WO2007057166A2 - Verfahren zur herstellung eines keramikbeschichteten metallischen trägersubstrates - Google Patents

Verfahren zur herstellung eines keramikbeschichteten metallischen trägersubstrates Download PDF

Info

Publication number
WO2007057166A2
WO2007057166A2 PCT/EP2006/010949 EP2006010949W WO2007057166A2 WO 2007057166 A2 WO2007057166 A2 WO 2007057166A2 EP 2006010949 W EP2006010949 W EP 2006010949W WO 2007057166 A2 WO2007057166 A2 WO 2007057166A2
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
ceramic
temperature treatment
carrier substrate
metallic carrier
Prior art date
Application number
PCT/EP2006/010949
Other languages
English (en)
French (fr)
Other versions
WO2007057166A3 (de
Inventor
Peter Bolduan
Peter Mund
Giovanni Catania
Original Assignee
Atech Innovations Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atech Innovations Gmbh filed Critical Atech Innovations Gmbh
Priority to EP06818550A priority Critical patent/EP1948847A2/de
Publication of WO2007057166A2 publication Critical patent/WO2007057166A2/de
Publication of WO2007057166A3 publication Critical patent/WO2007057166A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature

Definitions

  • the invention relates to a method according to claim 1.
  • PVD method ceramic coating materials are applied in gaseous form after heating.
  • a disadvantage of PVD method is that only very small layer thicknesses are economically feasible, which is due to the low film formation rate of about 3 microns / h.
  • no coatings with defined porosities and pore sizes can be produced. Cavities and channels of a metallic carrier with small clear cross-sections can not be PVD coated.
  • PVD processes for coating large metallic surfaces are not economically feasible.
  • CVD methods are known from the prior art, wherein ceramic coating materials can be applied in gaseous form to a metallic substrate under the reaction with a carrier gas after heating.
  • CVD methods also have the disadvantages associated with the coating by means of PVD methods and described above.
  • the object of the present invention is to provide a method of the type mentioned at the outset with which it is possible in a simple and cost-effective manner to produce ceramic-coated metallic carrier substrates, wherein the obtainable layer composite should have a high strength. Moreover, it is an object of the present invention to provide a method of the type mentioned above, with which it is possible in a simple manner to influence the porosity of a ceramic coating in the production of ceramic-coated metallic carrier substrates.
  • a "metallic carrier substrate” can be any metal carrier formed as a plate 20 or a metal foil or a metal foil or the like. In addition, it may be a thin metallic solid as a support for the targeted growth of ceramic layers. The invention makes it possible to coat even complicated metal moldings.
  • a metal substrate a porous stainless steel substrate can be used. For example, the
  • the ceramic coating obtainable by the method according to the invention and the metallic carrier substrate may have a given porosity, but in principle also nonporous metal substrates may be coated by the method according to the invention.
  • the engobe is obtained according to the invention from a ceramic material having a ceramic raw material from the group of metal nitrides.
  • nitrides as the reactive component, reaction-bonded ceramics can be produced, the coating of the metallic carrier substrate obtainable in this way having a high strength.
  • the engobe may be obtainable from metal oxides and / or hydroxides and / or nitrides of one kind of metal in pure form or from oxides and / or hydroxides and / or nitrides of different metals in a mixture.
  • At least one first high-temperature treatment takes place in an oxidizing atmosphere below the scale temperature of the metallic carrier.
  • the scale temperature is the temperature at which oxidation processes on the surface of the metallic carrier substrate lead to the formation of metal oxides.
  • dispersing agent water or at least one alcohol, in particular propanol, can be used.
  • a further high-temperature treatment can furthermore be carried out under a hydrogen and / or helium and / or argon atmosphere and / or in a vacuum in order to prevent scaling of the metal substrate.
  • the further high-temperature treatment at a temperature between 450 ° C to 600 0 C, preferably between 500 0 C and 550 0 C, takes place.
  • the further high-temperature treatment can also at a temperature above 450 0 C to 600 0 C, preferably between 600 0 C to 1250 0 C, take place.
  • the high-temperature treatment is carried out in several stages.
  • the first fire can occur in an oxidizing atmosphere below the Zundertemperatur carried out to burn out organic constituents and to effect an oxidation of the nitrides when using nitride-containing ceramic materials. During this reaction, new epitaxial bonds are formed at the particle boundaries, causing the coating to solidify
  • a heat treatment may be provided at a temperature above the scale temperature of the metallic carrier substrate.
  • a third high-temperature treatment step may be provided at even higher temperatures, wherein, preferably, the maximum temperature of the last fire 1250 0 C does not exceed.
  • the pore size and the strength of the coating can be influenced in a simple manner.
