JP2004030964A - 発光装置、光通信用装置及び光通信システム - Google Patents

発光装置、光通信用装置及び光通信システム Download PDF

Info

Publication number
JP2004030964A
JP2004030964A JP2002181360A JP2002181360A JP2004030964A JP 2004030964 A JP2004030964 A JP 2004030964A JP 2002181360 A JP2002181360 A JP 2002181360A JP 2002181360 A JP2002181360 A JP 2002181360A JP 2004030964 A JP2004030964 A JP 2004030964A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting device
layer
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002181360A
Other languages
English (en)
Inventor
Tomoko Koyama
小山 智子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002181360A priority Critical patent/JP2004030964A/ja
Publication of JP2004030964A publication Critical patent/JP2004030964A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Abstract

【課題】優れた波長選択性を有する2次元フォトニック結晶を用いた発光装置、光通信用装置及び光通信システムを提供する。
【解決手段】本発明に係る発光装置は、基板10と、前記基板10上に配置され、少なくとも一方の電極が光を透過する透明電極である陰極60及び陽極40と、前記陰極60と前記陽極40との間に配置され、エレクトロルミネッセンスにより光を発生する発光層50と、前記発光層50に対して前記透明電極側に配置されるスラブ層30と、を含み、前記スラブ層30は、低屈折率領域300が周期的に配列された2次元フォトニック結晶構造を有し、前記2次元フォトニック結晶内に形成され、導波路として機能する線状欠陥200と、前記2次元フォトニック結晶内に形成され、特定の波長の光を捕獲して前記線状欠陥200へ導入する複数の点状欠陥101、102と、を含み、複数の前記点状欠陥101、102は、2以上の異なる波長に対応するものを含むとともに、前記発光層50から前記基板10と交叉する方向に発生する光を捕獲可能な位置に配置される。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、2次元フォトニック結晶を利用した発光装置、光通信用装置および光通信システムに関する。
【0002】
【背景技術及び発明が解決しようとする課題】
近年、インターネットの普及により通信システムの大容量化が望まれており、高速で大容量の通信が可能な光通信技術の開発が盛んである。そして、大量の情報を所定の光波長帯にのせて多重化し、光ファイバによって情報を伝送することができる波長多重化方式(WDM:Wavelength Division Multiplexing)を利用した通信システム用の光学部品の開発が活発に行われている。
【0003】
このような光学部品において、光信号の送信源となる発光装置は、キーデバイスの一つとされており、中でもプレーナ技術で一括生産でき、EL(エレクトロルミネッセンス)により光を発生するEL発光素子などが注目されている。
【0004】
ところで、上記した波長多重化方式の通信システムでは、所定の波長帯に関連付けて信号が組み込まれて通信が行われるが、EL発光素子の出射光は、発光波長に広がりを持っている。そこで、EL発光素子を送信用光源として用いて高密度の波長多重化を実現するためには、発光スペクトルのシャープな光を取り出す技術が必要である。
【0005】
本発明の目的は、優れた波長選択性を有する2次元フォトニック結晶を用いた発光装置、光通信用装置及び光通信システムを提供することにある。
【0006】
【課題を解決するための手段】
(1)本発明に係る発光装置は、
基板と、
前記基板上に配置され、少なくとも一方の電極が光を透過する透明電極である陰極及び陽極と、前記陰極と前記陽極との間に配置され、エレクトロルミネッセンスにより光を発生する発光層と、前記発光層に対して前記透明電極側に配置されるスラブ層と、を含み、
前記スラブ層は、低屈折率領域が周期的に配列された2次元フォトニック結晶構造を有し、前記2次元フォトニック結晶内に形成され、導波路として機能する線状欠陥と、前記2次元フォトニック結晶内に形成され、特定の波長の光を捕獲して前記線状欠陥へ導入する複数の点状欠陥と、を含み、
複数の前記点状欠陥は、2以上の異なる波長に対応するものを含むとともに、前記発光層から前記基板と交叉する方向に発生する光を捕獲可能な位置に配置される。
【0007】
本発明に係る発光装置では、基板上に陰極及び陽極が配置され、前記陰極及び陽極の少なくとも一方の電極は光を透過する透明電極として形成される。また、かかる発光装置では、発光層が陰極と陽極との間に配置され、この発光層は、陰極及から電子が注入され、かつ陽極からホールが注入されてエレクトロルミネッセンスにより光を発生する。
【0008】
