WO2008032636A1 - Composition de résine pour un soudage laser et article moulé - Google Patents

Composition de résine pour un soudage laser et article moulé Download PDF

Info

Publication number
WO2008032636A1
WO2008032636A1 PCT/JP2007/067412 JP2007067412W WO2008032636A1 WO 2008032636 A1 WO2008032636 A1 WO 2008032636A1 JP 2007067412 W JP2007067412 W JP 2007067412W WO 2008032636 A1 WO2008032636 A1 WO 2008032636A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
parts
core
laser
Prior art date
Application number
PCT/JP2007/067412
Other languages
English (en)
French (fr)
Inventor
Koichi Sakata
Original Assignee
Wintech Polymer Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wintech Polymer Ltd. filed Critical Wintech Polymer Ltd.
Priority to CN2007800288534A priority Critical patent/CN101501134B/zh
Priority to US12/440,528 priority patent/US8142900B2/en
Priority to JP2008534310A priority patent/JP5302683B2/ja
Publication of WO2008032636A1 publication Critical patent/WO2008032636A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a polybutylene terephthalate resin composition having high laser weldability and excellent resistance to heat shock, and a molded article using the same.
  • Polybutylene terephthalate (PBT) resins are engineered plastics that have excellent properties such as mechanical properties, electrical properties, and moldability, and are used in many applications such as automotive parts and electrical parts. Has been.
  • PBT-based resins are often used as exterior container materials (housing materials) that protect substrates and the like.
  • joining methods such as adhesives, screwing, snap fit, hot plate welding, and ultrasonic welding.
  • adhesives screwing, snap fit, hot plate welding, and ultrasonic welding.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-26656
  • Patent Document 2 a molded product formed from a polyester copolymer having a melting point in a specific range and another molded product are integrated by welding processing to obtain a molded product.
  • a method of manufacturing is disclosed. This document describes that homopolybutylene terephthalate resin has low laser welding strength!
  • Patent Document 2 discloses an insert-molded product in which a resin composition comprising polybutylene terephthalate and acrylic rubber and a metal or inorganic solid are insert-molded.
  • acrylic rubber is a rubber-like elastic body obtained by polymerization of acrylate ester or copolymerization based on it, and acrylate ester such as butyl acrylate and a small amount of butylene diamine.
  • a polymerizable monomer such as methyl methacrylate
  • a crosslinking monomer such as a salt.
  • thermoplastic polyester resin composition containing 5 to 50 parts by weight of an acrylic rubber.
  • the acrylic rubber of the component (D) includes an acrylate ester having a saturated or unsaturated linear or branched aliphatic hydrocarbon of carbon number;! To 5 and carbon number of 1 to 5.
  • JP 2004-315805 A includes a polybutylene terephthalate resin (A) and an elastomer (B) having a refractive index of 1.52 to 1.59.
  • elastomers include polystyrene elastomers, polyester elastomers, polyamide elastomers, polyurethane elastomers, and polyolefin elastomers.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-26656 (Claims, paragraph number [0003])
  • Patent Document 2 Japanese Patent Application Laid-Open No. 63-3055 (claims, page 2, lower left column, line 12 to (Page 3, upper left column, line 14)
  • Patent Document 3 Japanese Patent Laid-Open No. 7-18166 (Claims, paragraph number [0009] [0018]
  • Patent Document 4 Japanese Patent Laid-Open No. 2004-315805 (Claims, Paragraph Number [0066]) Disclosure of Invention
  • an object of the present invention is to provide a laser-welded polybutylene terephthalate resin composition capable of imparting excellent heat shock resistance without impairing laser weldability, while being based on a polybutylene terephthalate resin, and In providing the molded product
  • Another object of the present invention is to provide a laser-welded polybutylene terephthalate resin composition capable of achieving both laser weldability and heat shock resistance at a high level without impairing the properties of the polybutylene terephthalate resin. And providing a molded product thereof. Means for solving the problem
  • the present inventors have combined a polybutylene terephthalate resin and a core-shell type polymer, and in particular, this core-shell type polymer has a large particle size (dispersion diameter).
  • this core-shell type polymer has a large particle size (dispersion diameter).
  • the laser-welded polybutylene terephthalate-based resin composition of the present invention is composed of the polybutylene terephthalate-based resin (A) and the core-shell type polymer (B).
  • the polybutylene terephthalate resin (A) may be a homopolyester (polybutylene terephthalate resin) or a copolyester (polybutylene terephthalate copolymer) (a mixture of homopolyester and copolyester). Or a mixture thereof.
  • the mixing ratio of homopolyester and copolyester is not particularly limited.
  • Copolyester is a copolymerizable monomer of about 45 mol% or less (for example, about 0.0;!
  • the core-shell type polymer (B) may be a core-shell type polymer (acrylic core-shell type polymer) in which the core layer is made of acrylic rubber.
  • the particle size of the core-shell polymer (B) is usually a large particle size (for example, an average particle size of 1 am or more, preferably 2,1 m or more). By using a core-shell polymer having such a particle size, it is possible to efficiently achieve both laser transmission and heat shock resistance.
  • the ratio of the core-shell polymer (B) may be about 1 to 50 parts by weight with respect to 100 parts by weight of the resin (A).
  • the average particle diameter of the core-shell polymer (B) is 3 to 10;
  • the ratio of the core-shell polymer (B) is 5 to 30 parts by weight with respect to 100 parts by weight of the resin (A).
  • the resin composition further includes a reinforcing agent (C) (glass fiber or the like)!
  • a reinforcing agent (C) glass fiber or the like
  • the proportion of the reinforcing agent (C) is the resin (A) 100 It may be about 10 to 120 parts by weight with respect to parts by weight.
  • the resin composition may further contain a polycarbonate-based resin. In the resin composition containing such a polycarbonate resin, the proportion of the polycarbonate resin may be about 3 to 20 parts by weight with respect to 100 parts by weight of the resin (A).
  • a laser-transmitting resin molded product formed of the resin composition that is, a laser-absorbing resin molded product capable of absorbing laser light
  • the present invention relates to a molded product formed from the resin composition (first molded product, a laser transmissive resin molded product formed from the resin composition) and a resin molded product as a counterpart (second molded product).
  • first molded product, a laser transmissive resin molded product formed from the resin composition and a resin molded product as a counterpart (second molded product).
  • second molded product a molded product formed of a laser-absorbing resin capable of absorbing laser light
  • a composite molded product joined by laser welding.
  • the first molded product and the second molded product are brought into contact (particularly, at least the joint is in surface contact), and a laser is applied to the interface between the first molded product and the second molded product. It can be produced by irradiating light and at least partially melting the interface between the first molded product and the second molded product to bring the bonding surface into close contact.
  • the polybutylene terephthalate resin and the core-shell polymer are combined, so that excellent heat shock resistance is imparted without impairing the laser weldability while being based on the polybutylene terephthalate resin. it can.
  • laser weldability and heat shock resistance without compromising the properties of polybutylene terephthalate resin can be achieved at a high level. Therefore, it is possible to obtain a molded product having high laser weldability (such as an insert molded product) or a composite molded product joined with high welding strength.
  • FIG. 1 is a schematic diagram for explaining laser welding in an example.
  • the polybutylene terephthalate resin as a base resin composed mainly of petit terephthalate (e.g., 50; 100 weight 0/0, preferably 60: 100 by weight 0/0, more preferably 75 ⁇ ; 100 weight 0/0 approximately) to homopolyester (polybutylene terephthalate tallates) or copolyester (butylene terephthalate-based copolymer or polybutylene Refutare one copolyester), and the like.
  • PBT resin mainly of petit terephthalate (e.g., 50; 100 weight 0/0, preferably 60: 100 by weight 0/0, more preferably 75 ⁇ ; 100 weight 0/0 approximately) to homopolyester (polybutylene terephthalate tallates) or copolyester (butylene terephthalate-based copolymer or polybutylene Refutare one copolyester), and the like.
  • Examples of the copolymerizable monomer in the copolyester include dicarboxylic acids other than terephthalic acid, 1 , 4 Diols other than butanediol, oxycarboxylic acid, and ratatones.
  • the copolymerizable monomers can be used alone or in combination of two or more.
  • dicarboxylic acid examples include aliphatic dicarboxylic acids (for example, succinic acid, dartaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, hexadecanedicarboxylic acid.
  • C such as acid and dimer acid
  • dicarboxylic acids preferably C dicarboxylic acids
  • alicyclic dicarboxylic acids e.g. hex
  • C dicarboxylic acids such as sahydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, and hymic acid), aromatic dicarboxylic acids excluding terephthalic acid (eg, phthalic acid)
  • Acid isophthalic acid; 2, 6 naphthalenedicarboxylic acid such as naphthalenedicarboxylic acid; 4, A′-diphenyldicarboxylic acid, 4, A′-diphenyletherdicarboxylic acid, 4, A′-diphenylmethanedicarboxylic acid, 4 , A'-diphenyl ketone dicarboxylic acid and other C