  • the high-temperature treatment can be carried out without pressure, which contributes to the simplification of the process. Moreover, it is possible to adjust the size of the ceramic particles in the coating and thus the resulting pore size of the coating by the temperature level of the high temperature treatment. Depending on the temperature level of the high-temperature treatment, it is thus possible to produce pore sizes of the coating which are specially tailored to the desired application, which is of particular importance in the production of ceramic filter materials.
  • the metallic carrier substrate is coated several times with the engobe, wherein preferably after each coating operation a high temperature is applied. Turb treatment of the green membrane formed during each coating process is performed.
  • the temperature level of successive high-temperature treatment operations is gradually reduced, so that the last coating results in the desired pore size at a corresponding sintering temperature or at a corresponding temperature level of the high-temperature treatment.
  • the multiple coating and temperature treatment of the metallic carrier substrate leads to the formation of a multilayer coating with possibly different pore size.
  • the ceramic-coated metallic carrier substrate Before the high-temperature treatment, provision may be made for the ceramic-coated metallic carrier substrate to be dried. This simplifies the subsequent high-temperature treatment of the carrier substrate, wherein the coating formed by application of the engobe is preconsolidated.
  • the engobe may be applied to the metallic carrier substrate by a dipping or spraying process.
  • the engobe is brushed or painted on the carrier or applied by means of a spin coating method.
  • other coating methods can also be used.
  • the engobe is passed through channels or cavities of the metallic carrier substrate.
  • Example 1 relates to the production of a micro- or ultrafiltration membrane from a titanium dioxide-containing ceramic material and a porous metallic carrier substrate. - -
  • TIN powder is mixed in a ratio of about 1: 5 with water and an organic gel former.
  • the resulting engobe is applied to a porous metallic support substrate by dipping or spraying, forming a green membrane on the substrate.
  • the thus coated porous metallic substrate is fired at a temperature of 500 0 C to 550 0 C in an oven, wherein titanium nitride is converted into titanium dioxide and organic components of the green membrane are pyrolyzed.
  • a further high-temperature treatment under a hydrogen atmosphere at a temperature of 600 0 C to 1250 0 C is performed.
  • the ceramic coating has a pore diameter of about 0.05 ⁇ m to 1.8 ⁇ m.
  • Example 2 also relates to the preparation of a micro- or ultrafiltration membrane with a titanium dioxide-containing ceramic coating and a porous metallic carrier substrate.
  • TIN powder is mixed 1:10 with propanol and an organic gelator.
  • the resulting engobe is applied by dipping or spraying on a porous metallic support substrate to form a green membrane.
  • the burning of the green membrane is carried out in the oven again at a temperature of 500 ° C to 550 0 C, wherein titanium nitride is converted into titanium dioxide and it comes to pyrolysis of the organic components contained in the green membrane.
  • a porous titanium dioxide having micro or ultrafiltration membrane having a mean pore diameter of 0.05 .mu.m to 1.8 .mu.m.
  • a metallic carrier substrate 1 is coated with an engobe 2 to form a green membrane by spraying.
  • the engobe 2 is obtainable from at least one ceramic material 3, an organic dispersion medium 4 and, if appropriate, an organic gel former 5.
  • the coated metallic material thus obtainable Carrier substrate 6 has a ceramic coating 7.
  • the coated carrier substrate 6 is heat-treated in successive process stages 8 to 10. In this case, following a drying of the coated carrier substrate 6, first in the process stage 8, the heat treatment in oxidizing 5 of the atmosphere below the scale temperature of the carrier substrate 1 at a temperature Tl is provided.
  • process step 8 organic constituents contained in the ceramic coating 7 burn. If the enzyme has 2 nitrides, these are oxidized in process stage 8. During these reactions, new epitaxial bonds are formed at the boundaries of the ceramic particles, which leads to solidification of the ceramic coating 7.
  • a third high-temperature treatment is carried out at a temperature of at most 1250 ° C., whereby the pore size of the ceramic coating 7 is influenced and determined.
  • the coated carrier substrate 6 thus obtained has a high strength of the layer composite between the carrier substrate 1 and the ceramic coating 7.
  • the above-described method is particularly suitable for the production of micro- or ultrafiltration membranes having an average pore diameter of 0.05 ⁇ m to 1.8 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Chemically Coating (AREA)
  • Ceramic Products (AREA)

Abstract

Dargestellt und beschrieben ist ein Verfahren zur Herstellung eines keramikbeschichteten metallischen Trägersubstrates (6), wobei wenigstens ein keramischer Werkstoff (3) mit wenigstens einem Dispersionsmittel (4) zu einer Engobe (2) vermischt wird, wobei ein metallisches Trägersubstrat (1) unter Bildung einer Grünmembran mit der Engobe (2) beschichtet wird und wobei das keramikbeschichtete metallische Trägersubstrat (6) wenigstens einer Hochtemperaturbehandlung unterzogen wird. Erfindungsgemäß ist vorgesehen, daß der keramische Werkstoff (3) wenigstens ein Metallnitrid aufweist und daß wenigstens eine erste Hochtemperaturbehandlung in oxidierender Atmosphäre unterhalb der Zundertemperatur des metallischen Trägersubstrates (1) erfolgt.

