WO2008026721A1 - Laser d'émission de surface de résonateur vertical - Google Patents

Laser d'émission de surface de résonateur vertical Download PDF

Info

Publication number
WO2008026721A1
WO2008026721A1 PCT/JP2007/066986 JP2007066986W WO2008026721A1 WO 2008026721 A1 WO2008026721 A1 WO 2008026721A1 JP 2007066986 W JP2007066986 W JP 2007066986W WO 2008026721 A1 WO2008026721 A1 WO 2008026721A1
Authority
WO
WIPO (PCT)
Prior art keywords
center
holes
stacking
predetermined region
loss
Prior art date
Application number
PCT/JP2007/066986
Other languages
English (en)
French (fr)
Inventor
Tomofumi Kise
Noriyuki Yokouchi
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Publication of WO2008026721A1 publication Critical patent/WO2008026721A1/ja
Priority to US12/342,351 priority Critical patent/US20090168829A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18355Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a defined polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18391Aperiodic structuring to influence the near- or far-field distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18319Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement comprising a periodical structure in lateral directions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • H01S5/18327Structure being part of a DBR
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Definitions

  • the present invention relates to a vertical cavity surface emitting semiconductor laser, and more particularly to a vertical cavity surface emitting semiconductor laser that can oscillate in a stable polarization mode.
  • V CSEL vertical cavity surface emitting laser
  • VCSEL can easily form a two-dimensional array of elements and provide a mirror for a resonator, compared to a conventional edge-emitting laser. Since there is no need to cleave, it is possible to test at the wafer level, the volume of the active layer is extremely small, so it is extremely low, threshold! /, It can oscillate with the value, power consumption is low, etc. Can be mentioned.
  • a longitudinal mode there are three modes of laser oscillation in a semiconductor laser: a longitudinal mode, a transverse mode, and a polarization mode.
  • the fundamental length mode oscillation can be easily obtained because VCSEL has a very short resonator length.
  • VCSEL In terms of the transverse mode, VCSEL generally does not have a transverse mode control mechanism, and therefore tends to oscillate in a plurality of higher-order modes. If laser light oscillated in multiple higher-order transverse modes is used for optical transmission, it can cause significant deterioration in proportion to the transmission distance, especially during high-speed modulation.
  • the simplest method for obtaining fundamental transverse mode oscillation is to reduce the area of the light emitting region to such an extent that only the fundamental transverse mode can oscillate.
  • the output since the light emitting area is small, the output is small, the element resistance is large, and the applied voltage must be large.
  • Non-Patent Document 1 a means for obtaining fundamental transverse mode oscillation in a large area in VCSEL.
  • 15 is a partially broken perspective view of VCSEL disclosed in Non-Patent Document 1
  • FIG. 16 is a top view thereof.
  • a lower reflecting mirror 2 made of a semiconductor distribution reflecting multilayer film laminated on a substrate 1
  • a light emitting layer 3 and an upper reflecting mirror 4 made of a semiconductor distribution reflecting multilayer film laminated on the light emitting layer 3 are used.
  • a plurality of circular holes 8 arranged in a two-dimensional periodic manner in the laminated surface of the laminated portion 11 are formed.
  • the two-dimensional circular hole array in the laminated surface has a point defect region 9 without a circular hole in the center, and the circular hole 8 is provided from the upper surface side of the upper reflector 4 to a depth in the middle of the laminated direction. Yes.
  • An upper electrode 5 is formed on the outer periphery of the circular hole array, and a lower electrode 6 is formed on the back surface of the substrate 1. Furthermore, the layer located near the uppermost layer of the lower reflector 2, that is, near the light emitting layer 3, is formed of, for example, a P-type AlAs layer 7, and by selectively oxidizing only the outer peripheral edge thereof. An insulating region 7a composed of Al 2 O force is formed, which is the light emitting layer 3
  • the refractive index perceived by light in the region where the circular holes 8 are arranged is higher than that of the point defect region (central portion) 9 without the circular holes 8. Slightly lower.
  • the portion where the circular holes are arranged serves as a clad for the central point defect region 9 where there are no circular holes.
  • VCSEL which uses a circular hole array to form a refractive index difference and performs transverse mode control
  • photonic crystal VCSEL In this VCSEL, Basic transverse mode oscillation is possible, and high output and low operating voltage can be achieved through low resistance.
  • the present inventor has examined the VCSEL device as follows!
  • the VCSEL polarization mode is generally problematic, although linear polarization can be obtained.
  • Ie VCSEL As shown in FIG. 16, the device structure itself has six rotational symmetries around the central axis of the point defect region 9 (the electromagnetic field distribution force in the half plane including the central axis C is 60 degrees). And the gain and loss between the possible polarization modes determined by the rotational symmetry of the circular hole arrangement pattern are almost equal. Competition occurs between wave modes.
  • the polarization direction is not stable, for example, the polarization mode is frequently switched due to subtle changes in external conditions such as ambient temperature and drive current. Such instability of the polarization mode causes excessive noise and also causes the transmission band to be limited through the polarization mode dispersion of the transmission medium.
  • a method for stabilizing the polarization mode in a normal VCSEL which is not a photonic crystal VCSEL
  • a method of manufacturing a VCSEL on an inclined substrate is known.
  • This method makes use of the fact that the gain depends on the crystal orientation.
  • the (311) A plane or (311) B A light emitting layer is formed on a crystal plane with a high index orientation such as a plane.
  • Patent Document 1 a structure in which asymmetry is introduced into the mesa shape of the device, and a structure in which a diffraction grating made of metal or dielectric is incorporated in a reflecting mirror made of a semiconductor distributed reflection multilayer film are known.
  • Patent Document 1 each structure is complicated in device processing and polarization controllability is not sufficient.
  • Non-Patent Document 1 IEEE Journal of Selected Topics in Quantum Electronics, Vol.9, No.5, pp.1439-1445, September / October 2003
  • Patent Document 1 Japanese Patent Laid-Open No. 11 54838
  • the present invention solves the above-mentioned problems that VCSEL has, and can produce a fundamental transverse mode oscillation in a large area, and can stabilize the polarization mode, and can also produce a force.
  • the purpose is to provide an easy-to-use VC SEL.
  • the first aspect of the present invention is a substrate, and a laminated portion including a first reflecting mirror, a light emitting layer, and a second reflecting mirror, which are sequentially laminated on the substrate, A plurality of holes periodically arranged in the stacking plane in the stacking plane and provided in the stacking direction in a region excluding the predetermined region in the stacking surface of the stacking portion; A vertical cavity surface emitting laser (VCSEU) characterized in that the size or shape force of a pair of holes facing each other is different from the size or shape of other holes.
  • VCSEU vertical cavity surface emitting laser
  • the predetermined region is a point defect region in which there are no periodically two-dimensionally arranged holes.
  • the second aspect of the present invention in the second aspect, a substrate, a first reflecting mirror, a light emitting layer, and a laminated portion comprising a second reflecting mirror sequentially laminated on the substrate;
  • a VCSEL characterized in that the size or shape force of a hole whose center is located on one straight line passing through the center and extending in the laminated surface is different from the size or shape of another hole.
  • a substrate, and a stacked portion including a first reflecting mirror, a light emitting layer, and a second reflecting mirror sequentially stacked on the substrate;
  • a plurality of holes periodically arranged in the stacking plane in the stacking plane and provided in the stacking direction in a region excluding the predetermined region in the stacking surface of the stacking portion;
  • a VCSEL characterized by being different in size or shape is provided.
  • the one half line, the center, and the center of the predetermined region are arranged. It is preferable that the angle formed by the connecting line segment is different from the size or shape force S of the holes and the size or shape of the other holes in the range of 60 degrees or more and 120 degrees or less.
  • the plurality of holes are arranged in a square lattice pattern in the laminated surface. It is preferable that the size or shape of the holes having an angle between the connecting line segments in the range of 45 degrees or more and 135 degrees or less is different from the size or shape of the other holes.
  • a substrate and a stacked portion including a first reflecting mirror, a light emitting layer, and a second reflecting mirror sequentially stacked on the substrate;
  • a plurality of holes periodically arranged in the stacking plane in the stacking plane and provided in the stacking direction in a region excluding the predetermined region in the stacking surface of the stacking portion;
  • a VCSEL characterized in that a pair of vacancies facing each other are filled with a loss medium that gives loss to the oscillating laser light!
  • a VCSEL characterized in that a loss medium that gives a loss to an oscillating laser beam is filled in a hole whose center is located on a straight line extending through the center and extending into the laminated surface.
  • the sixth aspect of the present invention is the sixth aspect, wherein the substrate, and a stacked portion including a first reflecting mirror, a light emitting layer, and a second reflecting mirror sequentially stacked on the substrate; A plurality of holes periodically arranged in the stacking plane in the stacking plane and provided in the stacking direction in a region excluding the predetermined region in the stacking surface of the stacking portion; There is a loss with respect to the oscillating laser light in a hole whose angle between a half line extending from the center to the laminated surface and a line connecting the center and the center of the predetermined region is within a predetermined range.
  • a VCSEL is provided that is filled with a lossy medium that provides
  • the sixth aspect when the plurality of holes are arranged IJ in a triangular lattice pattern in the laminated surface, the one half line, the center, and the center of the predetermined region are arranged. Loss medium that gives a loss to the oscillating laser beam is filled in the vacancies where the angle formed by the connecting line segment is in the range of 60 degrees or more and 120 degrees or less! . [0026] In the sixth aspect, when the plurality of holes are arranged in a square lattice pattern IJ in the laminated surface, the one half line, the center, and the center of the predetermined region are arranged. A loss medium that gives a loss to the oscillating laser beam is filled in the vacancies where the angle between the connecting line segments is 45 ° or more and 135 ° or less! .
  • polyimide as a loss medium that gives a loss to the oscillating laser beam.
  • the plurality of holes are preferably circular holes.
  • the plurality of holes are square holes
  • two opposite sides of one square are parallel to the corresponding two opposite sides of the other holes, that is, all squares. It is preferable to arrange the shapes so that their orientations are aligned.
  • the predetermined region that is, the center of a point defect region of a hole array in which a plurality of holes are periodically arranged two-dimensionally is used.
