1342392 九、發明說明:1342392 IX. Description of invention:
【發明所屬之技術領域】 本發明係關於一種氫離子感測場效電晶體,詳言之,係 關於一種含微型氣化銀參考電極之單晶片氫離子感測場效 電晶體。 【先前技術】 客知之氫離子感測場效電晶體(pH_ISFET)微感測器設計 與製作傳統的pH-ISFET元件於商品化的過程中將必須面 臨下列二個主要的關鍵問題:⑴必須研發出適當的氫離子 選擇薄膜,否射存在有如高漂移電壓及低酸驗值感測靈 敏度的問題。⑻因為pH_ISFET元件操作時會與液體溶液 矣觸所以必須在封裝保護元件的同時允許其離子感應區 能棵露出纟’在微小化的有限區域内這將不是—件容易的 事。(ni)PH_ISFET量測系統中通常必須搭配一個參考電 極,但傳統的參考電極尺寸遠大於pH_ISFET晶片如此將 限制其於植入式生醫晶片或測試取樣量較小的應用性。 有必要提供一種創新且具進步性的含微型氣化銀 參考電極之單晶片氫離子感測場效電晶趙,以解決上述問 占苞〇 【發明内容】 曰本發月之目的在於提供—種含微型氣化銀參考電極之單 =離子感測場效電晶體,其包括:-場效電晶體與微 料二,曰片、一封裝晶片、-電極外接端組及-接合材 錢電晶體與微參考電極晶片包括:-基板、-絕 I21461.doc 1342392 緣層、一閘極氧化層、一離子感測薄膜以及一微參考電 極。該基板具有一源極、一汲極及一微參考電極導接區, 該及極位於該源極與該微參考電極導接區之間,且該源極 及该汲極之間界定一通道區。該絕緣層形成於該基板上, 其具有一第一槽孔及一第二槽孔,該第一槽孔顯露部分該 源極、部分該汲極及該通道區,該第二槽孔顯露部分該微 參考電極導接區。該閘極氧化層覆蓋該第一槽孔之部分該 源極、部分該汲極及該通道區。該離子感測薄膜覆蓋該閘 極氧化層並延伸覆蓋至該第一槽孔周緣之部分該閘極氧化 層上。該微參考電極形成於該汲極與該微參考電極導接區 之間上方相對位置之該絕緣層上,且電性連接該微參考電 極導接區。 遠封裝晶片設置於該場效電晶體與微參考電極晶片上, 其包括:一感測槽孔及一内凹部。該感測槽孔形成於該源 極與該汲極之間上方相對位置且顯露該離子感測薄膜。該 内凹部具有—多孔狀之玻璃切懸浮薄膜及-環牆,該懸 浮薄膜具有複數個可與測試液接觸之微孔洞,該環牆設置 於該汲極與該微參考電極導接區之間上方相對位置,該内 凹部覆蓋該微參考電極。該電極外接端組包括:_源極外 接鳊 /及極外接端及一微參考電極外接端。該源極外接 端電性連接該源極,該汲極外接端電性連接該汲極,該微 參考電極外接端電性連接該微參考電極導接區。 該接合村料設置於該場效電晶體與微參考電極晶片與該 ί ^ B曰片之間,以接合該場效電晶體與微參考電極晶片及 J2I461.doc 1342392 該封裝晶片,並密封該微型參考電極β 本發明之氫離子感測場效電晶體具有高線性感測靈敏度 與極低的遲滯性(hysteresis),而該微參考電極具有高穩定 度、低補偏電位以及高再現性。並且’本發明之氫離子感 測%效電aa體為可應用於血液p Η值檢測’本發明之含微型 氣化銀參考電極之氩離子感測場效電晶體具有產品可縮小 化與可攜式化、檢測量可大幅減少、測試時間較短、精確 度較高、低製造成本以及高製程再現性(repr〇ducibiUty)等 優點。 【實施方式】 參考圖1,其顯示本發明第一實施例之含微型氣化銀參 考電極之單晶片氫離子感測場效電晶體(Ion Selective Field Effect Transistor ’ iSFET)。該氫離子感測場效電晶 體1包括:一場效電晶體與微參考電極晶片1 〇、一封裝晶 片20、一電極外接端組30及一接合材料40〇該場效電晶體 晶片與微參考電極1 〇包括:一基板11、一絕緣層12、一問 極氧化層13、一離子感測薄膜14以及一微參考電極15。該 基板11具有一源極111、一汲極11 2及一微參考電極導接區 Π3,其中該汲極112位於該源極in與該微參考電極導接 區113之間,且該源極π 1及該汲極112之間界定一通道區 114。較佳地,該基板丨丨係為一矽基板,在其他應用中, 該基板11亦可為一玻璃基板。 該絕緣層12形成於該基板η上,其具有—第一槽孔丨21 及一第二槽孔122。該第一槽孔12〗顯露部分該源極丨11、 I2I46I.doc 1342392 部分該汲極m及該通道區U4,該第二槽孔122顯露部分 該參考電極導接區113。在本實施例中,該絕緣層12係為 一二氧化矽/氮化矽層。 该閘極氧化層13覆蓋該第一槽孔121中之部分該源極 、部分該汲極112及該通道區U4e較佳地,該問極氧 化層13係為二氧化矽所形成。該離子感測薄膜“覆蓋該閘 極氧化層13並延伸覆蓋至該第一槽孔121周緣之部分該氧 化層13上。較佳地,該離子感測薄膜M係為一離子選擇性 薄膜(ISM),在本實施例中’該離子感測薄膜丨锡為氧化 钽(Ta2〇5)所形成,或亦可為氧化鋁(Abo3)或氮化矽 (Si3N4) 〇 該微參考電極15形成於該汲極112與該微參考電極導接 區1丨3之間上方相對位置之該絕緣層丨2上,且電性連接該 微參考電極導接區U3。在該實施例中,該微參考電極15 具有一準參考電極151及一膠體層152。該膠體層ι52形成 於該準參考電極151上。該微參考電極15係為—微型氣化 銀參考電極’在本實施例中,該微參考電極15係 — 、田—缺/ 把/銀/氣化銀/氣化鉀膠體等多層薄膜所組成。其 上 欽、纪、銀及氣化銀組成該準參考電極15丨,而該膠體層 ^2(氣化鉀膠體)係由飽合氣化鉀洋菜膠所組成。 該封裝晶片20設置於該場效電晶體與微參考電極晶片^ 上’其包括:一感測槽孔21及内凹部22 ^較佳地,談封裝 晶片20係為一矽基板,或者,該封裝晶片2〇亦可為一 121461.doc 1342392 該感測槽孔21形成於該源極111與該汲極112之間上方相 對位置且顯露該離子感測薄膜丨4(在本實施例中,該感測 槽孔21顯露該離子感測薄膜14且顯露部分該絕緣層12)。 該内凹部22具有一多孔狀之玻璃或矽懸浮薄膜221及一環 牆222。該多孔狀之玻璃或矽懸浮薄膜221具有複數個可與 測試液接觸之微型測試液接觸孔223,該環牆222設置於該 /及極112與該微參考電極導接區丨13之間上方相對位置之該 絕緣層12上,且該内凹部22覆蓋該微參考電極15。 該電極外接端組30包括:一源極外接端31、一汲極外接 端32及一微參考電極外接端33。其中,該源極外接端3丨電 性連接該源極111,該汲極外接端32電性連接該汲極丨12, 該微參考電極外接端33電性連接該微參考電極導接區 113。 在本實施例中,該基板丨丨另包括一第一接觸孔丨丨5、一 第二接觸孔Π6及一第三接觸孔117。該第一接觸孔115、 該第二接觸孔116及該第三接觸孔丨17與該封裝晶片2〇分別 形成於該基板1 1之二相對側邊,且該第一接觸孔n5、該 第二接觸孔116及該第三接觸孔117分別顯露部分該源極 111、部分該汲極112及部分該微參考電極導接區113。其 中’該源極外接端3卜該祕外接端32及該微參考電極外 接端33分別覆蓋該第—接觸孔115、該第二接觸孔μ及該 第三接觸孔H7,且分別電性連接該源極⑴、該沒極ιι2 及該微參考電極導接區⑴。其巾,該源極外接端31、該 没極外接端32及該微參考電極外接端33與該封裝晶片μ分 I21461.doc •11 - 1342392 別形成於忒基板1 1之二相對側邊,故所製作完成之該第一 實施例之含微型氣化銀參考電極之氫離子感測場效電晶體 1為一背接式氫離子感測場效電晶體。 較佳地’該接合材料40設置於該場效電晶體與微參考電 極bb片10與β玄封裝晶片2〇之間,以接合該場效電晶體與微 參考電極晶片1 〇及該封裝晶片2〇,並密封該微型參考電極 15 其中’違接合材料40可為環氧樹脂(ep0Xy)或石夕膠 (silicon rubber)。 參考圖2,其顯示本發明第二實施例之含微型氣化銀參 考電極之單晶片氫離子感測場效電晶體。該含微型氣化銀 參考電極之氫離子感測場效電晶體5包括:一場效電晶體 與镟參考電極晶片50、一封裝晶片60、一電極外接端組7〇 及一封膠與接合材料8〇。該第二實施例之氫離子感測場效 電晶體5與上述圖丨該第一實施例之氫離子感測場效電晶體 1不同之處在於’該第一實施例之氫離子感測場效電晶體1 之該電極外接端組30與該封裝晶片2〇,分別形成於該基板 11之一相對平面,而為一電極外接端組3〇在背面之背接式 氫離子感測場效電晶體,該第二實施例之氫離子感測場效 電晶體5之該封裝晶片6〇及該電極外接端組7〇,形成於基 板5 1之相同平面(正面)而為一前接式氫離子感測場效電晶 體0 在該第二實施例中’該絕緣層52具有一第一接觸孔 521、一第二接觸孔522、一第三接觸孔523及一第四接觸 孔524(相當於第一實施例中之該第二槽孔122),分別顯露 121461 .doc •12· 1342392BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a hydrogen ion sensing field effect transistor, and more particularly to a single wafer hydrogen ion sensing field effect transistor containing a micro gasified silver reference electrode. [Prior Art] The design and fabrication of a conventional hydrogen ion sensing field effect transistor (pH_ISFET) microsensor will have to face two major key issues in the commercialization process: (1) Must be developed With proper hydrogen ion selective film, there is a problem