Description

Verfahren zur Herstellung eines keramikbeschichteten metallischen Trägersubstrates
Die Erfindung betrifft ein Verfahren nach Anspruch 1.
Aus dem Stand der Technik sind bereits Verfahren bekannt, um metallische, vorzugsweise poröse, Substrate mit keramischen Partikeln zu beschichten. Durch thermisches Spritzen werden keramische Schichtwerkstoffe in flüssigem Zustand auf metallische Substrate aufgetragen, wobei von Nachteil ist, daß keine definier- ten Porositäten und Porengrößen der Beschichtung einstellbar sind. Die Haftung der keramischen Schichten auf dem metallischen Substrat ist rein mechanisch bedingt und daher begrenzt. Da die Körnung der üblicherweise zur Beschichtung eingesetzten pulverförmigen Keramikpartikel größer als 20 μm ist, können beispielsweise Mikrofiltrations- bzw. Ultrafiltrationsmembranen mit Porengrößen von kleiner 2 μm bzw. kleiner 100 nm nicht durch thermisches Spritzen hergestellt werden. Auf metallische Bauteile mit engen Kanälen können keramische Partikel durch thermisches Spritzen ebenfalls nur eingeschränkt aufgebracht werden.
Bei dem ebenfalls bekannten PVD- Verfahren werden keramische Schichtwerkstoffe nach dem Erhitzen gasförmig aufgetragen. Von Vorteil ist eine sehr gute Haftung der Schichtwerkstoffe auf metallischen Substraten, die auf Diffusionsvorgänge und Epitaxie zurückzuführen ist. Von Nachteil bei PVD- Verfahren ist, daß nur sehr geringe Schichtdicken wirtschaftlich realisierbar sind, was auf die geringe Schichtbildungsgeschwindigkeit von ca. 3 μm/h zurückzuführen ist. Darüber hinaus sind keine Beschichtungen mit definierten Porositäten und Porengrößen herstellbar. Hohlräume und Kanäle eines metallischen Trägers mit geringen lichten Querschnitten können nicht mit PVD-Verfahren beschichtet werden. Zudem sind PVD-Verfahren zur Beschichtung großer metallischer Flächen nicht wirtschaftlich einsetzbar.
Aus dem Stand der Technik sind darüber hinaus CVD- Verfahren bekannt, wobei keramische Schichtwerkstoffe nach dem Erhitzen gasförmig unter der Reaktion mit einem Trägergas auf ein metallisches Substrat aufgetragen werden können. CVD- Verfahren weisen ebenfalls die im Zusammenhang mit der Beschichtung mittels PVD-Verfahren auftretenden und zuvor beschriebenen Nachteile auf.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren der eingangs genann- 5 ten Art zur Verfügung zu stellen, mit dem es in einfacher Weise und kostengünstig möglich ist, keramikbeschichtete metallische Trägersubstrate herzustellen, wobei der erhältliche Schichtverbund eine hohe Festigkeit aufweisen soll. Darüber hinaus ist es Aufgabe der vorliegenden Erfindung, ein Verfahren der eingangs genannten Art zur Verfügung zu stellen, mit dem es in einfacher Weise l o möglich ist, auf die Porosität einer Keramikbeschichtung bei der Herstellung keramikbeschichteter metallischer Trägersubstrate Einfluß zu nehmen.
Die vorgenannte Aufgabe wird durch ein Verfahren mit den Merkmalen von Anspruch 1 gelöst. Der Erfindung liegt zunächst der Gedanke zugrunde, die Kera- 15 mikbeschichtung nicht über ein Aufschmelzen oder Vergasen keramischer Ausgangswerkstoffe und nachfolgendes Aufspritzen auf das metallische Trägersubstrat durchzuführen, sondern den keramischen Werkstoff als Engobe auf das metallische Trägersubstrat aufzubringen. Bei einem "metallischen Trägersubstrat" im Sinne der Erfindung kann es sich um jeden plattenförmigen oder als Formteil 20 ausgebildeten Metallträger oder um eine Metallfolie o. dgl. handeln. Darüber hinaus kann es sich um einen dünnen metallischen Festkörper als Unterlage zum gezielten Aufwachsen keramischer Schichten handeln. Die Erfindung ermöglicht es, auch komplizierte Formteile aus Metall zu beschichten. Als Metallsubstrat . kann ein poröses Edelstahlsubstrat eingesetzt werden. Beispielsweise kann die