また、本発明に係る発光装置では、発光層に対して透明電極側にスラブ層が配置される。このスラブ層は、低屈折率領域が周期的に配列された2次元フォトニック結晶構造を有し、この2次元フォトニック結晶内には、前記低屈折率領域の周期的な配列内のいずれかの位置に配置される複数の点状欠陥と、前記低屈折率領域の周期的な配列の一部を線状に抜き取ったような構造を有する線状欠陥が形成されている。
【0009】
上記線状欠陥は、低屈折率領域の周期的な配列により形成されるフォトニックバンドギャップによってスラブ層の面内方向において光が線状欠陥内に閉じ込められて伝搬する光導波路として機能する。
【0010】
また、上記点状欠陥は、発光層から基板と交叉する方向に発生する特定の波長の光を捕獲可能な位置に配置され、上記低屈折率領域の周期的な配列の乱れを利用して、上記線状欠陥内に特定の波長の光を導入する機能を有する。さらに、この点状欠陥は、異なる波長を捕獲するものがスラブ層に少なくとも2つ以上配置される。また、この点状欠陥で捕獲される光は、特定の波長を中心としたスペクトル幅の狭いものがスラブ層内の線状欠陥に導入される。すなわち、発光層で発生する光の波長帯から各点状欠陥に対応した複数の波長の光を選択的にスラブ層内に取り込むことができる。最終的に、各点状欠陥から線状欠陥内に導入された光は、線状欠陥内で合波されてスラブ層の端面から外部に出射される。
【0011】
従って、本発明に係る発光装置によれば、複数の特定の波長において急峻なスペクトルを有する光を点状欠陥によって取り出すことができ、優れた波長選択性を有する光を得ることができる。また、本発明によれば、各点状欠陥から線状欠陥内に光が導入される際に、光を合波して外部に出射させることができるため、例えば、多重化した光信号を送信することができる新規な発光装置を実現することができる。
【0012】
(2)また、本発明に係る発光装置は、
基板と、前記基板上に配置され、少なくとも一方の電極が光を透過する透明電極である陰極及び陽極と、前記陰極と前記陽極との間に配置され、エレクトロルミネッセンスにより光を発生する発光層と、前記発光層に対して前記透明電極側に配置される複数のスラブ層と、を含み、
複数の前記スラブ層は、低屈折率領域が周期的に配列された2次元フォトニック結晶構造を有し、前記2次元フォトニック結晶内に形成され、導波路として機能する線状欠陥と、前記2次元フォトニック結晶内に形成され、特定の波長の光を捕獲して前記線状欠陥へ導入する少なくとも一つの点状欠陥と、を含み、
前記点状欠陥は、前記発光層から前記基板と交叉する方向に発生する光を捕獲可能な位置に配置され、複数の前記スラブ層からは、それぞれ異なる波長の光が出射される。
【0013】
本発明に係る発光装置では、(1)で説明した発光装置と同様に、基板上に配置された陰極及び陽極から電子及びホールを注入することによって発光層からエレクトロルミネッセンスによる光を発生させる構造を有する。
【0014】
そして、本発明に係る発光装置では、2次元フォトニック結晶構造を有するスラブ層が発光層に対して透明電極側に複数積層された構造を有する。このスラブ層には、導波路として機能する線状欠陥と、特定の波長の光を捕獲して当該線状欠陥に導入する機能を有する点状欠陥とが形成される。各スラブ層では、それぞれに設けられた点状欠陥に対応する波長の光が、当該点状欠陥から線状欠陥に導入されて外部に出射される。すなわち、本発明に係る発光装置では、各スラブ層から出射される光は、発光層で発生する光を複数のスラブ層で分波したものとなり、それぞれのスラブ層で点状欠陥に対応した急峻なスペクトルを有する特定の波長の光が出射される。
【0015】
従って、本発明によれば、発光層から発生する光を点状欠陥で捕獲して波長選択性の優れた光を得ることができる発光装置の実現が可能である。また、本発明によれば、発光層から発生する光を所望の特定波長に分波して複数のスラブ層から出射させることができる新規な発光装置の実現が可能となる。
【0016】
なお、かかる発光装置において、前記点状欠陥は、前記線状欠陥から特定の波長の光を捕獲して放出する機能を有することができる。
【0017】
また、かかる発光装置において、前記線状欠陥は、該線状欠陥を含む前記スラブ層に対して少なくとも上下いずれか一方に配置される他の前記スラブ層の前記線状欠陥と重ならない位置に配置することができる。
【0018】
かかる構成によれば、線状欠陥による導波路同士の干渉を防止することができるとともに、複数のスラブ層間の距離を縮小して、発光装置を小型化することができる。
【0019】
また、上記した(1)及び(2)の各発光装置は、以下の態様を取り得る。
【0020】
(A)前記陰極及び前記陽極の少なくとも一方の電極と前記発光層とを、複数の前記点状欠陥において捕獲される波長の数に対応して複数配置することができる。
【0021】
かかる構成によれば、陰極及び陽極の少なくとも一方の電極と発光層とが点状欠陥の波長の種類に対応して複数配置されることにより、所望の波長の光を捕獲する点状欠陥に対応する発光層を選択的に発光させて、出射光に含まれる波長帯を多種多様に制御することができる。
【0022】
(B)前記スラブ層に同じ波長の光を捕獲する点状欠陥を複数配置することができる。
【0023】
これにより発光層で発生した光を大量に捕獲してスラブ層内に導入することができるため、外部発光効率(光の取り出し効率)を向上させることができる。
【0024】
(C)前記陰極及び前記陽極の一方の電極は、光を反射する機能を有し、前記光を反射する機能を有する電極と、少なくとも前記発光層及び前記スラブ層を介して対向する位置に光反射膜を配置することができる。
【0025】
