) | 参照電極を一体化したfet化学センサ− | |
JPS6312252B2 (ja) | ||
JP3102356B2 (ja) | バイオセンサ | |
Yang et al. | Design and validation of a low-cost paper-based oxygen electrode | |
JPS63128246A (ja) | 電界効果トランジスタ型酸素ガスセンサ | |
JP2748526B2 (ja) | 酵素電極 | |
Gotoh et al. | Inosine sensor based on an amorphous silicon ISFET | |
Poghossian | Method of fabrication of ISFETs and CHEMFETs on an Si-SiO2-Si structure | |
TWI342392B (en) | Ph-ion selective field effect transistor (ph-isfet) with a miniaturized silver chloride reference electrode | |
Tamiya et al. | Hypoxanthine sensor based on an amorphous silicon field-effect transistor | |
Dransfeld et al. | Biosensors for glucose and lactate using fluoride ion sensitive field effect transistors | |
JPS62250352A (ja) | 電界効果トランジスタ型酸素ガスセンサ |