  • the loss of one polarization mode among the plurality of possible polarization modes determined by the rotational symmetry of the hole arrangement pattern with the axis extending in the stacking direction of the stack as the central axis is the other polarization mode. Less than the loss. For this reason, only the one polarization mode is selectively oscillated, competition between the polarization modes is prevented, and the oscillating polarization mode is stabilized. Therefore, the generation of noise due to switching between polarization modes is prevented, and the transmission band is prevented from being limited by the polarization mode dispersion of the transmission medium.
  • FIG. 1 is a top view showing a VCSEL according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional perspective view showing the VCSEL of FIG.
  • FIG. 3 is a top view showing a modification of the VCSEL in FIG.
  • FIG. 4 is a top view showing a VCSEL according to a second embodiment of the present invention.
  • FIG. 5 is a cross-sectional perspective view showing the VCSEL of FIG.
  • FIG. 6 is a top view showing a VCSEL according to a third embodiment of the present invention.
  • FIG. 7 is a cross-sectional perspective view showing the VCSEL of FIG.
  • FIG. 8 is a top view showing a modification of the VCSEL in FIG.
  • FIG. 9 is a top view showing a VCSEL according to a fourth embodiment of the present invention.
  • FIG. 10 is a cross-sectional perspective view showing the VCSEL of FIG.
  • FIG. 11 is a top view showing a VCSEL according to a fifth embodiment of the present invention.
  • FIG. 12 is a cross-sectional perspective view showing the VCSEL of FIG.
  • FIG. 13 is a top view showing a VCSEL according to a sixth embodiment of the present invention.
  • FIG. 14 is a top view showing a modification of the VCSEL in FIG.
  • FIG. 15 is a partially broken perspective view showing a conventional VCSEL.
  • FIG. 16 is a top view of the VCSEL in FIG.
  • FIG. 1 is a top view of a VCSEL according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional perspective view.
  • the VCSEL 100 is a photonic crystal VCSEL used at an oscillation wavelength of 850 nm, and is formed on the (100) plane of the p-type GaAs substrate 101 with the lower reflecting mirror 102, A1.
  • Lower clad layer made of Ga As, multi-layer made of 4 pairs of GaAs / Al Ga As
  • n-type GaAs contact layer is formed on the surface of the uppermost layer of the upper reflecting mirror 104 to constitute the entire laminated portion.
  • a P-type AlAs layer 107 is interposed in the stacked portion in order to form a current confinement structure.
  • the lower reflecting mirror 102 is composed of 20 pairs of semiconductor multilayer films in which ⁇ -type AlAs and p-type GaAs are alternately stacked, each having a thickness of ⁇ / 4 ⁇ ( ⁇ is a refractive index and ⁇ is an operating wavelength), Alternating ⁇ -type Al Ga As and p-type Al Ga As of thickness ⁇ / 4 ⁇ ( ⁇ is the refractive index, ⁇ is the operating wavelength)
  • the upper reflector 104 is made of 25 layers formed by alternately stacking 4 / 4-n thick n-type Al Ga As and n-type Al Ga As.
  • It consists of a semiconductor multilayer film.
  • the peripheral part is etched away to form a columnar layer structure 120.
  • the p-type AlAs layer 107 laminated near the light-emitting layer 103 has a directing force from the portion exposed on the side surface of the columnar layer structure 120, and a part thereof is oxidized, and there is no Al O force.
  • the insulating region 107a is formed. This insulating region 107a functions as a current confinement structure for the current injected into the light emitting layer 103.
  • a plurality of circular holes 108 are two-dimensionally formed in a triangular lattice of equilateral triangles in the laminated surface by electron beam exposure, photolithography, and dry etching.
  • An array is formed.
  • This circular hole array has a point defect region 109 having no circular hole in the center thereof.
  • the arrangement period of the plurality of circular holes 108 is 5 111 (distance between the centers), and is provided from the upper surface of the columnar layer structure 120 to a depth corresponding to 17 pairs of the upper reflector 104.
  • the average refractive index of the portion where the circular hole 108 is formed is smaller than the average refractive index of the point defect region 109 where there is no circular hole, so the portion where the circular hole 108 is formed is It acts as a cladding for light propagating through the point defect region 109.
  • the arrangement period, hole diameter, depth, etc. of the circular holes 108 are basically the same in the direction of the laminated surface due to the difference between the average refractive index of the portion where the circular holes 108 are formed and the average refractive index of the point defect region 109 where there are no circular holes. Adjustments are made as appropriate to obtain transverse mode oscillation.
  • An upper electrode 105 made of, for example, AuGeNi / Au is formed in the periphery of the portion where the circular holes are arranged in the columnar layer structure 120.
  • a lower electrode 106 made of Ti / Pt / Au is formed on the back surface of the p-type GaAs substrate 101.
  • the diameter d of a pair of circular holes in the vicinity of the central portion facing each other across the central point defect region 109 is the diameter of the other circular holes. bigger than d
  • the circular hole diameter d is 2 m, for example, and d is 3 m.
  • the arrangement pattern of the circular holes passes through the center of the point defect area 109 around the central axis C perpendicular to the stacking surface, as indicated by reference numerals I and II in FIG. It has two-fold rotational symmetry.
  • the photoelectric field distribution of V CSEL in the half plane including the central axis is the same as when rotating 180 degrees around the central axis.
  • the polarization mode of the VCSEL 100 there are two polarization modes as the polarization mode of the VCSEL 100, and the loss received by each polarization mode is different.
  • the direction of X shown in Fig. 1 (the one that connects the centers of the circular holes with large holes)
  • the loss for the polarization mode with the electric field component parallel to the direction is greater than the loss for the polarization mode parallel to the y direction (direction perpendicular to the X direction in the stack plane)
  • the diameter d of the pair of circular holes closest to each other among the circular holes facing each other across the central point defect region 109 is d.
  • the diameter of only the pair of circular holes closest to the point defect region 109 is different from the diameters of the other circular holes, so that it is more effective against the electric field of the oscillation laser beam existing in the point defect region 109.
  • This is advantageous in that the effect of changing the diameter of the holes can be exerted.
  • the circular holes with the same diameter are uniformly distributed two-dimensionally, and there is little disturbance on the refractive index distribution in the laminated surface. That's it. That is, the influence on the shape of the oscillation laser light can be reduced.
  • the diameter of a circular hole having a center on one straight line parallel to the laminated surface passing through the center of the point defect region 109 may be different from the diameters of the other circular holes.
  • the diameter d of a circular hole having a center on a straight line L1 passing through the center of the point defect region 109 and parallel to the X axis is set to be equal to that of another circular hole having no center on the straight line L1. It is smaller than the diameter d. others
  • the loss for the polarization mode in the X-axis direction in Fig. 3 is smaller than the loss for the polarization mode in the y-axis direction. Therefore, oscillation occurs selectively in the polarization mode in the X-axis direction, and the polarization mode is Switching between nodes is prevented.
  • the diameters of all the circular holes having a center on one straight line L1 parallel to the laminated surface passing through the center of the point defect region 109 are different from the diameters of other circular holes not on the one straight line L1.
  • FIG. 4 is a top view of a VCSEL according to a second embodiment of the present invention
  • FIG. 5 is a cross-sectional perspective view.
  • the VCSEL 200 is a photonic crystal VCSEL used at an oscillation wavelength of 1300 nm, and a lower reflecting mirror 202 is mounted on the (100) surface of the n-type GaAs substrate 201 by MOCVD.
  • MOCVD Metal Organic Chemical Vapor D osition
  • MBE Molecular Beam Epitaxy
  • lower cladding layer made of GaAs 4 pairs of multiple quantum well layers made of GalnNAsSb / GaNAs
  • upper part made of GaAs The light emitting layer 203 made of the clad layer is sequentially laminated, and then the upper reflecting mirror 204 is successively laminated again by MOCVD method to constitute the entire laminated portion.
  • the lower reflecting mirror 202 is composed of 35 pairs of semiconductor multilayer films, each of which is formed by alternately stacking ⁇ -type AlAs and n-type GaAs having a thickness of ⁇ / 4 ⁇ ( ⁇ is a refractive index and ⁇ is an operating wavelength).
  • the upper reflector 204 is formed by alternately stacking p-type AlGaAs and p-type GaAs with a thickness of / 4n.
  • the peripheral part is removed by etching to form a columnar layer structure 220.
  • a ring-shaped upper electrode 205 made of, for example, Au / AuZn is formed on the upper surface of the columnar layer structure 220, and a lower electrode 206 made of Ti / Pt / Au is formed on the back surface of the n-type GaAs substrate 201. It is formed.
  • the current confinement structure in the VCSEL of the second embodiment forms a photoresist mask (not shown) by using a photolithography method, and the average range is near the lowermost part of the upper reflector 204.
  • An appropriate amount of hydrogen ions is implanted at an accelerating voltage such that the high resistance region 207a is transformed.
  • the columnar layer structure 220 has a plurality of circular holes 208 formed in a triangular lattice pattern in the stacked surface by electron beam exposure or photolithography and dry etching. Are two-dimensionally arranged.
  • This circular hole array has a point defect region 209 having no circular hole in the center thereof.
  • the arrangement period of the plurality of circular holes 208 is 5 m (distance between the centers), and is provided from the upper surface of the columnar layer structure 220 to a depth corresponding to 15 pairs of the upper reflector 204.
  • the average refractive index of the portion where the circular hole 208 is formed is smaller than the average refractive index of the point defect region 209 where there is no circular hole. Therefore, the portion where the circular hole 208 is formed is Acts as a cladding for light propagating through the point defect region 209.
  • the arrangement period, hole diameter, depth, etc. of the circular holes 208 are basically the same in the direction of the stack surface due to the difference between the average refractive index of the portion where the circular holes 208 are formed and the average refractive index of the point defect region 209 where no circular holes are formed Adjustments are made as appropriate to obtain transverse mode oscillation.
  • an angle formed by a line segment connecting the center and the center of the point defect region is predetermined between the center of the point defect region and one half line extending in the laminated surface.
  • the diameter of the circular hole within the range is different from the diameter of the other circular holes. That is, in FIG. 4, an angle ⁇ between a line segment li connecting the center and the center of the point defect region 209 and one half line L0 parallel to the X axis extending from the center of the point defect region 209 into the laminated surface.
  • the hole 208i with a force between 0 ° and 120 ° has a larger diameter than a circular hole with an angle of less than 60 ° or greater than 120 °. In the example shown in Fig.
  • the diameter d of the hole including the center hole is 2.5 m, and the diameter d of the other holes is 1.5 m.
  • the arrangement pattern of the circular holes is as shown by reference numerals I and II in FIG.
  • the central axis C that passes through the center and is perpendicular to the stack surface, it has two-fold rotational symmetry.
  • the photoelectric field distribution of VCSEL in the half plane including the central axis is equivalent to that obtained by rotating 180 degrees around the central axis.