かかる構成によれば、光を反射する機能を有する電極と、これと対向する位置に配置される光反射膜によって、いわゆるファブリーペロー共振器を形成する。従って、発光層で発生した光は、ファブリーペロー共振器によって複数の特定波長においてピークを有する発振光となる。よって、かかる構成によれば、スラブ層への導入段階において所望の波長帯以外の光を抑制することによってS/N(シグナル/ノイズ)比を向上させ、より発光スペクトルの急峻な光を取り出して出射させることができる。
【0026】
(D)前記透明電極は、前記発光層に対して前記基板側に配置され、前記基板は、光を透過する機能を有し、前記スラブ層は、前記基板に対して前記発光層が配置される側と反対側に配置することができる。
【0027】
(E)前記点状欠陥は、形状によって捕獲される光の波長が異なるものとすることができる。
【0028】
かかる構成によれば、種々の形状の点状欠陥を各スラブ層に形成することによって所望の波長の光を出射させることができるとともに、任意の発光波長帯の発光装置に適用することができる。
【0029】
なお、本明細書において、点状欠陥について「異なる形状」という場合、点状欠陥の平面形状が異なる場合に限らず、点状欠陥の大きさが異なる場合を含む。
【0030】
(F)前記点状欠陥は、上下非対称の柱状構造とすることができる。
【0031】
かかる構成によれば、点状欠陥において捕獲された光がスラブ層への導入時に他部へ漏れて損失することを防ぐことができ、外部発光効率を向上させることができる。
【0032】
(G)前記点状欠陥の前記スラブ層の面に対して一方の側に、光を反射する反射部材が配置することができる。
【0033】
かかる構成においても、点状欠陥において捕獲された光の損失を反射により防ぐことができるので、捕獲した光を低損失で出射させることができる。
【0034】
(H)前記スラブ層の上及び下の少なくとも一方に、該スラブ層の材料より屈折率が低いクラッド層が存在することができる。
【0035】
かかる構成によれば、クラッド層によって、スラブ層の面に垂直な方向に対しても確実に光を線状欠陥内に閉じ込めて伝搬させることができる。
【0036】
(I)前記線状欠陥の一方の端部を前記低屈折率領域の周期的配列によって閉じた構造とすることができる。
【0037】
かかる構成によれば、光の出射方向を一方の端面側に制御することができるため、低損失で光を出射することができる。
【0038】
(J)前記周期的配列は、三角格子状または正方格子状の配列とすることができる。
【0039】
(K)前記低屈折率領域は、前記スラブ層に形成された溝および貫通孔の少なくとも一方とすることができる。
【0040】
(L)また、本発明に係る発光装置は、上記いずれかの発光装置を含む光通信用装置や光通信システムに適用することができる。
【0041】
【発明の実施の形態】
以下、本発明に好適な実施の形態について図面を参照しながら説明する。
【0042】
[第1の実施形態]
まず、本発明の第1の実施形態に係る発光装置1000の構造について説明する。図1(A)は、本発明の第1の実施形態に係る発光装置1000を模式的に示す断面図である。
【0043】
本実施形態に係る発光装置1000は、基板10上にクラッド層21を介してスラブ層30が配置され、このスラブ層30の上にクラッド層22を介して陽極40、発光層50、陰極60が順次積層されて構成される。
【0044】
基板10は、例えば、ガラス基板、合成樹脂基板、半導体基板など公知の基板材料の中から好適なものを選択して用いることができる。
【0045】
クラッド層21、22は、スラブ層30の材料よりも低屈折率の材料で形成され、スラブ層30の面に垂直な方向において光を該スラブ層30内に閉じ込める機能を有する。このようなクラッド層21、22の材料は、スラブ層30の材料の屈折率との関係で決定され、例えば、In、Ga、Al、Sb、As、Ge、Si、P、N、およびOのいずれか一種またはこれらの任意の組合せによる無機材料、具体的にはSiO、SiN、SiO、AlGaAs、AlGaAsSb、InGaP、InPなどが挙げられる。また、上記の他に例えば、空気等の気体や、例えば、ポリメチルメタクリレート(PMMA)、エポキシ樹脂、フェノール樹脂、ジアリルフタレート、フェニルメタクリレート、フッ素系ポリマー等の有機材料などをクラッド層21、22の材料としてもよい。また、クラッド層21、22は、例えば、スピンコート法などを用いて形成することができる。
【0046】
なお、クラッド層21、22は、スラブ層30の上下に配置される層との関係において適宜設ければよく、本実施形態に係る発光装置1000として必須の構成要素ではない。すなわち、図1(A)に示すような発光装置1000の場合、基板10および陽極40の屈折率がスラブ層30の屈折率よりも低い場合にはクラッド層21、22はいずれも設ける必要はない。また、基板10および陽極40のいずれかの屈折率がスラブ層30の屈折率より高くなる場合には、スラブ層30と当該スラブ層30より屈折率が高い層との間にクラッド層21、22のいずれかを設ければよい。
【0047】
スラブ層30は、図1(B)に示すように、2次元フォトニック結晶構造を有するスラブ型導波路が形成されている。ここで、2次元フォトニック結晶構造とは、屈折率を変化させた領域(以下、低屈折率領域という。)300を周期的に配列することにより2次元平面内においてフォトニックバンドギャップを有する構造である。この低屈折領域300は、スラブ層30に貫通孔又は溝を形成し、かかる貫通孔又は溝の中にスラブ層30よりも屈折率の低い例えば、空気などの媒質が充填されて構成される。なお、クラッド層21、22を設ける場合は、クラッド層21、22の材料が上記貫通孔または溝に充填される場合もある。後述する点状欠陥101、102においても同様である。