  • esters such as tellurium (C alkyl ester of phthalic acid such as dimethylphthalic acid, dimethylisophthalic acid (DMI) or isophthalanolic acid), acid chloride, acid anhydride
  • a polycarboxylic acid such as trimellitic acid or pyromellitic acid may be used in combination.
  • the diol include aliphatic diols other than 1,4 butanediol (for example, ethylene glycolol, trimethylene glycolol, propylene glycolanol, neopentinoglycol, hexanediol, octanediol, Linear or branched C alkanediol, such as decanediol, preferably linear or branched C alkanediol
  • Glycols such as diethylene glycol, dipropylene glycol, ditetramethylene glycol, triethylene glycol, tripropylene glycol, polytetramethylene glycol, etc.], alicyclic diols (eg, 1,4-cyclohexanediol, 1, 4-cyclohexanedimethanol, hydrogenated bisphenol A, etc.), aromatic diols [for example, dihydroxy C-arene such as hydroquinone, resorcinol, naphthalenediol;
  • Phenol bisphenols, xylylene alcohol, etc.]. Furthermore, if necessary, a polyol such as glycerin, trimethylolpropane, trimethylolethane, or pentaerythritol may be used in combination.
  • a polyol such as glycerin, trimethylolpropane, trimethylolethane, or pentaerythritol may be used in combination.
  • bisphenols examples include bis (4-hydroxyphenol) methane (bisphenol F), 1,1 bis (4-hydroxyphenol) ethane (bisphenolanol AD), 1,1 bis (4 hydroxyphenol).
  • Ninole) propane 2,2 bis (4-hydroxyphenenole) propane (bisphenol nore A), 2,2 bis (4 hydroxy-1-methylphenenole) propane, 2,2 bis (4-hydroxyphenenole) butane 2, 2 bis (4 hydroxyphenyl) 1-3 methylbutane, 2, 2 bis (4 hydroxyphenyl) hexane, 2, 2 bis (4 hydroxyphenyl) —bis (hydroxy) such as 4-methylpentane Alino) C Alkane; 1, 1-Bis (4—
  • alkylene oxide adducts examples include C alkylenes of bisphenols (eg, bisphenol A, bisphenol AD, bisphenol F, etc.).
  • 2-3 oxide adducts such as 2, 2 bis [4- (2 hydroxyethoxy) phenyl] bread, diethoxylated bisphenol A (EBPA), 2, 2 bis mono [4— (2 hydroxy Ropoxy) phenyl] propane, dipropoxylated bisphenol A and the like.
  • EBPA diethoxylated bisphenol A
  • C alkylene oxide such as ethylene oxide and propylene oxide
  • the oxycarboxylic acid includes, for example, oxycarboxylic acids such as oxybenzoic acid, oxynaphthoic acid, hydroxyphenylacetic acid, glycolic acid, oxycaproic acid, and derivatives thereof.
  • Rataton includes C-latatones such as propiolatatanes, petite ratatones, valerolatatanes, and force prolatatanes (eg, ⁇ — force prolatatanes).
  • Preferred copolymerizable monomers include diols [C alkylene glycol (eth)
  • Polyoxy C alkylene glycol (diethylene glycol) having an oxyalkylene unit of about 2 to 4 repeats, such as linear or branched alkylene glycol such as lenglycol glycol, trimethylene glycol, propylene glycol or hexanediol.
  • Dicarboxylic acids [C aliphatic dicarboxylic acids (adipic acid, pimelic acid,
  • aromatic compounds such as alkylene oxide adducts of bisphenols (particularly bisphenol ⁇ ), and asymmetric aromatic dicarboxylic acids [phthalic acid, isophthalic acid, and reactive derivatives thereof (dimethylisophthalic acid).
  • aromatic compounds such as alkylene oxide adducts of bisphenols (particularly bisphenol ⁇ ), and asymmetric aromatic dicarboxylic acids [phthalic acid, isophthalic acid, and reactive derivatives thereof (dimethylisophthalic acid).
  • lower alkyl esters such as acids (DMI).
  • the polybutylene terephthalate resins may be used alone or in combination of two or more.
  • a homopolyester may be combined with a copolyester or a plurality of copolyesters may be combined with a combination of a homopolyester and a plurality of copolyesters.
  • the polybutylene terephthalate resin homopolyester (polybutylene terephthalate) and / or copolymer (polybutylene terephthalate copolyester) is preferred.
  • the ratio of the copolymerizable monomer (modified amount) is usually 45 mol% or less (for example, about 0 to 40 mol%), preferably 35 mol% or less (for example, about 0 to 35 mol%). % Or less (about 0 to 30 mol%).
  • the ratio of the copolymerizable monomer in the copolymer can be selected from the range of, for example, about 0.0;! To 30 mol%, and is usually 1 to 30 mol%, preferably 3 It is about ⁇ 25 mol%, more preferably about 5 to 20 mol% (for example, 5 to 15 mol%).
  • the mixing ratio is not particularly limited.
  • the PBT resin is obtained by copolymerizing terephthalic acid or its reactive derivative and 1,4 butanediol and, if necessary, a copolymerizable monomer by a conventional method such as transesterification or direct esterification. Can be manufactured.
  • the core-shell type polymer (core-shell type elastomer) is a polymer having a multilayer structure composed of a core layer (core part) and a shell layer covering a part or all of the core layer (the surface of the core layer). is there.
  • V one of the core layer and the shell layer is composed of a rubber component (soft component), and the other component is composed of a hard component.
  • the core layer is usually composed of a rubber component in many cases.
  • the glass transition temperature of the rubber component is, for example, less than 0 ° C (for example, ⁇ 10 ° C or less), preferably ⁇ 20 ° C or less (for example, about ⁇ 180 to ⁇ 25 ° C), and more preferably ⁇ 30 It may be below ° C (for example, about 150 to -40 ° C).
  • the rubber component may have a low! / Glass transition temperature as described above! /,
  • a polymer of an unsaturated bond-containing monomer a key rubber (a key rubber) Elastomer) and urethane rubber.
  • These rubber components may be used alone or in combination of two or more. When two or more kinds are combined, these rubber components may be bonded to each other by copolymerization, graft polymerization or the like.
  • an acrylic monomer for example, an acrylic monomer
  • an acrylic monomer for example, an alkyl acrylate (for example, methyl acrylate, ethyl acrylate, propyl acrylate) Butyl acrylate, isobutyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate Noji alkyl acrylate, aryl acrylate (such as phenyl acrylate)]
  • Methacrylic acid esters for example, methacrylic acid higher esters such as lauryl metatalylate), etc.
  • gen-based monomers for example, conjugated C such as butadiene, isoprene, black-mouthed planes
  • olefin monomers eg, ethylene, propylene, 1-butene, 6
  • a-Styrene monomers such as methylstyrene, butyltoluene, butylstyrene, phenylstyrene, chlorostyrene, etc.
  • cyanide butyl monomers eg (meth) acrylonitrile
  • butyl ether monomers carboxylic acid butyl esters
  • monomer based monomers such as butyl acetate
  • acrylamide based monomers such as (meth) acrylamide
  • fluorinated monomers such as vinylidene fluoride, perfluoropropene, and tetrafluoroethylene.
  • Typical polymers of unsaturated bond-containing monomers include acrylic rubber (acrylic elastomer), Gen rubber (Gen elastomer), refin rubber (ethylene propylene rubber, etc.), fluoro rubber. (Vinylidene fluoride-perfluoropropene copolymer, etc.).
  • Acrylic rubber as a rubber component is an acrylic monomer [in particular, alkyl acrylate.
  • Alkyl more preferably acrylic acid C alkyl ester.
  • the acrylic rubber may be an acrylic monomer alone or a copolymer (a copolymer of two or more acrylic monomers, a copolymer of an acrylic monomer and another unsaturated bond-containing monomer, etc.). It may be a copolymer of acrylic monomers (and other unsaturated bond-containing monomers) and crosslinkable monomers! /.
  • crosslinkable monomer examples include (meth) acrylic monomers ⁇ polyfunctional (meth) acrylate diethylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, poly (or oligo)] Ethylene glycol di (meth) acrylate (diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate), glycerin tri (meth) acrylate Rate, trimethylol ethane tri (meth) acrylate, trimethylol propane di (meth) acrylate, trimethylol propane tri (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tetra (meth) acrylate (Poly) hydroxyalkane poly (meth) acrylate, etc.) such as diureta erythritol tetra (meth) acrylate, dipent
  • the proportion of the acrylic acid ester (particularly, alkyl Atari rate), for the entire acrylic rubber, 50 to 100 weight 0/0, preferably from 70 to 99 weight 0/0, more preferably it may be about 80 to 98 weight 0/0.
  • the proportion of the crosslinkable monomer is from 0.;! To 10 parts by weight, preferably from 0.2 to 5 parts by weight, more preferably from 0.3 to 100 parts by weight based on 100 parts by weight of the acrylic ester. It may be about 5 parts by weight.
  • Examples of the gen-based rubber include polymers of gen-based monomers (natural rubber, isoprene rubber, butyl rubber, butadiene rubber, chloroprene rubber, etc.), and copolymers of gen-based monomers and other unsaturated bond-containing monomers.
  • acrylonitrile butadiene rubber nitrino chloroprene rubber, nitrolin isoprene rubber, and other copolymer of allylononitrile and gen-based monomer (rubber); styrene butadiene rubber, styrene chloroprene rubber, styrene isoprene rubber, etc.
  • a copolymer of a monomer and a gen monomer rubber, etc.
  • Gen rubbers include hydrogenated rubbers such as hydrogenated nitrile rubber.
  • Silicon rubber (silicone rubber) is usually composed of units represented by the formula: R 2 SiO 2.
  • R is, for example, a C alkyl such as a methyl group.
  • Halogenated C group such as a kill group, trifluoropropyl group, vinylol group, vinylol group, aryl
  • C alkenyl group such as C group, C aryl group such as phenyl group, and cyclopentyl group
  • C cycloalkyl group such as benzyl group, C aryl C alkyl group such as benzyl group
  • the coefficient a is about 1.9 to 2.1.
  • Preferred R is a methyl group, a phenyl group, an alkenyl group (such as a bur group) and the like. Silicone rubber has these structural units alone or in combination of two or more types!
  • the molecular structure of the silicone rubber is usually linear, but it may be partially branched or branched.
  • the main chain of the silicone rubber is, for example, a dimethylpolysiloxane chain, a methylvinylpolysiloxane chain, a methylphenylpolysiloxane chain, a copolymer chain of these siloxane units [dimethylsiloxane methylbutasiloxane copolymer chain, dimethyl Siloxane methyl phenyl siloxane copolymer chain, dimethylsiloxane-methyl (3, 3, 3-trifluoropropyl) siloxane copolymer chain, dimethyl siloxane methyl butyl siloxane methyl phenyl siloxane copolymer chain, etc.] it can.