  • the polarization mode of the VCSEL 200 is Where there can be two polarization modes, the loss experienced by each polarization mode is different.
  • the loss for the polarization mode having the electric field component parallel to the X direction shown in FIG. 4 is smaller than the loss for the polarization mode parallel to the y direction. Oscillation in the polarization mode becomes dominant.
  • a half line L60 that forms an angle of 60 ° with one half line L0 parallel to the X axis extending in the stacking plane with the center of the point defect region 209 as one end;
  • the angle ⁇ formed by one half line L 0 passing through the center of the point defect region 209 and the line segment 1 connecting the center and the center of the point defect region is predetermined.
  • the diameter of multiple circular holes within the range is different from the diameter of other circular holes. For this reason, the degree of rotational asymmetry around the central axis C can be further increased, and the stability of the oscillating polarization mode is further increased.
  • FIG. 6 is a top view of a VCSEL according to a third embodiment of the present invention
  • FIG. 7 is a sectional perspective view. is there.
  • the third embodiment is a photonic crystal VCSEL used at an oscillation wavelength of 850 nm, and the configuration and manufacturing method are the same except that the arrangement of the circular holes is different. .
  • the plurality of circular holes have a periodicity except for the point defect region 309 in the central portion.
  • the depth of the circular hole is equivalent to 17 pairs of the upper reflecting mirror 304 from the upper surface of the laminated portion.
  • the period, diameter, and depth of the circular hole are not limited to the above as long as the light in the point defect region 309 exists in the fundamental transverse mode.
  • the arrangement pattern of circular holes is the center of the point defect region 309 as indicated by reference numerals I and II in FIG. It has two-fold rotational symmetry around the central axis C that passes through and is perpendicular to the laminated surface.
  • the photoelectric field distribution of VCSEL in the half plane including the central axis is equivalent to when rotating 180 degrees around the central axis.
  • the loss received by each polarization mode is different.
  • the loss for the polarization mode having an electric field component parallel to the X direction (direction parallel to the direction connecting the centers of the circular holes having a large hole diameter) shown in FIG. Since it is greater than the loss for the polarization mode parallel to the X direction in the plane, oscillation in the polarization mode in the y direction becomes dominant.
  • the point defect region 309 closest to the point defect region 309 that does not change the diameter of the pair of holes closest to the point defect region 309 is used. N / A, you can change the diameter of a pair of circular holes.
  • the diameters of all the circular holes having the center on one straight line parallel to the laminated surface passing through the center of the point defect region 309 may be different from the diameters of the other circular holes.
  • the diameter d of a circular hole having a center on a straight line L1 passing through the center of the point defect region 309 and parallel to the X axis is set to be equal to that of another circular hole having no center on the straight line L1. Smaller than diameter d
  • the loss power for the polarization mode in the X-axis direction in Fig. 8 is smaller than the loss for the polarization mode in the axial direction. Therefore, oscillation occurs selectively in the polarization mode in the X-axis direction, and switching between polarization modes is prevented. In this way, by making the diameters of all the circular holes centered on one straight line passing through the center of the point defect area different from the diameters of other circular holes not on this one straight line, Since the degree of rotational asymmetry around the central axis C can be further increased, the stability of the oscillating polarization mode is further enhanced.
  • the force that makes the diameter of a plurality of holes (circular holes) at a specific position different from the diameter of other circular holes is the shape of the hole at the specific position It may be different from the shape of the hole, for example, a shape other than a circular hole such as a square hole.
  • FIG. 9 is a top view of a VCSEL according to a fourth embodiment of the present invention
  • FIG. 10 is a perspective sectional view.
  • the fourth embodiment is a photonic crystal VCSEL used at an oscillation wavelength of 1300 nm, except that the arrangement of the circular holes is different. The method is the same.
  • the center and the center of the point defect region are defined between one half line extending through the center of the point defect region 409 and extending into the laminated surface.
  • the diameter of the circular hole whose angle between the connecting line segments is within a predetermined range is different from the diameter of the other circular holes. That is, in FIG. 9, a line segment li connecting the center and the center of the point defect region 409 and a half line L0 parallel to the X axis extending from the center of the point defect region 409 into the laminated surface.
  • the angle formed by the circular hole 408i with an ⁇ force of 5 ° or more and 135 ° or less has a larger diameter than the circular hole formed by the angle less than 45 ° or greater than 135 °.
  • a circular hole with a center between a half line L45 that forms an angle of 45 ° with the half line L0 and a half line L135 that forms an angle of 135 ° (the center is on each half line)
  • the diameter d of existing circular holes is 2.5 m, and the diameter d of other circular holes is 1.5 m.
  • the arrangement pattern of the circular holes is as shown by reference numerals I and II in FIG.
  • the central axis C that passes through the center and is perpendicular to the laminated surface, it has two-fold rotational symmetry.
  • the photoelectric field distribution of VCSEL in the half-plane including the central axis is equivalent to that obtained by rotating 180 degrees around the central axis.
  • the loss received by each polarization mode is different.
  • the loss for the polarization mode having the electric field component parallel to the X direction shown in FIG. 9 is smaller than the loss for the polarization mode parallel to the y direction. Oscillation in mode becomes dominant.
  • one half line L0 having one end at the center of the point defect region 409 and a line segment 1 connecting the center and the center of the point defect region
  • the diameter of a plurality of circular holes whose angle ⁇ is within a predetermined range is made different from the diameters of the other circular holes. For this reason, the degree of rotational asymmetry around the central axis C can be further increased, and the stability of the oscillating polarization mode is further enhanced.
  • the medium is filled.
  • FIG. 11 is a top view of a VCSEL according to a fifth embodiment
  • FIG. 12 is a cross-sectional perspective view.
  • the diameters d of the circular holes that are two-dimensionally and periodically arranged in a portion other than the point defect area 509 are all 2, and a pair of opposing faces across the point defect area is provided.
  • polyimide 511 Is filled.
  • the loss incurred by the polarization mode in the X direction in FIG. 11 is larger than the loss incurred by the polarization mode in the y direction. Therefore, when current is injected through the electrodes 506 and 507, the loss is relatively small. Laser oscillation occurs selectively only in the polarization mode in the y direction. For this reason, polarization mode switching does not occur due to fluctuations in ambient temperature, drive current, etc., and stable oscillation occurs.
  • a loss medium may be filled in a circular hole whose center is located on one straight line that passes through the center of the point defect region and extends into the laminated surface.
  • an angle formed by a half line extending in the stacking plane with the center of the point defect region as one end and a line segment connecting the center and the center of the point defect region is within a predetermined range.
  • the loss medium may be filled in a circular hole in For example, when a plurality of circular holes are arranged in a triangular lattice pattern, a half line extending from the center of the point defect region into the laminated surface as one end and a line segment connecting the center and the center of the point defect region If the hole formed is filled with a loss medium in a hole whose angle is in the range of 60 degrees or more and 120 degrees or less, and a plurality of holes are arranged in a square lattice, The loss medium is placed in a circular hole whose angle between the half line extending from the center to the lamination plane and the line connecting the center and the center of the point defect region is not less than 45 degrees and not more than 135 degrees. It may be filled.
  • the presence of the circular hole array is determined by the rotational symmetry of the circular hole array pattern with the axis C extending in the direction perpendicular to the stacking surface passing through the center of the point defect region.
  • Laser oscillation occurs selectively in one of the possible polarization modes. For this reason, polarization mode switching does not occur due to fluctuations in ambient temperature, drive current, etc., and stable laser oscillation can be realized.
  • the circular holes at the predetermined positions as described in the first to fourth embodiments may be used in combination with making the diameter of the hole different from the diameter of other circular holes.
  • FIG. 13 is a top view of a VCSEL according to the sixth embodiment. 1st to 5th above
  • the plurality of holes are circular holes.
  • a plurality of square holes are arranged in a square lattice in the X-axis and y-axis directions.
  • each side of the square hole is parallel to the X axis or the y axis.
  • the size force of a pair of holes facing each other across the point defect region 609 is larger than the size of other holes.
  • the size d (the length of one side of the square) of the pair of vacancies in the vicinity of the central portion facing each other across the central point defect region 609 is , Other sky
  • the hole size is larger than d.
  • the hole size d is, for example, 2 ⁇ m, and d is 3 m. In this way, by arranging square holes of different sizes
  • the hole arrangement pattern has two-fold rotational symmetry around the central axis C that passes through the center of the point defect region 609 and is perpendicular to the stacking surface.
  • the VCSEL photoelectric field distribution in the half plane including the central axis is the same as when rotating 180 degrees around the central axis.
  • two polarization modes can exist as polarization modes of the VCSEL 600, and the loss received by each polarization mode is different.
  • the loss for the polarization mode having the electric field component parallel to the X direction shown in FIG. 13 is larger than the loss for the polarization mode parallel to the y direction. The oscillation of becomes dominant.
  • the size of the pair of holes facing each other across the point defect region 609 is made larger than the sizes of the other holes.
  • the size of the holes at a predetermined position can be made different from the size of the other holes.
  • the shape of the hole may be changed, or in combination with this, as in the fifth embodiment example,
  • the hole at a predetermined position may be filled with a loss medium such as polyimide that gives a loss to the oscillating laser beam.
  • the square holes are arranged in a square lattice in the X-axis and y-axis directions.
  • the square holes are aligned in the X-axis and y-axis directions.
  • the triangular lattices may be arranged in a triangular shape, and each side of the square holes may be parallel to the X axis or the y axis.
  • the power of the present invention described above based on the preferred embodiment [0103]
  • the VCSEL of the present invention is not limited to the above embodiment, and various modifications and changes have been made to the configuration of the above embodiment. Are also within the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Description

