WO2008041726A1 - Filtre pour masque et masque formé à l'aide de celui-ci - Google Patents

Filtre pour masque et masque formé à l'aide de celui-ci Download PDF

Info

Publication number
WO2008041726A1
WO2008041726A1 PCT/JP2007/069383 JP2007069383W WO2008041726A1 WO 2008041726 A1 WO2008041726 A1 WO 2008041726A1 JP 2007069383 W JP2007069383 W JP 2007069383W WO 2008041726 A1 WO2008041726 A1 WO 2008041726A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
fiber sheet
polyolefin fiber
mask
fine particles
Prior art date
Application number
PCT/JP2007/069383
Other languages
English (en)
French (fr)
Inventor
Takuya Iwamoto
Naohito Takeuchi
Makoto Ishigami
Hiromi Teraoka
Original Assignee
Uni-Charm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uni-Charm Corporation filed Critical Uni-Charm Corporation
Priority to US12/443,326 priority Critical patent/US20100307503A1/en
Priority to EP07829122A priority patent/EP2070564A1/en
Priority to CN2007800413680A priority patent/CN101534905B/zh
Publication of WO2008041726A1 publication Critical patent/WO2008041726A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B23/00Filters for breathing-protection purposes
    • A62B23/02Filters for breathing-protection purposes for respirators
    • A62B23/025Filters for breathing-protection purposes for respirators the filter having substantially the shape of a mask
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/02Masks
    • A62B18/025Halfmasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • B32B2307/7145Rot proof, resistant to bacteria, mildew, mould, fungi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment

Definitions

  • the present invention relates to a mask filter and a mask formed using the same. More specifically, the present invention relates to a mask made of a laminated sheet having layers made of a dry nonwoven fabric on both surfaces having layers made of an antimicrobial fiber sheet formed from polyolefin fibers containing inorganic antibacterial fine particles.
  • the present invention relates to a filter for use and a mask formed using the same.
  • a large number of inorganic antibacterial fine particles are kneaded in the polyolefin fibers constituting the antimicrobial polyolefin fiber sheet located inside the laminated sheet forming the mask filter.
  • the mask of the present invention can stably exhibit a high antibacterial action and an anti-wineless action, is excellent in dust filtration performance and air permeability, and is excellent in strength and processability to a mask.
  • the filter for the mask it is possible to easily and smoothly manufacture a mask that has high antibacterial action, antiviral action, and dust filtration action, and that does not breathe when worn, with good workability.
  • Masks have been conventionally used to prevent viral infections and bacterial infections using droplets and air as a medium due to crushing, coughing, and talking.
  • Materials are being developed.
  • Conventional technologies related to antibacterial masks and mask materials include masks formed with force such as woven fabrics containing synthetic fibers with silver attached to the surface by plating or vapor deposition (Patent Document 1), and base fabrics with silver-supporting inorganic materials.
  • Antibacterial electrification filter obtained by electrification after applying antibacterial fine particles such as silver supported inorganic fine particles on the surface of the fiber constituting the base fabric by treatment with a dispersion containing antibacterial fine particles such as fine particles Filters for masks formed using a glass
  • Patent Document 2 anti-viral masks formed using a fibrous base material to which hydroxy acids such as citrate, apple acid, and lactic acid having hydroxyl and carboxyl groups are fixed.
  • Cited document 3 is known! [0003]
  • the masks of Patent Documents 1 and 2 described above are produced by increasing the number of processing steps because antibacterial agents such as silver and silver-carrying inorganic fine particles are attached to the fiber surface and fiber base fabric by post-processing.
  • the antibacterial charging filter used in the mask of Patent Document 2 described above has an electret processing to improve the adsorption capability because the fiber surface is covered with an antibacterial agent such as silver. The effect is hindered, and it is difficult to obtain sufficient adsorption performance.
  • the air permeability tends to be small, and it becomes easy to breathe when masked, and the processability to a mask is inferior.
  • the hydroxy acid used in the mask of the above-mentioned Patent Document 3 is an organic antibacterial agent, its heat resistance and stability are insufficient, and it is heated particularly during processing for manufacturing the mask. When processing, the antibacterial performance is likely to deteriorate, and the odor peculiar to hydroxy acid is likely to occur.
  • nonwoven fabrics made from polyolefin fibers containing inorganic antibacterial agents are not suitable for forming nonwoven fabrics because the fiber diameter of the polyolefin fibers is considerably large, and the specific surface area of the nonwoven fabric is not large. Even if these non-woven fabrics are used as a filter for a mask, it is difficult to sufficiently exert antibacterial effects against pathogens such as viruses and bacteria.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 19238
  • Patent Document 2 Japanese Patent Laid-Open No. 11 267236
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-198676
  • Patent Document 4 JP-A-5-153874
  • Patent Document 5 JP-A-8-325915
  • Non-Patent Document 1 "Industrial and Engineering Chemistry J, 1956, Vol. 48, No. 8," p. 1342-1346
  • An object of the present invention is to have high antibacterial action and antiviral action, and is excellent in durability of the antibacterial action and antiviral action, and exists in the air when processed into a mask and worn.
  • Bacteria, viruses, moths, and fungi and viruses discharged from the nose and mouth of humans due to breathing, coughing, sneezing, discourse, etc. are captured with a mask. It is to provide a mask filter capable of effectively preventing the human body from entering the human body through the respiratory organs and from being scattered into the air from the human body, and a mask using the mask filter. .
  • the object of the present invention is to combine the above-mentioned high antibacterial and antiviral effects, and is excellent in dust filtering performance, and it can reliably capture dust in the air that can be obtained only by controlling fungi and viruses.
  • a mask filter capable of preventing dust and the like from entering the body and a mask comprising the same are provided.
  • An object of the present invention is to provide a mask filter capable of forming a mask having good breathability and a feeling of wearing which is difficult to breathe when worn, and a mask using the mask filter.
  • Another object of the present invention is to provide a mask that has high strength and does not cause damage when processed into a mask, has excellent strength and processability into a mask, and has the above-described excellent characteristics.
  • the object is to provide a mask filter that can be manufactured smoothly and with good productivity by various processing steps and processing operations.
  • the present inventors have conducted research in order to achieve the above-described object.
  • the inorganic antibacterial fine particles kneaded in the polyolefin resin are exposed to a large amount on the surface of the polyolefin fiber, thereby sufficiently and effectively providing the high antibacterial action inherent in the inorganic antibacterial fine particles.
  • a polyolefin fiber sheet that exhibits excellent antibacterial activity and durability has been developed. Accordingly, the present inventors have made various further studies to develop a filter for a mask using the antibacterial polyolefin fiber sheet described above. It was. And the laminated sheet having the antibacterial polyolefin fiber sheet on the inside and having layers made of dry nonwoven fabric on both surfaces is suitable as a filter for masks. We made a sheet and investigated its physical properties.
  • the laminated sheet is excellent in antibacterial action, antiviral action and their sustainability, and a mask manufactured using the laminated sheet as a filter is free from bacteria, viruses, and moss present in the air.
  • a mask to capture and kill harmful microorganisms and viruses, such as those caused by breathing, coughing, sneezing, and discourse. It has been found that it can prevent the human body from entering the human body and from being scattered from the human body into the air.
  • the present inventors have found that the laminated sheet is also excellent in dust filtration performance and air permeability, and the mask manufactured using the laminated sheet as a filter has a portion of the dust or the like in the mask as a mask. It has been found that it can be reliably trapped to prevent dust and the like from entering the body, has excellent breathability, and is not stuffy when worn.
  • the present inventors have described that the laminated sheet has a high strength and is excellent in processability to a mask, and has been described above in a simple processing step that does not cause trouble such as breakage when processing into a mask. It was found that a mask having excellent characteristics can be produced smoothly and with good productivity, and the present invention was completed based on these findings.
  • the present invention provides:
  • the following layers of the polyolefin fiber sheet (la) and the polyolefin fiber sheet (lb) have the antibacterial polyolefin fiber sheet (I) selected from the inside, and dry nonwoven fabric (II) on both surfaces. It is a mask filter characterized by comprising a laminated sheet having a layer.
  • the area of the fiber sheet is defined as the area where 1/100 or more of the volume of the inorganic antibacterial fine particle is exposed on the surface of the polyolefin fiber, which is formed from a polyolefin fiber comprising a polyolefin resin composition containing inorganic antibacterial fine particles.
  • OX 10_ antimicrobial polyolefin fiber sheet having a ratio of on one place or more per 2 mm 2.
  • the inorganic antibacterial fine particles contained in the polyolefin fibers constituting the antimicrobial polyolefin fiber sheet (la) and the polyolefin fiber sheet (lb) have an average particle diameter of 0.01 to 10 ⁇ m (1 ) Mask filter;
  • the present invention provides:
  • the polyolefin fiber constituting the antimicrobial polyolefin fiber sheet (la) and the polyolefin fiber sheet (lb) contains a polyolefin resin (A) containing inorganic antibacterial particles and inorganic antibacterial particles.
  • the absolute value of the difference of (min) is formed from a polyolefin resin composition satisfying the following mathematical formula (1)!
  • MFR and MFR are both 230 ° C in temperature according to JIS K 7210.
  • a mask filter for misalignment which is a nonwoven fabric produced by a melt blow method using a polyolefin resin composition containing fine particles of an inorganic antibacterial agent;
  • the laminated sheet that forms the filter for the mask contains inorganic antibacterial fine particles between the dry nonwoven fabric (II) that forms the surface layer and the antibacterial polyolefin fiber sheet (la) or the polyolefin fiber sheet (lb).
  • a mask filter for shifting further comprising a layer comprising a polyolefin fiber sheet (II I) comprising a polyolefin fiber comprising a polyolefin fiber;
  • the antimicrobial polyolefin fiber sheet (la) and the polyolefin fiber sheet (lb) are at least electretized.
  • the present invention also provides:
  • each layer constituting the laminated sheet is made of hot melt resin or bonded by embossing! /, For the mask of any of the above (1) to (7)! / Finoleta;
  • the inorganic antibacterial fine particles kneaded in the polyolefin resin in the antibacterial polyolefin fiber sheet (I) located inside the laminated sheet forming the mask filter Since it is exposed on the surface of the polyolefin fiber in a large amount, the high antibacterial action inherent in the inorganic antibacterial fine particles is sufficiently and effectively exhibited, and the antibacterial action and its sustainability are excellent.
  • the mask filter of the present invention since both surfaces of the laminated sheet constituting the mask filter are composed of layers made of a dry nonwoven fabric ( ⁇ ), the antibacterial polyolefin mentioned above is used. Since the fiber sheet layer is protected by the dry non-woven fabric (II), the antibacterial action is difficult to remove from the fibers of the polyolefin fiber sheet and the antibacterial action is excellent. Therefore, the mask manufactured using the mask filter according to the present invention is harmful to humans due to harmful microorganisms such as bacteria, viruses, and moss present in the air, breathing, coughing, sneezing, and talking. Nose and loca Capture and kill fungi and viruses that are discharged with a mask and kill them, and enter the human body through harmful fungi and viruses, respiratory organs, or disperse from the human body into the air. Can be prevented.
  • harmful microorganisms such as bacteria, viruses, and moss present in the air, breathing, coughing, sneezing, and talking.
  • the mask filter is excellent in filtration performance (capturing performance) of dust and the like and air permeability
  • the mask manufactured using the mask filter removes dust in the mask portion. It can be reliably captured to prevent dust and the like from entering the body, and it has an excellent wearing feeling that makes it difficult to breathe when worn.
  • an antibacterial polyolefin fiber sheet positioned inside the laminated sheet constituting the mask filter is at least electretized and charged, and is superior in filtering performance (capturing performance) such as dust.
  • the mask filter of the present invention is excellent in processability to a mask having high strength, and is excellent in the above-mentioned characteristics in a simple processing process that does not cause trouble such as breakage when processing into a mask.
  • the mask can be manufactured smoothly with good productivity.
  • FIG. 1 is a view showing an example of a mask manufactured using the mask filter of the present invention.
  • FIG. 2 is a view showing another example of a mask manufactured using the mask filter of the present invention. Explanation of symbols
  • Non-woven fabric 3 Joint to mask piece and to mask piece
  • the mask filter of the present invention comprises a laminated sheet having a layer made of an antibacterial polyolefin fiber sheet (I) on the inner side and layers made of a dry nonwoven fabric (II) on both surfaces.
  • the polyolefin fiber sheet (I) on the inside is selected from the following polyolefin fiber sheet (la) and polyolefin fiber sheet (lb) force.
  • the area of the fiber sheet is defined as the area where 1/100 or more of the volume of the inorganic antibacterial fine particle is exposed on the surface of the polyolefin fiber, which is formed from a polyolefin fiber comprising a polyolefin resin composition containing inorganic antibacterial fine particles.
  • OX 10_ antimicrobial polyolefin fiber sheet having a ratio of on one place or more per 2 mm 2.
  • a fiber sheet is formed from a polyolefin fiber made of a polyolefin resin composition containing inorganic antibacterial fine particles and the inorganic antibacterial fine particles are exposed on the surface of the polyolefin fiber in an area of 0.01 am 2 or more. Area 1. Antibacterial polyolefin fiber sheet with a ratio of 1 or more per OX 10 — 2 mm 2 .
  • the inorganic antibacterial fine particles kneaded into the polyolefin resin composition forming the fiber by melt kneading or the like form the fiber.
  • a large number of polyolefin fibers are exposed on the surface of the polyolefin resin composed of the polyolefin resin composition without being completely buried in the resin (polyolefin fibers).
  • the polyolefin fiber sheet (la) is a part where 1/100 or more of the volume of inorganic antibacterial fine particles is exposed on the surface of the polyolefin fiber (hereinafter referred to as "1/100 or more of inorganic antibacterial fine particles.
  • the number of exposed inorganic antibacterial fine particles is 1/100 or more, 2 or more per polyolefin fiber sheet area 1.0 x 10_ 2 mm 2 3 or more It is even more preferable that there are four or more locations.
  • polyolefin fiber sheet (la) the requirement that "the inorganic antibacterial agent 1/100 exposed ⁇ plant particles, that Yusuke at a rate of polyolefin fiber sheet area 1. 0 X 10- 2 mm 2 or more 1 point per" As long as the above condition is satisfied, the area calculated based on the SEM photograph of the exposed portion may be less than 0 ⁇ 01 m 2 .
  • Whether the inorganic antibacterial fine particles are exposed from the surface of the polyolefin fiber is determined by a photograph taken with a scanning electron microscope (SEM) of the polyolefin fiber sheet from the surface side of the polyolefin fiber sheet ("SEM The inorganic fine particle parts exposed from the surface of the polyolefin fiber are lighter than the fiber parts made of polyolefin resin, and form fibers. It can be clearly separated from the existing polyolefin resin part.
  • SEM scanning electron microscope
  • the polyolefin fiber sheet (la) by measuring the size and number of light-colored portions where the inorganic antibacterial fine particles are exposed in the SEM photograph of the surface of the polyolefin fiber sheet, the inorganic antibacterial fine particles are measured. Polyolefin fiber sheet area exposed to 1/100 or more 1. The number per OX 10_ 2 mm 2 can be examined.
  • the inorganic antibacterial fine particles are spherical or nearly spherical, the inorganic antibacterial fine particles exposed from the surface of the polyolefin fiber are always in the SEM photograph. Since it is photographed as a circle having a predetermined diameter or a shape close to a circle (the cross section of the sphere is circular everywhere), the diameter of the circle is measured, and the average particle size of the inorganic antibacterial fine particles that form a sphere By comparing with the diameter, it is possible to determine whether 1/100 or more of the volume of the inorganic antibacterial fine particles is exposed from the surface of the polyolefin fiber.
  • the diameter of the circle corresponding to the portion where the spherical inorganic antimicrobial fine particles are exposed from the polyolefin fiber surface is the average particle diameter of the inorganic antimicrobial fine particles If this is the same, more than 1/2 of the volume of the inorganic antibacterial fine particles is exposed from the surface of the polyolefin fiber. Also, if the diameter of the photographed circle corresponding to the exposed part of the inorganic antibacterial fine particles is 1/20 or more of the average particle diameter of the inorganic antibacterial fine particles, 1/100 or more of the volume of the inorganic antibacterial fine particles Is exposed from the polyolefin fiber surface.
  • the shape of the inorganic antibacterial fine particles contained in the polyolefin resin is spherical or close to a spherical shape! /, Formed into a shape! /
  • the shape of the fine particles of the inorganic antibacterial agent exposed from the surface is not necessarily circular or close to it.
  • the photographed shape of the inorganic antibacterial fine particle part exposed from the surface of the polyolefin fiber happens to be a circular shape or a shape close to it, the volume of the exposed part is 1/100 of the volume of the inorganic antibacterial fine particle. Sometimes this is not the case.
  • the size of the exposed part of the inorganic antibacterial fine particles in the SEM photograph determines whether 1/100 or more of the volume of the inorganic antibacterial fine particles is exposed from the surface of the polyolefin fiber. Easy to do. Therefore, if the inorganic antibacterial fine particles are not spherical or nearly spherical, the degree of exposure is judged by the area of the exposed part of the inorganic antibacterial fine particles based on the SEM photograph. To do.
  • the inorganic antibacterial fine particles are present in the SEM photograph of the surface of the polyolefin fiber sheet as the polyolefin fiber sheet (I) disposed inside the laminated sheet forming the mask filter. , 0. 01 m 2 or more points forces are exposed to the front surface of the polyolefin fibers in the area S, polyolefin fiber sheet area 1. exist on 0 X 10_ 2 mm 2 per 1 ⁇ why les, Ru polyolefins described above Even when the fiber sheet (lb) is used, the polyolefin fiber sheet (lb) is formed! /, And the surface of the polyolefin fiber is exposed to a large number of inorganic antibacterial agent particles. As in the case of using (la), high antibacterial performance can be imparted to the mask filter.
  • the surface of inorganic antibacterial particles is 0.01 m 2 or more.
  • “Inorganic antibacterial fine particles are exposed to the surface of the polyolefin fiber in an area of 0.01 m 2 or more, and the polyolefin fiber sheet area is 1.0 X 10— 2 mm.
  • the volume of the inorganic antibacterial fine particles exposed from the surface of the polyolefin fiber is less than 1/100 of the volume of the inorganic antibacterial fine particles. I do not care.
  • the polyolefin fiber sheet positioned inside the laminated sheet forming the mask filter is a polyolefin fiber sheet (la) or polyolefin fiber. It may correspond to either one of the fiber sheets (lb), or may correspond to both.
  • the photograph of the surface of the polyolefin fiber sheet (la) and the polyolefin fiber sheet (lb) taken with a scanning electron microscope (SEM) shows the polyolefin fiber located on the outermost surface of the polyolefin fiber sheet and its back. Although the polyolefin fibers located on the inner side are also shown, it is often difficult to distinguish between the polyolefin fibers located on the outermost surface and the polyolefin fibers located on the inner side from the photograph. When measuring the size and number of exposed inorganic antibacterial fine particles, it is not necessary to distinguish between the forces that are polyolefin fibers located on the outermost surface or whether they are located on the inside or the polyolefin fibers.
  • the entire surface of the polyolefin fiber in the SEM photo is exposed from the surface of the polyolefin fiber. And measures the size Ya number of inorganic antimicrobial agent particles moiety, therefore the provisions of polyolefin fiber sheet (la) and polyolefin in the fiber sheet (lb) refers to I straight when measured in this way.
  • the inorganic antibacterial fine particles contained in the polyolefin fibers constituting the polyolefin fiber sheet (I) include fibers and polyolefin fiber sheets (I From the standpoint of preventing yarn breakage during the production of), dropping of inorganic antibacterial fine particles, and the occurrence of “shots” (polymer balls that do not become fibrous). Average particle size of 0.01 to;! O ⁇ m is preferable, 0.1 to 8111 is more preferable, and 0.3 to 6111 is more preferable.
  • the average particle size of the inorganic antibacterial fine particles is larger than 10 m, yarns, dropping of inorganic antibacterial fine particles from the fibers, generation of shots, etc. may occur when producing fibers or polyolefin fiber sheet (I).
  • the distance is less than 0.01 m, the inorganic antibacterial agent fine particles are aggregated and are uniformly mixed in the polyolefin fiber.
  • the average particle diameter of the inorganic antibacterial fine particles in this specification is an average particle diameter measured using a laser diffraction / scattering particle size distribution measuring device, and a specific measuring method thereof is described in the following examples. It is as follows.
  • the inorganic antibacterial fine particles contained in the polyolefin fibers constituting the polyolefin fiber sheet (I) are safe for the human body and cause volatilization, decomposition, alteration, etc. by heating during fiber melt spinning. Inorganic antibacterial agent fine particles that do not deteriorate the antibacterial action in a short period of time can be used.
  • inorganic antibacterial fine particles examples include inorganic antibacterial fine particles in which metal ions having antibacterial action such as silver ions, copper ions, zinc ions, tin ions are held in an inorganic carrier, titanium oxide Inorganic antibacterial agent fine particles can be used, and one or more of these can be used.
  • the type of the inorganic carrier is not particularly limited, and does not show the deterioration effect of the polyolefin fiber sheet (I)!
  • an inorganic carrier that can be used and can be used has an ion exchange ability and a metal ion adsorption ability, and has a high metal ion retention ability is preferably used.
  • examples of such inorganic carriers include zeolite, zirconium phosphate, calcium phosphate and the like. Among them, zeolite having high ion exchange capacity is particularly preferred!
  • inorganic antibacterial fine particles in which silver ions are held on the above-described inorganic carrier are particularly preferably used.
  • the content of the inorganic antibacterial fine particles in the polyolefin fibers forming the polyolefin fiber sheet (I) is not particularly limited, and the type of polyolefin forming the fibers, the fiber fineness, and the type of inorganic antibacterial fine particles It can be adjusted according to the particle size.
  • the inorganic antibacterial agent is based on the mass of the polyolefin resin composition forming the polyolefin fibers (the mass of the polyolefin resin composition including inorganic antibacterial fine particles) from the viewpoint of preventing troubles during spinning.
  • the content of fine particles, 0. 01; preferably this and force is 10% by mass, and more preferably is 0.05 to 5 mass 0/0 device 0;.! it to 2. mass 0/0 Is more preferable.
  • the polyolefin fibers forming the polyolefin fiber sheet (I) preferably have an average fiber diameter of 0.5 to 15 mm, more preferably 0.7 to 10 mm. 0.8 to 7 ⁇ ⁇ m is more preferable, and 1 to 5 ⁇ m is even more preferable.
  • the average fiber diameter of the polyolefin fiber in the above range, the degree of exposure and the number of exposure of the inorganic antibacterial fine particles contained in the polyolefin fiber from the fiber surface are increased, and the polyolefin fiber sheet (I ) Antibacterial performance is further enhanced, and the strength, flexibility, and filter performance are excellent.
  • the polyolefin fiber sheet (I) may have insufficient strength and poor handling properties.
  • the average fiber diameter of the polyolefin fibers exceeds 15 m, the degree of exposure of the inorganic antibacterial fine particles contained in the polyolefin fibers from the surface of the polyolefin fibers decreases, and the antimicrobial performance of the polyolefin fiber sheet (I) Decreases.
  • the average fiber diameter of the polyolefin fibers forming the polyolefin fiber sheet is an average obtained from the fiber diameter measured from a photograph of the polyolefin fiber sheet taken with a scanning electron microscope (SEM). The details are as described in the examples below.
  • the thickness of the polyolefin fiber sheet (I) is 0.05 to 5 mm from the viewpoint of manufacturing stability, handleability, antibacterial effect, dust removal (separability), and mask processability. Preferably it is 0.;! ⁇ 3mm is more preferred 0.15-2mm is even more preferred. If the polyolefin fiber sheet (I) is too thin, the strength, the antibacterial effect and the removal effect of dust, etc., the handling property when laminating with the dry nonwoven fabric, and the poor shape maintenance are likely to occur. If the sheet (I) is too thick, the filter for the mask composed of a laminated sheet of polyolefin fiber sheet and dry nonwoven fabric becomes heavier or loses flexibility, handling, mask workability, and mask wearability. Etc. will be inferior easy.
  • the basis weight of the polyolefin fiber sheet (I) is 3 to 3 in terms of production stability, handling!
  • polyolefin basis weight of the fiber sheet (I) is less than 3 g / m 2, the strength is lowered, whereas when it exceeds 2 200 g / m 2, heavy or summer, and or flexibility is lost, poor handleability It tends to be a thing.
  • polyolefin resin that forms the polyolefin fiber examples include polyolefin resins such as polypropylene, polyethylene, and polybutene.
  • polypropylene is preferably used because it is excellent in moldability when producing the polyolefin fiber sheet (I) by the melt blow method and has low strength and cost.
  • the polyolefin fiber sheet (I) is produced by the melt blow method using the polyolefin resin composition containing the inorganic antibacterial fine particles, the inorganic antibacterial fine particles are contained in the polymer.
  • shots polymer balls called “shots” are very easily generated.
  • a polyolefin fiber sheet (nonwoven fabric) with frequent shots is used as a mask filter, “leakage” is generated.
  • the polyolefin fiber sheet (I) is formed using polypropylene, such a shot can be prevented.
  • the polyolefin resin forming the polyolefin fiber is a methanol flow rate (MFR) measured under conditions of a temperature of 230 ° C, a load of 2.16 kg, and a measurement time of 10 minutes based on JIS K 7210. A force of 5 to 2500 g / 10 min, particularly 40 to 1600 g / 10 min, is preferably used.
  • MFR methanol flow rate
  • the polyolefin resin forming the polyolefin fiber is a mixture of two or more kinds of polyolefin resins
  • the above-mentioned MFR means an MFR of a mixture of two or more kinds of polyolefin resins.
  • a polyolefin resin composition is prepared by mixing inorganic antibacterial fine particles at once in a polyolefin resin.
  • Polyolefin fiber sheet (I) can be used to produce a large amount of inorganic antibacterial fine particles exposed on the surface of the polyolefin fiber to smoothen the polyolefin fiber sheet (I) having high antibacterial activity.
  • a polyolefin resin composition containing inorganic antibacterial fine particles used in the production of the polyolefin fiber sheet (I) as follows.
  • a polyolefin resin (A) and a polyolefin resin (B) whose absolute value of the difference in melt flow rate satisfies the following formula (1) are used, and inorganic antibacterial fine particles are added to the polyolefin resin (A ) And melted to produce a composition of polyolefin resin (A), and the composition does not contain fine particles of inorganic antibacterial agent! /, Mixed with polyolefin resin (B) to produce inorganic antibacterial After making a polyolefin resin composition containing agent fine particles, it is preferable to produce a polyolefin fiber sheet (I) using the polyolefin resin composition.
  • MFR is the melt flow rate of polyolefin resin (A)
  • MFR is polio
  • melt flow rate (unit: g / 10min) when measured under the conditions of temperature 230 ° C, load 2.16kg, measurement time 10 minutes.
  • the absolute value of the difference between the MFR of the polyolefin resin (A) and the MFR of the polyolefin resin (B) is 400 or less.
  • the inorganic antibacterial fine particles are premixed in the polyolefin resin (A), and the polyolefin resin (B) is mixed therewith.
  • a polyolefin resin composition containing fine particles of inorganic antibacterial agent is prepared, and the polyolefin fiber sheet (I) is produced using the polyolefin resin composition. Therefore, the polyolefin resin (A) (the resin before containing the inorganic antibacterial fine particles):