【0048】
ここで、2次元フォトニック結晶構造では、面内方向の光は、上記したフォトニックバンドギャップによって伝搬が禁制される。そして、スラブ層30では、この2次元フォトニック結晶構造中の低屈折率領域300の周期的な配列において一部を線状に抜き取ったような構造の線状欠陥200を導入することによって、この線状欠陥200内においてのみ光が伝搬されるスラブ型導波路として機能する。なお、スラブ層30の線状欠陥200を通過する光は、上記したようにスラブ層30とクラッド層21、22との屈折率差によってスラブ層30の面に垂直な方向においても線状欠陥200内に閉じ込められる。
【0049】
また、スラブ層30において、低屈折率領域300の周期的な配列は、図2に示すように、線状欠陥200の一方の端部側を低屈折率領域300周期的な配列によって閉じられた構造とすることができる。かかる構造によれば、線状欠陥200の双方の端部から等方的に光が出射されることにより生ずる損失を低減しつつ光を一方の端部側から出射することができる。また、このような構成により、スラブ層30における光の出射方向を制御することができる。
【0050】
なお、スラブ層30において、低屈折率領域300の平面形状は、図1(B)に示すような円形のものに限られず、四角形、六角形等の多角形状であってもよい。
【0051】
また、かかる発光装置1000のスラブ層30において、低屈折率領域300の配列は、例えば、図3(A)又は図3(B)に示すように、三角格子状又は正方格子状の配列を採用することができる。
【0052】
また、スラブ層30においては、図1(B)に示すように、低屈折率領域300の周期的配列内に、低屈折率領域300と異なる形状を有する複数種類の形状の点状欠陥101、102が形成され、発光層50で発生する光をスラブ層30内に取り入れることができる。すなわち、線状欠陥200を伝搬する光は、この点状欠陥101、102によって捕獲されて線状欠陥200内に導入されたものである。
【0053】
この点状欠陥101、102は、上記低屈折率領域300に対して例えば、大きさや平面形状などが異なるものとして形成することにより、かかる形状に対応した特定の波長の光を捕獲して光の導入口として機能する。例えば、図1(B)に示すように、低屈折率領域300の平面形状を円形とした場合には、点状欠陥101と点状欠陥102とは半径(または直径)の異なる平面形状で形成されている。すなわち、本実施形態に係る発光装置1000においては、かかる構成を採用することにより、種々の形状の点状欠陥をスラブ層30に形成することによって各形状に対応した少なくとも2以上の異なる波長の光をスラブ層30から出射させることができる。
【0054】
また、スラブ層30には、図1(B)に示すように、同じ波長の光を捕獲して線状欠陥200に光を導入する点状欠陥101、102をそれぞれ複数個設けることができる。これによって、より多くの光をスラブ層30内に取り込むことができるため、発光装置1000の外部発光効率(光の取り出し効率)を向上させることができる。
【0055】
また、スラブ層30では、点状欠陥101、102内に異なる屈折率の材料を充填することによって異なる光の波長を捕獲可能に形成することができる。ここで、点状欠陥101、102において捕獲される光の波長は、上記したように点状欠陥101、102の大きさや平面形状によって変化する。そこで、点状欠陥101、102に充填する材料の屈折率が異なるものであれば、点状欠陥101、102の実効的な形状を変化させて、異なる波長の光を捕獲させることができる。かかる場合においては、点状欠陥101、102内に充填する材料を例えば、温度により屈折率が変化しやすい材料とすれば、発光装置1000を温調装置を用いて温度制御することによって、かかる温度制御に応じて点状欠陥101、102で捕獲される波長を発光装置1000の使用時において変化させることもできる。なお、本実施形態に係る発光装置1000では、スラブ層30における点状欠陥101、102の形状の変更と充填材料の変更とを組み合わせて所望の波長を捕獲する点状欠陥101、102を形成することができる。
【0056】
また、かかる点状欠陥101、102の形状は、例えば、図4(A)に示すように、柱状構造とすることができる。そして、点状欠陥101、102は、例えば、図4(A)に示すような上下対称の柱状構造とした場合、捕獲された光の一部がスラブ層30の外部に漏れることもある。そこで、図4(B)〜図4(E)に示すように上下非対称の形状として大きく開いた側を発光層50側となるように点状欠陥101、102を形成すれば、開口部の小さいほうからは光が外部に漏れにくくなり、光の損失を低減させることも可能である。
【0057】
なお、点状欠陥101、102の形状を例えば、図4(A)に示すような上下対称の柱状構造とした場合であっても、発光層50に面する側と反対側の開口部に光反射部材を設けて(図示省略)、反射によって光が所望の方向以外へ漏れるのを防止することができる。従って、このような構成によっても、点状欠陥101、102において捕獲した光の損失を低減することができる。
【0058】
ここで、スラブ層30において点状欠陥101、102は、少なくとも発光層50から発生する光を捕獲可能な位置に配置される。具体的には、例えば、図1(B)及び図1(C)に示すように、発光層50および陰極60の面積がスラブ層30の面積よりも小さい場合には、図1(B)に示すように陽極40、発光層50および陰極60が重なる範囲に対応するスラブ層30の領域(図1(B)の破線の内側)に点状欠陥100を設けることができる。