明 細 書
垂直共振器型面発光レーザ
技術分野
[0001] 本発明は、垂直共振器型面発光半導体レーザに関し、更に詳しくは、安定した偏 波モードで発振可能な垂直共振器型面発光半導体レーザに関する。
背景技術
[0002] 垂直共振器型面発光レーザ(Vertical Cavity Surface Emitting Laser,以下、単に V CSELと称する)は、その名が示す通り、光の共振する方向が基板面に対して垂直で あり、光インターコネクションをはじめ、通信用光源として、また、センサー用途などの 様々なアプリケーション用デバイスとして注目されて!/、る。
[0003] 上記のように注目される理由として、 VCSELは、従来から用いられている端面発光 型レーザと比較して、素子の 2次元配列が容易に形成できること、共振器のミラーを 設けるために劈開する必要がないのでウェハレベルでテストが可能なこと、活性層の 体積が格段に小さレ、ので極めて低レ、しき!/、値で発振でき、消費電力が小さレ、ことな どの利点が挙げられる。
[0004] 一般に、半導体レーザにおけるレーザ発振には、縦モード、横モード、偏波モード の 3つのモードがある。
[0005] まず、縦モードについていえば、 VCSELでは共振器長が極めて短いため、容易に 基本縦モード発振が得られる。
[0006] また、横モードについていえば、 VCSELは一般には横モードの制御機構を有してい ないため、複数の高次モードで発振しやすい。複数の高次横モードによって発振し たレーザ光を光伝送に用いると、特に高速変調時に伝送距離に比例した著しい劣化 を引き起こす原因となる。 VCSELにおいて、基本横モード発振を得るための最も単 純な方法は、発光領域の面積を、基本横モードのみが発振しうる程度に小さくするこ とである。し力、しながら、狭い発光面積を再現性よく作ることは困難であることに加え、 発光面積が小さいことにより、出力が小さぐまた素子抵抗が大きく印加電圧が大きく ならざるを得ない。 [0007] そこで、 VCSELにおいて大面積において基本横モード発振を得るための手段とし て、 列えば、、文献「IEEE Journal of Selected Topics in Quantum Electronics, Vol.9, No.5, pp.1439-1445, September/October 2003」(非特許文献 1)に示されるような構 造が提案されている。図 15は、非特許文献 1に開示された VCSELの一部破断斜視 図、図 16はその上面図である。この VCSELでは,基板 1上に積層された半導体分 布反射多層膜からなる下部反射鏡 2、発光層 3、該発光層 3上に積層した半導体分 布反射多層膜からなる上部反射鏡 4とからなる積層部 11の、積層面内において 2次 元周期的に配列された複数の円孔 8が形成されている。積層面内における 2次元の 円孔配列は、中央部に円孔のない点欠陥領域 9を有し、円孔 8は、上部反射鏡 4の 上面側から積層方向の途中の深さまで設けられている。
[0008] 円孔配列の外側周辺部には上部電極 5が、基板 1の裏面には下部電極 6がそれぞ れ形成されている。さらに、下部反射鏡 2の最上層付近、すなわち発光層 3に近い場 所に位置する層は例えば P型の AlAs層 7で形成され、その外側の周縁部のみを選 択的に酸化することによって Al O力、らなる絶縁領域 7aが形成され、これが発光層 3
2 3
に対する電流狭窄構造として働く。
[0009] この VCSEL10では、上記複数の円孔 8の配列により、円孔 8が配列された領域にお いて光が感じる屈折率は円孔 8のない点欠陥領域(中央部) 9に比べて僅かに低くな つている。この結果、円孔が配列された部分は、円孔がない中央部の点欠陥領域 9 に対してクラッドとして働く。この VCSELに上部電極 5、下部電極 6を介して電流注 入を行なうと、発光層 3においてレーザ発振が起こる。この場合、 2次元円孔配列中 央部の点欠陥領域 9と、周囲の円孔が配列された部分とのわずかな屈折率差に基づ V、て,点欠陥領域 9を含む大面積の領域で基本横モードによるレーザ発振が起こる 。 (なお、このように、円孔配列を用いて屈折率差を形成し、横モード制御を行ってい る VCSELは、「フォトニック結晶 VCSEL」とも呼ばれている。)この VCSELでは、大 面積において基本横モード発振ができ、高出力化、低抵抗化による低動作電圧化も 可能となる。
[0010] 本発明者は、 VCSEL装置につ!/、て以下のような検討を行った。 VCSELの偏波モ ードについては一般に直線偏波が得られるものの、問題がある。すなわち、 VCSEL のデバイス構造自体は、図 16に符号 i〜vre示すように、点欠陥領域 9の中心軸じの 周りで 6回の回転対称性(中心軸 Cを含む半平面内の電磁界分布力 60度回転した ときにほぼ同等である。)を有しており、この円孔配列パターンの回転対称性によって 決まる存在可能な各偏波モード間の利得及び損失がほぼ同等であることから、これら 各偏波モード間で競合が起こる。その結果、環境温度や駆動電流などの外部的条 件の微妙な変化によって、頻繁に偏波モードのスイッチングが起こってしまうなど、そ の偏波方向は安定しないのである。かかる偏波モードの不安定は、過剰雑音の原因 となり、また、伝送媒体の偏波モード分散などを通じて伝送帯域が制限されることの 原因ともなる。
[0011] この点、フォトニック結晶 VCSELではない、通常の VCSELにおける偏波モードの安 定化の手法として、傾斜基板上に VCSELを作製する方法が知られている。この方法 は,利得が結晶方位に依存することを利用するものであり、ある特定の方位の偏波モ ードに対して利得を大きくするために、たとえば(311) A面や(311) B面などの高指 数方位の結晶面上に発光層を形成するものである。
[0012] しかしながら、通常の(100)面上に発光層を積層する場合に比べ, 良質の結晶成 長は難しぐ高出力が得られにくいという問題点がある。また、図 15のもののように電 流狭窄構造として選択酸化層を設けてなる VCSELを傾斜基板上に積層した場合に は、結晶方位による酸化レートの違い(異方性酸化)により、酸化部分の形状、ひい ては発光領域の形状に歪みが生じ、ビーム形状の制御が困難であるという問題もあ
[0013] 上記方法のほかにも、デバイスのメサ形状に非対称性を導入した構造や、金属又は 誘電体からなる回折格子を半導体分布反射多層膜からなる反射鏡に組み込んだ構 造などが知られている (特許文献 1)が、いずれの構造も、デバイス加工が複雑なうえ に、偏波制御性が十分とはレ、えなレ、。
[0014] 非特許文献 1 : IEEE Journal of Selected Topics in Quantum Electronics, Vol.9, No.5, pp.1439-1445, September/October 2003
特許文献 1:特開平 11 54838号公報
発明の概要 [0015] 本発明は、 VCSELが有していた上記課題を解決するものであり、大面積での基本 横モード発振が可能で、かつ、偏波モードが安定化された、し力、も作製が容易な VC SELを提供することを目的とする。
[0016] 本発明は、その第 1の態様において、基板と、前記基板上に順次に積層された第 1 の反射鏡、発光層、及び、第 2の反射鏡を含んでなる積層部と、前記積層部の積層 面内における所定の領域を除く領域に、前記積層面内において周期的に二次元配 列され、積層方向に設けられた複数の空孔とを有し、前記所定の領域を挟んで対向 する一対の空孔の大きさ又は形状力 他の空孔の大きさ又は形状と異なることを特徴 とする垂直共振器型面発光レーザ (VCSEUを提供する。
[0017] ここにおいて、上記所定の領域は、周期的に二次元配列された空孔が存在しない 、点欠陥領域である。
[0018] 本発明は、その第 2の態様において、基板と、前記基板上に順次に積層された第 1 の反射鏡、発光層、及び、第 2の反射鏡を含んでなる積層部と、前記積層部の積層 面内における所定の領域を除く領域に、前記積層面内において周期的に二次元配 列され、積層方向に設けられた複数の空孔とを有し、前記所定の領域の中心を通り 前記積層面内に伸びる一の直線上に中心が位置する空孔の大きさ又は形状力 他 の空孔の大きさ又は形状と異なっていることを特徴とする VCSELを提供する。
[0019] 本発明は、その第 3の態様において、基板と、前記基板上に順次に積層された第 1 の反射鏡、発光層、及び、第 2の反射鏡を含んでなる積層部と、前記積層部の積層 面内における所定の領域を除く領域に、前記積層面内において周期的に二次元配 列され、積層方向に設けられた複数の空孔とを有し、前記所定の領域の中心を一端 として前記積層面内に伸びる一の半直線と、中心と前記所定の領域の中心を結ぶ線 分のなす角度が所定範囲内にある空孔の大きさ又は形状力 他の空孔の大きさ又は 形状と異なることを特徴とする VCSELを提供する。
[0020] 第 3の態様において、前記複数の空孔が前記積層面内において三角格子状に配 歹 IJされている場合には、前記一の半直線と、中心と前記所定の領域の中心を結ぶ線 分のなす角度が 60度以上 120度以下の範囲内にある空孔の大きさ又は形状力 S、他 の空孔の大きさ又は形状と異なるようにするのが好ましい。 [0021] また、第 3の態様において、前記複数の空孔が前記積層面内において正方格子状 に配列されている場合には、前記一の半直線と、中心と前記所定の領域の中心を結 ぶ線分のなす角度が 45度以上 135度以下の範囲内にある空孔の大きさ又は形状が 、他の空孔の大きさ又は形状と異なるようにするのが好ましい。
[0022] 本発明は、その第 4の態様において、基板と、前記基板上に順次に積層された第 1 の反射鏡、発光層、及び、第 2の反射鏡を含んでなる積層部と、前記積層部の積層 面内における所定の領域を除く領域に、前記積層面内において周期的に二次元配 列され、積層方向に設けられた複数の空孔とを有し、前記所定の領域を挟んで対向 する一対の空孔内に、発振するレーザ光に対して損失を与える損失媒体が充填され て!/、ることを特徴とする VCSELを提供する。
[0023] 本発明は、その第 5の態様において、基板と、前記基板上に順次に積層された第 1 の反射鏡、発光層、及び、第 2の反射鏡を含んでなる積層部と、前記積層部の積層 面内における所定の領域を除く領域に、前記積層面内において周期的に二次元配 列され、積層方向に設けられた複数の空孔とを有し、前記所定の領域の中心を通り 前記積層面内に伸びる一の直線上に中心が位置する空孔内に、発振するレーザ光 に対して損失を与える損失媒体が充填されていることを特徴とする VCSELを提供す
[0024] 本発明は、その第 6の態様において、基板と、前記基板上に順次に積層された第 1 の反射鏡、発光層、及び、第 2の反射鏡を含んでなる積層部と、前記積層部の積層 面内における所定の領域を除く領域に、前記積層面内において周期的に二次元配 列され、積層方向に設けられた複数の空孔とを有し、前記所定の領域の中心を一端 として前記積層面内に伸びる一の半直線と、中心と前記所定の領域の中心を結ぶ線 分のなす角度が所定範囲内にある空孔内に、発振するレーザ光に対して損失を与 える損失媒体が充填されていることを特徴とする VCSELを提供する。