that there is a high drift voltage and low acid sensitivity sensing sensitivity. (8) Since the pH_ISFET element is in contact with the liquid solution during operation, it is necessary to allow the ion sensing area to be exposed while encapsulating the protective element. This is not an easy task in a limited area of miniaturization. (ni) The PH_ISFET measurement system usually must be paired with a reference electrode, but the conventional reference electrode size is much larger than the pH_ISFET wafer, which limits its applicability to implanted biomedical wafers or test sample throughput. It is necessary to provide an innovative and progressive single-wafer hydrogen ion sensing field effect electro-optical crystal with a micro-vaporized silver reference electrode to solve the above problem [invention content] The purpose of this month is to provide - Single-ion-sensing field-effect transistor containing a micro-vaporized silver reference electrode, which comprises: - field effect transistor and micro-material 2, bismuth film, a package wafer, - electrode external terminal group and - bonding material The crystal and micro reference electrode wafers include: a substrate, an I21461.doc 1342392 edge layer, a gate oxide layer, an ion sensing film, and a micro reference electrode. The substrate has a source, a drain and a micro-reference electrode guiding region, the pole is located between the source and the micro-reference electrode guiding region, and a channel is defined between the source and the drain Area. The insulating layer is formed on the substrate, and has a first slot and a second slot, the first slot revealing a portion of the source, a portion of the drain and the channel region, and the second slot is exposed The micro reference electrode lead-in area. The gate oxide layer covers a portion of the source, a portion of the drain, and the channel region of the first slot. The ion sensing film covers the gate oxide layer and extends over a portion of the gate oxide layer of the periphery of the first slot. The micro-reference electrode is formed on the insulating layer at an upper position between the drain and the micro-reference electrode conducting region, and is electrically connected to the micro-reference electrode conducting region. The far package wafer is disposed on the field effect transistor and the micro reference electrode chip, and includes: a sensing slot and an inner recess. The sensing slot is formed at an upper position between the source and the drain and exposes the ion sensing film. The inner concave portion has a porous glass cut suspension film and a ring wall, and the floating film has a plurality of micro holes which are in contact with the test liquid, and the ring wall is disposed at the drain region of the drain electrode and the micro reference electrode The inner concave portion covers the micro reference electrode. The electrode external terminal group includes: a source external 鳊 / and a pole external terminal and a micro reference electrode external terminal. The source external terminal is electrically connected to the source, and the drain external terminal is electrically connected to the drain, and the micro reference electrode external terminal is electrically connected to the micro reference electrode conducting region. The bonding material is disposed between the field effect transistor and the micro reference electrode chip and the λB to bond the field effect transistor and the micro reference electrode chip and the package wafer of J2I461.doc 1342392, and seal the package Micro Reference Electrode β The hydrogen ion sensing field effect transistor of the present invention has high line sensing sensitivity and extremely low hysteresis, and the micro reference electrode has high stability, low complementary potential, and high reproducibility. And the hydrogen ion sensing % effect electric aa body of the present invention is applicable to blood p Η value detection. The argon ion sensing field effect transistor containing the micro gasified silver reference electrode of the present invention has a product which can be reduced in size and can be Portable, high detection, short test time, high precision, low manufacturing cost and high process reproducibility (repr〇ducibiUty). [Embodiment] Referring to Fig. 1, there is shown a single-wafer hydrogen ion sensing field effect transistor (Ion Selective Field Effect Transistor' iSFET) containing a micro-vaporized silver reference electrode according to a first embodiment of the present invention. The hydrogen ion sensing field effect transistor 1 includes: a field effect transistor and a micro reference electrode chip 1 , a package wafer 20 , an electrode external terminal group 30 , and a bonding material 40 , the field effect transistor wafer and the micro reference The electrode 1 includes a substrate 11, an insulating layer 12, a gate oxide layer 13, an ion sensing film 14, and a micro reference electrode 15. The substrate 11 has a source 111, a drain 11 2 and a micro reference electrode conducting region ,3, wherein the drain 112 is located between the source in and the micro reference electrode conducting region 113, and the source A channel region 114 is defined between π 1 and the drain 112. Preferably, the substrate is a germanium substrate. In other applications, the substrate 11 can also be a glass substrate. The insulating layer 12 is formed on the substrate η and has a first slot 丨 21 and a second slot 122. The first slot 12 defines a portion of the source 丨11, I2I46I.doc 1342392 portion of the drain m and the channel region U4, and the second slot 122 exposes a portion of the reference electrode guiding region 113. In this embodiment, the insulating layer 12 is a cerium oxide/tantalum nitride layer. The gate oxide layer 13 covers a portion of the source, a portion of the drain 112, and the channel region U4e of the first trench 121. Preferably, the gate oxide layer 13 is formed of hafnium oxide. The ion sensing film "covers the gate oxide layer 13 and extends over a portion of the oxide layer 13 around the periphery of the first slot 121. Preferably, the ion sensing film M is an ion selective film ( ISM), in the present embodiment, the ion sensing film is formed of tantalum oxide (Ta2〇5), or may be aluminum oxide (Abo3) or tantalum nitride (Si3N4), and the micro reference electrode 15 is formed. The insulating layer 丨2 is oppositely disposed between the drain 112 and the micro-reference electrode guiding region 1丨3, and is electrically connected to the micro-reference electrode guiding region U3. In this embodiment, the micro The reference electrode 15 has a quasi-reference electrode 151 and a colloid layer 152. The colloid layer ι52 is formed on the quasi-reference electrode 151. The micro-reference electrode 15 is a micro-vaporized silver reference electrode 'in this embodiment, The micro-reference electrode 15 is composed of a multi-layer film such as a field, a field, a silver film, a silver gas, a gasification gel, and a gasified potassium colloid. The upper reference electrode, the silver, and the vaporized silver constitute the quasi-reference electrode 15丨. The colloid layer 2 (gasified potassium colloid) is composed of saturated gasified potassium acacia. The package wafer 20 And the micro-reference electrode chip is disposed on the field-effect transistor and the micro-reference electrode chip. The method comprises: a sensing slot 21 and a recess 22. Preferably, the package wafer 20 is a substrate, or the package wafer is The sensing slot 21 is formed at an upper position between the source 111 and the drain 112 and exposes the ion sensing film 4 (in the embodiment, the sensing slot) The hole 21 exposes the ion sensing film 14 and exposes a portion of the insulating layer 12). The inner recess 22 has a porous glass or ruthenium suspension film 221 and a ring wall 222. The porous glass or ruthenium suspension film 221 has a plurality of micro-test liquid contact holes 223 which are in contact with the test liquid, and the ring wall 222 is disposed on the insulating layer 12 at an upper position between the/and the poles 112 and the micro-reference electrode guiding region 丨13, and the The inner peripheral portion 30 includes a source external terminal 31, a drain external terminal 32 and a micro reference electrode external terminal 33. The source external terminal 3 is electrically connected. The source 111 is connected to the source, and the drain terminal 32 is electrically connected to the drain 12, the micro-reference