" 25 Erfindung im Zusammenhang mit der Herstellung von Mikro- oder Ultrafiltrationsmembranen eingesetzt werden, wobei die nach dem erfindungsgemäßen Verfahren erhältliche Keramikbeschichtung und das metallische Trägersubstrat eine vorgegebene Porosität aufweisen können. Grundsätzlich können jedoch auch porenfreie Metallsubstrate nach dem erfindungsgemäßen Verfahren beschichtet 30 werden.
Die Engobe wird erfindungsgemäß aus einem keramischen Werkstoff erhalten, der einen keramischen Rohstoff aus der Gruppe der Metallnitride aufweist. Unter Einsatz von Nitriden als reaktiver Komponente können reaktionsgebundene Ke- 35 ramiken hergestellt werden, wobei die so erhältliche Beschichtung des metallischen Trägersubstrates eine hohe Festigkeit aufweist. Darüber hinaus kann der keramische Werkstoff einen keramischen Rohstoff aus der Gruppe der Oxide und/oder der Hydroxide aufweisen, vorzugsweise Metalloxide und/oder Metal- hydroxide. Weiter vorzugsweise kann es sich um Oxide und/oder Hydroxide und/oder Nitride der Metalle Titan und/oder Zirkonium und/oder Aluminium 5 handeln. Bei der Durchführung des erfindungsgemäßen Verfahrens kommt es zu einem engen Verwachsen der Keramikpartikel untereinander sowie insbesondere zu einem festen Verwachsen der Keramikpartikel mit dem metallischen Trägermaterial. Hieraus resultiert eine spannungsfreie, strukturelle Bindung, die zu einer hohen Festigkeit und einer hohen Beständigkeit der Beschichtung gegenüber 10 mechanischen Beanspruchungen führt. Die Engobe kann aus Metalloxiden und/oder -hydroxiden und/oder -nitriden einer Metallart in reiner Form oder aus ) Oxiden und/oder Hydroxiden und/oder Nitriden unterschiedlicher Metalle in einer Mischung erhältlich sein.
15 Bei dem erfindungsgemäßen Verfahren erfolgt wenigstens eine erste Hochtemperaturbehandlung in oxidierender Atmosphäre unterhalb der Zundertemperatur des metallischen Trägers. Die Zundertemperatur ist die Temperatur, bei der es durch Oxidationsvorgänge an der Oberfläche des metallischen Trägersubstrates zur Bildung von Metalloxiden kommt. Metall Substrate aus eisenhaltigen Werk-
20 Stoffen weisen Zundertemperaturen von größer 500 0C auf.
Als Dispersionsmittel kann Wasser oder wenigstens ein Alkohol, insbesondere Propanol, eingesetzt werden. Darüber hinaus können auch weitere an sich aus dem Stand der Technik bekannte organische Dispersionsmittel zur Herstellung " 25 der Engobe vorgesehen werden.
Eine weitere Hochtemperaturbehandlung kann darüber hinaus unter Wasserstoff- und/ oder Helium- und/oder Argon-Atmosphäre und/oder im Vakuum erfolgen, um ein Verzundern des Metallsubstrates zu verhindern. Hier kann vorgesehen 30 sein, daß die weitere Hochtemperaturbehandlung bei einer Temperatur zwischen 450 °C bis 600 0C, vorzugsweise zwischen 500 0C und 550 0C, erfolgt. Die weitere Hochtemperaturbehandlung kann auch bei einer Temperatur oberhalb von 450 0C bis 600 0C, vorzugsweise zwischen 600 0C bis 1250 0C, erfolgen.
35 Vorzugsweise ist vorgesehen, daß die Hochtemperaturbehandlung mehrstufig ausgeführt wird. Der erste Brand kann in oxidierender Atmosphäre unterhalb der Zundertemperatur erfolgen, um organische Bestandteile auszubrennen und bei Einsatz von nitridhaltigen keramischen Werkstoffen eine Oxidierung der Nitride zu bewirken. Während dieser Reaktion bilden sich an den Partikelgrenzen neue epitaktische Verbindungen, so daß es zu einer Verfestigung der Beschichtung
5 kommt. Anschließend kann in wenigstens einem weiteren Hochtemperaturbe- handlungsschritt unter Wasserstoff- und /oder Helium- und/oder Argon-Atmosphäre und/oder im Vakuum eine Wärmebehandlung bei einer Temperatur oberhalb der Zundertemperatur des metallischen Trägersubstrates vorgesehen sein. Durch die Behandlung unter Wasserstoff- oder Inertgas-Atmosphäre oder