  • the ratio of the polyolefin resin (B) used is 99: 1 to 1:99 in mass ratio. More preferably, it is 80: 20-3: 97, more preferably 50: 50-5: 95.
  • a twin screw extruder or the like is used in preparing a polyolefin resin composition containing fine particles of inorganic antibacterial agent by the above-described method using the polyolefin resin (A) and the polyolefin resin (B). While mixing and extruding the polyolefin resin (A) with the inorganic antibacterial fine particles, the polyolefin resin (B) may be mixed with it, or it may be extruded after chip blending using a masterbatch. .
  • a masterbatch prepared by kneading inorganic antibacterial fine particles into a polyolefin resin (A) such as polypropylene is prepared, and this is mixed with a polyolefin resin (B) such as polypropylene.
  • A polyolefin resin
  • B polyolefin resin
  • a polyolefin resin composition containing inorganic antibacterial fine particles the dispersion of the inorganic antibacterial fine particles in the polyolefin resin is improved, and the inorganic antibacterial fine particles are easily exposed to the polyolefin fibers.
  • any apparatus that can uniformly mix the inorganic antibacterial fine particles into the polyolefin resin can be used. It is preferable to use a kneading apparatus such as a screw extruder from the viewpoint that the inorganic antibacterial fine particles can be uniformly mixed in the polyolefin resin in accordance with the productivity.
  • Inorganic antibacterial agent that forms polyolefin fibers in the polyolefin fiber sheet (I)
  • the polyolefin resin composition containing fine particles does not impair the effects of the present invention! It may contain coalescence or additives.
  • additives include weathering stabilizers such as antioxidants, radical absorbers and ultraviolet absorbers, surfactants, and pigments.
  • any method can be used as long as it can produce the polyolefin fiber sheet (la) and / or the polyolefin fiber sheet (lb) having the above-mentioned characteristics. Among them, it is extremely preferable to produce the polyolefin fiber sheet (I) by the melt blow method.
  • the polyolefin fiber sheet (I) is formed by producing the polyolefin fiber sheet (I) by the melt blow method.
  • the average fiber diameter of the polyolefin fibers is generally 15 m or less, further lO ⁇ m or less, particularly 5 m or less, and the inorganic antibacterial fine particles form a polyolefin fiber sheet (I).
  • Polyolefin fiber sheet (I) that is exposed to a large amount from the surface of the surface! /, Has a high antibacterial activity, and has excellent strength, flexibility, filter performance, etc. can be produced smoothly.
  • a method for producing a polyolefin fiber sheet (nonwoven fabric) by the melt-blowing method has been proposed! Since the basic apparatus and method for the melt-blowing method have been disclosed in Non-Patent Document 1, many methods have been proposed. ing. In producing the polyolefin fiber sheet by the melt blowing method, the method described in Non-Patent Document 1 or other known melt blowing methods can be employed.
  • a polyolefin resin composition containing fine particles of an inorganic antibacterial agent is supplied to a melt-process nonwoven fabric production apparatus and melted at 160 to 340 ° C. with an etastruder (extruder), and then a plurality of spinning holes. Are ejected at a temperature of 200-320 ° C from the nozzles arranged in a row, and at the same time, 200-330 ° C of heated air is ejected from a slit provided in the vicinity of the spinning hole, and the ejected fiber is made finer and downward.
  • the polyolefin fiber sheet can be produced by collecting on a net conveyor or the like located in the area.
  • the laminated sheet constituting the mask filter is a dry nonwoven fabric.
  • the thickness and basis weight of the laminated sheet constituting the mask filter can be adjusted more precisely.
  • the layer structure of the laminated sheet is as follows:
  • polyolefin fiber sheet (III) made of polyolefin fibers, melt blown nonwoven fabrics and spans produced using a polyolefin resin not containing inorganic antibacterial fine particles Bonded nonwoven fabric strength Used preferably from the viewpoint of adhesion and breathability.
  • the average fiber diameter of the polyolefin fibers constituting the polyolefin fiber sheet (III) is the same as that of the polyolefin fiber sheet (I), from 0 ⁇ 5 to 15 111.
  • Force S is preferable, 0.7 to 10 ⁇ m More preferably, it is 0.8-7 m, and even more preferably 1-5111.
  • the basis weight of the polyolefin fiber sheet (III) is 5; that it is more preferred instrument 10 to 50 g / m 2 it is 100 g / m 2 is preferred instrument 10 ⁇ 70g / m 2 Further preferred.
  • the thickness of the polyolefin fiber sheet (III) is preferably 0.05 to 5 mm, more preferably 0.1 to 3 mm, and further preferably 0.1 to 2 mm.
  • the polyolefin fiber sheet (I) or the polyolefin fiber sheet (I) and the polyolefin fiber sheet (III) are for improving the dust removal efficiency (filtration efficiency, capture rate) in the mask filter of the present invention.
  • the polyolefin fibers constituting the polyolefin fiber sheet (I) and the polyolefin fiber sheet (III) are made of polypropylene, it is preferable because it is industrially electretized and immediately, the charging effect is stable and lasts for a long time. .
  • Electretization of the polyolefin fiber sheet (I) and the polyolefin fiber sheet (III) can be performed using a general electretization facility.
  • the electretization method and conditions typically, needle electrodes are used, the electrode distance is 10 to 50 mm, the applied voltage is 10 to 50 kV, the temperature is Degree 20 ⁇ ; should be performed under the condition of 120 ° C.
  • Examples of the dry nonwoven fabric (II) that the laminated sheet constituting the mask filter of the present invention has on both surfaces include a thermal bond nonwoven fabric, a spunbond nonwoven fabric, and a mechanically bonded nonwoven fabric (spunlace nonwoven fabric, needle punching nonwoven fabric, etc.). One or more of these can be used.
  • thermal bond nonwoven fabrics are thin films made of melt-adhesive short fibers (usually short fibers made of a low-melting thermoplastic polymer), and the fiber web is heated to melt and bond the fibers together. It is a nonwoven fabric manufactured.
  • thermal bond nonwoven fabric As a representative example of the thermal bond nonwoven fabric that can be used in the present invention,
  • Non-melting core-sheath type composite spun short fiber or core-sheath type mixed spun short fiber comprising a core part made of a high melting point thermoplastic polymer and a sheath part made of a low melting point thermoplastic polymer, if necessary.
  • heat treatment is performed to bond the fibers together by the melt-bonding action of the sheath component of the core-sheath type composite spun short fiber or the core-sheath type mixed spun short fiber.
  • thermoplastic polymer short fiber low melting point thermoplastic polymer short fiber and high melting point thermoplastic polymer short fiber and / or
  • thermo bond nonwoven fabric obtained by blending, opening, and web-forming short fibers that do not melt with heat, and then heat-treating them to melt low-melting thermoplastic polymer short fibers to bond the fibers together;
  • the core-sheath type composite spun short fiber or the core-sheath type mixed spun short fiber used for the production of the thermal bond nonwoven fabric of (a) above has a low melting point heat which forms a sheath component with a high melting point thermoplastic polymer which forms a core component.
  • the difference in melting point of the plastic polymer is preferably 10 ° C or more, more preferably 20 to 150 ° C! /.
  • Examples of polymer combinations in the core-sheath composite spun short fiber or the core-sheath mixed spun short fiber include polypropylene (core) / polyethylene (sheath), polyethylene terephthalate (core) / polyethylene (sheath), polypropylene (core ) / Copolymerized polypropylene (sheath), polyethylene terephthalate (core) / copolymerized polyethylene terephthalate (sheath).
  • the high melting point thermoplastic polymer short fiber preferably has a melting point difference of 10 ° C or more, more preferably 20 to 150 ° C.
  • Short fiber combinations include, for example, polyethylene short fibers (low melting point) / polypropylene short fibers (high melting point), polyethylene short fibers (low melting point) / polyethylene terephthalate short fibers (high melting point), copolymerized polypropylene short fibers ( (Low melting point) / polypropylene short fiber (high melting point), copolymerized polyethylene terephthalate short fiber (low melting point) / polyethylene terephthalate short fiber (high melting point), polyethylene short fiber (low melting point) / cellulose fiber (non-melting), short polyethylene Examples include fiber (low melting point) / cotton fiber (non-melted).
  • spunbonded nonwoven fabric filamentary chemical fibers discharged from a spinning nozzle are stretched by an air flow or the like, and then directly accumulated on a conveyor to form a continuous web, thereby forming a web.
  • Any non-woven fabric obtained by joining or intertwining chemical fibers (filaments) with adhesives, fusion, entanglement of fibers, etc. can be used.
  • spunbond non-woven fabrics polyester, nylon, polypropylene Strength formed from filament fiber obtained by melt spinning fiber-forming thermoplastic polymer such as Ease of lamination with polyolefin fiber sheet, Ease of manufacturing spunbond nonwoven fabric itself From the viewpoints of availability, dimensional stability, strength, and the like.
  • Examples of the mechanically bonded nonwoven fabric include spunlace nonwoven fabric, short synthetic fibers (for example, fibers made of polyester, nylon, polyolefin, acrylic, etc.), natural fibers (cotton, hemp, wool, etc.), and mixtures thereof. It is possible to use a non-woven fabric obtained by blending, opening, carding, etc. to form a web, and then performing needle punching on the web to entangle the fibers.
  • a thermal bond nonwoven fabric and a spunbond nonwoven fabric having a polyolefin fiber sheet (I) or a polyolefin fiber sheet (III) are used as the dry nonwoven fabric (II) on the surface of the laminated sheet forming the mask filter. It is preferably used from the viewpoint of easy lamination and dimensional stability, and a thermal bond nonwoven fabric is particularly preferably used.
  • the average fiber diameter of the fibers constituting it is 15 to 50 Hm. is there More preferably, it is more preferably 20-30111. If the average fiber diameter of the fibers constituting the dry nonwoven fabric ( ⁇ ) is too small, the air permeability is likely to be impaired, whereas if it is too large, the laminated sheet is hard and the texture tends to be poor.
  • the thickness of the dry nonwoven fabric (II) is 0.10-0 in terms of production stability, handling! /, Properties, easiness of lamination with polyolefin fiber sheet, dimensional stability, etc. It is preferably 50 mm, more preferably 0.15 to 0.40 mm, and even more preferably 0.18 to 0.30 mm. If the dry non-woven fabric ( ⁇ ⁇ ⁇ ) is too thin, it tends to cause a decrease in strength, poor handling when laminating with the polyolefin fiber sheet (I), and sag. On the other hand, if the dry non-woven fabric (II) is too thick, The mask filter made of a sheet becomes heavier or loses flexibility, which tends to be inferior in terms of handling, mask processability, and wearing feeling.
  • the dry nonwoven fabric (II) on both surfaces of the laminated sheet constituting the mask filter may be the same or different.
  • the mask filter is composed of the laminated sheets (a), (d), and (e). Force Air permeability is good, and the antibacterial sheet is arranged near the surface. It is preferable from the viewpoint.
  • the thickness of the entire laminated sheet constituting the mask filter of the present invention is from the viewpoints of handleability, processability to the mask, wearing feeling of the mask formed using the mask filter, dimensional stability, and the like. It is preferable that it is 0 to 7 mm, more preferably 0.2 to 5 mm, and still more preferably 0.2 to 3 mm. If the laminated sheet that forms the filter for the mask is too thin, the handling properties when processing into a mask will be poor, the strength, antibacterial effect, dust removal effect, etc., the wearability when using a mask, and dimensional stability will be reduced. It is easy to cause defect. On the other hand, if the layer forming the mask filter is too thick, poor handling properties when processing into a mask and the occurrence of breathlessness due to a decrease in air permeability are likely to occur.
  • the basis weight of the laminated entire sheet forming the mask filter of the present invention forces S preferably 35 ⁇ 300g / m 2, 40 ⁇ 200g / m 2 and it is more preferable instrument 50 ⁇ 100g More preferably, it is / m 2 .
  • the basis weight of the laminated sheet is too small, it tends to cause a decrease in strength, poor processing, and the like.
  • the basis weight of the laminated sheet is too large, the processability to the mask is poor, the air permeability of the mask filter is deteriorated, and the wearing feeling is poor. Defects are likely to occur.
  • the mask filter of the present invention is not breathable when used as a mask and is excellent in wearing feeling, Kara such thermal effect, and a force S preferably Dearuko 10 ⁇ 200c / cm 2 / sec air permeability by Frazier method, and more preferably 20 ⁇ 150cc / cm 2 / sec.
  • the “air permeability according to the Frazier method” in this specification is the air permeability measured by JIS L1096.
  • the method of laminating the polyolefin fiber sheet (I) and the dry nonwoven fabric (II), and optionally the polyolefin fiber sheet (III) for producing a laminated sheet forming a filter for a mask is not particularly limited. Any method can be used as long as the nonwoven fabric can be satisfactorily bonded.
  • Examples thereof include a method using a hot melt adhesive and a method using hot embossing.
  • the method power s by heat embossing and the necessity of specially using an adhesive are easily adopted because of the simple operation.
  • the air permeability of the laminated sheet is not impaired. Even if it is adopted, it is preferably used because it can be laminated while maintaining good adhesion and air permeability by wire bonding, point bonding, combination of line bonding and point bonding.
  • an embossing temperature of 100 to 140 ° C, a linear pressure of 20 to 60 kg / cm, and a crimping area of 1 to 25% are preferably employed.
  • the laminated sheet constituting the mask filter of the present invention for example, all the sheets and nonwoven fabric used for producing the laminated sheet are stacked in a predetermined order (positional relationship), and the heat embossing process is performed once.
  • a laminated sheet may be produced by an adhesive operation using an adhesive or an adhesive, or two or more of three or more sheets and nonwoven fabrics used for producing a laminated sheet are pre-laminated 'and then the remaining sheets and / or nonwoven fabrics are adhered.
  • a laminated sheet may be produced by laminating and adhering.
  • a layer of polyolefin fiber sheet (III) is interposed between a layer of polyolefin fiber sheet (I) and a surface layer of dry nonwoven fabric (II) located inside the laminated sheet, it is manufactured in advance. While the polyolefin fiber sheet (III) is continuously fed to an apparatus (such as a melt blower) for producing the polyolefin fiber sheet Hi), A polyolefin resin composition containing fine particles of inorganic antibacterial agent for producing a polyolefin fiber sheet (i) on the polyolefin fiber sheet (m) is ejected by a melt blow method or the like on the polyolefin fiber sheet (in).
  • a method is preferably employed in which a polyolefin fiber composite sheet (I) (nonwoven fabric) is laminated on the surface, and a dry nonwoven fabric ( ⁇ ) is placed on both sides of the polyolefin fiber composite sheet for adhesion and lamination.
  • I polyolefin fiber composite sheet
  • dry nonwoven fabric
  • the shape and structure of the mask produced using the mask filter of the present invention is not particularly limited, and it is used at least as a material for covering the mouth of the mask wearer and the nostrils of the mask of the present invention. If it is a mask!
  • examples of the mask formed using the mask filter of the present invention include those shown in FIGS.
  • the cover 1 for covering the mouthpiece and nostril is formed of the mask filter of the present invention, and the ear hook 2 is made of another non-woven fabric having elasticity. It is a formed mask.
  • the mask A in Fig. 1 (a) is a joint between the pair of mask pieces A and A shown in Fig. 1 (b).
  • the force S can be formed by joining the units 3a and 3b to each other as shown in FIG.
  • a pair of mask pieces Al and A2 shown in FIG. 1 (b) is obtained by joining the mask filter la of the present invention and another stretchable nonwoven fabric 2a into the shape shown in FIG. 1 (b). It has been cut.
  • 4 is a joint between the mask filter la and the non-woven fabric 2a
  • 5 is a cut (a hole through which the ear passes) provided in the non-woven fabric 2a to form the ear hook 2. Part).
  • a mask A in FIG. 2 is a mask in which a string portion 2c for attaching an ear is attached to both ends of a covering portion 1 for covering a mouthpiece and a nostril.
  • the cover 1 for covering the mouthpiece and nostril has an inorganic antibacterial fine particle exposed from the surface of the polyolefin fiber and a layer of the polyolefin fiber sheet (I) on the inside. And having a high antibacterial action, antiviral action, and dust filtering action by being formed from the mask filter of the present invention comprising a laminated sheet having layers of dry nonwoven fabric (II) on both surfaces. It is excellent in the feeling of wearing.
  • Example [0064] Hereinafter, the present invention will be described more specifically with reference to examples and the like. The present invention is not limited to the following examples. In addition, each physical property value in the following examples and comparative examples was measured or evaluated by the following method.
  • melt flow rate (MFR) (g / 10 min) of the polyolefin used was measured.
  • the ultrasonic homogenizer built in the measurement device is used for measurement after irradiation with ultrasonic waves for 1 minute, and the arithmetic average value (ii m) calculated from the volume-based particle size distribution is used as the inorganic antibacterial fine particles. Average particle diameter.
  • the average fiber diameter of polyolefin fibers it is necessary to distinguish whether the polyolefin fibers photographed in the photograph are the polyolefin fibers located on the outermost surface of the polyolefin fiber sheet or the polyolefin fibers located on the inside.
  • the average fiber diameter was calculated for all the polyolefin fibers in the SEM photograph.
  • Inorganic antibacterial agent fine particles contained in polyolefin fibers For example, in the case of spherical fine particles having an average particle size of 2.5 inches, exposure of inorganic antibacterial agent fine particles photographed in a circle shape having a diameter of 0.13 m or more. The portion corresponds to an exposed portion of 1/100 or more (in Example 2 below, spherical inorganic antibacterial fine particles having an average particle size of 2.5 in were used).
  • the area where the inorganic antibacterial fine particles are exposed on the surface of the polyolefin fiber is, for example, that the exposed part of the inorganic antibacterial fine particles in the SEM photograph is cut out exactly according to its shape and cut out.
  • Area of exposed area of inorganic antibacterial fine particles SX (wb / wa) (2)
  • the air permeability was measured by the Frazier method in accordance with JIS L1096.
  • the filter for mask obtained in the following Examples and Comparative Examples was subjected to an antibacterial test according to JIS L1902 “Antimicrobial Test Method for Textile Products” to obtain a bactericidal activity value.
  • JIS L1902 Antimicrobial Test Method for Textile Products
  • test conditions adopted are as follows.
  • Bactericidal activity value A logarithm of the difference in the number of viable bacteria before and after the action time
  • Bactericidal activity value Log (viable bacterial count immediately after action / viable bacterial count after action)
  • the anti-virus test was conducted on the mask filters obtained in the following Examples and Comparative Examples according to JIS Z2801 “Antimicrobial Processed Products Antimicrobial Test Method / Antimicrobial Effect”.
  • test conditions adopted are as follows.
  • Influenza A virus (A / New caledonia / 20/99)
  • the diameter is 110 mm.
  • the electret antibacterial polyolefin fiber sheet (I) obtained in the above (iii) had a basis weight of 18 g / m 2 and an air permeability of 100 cc / cm 2 / sec by the Frazier method.
  • the average fiber diameter of the polyolefin fibers constituting the polyolefin fiber sheet (I) was 3.6 m.
  • the measured in this polyolefin fiber sheet method inorganic antimicrobial agent particles in (I) is marked on the exposed portions of the 0. 01, 1 m 2 or more polyolefin fiber surface in the area, the fiber sheet surface 1 Per 0 X 10_ 2 mm 1. There were 2 locations.
  • a core-sheath type composite short fiber made of a core part made of polyethylene and a sheath part made of polyethylene), and the same thermal bond non-woven fabric as described above as a mask mouthpiece on the other surface side of the polyolefin fiber sheet,
  • the bonding part is a stripe with 0.3 mm wide vertical streaks arranged at intervals of 3 mm (bonding area 10%), wire under the conditions of an emboss temperature of 135 ° C and a linear pressure of 40 kg / cm.
  • a mask filter made of a laminated sheet having a three-layer structure of thermal bond nonwoven fabric / electretized antibacterial polyolefin fiber sheet (I) / thermal bond nonwoven fabric was manufactured.
  • the mask filter obtained in the above (i) had a basis weight of 82 g / m 2 , a permeability of 40 cc / cm 2 / sec by the Frazier method, and was excellent in air permeability.
  • melt blown nonwoven fabric (I) had a basis weight of 10 g / m 2 and an air permeability of 250 cc / cm 2 / sec by the Frazier method.
  • the average fiber diameter of the polypropylene fibers constituting the meltblown nonwoven fabric (ii) was 4.8 Hm.
  • Polyolefin fiber composite Manufactured.
  • the basis weight of the polyolefin nonwoven fabric [polyolefin fiber sheet (1)] part made of polypropylene fiber containing silver-based inorganic antibacterial fine particles is 6 g / m 2 , Therefore, the basis weight of the entire two-layer polyolefin fiber composite sheet was 16 g / m 2 .
  • the antibacterial charged polyolefin fiber composite sheet obtained in the above (iii) had a basis weight of S 6 g / m 2 and an air permeability of 123 cc / cm 2 / sec by the Frazier method.
  • the average fiber diameter of the polypropylene fibers constituting the melt blown nonwoven fabric [polyolefin fiber sheet (I)] layer made of polypropylene fibers containing fine particles of silver-based inorganic antibacterial agent is 1.2 ⁇ m
  • the surface of the melt blown nonwoven fabric layer inorganic antimicrobial agent particles is 0. ⁇ ⁇ ⁇ ⁇ in &, and time, exposed portions of the area above the polyolefin fiber surface was measured by the method described above, fiber sheet surface 1 ⁇ 0 X 10- 2 mm per 1. There were 5 locations.
  • the adhesive part is striped with a vertical stripe pattern with a width of 0.3 mm arranged at intervals of 3 mm (adhesion area 10%), and the wire is lined up under the conditions of embossing temperature 135 ° C and linear pressure 40 kg / cm.
  • the mask filter (laminated sheet) obtained in (i) above has a basis weight of 80 g / m 2 , a permeability of 50 cc / cm 2 / sec by the Frazier method, and has excellent air permeability. there were.
  • Table 1 When the antibacterial test and antiviral test of this mask filter were conducted by the above-described method, as shown in Table 1 below, both the antibacterial and antiviral properties were excellent.
  • the resulting polyolefin fiber composite sheet with a two-layer structure has a basis weight of 6 g / m 2 of the polyolefin nonwoven fabric [polyolefin fiber sheet (1)] made of polypropylene fibers containing fine particles of silver-based inorganic antibacterial agent. Therefore, the basis weight of the entire two-layer polyolefin fiber composite sheet was 26 g / m 2 .
  • the antibacterial charged polyolefin fiber composite sheet obtained in the above (iii) had a basis weight of 3 ⁇ 46 g / m 2 and a permeability of 136 cc / cm 2 / sec by the Frazier method.
  • the average fiber diameter of the polypropylene fibers constituting the melt blown nonwoven fabric [polyolefin fiber sheet (I)] layer made of polypropylene fibers containing fine particles of silver-based inorganic antibacterial agent is 1.2 ⁇ m, and the surface of the melt blown nonwoven fabric layer Inorganic antibacterial microparticles at 0. ⁇ ⁇ ⁇ ⁇ &, The area exposed on the surface of the polyolefin fiber in the upper area was measured by the method described above.
  • the number was 4.9 per 1.0 X 10 — 2 mm of the fiber sheet surface. Further, when the number of exposed portions of 1/100 or more of the inorganic antibacterial fine particles on the fiber surface was measured by the method described above, it was 4.5 per 1.0 X 10 — 2 mm 2 of the fiber sheet surface.
  • the adhesive part is striped with a vertical stripe pattern with a width of 0.3 mm arranged at intervals of 3 mm (adhesion area 10%), and the wire is lined up under the conditions of embossing temperature 135 ° C and linear pressure 40 kg / cm.
  • the mask filter (laminated sheet) obtained in (i) above has a basis weight of 90 g / m 2 , a permeability of 55 cc / cm 2 / sec by the Frazier method, and has excellent air permeability. there were.
  • Table 1 When the antibacterial test and antiviral test of this mask filter were conducted by the above-described method, as shown in Table 1 below, both the antibacterial and antiviral properties were excellent.
  • Example 1 (2) (i), as a dry nonwoven fabric for the mask surface material and mask mouth material, a polypropylene spunbond nonwoven fabric (25 g / m A mask filter (laminated sheet) was produced in the same manner as in Example 1 except that it was used for m 2 ).
  • the mask filter (laminated sheet) obtained in (1) above has a basis weight of 68 g / m 2 and an air permeability of 60 cc / cm 2 / sec according to the Frazier method, which has excellent air permeability. there were.
  • Table 1 When the antibacterial test and antiviral test of this mask filter were conducted by the above-described method, as shown in Table 1 below, both the antibacterial and antiviral properties were excellent.
  • the charged polyolefin fiber sheet obtained in (ii) above has a basis weight of 20 g / m 2 , a permeability of 72 cc / cm 2 / sec by the Frazier method, and an average fiber diameter of polypropylene fibers of 3 • 5 ⁇ m at once.
  • the mask filter (laminated sheet) obtained in (i) above has a basis weight of 4 g / m 2 ,
  • the air permeability according to the roll method was 3 ⁇ 40 cc / cm 2 / sec.
  • the electret polyolefin fiber sheet obtained in (iii) above had a basis weight of 18 g / m 2 and a permeability of 98 cc / cm 2 / sec by the Frazier method.
  • the average fiber diameter of the polyolefin fibers constituting the polyolefin fiber sheet was 3.8 iim. Further, when the location where the inorganic antibacterial fine particles in the polyolefin fiber sheet (I) were exposed to the surface of the polyolefin fiber in an area of not less than 0.01 m 2 was measured by the method described above, the fiber sheet surface 1.0 There were 0.4 locations per 10 mm x 2 mm.
  • the antibacterial polyolefin fiber sheet obtained in (iii) above is a needle electrode, electrode distance 25 mm, applied voltage 15 kV, temperature 80 An electret treatment was performed under the condition of ° C to produce an antibacterial charged polyolefin fiber sheet.
  • the antibacterial charged polyolefin fiber sheet obtained in the above (iv) had a basis weight of 20 g and an air permeability of 48 cc / cm 2 / sec according to the fragile method. Further, the average fiber diameter of the polyolefin fibers constituting the polyolefin fiber sheet was 4.2 ⁇ m.
  • the same thermal bond nonwoven fabric used in (2) of Example 1 was used as the mask surface material.
  • the adhesive part is a stripe in which vertical stripes with a width of 0.3 mm are arranged at intervals of 3 mm (Bonding area 10%), heat embossed linearly under conditions of embossing temperature 135 ° C and linear pressure 40 kg / cm, thermal bond nonwoven fabric / electretized antibacterial polyolefin fiber sheet / thermal A laminated sheet for use as a mask filter having a layer structure composed of a bond nonwoven fabric was produced.
  • the mask filter (laminated sheet) obtained in (ii) above had a basis weight of 84 g / m 2 and an air permeability of 20 cc / cm 2 / sec by the Frazier method.
  • Type "ABCAIDEF basis weight (g Roh m 2) 1 8 1 6 26 1 8 20 1 8 20 Average fiber diameter (m) 3. 6 1. 2 1. 2 I 3. 6 3. 5 3. 8 4. 2 Inorganic Average particle size of antimicrobial microparticles (m) 1 1 2. 5 1-1 1
  • A Melt blown nonwoven fabric made of polypropylene composition containing fine particles of silver-based inorganic antiepileptic agent
  • the mask filter of the present invention many inorganic antibacterial fine particles kneaded in the polyolefin fibers constituting the antibacterial polyolefin fiber sheet located inside the laminated sheet constituting the mask filter are exposed from the fiber surface. Therefore, it stably exhibits high antibacterial and antiviral effects, strength, dust filtration performance and breathability, strength and Because of its excellent processability to masks, it can be used effectively as a filter for manufacturing masks.