[0025] 第 6の態様において、前記複数の空孔が前記積層面内において三角格子状に配 歹 IJされている場合には、前記一の半直線と、中心と前記所定の領域の中心を結ぶ線 分のなす角度が 60度以上 120度以下の範囲内にある空孔内に、発振するレーザ光 に対して損失を与える損失媒体が充填されて!/、ること力 S好ましレ、。 [0026] 第 6の態様において、前記複数の空孔が前記積層面内において正方格子状に配 歹 IJされている場合には、前記一の半直線と、中心と前記所定の領域の中心を結ぶ線 分のなす角度が 45度以上 135度以下の範囲内にある空孔内に、発振するレーザ光 に対して損失を与える損失媒体が充填されて!/、ること力 S好ましレ、。
[0027] 上記第 4乃至第 6の態様において、発振するレーザ光に対して損失を与える損失 媒体としては、ポリイミドを用いることが好ましレ、。
[0028] 前記第 1乃至第 6の態様において、前記複数の空孔は円孔であることが好ましい。
また、前記複数の空孔を正方形の空孔とする場合には、一つの正方形の対向する 2 辺が他の空孔の対応する対向する 2辺と平行となるように、すなわち、すべての正方 形の方位が揃うように配列されることが好ましい。
[0029] 上記第 1乃至第 6の各態様の本発明においては、前記所定の領域、すなわち複数 の空孔が周期的に二次元的に配置されてなる空孔配列の点欠陥領域の中心を通り 、前記積層部の積層方向に伸びる軸を中心軸とする空孔配列パターンの回転対称 性によって決まる存在可能な複数の偏波モードのうち、一つの偏波モードの損失が 他の偏波モードの損失よりも小さくなる。このため、当該一つの偏波モードのみが選 択的に発振し、偏波モード間の競合が防止され、発振する偏波モードが安定化する 。したがって、偏波モード間のスイッチングによる雑音の発生が防止され、伝送媒体 の偏波モード分散により、伝送帯域が制限されることが防止される。
[0030] 本発明の上記目的、他の目的、構成、及び、利点は、添付の図面を参照した以下 の記述によって明らかになる。
図面の簡単な説明
[0031] [図 1]本発明の第 1の実施形態例に係る VCSELを示す上面図。
[図 2]図 1の VCSELを示す断面斜視図。
[図 3]図 1の VCSELの変形例を示す上面図。
[図 4]本発明の第 2の実施形態例に係る VCSELを示す上面図。
[図 5]図 4の VCSELを示す断面斜視図。
[図 6]本発明の第 3の実施形態例に係る VCSELを示す上面図。
[図 7]図 6の VCSELを示す断面斜視図。 [図 8]図 6の VCSELの変形例を示す上面図。
[図 9]本発明の第 4の実施形態例に係る VCSELを示す上面図。
[図 10]図 9の VCSELを示す断面斜視図。
[図 11]本発明の第 5の実施形態例に係る VCSELを示す上面図。
[図 12]図 11の VCSELを示す断面斜視図。
[図 13]本発明の第 6の実施形態例に係る VCSELを示す上面図。
[図 14]図 13の VCSELの変形例を示す上面図。
[図 15]従来の VCSELを示す一部破断斜視図。
[図 16]図 15の VCSELの上面図。
発明の実施形態
[0032] (第 1の実施形態例)
以下、図面に基づいて本発明の第 1の実施形態例について説明する。図 1は、本発 明の第 1の実施形態例による VCSELの上面図、図 2は断面斜視図である。
[0033] 本発明の第 1の実施形態例に係る VCSEL100は、発振波長 850nmで使用される フォトニック結晶 VCSELであり、 p型 GaAs基板 101の(100)面上に下部反射鏡 10 2、A1 Ga Asからなる下部クラッド層、 4ペアの GaAs/Al Ga Asからなる多
0. 3 0. 7 0. 2 0. 8 重量子井戸、 Al Ga Asからなる上部クラッド層からなる発光層 103、上部反射鏡
0. 3 0. 7
104を順次積層し、この上部反射鏡 104の最上層の表面に、 n型の GaAs層コンタク ト層が形成され、全体の積層部を構成している。なお、上記積層部には、電流狭窄 構造を形成するため、たとえば P型の AlAs層 107が介揷されている。
[0034] 下部反射鏡 102は、それぞれ厚み λ /4η (ηは屈折率、 λは動作波長)の ρ型 AlAsと p型 GaAsを交互に積層してなる 20ペアの半導体多層膜と、その上にそれぞれ厚み λ /4η (ηは屈折率、 λは動作波長)の ρ型 Al Ga Asと p型 Al Ga Asを交互
0. 9 0. 1 0. 2 0. 8
に積層してなる 15ペアの半導体多層膜とからなる。また、上部反射鏡 104は、それぞ れ厚みえ/ 4nの n型 Al Ga Asと n型 Al Ga Asとを交互に積層してなる 25ぺ
0. 9 0. 1 0. 2 0. 8
ァの半導体多層膜からなってレ、る。
[0035] 上記積層部の上部から下部反射鏡 102のうちの少なくとも上面に至るまでの部分は 、周辺部がエッチング除去されて、柱状層構造 120が形成されている。かかる柱状層 構造 120のうち、発光層 103に近い場所に積層された p型の AlAs層 107は、柱状層 構造 120の側面に露出する部分から内部に向力、つて一部が酸化され、 Al O力もな
2 3 る絶縁領域 107aを形成している。この絶縁領域 107aが、発光層 103に注入される 電流に対して電流狭窄構造として働く。
[0036] 図 1に示すように、柱状層構造 120には,電子ビーム露光あるいはフォトリソグラフィ 、およびドライエッチングにより、複数の円孔 108が積層面内において正三角形の三 角格子状に二次元的に配列形成されている。この円孔配列は、その中央に円孔がな い点欠陥領域 109を有している。これらの複数の円孔 108の配列周期は 5 111 (中心 間の距離)であり、柱状層構造 120の上面から上部反射鏡 104の 17ペア分に相当 する深さにまで設けられている。このような円孔配列により、円孔 108が形成された部 分の平均屈折率は、円孔がない点欠陥領域 109の平均屈折率よりも小さくなるので 、円孔 108が形成された部分は、点欠陥領域 109を伝搬する光に対してクラッドとし て働く。円孔 108の配列周期、孔径、深さなどは、円孔 108が形成された部分の平均 屈折率と円孔がない点欠陥領域 109の平均屈折率との差により、積層面方向におい て基本横モード発振が得られるよう、適宜調整される。
[0037] 柱状の層構造 120における円孔が配列された部分の周辺部には、例えば AuGeNi /Auからなる上部電極 105が形成されている。また、 p型 GaAs基板 101の裏面に は Ti/Pt/Auからなる下部電極 106が形成されている。
[0038] 第 1の実施形態例では、図 1に示すように、中央の点欠陥領域 109を挟んで対向す る中央部近傍の一対の円孔の径 dは、それ以外の円孔の径 dよりも大きくなつてい
2 1
る。本実施形態例では、円孔径 dは例えば 2 m、 dは 3 mである。このように、異
1 2
なった径の円孔を配置することによって、円孔の配列パターンは図 1に符号 I、 IIで示 したように、点欠陥領域 109の中心を通り積層面に垂直な中心軸 Cの周りに、 2回の 回転対称性を有するものとなっている。すなわち、中心軸を含む半平面内における V CSELの光電磁界分布は、該中心軸を中心として 180度回転したときと同等である。
[0039] 上記円孔配列パターンの対称性に対応し、この VCSEL100の偏波モードとしては 、 2つの偏波モードが存在しうるところ、各偏波モードが受ける損失は異なるものとな る。本実施形態例では、図 1中に示した X方向(孔径の大きな円孔の中心を結んだ方 向と平行な方向)に平行な電界成分を有する偏波モードに対する損失が y方向(積 層面内で X方向に垂直な方向)に平行な偏波モードに対する損失より大きくなるので
、 y方向の偏波モードでの発振が支配的となる。
[0040] したがって、電極 105、 106を介して電流を注入した場合、これら 2つの偏波モード のうち、損失の小さい y方向の偏波モードのみにおいて選択的にレーザ発振が起こる ことになる。このため、環境温度や駆動電流などの変動などによって偏波モードのス イッチングが起こらない、安定した発振が起こる。
[0041] 第 1の実施形態例に関し、上記パラメータを用いて計算を行ったところ、 y方向の偏 波モードでの発振が支配的に起こることが確認され、 X方向及び y方向の各偏波モー ド間の発振強度の比(直交偏波抑圧比)は 30dB以上であった。なお、横モードにつ いては、基本横モード発振が確認されている。
[0042] なお、第 1の実施形態例では、図 1に示すように、中央の点欠陥領域 109を挟んで 対向している円孔のうち、最も近接している一対の円孔の径 dを、それ以外の円孔の
2
径 dよりも大きくした。この例では、点欠陥領域 109に最も近い一対の円孔のみの径 が他の円孔の径と異なっているため、点欠陥領域 109に存在する発振レーザ光の電 界に対してより効果的に空孔の径を変化させたことの効果を及ぼすことができる点で 有利である。し力、も、点欠陥領域 109の近傍を除く周辺部では、同一径の円孔が均 一に二次元的に分布しており、積層面内における屈折率の分布に与える擾乱も少な くて済む。すなわち、発振レーザ光の形状に対する影響も少なくて済む。
[0043] もっとも、各偏波モードの損失を相違させるためには、上記のように点欠陥領域 109 に最も近接する一対の空孔の径を変化させるのではなぐ適宜、中央の点欠陥領域 に最近接しなレ、一対の円孔の径を変更させても構わなレ、。
[0044] さらに、図 3のように、点欠陥領域 109の中心を通る積層面に平行な一の直線上に 中心を有する円孔の径を、他の円孔の径と異ならしめてもよい。図 3に示した変形例 では、点欠陥領域 109の中心を通過する X軸に平行な直線 L1上に中心が存在する 円孔の径 dを、直線 L1上に中心がない他の円孔の径 dよりも小さくしている。このた
1 2
め、図 3の X軸方向の偏波モードに対する損失が y軸方向の偏波モードに対する損失 よりも小さい。従って、 X軸方向の偏波モードにおいて選択的に発振が起こり、偏波モ ード間のスイッチングが防止される。このように、点欠陥領域 109の中心を通る積層 面に平行な一の直線 L1上に中心を有するすべての円孔の径を、この一の直線 L1上 にない他の円孔の径と異ならしめることによって、中心軸 Cの周りの回転非対称性の 程度をさらに強めることができるので、発振する偏波モードの安定性がさらに高まる。
[0045] 上記では、複数の空孔(円孔)のうち、特定の位置にあるものの径を他の円孔の径 と異ならせることとした力 当該特定の位置の空孔の形状を他の空孔の形状と異なる もの、たとえば、正方形の孔など円孔以外の形状としてもよい。
[0046] (第 2の実施形態例)
図 4は、本発明の第 2の実施形態例による VCSELの上面図、図 5は断面斜視図であ