  • Both ends of the silicone rubber may be, for example, a trimethylsilyl group.
  • a silicone rubber is usually obtained by polymerizing an organosiloxane monomer (ring-opening polymerization).
  • organosiloxane examples include organoxane, decamethylpentacyclosiloxane, dodecamethylhexacyclosiloxane, trimethyltriphenyltricyclosiloxane, tetramethyltetraphenyltetracyclosiloxane, and octaphene corresponding to the above units.
  • organosiloxane include organoxane, decamethylpentacyclosiloxane, dodecamethylhexacyclosiloxane, trimethyltriphenyltricyclosiloxane, tetramethyltetraphenyltetracyclosiloxane, and octaphene corresponding to the above units.
  • examples include rut
  • the core layer may typically be composed of acrylic rubber.
  • the core layer may contain a non-rubber component (for example, a hard resin component described later) as long as it contains a rubber component as a main component.
  • the ratio of the rubber component to the entire core layer is 30 to 100% by weight, preferably 50 to 100%. / 0 , more preferably from 70 to about 100% by weight.
  • the core layer structure may be a uniform structure or a non-uniform structure (such as a salami structure).
  • the shell layer is usually composed of a hard resin component (or a glassy resin component).
  • the glass transition temperature of the hard resin component can be selected from the range of 0 ° C or higher (for example, 20 ° C or higher), for example, 30 ° C or higher (for example, about 30 to 300 ° C), preferably 50 ° C or higher (for example, about 60 to 250 ° C), more preferably 70 ° C or higher (for example, 80 to 200 ° C.).
  • a hard resin component is usually composed of a bull polymer (a polymer of a bull monomer)!
  • the bull monomer (bull monomer) is not particularly limited as long as the bull polymer can be adjusted to the glass transition temperature as described above.
  • Methacrylic monomers e.g., alkyl methacrylates (e.g., methyl methacrylate, ethyl acetate, propyl methacrylate, butyl methacrylate, hexyl methacrylate, 2-ethyl hexyl methacrylate, etc.)] Rate, preferably C alkyl metatalylate,
  • C alkyl methacrylates More preferably, C alkyl methacrylates, aryl methacrylates (phenyl methacrylates)
  • methacrylic acid esters such as cycloalkyl methacrylates (such as cyclohexyl methacrylate), and the like
  • monomers exemplified above for example, acrylic monomers, aromatic butyl monomers (for example, And monomers exemplified above such as styrene), olefin monomers, and cyanide butyl monomers (eg, monomers exemplified above such as (meth) acrylonitrile).
  • These bull monomers can be used alone or
  • the bulle polymer is at least one selected from a methacrylic monomer, an aromatic vinylol monomer, and a cyanated bulle monomer [especially, at least a methacrylic acid ester (such as an alkyl metatalylate such as methyl metatalylate).
  • the polymer is a polymer having a polymerization component.
  • the bull polymer constituting the shell layer may be a copolymer of a bull monomer and a crosslinkable monomer.
  • examples of the crosslinkable monomer include the same monomers as described above.
  • the shell layer may be a single layer or a plurality of layers as long as it covers a part or all of the core layer.
  • the core layer and the shell layer are often bonded to each other.
  • Such a bond is not particularly limited, but is usually formed by graft polymerization of a shell layer (hard resin component, vinyl polymer) to the core layer (rubber component)!
  • the core-shell type polymer bonded (graft-bonded) by such graft polymerization (graft copolymerization) is, for example, a bulle-based monomer that constitutes (or forms) a shell layer (bulu-based polymer) with respect to the rubber component. It is obtained by graft polymerization of the body. In addition, it is necessary prior to graft polymerization.
  • a reactive group that reacts with the shell layer (or the bull monomer) may be introduced into the rubber component constituting the rubber layer.
  • the introduction of the reactive group may be performed, for example, by reacting a graft crossing agent having a reactive group at the time of polymerization of the monomer constituting the rubber component.
  • the graphed crossing agent include organosiloxane having an unsaturated bond and / or a thiol group (for example, (meth) alkoxysiloxane, bursiloxane, etc.) in the case of a silicone rubber.
  • the average particle diameter of the core-shell type polymer (core-shell type polymer particles) used in the present invention can usually be selected from the range of 1 m or more (for example, about 1.2 to 30 111), for example, 1.5 111 or more (for example, about 1.8 to 20 111), preferably 2 111 or more (for example, 2.5 to about 15 mm), more preferably 3 to 10 mm (for example, 3. 5 to 8 mm, particularly about 4 to 7.5 mm (for example, 4.5 to 7 111).
  • the core-shell polymer may be dispersed in the resin composition (or in the resin, or in the resin component composed of the resin). Such a dispersed core-shell polymer may be a primary particle or a secondary particle.
  • the average dispersion diameter of the core-shell polymer can be selected from the same range as described above. If the particle size is too small (for example, less than 1), the laser transmission is reduced and the laser weldability is impaired.
  • a core-shell type polymer having a large particle size (or dispersion diameter) as described above is often used.
  • the particle diameter of a general core-shell polymer is usually on the order of 0.1 ⁇ m.
  • general thermoplastic elastomers polyolefin-based thermoplastic elastomers, styrene-based elastomers, polyester-based elastomers, etc.
  • PBT resin polyolefin-based thermoplastic elastomers
  • polyester-based elastomers etc.
  • a core-shell type polymer particularly a core-shell type polymer having a large particle size or dispersion diameter as described above, scattering of transmitted light is suppressed to a high level. It is possible to achieve both laser permeability (or laser weldability) and heat shock resistance (high and low temperature resistance).
  • the core-shell polymer by using the core-shell polymer, the laser transmission and resistance can be maintained while maintaining the strength and characteristics inherent to PBT resins (heat resistance, solvent resistance, etc.) due to the large particle size. Heat shock can be improved. In order to simply improve heat shock resistance, it is often advantageous to use a core-shell type with a relatively small particle size!
  • the laser weldability is not impaired by using a combination of the PBT resin and the core-shell type polymer having a relatively large particle size as described above. High heat shock resistance can be imparted, and laser weldability and heat shock resistance can be balanced.
  • the refractive index of the core-shell polymer is not particularly limited.
  • a core-shell type polymer having a large particle size is used, even if it does not have a specific refractive index (1.52 to; 1.59) as described in Patent Document 4, [ For example, even if the refractive index is less than 1.52 (if it is arranged, 1.35-1.5, preferably 1.4-1.49, more preferably about 1.42-1.48)], Laser transmission (laser weldability) will not be impaired!
  • the core-shell type polymer may be one prepared by a conventional method (emulsion polymerization method, seed polymerization method, micro suspension polymerization method, suspension polymerization method, etc.) capable of forming the core layer and the shell layer.
  • a conventional method emulsion polymerization method, seed polymerization method, micro suspension polymerization method, suspension polymerization method, etc.
  • a core-shell type polymer with a large particle size can be obtained from Rohm and Haas Japan Co., Ltd. with the power S of “Paraloid EXL5136”.
  • the ratio of the core-shell polymer (B) is, for example, !!-50 parts by weight (for example, 2-50 parts by weight), preferably 3 with respect to 100 parts by weight of the polybutylene terephthalate resin (A). It may be ⁇ 40 parts by weight (for example, 5 to 35 parts by weight), more preferably 5 to 30 parts by weight, particularly about 10 to 25 parts by weight.
  • the ratio of the core-shell polymer (B) is, for example, about !!-30 wt%, preferably 3-20 wt%, more preferably about 5-15 wt%, relative to the entire resin composition. May be. If the ratio of the core-shell type polymer (B) is too small, the effect of improving heat shock resistance is reduced, and if it is too large, the laser transmittance is likely to decrease! /.
  • the resin composition of the present invention may contain a filler (or reinforcing material) (C) when strength is required.
  • a filler (C) includes a fibrous reinforcing material [for example, an inorganic fiber (for example, glass fiber, asbestos fiber, carbon fiber, silica fiber, alumina fiber, silica alumina fiber, aluminum silicate fiber, zirconia fiber).
  • Fiber potassium titanate fiber, carbonized carbon fiber, whisker (whisker such as carbonized carbide, alumina, silicon nitride), organic fiber (eg aliphatic or aromatic polyamide, aromatic polyester, fluororesin, poly Acrylic fibers such as acrylonitrile, fibers formed of rayon, etc.)], plate-like reinforcing materials [eg talc, my strength, glass flakes, graphite, etc.], granular reinforcing materials [eg glass beads, glass powder, Milled fiber (such as milled glass fiber)], Wollastonite (wollastonite) Etc. are included.
  • the wollastonite may be in the form of a plate, column, fiber or the like.
  • the average diameter of the fibrous reinforcing material is, for example, about !!-50 111 (preferably 3-30 111), and the average length is, for example, 100 111-3111111 (preferably 300 ⁇ -; lmm, more preferably 500 111 ⁇ 1111111).
  • the average particle diameter of the plate-like or powder-like reinforcing material is, for example, about 0.;! To lOO rn, preferably about 0. ⁇ - ⁇ , ⁇ (for example, 0.;! To 10 m). Also good.