Description

明 細 書
マスク用フィルタおよびそれを用いて形成したマスク
技術分野
[0001] 本発明はマスク用フィルタおよびそれを用いて形成したマスクに関する。より詳細に は、本発明は、無機系抗菌剤微粒子を含有するポリオレフイン繊維から形成した抗 菌性の繊維シートよりなる層を内側に有する両表面に乾式不織布よりなる層を有する 積層シートからなるマスク用フィルタおよびそれを用いて形成したマスクに関する。本 発明のマスク用フィルタは、マスク用フィルタをなす積層シートの内側に位置する抗 菌性のポリオレフイン繊維シートを構成するポリオレフイン繊維中に練り込まれている 無機系抗菌剤微粒子が繊維表面から多数露出しているため、高い抗菌作用、抗ウイ ノレス作用を安定して発揮することができ、しかも粉塵濾過性能および通気性に優れ、 更に強度およびマスクへの加工性にも優れるため、本発明のマスク用フィルタを用い ることによって、高い抗菌作用、抗ウィルス作用、粉塵濾過作用を有し、し力、も着用時 に息苦しくないマスクを、良好な作業性で簡単に且つ円滑に製造することができる。 背景技術
[0002] クシャミ、咳、談話などで生ずる飛沫や空気を媒体としたウィルス性感染や細菌感 染を防ぐために、従来からマスクが慣用されてきた。特に、近年、風邪やインフルェン ザの流行、鳥インフルエンザやコロナウィルスに代表される新型感染病の発症、病院 内での細菌感染やウィルス感染の予防などを受けて、抗菌効果を有するマスクや、 マスク用素材の開発が行われている。抗菌性のマスクおよびマスク用素材に係る従 来技術としては、表面に銀をメツキまたは蒸着によって付着させた合成繊維を含む織 布など力 形成したマスク (特許文献 1)、基布を銀担持無機微粒子などの抗菌性微 粒子を含有する分散液で処理して基布を構成する繊維の表面に銀担持無機微粒子 などの抗菌性微粒子を被着させた後にエレクトレット化して得られる抗菌性帯電フィ ルターを用いて形成したマスク用フィルタ(特許文献 2)、水酸基とカルボキシル基を 同時に有するクェン酸、林檎酸、乳酸などのヒドロキシ酸を固定した繊維状基材を用 V、て形成した抗ウィルス性マスク(引用文献 3)などが知られて!/、る。 [0003] しかしながら、上記の特許文献 1および 2のマスクは、銀や銀担持無機微粒子など の抗菌剤を後加工により繊維表面や繊維製基布に付着させているため、加工工程 が増えて生産上不利であり、し力、も使用時などに抗菌剤が繊維表面から脱落したり、 剥離し易ぐ抗菌効果の持続性の点で問題がある。その上、上記特許文献 2のマスク に用いられる抗菌性帯電フィルタは、繊維表面が銀などの抗菌剤で覆われているた めに、エレクトレット加工を施して吸着能力を向上させようとしても、エレクトレット効果 が阻害され、十分な吸着性能が得られにくぐし力、も通気性が小さくなりがちで、マス クにしたときに息苦しくなり易ぐまたマスクへの加工性に劣るという問題がある。
また、上記の特許文献 3のマスクで用いられているヒドロキシ酸は有機系抗菌剤で あるため、耐熱性、安定性などが不十分であり、マスクを製造するための加工時、特 に加熱して加工する際に、抗菌性能の低下が生じ易ぐし力、もヒドロキシ酸に特有の 臭気が生じ易い。
[0004] また、銀、銅、錫、亜鉛などの抗菌性の金属イオンを無機担体に担持させた無機系 抗菌剤を練り込んだポリオレフイン繊維製の不織布などが知られて!/、る(特許文献 4 および 5)。しかし、特許文献 4および 5などに記載されている、無機系抗菌剤を含有 するポリオレフイン繊維から形成した従来の不織布では、無機系抗菌剤の大半がポリ ォレフィンで被覆された状態で繊維内部に存在して!/、て繊維表面への露出が少な!/ヽ ため、無機系抗菌剤が有する抗菌作用を十分に発揮できない。しかも、無機系抗菌 剤を含有するポリオレフイン繊維から形成した従来の不織布は、不織布を形成して!/ヽ るポリオレフイン繊維の繊維径がかなり大きぐそれによつて不織布の比表面積が大 きくないために、これらの不織布をマスク用フィルタとして用いても、ウィルス、細菌な どの病原体に対する抗菌効果を十分に発揮しにくい。
[0005] 特許文献 1:特開平 11 19238号公報
特許文献 2:特開平 11 267236号公報
特許文献 3:特開 2005— 198676号公報
特許文献 4:特開平 5— 153874号公報
特許文献 5:特開平 8— 325915号公報
非特許文献 1 :「Industrial and EngineeringChemistryJ , 1956, Vol. 48, No. 8号, p. 1342 - 1346
発明の開示
発明が解決しょうとする課題
[0006] 本発明の目的は、高い抗菌作用、抗ウィルス作用を有すると共に、当該抗菌作用、 抗ウィルス作用の持続性に優れていて、マスクに加工して着用したときに、空気中に 存在する細菌類、ウィルス類、黴類や、呼吸、咳、クシャミ、談話などに伴って人の鼻 や口から排出される菌類やウィルス類などをマスクで捕捉'殺傷して、有害な菌類や ウィルス類力 呼吸器官を通して人体に入り込んだり、逆に人体から空気中に撒き散 らされるのを効果的に防ぐことのできるマスク用フィルタ、および当該マスク用フィルタ を用いてなるマスクを提供することである。
さらに、本発明の目的は、上記した高い抗菌作用、抗ウィルス作用と併せて、粉塵 濾過性能に優れていて、菌類やウィルスの防除だけでなぐ空気中の粉塵等をもマ スクで確実に捕捉して、粉塵等が体内に入るのを防ぐことのできるマスク用フィルタお よびそれからなるマスクを提供することである。
そして、本発明の目的は、通気性が良好で、着用したときに息苦しくなぐ着用感に 優れるマスクを形成できるマスク用フィルタ、および当該マスク用フィルタを用いてな るマスクを提供することである。
また、本発明の目的は、強度が高くてマスクに加工する際に破損などが生じず、し 力、もマスクへの加工性に優れていて、上記した優れた諸特性を有するマスクを、簡単 な加工工程や処理操作で、円滑に、生産性良く製造することのできるマスク用フィル タを提供することである。
課題を解決するための手段
[0007] 本発明者らは、前記した目的を達成するために研究を行ってきた。そして、ポリオレ フィン系樹脂中に練り込んだ無機系抗菌剤微粒子力、ポリオレフイン繊維の表面に 多く露出していて、それによつて無機系抗菌剤微粒子が本来有する高い抗菌作用を 十分に且つ効果的に発揮する、抗菌作用およびその持続性に優れるポリオレフイン 繊維シートを開発することができた。そこで、本発明者らは、前記した抗菌性のポリオ レフイン繊維シートを用いてマスク用のフィルタを開発すベぐ更に種々検討を重ね た。そして、その抗菌性のポリオレフイン繊維シートを内側に配置し、両表面に乾式 不織布よりなる層を有する積層シートがマスク用フィルタとして適して!/、るのではなレヽ 力、と考えて、当該積層シートをつくりその物性などについて調査した。
その結果、当該積層シートが、抗菌作用、抗ウィルス作用およびそれらの持続性に 優れており、当該積層シートをフィルタとして用いて製造したマスクは、空気中に存在 する細菌類、ウィルス類、黴類などの有害な微生物や、呼吸、咳、クシャミ、談話など に伴って人の鼻やロカ 排出される菌類やウィルス類などをマスクで捕捉'殺傷して 、有害な菌類やウィルス類力 呼吸器官を通して人体に入り込んだり、逆に人体から 空気中に撒き散らされるのを良好に防ぐことが判明した。
[0008] さらに、本発明者らは、当該積層シートが、粉塵濾過性能および通気性にも優れて おり、当該積層シートをフィルタとして用いてマスク製造したマスクは、空気中の粉塵 等をマスク部分で確実に捕捉して、粉塵等が体内に入るのを防ぐことができ、しかも 通気性に優れていて、着用したときに息苦しくないことを見出した。
また、本発明者らは、当該積層シートは、強度が高ぐ更にマスクへの加工性に優 れており、マスクへの加工時に破損などのトラブルを生ずることなぐ簡単な加工工程 で、上記した諸特性に優れるマスクを円滑に生産性良く製造できることを見出し、そ れらの知見に基づいて本発明を完成した。
[0009] すなわち、本発明は、
(1) 下記のポリオレフイン繊維シート(la)およびポリオレフイン繊維シート(lb)力、ら選 ばれる抗菌性のポリオレフイン繊維シート (I)よりなる層を内側に有し、両表面に乾式 不織布 (II)よりなる層を有する積層シートからなることを特徴とするマスク用フィルタで ある。
•ポリオレフイン繊維シート(la):
無機系抗菌剤微粒子を含有するポリオレフイン系樹脂組成物よりなるポリオレフイン 繊維から形成され且つ無機系抗菌剤微粒子の体積の 1/100以上がポリオレフイン 繊維の表面に露出している箇所を繊維シート面積 1. O X 10_2mm2当たり 1箇所以 上の割合で有する抗菌性のポリオレフイン繊維シート。
•ポリオレフイン繊維シート(lb): 無機系抗菌剤微粒子を含有するポリオレフイン系樹脂組成物よりなるポリオレフイン 繊維から形成され且つ無機系抗菌剤微粒子が 0. 01 11 m2以上の面積でポリオレフィ ン繊維の表面に露出している箇所を繊維シート面積 1. O X 10_2mm2当たり 1箇所以 上の割合で有する抗菌性のポリオレフイン繊維シート。
[0010] そして、本発明は、
(2) 抗菌性のポリオレフイン繊維シート(la)およびポリオレフイン繊維シート(lb)を 構成するポリオレフイン繊維中に含まれる無機系抗菌剤微粒子の平均粒径が 0. 01 〜10 μ mである前記(1)のマスク用フィルタ;および、
(3) 抗菌性のポリオレフイン繊維シート(la)およびポリオレフイン繊維シート(lb)を 構成するポリオレフイン繊維の平均繊維径が 0. 5〜; 15 mである前記(1)または(2) のマスク用フイノレタ;
である。
[0011] さらに、本発明は、
(4) 抗菌性のポリオレフイン繊維シート(la)およびポリオレフイン繊維シート(lb)を 構成するポリオレフイン繊維が、無機系抗菌剤微粒子を含有するポリオレフイン系樹 脂 (A)と無機系抗菌剤微粒子を含有しなレ、ポリオレフイン系樹脂 (B)を混合したポリ ォレフィン系樹脂組成物であって且つポリオレフイン系樹脂 (A)のメルトフローレート( MFR ) (g/10分)とポリオレフイン系樹脂(B)のメルトフローレート(MFR ) (g/10
A B
分)の差の絶対値が下記の数式(1)を満足するポリオレフイン系樹脂組成物から形成 されて!/、る前記ひ)〜 (3)の!/、ずれかのマスク用フィルタである。
0≤ I MFR -MFR
A B I ≤600 (1)
[但し、 MFRおよび MFRは、いずれも、 JIS K 7210に従って、温度 230°C、
A B
荷重 2. 16kg,測定時間 10分の条件下に測定したときのメルトフローレート(単位: g /10分)である。 ]
[0012] そして、本発明は、
(5) 抗菌性のポリオレフイン繊維シート(la)およびポリオレフイン繊維シート(lb) 1S 無機系抗菌剤微粒子を含有するポリオレフイン系樹脂組成物を用いてメルトブロー 法によって製造した不織布である前記 (1)〜(4)の!/、ずれかのマスク用フィルタ;
(6) マスク用フィルタをなす積層シートが、表面層をなす乾式不織布 (II)と、抗菌性 のポリオレフイン繊維シート(la)またはポリオレフイン繊維シート(lb)との間に、無機 系抗菌剤微粒子を含有しなレ、ポリオレフイン繊維からなるポリオレフイン繊維シート (II I)よりなる層を更に有する前記 (1)〜(5)の!/、ずれかのマスク用フィルタ;および、
(7) 抗菌性のポリオレフイン繊維シート(la)およびポリオレフイン繊維シート(lb)が 少なくともエレクトレット化されてレ、る前記(1)〜(5)の!/、ずれかのマスク用フィルタ; である。
[0013] また、本発明は、
(8) 積層シートにおいて、当該積層シートを構成する各層がホットメルト樹脂を用い るかまたはエンボス加工により接着されて!/、る前記(1)〜(7)の!/、ずれかのマスク用 フイノレタ;
(9) 乾式不織布 (II) ヽサーマルボンド不織布、スパンボンド不織布およびスパンレ ース不織布から選らばれた乾式不織布である前記(1)〜(8)のいずれかのマスク用 フイノレタ;
(10) フラジール法による通気度が 10〜200cc/cm2/secである前記(1)〜(9) の!/、ずれかのマスク用フィルタ;および、
(11 ) 前記(1)〜(; 10)の!/、ずれかのマスク用フィルタを用いて形成したマスク; である。
発明の効果
[0014] 本発明のマスク用フィルタでは、マスク用フィルタをなす積層シートの内側に位置す る抗菌性のポリオレフイン繊維製シート(I)において、ポリオレフイン系樹脂中に練り 込んだ無機系抗菌剤微粒子がポリオレフイン繊維の表面に多く露出しているため、 無機系抗菌剤微粒子が本来有する高い抗菌作用を十分に且つ効果的に発揮され て、抗菌作用およびその持続性に優れている。
さらに、本発明のマスク用フィルタでは、マスク用フィルタをなす積層シートの両表 面が乾式不織布(Π)よりなる層からなっているため、前記した抗菌性のポリオレフイン 繊維製シート層が乾式不織布 (II)で保護されるために、ポリオレフイン繊維製シート の繊維から無機系抗菌剤微粒子が脱落しにくぐ抗菌作用の持続性に優れている。 そのため、本発明のマスク用フィルタを用いて製造したマスクは、空気中に存在す る細菌類、ウィルス類、黴類などの有害な微生物や、呼吸、咳、クシャミ、談話などに 伴って人の鼻やロカ 排出される菌類やウィルス類などをマスクで捕捉'殺傷して、 有害な菌類やウィルス類力、呼吸器官を通して人体に入り込んだり、逆に人体から空 気中に撒き散らされるのを良好に防ぐことができる。
[0015] さらに、マスク用フィルタは、粉塵などの濾過性能(捕捉性能)および通気性にも優 れているため、当該マスク用フィルタを用いて製造したマスクは、空気中の粉塵等を マスク部分で確実に捕捉して、粉塵等が体内に入るのを防ぐことができ、しかも着用 したときに息苦しくなぐ着用感に優れている。
特に、マスク用フィルタをなす積層シートの内側に位置する抗菌性のポリオレフイン 繊維シートを少なくともエレクトレット化して帯電させたものでは、粉塵などの濾過性能 (捕捉性能)により優れている。
その上、本発明のマスク用フィルタは、強度が高ぐマスクへの加工性に優れており 、マスクへの加工時に破損などのトラブルを生ずることなぐ簡単な加工工程で、上記 した諸特性に優れるマスクを円滑に生産性良く製造することができる。
図面の簡単な説明
[0016] [図 1]本発明のマスク用フィルタを使用して製造したマスクの一例を示す図である。
[図 2]本発明のマスク用フィルタを使用して製造したマスクの別の例を示す図である。 符号の説明
[0017] A マスク
A1 マスク用片
A2 マスク用片
1 マスクにおける口許および鼻孔を覆う部分 (フィルタ部)
la マスク用フィルタ
2 耳掛け部
2a 不織布 3 マスク用片へとマスク用片への接合部
4 マスク用フィルタ laと不織布 2aの接合部
5 耳掛け用の孔を形成するための切れ目
6 耳掛け用の紐
発明を実施するための最良の形態
[0018] 以下に本発明につ!/、て詳細に説明する。
本発明のマスク用フィルタは、抗菌性のポリオレフイン繊維シート (I)よりなる層を内 側に有し、両表面に乾式不織布(II)よりなる層を有する積層シートからなり、当該積 層シートの内側の前記ポリオレフイン繊維シート(I)は、下記のポリオレフイン繊維シ ート(la)およびポリオレフイン繊維シート(lb)力、ら選ばれる。
'ポリオレフイン繊維シート (la) :
無機系抗菌剤微粒子を含有するポリオレフイン系樹脂組成物よりなるポリオレフイン 繊維から形成され且つ無機系抗菌剤微粒子の体積の 1/100以上がポリオレフイン 繊維の表面に露出している箇所を繊維シート面積 1. O X 10_2mm2当たり 1箇所以 上の割合で有する抗菌性のポリオレフイン繊維シート。
•ポリオレフイン繊維シート(lb):
無機系抗菌剤微粒子を含有するポリオレフイン系樹脂組成物よりなるポリオレフイン 繊維から形成され且つ無機系抗菌剤微粒子が 0. 01 a m2以上の面積でポリオレフィ ン繊維の表面に露出している箇所を繊維シート面積 1. O X 10_2mm2当たり 1箇所以 上の割合で有する抗菌性のポリオレフイン繊維シート。
[0019] ポリオレフイン繊維シート(la)およびポリオレフイン繊維シート(lb)では、繊維を形 成するポリオレフイン系樹脂組成物中に溶融混練などによって練り込まれた無機系 抗菌剤微粒子が、繊維を形成するポリオレフイン系樹脂中(ポリオレフイン繊維中)に 完全に埋没せずに、当該ポリオレフイン系樹脂組成物からなるポリオレフイン繊維の 表面に多数露出している。
[0020] ポリオレフイン繊維シート (la)は、無機系抗菌剤微粒子の体積の 1/100以上がポ リオレフイン繊維の表面に露出している箇所 (以下これを「無機系抗菌剤微粒子の 1 /100以上露出箇所」ということがある)を、ポリオレフイン繊維シート面積 1. 0 X 10— 2mm2当たり 1箇所以上という多割合で有していて、無機系抗菌剤微粒子がポリオレ フィン繊維中に完全に埋没しておらず、無機系抗菌剤微粒子が繊維外に多数顕ゎ れていることによって、無機系抗菌剤微粒子自体の抗菌作用が十分に発揮されて高 い抗菌特性を有する。
ポリオレフイン繊維シート (la)では、無機系抗菌剤微粒子の 1/100以上露出箇所 の数が、ポリオレフイン繊維シート面積 1. 0 X 10_2mm2当たり 2箇所以上であること が好ましぐ 3箇所以上であることがより好ましぐ 4箇所以上であることが更に好まし い。
ポリオレフイン繊維シート (la)では、「無機系抗菌剤微粒子の 1/100以上露出箇 所を、ポリオレフイン繊維シート面積 1. 0 X 10— 2mm2当たり 1箇所以上の割合で有す る」という要件を満たす限りは、当該露出部分の SEM写真に基づいて算出される面 積が 0· 01 m2未満であっても構わない。
[0021] 無機系抗菌剤微粒子がポリオレフイン繊維の表面から露出しているか否かは、ポリ ォレフィン繊維シートを、ポリオレフイン繊維シートの表面側から走査型電子顕微鏡( SEM)にて撮影した写真(「SEM写真」から判別することができる。ポリオレフイン繊 維の表面から露出して!/、る無機微粒子部分は、ポリオレフイン系樹脂よりなる繊維部 分に比べて明色になっており、繊維を形成しているポリオレフイン系樹脂部分と明確 に区另リできる。
[0022] ポリオレフイン繊維シート(la)では、ポリオレフイン繊維シートの表面を撮影した SE M写真における無機系抗菌剤微粒子が露出した明色部分のサイズおよび数を測定 することによって、無機系抗菌剤微粒子の 1/100以上露出箇所のポリオレフイン繊 維シート面積 1. O X 10_2mm2当たりの数を調べることができる。
具体的には、無機系抗菌剤微粒子が球形または球形に近!/、形状である場合は、 ポリオレフイン繊維の表面から露出して!/、る無機系抗菌剤微粒子部分は、 SEM写真 では、常に所定の直径を有する円または円に近い形状として撮影されるので(球の 断面はどこをとつても円形)、その円の直径を測定して、球形をなす無機系抗菌剤微 粒子の平均粒径と対比することによって、無機系抗菌剤微粒子の体積の 1/100以 上がポリオレフイン繊維表面から露出しているか否かを判定することができる。 例えば、走査型電子顕微鏡(SEM)で撮影された写真において、球形の無機系抗 菌剤微粒子がポリオレフイン繊維表面から露出している部位に相当する円の直径が 無機系抗菌剤微粒子の平均粒径と同じであれば、無機系抗菌剤微粒子の体積の 1 /2以上がポリオレフイン繊維表面から露出していることになる。また、無機系抗菌剤 微粒子の露出部分に相当する撮影された円の直径が無機系抗菌剤微粒子の平均 粒径の 1/20以上であれば、無機系抗菌剤微粒子の体積の 1/100以上がポリオレ フィン繊維表面から露出していることになる。
[0023] 一方、ポリオレフイン系樹脂中に含有させる無機系抗菌剤微粒子の形状が球形ま たは球形に近!/、形状をなして!/、な!/、場合は、 SEM写真におけるポリオレフイン繊維 の表面から露出している無機系抗菌剤微粒子部分の形状は必ずしも円形またはそ れに近い形状にはならない。また、ポリオレフイン繊維の表面から露出している無機 系抗菌剤微粒子部分の撮影された形状がたまたま円形またはそれに近い形状であ つても、露出部分の体積が無機系抗菌剤微粒子の体積の 1/100以上になっていな いことがある。そのような場合には、 SEM写真における無機系抗菌剤微粒子の露出 部分のサイズからは、無機系抗菌剤微粒子の体積の 1/100以上がポリオレフイン繊 維の表面から露出しているか否かを判定することが困難になり易い。そのため、無機 系抗菌剤微粒子が球形または球形に近い形状でない場合は、露出部分の体積割合 を求めるのではなぐ SEM写真に基づく無機系抗菌剤微粒子の露出部分の面積に よって、その露出程度を判定する。
[0024] 本発明のマスク用フィルタでは、マスク用フィルタをなす積層シートの内側に配置す るポリオレフイン繊維シート(I)として、ポリオレフイン繊維シートの表面の SEM写真に おいて、無機系抗菌剤微粒子が、 0. 01 m2以上の面積でポリオレフイン繊維の表 面に露出している箇所力 S、ポリオレフイン繊維シート面積 1. 0 X 10_2mm2当たり 1箇 所以上存在してレ、る上記したポリオレフイン繊維シート (lb)を用いた場合にも、ポリオ レフイン繊維シート(lb)を形成して!/、るポリオレフイン繊維の表面に無機系抗菌剤微 粒子が多数露出していることによって、ポリオレフイン繊維シート (la)を用いた場合と 同様に、マスク用フィルタに高い抗菌性能を付与することができる。
ポリオレフイン繊維シート(lb)では、無機系抗菌剤微粒子が 0. 01 m2以上の面 積でポリオレフイン繊維の表面に露出している箇所力 S、ポリオレフイン繊維シート面積 1. 0 X 10_2mm2当たり 2箇所以上であることが好ましぐ 3箇所以上であることがより 好ましぐ 4箇所以上であることが更に好ましい。
ポリオレフイン繊維シート (lb)では、「無機系抗菌剤微粒子が、 0. 01 m2以上の 面積でポリオレフイン繊維の表面に露出している箇所カ、ポリオレフイン繊維シート面 積 1. 0 X 10— 2mm2当たり 1箇所以上存在する」という要件を満たす限りは、ポリオレ フィン繊維の表面から露出している無機系抗菌剤微粒子部分の体積が無機系抗菌 剤微粒子の体積の 1/100未満であっても構わない。