[0047] 本発明の第 2の実施形態例に係る VCSEL200は、発振波長 1300nmで使用され るフォトニック結晶 VCSELであり、 n型 GaAs基板 201の(100)面上に下部反射鏡 2 02を MOCVD(Metal Organic Chemical Vapor D印 osition)法により積層し、しかる後 に MBE(Molecular Beam Epitaxy)法によって、 GaAsからなる下部クラッド層、 4ペア の GalnNAsSb/GaNAsからなる多重量子井戸層、 GaAsからなる上部クラッド層か らなる発光層 203を順次積層し、さらにその後再度 MOCVD法によって、上部反射 鏡 204を順次積層し、全体の積層部を構成して!/、る。
[0048] 下部反射鏡 202は、それぞれ厚み λ /4η (ηは屈折率、 λは動作波長)の η型 AlAs と n型 GaAsを交互に積層してなる 35ペアの半導体多層膜からなる。また、上部反射 鏡 204は、それぞれ厚みえ /4nの p型 Al Ga Asと p型 GaAsとを交互に積層して
0. 9 0. 1
なる 22ペアの半導体多層膜からなって!/、る。
[0049] 上記積層部の上部から下部反射鏡 202のうちの少なくとも上面に至るまでの部分 は、周辺部がエッチング除去されて、柱状の層構造 220が形成されている。かかる柱 状層構造 220の上面には、例えば Au/AuZnからなるリング状の上部電極 205が形 成され、また、 n型 GaAs基板 201の裏面には Ti/Pt/Auからなる下部電極 206が 形成される。
[0050] 第 2の実施形態の VCSELにおける電流狭窄構造は、フォトリソグラフィ一法を用い てフォトレジストマスク (不図示)を形成し、上部反射鏡 204の最下部付近が平均飛程 となるような加速電圧で水素イオンを適切な量だけ注入し、高抵抗領域 207aに変質 させることによって形成される。
[0051] 電流狭窄構造の形成後、図 4に示すように、柱状層構造 220には、電子ビーム露 光あるいはフォトリソグラフィ、およびドライエッチングにより、複数の円孔 208が積層 面内において三角格子状に二次元的に配列形成される。この円孔配列は、その中 央に円孔がない点欠陥領域 209を有している。これらの複数の円孔 208の配列周期 は 5 m (中心間の距離)であり、柱状層構造 220の上面から上部反射鏡 204の 15 ペア分に相当する深さにまで設けられている。このような円孔配列により、円孔 208が 形成された部分の平均屈折率は、円孔がない点欠陥領域 209の平均屈折率よりも 小さくなるので、円孔 208が形成された部分は、点欠陥領域 209を伝搬する光に対 してクラッドとして働く。円孔 208の配列周期、孔径、深さなどは、円孔 208が形成さ れた部分の平均屈折率と円孔がない点欠陥領域 209の平均屈折率との差により、積 層面方向において基本横モード発振が得られるよう、適宜調整される。
[0052] 第 2の実施形態例では、点欠陥領域の中心を一端として積層面内に伸びる一の半 直線との間で、中心と点欠陥領域の中心とを結ぶ線分のなす角度が所定範囲内で ある円孔の径を、他の円孔の径と異ならせている。すなわち、図 4において、中心と点 欠陥領域 209の中心を結ぶ線分 liと、点欠陥領域 209の中心を一端として積層面内 に伸びる X軸に平行な一の半直線 L0とのなす角度 α力 0° 以上 120° 以下である 円孔 208iは、なす角度が 60° 未満又は 120° より大きい円孔よりも、径が大きい。 図 4に示した例では、半直線 L0との間で 60° の角度をなす半直線 L60と 120° の 角度をなす半直線 L120との間に中心が存在する円孔 (各半直線上に中心が存在 する円孔を含む)の径 dを、 2· 5 mとし、他の円孔の径 dを 1. 5 mとしている。
2 1
[0053] 第 2の実施形態例では、このように異なった孔径の円孔を配置することによって、円 孔の配列パターンは図 4に符号 I、 IIで示したように、点欠陥領域 209の中心を通り積 層面に垂直な中心軸 Cの周りに、 2回の回転対称性を有するものとなっている。すな わち、中心軸を含む半平面内における VCSELの光電磁界分布は、該中心軸を中 心として 180度回転したときと同等である。
[0054] 上記円孔配列パターンの対称性に対応し、この VCSEL200の偏波モードとしては 、 2つの偏波モードが存在しうるところ、各偏波モードが受ける損失は異なるものとな る。第 2の実施形態例では、図 4中に示した X方向に平行な電界成分を有する偏波モ ードに対する損失が y方向に平行な偏波モードに対する損失より小さくなるので、x方 向の偏波モードでの発振が支配的となる。
[0055] したがって、電極 205、 206を介して電流を注入した場合、これら 2つの偏波モード のうち、損失の小さい X方向の偏波モードのみにおいて選択的にレーザ発振が起こる ことになる。このため、環境温度や駆動電流などの変動などによって偏波モードのス イッチングが起こらない、安定した発振が起こる。
[0056] 第 2の実施形態例に関し、上記パラメータを用いて計算を行ったところ、 X方向の偏 波モードでの発振が支配的に起こることが確認され、 X方向及び y方向の各偏波モー ド間の発振強度の比(直交偏波抑圧比)は、 30dB以上の値が得られた。横モードに ついては、基本横モード発振が確認されている。
[0057] なお、第 2の実施形態例では、点欠陥領域 209の中心を一端として積層面内に伸 びる X軸に平行な一の半直線 L0と 60° の角度をなす半直線 L60と、 120° の角度 をなす半直線 L120との間に中心が存在する円孔 (各半直線上に中心が存在する円 孔を含む)の径を、他の円孔の径よりも大きくした力 半直線 L0と任意の範囲内の角 度をなす半直線上に中心が存在する円孔の径を、他の円孔の径と異ならせても、各 偏波モード間で損失を異ならせることが可能である。
[0058] 換言すれば、第 2の実施形態例では、点欠陥領域 209の中心を通る一の半直線 L 0と、中心と点欠陥領域の中心を結ぶ線分 1とのなす角度 αが所定範囲内にある複 数の円孔の径を他の円孔の径と異ならしめている。このため、中心軸 Cの周りの回転 非対称性の程度をさらに強めることができるので、発振する偏波モードの安定性がさ らに高まる。
[0059] 上記では、複数の空孔(円孔)のうち、特定の位置にあるものの径を他の円孔の径 と異ならせることとした力 当該特定の位置の空孔の形状を他の空孔の形状と異なる もの、たとえば、正方形の孔など円孔以外の形状としてもよい。
[0060] (第 3の実施形態例)
図 6は、本発明の第 3の実施形態例による VCSELの上面図、図 7は断面斜視図で ある。第 3の実施形態例は、第 1の実施形態例と同様、発振波長 850nmで使用され るフォトニック結晶 VCSELであり、円孔の配列が異なる点を除き、構成及び製造方 法は同じである。
[0061] 第 3の実施形態例では、複数の円孔は、中央部の点欠陥領域 309を除いて、周期
5 mの正方格子状に配列されている。点欠陥領域 309近傍の一対の円孔の径 d
2 は、それ以外の円孔の径 dよりも大きくなつている。ここにおいて dは、 3 μ ΐη
1 2 、 dは 2
1 である。円孔の深さは、積層部上面から上部反射鏡 304の 17ペア分に相当する 程度である。なお、円孔の周期、径、深さは、点欠陥領域 309の光が基本横モードで 存在するものであれば、上記のものに限られない。
[0062] 第 3の実施形態例でも、異なった径の円孔を配置することによって、円孔の配列バタ 一ンは図 6に符号 I、 IIで示したように、点欠陥領域 309の中心を通り積層面に垂直な 中心軸 Cの周りに、 2回の回転対称性を有するものとなっている。すなわち、中心軸を 含む半平面内における VCSELの光電磁界分布は、該中心軸を中心として 180度回 転したときと同等である。
[0063] 上記円孔配列パターンの回転対称性に対応し、この VCSEL300の偏波モードとし ては、 2つの偏波モードが存在しうるところ、各偏波モードが受ける損失は異なるもの となる。第 3の実施形態例では、図 6中に示した X方向(孔径の大きな円孔の中心を 結んだ方向と平行な方向)に平行な電界成分を有する偏波モードに対する損失が y 方向(積層面内で X方向に垂直な方向)に平行な偏波モードに対する損失より大きく なるので、 y方向の偏波モードでの発振が支配的となる。
[0064] したがって、電極 305、 306を介して電流を注入した場合、これら 2つの偏波モード のうち、損失の小さい y方向の偏波モードのみにおいて選択的にレーザ発振が起こる ことになる。このため、環境温度や駆動電流などの変動などによって偏波モードのス イッチングが起こらない、安定した発振が起こる。
[0065] 第 3の実施形態例に関しても、上記パラメータを用いて計算を行ったところ、 y方向 の偏波モードでの発振が支配的に起こることが確認され、 X方向及び y方向の各偏波 モード間の発振強度の比(直交偏波抑圧比)は 30dB以上であった。なお、横モード につ!/、ては、基本横モード発振が確認されてレ、る。 [0066] なお、第 3の実施形態例では、図 6に示すように、中央の点欠陥領域 309を挟んで 対向している円孔のうち、最も近接している一対の円孔の径 dを、それ以外の円孔の
2
径 dよりも大きくした。この例では、点欠陥領域 309に最も近い一対の円孔のみの径 が他の円孔の径と異なっているため、点欠陥領域 309に存在する発振レーザ光の電 界に対してより効果的に円孔の径を変化させたことの効果を及ぼすことができる点で 有利である。しかも、点欠陥領域 309の近傍を除く周辺部には、同一径の円孔が均 一に二次元的に分布しており、積層面内における屈折率の分布に与える擾乱も少な くて済む。すなわち、発振レーザ光の形状に対する影響も少なくて済む。
[0067] もっとも、各偏波モードの損失を相違させるためには、上記のように点欠陥領域 30 9に最も近接する一対の空孔の径を変化させるのではなぐ点欠陥領域 309に最近 接しな!/、一対の円孔の径を変更させても構わなレ、。
[0068] さらに、図 8のように、点欠陥領域 309の中心を通る積層面に平行な一の直線上に 中心を有するすべての円孔の径を、他の円孔の径と異ならしめてもよい。図 8に示し た変形例では、点欠陥領域 309の中心を通過する X軸に平行な直線 L1上に中心が 存在する円孔の径 dを、直線 L1上に中心がない他の円孔の径 dよりも小さくしてい
1 2
るので、図 8の X軸方向の偏波モードに対する損失力 軸方向の偏波モードに対する 損失よりも小さい。このため、 X軸方向の偏波モードにおいて選択的に発振が起こり、 偏波モード間のスイッチングが防止される。このように、点欠陥領域の中心を通る積 層面に平行な一の直線上に中心を有するすべての円孔の径を、この一の直線上に ない他の円孔の径と異ならしめることによって、中心軸 Cの周りの回転非対称性の程 度をさらに強めることができるので、発振する偏波モードの安定性がさらに高まる。