  • These fillers or reinforcing materials can be used alone or in combination of two or more.
  • glass-based or glassy fillers or reinforcing materials glass fiber, glass flake, glass beads, etc.
  • talc glass fiber, glass flake, glass beads, etc.
  • my strength wollastonite
  • potassium titanate fiber etc.
  • glassy fillers such as glass fibers are preferred.
  • chopped strand products in particular, have high strength and rigidity and can be suitably used.
  • the ratio of the filler (C) can be selected, for example, from a range of about 1 to 150 parts by weight (for example, 5 to 130 parts by weight) with respect to 100 parts by weight of the polybutylene terephthalate resin (A). 10 to 120 parts by weight (for example, 15 to 100 parts by weight), preferably 20 to 90 parts by weight, and more preferably about 30 to 80 parts by weight (for example, 40 to 70 parts by weight).
  • the polybutylene terephthalate-based resin composition may further contain a thermoplastic resin (second resin) in order to improve light transmittance (or laser weldability).
  • This second tree Examples of the fat include amorphous resins such as polycarbonate (PC) resins.
  • PC polycarbonate
  • These second resins (D) can be used alone or in combination of two or more.
  • the morphology of the polybutylene terephthalate resin (A) and the resin (D) is not particularly limited, and a uniform resin system may be formed to form a dispersion system. May be.
  • the polycarbonate-based resin is obtained by a reaction between a dihydroxy compound and a carbonate such as phosgene or diphenyl carbonate.
  • the dihydroxy compound may be an alicyclic compound or the like, but is preferably an aromatic compound (particularly a bisphenol compound).
  • Examples of the bisphenol compound include the bisphenols exemplified in the section of the PBT resin [for example, bis (hydroxyaryl) C alkane; bis (hydroxyaryl) C cyclo
  • a preferred polycarbonate-based resin includes bisphenol A type polycarbonate.
  • PC resin is highly compatible with polybutylene terephthalate resin (particularly PBT resin) and immediately improves the laser transmittance.
  • PBT resin polybutylene terephthalate resin
  • the use of PC resin can improve the warping of the molded body efficiently.
  • the amount of the resin (D) (or PC resin) used is, for example, a polybutylene terephthalate resin.
  • (A) For 100 parts by weight it can be selected from the range of about 0 to 60 parts by weight (for example, 0.5 to 50 parts by weight), usually 1 to 40 parts by weight (for example, 2 to 30 parts by weight) Preferably, it may be about 25 parts by weight or less (for example, 3 to 20 parts by weight), more preferably about 15 parts by weight or less (for example, 4 to 15 parts by weight).
  • the ratio of the resin (D) to the whole resin composition is, for example, 0 to 20% by weight (for example, 1 to; 15% by weight), preferably 2 to 10% by weight, and more preferably 3 to 8% by weight. It may be a degree. If the amount of resin (D) used is too large, the characteristics of the polybutylene terephthalate resin itself such as heat resistance and chemical resistance are likely to deteriorate.
  • additives stabilizer, moldability improving material, etc.
  • Various additives may be added to the resin composition! /.
  • additives include stabilizers (antioxidants, ultraviolet absorbers, heat stabilizers, etc.), nucleating agents (crystallization nucleating agents), flame retardants, lubricants, mold release agents, antistatic agents, dyes and pigments, etc. Colorant, dispersion Agents and the like. If necessary, it may be used in combination with other resins (thermoplastic resin, thermosetting resin, etc.).
  • An epoxy compound such as a bisphenol A type epoxy compound or a nopolac type epoxy compound may be added to the resin composition. Addition of an epoxy compound can further improve hydrolysis resistance, heat shock resistance, and the like.
  • the laser weldability is not impaired! / In the range, a reflection component for the laser beam (for example, a component that reflects most of the incident light in the wavelength range of 800 to 1200 nm) may be added. Do not add such a reflection component!
  • an inorganic nucleating agent for example, a metal oxide such as silica, alumina, zircaure, titanium oxide, iron oxide, zinc oxide; calcium carbonate
  • Metal carbonates such as calcium carbonate, magnesium carbonate, barium carbonate; plate-like inorganic materials or silicates such as calcium silicate, aluminum silicate, talc; metal carbides such as carbide carbide; such as nitride nitride, boron nitride, tantalum nitride In many cases, metal nitride is used.
  • These crystallization nucleating agents can be used alone or in combination of two or more.
  • the crystallization nucleating agent may be granular or plate-like.
  • the proportion of the crystallization nucleating agent is 0.00;! To 5 parts by weight (for example, 0.0;! To 5 parts by weight), preferably 100 parts by weight of the polybutylene terephthalate resin (A). Is 0.0;! To 3 parts by weight (eg, 0.0;! To 2 parts by weight), more preferably 0.0;! To 1 part by weight (eg, 0.01 to 0.5 parts by weight). ) Degree.
  • the ratio of the nucleating agent to 100 parts by weight of the core-shell type polymer (B) is 0.0;! To 10 parts by weight, preferably 0.05 to 5 parts by weight (eg, 0.05 to 2.5 parts by weight), More preferably, it may be about 0 ⁇ ;! to 1 part by weight (for example, 0 ⁇ ;! to 0.5 part by weight).
  • the PBT-based resin composition of the present invention may be a powder / particle mixture or a molten mixture (such as pellets).
  • the resin composition of the present invention can produce a molded product or a molded product having high moldability and high mechanical strength and heat resistance.
  • a molded article formed from the resin composition of the present invention is laser welded with high light transmittance (particularly light transmittance with respect to laser light) even though it is formed of a PBT resin composition.
  • the light transmittance at a wavelength of 800 to 1000 nm is 18% or more (for example, about 19 to 70%), preferably 20% or more (for example, 2; !
  • the resin composition of the present invention has high weldability with laser light, it is useful for producing a molded product for welding using laser light. Furthermore, because it is composed of a combination of PBT resin and a specific elastomer, it retains the original properties of PBT resin (heat resistance, solvent resistance, etc.), while maintaining laser weldability and heat shock resistance. Can be improved.
  • the molded article of the present invention is formed from the resin composition and exhibits excellent laser light transmittance.
  • a molded article is a resin composition comprising a polybutylene terephthalate resin (A), the core shell type polymer (B), and a reinforcing material (C) and / or a resin (D) as necessary.
  • a conventional method for example, (1) a method in which each component is mixed, kneaded by a single or twin screw extruder and extruded to prepare pellets, and then formed into a pellet, and (2) a pellet having a different composition. (Master batch) is prepared, and the pellets are mixed (diluted) with a predetermined amount and used for molding to obtain a molded product with a predetermined composition.
  • each component is directly prepared in a molding machine.
  • the pellet may be prepared by, for example, melting and mixing components excluding brittle components (such as glass-based reinforcing materials) and then mixing brittle components (such as glass-based reinforcing materials).
  • the molded body is obtained by melt-kneading the polybutylene terephthalate resin composition and molding it by a conventional method such as extrusion molding, injection molding, compression molding, blow molding, vacuum molding, rotational molding, gas injection molding, or the like. However, it is usually formed by injection molding. In particular, since the resin composition of the present invention has high heat shock resistance, it is suitable for insert molding. Therefore, the molded body may be an insert molded product (molded product formed by insert molding).
  • the shape of the molded product is not particularly limited. However, since the molded product is used by joining with a counterpart material (other resin molded product) by laser welding, the shape usually has at least a contact surface (such as a flat surface) ( For example, a plate shape). In addition, since the molded product of the present invention has high transmittance to laser light, a wide range of force can be selected for the thickness of the molded product (thickness in the direction in which laser light is transmitted) at the site through which laser light is transmitted. .;! To 5 mm, preferably 0.;! To 3 mm (for example, 0 ⁇ 5 to 3 mm).
  • the laser light source is not particularly limited, and for example, dye laser, gas laser (excimer laser, anoregon laser, krypton laser, helium neon laser, etc.), solid laser (YAG laser, etc.), semiconductor laser, etc. Etc. are available.
  • a laser laser is usually used as the laser beam.
  • the present invention also discloses a laser molded composite molded article.
  • This composite molded product includes a molded product (first molded product, laser-transmitting resin molded product) formed of the polybutylene terephthalate resin composition and a resin molded product of the counterpart material (second molded product, coated product).
  • the bonded body that is, a molded article made of a laser-absorbing resin capable of absorbing one light of the laser
  • the first molded product and the second molded product are brought into contact (especially, at least the joint portion is in surface contact), and the laser beam is irradiated to thereby form an interface between the first molded product and the second molded product.
  • the two types of molded products can be joined and integrated into a single molded body.
  • a high bonding strength can be obtained by fusing, and it can be fused by irradiation with laser light! The same high level and fusion strength can be maintained.