[0025] ポリオレフイン繊維中に含有させる無機系抗菌剤微粒子が球形または球形に近い 形状の場合は、マスク用フィルタをなす積層シートの内側に位置するポリオレフイン 繊維シートは、ポリオレフイン繊維シート(la)およびポリオレフイン繊維シート(lb)の いずれか一方に該当するものであってもよいし、または両方に該当するものであって あよい。
[0026] ポリオレフイン繊維シート(la)およびポリオレフイン繊維シート(lb)の表面を走査型 電子顕微鏡(SEM)にて撮影した写真には、ポリオレフイン繊維シートの最表面に位 置するポリオレフイン繊維と共に、その奥(内側)に位置するポリオレフイン繊維も写つ ているが、写真からは最表面に位置するポリオレフイン繊維と内側に位置するポリオ レフイン繊維の判別が難しいことが多いので、本発明では、ポリオレフイン繊維の表面 力、ら露出している無機系抗菌剤微粒子部分のサイズや数の測定に当たっては、最表 面に位置するポリオレフイン繊維である力、または内側に位置するかポリオレフイン繊 維であるかを区別せずに、 SEM写真に写っているポリオレフイン繊維のすべてを対 象としてポリオレフイン繊維の表面から露出している無機系抗菌剤微粒子部分のサイ ズゃ数を測定するものとし、したがってポリオレフイン繊維シート(la)およびポリオレフ イン繊維シート (lb)における上記規定は、そのようにして測定したときのィ直をいう。
[0027] ポリオレフイン繊維シート(I) [すなわちポリオレフイン繊維シート(la)および(lb)、以 下同じ]を構成するポリオレフイン繊維中に含有させる無機系抗菌剤微粒子としては 、繊維やポリオレフイン繊維シート (I)を製造する際の断糸、無機系抗菌剤微粒子の 脱落、「ショット」(繊維状にならないポリマー玉)の発生などを防止する観点から、平 均粒径 0. 01〜; !O ^ mのものカ好ましく、 0. 1〜8 111のものカより好ましく、 0. 3〜 6 111のものが更に好ましい。無機系抗菌剤微粒子の平均粒径が 10 mよりも大き いと、繊維やポリオレフイン繊維シート(I)を製造する際に断糸、繊維からの無機系抗 菌剤微粒子の脱落、ショットの発生などが起き易くなり、一方 0. 01 m未満であると 無機系抗菌剤微粒子の凝集などが生じて、ポリオレフイン繊維中に均一に混合され に《なる。
本明細書における無機系抗菌剤微粒子の平均粒径は、レーザー回折散乱式粒度 分布測定装置を使用して測定される平均粒径であり、その具体的な測定法は以下の 実施例に記載するとおりである。
[0028] ポリオレフイン繊維シート(I)を構成するポリオレフイン繊維中に含有させる無機系 抗菌剤微粒子としては、人体に対して安全で、繊維の溶融紡糸時の加熱などにより 揮発、分解、変質などを生じず、かつ短期間で抗菌作用が低下しない無機系抗菌剤 微粒子のいずれもが使用できる。
本発明で用い得る無機系抗菌剤微粒子の例としては、銀イオン、銅イオン、亜鉛ィ オン、錫イオンなどの抗菌作用を有する金属イオンを無機担体に保持させた無機系 抗菌剤微粒子、酸化チタン系無機系抗菌剤微粒子などを挙げることができ、これらの 1種または 2種以上を用いることができる。
抗菌性を有する金属イオンを無機担体に保持させた無機系抗菌剤微粒子では、無 機担体の種類は特に制限されず、ポリオレフイン繊維シート (I)の劣化作用などを示 さな!/、ものであれば!/、ずれも使用でき、イオン交換能や金属イオン吸着能を有してレ、 て金属イオンの保持能の高い無機担体が好ましく用いられる。そのような無機担体の 例としては、ゼォライト、リン酸ジルコニウム、リン酸カルシウムなどを挙げることができ 、そのなかでも高!/、イオン交換能を有するゼォライトが特に好まし!/、。
上記した無機系抗菌剤微粒子のうちでも、銀イオンを前記した無機担体に保持さ せた無機系抗菌剤微粒子が特に好ましく用いられる。
[0029] ポリオレフイン繊維シート (I)を形成するポリオレフイン繊維中の無機系抗菌剤微粒 子の含有量は、特に制限されず、繊維を形成するポリオレフインの種類、繊維繊度、 無機系抗菌剤微粒子の種類や粒子径などに応じて調整することができる。一般的に は、紡糸時のトラブル防止などの点から、ポリオレフイン繊維を形成するポリオレフイン 系樹脂組成物の質量 (無機系抗菌剤微粒子などをも含むポリオレフイン系樹脂組成 物の質量)に基づいて、無機系抗菌剤微粒子の含有量は、 0. 01〜; 10質量%である こと力好ましく、 0. 05〜5質量0 /0であることがより好ましぐ 0.;!〜 2質量0 /0であること が更に好ましい。
[0030] ポリオレフイン繊維シート(I)を形成するポリオレフイン繊維は、その平均繊維径が、 0. 5〜; 15〃 mであることカ好ましく、 0. 7〜; 10〃 mであることカより好ましく、 0. 8〜7 〃mであることが更に好ましぐ l〜5〃mであることが一層好ましい。当該ポリオレフィ ン繊維の平均繊維径を、前記範囲にすることによって、ポリオレフイン繊維中に含有 させた無機系抗菌剤微粒子の繊維表面からの露出度や露出数が大きくなつて、ポリ ォレフィン繊維シート (I)の抗菌性能が一層高くなり、し力、も柔軟性、フィルタ性能に 優れたものとなる。ポリオレフイン繊維の平均繊維径が 0· 5 m未満であるとポリオレ フィン繊維シート(I)の強度不足、取り扱い性不良などが生ずることがある。一方、ポリ ォレフィン繊維の平均繊維径が 15 mを超えると、ポリオレフイン繊維中に含まれる 無機系抗菌剤微粒子のポリオレフイン繊維表面からの露出度が低下して、ポリオレフ イン繊維シート (I)の抗菌性能が低下する。
なお、本明細書でレ、うポリオレフイン繊維シートを形成するポリオレフイン繊維の平 均繊維径は、ポリオレフイン繊維シートを走査型電子顕微鏡(SEM)にて撮影した写 真から測定した繊維径から求められる平均値であり、その詳細については以下の実 施例に記載するとおりである。
[0031] ポリオレフイン繊維シート (I)の厚さは、製造安定性、取り扱い性、抗菌効果、塵埃 などの除去性(分離性)、マスクへの加工性などの点から、 0. 05〜5mmであることが 好ましく、 0.;!〜 3mmであることがより好ましぐ 0. 15〜2mmであることが更に好ま しい。ポリオレフイン繊維シート (I)が薄すぎると、強度の低下、抗菌効果や塵埃など の除去効果の低下、乾式不織布と積層する際の取り扱い性の不良、形態維持不良 などが生じ易くなり、一方ポリオレフイン繊維シート(I)が厚すぎると、ポリオレフイン繊 維シートと乾式不織布との積層シートからなるマスク用フィルタが重くなつたり、柔軟 性が失われて、取り扱い性、マスクへの加工性、マスクの着用性などが劣るものになり 易い。
[0032] ポリオレフイン繊維シート (I)の目付は、製造安定性、取り扱!/、性などの点から、 3〜
200g/m2であることが好ましぐ 5〜100g/m2であることがより好ましぐ 10〜50g /m2であることが更に好ましい。
ポリオレフイン繊維シート (I)の目付が 3g/m2未満であると、強度が低くなり、一方 2 00g/m2を超えると、重くなつたり、柔軟性が失われたりして、取り扱い性が劣るもの になり易い。
[0033] 当該ポリオレフイン繊維を形成するポリオレフイン系樹脂としては、ポリプロピレン、 ポリエチレン、ポリブテンなどのポリオレフイン樹脂を挙げることができ、これらの 1種ま たは 2種以上を用いることができる。そのうちでも、特にポリプロピレンが、特にメルトブ ロー法によってポリオレフイン繊維シート(I)を製造する際の成形性に優れており、し 力、も低コストであることから好ましく用いられる。
さらに、無機系抗菌剤微粒子を含有させたポリオレフイン系樹脂組成物を用いて、 メルトブロー法によってポリオレフイン繊維シート (I)を製造する場合には、無機系抗 菌剤微粒子がポリマー中に含まれていることによって、「ショット」と称されるポリマー玉 が非常に発生し易くなる。ショットの多発したポリオレフイン繊維シート(不織布)をマス ク用フィルタに用いると「漏れ」が生ずる力 ポリプロピレンを用いてポリオレフイン繊維 シート (I)を形成すると、そのようなショットの発生を防ぐことができる。
[0034] また、ポリオレフイン繊維を形成するポリオレフイン系樹脂としては、 JIS K 7210 に基づいて、温度 230°C、荷重 2. 16kgおよび測定時間 10分の条件下で測定したメ ノレトフローレート(MFR)力 5〜2500g/10分、特に 40〜; 1600g/10分のものカ好 ましく用いられる。 MFRが前記範囲のポリオレフイン系樹脂を用いることによって、ポ リオレフイン繊維シート (I)を製造する際の繊維化が円滑に且つ均一に行われて、繊 維径が細ぐ地合が均一となる。なお、ポリオレフイン繊維を形成するポリオレフイン系 樹脂が、 2種以上のポリオレフイン系樹脂の混合物である場合は、前記した MFRは、 2種以上のポリオレフイン系樹脂の混合物の MFRをいう。
[0035] 特に、ポリオレフイン繊維シート(I)の製造に当たっては、ポリオレフイン系樹脂中に 無機系抗菌剤微粒子を一度に混合してポリオレフイン系樹脂組成物をつくり、それを 用いてポリオレフイン繊維シート(I)を製造してもよ!/、が、無機系抗菌剤微粒子をポリ ォレフィン繊維の表面に多数露出させて、高い抗菌作用を有するポリオレフイン繊維 シート (I)を円滑に得るためには、ポリオレフイン繊維シート (I)の製造に用いる無機 系抗菌剤微粒子含有ポリオレフイン系樹脂組成物を次のようにして調製することが好 ましい。
すなわち、メルトフローレートの差の絶対値が下記の数式(1)を満足するポリオレフ イン系樹脂 (A)とポリオレフイン系樹脂(B)を使用し、無機系抗菌剤微粒子をポリオレ フィン系樹脂 (A)の溶融下に混合してポリオレフイン系樹脂 (A)の組成物をつくり、そ の組成物を無機系抗菌剤微粒子を含有しな!/、ポリオレフイン系樹脂(B)と混合して 無機系抗菌剤微粒子を含有するポリオレフイン系樹脂組成物をつくった後に、その ポリオレフイン系樹脂組成物を用いてポリオレフイン繊維シート (I)を製造することが 好ましい。
0≤ I MFR -MFR
A B I ≤600 (1)
[上記式中、 MFR はポリオレフイン系樹脂(A)のメルトフローレート、 MFRはポリオ
A B
レフイン系樹脂(B)のメルトフローレートであり、両メルトフローレートはいずれも、 JIS
K 7210に従って、温度 230°C、荷重 2. 16kg、測定時間 10分の条件下に測定し たときのメルトフローレート(単位: g/10分)である。 ]
[0036] 上記の数式(1)を満たすポリオレフイン系樹脂 (A)とポリオレフイン系樹脂(B)を用 いて上記した方法で調製して無機系抗菌剤微粒子含有ポリオレフイン系樹脂組成物 を用いてポリオレフイン繊維シート (I)を製造するに当たっては、ポリオレフイン系樹脂 (A)の MFRとポリオレフイン系樹脂(B)の MFRの差の絶対値は、 400以下である
A B
こと力 り好ましく、 0〜300であることが更に好ましい。
[0037] ポリオレフイン系樹脂 (A)とポリオレフイン系樹脂(B)を使用し、ポリオレフイン系樹 脂 (A)中に無機系抗菌剤微粒子を予め混合し、それにポリオレフイン系樹脂(B)を 混合して無機系抗菌剤微粒子を含有するポリオレフイン系樹脂組成物を調製し、当 該ポリオレフイン系樹脂組成物を用いてポリオレフイン繊維シート (I)を製造するに当 たっては、ポリオレフイン系樹脂 (A) (無機系抗菌剤微粒子を含有させる前の樹脂): ポリオレフイン系樹脂(B)の使用割合は、質量比で、 99 : 1〜; 1 : 99であることが好まし く、 80 : 20〜3 : 97であることカより好ましく、 50 : 50〜5: 95であることカ更に好ましい
[0038] ポリオレフイン系樹脂 (A)とポリオレフイン系樹脂(B)を使用して上記した方法で無 機系抗菌剤微粒子を含有するポリオレフイン系樹脂組成物を調製するに当たっては 、二軸押出機などを使用して押し出しながらポリオレフイン系樹脂 (A)に無機系抗菌 剤微粒子を混合した後にそれにポリオレフイン系樹脂(B)を混合してもよいし、または マスターバッチを用いてチップブレンドの後に押出してもよい。マスターバッチ法によ る場合は、例えば、ポリプロピレンなどのポリオレフイン系樹脂 (A)に無機系抗菌剤微 粒子を練り込んだマスターバッチを準備し、これにポリプロピレンなどのポリオレフイン 系樹脂 (B)を混合して無機系抗菌剤微粒子を含有するポリオレフイン系樹脂組成物 を調製することによって、無機系抗菌剤微粒子のポリオレフイン系樹脂中での分散が 良好となり、無機系抗菌剤微粒子がポリオレフイン繊維に露出しやすくなる。
[0039] ポリオレフイン系樹脂中への無機系抗菌剤微粒子の混合装置としては、無機系抗 菌剤微粒子をポリオレフイン系樹脂中に均一に混合し得る装置であればいずれのも のも使用でき、二軸押出機などの混練装置を使用することが、ポリオレフイン系樹脂 中に無機系抗菌剤微粒子を生産性よぐ均一に混合できる点から好ましい。
[0040] ポリオレフイン繊維シート(I)におけるポリオレフイン繊維を形成する無機系抗菌剤 微粒子を含有するポリオレフイン系樹脂組成物は、本発明の効果を損なわな!/、範囲 で、必要に応じて他の重合体や添加剤を含有していてもよい。添加剤としては、例え ば酸化防止剤、ラジカル吸収剤、紫外線吸収剤などの耐候安定剤、界面活性剤、顔 料などを挙げること力 Sできる。
[0041] ポリオレフイン繊維シート(I)の製造に当たっては、上記した特性を備えるポリオレフィ ン繊維シート (la)および/またはポリオレフイン繊維シート (lb)を製造し得る方法で あればいずれの方法を採用してもよぐそのうちでも、メルトブロー法によってポリオレ フィン繊維シート(I)を製造することが極めて好ましい。メルトブロー法によってポリオ レフイン繊維シート (I)を製造することによって、ポリオレフイン繊維シート (I)を形成す るポリオレフイン繊維の平均繊維径が一般に 15 m以下、更には lO ^ m以下、特に 5 m以下と極めて小さくなり、それに伴って無機系抗菌剤微粒子がポリオレフイン繊 維シート (I)を形成するポリオレフイン繊維の表面から多く露出して!/、て高!/、抗菌作 用を有し、し力、も柔軟性、フィルタ性能などに優れるポリオレフイン繊維シート(I)を円 滑に製造することができる。
[0042] メルトブロー法によるポリオレフイン繊維シート(不織布)の製造方法につ!/、ては、非 特許文献 1にメルトブロー法についての基本的な装置および方法が開示されて以来 、多くの方法が提案されている。ポリオレフイン繊維シートをメルトブロー法で製造す るに当たっては、非特許文献 1に記載されている方法や、その他従来から知られてい る既知のメルトブロー法を採用することができる。
例えば、無機系抗菌剤微粒子を含有するポリオレフイン系樹脂組成物をメルトプロ ー不織布製造装置に供給して、そのエタストルーダー(押出機)で 160〜340°Cにて 溶融した後、複数の紡糸孔が一列に配列した口金から温度 200〜320°Cで吐出す ると同時に紡糸孔の近傍に設けたスリットから 200〜330°Cの加熱空気を噴出させて 吐出した繊維を細化し、それを下方に位置するネットコンベアなどの上に捕集するこ とによってポリオレフイン繊維シートを製造することができる。
[0043] 本発明のマスク用フィルタでは、マスク用フィルタをなす積層シートは、乾式不織布
(II) /ポリオレフイン繊維シート(I) /乾式不織布 (II)からなる 3層構造を有して!/、ても よ!/、し、または表面層をなす乾式不織布 (II)と内側に位置するポリオレフイン繊維シ 一 HI)との間に、無機系抗菌剤微粒子を含有しないポリオレフインを用いて形成した ポリオレフイン繊維よりなるシート [すなわちポリオレフイン繊維シート(III) ]よりなる層 を更に有していてもよい。乾式不織布(II)よりなる表面層とポリオレフイン繊維シート(I )よりなる層の間にポリオレフイン繊維シート(III)よりなる層を更に設けることにより、マ スク用フィルタをなす積層シートの厚さ、 目付、通気度、捕集効率の調整などをより緻 密に行うことができる。
[0044] 本発明のマスク用フィルタ力 ポリオレフイン繊維シート(III)を更に有する積層シー トからなる場合は、当該積層シートの層構造としては、
(a) 乾式不織布 (II) (マスクにしたときの表面側) /ポリオレフイン繊維シート (III)/ポ リオレフイン繊維シート 乾式不織布 (II) (マスクにしたときの口許側);
(b) 乾式不織布 (Π) (マスクにしたときの表面側) /ポリオレフイン繊維シート (I) /ポリ ォレフィン繊維シート (III)/乾式不織布(Π) (マスクにしたときの口許側);
(c) 乾式不織布 (II) (マスクにしたときの表面側) /ポリオレフイン繊維シート (ΙΠ) /ポリオレフイン繊維シート(I) /ポリオレフイン繊維シート (III) /乾式不織布 (II) (マ スクにしたときの口許佃 J);
などを挙げること力 Sできる。
[0045] 無機系抗菌剤微粒子を含有しな!/、ポリオレフイン繊維よりなるポリオレフイン繊維シ 一ト(III)としては、無機系抗菌剤微粒子を含有しないポリオレフイン系樹脂を用いて 製造したメルトブロー不織布、スパンボンド不織布力 接着性、通気性の点から好ま しく用いられる。
ポリオレフイン繊維シート(III)を構成するポリオレフイン繊維の平均繊維径は、ポリ ォレフィン繊維シート(I)と同じように、 0· 5〜; 15 111であること力 S好ましく、 0. 7〜10 〃mであることがより好ましぐ 0. 8〜7 mであることが更に好ましぐ 1〜5 111であ ることが一層好ましい。
また、ポリオレフイン繊維シート(III)の目付は、 5〜; 100g/m2であることが好ましぐ 10〜70g/m2であることがより好ましぐ 10〜50g/m2であることが更に好ましい。 ポリオレフイン繊維シート(III)の厚さは、 0. 05〜5mmであることが好ましぐ 0. ;!〜 3mmであることがより好ましぐ 0. 15〜2mmであることが更に好ましい。
[0046] ポリオレフイン繊維シート(I)、またはポリオレフイン繊維シート(I)とポリオレフイン繊 維シート (III)は、本発明のマスク用フィルタにおける塵埃などの除去効率 (濾過効率 、捕捉率)を向上させるために、エレクトレット化(帯電処理)しておくことが好ましい。 特に、ポリオレフイン繊維シート (I)およびポリオレフイン繊維シート (III)を構成するポ リオレフイン繊維がポリプロピレンからなっている場合は、工業的にエレクトレット化し やすぐまた帯電効果が長期間安定して持続するので好ましい。ポリオレフイン繊維 シート(I)およびポリオレフイン繊維シート(III)のエレクトレット化は、一般的なエレクト レット化設備を用いて行うことができる。エレクトレット化方法および条件としては、代 表的には、針状電極を使用して、電極距離 10〜50mm、印加電圧 10〜50kV、温 度 20〜; 120°Cの条件下で行うのがよい。
[0047] 本発明のマスク用フィルタをなす積層シートが両表面に有する乾式不織布(II)とし ては、サーマルボンド不織布、スパンボンド不織布、機械結合不織布(スパンレース 不織布、ニードルパンチング不織布等)などを挙げることができ、これらの 1種または 2 種以上を用いることができる。
そのうち、サーマルボンド不織布は、溶融接着性の短繊維(通常は低融点の熱可 塑性重合体よりなる短繊維)を用いて形成した薄!、繊維ウェブに加熱を施して繊維 同士を溶融接着させて製造した不織布である。
本発明で用い得るサーマルボンド不織布の代表例としては、
(a 高融点熱可塑性重合体よりなる芯部と低融点熱可塑性重合体よりなる鞘部とか らなる芯鞘型複合紡糸短繊維または芯鞘型混合紡糸短繊維を、必要に応じて非溶 融性の短繊維と共に、混綿、開繊、ウェブ化した後に、加熱処理して芯鞘型複合紡 糸短繊維または芯鞘型混合紡糸短繊維の鞘成分の溶融接着作用によって繊維同 士を接着して得られるサーマルボンド不織布;
(a )低融点熱可塑性重合体短繊維と高融点熱可塑性重合体短繊維および/また
2
は熱で溶融しない短繊維とを混綿、開繊、ウェブ化した後に、加熱処理して低融点 の熱可塑性重合体短繊維を溶融させて繊維同士を接着して得られるサーマルボンド 不織布;
などを挙げること力 Sできる。
[0048] 上記(a )のサーマルボンド不織布の製造に用いる芯鞘型複合紡糸短繊維または 芯鞘型混合紡糸短繊維では、芯成分をなす高融点熱可塑性重合体と鞘成分をなす 低融点熱可塑性重合体の融点差が 10°C以上であることが好ましぐ 20〜150°Cで あることがより好まし!/、。芯鞘型複合紡糸短繊維または芯鞘型混合紡糸短繊維にお ける重合体の組み合わせとしては、例えばポリプロピレン (芯) /ポリエチレン (鞘)、 ポリエチレンテレフタレート(芯) /ポリエチレン(鞘)、ポリプロピレン(芯) /共重合ポ リプロピレン(鞘)、ポリエチレンテレフタレート(芯)/共重合ポリエチレンテレフタレー ト (鞘)などを挙げること力 Sできる。
[0049] 上記(a )のサーマルボンド不織布の製造に用いる低融点熱可塑性重合体短繊維 と高融点熱可塑性重合体短繊維の融点差は 10°C以上であることが好ましぐ 20〜1 50°Cであることがより好ましい。上記(a )のサーマルボンド不織布を製造するための
2
短繊維の組み合わせとしては、例えば、ポリエチレン短繊維 (低融点)/ポリプロピレ ン短繊維(高融点)、ポリエチレン短繊維 (低融点)/ポリエチレンテレフタレート短繊 維(高融点)、共重合ポリプロピレン短繊維 (低融点) /ポリプロピレン短繊維(高融点 )、共重合ポリエチレンテレフタレート短繊維 (低融点)/ポリエチレンテレフタレート 短繊維(高融点)、ポリエチレン短繊維 (低融点) /セルロース繊維(非溶融)、ポリエ チレン短繊維 (低融点) /綿繊維 (非溶融)などを挙げることができる。
[0050] また、スパンボンド不織布としては、紡糸ノズルから吐出されたフィラメント状の化学 繊維を空気流などによって延伸処理した後、コンベア上に直接集積して連続ウェブ を形成し、ウェブを形成している化学繊維 (フィラメント)同士を、接着剤、融着、繊維 相互の絡み合などによって接合または絡合して得られる不織布のいずれも使用でき そのうちでも、スパンボンド不織布としては、ポリエステル、ナイロン、ポリプロピレン などのような、繊維形成性の熱可塑性重合体を溶融紡糸して得られるフィラメント繊 維から形成したもの力 ポリオレフイン繊維シートとの積層のし易さ、スパンボンド不織 布自体の製造の容易性や入手容易性、寸法安定性、強度などの点から好ましい。