【0059】
また、スラブ層30の材料としては、例えば、In、Ga、Al、Sb、As、Ge、Si、P、N、およびOのいずれか一種またはこれらの任意の組合せによる無機材料でクラッド層21、22よりも屈折率の高いものを用いることができる。具体的には、Si、SiOにGe等を含む不純物を添加したもの、AlAs、GaAs、InGaAs、GaAsSb、InGaAsPなどが例示できる。また、スラブ層30の材料としては、例えば、ポリメチルメタクリレート(PMMA)、エポキシ樹脂、フェノール樹脂、ジアリルフタレート、フェニルメタクリレート、フッ素系ポリマー等の有機材料でクラッド層21、22の材料よりも屈折率の高いものを用いることができる。
【0060】
そして、かかるスラブ層30は、例えば、スピンコート法で成膜した後に、低屈折領域300および点状欠陥101、102を公知のフォトリソグラフィー技術、電子線描画法などを用いてパターニングすることにより形成することができる。
【0061】
また、かかるスラブ層30は、単独で個別に形成することもできる。具体的には、図5(A)に示すように、例えば、Siの単結晶ウェハ500を準備する。そして、図5(B)に示すように、ウェハ500の所定の領域400にEB(Electron Beam)を用いる電子線描画法や、RIE(Reactive Ion Etching)等を用いたフォトリソグラフィー技術によって低屈折率領域300、点状欠陥101、102のパターニングを行う。このとき、スラブ層30の形状に合わせてスラブ層30となる領域の周囲についても例えば、図5(B)に示すように、分離用パターン410を形成しておくことができる。なお、スラブ層30となる領域の周囲に分離用パターン410を形成する場合には、スラブ層30をパターニング中にウェハ500から分離しないように支持する支持領域420を残しておくことが望ましい。
【0062】
次に、パターニングされたウェハ500からスラブ層30を支持領域420において(図中の破線部分)、例えば、劈開等をすることにより分離してスラブ層30を取り出す。なお、スラブ層30は、上記したようにスラブ層30となる領域の周囲に分離用パターン410を形成しない場合には、ウェハ500を公知の手法を用いてダイシングすることによりスラブ層30を切り出すこともできる。
【0063】
このように、スラブ層30を個別に形成する場合には、クラッド層21、22を例えば、熱硬化性樹脂や紫外線硬化性樹脂など接着力の有する材料から形成して積層することにより、スラブ層30と他の層とを固定することができる。
【0064】
なお、スラブ層30を単独で個別に形成する方法は、上記したような例えば、単結晶Siウェハなどの半導体基板を用いる場合に限らず、合成樹脂基板やガラス基板などを用いてもよい。
【0065】
陽極40は、発光層50にホールを注入するための電極として機能し、仕事関数の大きい(例えば、4eV以上)金属、合金、電気伝導性化合物またはこれらの混合物を用いて例えば、スパッタ法により形成することができる。また、陽極40は、少なくとも発光層50で発生する光を透過可能な透明電極で形成される。このように、陽極40として光学的に透明な材料を用いる場合には、CuI、ITO、SnO、ZnOなどの導電性透明材料を用いることができる。
【0066】
陰極60は、発光層50に電子を注入するための電極として機能し、仕事関数の小さい(例えば、4eV以下)電子注入性電極、合金電気導電性化合物およびこれらの混合物を用いて例えば、スパッタ法により形成することができる。
【0067】
発光層50は、上記陽極40および陰極60からなる一対の電極対の間に配置され、エレクトロルミネッセンスにより光を発生する。そして、発光層50は、蒸着法、CVD法、インクジェット法、スピンコート法、LB法などの公知の成膜方法の中から選択した材料に好適な手法を用いて形成することができる。また、発光層50の材料は、所定の波長帯の光を得るために公知の化合物から選択される。発光層50の材料としては、有機化合物および無機化合物のいずれでもよいが、種類の豊富さや成膜性の点から有機化合物であることが望ましい。
【0068】
このような有機化合物としては、例えば、アロマティックジアミン誘導体(TPD)、オキシジアゾール誘導体(PBD)、オキシジアゾールダイマー(OXD−8)、ジスチルアリーレン誘導体(DSA)、ベリリウム−ベンゾキノリノール錯体(Bebq)、トリフェニルアミン誘導体(MTDATA)、ルブレン、キナクリドン、トリアゾール誘導体、ポリフェニレン、ポリアルキルフルオレン、ポリアルキルチオフェン、アゾメチン亜鉛錯体、ポリフィリン亜鉛錯体、ベンゾオキサゾール亜鉛錯体、フェナントロリンユウロピウム錯体など公知のものが使用できる。これらの化合物は単独で用いてもよく、2種類以上を混合して用いてもよい。また、無機化合物としては、ZnS:Mn(赤色領域)、ZnS:TbOF(緑色領域)、SrS:Cu、SrS:Ce(青色領域)などが例示される。
【0069】
なお、発光層50と陽極40との間には、必要に応じて、陽極40から発光層50にホールを効率よく注入するために、ホール輸送/注入層(図示省略)を設けることもできる。また、発光層50と陰極60との間には、必要に応じて陰極60から発光層50に効率よく電子を注入するために、電子輸送/注入層(図示省略)を設けることもできる。
【0070】
次に、本実施形態に係る発光装置1000の機能について説明する。
【0071】