10 im Vakuum wird ein Verzundern des metallischen Trägersubstrates verhindert. Beispielsweise kann vorgesehen, daß ein weiterer Hochtemperaturbehandlungs- ) schritt bei Temperaturen oberhalb der Zundertemperatur des eingesetzten metallischen Trägersubstrates, vorzugsweise bei maximal 550 0C, durchgeführt wird, was zu einer weiteren Verfestigung der keramischen Beschichtung und zu einer
15 Beeinflussung des Kornwachstums der Membranpartikel führt. Anschließend kann ein dritter Hochtemperaturbehandlungsschritt bei noch höheren Temperaturen vorgesehen sein, wobei, vorzugsweise, die maximale Temperatur des letzten Brandes 1250 0C nicht überschreitet. Dadurch kann in einfacher Weise auf die Porengröße und die Festigkeit der Beschichtung Einfluß genommen werden.
20
Erfindungsgemäß kann die Hochtemperaturbehandlung drucklos durchgeführt werden, was zur Vereinfachung des Verfahrens beiträgt. Im übrigen ist es möglich, die Größe der keramischen Partikel in der Beschichtung und somit die resultierende Porengröße der Beschichtung durch das Temperaturniveau der Hoch- ' 25 temperaturbehandlung einzustellen. In Abhängigkeit von dem Temperaturniveau der Hochtemperaturbehandlung können somit speziell auf den gewünschten Anwendungsfall zugeschnittene Porengrößeren der Beschichtung erzeugt werden, was insbesondere bei der Herstellung von keramischen Filtermaterialien von Bedeutung ist.
30
Um eine mehrschichtige keramische Beschichtung auf einem metallischen Trägersubstrat herzustellen bzw. eine Mehrzahl von Grünmembranen nacheinander auf einem metallischen Träger zu verfestigen, kann erfindungsgemäß vorgesehen sein, daß das metallische Träger substrat mehrfach mit der Engobe beschichtet 35 wird, wobei vorzugsweise nach jedem Beschichtungsvorgang eine Hochtempera- turbehandlung der sich bei jedem Beschichtungsvorgang bildenden Grünmembran durchgeführt wird.
Dabei kann vorgesehen sein, daß das Temperaturniveau aufeinander folgender Hochtemperaturbehandlungsvorgänge schrittweise gesenkt wird, so daß die letzte Beschichtung die gewünschte Porengröße bei entsprechender Sintertemperatur bzw. bei entsprechendem Temperaturniveau der Hochtemperaturbehandlung ergibt. Die mehrfache Beschichtung und Temperaturbehandlung des metallischen Trägersubstrates führt zur Ausbildung einer Mehrlagenschicht mit ggf. unter- schiedlicher Porengröße.
Vor der Hochtemperaturbehandlung kann vorgesehen sein, daß das keramikbeschichtete metallische Trägersubstrat getrocknet wird. Dadurch wird die anschließende Hochtemperaturbehandlung des Trägersubstrates vereinfacht, wobei die durch Auftragen der Engobe gebildete Beschichtung vorverfestigt wird.
Vorzugsweise kann die Engobe durch ein Tauch- oder Sprühverfahren auf das metallische Trägersubstrat aufgebracht werden. Darüber hinaus ist es auch möglich, daß die Engobe auf den Träger aufgepinselt oder aufgestrichen oder mittels eines Schleuderverfahrens aufgebracht wird. Es können je nach Form und Ausbildung des metallischen Substrates auch andere Beschichtungsverfahren angewendet werden. Beispielsweise ist es möglich, daß die Engobe durch Kanäle oder Hohlräume des metallischen Trägersubstrates geleitet wird.
Die nachfolgend beschriebenen Beispiele betreffen bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens, wobei darauf hingewiesen wird, daß die erfindungsgemäße Lehre weder auf die aufgezeigte Komponentenauswahl noch auf die aufgezeigten Verfahrensbedingungen beschränkt ist.
Beispiel 1
Beispiel 1 betrifft die Herstellung einer Mikro- oder Ultrafiltrationsmembran aus einem Titandioxid aufweisenden keramischen Werkstoff und einem porösen metallischen Trägersubstrat. - -