  • the resin (laser absorbing resin) constituting the resin molded product of the counterpart material is not particularly limited, and various thermoplastic resins such as a styrene resin, an acrylic resin, a polyester resin, and a polyamide. Resin or polycarbonate resin, or a mixture thereof [or alloy such as alloy of styrene resin (rubber-containing styrene resin such as ABS resin and AS resin) and polyester resin].
  • resins of the same or the same type as those constituting the polybutylene terephthalate resin composition resins of the same or the same type as those constituting the polybutylene terephthalate resin composition
  • the counterpart material may be composed of a carbonate resin, a styrene resin, or the like) or a composition thereof.
  • the first molded body and the second molded body may be formed of the polybutylene terephthalate resin composition of the present invention, respectively.
  • the adherend may contain an absorber or a colorant for laser light.
  • the colorant can be selected according to the wavelength of the laser beam, and can be selected from inorganic pigments [carbon black (for example, acetylene black, lamp black, thermal black, furnace black, channel black). Black pigments such as black and ketjen black), red pigments such as iron oxide red, orange pigments such as molybdate orange, white pigments such as titanium oxide], organic pigments (yellow pigment, orange pigment, red pigment, blue) Pigments, green pigments, etc.).
  • the laser absorber a commercially available product such as “Clear One Weld” (GENTEX, near infrared absorbing material) can be used. These absorbents can be used alone or in combination of two or more.
  • the laser light irradiation is usually performed in the direction from the first molded body to the second molded body, and by generating heat at the interface of the second molded body containing the absorbent or the colorant, The first molded body and the second molded body are fused. If necessary, a lens system may be used to focus the laser beam on the interface between the first molded product and the second molded product and fuse the contact interface.
  • the composite molded product obtained in the present invention has high welding strength and heat shock resistance while maintaining the characteristics of polybutylene terephthalate resin (particularly PBT resin), and is obtained by irradiation with a single laser beam. Since there is little damage to polybutylene terephthalate resin, it can be applied to various applications such as electrical / electronic parts, office automate (OA) equipment parts, home appliance parts, mechanical mechanism parts, and automotive mechanism parts. It is particularly suitable for use in automotive electrical parts (various control units, ignition coil parts, etc.), motor parts, various sensor parts, connector parts, switch parts, relay parts, coil parts, transformer parts, lamp parts, etc. Can do.
  • automotive electrical parts various sensor parts, connector parts, switch parts, relay parts, coil parts, transformer parts, lamp parts, etc.
  • A-1) PBT resin Polybutylene terephthalate (Wintech Polymer Co., Ltd., DX20 00)
  • A- 2) modified PBT Resin In the reaction of dimethyl isophthalate (DMI) modified PBT resin of terephthalic acid and 1, 4-butanediol, instead of a part of the terephthalic acid (12.5 mol 0/0), co dimethyl isophthalate (DMI) 12 ⁇ 5 mol 0/0 as a polymerization ingredient
  • (D-l) PC Polycarbonate resin (manufactured by Teijin Chemicals Ltd., “Panlite L-1225”) The ratio shown in Table 1 is 250 using a twin-screw extruder (manufactured by Nippon Steel Works, 30 ⁇ ). Kneaded at ° C to produce pellets. Using the resulting pellets, an injection molding machine (manufactured by Toshiba Corporation) is used to form a sheet-like molded product 8 cm long x 8 cm wide x 1.5 mm thick under conditions of a cylinder temperature of 260 ° C and a mold temperature of 80 ° C. Then, this sheet-like molded body was cut into a 10 mm strip, and a test piece A (that is, length 8 cm ⁇ width lcm ⁇ thickness 1.5 mm) was prepared.
  • a test piece A that is, length 8 cm ⁇ width lcm ⁇ thickness 1.5 mm
  • test piece B having the same shape as a welded test piece B (laser absorbing material) to the test piece A (That is, length 8 cm x width l cm x thickness 1.5 mm).
  • Specimen B acts as a heating element (laser absorbing material) by laser light.
  • a part of the test piece A (3) is placed in contact with the test piece B (4), and a light source is used using a laser welding machine (manufactured by Leister).
  • a laser welding machine manufactured by Leister
  • the focal point of the laser beam (2) from the laser oscillator (1) is adjusted, and the irradiation width or the line width w (2 mm).
  • laser beam (2) having a wavelength of 940 nm was irradiated from the test piece A (3) side under the conditions of an output of 10 to 50 W and a scanning speed of 30 mm / second to perform welding.
  • the welding strength shown in Table 1 indicates the welding strength measured at the maximum value when welding was performed at an output of 10 to 50 W.
  • the central part of the test piece A was cut, and this cut part was immersed in 115 ° C xylene for 2.5 hours and etched. Then, the central part in the thickness direction of the cut part is observed with a microscope at three places, and the diameter of the hole formed by detaching the core-shell type elastomer at each observation point is defined as the particle diameter (dispersion diameter). The dispersion diameter was measured for each piece, and the average dispersion diameter was measured from these dispersion diameters.
  • Table 1 shows the results of Examples and Comparative Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書
レーザー溶着用樹脂組成物及び成形品
技術分野
[0001] 本発明は、レーザー溶着性が高ぐヒートショックに対する耐性に優れるポリブチレ ンテレフタレート系樹脂組成物、及びそれを用いた成形品に関する。
背景技術
[0002] ポリブチレンテレフタレート (PBT)系樹脂は、機械的特性、電気的特性、成形加工 性などの種々の特性に優れるエンジニアプラスチックであり、自動車用途部品、電気 用途部品などの多くの用途に利用されている。また、 PBT系樹脂は、基板などを保 護する外装容器材料 (ハウジング材料)として使用されることも多い。このような部品を 作製するため、接着剤、ネジ止め、スナップフィット、熱板溶着、超音波溶着などの接 合方法を利用して複数の成形部品を接合している。しかし、これらの接合方法につい て、幾つかの問題点が指摘されている。例えば、接着剤を用いると、接着剤が硬化す るまでの工程的な時間のロスや環境への負荷が問題となる。また、ネジ止めでは、締 結の手間やコストが増大し、熱板溶着や超音波溶着では、溶着に必要な振動や熱を 製品全体に与えてしまうため、熱や振動などによる製品の損傷が懸念される。これに 対して、レーザー溶着による接合方法は、溶着部分のみを溶融して接合させるため、 溶着に伴う振動や熱による製品のダメージが無ぐ溶着工程も非常に簡易である。そ のため、最近、レーザー溶着法は、広く利用されるようになってきており、各種樹脂部 品の溶着手法として着目されている。さらに、溶着に供される樹脂部品の中には、金 属をインサート成形した樹脂部品もある。従って、インサート成形用樹脂として、イン サート成形可能であるとともに、レーザー溶着性の高い PBT系樹脂の開発が望まれ ている。なお、インサート成形品に要求される樹脂の性能として、長時間に亘る高低 温度変化(ヒートショック性)に対する耐性、すなわち耐ヒートショック性に優れることが 要求されている。
[0003] 一方、ポリブチレンテレフタレート系樹脂をレーザー溶着で接合する場合、レーザ 一光の透過性が低いため、炭化などを生じ、実質的に溶着できないことが指摘され ている。特開 2001— 26656号公報(特許文献 1)には、特定範囲の融点を有するポ リエステル系共重合体で形成された成形品と他の成形品とを溶着加工により一体化 させて成形体を製造する方法が開示されている。この文献には、ホモポリブチレンテ レフタレート樹脂はレーザー溶着強度が小さレ、ことが記載されて!/、る。
[0004] また、ポリブチレンテレフタレート系樹脂組成物を金属インサート成形に利用した例 も知られている。例えば、特開昭 63— 3055号公報(特許文献 2)には、ポリプチレン テレフタレートとアクリル系ゴムからなる樹脂組成物と、金属又は無機固体とをインサ ート成形したインサート成形品が開示されている。この文献には、アクリル系ゴムは、 アクリル酸エステルの重合またはそれを主体とする共重合により得られるゴム状弾性 体であり、ブチルアタリレートのようなアクリル酸エステルと、少量のブチレンジアタリレ ートのような架橋性モノマーとを重合させて得た重合体に、メチルメタタリレートのよう な重合性モノマーをグラフト重合させて得たゴム状の重合体を例示しており、市販品 として、「カネエース FM」(鐘淵化学 (株)製)、「バイタックス V— 6401」(日立化成( 株)製)、「メタブレン W— 300」、「メタブレン W— 530」(三菱レイヨン (株)製)、「アタリ ロイド KM— 323」、「アタリロイド KM— 330」(ローム ·アンド'ハース社製)などを使用 できること力 S記載されている。なお、この文献には、前記樹脂組成物又はインサート 成形品をレーザー溶着に供することについて何ら記載されておらず、レーザー溶着 に供したとしても、レーザー光の透過率を著しく低下させるため、実質的にレーザー 溶着できない。
[0005] さらに、ポリエステル系樹脂組成物の耐ヒートショック性を改善する試みもなされて いる。例えば、特開平 7— 18166号公報(特許文献 3)には、(A)熱可塑性ポリエステ ル 100重量部、(B)ガラス繊維 5〜100重量部、(C)ガラスビーズ 5〜100重量部、 および (D)アクリル系ゴム 5〜50重量部を含む熱可塑性ポリエステル樹脂組成物が 開示されている。この文献には、前記成分(D)のアクリル系ゴムは、炭素数;!〜 5の飽 和又は不飽和の直鎖若しくは分岐鎖脂肪族炭化水素を有するアクリル酸エステルと 、炭素数 1〜5の飽和又は不飽和の直鎖若しくは分岐鎖脂肪族炭化水素基を有する メタクリル酸エステルとの共重体であること、実施例において、アクリル系ゴムとして、 商品名「パラロイド EXL2311」(呉羽化学社製)を使用したことが記載されている。そ して、この文献には、熱可塑性ポリエステルの優れた機械的特性を維持し、耐ヒート ショック性が優れた材料が得られること、熱可塑性ポリエステルに金属をインサートし たり金属を封止する用途に有効であることが記載されている。
[0006] なお、これらの文献では、レーザー溶着に供することを想定していない。そして、こ れらの文献のポリエステル系樹脂組成物をレーザー溶着に供したとしても、前記と同 様に、レーザー光の透過率が著しく低下するため、実質的にレーザー溶着できなく なる虞がある。
[0007] なお、特開 2004— 315805号公報(特許文献 4)には、ポリブチレンテレフタレート 系樹脂 (A)と、屈折率 1. 52〜; 1. 59を有するエラストマ一(B)とで構成されているレ 一ザ一溶着用ポリブチレンテレフタレート系樹脂組成物が開示されている。この文献 には、エラストマ一として、ポリスチレン系エラストマ一、ポリエステノレ系エラストマ一、 ポリアミド系エラストマ一、ポリウレタン系エラストマ一、ポリオレフイン系エラストマ一な どを例示している。
特許文献 1 :特開 2001— 26656号公報(特許請求の範囲、段落番号 [0003] ) 特許文献 2 :特開昭 63— 3055号公報 (特許請求の範囲、第 2頁左下欄第 12行〜第 3頁左上欄第 14行)
特許文献 3 :特開平 7— 18166号公報(特許請求の範囲、段落番号 [0009] [0018]
[0026] )
特許文献 4 :特開 2004— 315805号公報(特許請求の範囲、段落番号 [0066] ) 発明の開示
発明が解決しょうとする課題
[0008] 従って、本発明の目的は、ポリブチレンテレフタレート系樹脂をベースとしながらも、 レーザー溶着性を損なうことなぐ優れた耐ヒートショック性を付与できるレーザー溶 着用ポリブチレンテレフタレート系樹脂組成物、及びその成形品を提供することにあ
[0009] 本発明の他の目的は、ポリブチレンテレフタレート系樹脂の特性を損なうことなぐレ 一ザ一溶着性と耐ヒートショック性とを高いレベルで両立できるレーザー溶着用ポリブ チレンテレフタレート系樹脂組成物、及びその成形品を提供することにある。 課題を解決するための手段
[0010] 本発明者らは、前記課題を達成するため鋭意検討した結果、ポリブチレンテレフタ レート系樹脂とコアシェル型ポリマーとを組み合わせること、特に、このコアシェル型 ポリマーを大きな粒径(分散径)でポリブチレンテレフタレート系樹脂に分散させること により、ポリブチレンテレフタレート系樹脂の特性を保持しつつ、レーザー溶着性と高 いレベルの耐ヒートショック性とをバランスよく両立できることを見出し、本発明を完成 した。
[0011] すなわち、本発明のレーザー溶着用ポリブチレンテレフタレート系樹脂組成物は、 ポリブチレンテレフタレート系樹脂 (A)と、コアシェル型ポリマー(B)とで構成されて!/ヽ る。前記ポリブチレンテレフタレート系樹脂 (A)は、ホモポリエステル (ポリブチレンテ レフタレート樹脂)であってもよく、コポリエステル (ポリブチレンテレフタレート共重合 体)であってもよぐこれらの混合物(ホモポリエステルとコポリエステルとの混合物など )であってもよい。なお、混合物において、ホモポリエステルとコポリエステルとの混合 比は特に限定されない。コポリエステルは、約 45モル%以下(例えば、 0. 0;!〜 40モ ル%程度)、特に 30モル%以下(例えば、 0· 0;!〜 30モル%程度)の共重合性モノ マーで変性された樹脂であってもよい。また、前記コアシェル型ポリマー(B)は、コア 層がアクリル系ゴムで構成されたコアシェル型ポリマー(アクリル系コアシェル型ポリマ 一)であってもよい。
[0012] 本発明の樹脂組成物では、通常、コアシェル型ポリマー(B)の粒径は大粒径 (例え ば、平均粒子径 1 a m以上、好ましくは 2 ,1 m以上)である。このような粒径のコアシェ ル型ポリマーを使用すると、レーザー透過性と耐ヒートショック性とを効率よく両立でき る。前記樹脂組成物において、コアシェル型ポリマー(B)の割合は、樹脂 (A) 100重 量部に対して、 1〜50重量部程度であってもよい。
[0013] 代表的な前記樹脂組成物には、コアシェル型ポリマー(B)の平均粒子径が 3〜; 10
であり、コアシェル型ポリマー(B)の割合が樹脂(A) 100重量部に対して 5〜30 重量部である樹脂組成物などが含まれる。
[0014] 前記樹脂組成物は、さらに、補強剤(C) (ガラス繊維など)を含んで!/、てもよ!/、。この ような補強剤を含む前記樹脂組成物において、補強剤(C)の割合は、樹脂 (A) 100 重量部に対して 10〜; 120重量部程度であってもよい。また、前記樹脂組成物は、さ らに、ポリカーボネート系樹脂を含んでいてもよい。このようなポリカーボネート系樹脂 を含む前記樹脂組成物において、ポリカーボネート系樹脂の割合は、樹脂 (A) 100 重量部に対して、 3〜20重量部程度であってもよい。
[0015] 本発明には、前記樹脂組成物で形成されて!/、るレーザー透過性樹脂成形品、すな わち、レーザー光を吸収可能なレーザー吸収性樹脂成形品と接触可能であり、レー ザ一光を透過して、前記樹脂成形品と接合するレーザー透過性樹脂成形品であつ て、前記樹脂組成物で形成されたレーザー透過性樹脂成形品も含まれる。