かかる発光装置1000は、陽極40と陰極60とから発光層50に対して注入されたホールと電子が、当該発光層50内で結合して励起子が生成され、この励起子が失活する際にルミネッセンス光を発生する。このルミネッセンス光は、例えば、波長λ1〜λnの範囲の波長帯を含んでおり、図6(A)に示すような広がりをもった発光スペクトルを有する。そして、発光層50から発生した波長λ1〜λnの光は、透明電極である陽極40を通過し、スラブ層30の点状欠陥101、102によって捕獲され、スラブ層30の線状欠陥200に導入される。このとき、点状欠陥101、102は、形状が異なり、この形状に対応した波長を捕獲するものである。よって、点状欠陥101では、図1(A)に示すように、波長λ1の光が捕獲されて線状欠陥200に導入され、点状欠陥102では、同じく図1(A)に示すように、波長λ2の光が捕獲されて線状欠陥200に導入される。
【0072】
このようにして、スラブ層30内に形成された線状欠陥200では、点状欠陥101、102から導入された波長λ1、λ2の光が合波されて、例えば、図6(B)に示すような波長λ1、λ2において急峻なスペクトルを有する光がスラブ層30の端面から出射される。
【0073】
したがって、本実施形態に係る発光装置1000によれば、複数の特定の波長λ1、λ2において急峻なスペクトルを有する光を点状欠陥101、102によって取り出すことができ、優れた波長選択性を有する光を出射させることができる。また、かかる発光装置1000によれば、各点状欠陥101、102から線状欠陥200内に光が導入される際に、光を合波して外部に出射させることができるため、例えば、多重化した光信号を送信することができる新規な発光装置を実現することができる。
【0074】
また、本実施形態に係る発光装置1000によれば、光の出射をスラブ層30の端面から行うため、光ビームの放射範囲が大きい面発光型の発光素子においても、伝送路となる光ファイバとの結合性を向上させることができる。
【0075】
なお、本実施形態における発光装置1000では、スラブ層30に導入される光の波長λ1、λ2は、発光層50の材料によって決定される発光波長帯から任意の波長を選択することができ、さらに、3つ以上の種類の波長の光をスラブ層30に導入して出射させることができる。
【0076】
(変形例1)
図7(A)及び図7(B)は、本発明の第1の実施形態の変形例1に係る発光装置1100を模式的に示す図である。図7(A)は、発光装置1100の断面図を模式的に示した図であり、図7(B)は、発光装置1100の平面図を模式的に示した図である。なお、図1に示すものと実質的に同一の機能を有する部材には同一の符号を付し、詳細な説明を省略する。また、本変形例に係る発光装置1100の各層の成膜方法および加工方法については、上記した第1の実施形態に係る発光装置1000と同様の方法を用いることができる。
【0077】
本変形例に係る発光装置1100では、基本的構成が第1の実施形態に係る発光装置1000と同様であるが、陽極40の上に発光層51、52が分割して配置され、各発光層51、52の上に陰極61、62が個別に形成されている点が異なる。また、発光層51、52の間には絶縁層70が配置され、発光層51、52間は、電気的に絶縁されている。
【0078】
また、本変形例に係る発光装置1100は、発光層51、52及び陰極61、62がスラブ層30の点状欠陥101、102に対応して設けられている。図7(A)に示すように、波長λ1の光を捕獲する点状欠陥101に対して発光層51及び陰極61が点状欠陥101の上部に配置され、波長λ2の光を捕獲する点状欠陥102に対して発光層52及び陰極62が点状欠陥102の上部に配置されている。
【0079】
かかる発光装置1100では、陰極61、62に同様に電圧が加えると発光層51、52の双方が発光するため、スラブ層30からは波長λ1、λ2を含む光が出射される。一方、陰極61、62のいずれか一方のみに電圧を加えると、例えば、陰極61のみに電圧を加えた場合、発光層51のみが発光し、発光層52は発光しない。すると、スラブ層30からは、点状欠陥101によって捕獲された波長λ1の光だけが出射される。
【0080】
このように、本変形例に係る発光装置1100では、点状欠陥で捕獲される波長の種類に対応して複数の発光層51、52及び複数の陰極61、62が配置された構成を採用するため、上記第1の実施形態に係る発光装置1000と同様の作用効果を奏することができることに加え、発光層51、52を選択的に駆動して出射光に含まれる波長を任意に制御することができる。
【0081】
(変形例2)
図8(A)及び図8(B)は、本発明の第1の実施形態の変形例2に係る発光装置1200を模式的に示す図である。図8(A)は、発光装置1200の断面図を模式的に示した図であり、図8(B)は、発光装置1200の平面図を模式的に示した図である。なお、図1に示すものと実質的に同一の機能を有する部材には同一の符号を付し、詳細な説明を省略する。また、本変形例に係る発光装置1200の各層の成膜方法および加工方法については、上記した第1の実施形態に係る発光装置1000と同様の方法を用いることができる。
【0082】
この変形例2に係る発光装置1200は、図8(A)及び図8(B)に示すように、基板10上に陰極60、発光層50、陽極40が順次積層され、透明電極である陽極40の上にクラッド層21を介してスラブ層30が配置されている。また、スラブ層30は、クラッド層21、22の間に配置されている。すなわち、本変形例に係る発光装置1200は、上記第1の実施形態に係る発光装置1000に対して各層の積層状態における配置関係を変更したものであり、同様の機能を有する。従って、本変形例に係る発光装置1200によれば、上記第1の実施形態に係る発光装置1000と同様の作用効果を奏することができる。