TIN-Pulver wird im Verhältnis von ca. 1 :5 mit Wasser und einem organischen Gel-Bildner vermischt. Die so erhaltene Engobe wird durch Tauchen oder Sprühen auf ein poröses metallisches Trägersubstrat aufgebracht, wobei sich eine Grünmembran auf dem Substrat bildet. Anschließend wird das so beschichtete poröse metallische Substrat bei einer Temperatur von 500 0C bis 550 0C in einem Ofen gebrannt, wobei sich Titannitrid in Titandioxid umwandelt und organische Bestandteile der Grünmembran pyrolysiert werden. Anschließend wird eine weitere Hochtemperaturbehandlung unter Wasserstoffatmosphäre bei einer Temperatur von 600 0C bis 1250 0C durchgeführt. Nach dem zweiten Hochtem- peraturbehandlungsschritt weist die keramische Beschichtung einen Porendurchmesser von ca. 0,05 μm bis 1 ,8 μm auf.
Beispiel 2
Beispiel 2 betrifft ebenfalls die Herstellung einer Mikro- oder Ultrafiltrationsmembran mit einer Titandioxid aufweisenden keramischen Beschichtung und einem porösen metallischen Trägersubstrat.
TIN-Pulver wird im Verhältnis 1 : 10 mit Propanol und einem organischen GeI- Bildner vermischt. Die so erhaltene Engobe wird durch Tauchen oder Sprühen auf ein poröses metallisches Trägersubstrat unter Ausbildung einer Grünmembran aufgebracht. Das Brennen der Grünmembran erfolgt im Ofen wiederum bei einer Temperatur von 500 °C bis 550 0C, wobei Titannitrid in Titandioxid umgewandelt wird und es zur Pyrolyse der in der Grünmembran enthaltenen organi- sehen Bestandteile kommt. Durch einen zweiten Brand unter Wasserstoff- Atmosphäre bei 600 0C bis 1250 0C wird eine poröse Titandioxid aufweisende Mikro- oder Ultrafiltrationsmembran mit einem mittleren Porendurchmesser von 0,05 μm bis 1,8 μm erhalten.
In der einzigen Figur der Zeichnung wird schematisch eine Aus führungs form des erfindungsgemäßen Verfahrens zur Herstellung eines keramikbeschichteten metallischen Trägersubstrates 6 dargestellt. Dabei wird zunächst ein metallisches Trägersubstrat 1 mit einer Engobe 2 unter Bildung einer Grünmembran durch Aufsprühen beschichtet. Die Engobe 2 ist erhältlich aus wenigstens einem kera- mischen Werkstoff 3, einem organischen Dispersionsmittel 4 und gegebenenfalls einem organischen Gel-Bildner 5. Das so erhältliche beschichtete metallische Trägersubstrat 6 weist eine Keramikbeschichtung 7 auf. Das beschichtete Trägersubstrat 6 wird in aufeinanderfolgenden Verfahrensstufen 8 bis 10 wärmebehandelt. Dabei ist im Anschluß an eine Trocknung des beschichteten Trägersubstrates 6 zunächst in der Verfahrensstufe 8 die Wärmebehandlung in oxidieren- 5 der Atmosphäre unterhalb der Zundertemperatur des Trägersubstrates 1 bei einer Temperatur Tl vorgesehen. In der Verfahrensstufe 8 verbrennen organische Bestandteile, die in der keramischen Beschichtung 7 enthalten sind. Weist die En- gobe 2 Nitride auf, so werden diese in der Verfahrensstufe 8 oxidiert. Während dieser Reaktionen bilden sich an den Grenzen der Keramikpartikel neue epitakti- 10 sehe Verbindungen, was zu einer Verfestigung der Keramikbeschichtung 7 führt.
) In der Verfahrensstufe 9 schließt sich eine Hochtemperaturbehandlung unter
Wasserstoff-Atmosphäre bei einer Temperatur T2 von 500 0C bis 550 0C an. Durch die Wasserstoff-Atmosphäre wird das Verzundern des Trägersubstrates 1 15 verhindert. Darüber hinaus wird das Kornwachstum der Keramikpartikel in der Keramikbeschichtung 7 beeinflußt, was zu einer weiteren Verfestigung der Keramikbeschichtung 7 beiträgt.
In der Verfahrensstufe 10 erfolgt schließlich eine dritte Hochtemperaturbehand- 20 lung bei einer Temperatur von maximal 1250 0C, wodurch die Porengröße der Keramikbeschichtung 7 beeinflußt und festgelegt wird. Das so erhaltene beschichtete Trägersubstrat 6 weist eine hohe Festigkeit des Schichtverbundes zwischen dem Trägersubstrat 1 und der Keramikbeschichtung 7 auf. In Verbindung mit porösen Trägersubstraten 1 eignet sich das vorbeschriebene Verfahren insbe- " 25 sondere zur Herstellung von Mikro- oder Ultrafiltrationsmembranen mit einem mittleren Porendurchmesser von 0,05 μm bis 1,8 μm.