[0016] 本発明は、前記樹脂組成物で形成された成形品(第 1の成形品、前記樹脂組成物 で形成されたレーザー透過性樹脂成形品)と、相手材の樹脂成形品(第 2の成形品、 すなわち、レーザー光を吸収可能なレーザー吸収性樹脂で形成された成形品)とが レーザー溶着により接合されている複合成形品も含む。このような複合成形品は、第 1の成形品と第 2の成形品とを接触(特に少なくとも接合部を面接触)させ、第 1の成 形品と第 2の成形品との界面にレーザー光を照射し、第 1の成形品と第 2の成形品と の界面を少なくとも部分的に溶融させて接合面を密着させることにより製造できる。 発明の効果
[0017] 本発明では、ポリブチレンテレフタレート系樹脂とコアシェル型ポリマーとを組み合 わせるので、ポリブチレンテレフタレート系樹脂をベースとしながらもレーザー溶着性 を損なうことなく、優れた耐ヒートショック性を付与できる。また、ポリブチレンテレフタレ ート系樹脂の特性を損なうことなぐレーザー溶着性と耐ヒートショック性とを高いレべ ルで両立できる。そのため、レーザー溶着性の高い成形品(インサート成形品など) や、高い溶着強度で接合した複合成形品を得ることができる。
図面の簡単な説明
[0018] [図 1]図 1は実施例でのレーザー溶着を説明するための概略図である。
符号の説明
[0019] 1 · · ·光源
2· · ·レーザー光
3· · ·試験片 A 4 · · ·試験片 B
発明の詳細な説明
[0020] [ポリブチレンテレフタレート系樹脂組成物]
(A)ポリブチレンテレフタレート系樹脂
ベース樹脂としてのポリブチレンテレフタレート系樹脂 (PBT系樹脂)としては、プチ レンテレフタレートを主成分(例えば、 50〜; 100重量0 /0、好ましくは 60〜; 100重量0 /0 、さらに好ましくは 75〜; 100重量0 /0程度)とするホモポリエステル (ポリブチレンテレフ タレート)又はコポリエステル (ブチレンテレフタレート系共重合体又はポリブチレンテ レフタレ一トコポリエステル)などが挙げられる。
[0021] コポリエステル (ブチレンテレフタレート系共重合体又は変性 PBT樹脂)における前 記共重合可能なモノマー(以下、単に共重合性モノマーと称する場合がある)として は、テレフタル酸を除くジカルボン酸、 1 , 4 ブタンジオールを除くジオール、ォキシ カルボン酸、ラタトンなどが挙げられる。共重合性モノマーは一種で又は二種以上組 み合わせて使用できる。
[0022] ジカルボン酸としては、例えば、脂肪族ジカルボン酸 (例えば、コハク酸、ダルタル 酸、アジピン酸、ピメリン酸、スベリン酸、ァゼライン酸、セバシン酸、ゥンデカンジカル ボン酸、ドデカンジカルボン酸、へキサデカンジカルボン酸、ダイマー酸などの C
4-40 ジカルボン酸、好ましくは C ジカルボン酸)、脂環式ジカルボン酸 (例えば、へキ
4 14
サヒドロフタル酸、へキサヒドロイソフタル酸、へキサヒドロテレフタル酸、ハイミック酸な どの C ジカルボン酸)、テレフタル酸を除く芳香族ジカルボン酸(例えば、フタル
8- 12
酸、イソフタル酸; 2, 6 ナフタレンジカルボン酸などのナフタレンジカルボン酸; 4, A' ージフエニルジカルボン酸、 4, A' ージフエニルエーテルジカルボン酸、 4, A' ージフエニルメタンジカルボン酸、 4, A' ージフエ二ルケトンジカルボン酸などの C
8- 1 ジフエ二ルジカルボン酸)、又はこれらの反応性誘導体(例えば、低級アルキルエス
6
テル(ジメチルフタル酸、ジメチルイソフタル酸(DMI)などのフタル酸又はイソフタノレ 酸の C アルキルエステルなど)、酸クロライド、酸無水物などのエステル形成可能
1 -4
な誘導体)などが挙げられる。さらに、必要に応じて、トリメリット酸、ピロメリット酸など の多価カルボン酸などを併用してもよい。 [0023] ジオールには、例えば、 1 , 4 ブタンジオールを除く脂肪族ジオール (例えば、ェ チレングリコーノレ、トリメチレングリコーノレ、プロピレングリコーノレ、ネオペンチノレグリコ ール、へキサンジオール、オクタンジオール、デカンジオールなどの直鎖状又は分岐 鎖状 C アルカンジオール、好ましくは直鎖状又は分岐鎖状 C アルカンジォー
2 - 12 2- 10 ル)、 (ポリ)ォキシアルキレングリコール [複数のォキシ C アルキレン単位を有する
2-4
グリコール、例えば、ジエチレングリコール、ジプロピレングリコール、ジテトラメチレン グリコール、トリエチレングリコール、トリプロピレングリコール、ポリテトラメチレングリコ ールなど]、脂環族ジオール(例えば、 1 , 4—シクロへキサンジオール、 1 , 4—シクロ へキサンジメタノール、水素化ビスフエノール Aなど)、芳香族ジオール [例えば、ハイ ドロキノン、レゾルシノール、ナフタレンジオールなどのジヒドロキシ C ァレーン;ビ
6- 14
フエノール;ビスフエノール類;キシリレンダリコールなど]などが挙げられる。さらに、必 要に応じて、グリセリン、トリメチロールプロパン、トリメチロールェタン、ペンタエリスリト ールなどのポリオールを併用してもよい。
[0024] 前記ビスフエノール類としては、ビス(4—ヒドロキシフエ二ノレ)メタン(ビスフエノール F )、 1 , 1 ビス(4ーヒドロキシフエ二ノレ)ェタン(ビスフエノーノレ AD)、 1 , 1 ビス(4 ヒドロキシフエ二ノレ)プロパン、 2, 2 ビス(4ーヒドロキシフエ二ノレ)プロパン(ビスフエ ノーノレ A)、 2, 2 ビス(4 ヒドロキシ一 3 メチルフエ二ノレ)プロパン、 2, 2 ビス(4 —ヒドロキシフエ二ノレ)ブタン、 2, 2 ビス(4 ヒドロキシフエ二ル)一 3 メチルブタン 、 2, 2 ビス(4 ヒドロキシフエ二ノレ)へキサン、 2, 2 ビス(4 ヒドロキシフエニル) —4—メチルペンタンなどのビス(ヒドロキシァリーノレ) C アルカン; 1 , 1—ビス(4—
1 -6
ヒドロキシフエ二ノレ)シクロペンタン、 1 , 1 ビス(4ーヒドロキシフエ二ノレ)シクロへキサ ンなどのビス(ヒドロキシァリーノレ) C シクロアルカン; 4, 4'ージヒドロキシジフエ二
4 10
ノレエーテル; 4, 4'ージヒドロキシジフエニルスルホン; 4, 4'ージヒドロキシジフエニル スルフイド; 4, 4'ージヒドロキシジフエ二ルケトン、及びこれらのアルキレンオキサイド 付加体などが例示できる。アルキレンオキサイド付加体としては、ビスフエノール類( 例えば、ビスフエノール A、ビスフエノーノレ AD、ビスフエノール Fなど)の C アルキレ
2- 3 ンオキサイド付加体、例えば、 2, 2 ビス [4— (2 ヒドロキシエトキシ)フエニル]プ 口パン、ジエトキシ化ビスフエノーノレ A(EBPA)、 2, 2 ビス一 [4— (2 ヒドロキシプ ロポキシ)フエニル]プロパン、ジプロポキシ化ビスフエノーノレ Aなどが挙げられる。ァ ルキレンオキサイド付加体において、アルキレンオキサイド(エチレンオキサイド、プロ ピレンオキサイドなどの C アルキレンオキサイド)の付加モル数は、各ヒドロキシル
2- 3
基 1モルに対して 1〜; 10モル、好ましくは 1〜5モル程度である。
[0025] ォキシカルボン酸には、例えば、ォキシ安息香酸、ォキシナフトェ酸、ヒドロキシフエ ニル酢酸、グリコール酸、ォキシカプロン酸などのォキシカルボン酸又はこれらの誘 導体などが含まれる。ラタトンには、プロピオラタトン、プチ口ラタトン、バレロラタトン、 力プロラタトン (例えば、 ε—力プロラタトンなど)などの C ラタトンなどが含まれる。
3- 12
[0026] 好ましい共重合性モノマーとしては、ジオール類 [C アルキレングリコール(ェチ
2-6
レングリコーノレ、トリメチレングリコーノレ、プロピレングリコーノレ、へキサンジォーノレなど の直鎖状又は分岐鎖状アルキレングリコールなど)、繰返し数が 2〜4程度のォキシ アルキレン単位を有するポリオキシ C アルキレングリコール(ジエチレングリコール
2-4
など)、ビスフエノール類(ビスフエノール類又はそのアルキレンオキサイド付加体など
)など]、ジカルボン酸類 [C 脂肪族ジカルボン酸 (アジピン酸、ピメリン酸、スベリ
6- 12
ン酸、ァゼライン酸、セバシン酸など)、カルボキシル基がアレーン環の非対称位置 に置換した非対称芳香族ジカルボン酸など]などが挙げられる。これらの化合物のう ち、芳香族化合物、例えば、ビスフエノール類(特にビスフエノール Α)のアルキレンォ キサイド付加体、及び非対称芳香族ジカルボン酸 [フタル酸、イソフタル酸、及びそ の反応性誘導体(ジメチルイソフタル酸 (DMI)などの低級アルキルエステル)など] などが好ましい。
[0027] ポリブチレンテレフタレート系樹脂は、単独で又は 2種以上組み合わせてもよい。 2 種以上組み合わせる場合、ホモポリエステルと、コポリエステルとを組み合わせてもよ ぐ複数のコポリエステルを組み合わせてもよぐホモポリエステルと複数のコポリエス テルとを組み合わせてもよレ、。
[0028] ポリブチレンテレフタレート系樹脂としては、ホモポリエステル(ポリブチレンテレフタ レート)及び/又は共重合体 (ポリブチレンテレフタレートコポリエステル)が好ましぐ 共重合性モノマーの割合(変性量)は、通常、 45モル%以下(例えば、 0〜40モル% 程度)、好ましくは 35モル%以下(例えば、 0〜35モル%程度)であってもよぐ 30モ ル%以下(0〜30モル%程度)であってもよい。単独で使用する場合、共重合体にお いて、共重合性モノマーの割合は、例えば、 0. 0;!〜 30モル%程度の範囲から選択 でき、通常、 1〜30モル%、好ましくは 3〜25モル%、さらに好ましくは 5〜20モル% (例えば、 5〜; 15モル%)程度である。
[0029] なお、ホモポリエステルとコポリエステルとを組み合わせる場合、その混合比は特に 限定されない
PBT系樹脂は、テレフタル酸又はその反応性誘導体と 1 , 4 ブタンジオールと必 要により共重合可能なモノマーとを、慣用の方法、例えば、エステル交換、直接エス テル化法などにより共重合することにより製造できる。
[0030] (B)コアシェル型ポリマー
コアシェル型ポリマー(コアシェル型エラストマ一)は、コア層(コア部)と、このコア層 (コア層の表面)の一部又は全部を被覆するシェル層とで構成された多層構造を有 するポリマーである。コアシェル型ポリマーにおいて、コア層およびシェル層のうち、 V、ずれか一方がゴム成分 (軟質成分)で構成され、他方の成分が硬質成分で構成さ れる。
[0031] コア層は、通常、ゴム成分で構成されている場合が多い。ゴム成分のガラス転移温 度は、例えば、 0°C未満 (例えば、— 10°C以下)、好ましくは— 20°C以下 (例えば、― 180〜― 25°C程度)、さらに好ましくは— 30°C以下(例えば、 150〜― 40°C程度) であってもよい。
[0032] ゴム成分は、上記のような低!/、ガラス転移温度を有して!/、ればよぐ例えば、不飽和 結合含有単量体の重合体、ケィ素系ゴム(ケィ素系エラストマ一)、ウレタン系ゴムな どが挙げられる。これらのゴム成分は、単独又は 2種以上組み合わせてもよい。 2種 以上組み合わせる場合、これらのゴム成分は、共重合、グラフト重合などにより互い に結合していてもよい。
[0033] 不飽和結合含有単量体(不飽和結合含有モノマー)としては、アクリル系モノマー { 例えば、アクリル酸エステル [例えば、アルキルアタリレート(例えば、メチルアタリレー ト、ェチルアタリレート、プロピルアタリレート、ブチルアタリレート、イソブチルアタリレ ート、へキシルアタリレート、 2—ェチルへキシルアタリレート、ラウリルアタリレートなど のじ アルキルアタリレート)、ァリールアタリレート(フエニルアタリレートなど)など]、
1 20
メタクリル酸エステル (例えば、ラウリルメタタリレートなどのメタクリル酸高級エステル) など }、ジェン系モノマー(例えば、ブタジエン、イソプレン、クロ口プレンなどの共役 C
2 アルカジエン)、ォレフィン系モノマー(例えば、エチレン、プロピレン、 1ーブテン、 6
イソブチレンなど C アルケンなど)、芳香族ビュル系モノマー(例えば、スチレン、
2 -6
aーメチルスチレン、ビュルトルエン、ブチルスチレン、フエニルスチレン、クロロスチ レンなどのスチレン系モノマー、ビュルナフタレンなど)、シアン化ビュル系モノマー( 例えば、(メタ)アクリロニトリルなど)、ビュルエーテル系モノマー、カルボン酸ビュル エステル系モノマー(酢酸ビュルなど)、アクリルアミド系モノマー((メタ)アクリルアミド など)、フッ素系モノマー(フッ化ビニリデン、パーフルォロプロペン、テトラフルォロェ チレン)などが挙げられる。これらの不飽和結合含有モノマーは単独で又は 2種以上 組み合わせてもよい。
[0034] 代表的な不飽和結合含有モノマーの重合体としては、アクリル系ゴム(アクリル系ェ ラストマー)、ジェン系ゴム(ジェン系エラストマ一)、才レフィン系ゴム(エチレンプロピ レンゴムなど)、フッ素ゴム(フッ化ビニリデン一パーフルォロプロペン共重合体など) などが挙げられる。
[0035] ゴム成分としてのアクリル系ゴムは、アクリル系モノマー [特に、アルキルアタリレート
(ブチルアタリレートなどのアクリル酸 C アルキルエステル、好ましくはアクリル酸 C
1 12
アルキル、さらに好ましくはアクリル酸 C アルキルエステル)などのアクリル酸ェ
1 -8 2-6
ステル]を主成分とするポリマーである。アクリル系ゴムは、アクリル系モノマーの単独 又は共重合体(2種以上のアクリル系モノマーの共重合体、アクリル系モノマーと他の 不飽和結合含有モノマーとの共重合体など)であってもよぐアクリル系モノマー(お よび他の不飽和結合含有モノマー)と架橋性モノマーとの共重合体であってもよ!/、。
[0036] 架橋性モノマーとしては、例えば、(メタ)アクリル系単量体 {多官能性 (メタ)アタリレ チレングリコールジ(メタ)アタリレート、ブチレングリコールジ(メタ)アタリレート、ポリ( 又はオリゴ)エチレングリコールジ(メタ)アタリレート(ジエチレングリコールジ(メタ)ァ タリレート、トリエチレングリコールジ(メタ)アタリレートなど)、グリセリントリ(メタ)アタリ レート、トリメチロールェタントリ(メタ)アタリレート、トリメチロールプロパンジ(メタ)ァク リレート、トリメチロールプロパントリ(メタ)アタリレート、ペンタエリスリトールジ(メタ)ァ タリレート、ペンタエリスリトールテトラ(メタ)アタリレート、ジペンタエリスリトールテトラ( メタ)アタリレート、ジペンタエリスリトールへキサ(メタ)アタリレートなどの(ポリ)ヒドロキ シアルカンポリ(メタ)アタリレートなど]のビュル系単量体(例えば、ビュル (メタ)アタリ レート、ジビュルベンゼンなど);グリシジル (メタ)アタリレートなど }、重合性不飽和結 合を有する加水分解縮合性化合物 [例えば、(メタ)アタリロイル基を有するシランカツ キシアルキルトリアルコキシシランなど)など]、ァリル系化合物(例えば、ァリル (メタ) アタリレート、ジァリルマレート、ジァリルフマレート、ジァリルイタ二レート、モノアリルマ レート、モノアリルフマレート、トリアリル (イソ)シァヌレートなど)などが挙げられる。こ れらの架橋性モノマーは、単独又は 2種以上組み合わせてもよい。
[0037] アクリル系ゴムにおいて、アクリル酸エステル(特に、アルキルアタリレート)の割合は 、アクリル系ゴム全体に対して、 50〜100重量0 /0、好ましくは 70〜99重量0 /0、さらに 好ましくは 80〜98重量0 /0程度であってもよい。また、アクリル系ゴムにおいて、架橋 性モノマーの割合は、アクリル酸エステル 100重量部に対して、 0. ;!〜 10重量部、 好ましくは 0. 2〜5重量部、さらに好ましくは 0. 3〜5重量部程度であってもよい。
[0038] ジェン系ゴムとしては、例えば、ジェン系モノマーの重合体(天然ゴム、イソプレンゴ ム、ブチルゴム、ブタジエンゴム、クロロプレンゴムなど)、ジェン系モノマーと他の不 飽和結合含有モノマーとの共重合体 (例えば、アクリロニトリルブタジエンゴム、二トリ ノレクロロプレンゴム、二トリノレイソプレンゴムなどのアタリロニトリノレとジェン系モノマーと の共重合体(ゴム);スチレンブタジエンゴム、スチレンクロロプレンゴム、スチレンイソ プレンゴムなどのスチレンとジェン系モノマーとの共重合体 (ゴム)など)などが含まれ る。ジェン系ゴムには、水添ゴム、例えば、水素添加二トリルゴムなども含まれる。
[0039] ケィ素系ゴム(シリコーン系ゴム)は、通常、式: R SiO で表される単位で構成
(4 ) /2
されたオルガノポリシロキサンである。式中、 Rは、例えば、メチル基などの C アル
1 10 キル基、トリフルォロプロピル基などのハロゲン化 C ァノレキノレ基、ビニノレ基、ァリル
1 10
基などの C アルケニル基、フエニル基などの C ァリール基、シクロペンチル基 などの C シクロアルキル基、ベンジル基などの C ァリール C アルキル基
3- 10 6- 12 1 -4
などが挙げられる。式中、係数 aは 1. 9〜2. 1程度である。好ましい Rは、メチル基、 フエニル基、アルケニル基(ビュル基など)などである。シリコーンゴムはこれらの構造 単位を単独で又は 2種以上組み合わせて有して!/、てもよ!/、。
[0040] シリコーンゴムの分子構造は、通常、直鎖状であるが、一部分岐構造を有していて もよぐ、分岐鎖状であってもよい。シリコーンゴムの主鎖は、例えば、ジメチルポリシ口 キサン鎖、メチルビ二ルポリシロキサン鎖、メチルフエ二ルポリシロキサン鎖、これらの シロキサン単位の共重合体鎖 [ジメチルシロキサン メチルビュルシロキサン共重合 体鎖、ジメチルシロキサン メチルフエニルシロキサン共重合体鎖、ジメチルシロキサ ンーメチル(3, 3, 3—トリフルォロプロピル)シロキサン共重合体鎖、ジメチルシロキ サン メチルビュルシロキサン メチルフエニルシロキサン共重合体鎖など]で構成 できる。シリコーンゴムの両末端は、例えば、トリメチルシリル基などであってもよい。な お、このようなシリコーンゴムは、通常、オルガノシロキサン単量体を重合(開環重合) させて得られる。このようなオルガノシロキサンとしては、前記単位に対応するオルガ キサン、デカメチルペンタシクロシロキサン、ドデカメチルへキサシクロシロキサン、トリ メチルトリフエニルトリシクロシロキサン、テトラメチルテトラフエ二ルテトラシクロシロキサ ン、ォクタフエ二ルテトラシクロシロキサンなどが挙げられる。
[0041] コア層は、代表的には、アクリル系ゴムで構成してもよい。
[0042] なお、コア層は、ゴム成分を主成分として含んでいる限り、非ゴム成分 (例えば、後 述の硬質樹脂成分など)を含んでレ、てもよ!/、。コア層全体に対するゴム成分の割合 は、 30〜; 100重量%、好ましくは 50〜100重量。 /0、さらに好ましくは 70〜; 100重量 %程度であってもよい。また、コア層の構造は、均一な構造であってもよぐ不均一な 構造 (サラミ構造など)であってもよレ、。
[0043] コアシェル型ポリマーにおいて、シェル層は、通常、硬質樹脂成分(又はガラス状樹 脂成分)で構成されている。硬質樹脂成分のガラス転移温度は、 0°C以上 (例えば、 2 0°C以上)の範囲から選択でき、例えば、 30°C以上(例えば、 30〜300°C程度)、好 ましくは 50°C以上(例えば、 60〜250°C程度)、さらに好ましくは 70°C以上(例えば、 80〜200°C程度)であってもよい。このような硬質樹脂成分は、通常、ビュル系重合 体(ビュル系単量体の重合体)で構成されて!/、る。ビュル系重合体 (樹脂)にお!/、て、 ビュル系単量体(ビュル系モノマー)としては、ビュル系重合体を上記のようなガラス 転移温度に調整できる限り特に限定されず、例えば、メタクリル系モノマー [例えば、 アルキルメタタリレート(例えば、メチルメタタリレート、ェチルメタタリレート、プロピルメ タクリレート、ブチルメタタリレート、へキシルメタタリレート、 2—ェチルへキシルメタタリ レートなどの C アルキルメタタリレート、好ましくは C アルキルメタタリレート、さ
1 - 20 1— 10
らに好ましくは C アルキルメタタリレート)、ァリールメタタリレート(フエニルメタクリレ
1 -6
ートなど)、シクロアルキルメタタリレート(シクロへキシルメタタリレートなど)などのメタ クリル酸エステルなど]などの他、前記例示のモノマー [例えば、アクリル系モノマー、 芳香族ビュル系モノマー(例えば、スチレンなどの前記例示のモノマーなど)、ォレフ イン系モノマー、シアン化ビュル系モノマー(例えば、(メタ)アクリロニトリルなどの前 記例示のモノマーなど)などが挙げられる。これらのビュル系単量体は、単独で又は
2種以上組み合わせてもよい。ビュル系重合体は、メタクリル系モノマー、芳香族ビニ ノレ系モノマー、シアン化ビュル系モノマーから選択された少なくとも 1種 [特に、少なく ともメタクリル酸エステル (メチルメタタリレートなどのアルキルメタタリレートなど)]を重 合成分とする重合体である場合が多レ、。
[0044] なお、シェル層を構成するビュル系重合体は、ビュル系モノマーと架橋性モノマー との共重合体であってもよい。架橋性モノマーとしては前記と同様のモノマーが例示 できる。
[0045] シェル層は、コア層の一部又は全部を被覆していれば、単一の層であってもよぐ 複数の層で形成されてレ、てもよ!/、。
[0046] コア層とシェル層とは、通常、互いに結合している場合が多い。このような結合は、 特に限定されないが、通常、コア層(ゴム成分)に対するシェル層(硬質樹脂成分、ビ ニル系重合体)のグラフト重合により形成されて!/、る場合が多レ、。このようなグラフト重 合(グラフト共重合)により結合(グラフト結合)したコアシェル型ポリマーは、例えば、 ゴム成分に対して、シェル層(ビュル系重合体)を構成(又は形成)するビュル系単量 体をグラフト重合させることによって得られる。なお、グラフト重合に先立って、必要に 応じて、ゴム層を構成するゴム成分にシェル層(又はビュル系モノマー)と反応する反 応性基を導入してもよい。反応性基の導入は、例えば、ゴム成分を構成するモノマー の重合時に、反応性基を有するグラフト交差剤を反応させることにより行ってもよい。 グラフド交差剤としては、例えば、ケィ素系ゴムでは、不飽和結合及び/又はチォー ル基を有するオルガノシロキサン(例えば、(メタ)ァクロキシシロキサン、ビュルシロキ サンなど)が挙げられる。
[0047] コアシェル型ポリマーにおいて、コア層とシェル層との割合は、前者/後者(重量比 ) = 99/1〜; 1/99、好ましくは 95/5〜5/95、さらに好ましくは 90/10〜; 10/9 0であってもよぐ通常 95/5〜30/70 (例えば、 85/15〜50/50)であってもよ い。