【0083】
(変形例3)
図9(A)は、本発明の第1の実施形態の変形例3に係る発光装置1210を模式的に示す断面図である。なお、図1に示すものと実質的に同一の機能を有する部材には同一の符号を付し、詳細な説明を省略する。また、本変形例に係る発光装置1210の各層の成膜方法および加工方法については、上記した第1の実施形態に係る発光装置1000と同様の方法を用いることができる。
【0084】
本変形例に係る発光装置1210は、基本的構成が上記変形例2に係る発光装置1200と同様であるが、陰極60が光を反射する機能を有するとともに、クラッド層22の上に光反射膜80を配置した構成を採用する。
【0085】
光反射機能を有する陰極60及び光反射膜80は、例えば、Al、Auなどの金属または合金から形成することができファブリーペロー型の光共振器を構成する。従って、発光層50で発生した光は、陰極60と光反射膜80との間で反射を繰り返すことにより発振した光となって、図9(B)の実線で示すような所定の波長において急峻なスペクトルを有する光となる。
【0086】
本変形例に係る発光装置1210では、この光共振器から得られる光の中でピークを有する波長λ1、λ2を点状欠陥101、102により捕獲してスラブ層30内に導入し、この波長λ1、λ2を含む光を出射する。
【0087】
このように、本変形例に係る発光装置1210によれば、スラブ層30への光の導入段階において所望の波長λ1、λ2と近接する波長帯の光を抑制することによって所望の波長λ1、λ2におけるS/N(シグナル/ノイズ)比を向上させ、より発光スペクトルの急峻な光を外部に出射させることができる。
【0088】
(変形例4)
図10は、本発明の第1の実施形態の変形例4に係る発光装置1300を模式的に示す断面図である。図1に示すものと実質的に同一の機能を有する部材には同一の符号を付し、詳細な説明を省略する。また、本変形例に係る発光装置1300の各層の成膜方法および加工方法については、上記した第1の実施形態に係る発光装置1000と同様の方法を用いることができる。
【0089】
本変形例に係る発光装置1300は、基板10上に陽極40、発光層50、および陰極60が順次積層された構成を有し、かつ基板10は発光層50で発生する光を透過可能な材料、例えば、ガラスなどから形成されている。また、基板10の発光層50が配置される側と反対側の面にはクラッド層21を介してスラブ層30が配置されている。また、スラブ層30は、クラッド層21、22の間に配置されている。すなわち、本変形例に係る発光装置1300は、上記第1の実施形態に係る発光装置1000に対して各層の積層状態における配置関係を変更したものであり、同様の機能を有する。従って、本変形例に係る発光装置1200によれば、上記第1の実施形態に係る発光装置1000と同様の作用効果を奏することができる。
【0090】
[第2の実施形態]
図11(A)及び図11(B)は、本発明の第2の実施形態に係る発光装置2000を模式的に示す断面図である。なお、図11(B)に示す断面図は、発光装置2000を光の出射端面側から見たものである。また、第1の実施形態において説明したものと実質的に同一の機能を有する部材には同一の符号を付し、詳細な説明を省略する。また、本実施形態に係る発光装置2000の各層の成膜方法および加工方法については、第1の実施形態に係る発光装置1000と同様の方法を用いることができる。
【0091】
本実施形態に係る発光装置2000は、図11(A)に示すように、基板10の上に複数のスラブ層31、32が配置されるとともに、さらにその上に陽極40、発光層50及び陰極60が順次積層されて配置されている。また、スラブ層31は、クラッド層21、22の間に配置され、スラブ層32は、クラッド層22、23の間に配置されている。なお、発光層50と陽極40との間、及び発光層50と陰極60との間には、発光層50に効率よくホール、電子を注入するために、必要に応じてホール輸送/注入層、電子輸送/注入層(いずれも図示省略)を設けることができる。
【0092】
ここで、スラブ層31は、図12(A)に示すように、低屈折率領域300の周期的な配列により構成される2次元フォトニック結晶内の線状欠陥201の近傍に波長λ1の光を捕獲する点状欠陥101が配置され、線状欠陥201から離隔された位置に波長λ2の光を捕獲する点状欠陥102が配置されている。
【0093】
また、スラブ層32は、図12(B)に示すように、低屈折率領域300の周期的な配列により構成される2次元フォトニック結晶内の線状欠陥202の近傍に波長λ2を捕獲する点状欠陥103が配置されている。この点状欠陥103は、スラブ層31の点状欠陥102から放出される光を捕獲するので、スラブ層31とスラブ層32とを積層した状態で点状欠陥102と対向するように配置される。
【0094】
これらのスラブ層31、32を基板10上に積層すると、図11(B)に示すように、線状欠陥201、202は、基板10に垂直な方向に対して重ならない位置に配置される。複数の導波路は、近接して配置されると一方の導波路から他方の導波路へ光が結合し、干渉を生じる性質を有する。このため、導波路として機能する線状欠陥201、202が異なるスラブ層31、32に存在する本発光装置2000では、線状欠陥201、202を重ならない位置に配置されるように形成することで、線状欠陥201、202間の干渉を生じさせることなくスラブ層31、32間の距離を縮めることができ、装置の小型化を図ることができる。また、線状欠陥201、202とが直交するように配置することも可能となる。
【0095】