[0051] 機械結合不織布としては、スパンレース不織布や、短繊維状の合成繊維(例えばポ リエステル、ナイロン、ポリオレフイン、アクリルなどからなる繊維)、天然繊維(綿、麻、 羊毛など)、それらの混合物を混綿、開繊、カード処理などを施してウェブ状にし、そ のウェブをニードルパンチング処理して繊維同士を絡合させた不織布を用いることが できる。
[0052] 本発明では、マスク用フィルタをなす積層シートの表面に有する乾式不織布 (II)と して、サーマルボンド不織布およびスパンボンド不織布力 ポリオレフイン繊維シート( I)やポリオレフイン繊維シート(III)との積層の容易性、寸法安定性などの点から好ま しく用いられ、特にサーマルボンド不織布がより好ましく用いられる。
[0053] マスク用フィルタをなす積層シートの両表面に有する乾式不織布 (II)では、それを 構成する繊維の平均繊維径が 15〜 50 H mであること力 S好ましく、 20〜40 μ mである こと力 り好ましく、 20〜30 111であることが更に好ましい。乾式不織布(Π)を構成す る繊維の平均繊維径が小さすぎると、通気性を損ない易ぐ一方大きすぎると積層シ ートが硬くて、風合が悪いものになり易い。
[0054] また、乾式不織布 (II)の厚さは、製造安定性、取り扱!/、性、ポリオレフイン繊維シー トとの積層の容易性、寸法安定性などの点から、 0. 10-0. 50mmであることが好ま しく、 0. 15〜0. 40mmであることカより好ましく、 0. 18〜0. 30mmであることカ更 に好ましい。乾式不織布(Π)が薄すぎると、強度の低下、ポリオレフイン繊維シート(I) と積層する際の取り扱い性の不良、へたりなどが生じ易くなり、一方乾式不織布(II) が厚すぎると、積層シートからなるマスク用フィルタが重くなつたり、柔軟性が失われ て、取り扱い性、マスクへの加工性、装着感などが劣るものになり易い。
[0055] 乾式不織布(Π)の目付は、 15〜60g/m2であることが好ましぐ 20〜50g/m2で あること力 り好ましく、 25〜40g/m2であることが更に好ましい。
乾式不織布(Π)の目付が小さすぎると、強度の低下などが生じ易くなり、一方乾式 不織布(Π)の目付が大きすぎると、マスク用フィルタの通気性悪化、加工不良などが 生じ易くなる。
[0056] マスク用フィルタをなす積層シートの両表面に有する乾式不織布 (II)は、同じであ つてもよいし、または異なっていてもよい。
本発明のマスク用フィルタをなす積層シートの層構造の具体例としては、
(a)サーマルボンド不織布/ポリオレフイン繊維シート サーマルボンド不織布;
(b)サーマルボンド不織布(マスクにしたときの表面側)/メルトブロー不織布 [ポリオ レフイン繊維シート(III) ]/ポリオレフイン繊維シート(I) /サーマルボンド不織布(マ スクにしたときの口許佃 J);
(c)サーマルボンド不織布(マスクにしたときの表面側)/スパンボンド不織布 [ポリオ レフイン繊維シート(III) ]/ポリオレフイン繊維シート(I) /サーマルボンド不織布(マ スクにしたときの口許佃 J);
(d)サーマルボンド不織布 (マスクにしたときの表面側)/ポリオレフイン繊維シート (I) /メルトブロー不織布 [ポリオレフイン繊維シート(ΙΠ) ]/サーマルボンド不織布(マス クにしたときの口許側); (e)サーマルボンド不織布 (マスクにしたときの表面側)/ポリオレフイン繊維シート (I) /スパンボンド不織布 [ポリオレフイン繊維シート(III) ]/サーマルボンド不織布(マス クにしたときの口許側);
(f)サーマルボンド不織布(マスクにしたときの表面側)/スパンボンド不織布 [ポリオ レフイン繊維シート (III)] /ポリオレフイン繊維シート(1) /スパンボンド不織布 [ポリオ レフイン繊維シート (III)] /サーマルボンド不織布 (マスクにしたときの口許側);
(g)サーマルボンド不織布(マスクにしたときの表面側)/メルトブロー不織布 [ポリオ レフイン繊維シート (ΙΠ)] /ポリオレフイン繊維シート メルトブロー不織布 [ポリオレ フィン繊維シート (ΠΙ)] /サーマルボンド不織布(マスクにしたときの口許側); などを挙げること力 Sできる。
上記したうちでも、マスク用フィルタは、上記(a)、 (d)、 (e)の積層シートからなること 力 通気性が良好である点、抗菌性シートが表面に近い部分に配置されている点か ら好ましい。
[0057] 本発明のマスク用フィルタをなす積層シート全体の厚さは、取り扱い性、マスクへの 加工性、当該マスク用フィルタを用いて形成したマスクの着用感、寸法安定性などの 点から、 0. ;!〜 7mmであることが好ましぐ 0. 2〜5mmであることがより好ましぐ 0. 2〜3mmであることが更に好ましい。マスク用フィルタをなす積層シートが薄すぎると 、マスクに加工する際の取り扱い性の不良、強度、抗菌効果、塵埃などの除去効果 などの低下や、マスクにした際の着用性の不良、寸法安定性不良などが生じ易くなる 。一方、マスク用フィルタをなす積層が厚すぎると、マスクに加工する際の取り扱い性 の不良、通気性の低下による息苦しさの発生などが生じ易くなる。
[0058] また、本発明のマスク用フィルタをなす積層シート全体の目付は、 35〜300g/m2 であること力 S好ましく、 40〜200g/m2であることがより好ましぐ 50〜100g/m2であ ることが更に好ましい。
積層シートの目付が小さすぎると、強度の低下、加工不良などが生じ易くなり、一方 積層シートの目付が大きすぎると、マスクへの加工性の不良、マスク用フィルタの通 気性悪化、着用感の不良などが生じ易くなる。
[0059] 本発明のマスク用フィルタは、マスクにしたときに息苦しくなくて着用感に優れる点、 保温効果などのから、フラジール法による通気度が 10〜200c/cm2/secであるこ と力 S好ましく、 20〜150cc/cm2/secであることがより好ましい。
ここで、本明細書でいう「フラジール法による通気度」とは、 JIS L1096によって測 定した通気度である。
[0060] マスク用フィルタをなす積層シートを製造するためのポリオレフイン繊維シート(I)と 乾式不織布 (II)、および場合によりポリオレフイン繊維シート(III)の積層方法は特に 制限されず、前記したシートおよび不織布を良好に接着できればどのような方法であ つてもよい。
例えば、ホットメルト接着剤を用いる方法、加熱エンボスによる方法などを挙げること ができる。そのうちでも、加熱エンボスによる方法力 s、接着剤を特別に使用する必要 カ¾ぐ操作が簡単である点から好ましく採用される。
ポリオレフイン繊維シート(I)と乾式不織布 (II)、および場合によりポリオレフイン繊 維シート (III)の積層は、積層シート(マスク用フィルタ)の通気性が阻害されなレ、接着 方式であればいずれを採用してもよぐそのうちでも、線接着、点接着、線接着と点接 着の組み合わせによる接着力、通気性を良好に維持しながら積層できるので好ましく 採用される。
加熱エンボス法を採用して、線接着方式により行う場合は、一般に、エンボス温度 1 00〜; 140°C、線圧 20〜60kg/cm、圧着面積 1〜25%が好ましく採用される。
[0061] 本発明のマスク用フィルタをなす積層シートの製造に当たっては、例えば、積層シ ートの製造に用いるシートおよび不織布の全てを所定の順序 (位置関係)で重ねて、 一度の加熱エンボス処理や接着剤による接着操作で積層シートを製造してもよいし、 積層シートの製造に用いる 3つ以上のシートおよび不織布のうちの 2つを予め積層' 接着した後、残りのシートおよび/または不織布を積層 ·接着して積層シートを製造 してもよい。
積層シートの内部に位置するポリオレフイン繊維シート (I)よりなる層と乾式不織布( II)よりなる表面層との間にポリオレフイン繊維シート(III)よりなる層が介在した積層シ ートでは、予め製造されて!/、るポリオレフイン繊維シート(III)をポリオレフイン繊維シ 一 Hi)を製造するための装置 (メルトブロー装置など)に連続的に供給しながら、当 該ポリオレフイン繊維シート(m)の上にポリオレフイン繊維シート (i)を製造するための 無機系抗菌剤微粒子を含有するポリオレフイン系樹脂組成物をメルトブロー法などに よって吐出してポリオレフイン繊維シート(in)上にポリオレフイン繊維シート(I) (不織 布)が積層したポリオレフイン繊維複合シートをつくり、そのポリオレフイン繊維複合シ ートの両面に乾式不織布(π)を配置して接着 ·積層する方法が好ましく採用される。
[0062] 本発明のマスク用フィルタを用いて作製されるマスクの形状や構造は特に制限され ず、本発明のマスク用フィルタ力 マスク着用者の口許および鼻孔を覆うための材料 として少なくとも用いられたマスクであれば!/ヽずれでもよ!/、。
何ら限定されるものではないが、本発明のマスク用フィルタを用いてなすマスクの例 としては、図 1および図 2に示すものを挙げることができる。
[0063] 図 1の(a)のマスク Aは、 口許および鼻孔を覆うための覆い部 1が、本発明のマスク 用フィルタから形成され、耳掛け部 2が伸縮性のある他の不織布などから形成された マスクである。
図 1の(a)のマスク Aは、図 1の(b)に示す 1対のマスク用片 A、 Aの先端の接合部
1 2
位 3a, 3b同士を、ヒートシールなどによって図 1の(a)に示すようにして接合して接合 部 3とすることによって形成すること力 Sできる。図 1の (b)に示す 1対のマスク用片 Al、 A2は、本発明のマスク用フィルタ laと他の伸縮性の不織布 2aを接合したものを、図 1の(b)に示す形状に裁断したものである。なお、図 1の(b)において、 4はマスク用フ ィルタ laと不織布 2aの接合部であり、 5は耳掛け部 2を形成するために不織布 2aに 設けた切れ目(耳を通すための孔部)である。
図 2のマスク Aは、 口許および鼻孔を覆うための覆い部 1の両端に、耳掛け用の紐 部 2cを取り付けたマスクである。
図 1および図 2のマスクは、口許および鼻孔を覆うための覆い部 1が、無機系抗菌 剤微粒子がポリオレフイン繊維表面から多数露出してレ、るポリオレフイン繊維シート(I )よりなる層を内側に有し、両表面の乾式不織布 (II)よりなる層を有する積層シートか らなる本発明のマスク用フィルタから形成されていることにより、高い抗菌作用、抗ウイ ルス作用、粉塵濾過作用を有し、し力、も着用時に息苦しくなく着用感に優れている。 実施例 [0064] 以下に、本発明を実施例などによりさらに具体的に説明する力 本発明は以下の 実施例に何ら限定されない。なお、以下の実施例および比較例における各物性値は 、下記の方法により測定または評価した。
Figure imgf000027_0001
MFRの測定装置(宝工業社製「L244」)を使用して、 JIS K 7210に従って、温 度 230°C、荷重 2. 16kgおよび測定時間 10分の条件下で以下の実施例および比較 例で使用したポリオレフインのメルトフローレート(MFR) (g/10分)を測定した。
[0066] (2)無機系抗菌剤微粒子の平均粒径:
(i) 以下の実施例および比較例で使用した無機系抗菌剤微粒子 (銀系無機系抗菌 剤微粒子)に、水を加えて十分に撹拌して、水中に均一に分散させた。
(ii) 上記 (i)で得られた分散液を用いて、レーザー回折散乱式粒度測定装置 (堀場 製作所製「LA—920」 )を使用して、粒度分布解析を行った。
なお、測定時、測定装置に内蔵されている超音波ホモジナイザーにより超音波を 1 分間照射した後に測定を行い、体積基準の粒度分布により計算される算術平均値( ii m)を無機系抗菌剤微粒子の平均粒径とした。
[0067] (3)ポリオレフイン繊維シートを形成して!/、るポリオレフイン繊維の平均繊維径: ポリオレフイン繊維シートから試験片(縦 X横 = 5cm X 5cm)を採取し、試験片の表 面における中央部(対角線の交点を中心とする部分)を走査型電子顕微鏡(SEM) を使用して 1000倍の倍率で写真撮影した。これにより得られた写真の中央部(対角 線の交点)を中心として写真上に半径 15cmの円を描き、その円内に含まれる全ての 未融着ポリオレフイン繊維(通常約 50〜100本程度)の長さ方向の中央部またはそ れに近い箇所での繊維径をノギスにより測定し、その平均値を採ってポリオレフイン 繊維の平均繊維径( m)とした。
なお、ポリオレフイン繊維の平均繊維径の測定に当たっては、写真に撮影されてい るポリオレフイン繊維がポリオレフイン繊維シートの最表面に位置するポリオレフイン繊 維であるかまたは内側に位置するポリオレフイン繊維であるかを区別せずに、 SEM 写真に写っているポリオレフイン繊維のすべてを対象として平均繊維径を求めた。
[0068] (4)ポリオレフイン繊維シート表面での無機系抗菌剤微粒子の露出箇所の数の測定 (i)無機系抗菌剤微粒子の 1/100以上露出箇所の数:
エレクトレット化後のポリオレフイン繊維シートから試験片(縦 X横 = 5cm X 5cm)を 採取し、試験片の表面における中央部(対角線の交点を中心とする部分)を、走査型 電子顕微鏡(SEM)を使用して 2000倍の倍率で写真撮影した。これにより得られた 写真の中央部(対角線の交点)を中心点として写真上で 1辺が 14cmの正方形(実際 のポリオレフイン繊維シートでは 1辺が 100 H mの正方形)を描き、その正方形の範囲 内に存在する、無機系抗菌剤微粒子がポリオレフイン繊維表面に露出している箇所 をピックアップすると共にその直径を測定し、それらの露出箇所のうち、無機系抗菌 剤微粒子の 1/100以上が露出している箇所の数を合計し、その合計数から、ポリオ レフイン繊維シート表面 1. 0 X 10— 2mm2当たりの無機系抗菌剤微粒子の 1/100以 上露出箇所の数を求めた。試験片 10個を用意し、同様の測定を 10回行って、平均 値を採用した。
なお、ポリオレフイン繊維中に含まれる無機系抗菌剤微粒子力 例えば平均粒径 2 . 5 inの球形微粒子である場合は、直径 0. 13 m以上の円状に撮影された無機 系抗菌剤微粒子の露出部分が、 1/100以上露出箇所に相当する(以下の実施例 2 では、平均粒径が 2. 5 inの球形の無機系抗菌剤微粒子を用いた)。
(ii)無機系抗菌剤微粒子が 0. 01 in2以上の面積で露出している箇所の数: 上記 (i)で無機系抗菌剤微粒子の 1/100以上露出箇所の寸法と数を測定した後 、 SEM写真における上記 (i)の測定範囲(測定領域)と同じ領域内において、無機系 抗菌剤微粒子がポリオレフイン繊維表面に露出している箇所をピックアップしてその 箇所の面積を測定し、無機系抗菌剤微粒子が 0. 01 m2以上の面積で露出してい る箇所の数を数え、ポリオレフイン繊維シート表面 1. 0 X 10— 2mm2当たりの「0. 01 in2以上の面積で露出している箇所」の数を求めた。試験片 10個を用意し、同様の 測定を 10回行って、平均値を採用した。
なお、無機系抗菌剤微粒子がポリオレフイン繊維の表面に露出している箇所の面 積は、例えば、 SEM写真における無機系抗菌剤微粒子の露出箇所をその形状どお りに正確に切り取り、切り取ったものの重さ(wb)を測ると共に、同じ SEM写真におけ る基準面積 S (例えば縦 X横 = 10 m X 10 mの正方形)の重さ (wa)を測ることに よって、下記の数式(2)から求めることができる。 無機系抗菌剤微粒子の露出箇所の面積 = S X (wb/wa) (2)
[0070] (5)ポリオレフイン繊維シートおよびマスク用フィルタの通気度:
JIS L1096に準拠してフラジール法により通気度を測定した。
[0071] (6)マスク用フィルタの抗菌試験 (殺菌活性値):
以下の実施例および比較例で得られたマスク用フィルタについて、 JIS L1902「繊 維製品の抗菌性試験方法」に準じて抗菌試験を行って、殺菌活性値を求めた。殺菌 活性値が高レ、ほど抗菌作用に優れて!/、る。
採用した試験条件は下記のとおりである。
'菌液条件 1/20NB (普通ブイヨン)、 0. 2ml
•作用条件: 37°C、 18時間
•菌種:クレプシエラ ·二ユウモニァェ (Klebsiella pneumoniae)
•殺菌活性値:作用時間前後の生菌数の差を対数で表した値
殺菌活性値 = Log (作用直後生菌数/作用後生菌数)
[0072] (7)マスク用フィルタの抗ウィルス試験:
以下の実施例および比較例で得られたマスク用フィルタについて、 JIS Z2801「抗 菌加工製品 抗菌性試験方法 ·抗菌効果」に準じて抗ウィルス試験を行った。
採用した試験条件は下記のとおりである。
'菌種:インフルエンザ A ウィルス(A/New caledonia/20/99)
•菌液条件:作用ウィルス量 0. 2ml
•作用条件: 25°C、24時間
•効果判定:ウィルス感染価が初期の 10%以下の場合に「効果あり」と判定し、 10 % を超える場合を「効果なし」と判定した。
[0073] (8)マスク用フィルタの粉塵濾過性能 (粉塵捕捉性能):
(i) 以下の実施例および比較例で得られたマスク用フィルタから、直径が 110mmの 円形の試験片を採取し、その試験片を粉塵濾過性能測定装置 (柴田科学社製 ΓΑΡ 6310FP」)の測定セル (濾過面の直径 = 85mm)に装着した。
(ii) 直径が 2 m以下で且つ数量平均粒径が 0. 5 mのシリカダストを試験用粉塵 として用いて、当該粉塵 (シリカダスト)の濃度が 30 ± 5mg/m3である粉塵含有空気 を調製した。
(iii) 上記 (ii)で調製した粉塵 (シリカダスト)含有空気を、 30L/minの流量で上記( i)で準備した測定セルに 1分間流した。このとき、セルの上流側の空気 (濾過前空気) 中の粉塵の濃度と、セルの下流側の空気 (濾過後の空気)中の粉塵の濃度を、光散 乱光量積分方式の検出機器を使用して測定した。
(iv) 上記(iii)で測定したセルの上流側の粉塵の濃度を D1、セルの下流側の粉塵 の濃度 D2として、下記の数式(3)から粉塵の捕捉率(%)を求めた。 粉塵の捕捉率(% ) = { D 1— D2) /D 1 } X 100 (3)
《実施例 1》
(1)エレクトレット化した抗菌性のポリオレフイン繊維シート(I)の製造:
(i) ポリプロピレン (A) (MFR= 300g/10分) 80質量部に、リン酸ジルコニウムを 主体とする無機イオン交換体に銀イオンを担持させた銀系無機抗菌剤微粒子(東亞 合成社製「ノバロン AG300」、平均粒径 1 μ m、略立方体形) 20質量部を配合して、 銀系無機抗菌剤微粒子を含有するマスターバッチを調製した。
(ii) 上記(i)で調製したマスターバッチと、ポリプロピレンお) (MFR= 700g/10分 )を、マスターバッチ:ポリプロピレン = 1: 9の質量比で混合し、一般的なメルトブロー ン設備を使用し、紡糸温度 280°C、エア温度 290°C、エア圧力 1. 2kg/cm2、単孔 吐出量 0. 4g/孔 ·分、捕集距離 30cm、口金における紡糸孔数 2850個(1列配置) にてメルトブロー紡糸を行い、抗菌性のポリオレフイン繊維シート(I)を製造した。
(iii) 上記 (ii)で得られた抗菌性のポリオレフイン繊維シート(I)を一般的なエレクトレ ット設備を使用し、針状電極と電極の距離 = 25mm、印加電圧— 25kV、温度 80°C の条件下でエレクトレット処理を行!/、、エレクトレット化した抗菌性のポリオレフイン繊 維シート (I)を製造した。
(iv) 上記 (iii)で得られたエレクトレット化した抗菌性のポリオレフイン繊維シート (I)は 、 目付が 18g/m2であり、フラジール法による通気度は 100cc/cm2/secであった 。また、当該ポリオレフイン繊維シート(I)を構成するポリオレフイン繊維の平均繊維径 は 3· 6 mであった。また、このポリオレフイン繊維シート(I)における無機系抗菌剤 微粒子が 0. 01 ,1 m2以上の面積でポリオレフイン繊維表面に露出している箇所を上 記した方法で測定したところ、繊維シート表面 1. 0 X 10_2mm当たり 1. 2箇所であつ た。
[0075] (2)マスク用フィルタの製造
(i) 上記 (1)で得られたエレクトレット化した抗菌性のポリオレフイン繊維シート (I)の一 方の表面側に、マスク表面材としてサーマルボンド不織布(目付 = 32g/m2、ポリエ チレンテレフタレートよりなる芯部とポリエチレンよりなる鞘部とからなる芯鞘型複合短 繊維製)を配置し、前記ポリオレフイン繊維シートのもう一方の表面側にマスク口許材 として前記と同じサーマルボンド不織布を配置した後、接着部分が幅 0. 3mmの縦 筋状柄が 3mm間隔で配置したストライプ状になるようにして (接着面積 10%)、ェン ボス温度 135°C、線圧 40kg/cmの条件下で線状に加熱エンボスして、サーマルポ ンド不織布/エレクトレット化抗菌性ポリオレフイン繊維シート(I) /サーマルボンド不 織布の 3層構造を有する積層シートからなマスク用フィルタを製造した。
(ii) 上記 (i)で得られたマスク用フィルタは、 目付が 82g/m2、フラジール法による 通気度が 40cc/cm2/secであり、通気性に優れるものであった。
このマスク用フィルタの抗菌試験および抗ウィルス試験を上記した方法で行ったとこ ろ、下記の表 1に示すように、抗菌性および抗ウィルス性ともに優れていた。
また、このマスク用フィルタの粉塵濾過性能を上記した方法で調べたところ、下記の 表 1に示すように、粉塵の捕捉率が高ぐ粉塵濾過性能も良好であった。
[0076] 《実施例 2》
(1)エレクトレット化した抗菌性のポリオレフイン繊維複合シートの製造:
(i) ポリプロピレン (MFR= 700g/10分)を一般的なメルトブロー設備を使用し、紡 糸温度 250°C、エア温度 260°C、エア圧力 0. 8kg/cm2、単孔吐出量 0. 5g/孔. 分、捕集距離 35cm、口金における紡糸孔数 2850個(1列配置)にてメルトブロー紡 糸を行い、低密度のポリプロピレン製のメルトブロー不織布(ィ) [ポリオレフイン繊維 シート (III)に相当]を製造した。このメルトブロー不織布 (ィ)は、 目付が 10g/m2、フ ラジール法による通気度が 250cc/cm2/secであった。また、メルトブロー不織布( ィ)を構成するポリプロピレン繊維の平均繊維径は 4. 8 H mであった。