[0069] 上記では、複数の空孔(円孔)のうち、特定の位置にあるものの径を他の円孔の径 と異ならせることとした力 当該特定の位置の空孔の形状を他の空孔の形状と異なる もの、たとえば、正方形の孔など円孔以外の形状としてもよい。
[0070] (第 4の実施形態例)
図 9は、本発明の第 4の実施形態例による VCSELの上面図、図 10は断面斜視図 である。第 4の実施形態例は、第 2の実施形態例と同様、発振波長 1300nmで使用 されるフォトニック結晶 VCSELであり、円孔の配列が異なる点を除き、構成及び製造 方法は同じである。
[0071] 第 4の実施形態例では、図 9に示すように、点欠陥領域 409の中心を通り積層面内 に伸びた一の半直線との間で、中心と点欠陥領域の中心とを結ぶ線分のなす角度 が所定範囲内である円孔の径を、他の円孔の径と異ならせている。すなわち、図 9に おいて、中心と点欠陥領域 409の中心を結ぶ線分 liと、点欠陥領域 409の中心を一 端として積層面内に伸びる X軸に平行な一の半直線 L0とのなす角度 α力 5° 以上 135° 以下である円孔 408iは、なす角度が 45° 未満又は 135° より大きい円孔より も、径が大きい。図 9に示した例では、半直線 L0と 45° の角度をなす半直線 L45と、 135° の角度をなす半直線 L135との間に中心が存在する円孔 (各半直線上に中心 が存在する円孔を含む)の径 dを 2· 5 m、他の円孔の径 dを 1. 5 mとしている。
2 1
[0072] 第 4の実施形態例では、このように異なった径の円孔を配置することによって、円孔 の配列パターンは図 9に符号 I、 IIで示したように、点欠陥領域 409の中心を通り積層 面に垂直な中心軸 Cの周りに、 2回の回転対称性を有するものとなっている。すなわ ち、中心軸を含む半平面内における VCSELの光電磁界分布は、該中心軸を中心と して 180度回転したときと同等である。
[0073] 上記円孔配列パターンの回転対称性に対応し、この VCSEL400の偏波モードとし ては、 2つの偏波モードが存在しうるところ、各偏波モードが受ける損失は異なるもの となる。本実施形態例では、図 9中に示した X方向に平行な電界成分を有する偏波モ ードに対する損失が y方向に平行な偏波モードに対する損失より小さくなるので、χ方 向の偏波モードでの発振が支配的となる。
[0074] したがって、電極 405、 406を介して電流を注入した場合、これら 2つの偏波モード のうち、損失の小さい X方向の偏波モードのみにおいて選択的にレーザ発振が起こる ことになる。このため、環境温度や駆動電流などの変動などによって偏波モードのス イッチングが起こらない、安定した発振が起こる。
[0075] 第 4の実施形態例に関し、上記パラメータを用いて計算を行ったところ、 X方向の偏 波モードでの発振が支配的に起こることが確認され、 X方向及び y方向の各偏波モー ド間の発振強度の比(直交偏波抑圧比)は、 30dB以上の値が得られた。横モードに ついては、基本横モード発振が確認されている。 [0076] なお、第 4の実施形態例では、点欠陥領域の中心を一端として積層面内に伸びる X 軸に平行な一の直線 L0と 45° の角度をなす半直線 L45と、 135° の角度をなす半 直線 L135との間に中心が存在する円孔 (各半直線上に中心が存在する円孔を含む )の径を、他の円孔の径よりも大きくした力 半直線 L0と任意の範囲内の角度をなす 半直線上に中心が存在する円孔の径を、他の円孔の径と異ならせても、各偏波モー ド間で損失を異ならせることが可能である。
[0077] 換言すれば、図 9に示した第 4の実施形態例では、点欠陥領域 409の中心を一端 とする一の半直線 L0と、中心と点欠陥領域の中心を結ぶ線分 1とのなす角度 αが所 定範囲内にある複数の円孔の径を他の円孔の径と異ならしめている。このため、中心 軸 Cの周りの回転非対称性の程度をさらに強めることができるので、発振する偏波モ ードの安定性がさらに高まる。
[0078] 上記では、複数の空孔(円孔)のうち、特定の位置にあるものの径を他の円孔の径 と異ならせることとした力 当該特定の位置の空孔の形状を他の空孔の形状と異なる もの、たとえば、正方形の孔など円孔以外の形状としてもよい。
[0079] (第 5の実施形態例)
上記第 1乃至第 4の実施形態例においては、 2次元的に周期配列された複数の円 孔のうち、特定の位置にある円孔の径を他の円孔の径と異ならしめることによって、存 在可能な偏波モードを 2つとし、かつ、この 2つのうちの一方の偏波モードの受ける損 失が他の偏波モードのうける損失よりも小さくなるようにした。
[0080] これに対し、第 5の実施形態例では、上記第 1乃至第 4の実施形態例における場合 と同様にして特定される円孔内に、発振するレーザ光に対して損失を与える損失媒 体が充填されている。第 5の実施形態例では、二次元的に配列した複数の円孔のう ち、所定の位置のものの径が他の円孔の径と異なっていることは、必ずしも要するも のではない。
[0081] 図 11は、第 5の実施形態例に係る VCSELの上面図、図 12は、断面斜視図を示し たものである。第 5の実施形態例では、点欠陥領域 509以外の部分に二次元的に周 期的に配列された円孔の径 dは、すべて 2 であり、点欠陥領域を挟んで対向す る一対の円孔の内部にのみ、発振レーザ光に対する損失媒体として、ポリイミド 511 が充填されている。これにより、図 11の X方向の偏波モードが受ける損失が y方向の 偏波モードが受ける損失よりも大きくなるので、電極 506、 507を介して電流を注入し た場合、比較的損失の小さい y方向の偏波モードのみにおいて選択的にレーザ発振 が起こることになる。このため、環境温度や駆動電流などの変動などによって偏波モ ードのスイッチングが起こらな!/、、安定した発振が起こる。
[0082] 第 5の実施形態例においては、点欠陥領域を挟んで対向する一対の円孔内に損 失媒体を充填する場合を挙げたが、これに限られるものではない。第 5の実施形態例 の変形例としては、点欠陥領域の中心を通り積層面内に伸びる一の直線上に中心 が位置する円孔内に損失媒体を充填するものであってもよい。
[0083] また、他の変形例としては、点欠陥領域の中心を一端として積層面内に伸びる一の 半直線と、中心と点欠陥領域の中心を結ぶ線分とのなす角度が所定範囲内にある 円孔内に損失媒体を充填してもよい。たとえば、複数の円孔が三角格子状に配列さ れた場合において、点欠陥領域の中心を一端として積層面内に伸びる一の半直線と 、中心と点欠陥領域の中心を結ぶ線分とのなす角度が 60度以上 120度以下の範囲 内にある円孔内に損失媒体を充填してもよレ、し、複数の円孔が正方格子状に配列さ れた場合において、点欠陥領域の中心を一端として積層面内に伸びる一の半直線と 、中心と点欠陥領域の中心を結ぶ線分とのなす角度が 45度以上 135度以下の範囲 内にある円孔内に、損失媒体を充填してもよい。
[0084] 上記いずれの場合においても、円孔配列の、点欠陥領域の中心を通り積層面に垂 直な方向に伸びる軸 Cを中心軸とする円孔配列パターンの回転対称性によって決ま る存在可能な複数の偏波モードのうち、一つの偏波モードにおいて選択的にレーザ 発振が起こることになる。このため、環境温度や駆動電流などの変動などによって偏 波モードのスイッチングが起こらな!/、、安定したレーザ発振が実現できる。
[0085] また、第 5の実施形態例において所定の位置にある円孔に損失媒体を充填させる ことに加え、第 1乃至第 4の実施形態例に述べたように所定の位置にある円孔の径を 他の円孔の径と異ならせることを併用してもよい。
[0086] (第 6の実施形態例)
図 13は、第 6の実施形態例に係る VCSELの上面図である。上記第 1乃至第 5の実 施形態例では、複数の空孔は、円孔であった。これに対し、第 6の実施形態例では、 図 13に示すように、正方形の複数の空孔が、 X軸及び y軸の方向に正方格子配列さ れている。そして、本実施形態例では、正方形の空孔の各辺が、 X軸又は y軸と平行 である。任意の一の空孔 608iの対向する 2辺(a , c )及び(b , d )が他の空孔 60¾の 対応する対向する 2辺(a , 0 )及び03 , d )と平行となるように配列されている。そして
J J J J
、点欠陥領域 609を挟んで対向する一対の空孔の大きさ力 他の空孔の大きさよりも 大きくなつている。
[0087] 第 6の実施形態例では、図 13に示すように、中央の点欠陥領域 609を挟んで対向 する中央部近傍の一対の空孔の大きさ d (正方形の一辺の長さ)は、それ以外の空
2
孔の大きさ dよりも大きくなつている。本実施形態例では、空孔の大きさ dは例えば 2 ^ m, dは 3 mである。このように、異なった大きさの正方形の孔を配置することによ
2
つて、空孔の配列パターンは図 13に符号 I、 IIで示したように、点欠陥領域 609の中 心を通り積層面に垂直な中心軸 Cの周りに、 2回の回転対称性を有するものとなって いる(すなわち、中心軸を含む半平面内における VCSELの光電磁界分布は、該中 心軸を中心として 180度回転したときと同等である。)。
[0088] 上記空孔配列パターンの対称性に対応し、この VCSEL600の偏波モードとしては 、 2つの偏波モードが存在しうるところ、各偏波モードが受ける損失は異なるものとな る。本実施形態例では、図 13中に示した X方向に平行な電界成分を有する偏波モー ドに対する損失が y方向に平行な偏波モードに対する損失より大きくなるので、 y方向 の偏波モードでの発振が支配的となる。
[0089] したがって、上部電極 605、下部電極(不図示)を介して電流を注入した場合、これ ら 2つの偏波モードのうち、損失の小さい y方向の偏波モードのみにおいて選択的に レーザ発振が起こることになる。このため、環境温度や駆動電流などの変動などによ つて偏波モードのスイッチングが起こらな!/、、安定した発振が起こる。
[0090] なお、第 6の実施形態例では、第 1の実施形態例に倣い、点欠陥領域 609を挟ん で対向する一対の空孔の大きさを、他の空孔の大きさよりも大きくした力 第 2乃至第 4の実施形態例の各々にならい、所定の位置にある空孔の大きさを他の空孔の大き さと異ならせることができる。 [0091] また、所定の位置のある空孔の大きさを変えることに代えて、空孔の形状を変えても よいし、またはこれと併用して、第 5の実施形態例のように、所定の位置にある空孔に 、発振するレーザ光に対して損失を与える、ポリイミドなどの損失媒体を充填してもよ い。
[0092] また、第 6の実施形態例では、正方形の空孔は X軸及び y軸の方向に正方格子配 列されていたが、図 14のように、 X軸及び y軸の方向に正三角形状に三角格子配列 され、正方形の空孔の各辺が、 X軸又は y軸と平行であってもよい。
[0093] 以上、本発明をその好適な実施形態に基づいて説明した力 本発明の VCSELは、 上記実施形態にのみ限定されるものではなぐ上記実施形態の構成から種々の修正 及び変更を施したものも、本発明の範囲に含まれる。