[0048] 本発明において使用するコアシェル型ポリマー(コアシェル型ポリマー粒子)の平均 粒子径は、通常 1 m以上 (例えば、 1. 2〜30 111程度)の範囲から選択でき、例え ば、 1. 5 111以上(例えば、 1. 8〜20 111程度)、好ましくは2 111以上(例ぇば、 2. 5〜; 15〃 m程度)、さらに好ましくは 3〜; 10〃 m (列えば、 3. 5〜8〃 m)、特に 4〜7· 5〃 m (例えば、 4· 5〜7 111)程度であってもよい。なお、コアシェル型ポリマーは、 通常、前記樹脂組成物中(又は ΡΒΤ系樹脂中、 ΡΒΤ系樹脂で構成された樹脂成分 中)に分散していてもよい。このような分散したコアシェル型ポリマーは、一次粒子で あってもよく、二次粒子であってもよい。コアシェル型ポリマーの平均分散径は、上記 と同様の範囲から選択できる。粒子径が小さすぎると(例えば、 未満になると)、 レーザー透過性が低下し、レーザー溶着性が損なわれる。
[0049] 本発明では、上記のような大きな粒径(又は分散径)を有するコアシェル型ポリマー を使用する場合が多い。なお、一般的なコアシェル型ポリマーの粒子径は、通常 0. 1〃 mのオーダーである場合が多い。また、一般的な熱可塑性エラストマ一(ポリオレ フィン系熱可塑性エラストマ一、スチレン系エラストマ一、ポリエステノレ系エラストマ一 など)は、 PBT系樹脂の粘度や混練条件などにより、粒径が変化しやすぐ大きな粒 径で安定的に樹脂中に分散させることは困難である。
[0050] 本発明では、コアシェル型ポリマー、特に上記のような大きな粒径又は分散径を有 するコアシェル型ポリマーを使用することにより、透過光の散乱を高いレベルで抑制 できるためか、レーザー透過性(又はレーザー溶着性)と耐ヒートショック性(高低温 耐性)とを両立できる。また、前記コアシェル型ポリマーを使用することにより、その大 粒径に起因するため力、、 PBT系樹脂本来の優れた特性 (耐熱性、耐溶剤性など)を 保持しつつ、レーザー透過性および耐ヒートショック性を改善できる。なお、単に、耐 ヒートショック性を向上するだけであれば、粒径が比較的小さ!/、コアシェル型を使用 する方が有利である場合が多い。本発明の組成物では、レーザー溶着用途の組成 物において、 PBT系樹脂と上記のような比較的大きな粒径を有するコアシェル型ポリ マーとを組み合わせて使用することにより、レーザー溶着性を損なうことなぐ高度の 耐ヒートショック性とを付与でき、レーザー溶着性と耐ヒートショック性とをバランスよく 両立できる。
[0051] なお、コアシェル型ポリマーの屈折率は、特に限定されない。本発明では、大粒径 を有するコアシェル型ポリマーを使用するので、前記特許文献 4に記載されているよ うな特定の屈折率(1. 52〜; 1. 59)を有していなくても [例えば、屈折率 1. 52未満( ί列えば、、 1. 35-1. 5、好ましくは 1. 4~1. 49、さらに好ましくは 1. 42-1. 48程度 )であっても]、レーザー透過性(レーザー溶着性)を損なうことがな!/、。
[0052] なお、コアシェル型ポリマーは、コア層とシェル層を形成可能な慣用の方法(乳化 重合法、シード重合法、マイクロサスペンジョン重合法、懸濁重合法など)により調製 したものを用いてもよく、市販品を使用してもよい。例えば、大粒子径のコアシェル型 ポリマーは、ロームアンドハースジャパン(株)から、「パラロイド EXL5136」などとして 人手すること力 Sでさる。
[0053] コアシェル型ポリマー(B)の割合は、ポリブチレンテレフタレート系樹脂 (A) 100重 量部に対して、例えば、;!〜 50重量部(例えば、 2〜50重量部)、好ましくは3〜40重 量部(例えば、 5〜35重量部)、さらに好ましくは 5〜30重量部、特に 10〜25重量部 程度であってもよい。また、コアシェル型ポリマー(B)の割合は、前記樹脂組成物全 体に対して、例えば、;!〜 30重量%、好ましくは 3〜20重量%、さらに好ましくは 5〜 15重量%程度であってもよい。コアシェル型ポリマー(B)の割合が少なすぎると、耐 ヒートショック性の改良効果が低減し、多すぎるとレーザー透過性が低下しやす!/、。
[0054] (C)充填剤 本発明の樹脂組成物は、強度を必要とする場合、充填剤 (又は補強材)(C)を含ん でいてもよい。このような充填剤(C)には、繊維状補強材 [例えば、無機質繊維 (例え ば、ガラス繊維、アスベスト繊維、カーボン繊維、シリカ繊維、アルミナ繊維、シリカ'ァ ルミナ繊維、アルミニウムシリケート繊維、ジルコユア繊維、チタン酸カリウム繊維、炭 化ケィ素繊維、ゥイスカー(炭化ケィ素、アルミナ、窒化珪素などのウイスカー)など)、 有機質繊維 (例えば、脂肪族又は芳香族ポリアミド、芳香族ポリエステル、フッ素樹脂 、ポリアクリロニトリルなどのアクリル樹脂、レーヨンなどで形成された繊維)など]、板 状補強材 [例えば、タルク、マイ力、ガラスフレーク、グラフアイトなど]、粉粒状補強材 [例えば、ガラスビーズ、ガラス粉、ミルドファイバー(例えば、ミルドガラスファイバーな ど)など]、ウォラストナイト (珪灰石)などが含まれる。ウォラストナイトは、板状、柱状、 繊維状などの形態であってもよい。繊維状補強材の平均径は、例えば、;!〜 50 111 ( 好ましくは 3〜30 111)程度、平均長は、例えば、 100 111〜3111111 (好ましくは 300 πι〜; lmm、さらに好ましくは 500 111〜1111111)程度であってもよい。また、板状又 は粉粒状補強材の平均粒径は、例えば、 0.;!〜 lOO rn、好ましくは 0. Ι-δΟ , ΐη (例えば、 0.;!〜 10 m)程度であってもよい。これらの充填剤又は補強材は単独で 又は二種以上組み合わせて使用できる。
[0055] これらの補強材のうち、ガラス系又はガラス質充填剤又は補強材 (ガラス繊維、ガラ スフレーク、ガラスビーズなど)、タルク、マイ力、ウォラストナイト、チタン酸カリウム繊 維などが好ましぐ特に、ガラス繊維などのガラス質充填剤が好ましい。ガラス繊維の 中でも、特にチョップドストランド品は、高い強度および剛性を有しており、好適に使 用できる。
[0056] 充填剤(C)の割合は、例えば、ポリブチレンテレフタレート系樹脂 (A) 100重量部 に対して 1〜150重量部(例えば、 5〜130重量部)程度の範囲から選択でき、通常、 10〜120重量部(例えば、 15〜100重量部)、好ましくは 20〜90重量部、さらに好 ましくは 30〜80重量部(例えば、 40〜70重量部)程度であってもよい。
[0057] (D)樹脂 (第 2の樹脂)
ポリブチレンテレフタレート系樹脂組成物は、光透過性(又はレーザー溶着性)を改 善するため、さらに、熱可塑性樹脂(第 2の樹脂)を含んでいてもよい。この第 2の樹 脂としては、非晶質樹脂、例えば、ポリカーボネート (PC)系樹脂などが挙げられる。 これらの第 2の樹脂(D)は単独で又は二種以上組み合わせて使用できる。なお、樹 脂組成物にお!/、て、ポリブチレンテレフタレート系樹脂 (A)と樹脂(D)とのモルホロジ 一は特に制限されず、均一樹脂系を形成してもよく分散系を形成してもよい。
[0058] ポリカーボネート系樹脂は、ジヒドロキシ化合物と、ホスゲン又はジフエニルカーボ ネートなどの炭酸エステルとの反応により得られる。ジヒドロキシ化合物は、脂環族化 合物などであってもよいが、好ましくは芳香族化合物(特にビスフエノール化合物)で ある。
[0059] ビスフエノール化合物としては、前記 PBT系樹脂の項で例示のビスフエノール類 [ 例えば、ビス(ヒドロキシァリール) C アルカン;ビス(ヒドロキシァリール) C シクロ
1 -6 4 10 アルカン; 4, 4'ージヒドロキシジフエニルエーテル; 4, 4 'ージヒドロキシジフエニルス ノレホン; 4, 4'ージヒドロキシジフエニルスルフイド; 4, 4'ージヒドロキシジフエ二ルケト ンなど]が挙げられる。好ましいポリカーボネート系樹脂には、ビスフエノール A型ポリ カーボネートが含まれる。
[0060] なお、 PC系樹脂は、ポリブチレンテレフタレート系樹脂(特に PBT系樹脂)と相溶し やすぐレーザー透過性を改善する効果が高い。また、 PC系樹脂を用いると、成形 体の反りを効率よく改善できる。
[0061] 樹脂(D) (又は PC系樹脂)の使用量は、例えば、ポリブチレンテレフタレート系樹脂
(A) 100重量部に対して、 0〜60重量部(例えば、 0. 5〜50重量部)程度の範囲か ら選択でき、通常、 1〜40重量部(例えば、 2〜30重量部)、好ましくは 25重量部以 下 (例えば、 3〜20重量部)、さらに好ましくは 15重量部以下 (例えば、 4〜; 15重量部 )程度であってもよい。また、樹脂組成物全体に対する樹脂(D)の割合は、例えば、 0 〜20重量% (例えば、 1〜; 15重量%)、好ましくは 2〜; 10重量%、さらに好ましくは 3 〜8重量%程度であってもよい。樹脂 (D)の使用量が多すぎると、耐熱性、耐薬品性 などのポリブチレンテレフタレート系樹脂そのものの特性が低下しやすい。
[0062] 樹脂組成物には、種々の添加剤(安定剤、成形性改善材など)を添加してもよ!/、。
添加剤としては、例えば、安定剤(酸化防止剤、紫外線吸収剤、熱安定剤など)、核 剤 (結晶化核剤)、難燃剤、滑剤、離型剤、帯電防止剤、染顔料などの着色剤、分散 剤などが挙げられる。必要であれば、他の樹脂(熱可塑性樹脂、熱硬化性樹脂など) と組合せて用いてもよい。また、樹脂組成物には、ビスフエノール A型エポキシ化合 物、ノポラック型エポキシ化合物などのエポキシ化合物を添加してもよい。エポキシ化 合物を添加すると、耐加水分解性、耐ヒートショック性などをより一層改善できる。な お、レーザー溶着性を損なわな!/、範囲であればレーザー光に対する反射成分 (例え ば、波長 800〜; 1200nm領域の入射光を殆ど反射する成分)を添加してもよいが、 通常、このような反射成分を添加しな!/、場合が多レ、。
[0063] 結晶化核剤としては、ロジンなどの有機核剤の他に、無機核剤(例えば、シリカ、ァ ルミナ、ジルコユア、酸化チタン、酸化鉄、酸化亜鉛などの金属酸化物;炭酸カルシ ゥム、炭酸マグネシウム、炭酸バリウムなどの金属炭酸塩;ケィ酸カルシウム、ケィ酸 アルミニウム、タルクなどの板状無機物又は珪酸塩;炭化ケィ素などの金属炭化物; 窒化ケィ素、窒化ホウ素、窒化タンタルなどの金属窒化物など)を使用する場合が多 い。これらの結晶化核剤は、単独で又は二種以上組み合わせて使用できる。結晶化 核剤は、粉粒状又は板状であってもよい。
[0064] 結晶化核剤の割合は、ポリブチレンテレフタレート系樹脂 (A) 100重量部に対して 、 0. 00;!〜 5重量部(例えば、 0. 0;!〜 5重量部)、好ましくは 0. 0;!〜 3重量部(例え ば、 0. 0;!〜 2重量部)、さらに好ましくは 0. 0;!〜 1重量部(例えば、 0. 01-0. 5重 量部)程度であってもよい。コアシェル型ポリマー(B) 100重量部に対する核剤の割 合は、 0. 0;!〜 10重量部、好ましくは 0. 05〜5重量部(例えば、 0. 05—2. 5重量部 )、さらに好ましくは 0· ;!〜 1重量部(例えば、 0· ;!〜 0· 5重量部)程度であってもよい
[0065] 本発明の PBT系樹脂組成物は、粉粒体混合物や溶融混合物(ペレットなど)であつ てもよい。本発明の樹脂組成物は、成形性が高ぐ機械的強度や耐熱性の高い成形 体又は成形品を製造できる。特に、本発明の樹脂組成物で形成した成形品は、 PBT 系樹脂組成物で形成されているにも拘わらず、光線透過性(特に、レーザー光に対 する光線透過性)が高ぐレーザー溶着に適している。例えば、射出成形により形成 された厚み 1. 5mmの成形品において、 800〜1000nmの波長の光線透過率は 18 %以上(例えば、 19〜70%程度)、好ましくは 20%以上(例えば、 2;!〜 60%)、さら に好ましくは 22%以上 (例えば、 23〜50%)程度である。しかも、本発明の樹脂組成 物は、レーザー光による溶着性が高いので、レーザー光を利用して溶着するための 成形体を製造するのに有用である。さらに、 PBT系樹脂と特定のエラストマ一とを組 み合わせて構成するので、 PBT系樹脂本来の特性 (耐熱性、耐溶剤性など)を保持 しつつ、レーザー溶着性、さらには耐ヒートショック性を向上できる。
[0066] [成形体]
本発明の成形体は、前記樹脂組成物から形成されており、優れたレーザー光透過 性を示す。このような成形体は、ポリブチレンテレフタレート系樹脂 (A)と、前記コアシ エル型ポリマー(B)と、必要により補強材(C)及び/又は樹脂(D)などとで構成され た樹脂組成物を慣用の方法、例えば、(1)各成分を混合して、一軸又は二軸の押出 機により混練し押出してペレットを調製した後、成形する方法、(2)—旦、組成の異な るペレット(マスターバッチ)を調製し、そのペレットを所定量混合 (希釈)して成形に供 し、所定の組成の成形品を得る方法、(3)成形機に各成分の 1又は 2以上を直接仕 込む方法などで製造できる。なお、ペレットは、例えば、脆性成分 (ガラス系補強材な ど)を除く成分を溶融混合した後に、脆性成分 (ガラス系補強材など)を混合すること により調製してもよい。
[0067] 成形体は、前記ポリブチレンテレフタレート系樹脂組成物を溶融混練し、押出成形 、射出成形、圧縮成形、ブロー成形、真空成形、回転成形、ガスインジェクションモー ルディングなどの慣用の方法で成形してもよいが、通常、射出成形により成形される 。特に、本発明の樹脂組成物は耐ヒートショック性が高いため、インサート成形に適し ている。そのため、成形体は、特に、インサート成形品(インサート成形により形成され た成形品)であってもよレ、。
[0068] 成形品の形状は、特に制限されないが、成形品をレーザー溶着により相手材 (他の 樹脂成形品)と接合して用いるため、通常、少なくとも接触面(平面など)を有する形 状 (例えば、板状)である。また、本発明の成形体はレーザー光に対する透過性が高 いので、レーザー光が透過する部位の成形品の厚み(レーザー光が透過する方向の 厚み)は、広い範囲力も選択でき、例えば、 0.;!〜 5mm、好ましくは 0.;!〜 3mm (例 えば、 0· 5〜3mm)程度であってもよい。 [0069] レーザー光源としては、特に制限されず、例えば、色素レーザー、気体レーザー( エキシマレーザ一、ァノレゴンレーザー、クリプトンレーザー、ヘリウム ネオンレーザ 一など)、固体レーザー(YAGレーザーなど)、半導体レーザーなどが利用できる。レ 一ザ一光としては、通常、ノ ルスレーザーが利用される。
[0070] 本発明はレーザー溶着した複合成形品も開示する。この複合成形品は、前記ポリ ブチレンテレフタレート系樹脂組成物で形成された成形品(第 1の成形品、レーザー 透過性樹脂成形品)と、相手材の樹脂成形品(第 2の成形品、被着体、すなわち、レ 一ザ一光を吸収可能なレーザー吸収性樹脂で形成された成形品)とがレーザー溶 着により接合され、一体化されている。例えば、第 1の成形品と第 2の成形品とを接触 (特に少なくとも接合部を面接触)させ、レーザー光を照射することにより、第 1の成形 品と第 2の成形品との界面を少なくとも部分的に溶融させて接合面を密着させ、冷却 することにより二種の成形品を接合、一体化して 1つの成形体とすることができる。こ のような複合成形体において、本発明の成形体を用いると、融着により高い接合強 度が得られ、レーザー光の照射により融着して!/、な!/、非融着部材と同等の高レ、融着 強度を保持できる。
[0071] 前記相手材の樹脂成形品を構成する樹脂(レーザー吸収性樹脂)としては、特に 制限されず、種々の熱可塑性樹脂、例えば、スチレン系樹脂、アクリル系樹脂、ポリ エステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの混合物 [又は ァロイ、例えば、スチレン系樹脂 (ABS樹脂、 AS樹脂などのゴム含有スチレン系樹脂 )とポリエステル樹脂とのァロイなど]などが挙げられる。これらの樹脂のうち、前記ポリ ブチレンテレフタレート系樹脂組成物を構成する樹脂と同種類又は同系統の樹脂 (P BT系樹脂、 PET系樹脂などのポリエステル系樹脂(芳香族ポリエステル系樹脂)、ポ リカーボネート系樹脂、スチレン系樹脂など)又はその組成物で相手材を構成しても よい。例えば、第 1の成形体と第 2の成形体とを、それぞれ、本発明のポリブチレンテ レフタレート系樹脂組成物で形成してもよ!/、。
[0072] 被着体は、レーザー光に対する吸収剤又は着色剤を含んでいてもよい。前記着色 剤は、レーザー光の波長に応じて選択でき、無機顔料 [カーボンブラック (例えば、ァ セチレンブラック、ランプブラック、サーマノレブラック、ファーネスブラック、チャンネノレ ブラック、ケッチェンブラックなど)などの黒色顔料、酸化鉄赤などの赤色顔料、モリブ デートオレンジなどの橙色顔料、酸化チタンなどの白色顔料など]、有機顔料 (黄色 顔料、橙色顔料、赤色顔料、青色顔料、緑色顔料など)などが挙げられる。なお、レ 一ザ一吸収剤は、「クリア一ウエルド」(GENTEX社、近赤外吸収材料)などとして巿 販品を使用することもできる。これらの吸収剤は単独で又は二種以上組み合わせて 使用できる。
[0073] レーザー光の照射は、通常、第 1の成形体から第 2の成形体の方向に向けて行わ れ、吸収剤又は着色剤を含む第 2の成形体の界面で発熱させることにより、第 1の成 形体と第 2の成形体とを融着させる。なお、必要によりレンズ系を利用して、第 1の成 形品と第 2の成形品との界面にレーザー光を集光させ接触界面を融着してもよい。 産業上の利用可能性
[0074] 本発明で得られた複合成形品は、ポリブチレンテレフタレート系樹脂(特に、 PBT 系樹脂)の特性を保持しつつ、高い溶着強度および耐ヒートショック性を有し、レーザ 一光照射によるポリブチレンテレフタレート系樹脂の損傷も少ないため、種々の用途 、例えば、電気 ·電子部品、オフィスオートメート(OA)機器部品、家電機器部品、機 械機構部品、 自動車機構部品などに適用できる。特に、自動車電装部品(各種コント ロールユニット、ィグニッシヨンコイル部品など)、モーター部品、各種センサー部品、 コネクター部品、スィッチ部品、リレー部品、コイル部品、トランス部品、ランプ部品な どに好適に用いることができる。
実施例
[0075] 以下に、実施例に基づいて本発明をより詳細に説明する力 本発明はこれらの実 施例により限定されるものではない。
[0076] 実施例;!〜 5及び比較例;!〜 3
実施例及び比較例では、以下の PBT系樹脂 (A)、エラストマ一(B)、充填剤(C)、 樹脂(D)及び添加剤を用いた。
[0077] PBT系樹脂(A)
(A— 1) PBT樹脂:ポリブチレンテレフタレート(ウィンテックポリマー(株)製、 DX20 00) (A— 2)変性 PBT樹脂:ジメチルイソフタル酸 (DMI)変性 PBT樹脂 テレフタル酸と 1 , 4 ブタンジオールとの反応において、テレフタル酸の一部(12· 5モル0 /0)に代えて、共重合成分としてのジメチルイソフタル酸(DMI) 12· 5モル0 /0
Figure imgf000023_0001
[0078] コアシェル型エラストマ一(B)
(B— 1)アクリル系コアシェル型ポリマー(ロームアンドハースジャパン(株)製、パラ ロイド EXL5136)
(B— 2)アクリル系コアシェル型ポリマー(ロームアンドハースジャパン(株)製、パラ ロイド EXL2311)
(B— 3)アクリル系コアシェル型エラストマ一(ァルケマ(株)製、 Durastrength D 400R)。
[0079] 無機充填材(C)
(C- 1)ガラス繊維 (日東紡績 (株)製「 C S 3J— 948 S」平均繊維径 φ 11 mチヨッ プドストランド、平均繊維長 400 m)
熱可塑性樹脂 (D)
(D- l) PC :ポリカーボネート樹脂(帝人化成 (株)製, 「パンライト L— 1225」 ) 表 1に示す割合で、 2軸押出機(日本製鋼所 (株)製, 30πιιη φ )により 250°Cにて 混練し、ペレットを作製した。得られたペレットを用いて射出成形機((株)東芝製)に より、シリンダー温度 260°C及び金型温度 80°Cの条件で、縦 8cmX横 8cm X厚み 1 . 5mmのシート状成形体を成形し、このシート状成形体を 10mmの短冊状に切り出 し、試験片 A (すなわち、縦 8cm X横 lcmX厚み 1. 5mm)を作成した。
[0080] また、 PBT樹脂(ウィンテックポリマー(株)製、ジユラネックス 3300 (ED3002) )を 用いて、前記試験片 Aに対する被溶着試験片 B (レーザーを吸収材料)として同様の 形状の試験片 B (すなわち、縦 8cm X横 lcmX厚み 1. 5mm)を作成した。なお、試 験片 Bはレーザー光による発熱体(レーザー吸収材料)として作用する。
[0081] 図 1に示すように、試験片 B (4)に対して試験片 A(3)の一部を重ねて接触させ、レ 一ザ一溶着機 (ライスター社製)を用いて、光源又はレーザー発振器(1 )からのレー ザ一光(2)の焦点を調整し、試験片 Aと試験片 Bとの接触面に照射幅又は線幅 w(2 mm)で集光させた。そして、波長 940nmのレーザー光(2)を試験片 A (3)側から、 出力 10〜50W及び走査速度 30mm/秒の条件で照射して溶着を行った。なお、表 1に示す溶着強度は、出力 10〜50Wで溶着したとき、最も大きい値で測定された溶 着強度を示す。
[0082] (1)溶着強度の測定
引張試験機 (オリエンテック製, RTC— 1325PL)を用いて、レーザー溶着した試験 片 Aと試験片 Bとを 10mm/分で引張り、溶着強度を測定した。
[0083] (2)光線透過率
分光光度計(日本分光 (株)製, V570)を用いて、波長 940nmでの試験片 Aの光 線透過率を測定した。
[0084] (3)コアシェル型エラストマ一の平均分散径
前記試験片 Aの中央部を切削し、この切削部を 115°Cのキシレン中に 2. 5時間浸 漬してエッチング処理した。そして、切削部厚み方向の中央部分を電子顕微鏡で 3 箇所破面観察し、各観察点についてコアシェル型エラストマ一が脱離して形成された 孔の径を粒子径(分散径)とし、任意の 10個について分散径の測定を行い、これらの 分散径から平均分散径を測定した。
[0085] (4)高低温衝撃特性 (冷熱サイクル性)
ペレットを用い、樹脂温度 270°C、金型温度 65°C、射出時間 25秒、冷却時間 10秒 で、試験片成形用金型(縦 22mmX横 22mm X高さ 51mmの角柱内部に、縦 18m m X横 18mm X高さ 30mmの鉄芯をインサートする金型)に、一部の樹脂成形部の 最小肉厚力 Slmmとなるようにインサート射出成形し、インサート成形品を製造した。 得られたインサート成形品について、冷熱衝撃試験機を用いて 140°Cにて 1時間 30 分加熱後、— 40°Cに降温して 1時間 30分冷却後、さらに 140°Cに昇温する過程を 1 サイクルとする高低温衝撃試験を行い、成形品にクラックが入るまでのサイクル数を 測定し、高低温衝撃性を評価した。
[0086] 実施例及び比較例の結果を表 1に示す。
[0087] [表 1] 表 1
Figure imgf000025_0001