(ii) (a) ポリプロピレン (A) (MFR= 300g/10分) 80質量部に、リン酸ジルコニウム を主体とする無機イオン交換体に銀イオンを担持させた銀系無機抗菌剤微粒子(東 亞合成社製「ノバロン AG300」、平均粒径 1 m、略立方体形) 20質量部を配合して 、銀系無機抗菌剤微粒子を含有するマスターバッチを調製した。
(b) 上記(a)で調製したマスターバッチとポリプロピレン(B) (MFR= 700g/10分) をマスターバッチ:ポリプロピレン = 1: 9の質量比で混合し、一般的なメルトブローン 設備を使用し、紡糸温度 210°C、エア温度 220°C、エア圧力 0. 9kg/cm2、単孔吐 出量 0. lg/孔 ·分、捕集距離 16cm、口金における紡糸孔数 2850個(1列配置)の 条件下に、上記 (i)で製造したメルトブロー不織布 (ィ)の上に直接メルトブロー紡糸 を行って、銀系無機抗菌剤微粒子を含有しなレ、ポリプロピレン繊維よりなるメルトプロ ー不織布 (ィ) [ポリオレフイン繊維シート (III) ]の上に、銀系無機抗菌剤微粒子を含 有するポリプロピレン繊維よりなるメルトブロー不織布 [ポリオレフイン繊維シート(I)に 相当]が接着 ·積層した 2層構造を有する抗菌性のポリオレフイン繊維複合シートを製 造した。これにより得られた 2層構造のポリオレフイン繊維複合シートでは、銀系無機 抗菌剤微粒子を含有するポリプロピレン繊維よりなるポリオレフイン不織布 [ポリオレフ イン繊維シート (1) ]部分の目付が 6g/m2であり、したがって 2層構造のポリオレフイン 繊維複合シート全体の目付は 16g/m2であった。
(iii) 上記 (ii)で得られた 2層構造のポリオレフイン繊維複合シートを、実施例 1で使 用したのと同じエレクトレット設備を使用して、針状電極、電極距離 25mm、印加電圧 25kV、温度 80°Cの条件下で、ポリオレフイン繊維複合シートにおける銀系無機抗 菌剤微粒子を含有するポリプロピレン繊維よりなる不織布 [ポリオレフイン繊維シート( I) ]層を針状電極側としてエレクトレット処理を行って、抗菌性の帯電したポリオレフィ ン繊維複合シートを製造した。 (iv) 上記 (iii)で得られた抗菌性の帯電したポリオレフイン繊維複合シートは、 目付 力 S l 6g/m2、フラジール法による通気度が 123cc/cm2/secであった。また、銀系 無機抗菌剤微粒子を含有するポリプロピレン繊維よりなるメルトブロー不織布 [ポリオ レフイン繊維シート(I) ]層を構成するポリプロピレン繊維の平均繊維径は 1 · 2 μ mで あり、当該メルトブロー不織布層表面における無機系抗菌剤微粒子が 0. Ο ΐ μ ΐη &, 上の面積でポリオレフイン繊維表面に露出している箇所を上記した方法で測定したと ころ、繊維シート表面 1 · 0 X 10— 2mm当たり 1. 5箇所であった。
[0078] (2)マスク用フィルタの製造:
(i) 上記(1 )で得られたエレクトレット化した抗菌性のポリオレフイン繊維複合シート の一方の表面側に、マスク表面材としてサーマルボンド不織布(目付 = 32g/m2、ポ リエチレンテレフタレートよりなる芯部とポリエチレンよりなる鞘部とからなる芯鞘型複 合短繊維製)を配置し、前記ポリオレフイン繊維複合シートのもう一方の表面側に、マ スク口許材として前記と同じサーマルボンド不織布を配置した後、接着部分が、幅 0. 3mmの縦筋状柄が 3mm間隔で配置したストライプ状になるようにして (接着面積 10 %)、エンボス温度 135°C、線圧 40kg/cmの条件下で線状に加熱エンボスして、サ 一マルボンド不織布/エレクトレット化抗菌性ポリオレフイン繊維複合シート/サーマ ルボンド不織布からなる層構造を有する、マスク用フィルタとして用いるための積層シ ートを製造した。
(ii) 上記 (i)で得られたマスク用フィルタ(積層シート)は、 目付が 80g/m2、フラジ ール法による通気度が 50cc/cm2/secであり、通気性に優れるものであった。 このマスク用フィルタの抗菌試験および抗ウィルス試験を上記した方法で行ったとこ ろ、下記の表 1に示すように、抗菌性および抗ウィルス性ともに優れていた。
また、このマスク用フィルタの粉塵濾過性能を上記した方法で調べたところ、下記の 表 1に示すように、粉塵の捕捉率が高ぐ粉塵濾過性能も良好であった。
[0079] 《実施例 3》
( 1 )エレクトレット化した抗菌性のポリオレフイン繊維複合シートの製造:
(i) ポリプロピレン繊維製のスパンボンド不織布(目付 = 20g/m2、通気度 = 350c c/cmVsec) [ポリオレフイン繊維シート(III)に相当]を準備した。 (ii) ポリプロピレン (A) (MFR= 100g/10分) 80質量部に、ゼォライトに銀イオン を担持させた銀系無機抗菌剤微粒子(シナネンゼォミック社製「ゼォミック」、平均粒 径 2. δ μ ηι^略球形) 20質量部を配合して、銀系無機抗菌剤微粒子を含有するマス ターバッチを調製した。
(iii) 上記(ii)で調製したマスターバッチと、ポリプロピレンお) (MFR= 600g/10 分)を、マスターバッチ:ポリプロピレン = 1 : 9の質量比で混合し、実施例 1で使用した のと同じメルトブローン設備を使用し、紡糸温度 210°C、エア温度 220°C、エア圧力 0 . 9kg/cm2、単孔吐出量 0. lg/孔.分、捕集距離 16cm、 口金における紡糸孔数 2850個(1列配置)の条件下に、このメルトブロー設備の後方から上記 (i)で準備した スパンボンド不織布を連続的に供給しながら、当該スパンボンド不織布上に直接メル トブロー紡糸を行い、スパンボンド不織布上に銀系無機抗菌剤微粒子を含有するポ リプロピレン繊維よりなるメルトブロー不織布 [ポリオレフイン繊維シート(I)に相当 ]が 接着 '積層した 2層構造を有する抗菌性のポリオレフイン繊維複合シートを製造した。 これにより得られた 2層構造のポリオレフイン繊維複合シートでは、銀系無機抗菌剤 微粒子を含有するポリプロピレン繊維よりなるポリオレフイン不織布 [ポリオレフイン繊 維シート (1) ]部分の目付が 6g/m2であり、したがって 2層構造のポリオレフイン繊維 複合シート全体の目付は 26g/m2であった。
(iii) 上記 (ii)で得られた 2層構造のポリオレフイン繊維複合シートを、実施例 1で使 用したのと同じエレクトレット設備を使用して、針状電極、電極距離 30mm、印加電圧 27kV、温度 80°Cの条件下で、ポリオレフイン繊維複合シートにおける銀系無機抗 菌剤微粒子を含有するポリプロピレン繊維よりなる不織布 [ポリオレフイン繊維シート( I) ]層を針状電極側としてエレクトレット処理を行って、抗菌性の帯電したポリオレフィ ン繊維複合シートを製造した。
(iv) 上記 (iii)で得られた抗菌性の帯電したポリオレフイン繊維複合シートは、 目付 力 ¾6g/m2、フラジール法による通気度が 136cc/cm2/secであった。また、銀系 無機抗菌剤微粒子を含有するポリプロピレン繊維よりなるメルトブロー不織布 [ポリオ レフイン繊維シート(I) ]層を構成するポリプロピレン繊維の平均繊維径は 1 · 2 μ mで あり、当該メルトブロー不織布層表面における無機系抗菌剤微粒子が 0. Ο ΐ μ ΐη &, 上の面積でポリオレフイン繊維表面に露出している箇所を上記した方法で測定したと ころ、繊維シート表面 1. 0 X 10_2mm当たり 4. 9箇所であった。また、この繊維表面 における無機系抗菌剤微粒子の 1/100以上露出箇所の数を上記した方法で測定 したところ、繊維シート表面 1. 0 X 10_2mm2当たり 4. 5箇所であった。
[0081] (2)マスク用フィルタの製造:
(i) 上記(1)で得られたエレクトレット化した抗菌性のポリオレフイン繊維複合シート の一方の表面側に、マスク表面材としてサーマルボンド不織布(目付 = 32g/m2、ポ リエチレンテレフタレートよりなる芯部とポリエチレンよりなる鞘部とからなる芯鞘型複 合短繊維製)を配置し、前記ポリオレフイン繊維複合シートのもう一方の表面側に、マ スク口許材として前記と同じサーマルボンド不織布を配置した後、接着部分が、幅 0. 3mmの縦筋状柄が 3mm間隔で配置したストライプ状になるようにして (接着面積 10 %)、エンボス温度 135°C、線圧 40kg/cmの条件下で線状に加熱エンボスして、サ 一マルボンド不織布/エレクトレット化抗菌性ポリオレフイン繊維複合シート/サーマ ルボンド不織布からなる層構造を有する、マスク用フィルタとして用いるための積層シ ートを製造した。
(ii) 上記 (i)で得られたマスク用フィルタ(積層シート)は、 目付が 90g/m2、フラジ ール法による通気度が 55cc/cm2/secであり、通気性に優れるものであった。 このマスク用フィルタの抗菌試験および抗ウィルス試験を上記した方法で行ったとこ ろ、下記の表 1に示すように、抗菌性および抗ウィルス性ともに優れていた。
また、このマスク用フィルタの粉塵濾過性能を上記した方法で調べたところ、下記の 表 1に示すように、粉塵の捕捉率が高ぐ粉塵濾過性能も良好であった。
[0082] 《実施例 4》
(1) 実施例 1の(2)の(i)において、マスク表面材およびマスク口元材をなす乾式不 織布として、サーマルボンド不織布の代わりに、ポリプロピレン製のスパンボンド不織 布(目付 25g/m2)に用いた以外は実施例 1と同様に、マスク用フィルタ (積層シート )を製造した。
(2) 上記(1)で得られたマスク用フィルタ (積層シート)は、 目付が 68g/m2、フラジ ール法による通気度が 60cc/cm2/secであり、通気性に優れるものであった。 このマスク用フィルタの抗菌試験および抗ウィルス試験を上記した方法で行ったとこ ろ、下記の表 1に示すように、抗菌性および抗ウィルス性ともに優れていた。
また、このマスク用フィルタの粉塵濾過性能を上記した方法で調べたところ、下記の 表 1に示すように、粉塵の捕捉率が高ぐ粉塵濾過性能も良好であった。
[0083] 《比較例 1》
(1)エレ外レット化したポリオレフイン繊維シートの製造:
(i) ポリプロピレン (MFR= 700g/10分)を一般的なメルトブローン設備を使用し、 紡糸温度 275°C、エア温度 285°C、エア圧力 1. Okg/cm2、単孔吐出量 0. 4g/孔
•分、捕集距離 30cm、口金における紡糸孔数 2850個(1列配置)にてメルトブロー紡 糸を行い、ポリプロピレン製のメルトブロー不織布(ポリオレフイン繊維シート)を製造 した。
(ii) 上記(i)で得られたポリオレフイン繊維シート(ポリプロピレン製のメルトブロー不 織布)を、実施例 1で使用したのと同じエレクトレット設備を使用して、針状電極、電極 距離 25mm、印加電圧— 25kV、温度 80°Cの条件下でエレクトレット処理を行って帯 電したポリオレフイン繊維シートを製造した。
(iii) 上記 (ii)で得られた帯電したポリオレフイン繊維シートは、 目付が 20g/m2、フ ラジール法による通気度が 72cc/cm2/sec、ポリプロピレン繊維の平均繊維径が 3 • 5 μ mであつに。
[0084] (2)マスク用フィルタの製造:
(i) 上記(1)で得られたエレクトレット化したポリオレフイン繊維シートの一方の表面 側に、マスク表面材として実施例 1の(2)で使用したのと同じサーマルボンド不織布を 配置し、前記ポリオレフイン繊維シートのもう一方の表面側に、マスク口許材として前 記と同じサーマルボンド不織布を配置した後、接着部分が、幅 0. 3mmの縦筋状柄 力 ¾mm間隔で配置したストライプ状になるようにして (接着面積 10%)、エンボス温 度 135°C、線圧 40kg/cmの条件下で線状に加熱エンボスして、サーマルボンド不 織布/エレクトレット化ポリオレフイン繊維シート/サーマルボンド不織布からなる層 構造を有する、マスク用フィルタとして用いるための積層シートを製造した。
(ii) 上記 (i)で得られたマスク用フィルタ(積層シート)は、 目付力 4g/m2、フラジ ール法による通気度力 ¾0cc/cm2/secであった。
このマスク用フィルタの抗菌試験および抗ウィルス試験を上記した方法で行ったとこ ろ、下記の表 1に示すように、抗菌性および抗ウィルス性は認められなかった。
また、このマスク用フィルタの粉塵濾過性能を上記した方法で調べたところ、下記の 表 1に示すとおりであった。
[0085] 《比較例 2》
(1)エレ外レット化したポリオレフイン繊維シートの製造:
(i) ポリプロピレン (A)
Figure imgf000037_0001
80質量部に、リン酸ジルコニウムを主 体とする無機イオン交換体に銀イオンを担持させた銀系無機抗菌剤微粒子 (東亞合 成社製「ノバロン AG300」、平均粒径 1 μ m、略立方体形) 20質量部を配合して、銀 系無機抗菌剤微粒子を含有するマスターバッチを調製した。
(ii) 上記(i)で調製したマスターバッチと、ポリプロピレンお) (MFR= 700g/10分 )を、マスターバッチ:ポリプロピレン = 1: 9の質量比で混合し、一般的なメルトブロー ン設備を使用し、紡糸温度 280°C、エア温度 295°C、エア圧力 1. 2kg/cm2、単孔 吐出量 0. 4g/孔 ·分、捕集距離 30cm、口金における紡糸孔数 2850個(1列配置) にてメルトブロー紡糸を行い、ポリオレフイン繊維シートを製造した。
(iii) 上記 (ii)で得られたポリオレフイン繊維シートを実施例 1で使用したのと同じエレ タトレット設備を使用し、針状電極と電極の距離 = 25mm、印加電圧— 25kV、温度 8 0°Cの条件下でエレクトレット処理を行い、エレクトレット化したポリオレフイン繊維シー トを製造した。
(iv) 上記 (iii)で得られたエレクトレット化したポリオレフイン繊維シートは、 目付が 18 g/m2であり、フラジール法による通気度は 98cc/cm2/secであった。また、当該 ポリオレフイン繊維シートを構成するポリオレフイン繊維の平均繊維径は 3. 8 ii mで あった。また、このポリオレフイン繊維シート(I)における無機系抗菌剤微粒子が 0. 0 1 m2以上の面積でポリオレフイン繊維表面に露出している箇所を上記した方法で 測定したところ、繊維シート表面 1. 0 X 10_2mm当たり 0. 4箇所であった。
[0086] (2)マスク用フィルタの製造
(i) 上記(1)で得られたエレクトレット化したポリオレフイン繊維シートの一方の表面 側に、マスク表面材として実施例 lの(2)の ωで使用したのと同じサーマルボンド不 織布を配置し、前記ポリオレフイン繊維シートのもう一方の表面側にマスク口許材とし て前記と同じサーマルボンド不織布を配置した後、接着部分が幅 0. 3mmの縦筋状 柄が 3mm間隔で配置したストライプ状になるようにして (接着面積 10%)、エンボス 温度 135°C、線圧 40kg/cmの条件下で線状に加熱エンボスして、サーマルボンド 不織布/エレクトレット化ポリオレフイン繊維シート/サーマルボンド不織布の 3層構 造を有する積層シートからなマスク用フィルタを製造した。
(ii) 上記 (i)で得られたマスク用フィルタは、 目付が 82g/m2、フラジール法による 通気度力 s38cc/cm2/secであった。
このマスク用フィルタの抗菌試験および抗ウィルス試験を上記した方法で行ったとこ ろ、下記の表 1に示すように、抗菌性および抗ウィルス性ともに劣っていた。
また、このマスク用フィルタの粉塵濾過性能を上記した方法で調べたところ、下記の 表 1に示すとおりであった。
《比較例 3》
(1)エレクトレット化した抗菌性のポリオレフイン繊維複合シートの製造:
(i) ポリプロピレン (MFR= 700g/10分)を一般的なメルトブローン設備を使用し、 紡糸温度 275°C、エア温度 285°C、エア圧力 1. Okg/cm2、単孔吐出量 0. 4g/孔 •分、捕集距離 30cm、口金における紡糸孔数 2850個(1列配置)にてメルトブロー 紡糸を行い、ポリプロピレン製のメルトブロー不織布(ィ) [ポリオレフイン繊維シート(II I)に相当]を製造した。このメルトブロー不織布 (ィ)は、 目付が 18g/m2であった。
(ii) 上記 (i)で得られたメルトブロー不織布 (ィ)に、一般的なコロナ処理設備を利用 して、処理速度 4m/分、電力 3kW、放電度 1. 8w/cm2で処理を行った結果、濡れ 張力は 44mN/mであった。
(iii) 市販の水系アクリルバインダーに、リン酸ジルコニウムを主体とする無機イオン 交換体に銀イオンを担持させた銀系無機抗菌剤微粒子 (東亞合成社製「ノバロン A G300J、平均粒径 1 ii m、略立方体形)を 20重量部となるように混合し、抗菌剤が均 一分散となるまで攪拌した。この抗菌剤含有バインダーを上記 (ii)で製造したメルトブ ローン不織布(ィ)にピックアップ率が 11 %となるように含浸した後、ニップ処理し、次 いで 120°Cで加熱乾燥して抗菌性のポリオレフイン繊維シートを製造した。
(iv) 上記 (iii)で得られた抗菌性のポリオレフイン繊維シートを、実施例 1で使用した のと同じエレクトレット設備を使用して、針状電極、電極距離 25mm、印加電圧 15 kV、温度 80°Cの条件下でエレクトレット処理を行い、抗菌性の帯電したポリオレフィ ン繊維シートを製造した。
(V) 上記 (iv)で得られた抗菌性の帯電したポリオレフイン繊維シートは、 目付が 20g フラジール法による通気度が 48cc/cm2/secであった。また、当該ポリオレ フィン繊維シートを構成するポリオレフイン繊維の平均繊維径は 4· 2 μ mであった。
[0088] (2)マスク用フィルタの製造:
(i) 上記(1 )で得られたエレクトレット化した抗菌性のポリオレフイン繊維シートの一 方の表面側に、マスク表面材として実施例 1の(2)で使用したのと同じサーマルボン ド不織布を配置し、前記ポリオレフイン繊維シートのもう一方の表面側に、マスク口許 材として前記と同じサーマルボンド不織布を配置した後、接着部分が、幅 0. 3mmの 縦筋状柄が 3mm間隔で配置したストライプ状になるようにして (接着面積 10%)、ェ ンボス温度 135°C、線圧 40kg/cmの条件下で線状に加熱エンボスして、サーマル ボンド不織布/エレクトレット化抗菌性ポリオレフイン繊維シート/サーマルボンド不 織布からなる層構造を有する、マスク用フィルタとして用いるための積層シートを製造 した。
(ii) 上記 (ii)で得られたマスク用フィルタ (積層シート)は、 目付が 84g/m2、フラジ ール法による通気度が 20cc/cm2/secであった。
このマスク用フィルタの抗菌試験および抗ウィルス試験を上記した方法で行ったとこ ろ、下記の表 1に示すとおりであった。
また、このマスク用フィルタの粉塵濾過性能を上記した方法で調べたところ、下記の 表 1に示すように、粉塵の捕捉率が低ぐ粉塵濾過性能に劣っていた。
[0089] [表 1] 実施例 実施例 実施例 実施例 :比較例 比較例 比較例
1 2 3 4 . 1 2 3
【ポリオレフイン繊碓 (複合)シート】
種類" A B C A I D E F 目付(gノ m2) 1 8 1 6 26 1 8 20 1 8 20 平均繊維径( m) 3. 6 1. 2 1. 2 I 3. 6 3. 5 3. 8 4. 2 無機系抗菌剤微粒子の平均粒径 ( m) 1 1 2. 5 1 - 1 1
1/100以上露出箇所の数 2:1
- - 4. 5
(箇所 1.0 X 10— ― 0 - - 面積 0.01 jUm2以上の露出箇所の数 3:1
1. 2 1. 5 4. 9 1. 0 0. 4 - (箇所ノ 1-0 X 1O 2mm2)
通 ¾1度 Lcc/ crrr sec 1 00 1 23 1 36 1 00 7 2 98 48
【マスク用フィルタ(積層シート)】
■層構造:
表面層(マスク表面材) TB TB TB SB TB TB TB 中間層" A B C A D E F 表面層 (マスク口許材) 4: TB TB TB SB TB TB TB
■物性 ·性能:
82 80 90 84 84 8 Z 84 目付 (g m2)
通 度 (ccノ cmソ sec) 40 50 55 30 30 38 20 抗菌試験〔殺菌活性値) >3. 3 >3 3 >3 3 >3 3 0 2. 2 >3. 3 効果 効果 効果 効果 効果 効果 効果 抗ウィルス試験
ぁリ あり あり あり なし なし あり 粉塵濾過性 (粉塵捕捉率) ( ) 89 9 1 9 1 90 92 88 42
1) ポリオレフイン繊維 (複合)シートの種類:
A:銀系無機抗茵剤微粒子を含有するポリプロピレン組成物製のメルトブロー不織布
B:銀系無機抗菌剤微粒子を含有しないポリプロピレン製のメルトブロー不織布と銀系無機抗菌剤 微粒子を含有するポリプロピレン組成物製のメルトブロー不織布を積層した複合シート
C:銀系無機抗菌剤微粒子を含有しないポリプロピレン製のスパンボンド不織布と銀系無機抗菌剤 微粒子を含有するポリプロピレン組成物製のメルトブロ一不織布を積層した複合シ一ト
D:銀系無機抗菌剤微粒子を含有しないポリプロピレン製のメルトブロ一不織布
E:銀系無機抗菌剤微粒子を含有するボリプロピレン組成物製のメルトブロー不織布
F:銀系無機抗菌剤微粒子をバインダ一により表面に付着させたポリプロピレン製のメルトブ口一
个繊布
2)繊維シートの 1.0 X 10_2mm2当たりの、無機系抗菌剤微粒子の体積の 1 /Ί 00以上がポリオレ フィン繊維表面に露出している箇所の数
3)繊維シートの 1. 0x10-2mm2当たりの、無機系抗菌剤微粒子が 0. 01 m2以上の面積でポリオレ フィン繊碓表面に露出している箇所の数
4) 表面層:
TB:サ一マルポンド不織布
SB:スパンボンド不織布
産業上の利用可能性
本発明のマスク用フィルタは、マスク用フィルタをなす積層シートの内側に位置する 抗菌性のポリオレフイン繊維シートを構成するポリオレフイン繊維中に練り込まれてい る無機系抗菌剤微粒子が繊維表面から多数露出しているため、高い抗菌作用、抗ゥ ィルス作用を安定して発揮し、し力、も粉塵濾過性能および通気性、更に強度および マスクへの加工性にも優れるため、マスクを製造するためのフィルタとして有効に 用できる。