electrode external terminal 33 is electrically connected to the micro-reference electrode guiding region 113. In this embodiment, the substrate further includes a first contact hole 丨丨5, a second contact hole Π6 and a a third contact hole 117. The first contact hole 115, the second contact hole 116 and the third contact hole 丨17 and the package wafer 2 are respectively formed on opposite sides of the substrate 11 and the first The contact hole n5, the second contact hole 116 and the third contact hole 117 respectively expose a portion of the source electrode 111, a portion of the drain electrode 112 and a portion of the micro reference electrode guiding region 113. wherein the source external terminal 3 The outer connecting end 32 and the micro-reference electrode external end 33 respectively cover the first contact hole 115, the second contact hole μ and the third contact hole H7, and are electrically connected to the source (1) and the dipole And the micro reference electrode conducting region (1). The source external terminal 31, the electrodeless external terminal 32 and the micro reference electrode external terminal 33 and the package wafer μ I21461.doc •11 - 1342392 are formed on opposite sides of the second substrate 1 1 , Therefore, the hydrogen ion sensing field effect transistor 1 of the micro-vaporized silver reference electrode of the first embodiment which is completed is a back-mounted hydrogen ion sensing field effect transistor. Preferably, the bonding material 40 is disposed between the field effect transistor and the micro reference electrode bb sheet 10 and the β-shaped package wafer 2〇 to bond the field effect transistor and the micro reference electrode chip 1 and the package wafer. 2〇, and the micro reference electrode 15 is sealed, wherein the 'missing material 40' may be epoxy resin (ep0Xy) or silicon rubber. Referring to Figure 2, there is shown a single wafer hydrogen ion sensing field effect transistor comprising a micro gasified silver reference electrode in accordance with a second embodiment of the present invention. The hydrogen ion sensing field effect transistor 5 including the micro gasified silver reference electrode comprises: a field effect transistor and a germanium reference electrode wafer 50, a package wafer 60, an electrode external terminal group 7 and an adhesive and bonding material. 8〇. The hydrogen ion sensing field effect transistor 5 of the second embodiment is different from the hydrogen ion sensing field effect transistor 1 of the first embodiment described above in the hydrogen ion sensing field of the first embodiment. The electrode external terminal group 30 of the effect transistor 1 and the package wafer 2 are respectively formed on one of the opposite planes of the substrate 11, and are an electrode external connection end group 3 背 on the back side of the hydrogen ion sensing field effect The transistor, the package wafer 6 of the hydrogen ion sensing field effect transistor 5 of the second embodiment, and the external terminal group 7 of the electrode are formed on the same plane (front surface) of the substrate 51 as a front connection Hydrogen ion sensing field effect transistor 0 In the second embodiment, the insulating layer 52 has a first contact hole 521, a second contact hole 522, a third contact hole 523 and a fourth contact hole 524 ( Corresponding to the second slot 122 in the first embodiment, respectively, revealing 121461.doc •12· 1342392
該場效電晶體與微參考電極晶片50之部分源極511、部分 汲極512及部分微參考電極導接區513。該封裝晶片6〇具有 一第一通孔61、一第二通孔62及一第三通孔63,分別形成 於該絕緣層52之該第一接觸孔521、該第二接觸孔522及該 第三接觸孔523上方之相對位置(在該第一實施例中,該基 板11之該第一接觸孔115、該第二接觸孔116及該第三接觸 孔117與該封裝晶片2 0分別形成於該基板11之二相對平 面)。該第二實施例之氫離子感測場效電晶體5其他部分之 結構與該第一實施例之氫離子感測場效電晶體1相同(請參 閱上述圖1之敛述)’在此不再詳加賢述。 