Claims

請求の範囲
[I] ポリブチレンテレフタレート系樹脂 (A)と、コアシェル型ポリマー(B)とで構成されて いるレーザー溶着用ポリブチレンテレフタレート系樹脂組成物。
[2] ポリブチレンテレフタレート系樹脂(A)力 ホモポリエステル、 45モル0 /0以下の共重 合性モノマーで変性されたコポリエステル、又はこれらの混合物である請求項 1記載 の樹脂組成物。
[3] コアシェル型ポリマー(B)のコア層力 アクリル系ゴムで構成されている請求項 1ま たは 2記載の樹脂組成物。
[4] コアシェル型ポリマー(B)の平均粒子径が 2 in以上である請求項 1〜3のいずれ かに記載の樹脂組成物。
[5] コアシェル型ポリマー(B)の割合力 S、樹脂 (A) 100重量部に対して、 1〜50重量部 である請求項 1〜4のいずれか一項に記載の樹脂組成物。
[6] コアシェル型ポリマー(B)の平均粒子径が 3〜; 10 mであり、コアシェル型ポリマー
(B)の割合が樹脂 (A) 100重量部に対して 5〜30重量部である請求項 1〜5のいず れか一項に記載の樹脂組成物。
[7] さらに、補強剤(C)を含む請求項 1〜6のいずれか一項に記載の樹脂組成物。
[8] 補強剤(C)の割合力 樹脂 (A) 100重量部に対して 10〜 120重量部である請求 項 7記載の樹脂組成物。
[9] さらに、ポリカーボネート系樹脂を含む請求項;!〜 8のいずれか一項に記載の樹脂 組成物。
[10] ポリカーボネート系樹脂の割合力 樹脂 (A) 100重量部に対して、 3〜20重量部で ある請求項 9記載の樹脂組成物。
[I I] 請求項 1〜; 10のいずれか一項に記載の樹脂組成物で形成されたレーザー透過性 樹脂成形品と、レーザー光を吸収可能なレーザー吸収性樹脂で形成された成形品 とがレーザー溶着により接合されている複合成形品。
PCT/JP2007/067412 2006-09-13 2007-09-06 Composition de résine pour un soudage laser et article moulé WO2008032636A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800288534A CN101501134B (zh) 2006-09-13 2007-09-06 激光熔敷用树脂组合物及成型品
US12/440,528 US8142900B2 (en) 2006-09-13 2007-09-06 Laser-weldable resin composition and molded product
JP2008534310A JP5302683B2 (ja) 2006-09-13 2007-09-06 レーザー溶着用樹脂組成物及び成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006247929 2006-09-13
JP2006-247929 2006-09-13

Publications (1)

Publication Number Publication Date
WO2008032636A1 true WO2008032636A1 (fr) 2008-03-20

Family

ID=39183697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067412 WO2008032636A1 (fr) 2006-09-13 2007-09-06 Composition de résine pour un soudage laser et article moulé

Country Status (4)

Country Link
US (1) US8142900B2 (ja)
JP (1) JP5302683B2 (ja)
CN (1) CN101501134B (ja)
WO (1) WO2008032636A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081573A1 (ja) * 2007-12-26 2009-07-02 Wintech Polymer Ltd. ポリブチレンテレフタレート樹脂組成物
JP2010144154A (ja) * 2008-12-22 2010-07-01 Mitsubishi Engineering Plastics Corp 熱可塑性ポリエステル樹脂組成物およびその車両用成形品
WO2010122915A1 (ja) * 2009-04-20 2010-10-28 ウィンテックポリマー株式会社 溶着用ポリブチレンテレフタレート樹脂組成物及び複合成形品
JP2013531115A (ja) * 2010-07-08 2013-08-01 ダウ グローバル テクノロジーズ エルエルシー 熱可塑性組成物、その製造方法、およびそれより製造された物品
US10655007B2 (en) 2014-12-26 2020-05-19 Polyplastics Co., Ltd. Polyalkylene terephthalate resin composition

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100068431A1 (en) * 2008-09-17 2010-03-18 Vishal Bansal Article and method for forming an article
US8586183B2 (en) * 2011-01-13 2013-11-19 Sabic Innovative Plastics Ip B.V. Thermoplastic compositions, method of manufacture, and uses thereof
WO2014126547A1 (en) 2013-02-12 2014-08-21 Hewlett-Packard Development Company, L.P. Polyethylene terephthelate part bonded to polyester and polycarbonate alloy part
DE102013010703A1 (de) * 2013-06-27 2014-12-31 Merck Patent Gmbh Mikrokugeln
US20160272822A1 (en) * 2015-03-20 2016-09-22 GM Global Technology Operations LLC Material composition and method for laser ablation
WO2019235062A1 (ja) * 2018-06-05 2019-12-12 ダイヤモンド電機株式会社 内燃機関用点火コイルとその製造方法
US20220275199A1 (en) * 2019-07-22 2022-09-01 Toray Industries, Inc. Polyester resin composition and molded product thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302824A (ja) * 1999-04-16 2000-10-31 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物およびその成形体
JP2002161200A (ja) * 2000-11-28 2002-06-04 Toyobo Co Ltd 樹脂組成物
JP2003020389A (ja) * 2001-05-02 2003-01-24 Asahi Kasei Corp 熱可塑性樹脂組成物
JP2003292752A (ja) * 2002-01-29 2003-10-15 Toray Ind Inc レーザ溶着用樹脂組成物およびそれを用いた複合成形体
JP2005008681A (ja) * 2003-06-16 2005-01-13 Toray Ind Inc 薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品
JP2005133087A (ja) * 2003-10-07 2005-05-26 Wintech Polymer Ltd レーザ溶着用樹脂組成物及び成形品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633055A (ja) 1986-06-24 1988-01-08 Mitsubishi Chem Ind Ltd インサ−ト成形品
JPH0716166A (ja) 1993-06-30 1995-01-20 Kazuyo Tazaki バスユニット用の椅子
JPH0718166A (ja) 1993-07-02 1995-01-20 Mitsubishi Chem Corp 熱可塑性ポリエステル樹脂組成物
JP3510817B2 (ja) 1999-07-14 2004-03-29 三菱レイヨン株式会社 溶着加工によって成形体を製造する方法
JP4641377B2 (ja) * 2002-04-08 2011-03-02 ウィンテックポリマー株式会社 レーザー溶着用ポリブチレンテレフタレート系樹脂組成物及び成形品
JP4456392B2 (ja) 2003-03-28 2010-04-28 ウィンテックポリマー株式会社 レーザー溶着用樹脂組成物及び成形品
JP4589234B2 (ja) * 2003-10-07 2010-12-01 ウィンテックポリマー株式会社 レーザ溶着用樹脂組成物及び成形品
US7385013B2 (en) * 2004-05-12 2008-06-10 Toray Industries, Inc. Polymer alloy, thermoplastic resin composition, and molded article
JP2006104363A (ja) * 2004-10-07 2006-04-20 Wintech Polymer Ltd ポリブチレンテレフタレート樹脂組成物
JP4799857B2 (ja) * 2004-12-24 2011-10-26 ウィンテックポリマー株式会社 インサート成形品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302824A (ja) * 1999-04-16 2000-10-31 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物およびその成形体
JP2002161200A (ja) * 2000-11-28 2002-06-04 Toyobo Co Ltd 樹脂組成物
JP2003020389A (ja) * 2001-05-02 2003-01-24 Asahi Kasei Corp 熱可塑性樹脂組成物
JP2003292752A (ja) * 2002-01-29 2003-10-15 Toray Ind Inc レーザ溶着用樹脂組成物およびそれを用いた複合成形体
JP2005008681A (ja) * 2003-06-16 2005-01-13 Toray Ind Inc 薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品
JP2005133087A (ja) * 2003-10-07 2005-05-26 Wintech Polymer Ltd レーザ溶着用樹脂組成物及び成形品

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081573A1 (ja) * 2007-12-26 2009-07-02 Wintech Polymer Ltd. ポリブチレンテレフタレート樹脂組成物
US8142888B2 (en) 2007-12-26 2012-03-27 Wintech Polymer Ltd. Integrated molded product of a polybutylene terephthalate resin composition having silicone rubber excellently adhered thereto which concomitantly displays superior heat shock resistance
JP2010144154A (ja) * 2008-12-22 2010-07-01 Mitsubishi Engineering Plastics Corp 熱可塑性ポリエステル樹脂組成物およびその車両用成形品
WO2010122915A1 (ja) * 2009-04-20 2010-10-28 ウィンテックポリマー株式会社 溶着用ポリブチレンテレフタレート樹脂組成物及び複合成形品
JP5788790B2 (ja) * 2009-04-20 2015-10-07 ウィンテックポリマー株式会社 溶着用ポリブチレンテレフタレート樹脂組成物及び複合成形品
JP2013531115A (ja) * 2010-07-08 2013-08-01 ダウ グローバル テクノロジーズ エルエルシー 熱可塑性組成物、その製造方法、およびそれより製造された物品
US10655007B2 (en) 2014-12-26 2020-05-19 Polyplastics Co., Ltd. Polyalkylene terephthalate resin composition

Also Published As

Publication number Publication date
CN101501134A (zh) 2009-08-05
US20090324977A1 (en) 2009-12-31
JPWO2008032636A1 (ja) 2010-01-21
US8142900B2 (en) 2012-03-27
JP5302683B2 (ja) 2013-10-02
CN101501134B (zh) 2012-02-22

Similar Documents

Publication Publication Date Title
WO2008032636A1 (fr) Composition de résine pour un soudage laser et article moulé
JP4456392B2 (ja) レーザー溶着用樹脂組成物及び成形品
US7396428B2 (en) Laser weldable polybutylene terephthalate-series resin composition, and shaped article
WO2005035657A1 (ja) レーザ溶着用樹脂組成物及び成形品
JP5085928B2 (ja) レーザー溶着用樹脂組成物及び成形品
JP4565958B2 (ja) レーザ溶着用樹脂組成物及び成形品
JP5254971B2 (ja) レーザー透過性樹脂成形品及びその複合成形品
JP6765425B2 (ja) 半透明のレーザ溶着可能熱可塑性組成物、及びレーザ溶着製品
JP2007186584A (ja) レーザー溶着用ポリエステル樹脂組成物およびこれを用いた成形品
JP2007169358A (ja) レーザー溶着用ポリエステル樹脂組成物およびこれを用いた成形品
JP2006176691A (ja) 振動溶着用ポリブチレンテレフタレート樹脂組成物
JP2003292752A (ja) レーザ溶着用樹脂組成物およびそれを用いた複合成形体
JP2008163167A (ja) レーザー溶着用変性ポリエステル樹脂組成物およびそれを用いた複合成形体
JP2006249260A (ja) レーザー溶着可能な耐加水分解性ポリエステル樹脂組成物
JP2007517966A (ja) レーザー溶接可能なポリエステル組成物およびレーザー溶接のための方法
JP2010070626A (ja) ポリエステル樹脂組成物および複合成形体
JP2008208247A (ja) レーザー溶着用樹脂および樹脂組成物ならびにそれらを用いた成形体
EP4166605A1 (en) Laser transparent low warpage glass filled pbt compositions for laser welding
JP4854213B2 (ja) レーザ溶着用樹脂組成物及び成形品
JPWO2018012138A1 (ja) レーザー溶着用樹脂組成物及び成形品、複合成形品及びその製造方法、並びにレーザー光透過性向上方法
JP2020180202A (ja) レーザー溶着用ポリブチレンテレフタレート樹脂組成物
JP6983777B2 (ja) レーザー溶着用樹脂組成物及び成形品
JP2022091031A (ja) レーザー溶着体、キット、レーザー吸収樹脂部材用樹脂組成物、および、レーザー溶着体の製造方法
JP2023008908A (ja) レーザー溶着体の製造方法
JP2022011052A (ja) 樹脂組成物、成形体、レーザー溶着用キット、車載カメラモジュール、および、成形体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780028853.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806853

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008534310

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12440528

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806853

Country of ref document: EP

Kind code of ref document: A1