Claims

- o -Patentansprüche:
1. Verfahren zur Herstellung eines keramikbeschichteten metallischen Trägersubstrates (6), wobei wenigstens ein keramischer Werkstoff (3) mit wenigstens
5 einem Dispersionsmittel (4) zu einer Engobe (2) vermischt wird, wobei ein metallisches Trägersubstrat (1) unter Bildung einer Grünmembran mit der Engobe (2) beschichtet wird und wobei das keramikbeschichtete metallische Trägersubstrat (6) wenigstens einer Hochtemperaturbehandlung unterzogen wird, dadurch gekennzeichnet, daß der keramische Werkstoff (3) wenigstens ein Metallnitrid 10 aufweist und daß wenigstens eine erste Hochtemperaturbehandlung in oxidieren- der Atmosphäre unterhalb der Zundertemperatur des metallischen Trägersubstra- * tes (1) erfolgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der keramische 15 Werkstoff (3) ein Nitrid der Metalle Titan und/oder Zirkonium und/oder Aluminium aufweist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der keramische Werkstoff (3) wenigstens ein Oxid und/oder ein Hydroxid aufweist, vor-
20 zugsweise der Metalle Titan und/oder Zirkonium und/oder Aluminium.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Dispersionsmittel (4) Wasser und/oder wenigstens ein Alkohol,
I insbesondere Propanol, eingesetzt werden.
25
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine weitere Hochtemperaturbehandlung unter Wasserstoff- und/oder Helium- und/oder Argon-Atmosphäre und/oder im Vakuum erfolgt und daß, vorzugsweise, die Hochtemperaturbehandlung bei einer Temperatur zwi-
30 sehen 450 0C bis 600 0C, vorzugsweise zwischen 500 0C bis 550 0C, erfolgt.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine weitere Hochtemperaturbehandlung unter Wasserstoff- und/oder Helium- und/oder Argon-Atmosphäre und/oder im Vakuum erfolgt und daß, vorzugsweise, die Hochtemperaturbehandlung bei einer Temperatur oberhalb von 450 0C bis 600 0C, vorzugsweise zwischen 600 0C bis 1250 0C, erfolgt.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- 5 zeichnet, daß die Hochtemperaturbehandlung mehrstufig ausgeführt wird und daß, vorzugsweise, ein erster Hochtemperaturbehandlungsschritt in oxidierender Atmosphäre unterhalb der Zundertemperatur des metallischen Trägersubstrates (1) und anschließend wenigstens ein weiterer Hochtemperaturbehandlungsschritt unter Wasserstoff- und/oder Helium- und/oder Argon-Atmosphäre und/oder im 10 Vakuum bei einer Temperatur oberhalb der Zundertemperatur des metallischen Trägersubstrates (1) durchgeführt werden.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Hochtemperaturbehandlung und/oder die weitere Hochtempera-
15 turbehandlung drucklos durchgeführt wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Porengröße einer keramischen Beschichtung (7) des keramikbeschichteten metallischen Trägersubstrates (6) durch das Temperaturniveau der
20 Hochtemperaturbehandlung eingestellt wird.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das metallische Trägersubstrat (1) mehrfach mit der Engobe (2) beschichtet wird, wobei nach jedem Beschichtungsvorgang eine Hochtemperatur-
" 25 behandlung der sich bei jedem Beschichtungsvorgang bildenden Grünmembran erfolgt.
1 1. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß das Temperaturniveau aufeinanderfolgender Hochtemperaturbehandlungsvorgänge schrittweise
30 gesenkt wird.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das keramikbeschichtete metallische Trägersubstrat (6) vor der Hochtemperaturbehandlung getrocknet wird.
35
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Engobe (2) durch ein Tauch- oder Sprühverfahren auf das metallische Trägersubstrat (1) aufgebracht wird.
>
PCT/EP2006/010949 2005-11-15 2006-11-15 Verfahren zur herstellung eines keramikbeschichteten metallischen trägersubstrates WO2007057166A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06818550A EP1948847A2 (de) 2005-11-15 2006-11-15 Verfahren zur herstellung eines keramikbeschichteten metallischen trägersubstrates

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102005054821.0 2005-11-15
DE102005054821 2005-11-15
DE102006000886.3 2006-01-04
DE102006000886A DE102006000886B3 (de) 2005-11-15 2006-01-04 Verfahren zur Herstellung eines keramikbeschichteten metallischen Trägersubstrates

Publications (2)

Publication Number Publication Date
WO2007057166A2 true WO2007057166A2 (de) 2007-05-24
WO2007057166A3 WO2007057166A3 (de) 2007-11-29

Family

ID=37951503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/010949 WO2007057166A2 (de) 2005-11-15 2006-11-15 Verfahren zur herstellung eines keramikbeschichteten metallischen trägersubstrates

Country Status (3)

Country Link
EP (1) EP1948847A2 (de)
DE (1) DE102006000886B3 (de)
WO (1) WO2007057166A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046785A2 (de) 2006-10-17 2008-04-24 Robert Bosch Gmbh Verfahren zur stabilisierung und funktionalisierung von porösen metallischen schichten

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0766995A1 (de) * 1995-10-03 1997-04-09 VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK, afgekort V.I.T.O., onderneming van openbaar nut onder de vorm van een n.v. Verfahren zur Herstellung einer keramischen Membran
US20020074282A1 (en) * 1997-01-10 2002-06-20 Herrmann Robert C. Micro and ultrafilters with controlled pore sizes and pore size distribution and methods of making cross-reference to related patent applications
WO2006120021A2 (de) * 2005-05-13 2006-11-16 Atech Innovations Gmbh Verfahren zur herstellung einer abriebfesten reaktionsgebundenen keramischen filtermembran