在該第二實施例中’該電極外接端組70之源極外接端 71、汲極外接端72及微參考電極外接端73分別設置於該第The field effect transistor and a portion of the source 511 of the micro-reference electrode wafer 50, a portion of the drain 512, and a portion of the micro-reference electrode conducting region 513. The package substrate 6 has a first through hole 61, a second through hole 62 and a third through hole 63, and is formed in the first contact hole 521, the second contact hole 522, and the insulating layer 52, respectively. The first contact hole 523, the first contact hole 115, the second contact hole 116, and the third contact hole 117 are formed separately from the package wafer 20 in the first embodiment. On the opposite plane of the substrate 11). The structure of the other portions of the hydrogen ion sensing field effect transistor 5 of the second embodiment is the same as that of the hydrogen ion sensing field effect transistor 1 of the first embodiment (please refer to the above-mentioned FIG. 1). Add more details. In the second embodiment, the source external terminal 71, the drain external terminal 72 and the micro reference electrode external terminal 73 of the electrode external terminal group 70 are respectively disposed in the first
接觸孔521、该第·一接觸孔522及該第三接觸孔523,且 分別電性連接該場效電晶體晶片50之該源極511、該沒極 512及該微參考電極導接區513。其中,該微參考電極外接 端73可包括一内接端731及一外接端732 ’該内接端73丨設 置於該場效電晶體與微參考電極晶片5〇之第四接觸孔524 中,並且電性連接該微參考電極55與該微參考電極導接區 513 ’該外接端732設置於該第三接觸孔523中且電性連接 該微參考電極導接區513。 另外,分別利用複數條導線74以電性連接該源極外接端 71、該汲極外接端72及該微參考電極外接端73之該外接端 732,並使得該等導線74顯露於該封裝晶片⑽外,用以與 -外部電路電性連接(圖未示出)。較佳地,再以該封膠與The contact hole 521, the first contact hole 522 and the third contact hole 523 are electrically connected to the source 511, the gate 512 and the micro reference electrode guiding region 513 of the field effect transistor 50, respectively. . The external reference end 73 of the micro-reference electrode may include an inner end 731 and an outer end 732 ′. The inner end 73 is disposed in the fourth contact hole 524 of the field effect transistor and the micro reference electrode chip 5 . The micro-reference electrode 55 and the micro-reference electrode guiding region 513 ′ are electrically connected to the third contact hole 523 and electrically connected to the micro-reference electrode guiding region 513 . In addition, a plurality of wires 74 are electrically connected to the source external terminal 71, the drain external terminal 72, and the external terminal 732 of the micro reference electrode external terminal 73, and the wires 74 are exposed on the package wafer. (10) In addition, it is used to electrically connect with an external circuit (not shown). Preferably, the sealant is
12l461.doc •13· 1342392 接合材料80密封該第一通孔61、該第二通孔62及該第三通 孔63 ’且接合該場效電晶體與微參考電極晶片5〇及該封裝 晶片60,以製作完成該含微型氣化銀參考電極之氫離子感 測場效電晶體5 »在本實施例中,該封膠與接合材料8〇係 與第一實施例中之該接合材料4〇相同材質,其可為環氧樹 脂(epoxy)或矽膠(Siiic(m rubber)。 參考圖3,其顯示氣化鉀膠體的沉積對鈦/鈀/銀/氣化銀 層之電極電位的影響之量測結果圖。其中,L丨表示表面未 形成氣化卸層之一準參考電極(缺/纪/銀/氣化銀)之電位變 化曲線’其係浸入濃度〇〇 1 M的氣化鉀溶液中,以量測其 電位穩疋性。由L1可以發現,在起初的1 〇分鐘内,其漂移 電位高達16 mV,而之後1〇-60分鐘也有9 mV的變化,此 結果顯示該準參考電極之電位並不穩定,另外值得注意的 是其補偏電位高達18〇 mv,上述皆是嚴重的缺點。 L2及L3分別表示本發明二種具有氣化鉀膠體之參考電極 之電位變化曲線。由!^2及L3可知,本發明之參考電極在起 初的1 0分鐘其電位約減少6 5 mV,而之後1 〇 6〇分鐘則只 有士 〇·9〜1.4 mV的電位變化,而且其補償電位也十分低(約 〇_45 mV)。 圖4顯不氣化鉀膠體的沉積對鈦/鈀/銀/氣化銀層之電極 電位在不同pH值溶液下的影響之量測結果圖。在圖4中, L1表示不具有氣化鉀膠體之參考電極之電位變化曲線;[a 表示本發明具有氣化鉀膠體之參考電極之電位變化曲線。 圖5顯示氣化鉀膠體的沉積對鈦/鈀/銀/氣化銀層之電極電 12l46l.doc -14- 1342392 位在不同氣化鉀濃度溶液下的影響之量測結果圖。在圖5 中,L1表示不具有氣化鉀膠體之參考電極之電位變化曲 線,L2表示本發明具有氣化鉀膠體之參考電極之電位變化 曲線。 配合參考圖4及圖5,標準的參考電極不僅須在相同濃度 的/則δ式’谷液下維持一穩定的電極電位,在不同的pH值或不 同的氣離子濃度下也必須能維持固定的電位。由圖4之u 及圖5之L1可知,該不具有氣化鉀膠體之參考電極(鈦/鈀/ 銀/氣化銀層之準參考電極)之電位在ρΗ 4·ρΗ 1〇的變化下 幾乎不隨pH值而改變,但卻會明顯的隨氣離子濃度的不同 而改變其電極電位。 由圖4之L2及圖5之L2可知,本發明具有氣化鉀膠體之參 考電極(銥/纪/銀/氣化銀/氣化鉀電極)之電位皆不會受到氫 離子及氣離子濃度變化之影響,所以電位輸出十分趨近於 一穩定值:在pH 4-pH 1 〇的濃度變化下其電位改變量僅小 於2 mV , g氣化卸溶液濃度從〇 μ變化至0.6 μ其電極電位 改變十分微小,約為0.02-0.25 mV/pCh 參考圖6,其顯示本發明三種具有氣化鉀膠體之參考電 極(鈦/鈀/銀/氣化銀/氣化鉀電極)的再現性之量測結果圖。 其中,LI、L2及L3分別表示本發明三種具有氣化鉀膠體 之參考電極之電位變化曲線。由L1、L2&L3可知,將不 同批次製造的相同參考電極晶片浸入氣化鉀溶液(約 40ml ’ pH-7)中作再現性(repr〇ducibility)的量測,發現其 電極電位輸出的誤差在士5 mV以内,所以證明本發明之微 121461.doc 15 參考電極之製程穩定性相當高,這對產品之商品化十分有 利。 參考圖7 ’其顯示本發明在pH=10的溶液下量測氫離子 感測場效電晶體(PH-ISFET)K汲極電流與電壓特性曲線 圖如圖7所不’含積體化微參考電極之pH-ISFET特性量 測與利用半導體參數分析儀(HP-4145)量測pH-ISFET的輸 出電机/電壓特性,由圖7顯示之結果可以明顯看出其具 有基本的P通道金屬氧化物場效電晶體(MOSFET)的電晶體 特性’且當沒極的電位設定為_〇1 V、最大的互導 (transconductance)為 3.1 mA/V,而臨界電壓(threshold voltage)為-1.38 V。 參考圖8,其顯示本發明以氮化矽和氧化鈕為氫離子選 擇薄膜的pH值感測靈敏度之量測結果圖。其中,u表示 以氧化鈕為氫離子選擇薄膜之閘極電壓變化曲線;L2表示 以虱化矽為氫離子選擇薄膜之閘極電壓變化曲線。實驗結 果顯示,不同pH值對ISFET閘極電位有不同之影響。參考 L1,當該離子選擇性薄膜為氧化钽(Ta2〇5)時,其感測靈 敏度則高達56 mV/ρΗ,此值十分吻合於理論值(59 mV/ρΗ卜參考L2,當離子選擇性薄膜(ISM)為氮化矽 (Si3N4)時,其感測靈敏度僅為5〇 mWpH。 圓9顯示本發明含微型氣化銀參考電極之單晶片氫離子 感測場效電晶體之動態響應圖。如圖9所示,當待測的溶 液濃度以pH 7-pH 4-pH 7-pH 10-pH 7的次序變化,發現其 閘極電位不僅會隨之變化,而且比較兩週期之同一 pH值下 I21461.doc 1342392 的閘極電位差值(亦即遲滯度)十分小,證明本發明之氫離 子感測場效電晶體具有相當良好之動態響應。 綜合上述’本發明之氫離子感測場效電晶體昇有高線性 感測靈敏度(約56 mV/pH)與極低的遲滞性邙”…以⑷,而 鈦/鈀/銀/氣化銀/氣化鉀電極(微固態參考電極)具有高穩定 度(漂移(drift)=±0.9〜1.4 mV)、低補偏電位(Offset=〇.45 mV)以及高再現性(repr〇ducibility)小於〇·5 mV)。