Claims

請求の範囲
[1] 下記のポリオレフイン繊維シート(la)およびポリオレフイン繊維シート(lb)から選ば れる抗菌性のポリオレフイン繊維シート (I)よりなる層を内側に有し、両表面に乾式不 織布 (II)よりなる層を有する積層シートからなることを特徴とするマスク用フィルタ。
'ポリオレフイン繊維シート (la) :
無機系抗菌剤微粒子を含有するポリオレフイン系樹脂組成物よりなるポリオレフイン 繊維から形成され且つ無機系抗菌剤微粒子の体積の 1/100以上がポリオレフイン 繊維の表面に露出している箇所を繊維シート面積 1. O X 10_2mm2当たり 1箇所以 上の割合で有する抗菌性のポリオレフイン繊維シート。
'ポリオレフイン繊維シート (lb):
無機系抗菌剤微粒子を含有するポリオレフイン系樹脂組成物よりなるポリオレフイン 繊維から形成され且つ無機系抗菌剤微粒子が 0. 01 a m2以上の面積でポリオレフィ ン繊維の表面に露出している箇所を繊維シート面積 1. O X 10_2mm2当たり 1箇所以 上の割合で有する抗菌性のポリオレフイン繊維シート。
[2] 抗菌性のポリオレフイン繊維シート(la)およびポリオレフイン繊維シート(lb)を構成 するポリオレフイン繊維中に含まれる無機系抗菌剤微粒子の平均粒径が 0. 0;!〜 10 μ mである請求項 1に記載のマスク用フィルタ。
[3] 抗菌性のポリオレフイン繊維シート(la)およびポリオレフイン繊維シート(lb)を構成 するポリオレフイン繊維の平均繊維径が 0. 5~15 ^ mである請求項 1または 2に記載 のマスク用フィルタ。
[4] 抗菌性のポリオレフイン繊維シート(la)およびポリオレフイン繊維シート(lb)を構成 するポリオレフイン繊維が、無機系抗菌剤微粒子を含有するポリオレフイン系樹脂 (A )と無機系抗菌剤微粒子を含有しなレ、ポリオレフイン系樹脂 (B)を混合したポリオレフ イン系樹脂組成物であって且つポリオレフイン系樹脂(A)のメルトフローレート(MFR ) (g/10分)とポリオレフイン系樹脂(B)のメルトフローレート(MFR ) (g/10分)の
A B
差の絶対値が下記の数式(1)を満足するポリオレフイン系樹脂組成物から形成され てレ、る請求項 1〜3の!/、ずれか 1項に記載のマスク用フィルタ。 0≤ I MFR — MFR I ≤600 (1)
A B
[但し、 MFRおよび MFRは、いずれも、 JIS K 7210に従って、温度 230°C、
A B
荷重 2. 16kg,測定時間 10分の条件下に測定したときのメルトフローレート(単位: g /10分)である。 ]
[5] 抗菌性のポリオレフイン繊維シート(la)およびポリオレフイン繊維シート(lb)力 無 機系抗菌剤微粒子を含有するポリオレフイン系樹脂組成物を用いてメルトブロー法に よって製造した不織布である請求項 1〜4のいずれか 1項に記載のマスク用フィルタ。
[6] マスク用フィルタをなす積層シートが、表面層をなす乾式不織布 (II)と、抗菌性のポ リオレフイン繊維シート(la)またはポリオレフイン繊維シート(lb)との間に、無機系抗 菌剤微粒子を含有しなレ、ポリオレフイン繊維からなるポリオレフイン繊維シート (III)よ りなる層を更に有する請求項 1〜5のいずれか 1項に記載のマスク用フィルタ。
[7] 抗菌性のポリオレフイン繊維シート(la)およびポリオレフイン繊維シート(lb)が少な くともエレクトレット化されている請求項 1〜5のいずれ力、 1項に記載のマスク用フィル タ。
[8] 積層シートにおいて、当該積層シートを構成する各層がホットメルト樹脂を用いるか またはエンボス加工により接着されている請求項 1〜7のいずれ力、 1項に記載のマス ク用フイノレタ。
[9] 乾式不織布 (II) ヽサーマルボンド不織布、スパンボンド不織布およびスパンレー ス不織布から選ばれた乾式不織布である請求項 1〜8のいずれか 1項に記載のマス ク用フイノレタ。
[10] フラジール法による通気度が 10〜200cc/cm2/secである請求項 1〜9のいずれ 力、 1項に記載のマスク用フィルタ。
[11] 請求項 1〜; 10のいずれか 1項に記載のマスク用フィルタを用いて形成したマスク。
PCT/JP2007/069383 2006-10-04 2007-10-03 Filtre pour masque et masque formé à l'aide de celui-ci WO2008041726A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/443,326 US20100307503A1 (en) 2006-10-04 2007-10-03 Mask filter and mask produced using the same
EP07829122A EP2070564A1 (en) 2006-10-04 2007-10-03 Filter for mask and mask formed using the same
CN2007800413680A CN101534905B (zh) 2006-10-04 2007-10-03 口罩用滤材及采用该滤材的口罩

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006272546A JP4783707B2 (ja) 2006-10-04 2006-10-04 マスク用フィルタ
JP2006-272546 2006-10-04

Publications (1)

Publication Number Publication Date
WO2008041726A1 true WO2008041726A1 (fr) 2008-04-10

Family

ID=39268580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069383 WO2008041726A1 (fr) 2006-10-04 2007-10-03 Filtre pour masque et masque formé à l'aide de celui-ci

Country Status (5)

Country Link
US (1) US20100307503A1 (ja)
EP (1) EP2070564A1 (ja)
JP (1) JP4783707B2 (ja)
CN (1) CN101534905B (ja)
WO (1) WO2008041726A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119998A (ja) * 2008-11-21 2010-06-03 Ambic Co Ltd エレクトレット濾過布
US20180169447A1 (en) * 2010-06-25 2018-06-21 3M Innovative Properties Company Respirator that has inward nose region fold with high level conformation
CN115443181A (zh) * 2020-04-21 2022-12-06 奥升德功能材料运营有限公司 具有抗微生物或抗病毒性能的滤材和口罩

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006014236A1 (de) 2006-03-28 2007-10-04 Irema-Filter Gmbh Plissierbares Vliesmaterial und Verfahren und Vorrichtung zur Herstellung derselben
JP4972241B2 (ja) * 2006-10-04 2012-07-11 クラレクラフレックス株式会社 抗菌性の繊維シート
JP5072708B2 (ja) * 2008-05-15 2012-11-14 ユニ・チャーム株式会社 マスク
JP5175789B2 (ja) * 2009-04-06 2013-04-03 倉敷繊維加工株式会社 衛生マスク用複合不織布及びその製造方法
JP5260391B2 (ja) * 2009-04-06 2013-08-14 旭化成せんい株式会社 機能性シート
JP5573840B2 (ja) * 2009-07-08 2014-08-20 Jnc株式会社 積層エレクトレット不織布を用いたエアーフィルター材
JP5357658B2 (ja) * 2009-08-07 2013-12-04 クラレクラフレックス株式会社 複合繊維シート
CN102548439B (zh) * 2009-08-07 2015-03-25 尤妮佳股份有限公司 口罩
WO2011026515A1 (en) * 2009-09-02 2011-03-10 John Ribchester Face mask
MX2012010078A (es) * 2010-03-03 2012-09-12 3M Innovative Properties Co Cubrebocas dispensable y metodo para fabricar el mismo.
JP5721336B2 (ja) * 2010-03-19 2015-05-20 宝務 伊藤 ウイルス吸着用材
JP5667405B2 (ja) * 2010-10-05 2015-02-12 株式会社Nbcメッシュテック 防塵マスク用プレフィルタ及び防塵マスク
KR101962406B1 (ko) * 2010-10-25 2019-03-26 릭 엘. 채프먼 전략적 이형단면 섬유 및/또는 전하 제어제를 함유하는 섬유 블렌드를 사용하는 여과 물질
JP2012254272A (ja) * 2011-05-18 2012-12-27 Ikari Shodoku Kk マスクおよびマスク封入体
JP2013022583A (ja) * 2011-07-22 2013-02-04 Shinwa Corp エアフィルタろ材
JP5916468B2 (ja) * 2012-03-28 2016-05-11 株式会社クラレ 抗菌性ナノファイバー・シート、その製造方法およびフィルター
EP3159056A1 (de) * 2012-06-14 2017-04-26 Irema-Filter GmbH Filtermedium aus synthetischem polymer
AU2015261574B2 (en) * 2012-12-28 2018-01-18 San-M Package Co., Ltd. Mask
JP2014128387A (ja) 2012-12-28 2014-07-10 San-M Package Co Ltd マスク
US10398733B2 (en) 2013-03-15 2019-09-03 Cda Research Group, Inc. Topical copper ion treatments and methods of treatment using topical copper ion treatments in the dermatological areas of the body
US11318089B2 (en) 2013-03-15 2022-05-03 Cda Research Group, Inc. Topical copper ion treatments and methods of making topical copper ion treatments for use in various anatomical areas of the body
US11007143B2 (en) 2013-03-15 2021-05-18 Cda Research Group, Inc. Topical copper ion treatments and methods of treatment using topical copper ion treatments in the oral-respiratory-otic areas of the body
US11000545B2 (en) 2013-03-15 2021-05-11 Cda Research Group, Inc. Copper ion compositions and methods of treatment for conditions caused by coronavirus and influenza
US11083750B2 (en) 2013-03-15 2021-08-10 Cda Research Group, Inc. Methods of treatment using topical copper ion formulations
JP2014208318A (ja) * 2013-04-16 2014-11-06 東洋紡株式会社 抗菌性エレクトレットろ材
DE102013008402A1 (de) 2013-05-16 2014-11-20 Irema-Filter Gmbh Faservlies und Verfahren zur Herstellung desselben
US11484734B2 (en) 2013-09-04 2022-11-01 Octo Safety Devices, Llc Facemask with filter insert for protection against airborne pathogens
US9457207B2 (en) * 2013-09-04 2016-10-04 Waterford Mask Systems Inc. Facemask with filter insert for protection against airborne pathogens
USD785780S1 (en) * 2014-07-22 2017-05-02 Elizabeth Ann Scarbrough Respiratory filtration mask
JP2016078242A (ja) * 2014-10-10 2016-05-16 東洋紡株式会社 防護シート
DE102014117506A1 (de) 2014-11-28 2016-06-02 Filta Co., Ltd Filtermedium mit großem Faltenabstand
TW201622777A (zh) * 2014-12-17 2016-07-01 Toagosei Co Ltd 口罩用消臭過濾器及消臭口罩
CN107683204A (zh) * 2015-05-29 2018-02-09 王子控股株式会社 含金属氧化物及/或金属氢氧化物的片材
JPWO2017073675A1 (ja) * 2015-10-30 2018-08-16 株式会社ジムウェイ 抗ウイルス性衛生マスク
CN105795554B (zh) * 2015-12-07 2018-07-27 小米科技有限责任公司 口罩
WO2017145142A1 (en) 2016-02-25 2017-08-31 Nobio Ltd. Micro and nanoparticulate compositions comprising anti-microbially active groups
JP7021095B2 (ja) * 2016-10-17 2022-02-16 株式会社Nbcメッシュテック マスク
CN106637683B (zh) * 2016-11-17 2019-05-21 浙江水马环保科技有限公司 一种多元离子抗菌滤布及其制备方法
CN106621572B (zh) * 2016-11-17 2019-06-28 浙江水马环保科技有限公司 一种多元离子抗菌pp纤维滤芯及其制备方法
US20190062528A1 (en) 2017-08-30 2019-02-28 Nobio Ltd. Compositions and medical devices comprising anti-microbial particles
US20190239707A1 (en) * 2018-02-06 2019-08-08 James R. Alton Vacuum filter bag with silver-impregnated layer for antimicrobial action
DE102018002343A1 (de) * 2018-03-21 2019-09-26 Dräger Safety AG & Co. KGaA Atemhalbmaske
US11554276B2 (en) 2018-04-11 2023-01-17 Octo Safety Devices, Llc Facemask with facial seal and seal test device
US11193184B2 (en) 2019-02-22 2021-12-07 Cda Research Group, Inc. System for use in producing a metal ion suspension and process of using same
EP3972714A1 (en) * 2019-05-22 2022-03-30 UFI Innovation Center S.r.l. Air filtering element
TWI716080B (zh) * 2019-08-20 2021-01-11 南亞塑膠工業股份有限公司 雙軸延伸聚酯薄膜及其製造方法
EP4117475A4 (en) * 2020-03-10 2024-04-03 Argaman Tech Ltd MULTILAYER PROTECTIVE ANTIMICROBIAL MASK WITH NANOFIBER MEMBRANE
CN111991921A (zh) * 2020-06-03 2020-11-27 浙江净膜环保有限责任公司 一种口罩用滤材
IT202000014191A1 (it) * 2020-06-15 2021-12-15 Texol S R L Materiale filtrante per maschera ad uso sanitario
US20210392965A1 (en) * 2020-06-23 2021-12-23 S. Jermikko Johnson Face covering
USD910929S1 (en) 2020-06-30 2021-02-16 Joseph Chi Won Face mask
US20220008762A1 (en) * 2020-07-09 2022-01-13 Dana Rubin Antibacterial and Cellphone Radiation-proof Face Mask
CN111631461A (zh) * 2020-07-10 2020-09-08 深圳市君能高芯科技有限公司 抗菌防病毒可洗涤多功能口罩及其制备方法
JP6885502B1 (ja) * 2020-09-23 2021-06-16 凸版印刷株式会社 粘着シート及びその製造方法
WO2022103816A1 (en) * 2020-11-12 2022-05-19 Milwaukee Electric Tool Corporation Multilayer face-covering
US20220240605A1 (en) * 2021-01-29 2022-08-04 Bioserenity Face Mask Having a Combined Biocidal and Electrostatic Treatment
CN113337903A (zh) * 2021-06-01 2021-09-03 鹤山市东海塑料色母有限公司 一种抗病毒聚丙烯无纺布及其制备方法
US20230296284A1 (en) * 2022-03-15 2023-09-21 1st Vision Concepts, LLC Integrated ventilation register filter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05153874A (ja) 1991-12-04 1993-06-22 Kanebo Ltd べたがけ栽培用不織布シート
JPH08325915A (ja) 1995-03-23 1996-12-10 Idemitsu Petrochem Co Ltd 不織布、その積層体及び不織布の製造方法
JPH1119238A (ja) 1997-06-30 1999-01-26 Kokago Corp Kk 抗菌効果を有するマスク
JPH11267236A (ja) 1998-03-19 1999-10-05 Japan Vilene Co Ltd 抗菌性帯電フィルター
JP2004073603A (ja) * 2002-08-21 2004-03-11 Tonen Tapyrus Co Ltd 血液不浸透性マスク
JP2005198676A (ja) 2004-01-13 2005-07-28 Toyobo Co Ltd 抗ウイルスマスク
JP2006249615A (ja) * 2005-03-11 2006-09-21 Mitsui Chemicals Inc 抗菌性不織布およびその用途

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4856509A (en) * 1985-07-08 1989-08-15 Lemelson Jerome H Face mask and method
JPS63175117A (ja) * 1987-01-08 1988-07-19 Kanebo Ltd 抗菌性繊維構造物素材
US5441550A (en) * 1992-03-26 1995-08-15 The University Of Tennessee Research Corporation Post-treatment of laminated nonwoven cellulosic fiber webs
US5753343A (en) * 1992-08-04 1998-05-19 Minnesota Mining And Manufacturing Company Corrugated nonwoven webs of polymeric microfiber
GB2300578B (en) * 1995-05-11 1998-01-14 Matsushita Seiko Kk Gargling cup,antiviral mask,antiviral filter,antifungal,antibacterial,and antiviral filter air cleaner and air-cleaner-humidifier
US6007914A (en) * 1997-12-01 1999-12-28 3M Innovative Properties Company Fibers of polydiorganosiloxane polyurea copolymers
US20030075047A1 (en) * 2001-10-22 2003-04-24 Normand Bolduc Bactericidal after-filter device
US20040000313A1 (en) * 2002-06-28 2004-01-01 Kimberly-Clark Worldwide, Inc. Spunbonded/meltblown/spunbonded laminate face mask
US20040078860A1 (en) * 2002-10-25 2004-04-29 Bell Daryl Steven Single piece face mask
US7141518B2 (en) * 2003-10-16 2006-11-28 Kimberly-Clark Worldwide, Inc. Durable charged particle coatings and materials
US7306777B2 (en) * 2003-12-16 2007-12-11 Eastman Kodak Company Antimicrobial composition
US20050172968A1 (en) * 2004-02-05 2005-08-11 Iwao Hishida Mask
US7244291B2 (en) * 2005-05-02 2007-07-17 3M Innovative Properties Company Electret article having high fluorosaturation ratio
US7244292B2 (en) * 2005-05-02 2007-07-17 3M Innovative Properties Company Electret article having heteroatoms and low fluorosaturation ratio

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05153874A (ja) 1991-12-04 1993-06-22 Kanebo Ltd べたがけ栽培用不織布シート
JPH08325915A (ja) 1995-03-23 1996-12-10 Idemitsu Petrochem Co Ltd 不織布、その積層体及び不織布の製造方法
JPH1119238A (ja) 1997-06-30 1999-01-26 Kokago Corp Kk 抗菌効果を有するマスク
JPH11267236A (ja) 1998-03-19 1999-10-05 Japan Vilene Co Ltd 抗菌性帯電フィルター
JP2004073603A (ja) * 2002-08-21 2004-03-11 Tonen Tapyrus Co Ltd 血液不浸透性マスク
JP2005198676A (ja) 2004-01-13 2005-07-28 Toyobo Co Ltd 抗ウイルスマスク
JP2006249615A (ja) * 2005-03-11 2006-09-21 Mitsui Chemicals Inc 抗菌性不織布およびその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 48, no. 8, 1956, pages 1342 - 1346

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119998A (ja) * 2008-11-21 2010-06-03 Ambic Co Ltd エレクトレット濾過布
US20180169447A1 (en) * 2010-06-25 2018-06-21 3M Innovative Properties Company Respirator that has inward nose region fold with high level conformation
CN115443181A (zh) * 2020-04-21 2022-12-06 奥升德功能材料运营有限公司 具有抗微生物或抗病毒性能的滤材和口罩

Also Published As

Publication number Publication date
CN101534905A (zh) 2009-09-16
JP4783707B2 (ja) 2011-09-28
US20100307503A1 (en) 2010-12-09
CN101534905B (zh) 2013-06-05
JP2008086626A (ja) 2008-04-17
EP2070564A1 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
WO2008041726A1 (fr) Filtre pour masque et masque formé à l'aide de celui-ci
KR102069880B1 (ko) 나노섬유 필터가 가공된 마스크
US5645057A (en) Meltblown barrier webs and processes of making same
CN1096513C (zh) 含吸着剂颗粒的模压面罩及其制造方法
EP3632247A1 (en) Mask
CN101952498B (zh) 具有连续颗粒相的复合非织造纤维网及其制备和使用方法
US8303693B2 (en) Nanofiber filter facemasks and cabin filters
CN101437679B (zh) 包含粒子的纤维网
KR100697161B1 (ko) 효율이 저하되지 않는 유성 미스트 저항성 필터
JP5175789B2 (ja) 衛生マスク用複合不織布及びその製造方法
JP6877102B2 (ja) ウイルス除去用フィルター及びそれを用いたマスク
US20110232653A1 (en) Antimicrobial, dustproof fabric and mask
AU2007356885B2 (en) Highly charged, charge stable nanofiber web
JP5205650B2 (ja) 積層体およびその製造方法
JP5357658B2 (ja) 複合繊維シート
JP2017113670A (ja) エアフィルター用濾材およびエアフィルター
JP2005124777A (ja) 感染予防マスク
KR102159651B1 (ko) 서브필터층을 포함하여 낮은 흡기저항 및 여과효율이 향상된 마스크
EP4117475A1 (en) Multilayer protective antimicrobial mask comprising nanofiber membrane
JP7152034B2 (ja) フィルター濾材及びレスピレーター
JP2000117025A (ja) フィルター基材およびその製造方法ならびにマスク
JP2013070825A (ja) 衛生マスクの口元層基材
CN216533928U (zh) 口罩用片、卷绕体和口罩
CN213138069U (zh) 高过滤式纳米熔喷布
US20230311039A1 (en) Advanced filtration structures for mask and other filter uses

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780041368.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829122

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007829122

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12443326

Country of ref document: US