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183171B2 (ja) * 1996-05-31 2001-07-03 トヨタ自動車株式会社 断熱セラミック層およびその形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0766995A1 (de) * 1995-10-03 1997-04-09 VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK, afgekort V.I.T.O., onderneming van openbaar nut onder de vorm van een n.v. Verfahren zur Herstellung einer keramischen Membran
US20020074282A1 (en) * 1997-01-10 2002-06-20 Herrmann Robert C. Micro and ultrafilters with controlled pore sizes and pore size distribution and methods of making cross-reference to related patent applications
WO2006120021A2 (de) * 2005-05-13 2006-11-16 Atech Innovations Gmbh Verfahren zur herstellung einer abriebfesten reaktionsgebundenen keramischen filtermembran

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046785A2 (de) 2006-10-17 2008-04-24 Robert Bosch Gmbh Verfahren zur stabilisierung und funktionalisierung von porösen metallischen schichten
WO2008046785A3 (de) * 2006-10-17 2009-05-07 Bosch Gmbh Robert Verfahren zur stabilisierung und funktionalisierung von porösen metallischen schichten

Also Published As

Publication number Publication date
DE102006000886B3 (de) 2007-05-31
WO2007057166A3 (de) 2007-11-29
EP1948847A2 (de) 2008-07-30

Similar Documents

Publication Publication Date Title
DE60002890T2 (de) Siliziumnitridbauteile mit schutzschicht
EP1834010B1 (de) Verfahren zum kaltgasspritzen
DE2351846C2 (de) Verfahren zur Herstellung von Sinterkörpern aus Superlegierungspulver auf Nickel-Basis
EP1934156A1 (de) Keramik aus präkeramischen papier- oder pappstrukturen, verfahren zu ihrer herstellung und ihre verwendung
DE102008016158A1 (de) Sauerstoff durchlässige Membran sowie Verfahren zu dessen Herstellung
DE3322060A1 (de) Verfahren zur herstellung neuer siliziumcarbid-gegenstaende
EP2030669B1 (de) Verfahren zum Herstellen einer wasserstoffpermeablen Membran sowie wasserstoffpermeable Membran
DE102010015470A1 (de) Verfahren zur Innenbeschichtung von Funktionsschichten mit einem Vergütungsmaterial
EP2644738A1 (de) Plasmaspritzverfahren zum Herstellen einer ionenleitenden Membran und ionenleitende Membran
EP2503018A1 (de) Plasmaspritzverfahren zum Herstellen einer ionenleitenden Membran
DE60128169T2 (de) Poröses keramisches Laminat und seine Herstellung
EP0133874B1 (de) Verfahren zum heissisostatischen Pressen von Formteilen aus Keramik
DE3011907A1 (de) Verfahren zum verbinden von keramikkoerpern auf siliciumnitridbasis
DE102006000886B3 (de) Verfahren zur Herstellung eines keramikbeschichteten metallischen Trägersubstrates
WO2022069515A1 (de) Herstellungsmethode von katalysatorbeschichteten membranen
CN103397244A (zh) 抗高温氧化的烧结Fe-Al基合金多孔材料的制备方法
EP0110053B1 (de) Verfahren zum Herstellen eines dichten polykristallinen Formkörpers aus SiC
DE4116522C2 (de) Verfahren zur Herstellung von mit einer porösen alpha-Al¶2¶O¶3¶-Schicht versehenen Substraten, nach dem Verfahren erhaltene Substrate sowie Beschichtungsmittel zur Durchführung des Verfahrens
WO2008000247A1 (de) Verfahren zum korrosionsschutz von keramischen oberflächen, körper mit entsprechenden keramischen oberflächen und deren verwendung
EP1885664B1 (de) Verfahren zur herstellung einer abriebfesten reaktionsgebundenen keramischen filtermembran
DE102013109024B4 (de) Wiederverwendbarer Tiegel aus einer Siliziumnitrid-Keramik, Verfahren zu dessen Herstellung, Verwendung des Tiegels, sowie Verfahren zur Herstellung eines mono- oder multikristallinen Silizium-Ingots und eines Silizium-Einkristalls aus einer Schmelze
DE102004002304B4 (de) Verfahren zur Herstellung eines beschichteten Kohlenstoff/Kohlenstoff-Verbundwerkstoffes und danach hergestellter Verbundwerkstoff
DE19503976C1 (de) Herstellung einkristalliner dünner Schichten aus SiC
EP1241148B1 (de) AIuminiumnitridsubstrat sowie Verfahren zur Vorbereitung dieses Substrates auf die Verbindung mit einer Kupferfolie
DE3810851C2 (de) Verfahren zur Herstellung von Formteilen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006818550

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006818550

Country of ref document: EP