本發明之 氫#子感測場效電晶韹為可應用於金液pH值檢測,本發明 之含微型乳化銀參考電極之氫離子感測場效電晶體具有產 品可縮小化與可攜式化、檢測量可大幅減少、測試時間較 短、精確度較高、低製造成本以及高製程再現性 (reproducibility)等優點。 惟上述實施例僅為說明本發明之原理及其功效,而非用 以限制本發明。因此’習於此技術之人士對上述實施例進 行修改及變化仍不脫本發明之精神。本發明之權利範圍應 如後述之申請專利範圍所列。 【圖式簡單說明】 圖1顯示本發明第一實施例之含微型氣化銀參考電極之 單晶片氫離子感測場效電晶體; 圖2顯示本發明第二實施例之含微型氣化銀參考電極之 單晶片氫離子感測場效電晶體; 圖3顯示氣化鉀膠體的沉積對鈦/鈀/銀/氣化銀層之電極 電位的影響之量測結果圖; 圖4顯示氣化鉀膠體的沉積對鈦/鈀/銀/氣化銀層之電極 121461.doc 17 1342392 電位在不同pH值溶液下的影響之量測結果圖; 圖5顯示氣化鉀膠體的沉積對鈦/鈀/銀/氣化銀層之電極 電位在不同氣化鉀濃度溶液下的影響之量測結果圖; 圖6顯示本發明參考電極的再現性之量測結果圖; 圖7顯示本發明在p Η =丨〇的溶液下量測氫離子感測場效 電晶體的汲極電流與電壓特性曲線圖; 圖8顯示本發明以氮化矽和氧化鈕為氫離子選擇薄膜的 pH值感測靈敏度之量測結果圖;及 圖9顯示本發明含微型氣化銀參考電極之單晶片氫離子 感測場效電晶體之動態響應圖。 【主要元件符號說明】 本發明第一實施例之含微參考電極之氫離子感 測場效電晶體 5 10 12 13 14 15 20 21 22 30 本發明第二實施例之氫離子感測場效電晶體 場效電晶體與微參考電極晶片 基板 絕緣層 閘極氧化層 離子感測薄膜 微參考電極 封裝晶片 感測槽孔 内凹部 電極外接端組 12l46l.doc • 18- 134239212l461.doc • 13· 1342392 bonding material 80 seals the first through hole 61, the second through hole 62 and the third through hole 63 ′ and joins the field effect transistor and the micro reference electrode chip 5 and the package wafer 60, to complete the hydrogen ion sensing field effect transistor containing the micro gasified silver reference electrode 5 » In the present embodiment, the sealing material and the bonding material 8 are the bonding material 4 in the first embodiment 〇 The same material, which can be epoxy or silicone (Siiic (m rubber). Refer to Figure 3, which shows the effect of deposition of gasified potassium colloid on the electrode potential of titanium/palladium/silver/vaporized silver layer. The measurement results are shown in Fig., where L丨 indicates that the potential change curve of the quasi-reference electrode (deficient/density/silver/vaporized silver) which is not formed on the surface is not formed, and the gasification is immersed in the concentration 〇〇1 M In the potassium solution, the potential stability is measured. It can be found from L1 that the drift potential is as high as 16 mV in the first 1 minute, and then 9 mV in 1〇-60 minutes. The potential of the quasi-reference electrode is not stable, and it is also worth noting that its counter-potential is as high as 18 Mv, all of the above are serious disadvantages. L2 and L3 respectively indicate the potential change curves of the reference electrodes of the two kinds of gasified potassium colloids of the present invention. It can be seen from !2 and L3 that the reference electrode of the present invention is at the initial 10 minutes. Its potential is reduced by about 6 5 mV, and after 1 〇 6 〇 minutes, there is only a potential change of ± 〜 9 ~ 1.4 mV, and its compensation potential is also very low (about 〇 _ 45 mV). Figure 4 shows no gasification of potassium The measurement results of the influence of colloid deposition on the electrode potential of titanium/palladium/silver/vaporized silver layer under different pH solutions. In Fig. 4, L1 represents the potential change of the reference electrode without colloidal gas colloid. Curve; [a represents the potential change curve of the reference electrode of the present invention with a gasified potassium colloid. Figure 5 shows the deposition of a gasified potassium colloid on the electrode of titanium/palladium/silver/vaporized silver layer 12l46l.doc -14-1342392 Figure 5 shows the results of the measurement of the influence of different concentrations of potassium carbonate solution. In Figure 5, L1 represents the potential change curve of the reference electrode without the gasified potassium colloid, and L2 represents the reference electrode of the present invention having the gasified potassium colloid. The potential change curve. Refer to Figure 4 and Figure 5. The standard reference electrode must not only maintain a stable electrode potential at the same concentration / then δ-type solution, but also maintain a fixed potential at different pH values or different gas ion concentrations. u and L1 of Fig. 5 show that the potential of the reference electrode (titanium/palladium/silver/vaporized silver reference layer) without the vaporized potassium colloid hardly changes with pH under the change of ρΗ 4·ρΗ 1〇 The value changes, but the electrode potential is changed obviously with the difference of the gas ion concentration. From the L2 of Fig. 4 and