Claims

請求の範囲
[1] 基板(101)と、
前記基板上に順次に積層された第 1の反射鏡(102)、発光層(103)、及び、第 2 の反射鏡(104)を含んでなる積層部と、
前記積層部の積層面内における所定の領域(109, 609)を除く領域に、前記積層 面内において周期的に二次元配列され、積層方向に設けられた複数の空孔(108, 608)とを有し、
前記所定の領域(109, 609)を挟んで対向する一対の空孔の大きさ又は形状が、 他の空孔の大きさ又は形状と異なることを特徴とする面発光レーザ (VCSEL)。
[2] 基板(101)と、
前記基板上に順次に積層された第 1の反射鏡(102)、発光層(103)、及び、第 2 の反射鏡(104)を含んでなる積層部と、
前記積層部の積層面内における所定の領域(309, 609)を除く領域に、前記積層 面内において周期的に二次元配列され、積層方向に設けられた複数の空孔(308, 608)とを有し、
前記所定の領域(309, 609)の中心を通り前記積層面内に伸びる一の直線上に 中心が位置する空孔の大きさ又は形状力 S、他の空孔の大きさ又は形状と異なってい ることを特徴とする VCSEL。
[3] 基板(201 , 401)と、
前記基板上に順次に積層された第 1の反射鏡(202, 402)、発光層(203, 403)、 及び、第 2の反射鏡(204, 404)を含んでなる積層部と、
前記積層部の積層面内における所定の領域(209, 409)を除く領域に、前記積層 面内において周期的に二次元配列され、積層方向に設けられた複数の空孔(208, 408)とを有し、
前記所定の領域(209, 409)の中心を一端として前記積層面内に伸びる一の半直 線と、中心と前記所定の領域の中心を結ぶ線分のなす角度が所定範囲内にある空 孔の大きさ又は形状力 他の空孔の大きさ又は形状と異なることを特徴とする VCSE し。
[4] 前記複数の空孔(208)は、前記積層面内において三角格子状に配列されており、 前記一の半直線と、中心と前記所定の領域の中心を結ぶ線分のなす角度が 60度 以上 120度以下の範囲内にある空孔の大きさ又は形状力 S、他の空孔の大きさ又は形 状と異なることを特徴とする請求項 3に記載の VCSEL。
[5] 前記複数の空孔 (408)は、前記積層面内において正方格子状に配列されており、 前記一の半直線と、中心と前記所定の領域の中心を結ぶ線分のなす角度が 45度 以上 135度以下の範囲内にある空孔の大きさ又は形状力 S、他の空孔の大きさ又は形 状と異なることを特徴とする請求項 3に記載の VCSEL。
[6] 基板(501)と、
前記基板上に順次に積層された第 1の反射鏡(502)、発光層(503)、及び、第 2 の反射鏡(504)を含んでなる積層部と、
前記積層部の積層面内における所定の領域(509)を除く領域に、前記積層面内 において周期的に二次元配列され、積層方向に設けられた複数の空孔(508)を有 し、
前記所定の領域を挟んで対向する一対の空孔(509)内に、発振するレーザ光に 対して損失を与える損失媒体(511)が充填されて!/、ることを特徴とする VCSEL。
[7] 基板(501)と、
前記基板上に順次に積層された第 1の反射鏡(502)、発光層(503)、及び、第 2 の反射鏡(504)を含んでなる積層部と、
前記積層部の積層面内における所定の領域(509)を除く領域に、前記積層面内 において周期的に二次元配列され、積層方向に設けられた複数の空孔(508)とを 有し、
前記所定の領域の中心を通り前記積層面内に伸びる一の直線上に中心が位置す る空孔内に、発振するレーザ光に対して損失を与える損失媒体(511)が充填されて V、ることを特徴とする VCSEL。
[8] 基板(501)と、
前記基板上に順次に積層された第 1の反射鏡(502)、発光層(503)、及び、第 2 の反射鏡(504)を含んでなる積層部と、 前記積層部の積層面内における所定の領域(509)を除く領域に、前記積層面内 において周期的に二次元配列され、積層方向に設けられた複数の空孔(508)とを 有し、
前記所定の領域の中心を一端として前記積層面内に伸びる一の半直線と、中心と 前記所定の領域の中心を結ぶ線分のなす角度が所定範囲内にある空孔内に、発振 するレーザ光に対して損失を与える損失媒体(511)が充填されていることを特徴と する VCSEし。
[9] 前記複数の空孔(508)は、前記積層面内において三角格子状に配列されており、 前記一の半直線と、中心と前記所定の領域の中心を結ぶ線分のなす角度が 60度 以上 120度以下の範囲内にある空孔内に、発振するレーザ光に対して損失を与える 損失媒体が充填されていることを特徴とする請求項 8に記載の VCSEL。
[10] 前記複数の空孔(508)は、前記積層面内において正方格子状に配列されており、 前記一の半直線と、中心と前記所定の領域の中心を結ぶ線分のなす角度が 45度 以上 135度以下の範囲内にある空孔内に、発振するレーザ光に対して損失を与える 損失媒体(511)が充填されていることを特徴とする請求項 8に記載の VCSEL。
[11] 前記損失媒体(511)はポリイミドであることを特徴とする請求項 6乃至 10のいずれ 力、 1つに記載の VCSEL。
[12] 前記複数の空孔(108, 208, 308, 408, 508)は、円孔であることを特徴とする請 求項 1乃至 11のいずれ力、 1つに記載の VCSEL。
[13] 前記複数の空孔(608)は、対向する 2辺が他の空孔の対応する対向する 2辺と平 行となるように配列された正方形の孔であることを特徴とする請求項 1乃至 11のいず れか 1つに記載の VCSEL。
[14] 基板(皿, 201 , 301 , 401 , 501)と、
前記基板上に順次に積層された第 1の反射鏡(102, 302, 303, 403, 502)、発 光層(103, 203, 303, 403, 503)、第 2の反射鏡(104, 204, 304, 404, 504) を含んでなる積層部と、
前記積層部の積層面内における所定の領域(109, 209, 309, 409, 509)を除く 領域に、前記積層面内において周期的に二次元配列され、積層方向に設けられた 複数の空孑し(108, 208, 308, 408, 508)とを有し、
前記所定の領域の中心を通り前記積層部の積層方向に伸びる軸を中心軸とする 空孔配列パターンの回転対称性によって決まる存在可能な複数の偏波モードのうち 、一つの偏波モードの損失が他の偏波モードの損失よりも小さレ、ことを特徴とする VC SEL。
PCT/JP2007/066986 2006-08-31 2007-08-31 Laser d'émission de surface de résonateur vertical WO2008026721A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/342,351 US20090168829A1 (en) 2006-08-31 2008-12-23 Vertical-cavity surface-emitting laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-235155 2006-08-31
JP2006235155A JP5224310B2 (ja) 2006-08-31 2006-08-31 垂直共振器型面発光レーザ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/342,351 Continuation US20090168829A1 (en) 2006-08-31 2008-12-23 Vertical-cavity surface-emitting laser

Publications (1)

Publication Number Publication Date
WO2008026721A1 true WO2008026721A1 (fr) 2008-03-06

Family

ID=39136003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066986 WO2008026721A1 (fr) 2006-08-31 2007-08-31 Laser d'émission de surface de résonateur vertical

Country Status (3)

Country Link
US (1) US20090168829A1 (ja)
JP (1) JP5224310B2 (ja)
WO (1) WO2008026721A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109167255A (zh) * 2018-11-12 2019-01-08 中国科学院长春光学精密机械与物理研究所 一种面发射激光器、面发射激光器阵列及光学扫描装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170508A (ja) * 2008-01-11 2009-07-30 Furukawa Electric Co Ltd:The 面発光半導体レーザ及びその製造方法
JP5006242B2 (ja) * 2008-03-31 2012-08-22 古河電気工業株式会社 面発光半導体レーザ素子
JP5047258B2 (ja) * 2009-12-09 2012-10-10 キヤノン株式会社 二次元フォトニック結晶面発光レーザ
CN102714396B (zh) * 2010-01-29 2014-12-10 惠普发展公司,有限责任合伙企业 多模垂直腔表面发射激光器阵列
JP6172789B2 (ja) * 2013-03-08 2017-08-02 国立大学法人京都大学 レーザ装置
JP2017168577A (ja) * 2016-03-15 2017-09-21 住友電気工業株式会社 面発光半導体レーザを作製する方法
GB2603802A (en) * 2021-02-15 2022-08-17 Ams Sensors Asia Pte Ltd Meta-optics integrated on VCSELs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023193A (ja) * 2001-07-05 2003-01-24 Japan Science & Technology Corp 二次元フォトニック結晶面発光レーザ
JP2004030964A (ja) * 2002-06-21 2004-01-29 Seiko Epson Corp 発光装置、光通信用装置及び光通信システム
JP2005268809A (ja) * 2004-03-19 2005-09-29 Lumileds Lighting Us Llc 面内発光層を含む半導体発光素子
JP2005353623A (ja) * 2004-06-08 2005-12-22 Ricoh Co Ltd 面発光レーザ及び光伝送システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281480A (ja) * 2000-03-29 2001-10-10 Nec Corp フォトニック結晶光導波路と方向性結合器
US20030185500A1 (en) * 2002-03-28 2003-10-02 Fells Julian A. Optical transmission systems
US7085301B2 (en) * 2002-07-12 2006-08-01 The Board Of Trustees Of The University Of Illinois Photonic crystal single transverse mode defect structure for vertical cavity surface emitting laser
US6754913B2 (en) * 2002-11-13 2004-06-29 Wilhelm Andreas Haberkorn Sanitary cleansing apparatus and process
US7280730B2 (en) * 2004-01-16 2007-10-09 Imra America, Inc. Large core holey fibers
US20070030873A1 (en) * 2005-08-03 2007-02-08 Finisar Corporation Polarization control in VCSELs using photonics crystals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023193A (ja) * 2001-07-05 2003-01-24 Japan Science & Technology Corp 二次元フォトニック結晶面発光レーザ
JP2004030964A (ja) * 2002-06-21 2004-01-29 Seiko Epson Corp 発光装置、光通信用装置及び光通信システム
JP2005268809A (ja) * 2004-03-19 2005-09-29 Lumileds Lighting Us Llc 面内発光層を含む半導体発光素子
JP2005353623A (ja) * 2004-06-08 2005-12-22 Ricoh Co Ltd 面発光レーザ及び光伝送システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109167255A (zh) * 2018-11-12 2019-01-08 中国科学院长春光学精密机械与物理研究所 一种面发射激光器、面发射激光器阵列及光学扫描装置

Also Published As

Publication number Publication date
US20090168829A1 (en) 2009-07-02
JP5224310B2 (ja) 2013-07-03
JP2008060306A (ja) 2008-03-13

Similar Documents

Publication Publication Date Title
US7697586B2 (en) Surface-emitting laser
US8824517B2 (en) Surface-emission laser devices, surface-emission laser array having the same, electrophotographic system and optical communication system
JP4602701B2 (ja) 面発光レーザ及び光伝送システム
WO2008026721A1 (fr) Laser d'émission de surface de résonateur vertical
JP4760380B2 (ja) 面発光レーザ
JP2006140446A (ja) 面発光レーザ素子および面発光レーザアレイおよび面発光レーザ素子の製造方法および面発光レーザモジュールおよび電子写真システムおよび光通信システムおよび光インターコネクションシステム
JP2003133640A (ja) 面発光半導体レーザ素子
JP2008028120A (ja) 面発光型半導体素子
JP3652252B2 (ja) 半導体光装置
JP2005535141A (ja) 高屈折率材料内で電界が最大の半波長マイクロポスト・マイクロキャビティ
US20140227007A1 (en) Surface-emitting laser and image forming apparatus using the same
JPH11307882A (ja) 面発光型半導体レ―ザ、面発光型半導体レ―ザアレイ、及び面発光型半導体レ―ザの製造方法
JP5006242B2 (ja) 面発光半導体レーザ素子
JP2009260093A (ja) 光半導体装置
JP2009188238A (ja) 面発光レーザ及びその製造方法
JPWO2007135772A1 (ja) 発光素子
WO2005074080A1 (ja) 面発光レーザ及びその製造方法
JP2007258581A (ja) 面発光レーザ素子
US20090180509A1 (en) Surface emitting semiconductor laser and method of manufacturing the same
JP3876886B2 (ja) 面発光型半導体レーザ装置の製造方法
WO2007102600A1 (ja) 面発光半導体レーザ素子
JP3800852B2 (ja) 面発光型半導体レーザ及びその製造方法
JP2009206448A (ja) 面発光半導体レーザ素子
JP2007227861A (ja) 半導体発光素子
JP4999070B2 (ja) 面発光レーザ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07828173

Country of ref document: EP

Kind code of ref document: A1