the L2 of Fig. 5, the reference electrode of the present invention has a gasified potassium colloid (铱/纪/银/ The potential of the gasified silver/gasified potassium electrode is not affected by the change of hydrogen ion and gas ion concentration, so the potential output is very close to a stable value: its potential changes under the concentration change of pH 4-pH 1 〇 The amount is only less than 2 mV, and the concentration of g gasification unloading solution changes from 〇μ to 0.6 μ. The electrode potential change is very small, about 0.02-0.25 mV/pCh. Referring to Figure 6, it shows three references of the present invention with colloidal gas colloid. Reproduction of electrodes (titanium/palladium/silver/vaporized silver/gasified potassium electrode) The measurement results of FIG. Among them, LI, L2 and L3 respectively represent potential variation curves of three reference electrodes having a gasified potassium colloid of the present invention. It can be seen from L1, L2 & L3 that the same reference electrode wafer manufactured in different batches was immersed in a potassium carbonate solution (about 40 ml 'pH-7) for reproducibility measurement, and the electrode potential output was found. The error is within ±5 mV, so it is proved that the process stability of the micro 121461.doc 15 reference electrode of the present invention is quite high, which is very advantageous for the commercialization of the product. Referring to FIG. 7 ', it is shown that the hydrogen ion sensing field effect transistor (PH-ISFET) K drain current and voltage characteristic curve of the present invention is measured under the solution of pH=10. The pH-ISFET characteristic measurement of the reference electrode and the output motor/voltage characteristic of the pH-ISFET are measured by a semiconductor parameter analyzer (HP-4145). It is apparent from the results shown in Fig. 7 that it has a basic P-channel metal. Oxide field effect transistor (MOSFET) transistor characteristics 'and when the potential of the pole is set to _〇1 V, the maximum transconductance is 3.1 mA/V, and the threshold voltage is -1.38 V. Referring to Fig. 8, there is shown a measurement result of the pH sensing sensitivity of the film selected by the invention using a tantalum nitride and an oxidation button as a hydrogen ion. Wherein, u represents a gate voltage change curve of a thin film selected by using an oxidation button as a hydrogen ion; and L2 represents a gate voltage change curve of a thin film selected by using germanium telluride as a hydrogen ion. The experimental results show that different pH values have different effects on the ISFET gate potential. Referring to L1, when the ion-selective film is tantalum oxide (Ta2〇5), its sensing sensitivity is as high as 56 mV/ρΗ, which is in good agreement with the theoretical value (59 mV/ρΗ reference L2, when ion selectivity When the film (ISM) is tantalum nitride (Si3N4), the sensing sensitivity is only 5〇mWpH. Circle 9 shows the dynamic response of the single-wafer hydrogen ion sensing field effect transistor with micro-vaporized silver reference electrode of the present invention. As shown in Figure 9, when the concentration of the solution to be tested changes in the order of pH 7-pH 4-pH 7-pH 10-pH 7, it is found that the gate potential will not only change, but also compare the same pH of two cycles. The value of the gate potential (i.e., hysteresis) of I21461.doc 1342392 is very small, which proves that the hydrogen ion sensing field effect transistor of the present invention has a fairly good dynamic response. The above-described 'hydrogen ion sensing field of the present invention is integrated. The effector crystal has high line sensitivity (about 56 mV/pH) and very low hysteresis [...] to (4), while titanium/palladium/silver/vaporized silver/vaporized potassium electrode (micro solid reference electrode) ) with high stability (drift = ± 0.9 ~ 1.4 mV), low offset potential (Offset = 〇. 45 mV) and high reproducibility (repr〇ducibility) is less than 〇·5 mV). The hydrogen #子 sensing field effect transistor of the present invention is applicable to gold liquid pH detection, and the micro emulsified silver reference of the present invention The electrode's hydrogen ion sensing field effect transistor has the advantages of product reduction and portability, large amount of detection, short test time, high precision, low manufacturing cost and high process reproducibility. However, the above embodiments are merely illustrative of the principles and effects of the present invention, and are not intended to limit the present invention. Therefore, those skilled in the art can make modifications and changes to the above embodiments without departing from the spirit of the present invention. The scope of the claims should be as listed in the scope of the patent application described below. [Simplified Schematic] FIG. 1 shows a single-wafer hydrogen ion sensing field effect transistor containing a micro-vaporized silver reference electrode according to a first embodiment of the present invention; A single wafer hydrogen ion sensing field effect transistor comprising a micro gasified silver reference electrode according to a second embodiment of the present invention; FIG. 3 shows an electrode potential of a titanium/palladium/silver/vaporized silver layer deposited by a gasified potassium colloid. Impact Figure 4 shows the measurement results of the influence of the deposition of gasified potassium colloid on the electrode of titanium/palladium/silver/vaporized silver layer 121461.doc 17 1342392 potential at different pH solutions; A graph showing the measurement results of the deposition of a gasified potassium colloid on the electrode potential of a titanium/palladium/silver/vaporized silver layer under different concentrations of potassium carbonate; FIG. 6 shows the measurement of the reproducibility of the reference electrode of the present invention. Fig. 7 is a graph showing the measurement of the drain current and voltage characteristics of the hydrogen ion sensing field effect transistor in the solution of p Η = 本 according to the present invention; Fig. 8 shows the yttrium nitride and the oxidation button of the present invention. A measurement result of the pH sensing sensitivity of the hydrogen ion selective film; and FIG. 9 shows a dynamic response diagram of the single wafer hydrogen ion sensing field effect transistor of the present invention containing the micro gasified silver reference electrode. [Main component symbol description] The hydrogen ion sensing field effect transistor including the micro reference electrode according to the first embodiment of the present invention 5 10 12 13 14 15 20 21 22 30 The hydrogen ion sensing field effect electric power according to the second embodiment of the present invention Crystal field effect transistor and micro reference electrode wafer substrate insulation layer gate oxide layer ion sensing film micro reference electrode package wafer sensing slot inner concave electrode external end group 12l46l.doc • 18- 1342392
31 源極外接端 32 汲極外接端 33 微參考電極外接端 40 接合材料 50 場效電晶體與微參考電極 51 基板 52 絕緣層 55 微參考電極 60 封裝晶片 61 第一通孔 62 第二通孔 63 第三通孔 70 電極外接端組 71 源極外接端 72 汲極外接端 73 微參考電極外接端 74 導線 80 封膠與接合材料 111 源極 112 汲極 113 微參考電極導接區 114 通道區 115 第一接觸孔 116 第二接觸孔 121461.doc -19- 134239231 source external terminal 32 drain external terminal 33 micro reference electrode external terminal 40 bonding material 50 field effect transistor and micro reference electrode 51 substrate 52 insulating layer 55 micro reference electrode 60 package wafer 61 first through hole 62 second through hole 63 Third Through Hole 70 Electrode External End Group 71 Source External End 72 Tungsten External End 73 Micro Reference Electrode External End 74 Conductor 80 Sealant and Bonding Material 111 Source 112 Datum 113 Micro Reference Electrode Leading Area 114 Channel Area 115 first contact hole 116 second contact hole 121461.doc -19- 1342392
117 第三接觸孔 121 第一槽孔 122 第二槽孔 151 準參考電極金屬層 152 膠體層 221 多孔狀之玻璃或矽懸浮薄膜 222 環牆 223 、測試液之接觸孔 511 源極 512 汲極 513 微參考電極導接區 521 第一接觸孔 522 第二接觸孔 523 第三接觸孔 524 第四接觸孔 731 内接端 732 外接端 121461.doc ·20·117 third contact hole 121 first slot 122 second slot 151 quasi-reference electrode metal layer 152 colloid layer 221 porous glass or helium suspension film 222 ring wall 223, test liquid contact hole 511 source 512 bungee 513 Micro reference electrode conducting region 521 first contact hole 522 second contact hole 523 third contact hole 524 fourth contact hole 731 inscribed end 732 external end 121461.doc · 20·