ここで、点状欠陥と線状欠陥との関係における光の結合効率は、点状欠陥と線状欠陥との距離によって決定される。つまり、点状欠陥の位置が線状欠陥から離れれば離れるほど、点状欠陥で捕獲された光が線状欠陥に導入されにくくなる。
【0096】
そこで、本実施形態に係る発光装置2000では、図11(B)に示すように、スラブ層31において、波長λ1の光を捕獲する点状欠陥101を線状欠陥201の近傍に配置し、波長λ2の光を捕獲する点状欠陥102を線状欠陥201から十分に離れた位置に配置することにより、発光層50から発生した光がスラブ層31において点状欠陥101、102で捕獲された際に、波長λ1の光は、線状欠陥201に導入されるが、波長λ2の光は、線状欠陥201には導入されずに点状欠陥102からスラブ層32へ放出される。そして、波長λ2の光は、スラブ層32の点状欠陥103から線状欠陥202に導入されることになる。すると、本実施形態に係る発光装置2000では、発光層50で発生した波長λ1〜λnの光について、波長λ1の光がスラブ層31の端面から出射され、波長λ2の光がスラブ層32の端面から出射される。なお、かかる波長λ1、λ2の出射光は、第1の実施形態でも説明したように、急峻なスペクトルを有する。
【0097】
このように、本実施形態に係る発光装置2000によれば、発光層50で発生する波長λ1〜λnを含む光の中から任意の波長の光を点状欠陥101、102で捕獲して波長選択性の優れた光を出射することができる。また、かかる発光装置2000によれば、発光層50で発生する波長λ1〜λnを含む光を任意の特定波長λ1、λ2の光に分波して複数のスラブ層31、32から出射させることができ、適用性が広い。なお、本実施形態においても、第1の実施形態で説明した各変形例を適用することができる。
【0098】
また、本実施例では、波長λ2を捕獲するための点状欠陥をスラブ層32に設けられた点状欠陥103のみとし、スラブ層31には波長λ2を捕獲するための点状欠陥を設けなくてもよい。
【0099】
[第3の実施形態]
図13(A)は、本発明の第3の実施形態に係る発光装置2100を模式的に示す断面図である。なお、第1の実施形態において説明したものと実質的に同一の機能を有する部材には同一の符号を付し、詳細な説明を省略する。また、本実施形態に係る発光装置2100の各層の成膜方法および加工方法については、第1の実施形態に係る発光装置1000と同様の方法を用いることができる。
【0100】
本実施形態に係る発光装置2100は、基本的構成を第2の実施形態に係る発光装置2000と同様とし、基板10上に複数のスラブ層31、32が配置され、さらにその上に陽極40、発光層50、及び陰極60が順次積層されて配置された構成を有する。
【0101】
しかし、本実施形態に係る発光装置2100では、図13(B)及び図1(C)に示すように、スラブ層31、32の構成が第2の実施形態に係る発光装置2000と異なる。
【0102】
まず、スラブ層31は、図13(B)に示すように、波長λ1の光を捕獲する点状欠陥101、波長λ2の光を捕獲する点状欠陥102、103が、いずれも線状欠陥201の近傍に配置されている。ここで、点状欠陥101、102は、発光層50で発生した光を取り込むために用いられ、点状欠陥103は、スラブ層31から光を放出してスラブ層32へ送り込むために用いられる。
【0103】
また、スラブ層31における点状欠陥103は、発光層50からの光が取り込まれないように、点状欠陥103の発光層50に面している側に例えば、光反射機能や光吸収機能などを有する光遮断膜(図示省略)を設けることが好ましい。これは、低屈折率領域300の周期的な配列内に形成された点状欠陥は、線状欠陥の近傍に配置された場合、第1及び第2の実施形態で説明したように、外部から特定の波長の光を捕獲して線状欠陥に導入する機能を有するほかに、線状欠陥を通過する光のうち特定の波長の光を捕獲して外部に放出する機能も有するからである。より具体的には、スラブ層31においては、図13(A)に示すように、点状欠陥101、102を光の取り込み口として波長λ1、λ2の光がいったん線状欠陥201に導入された後に、点状欠陥103において線状欠陥201から波長λ2の光だけを取り出すためである。
【0104】
一方、スラブ層32は、図13(C)に示すように、波長λ2の光を捕獲する点状欠陥104が線状欠陥202の近傍に配置されている。また、点状欠陥104は、スラブ層31において波長λ2の光を放出する点状欠陥103と対向する位置に配置されている。
【0105】
したがって、本実施形態に係る発光装置2100では、図13(A)に示すように、発光層50から波長λ1〜λnを含む光が発生すると、波長λ1の光が点状欠陥101によって捕獲され、波長λ2の光が点状欠陥102によって捕獲されて、いずれも線状欠陥201に導入される。そして、線状欠陥201からは波長λ2の光が点状欠陥103によって捕獲され、スラブ層32に向けて放出される。スラブ層32では、点状欠陥103から放出された光が点状欠陥104により捕獲されて線状欠陥202に導入される。最終的に、スラブ層31からは波長λ1の光が端面から出射され、スラブ層32からは波長λ2の光が端面から出射される。
【0106】
以上に述べたように、本実施形態に係る発光装置2100においても、発光層50で発生する波長λ1〜λnを含む光の中から任意の波長の光を点状欠陥101、102で捕獲して波長選択性の優れた光を出射することができる。また、かかる発光装置2100によれば、発光層50で発生する波長λ1〜λnを含む光を任意の特定波長λ1、λ2の光に分波して複数のスラブ層31、32から出射させることができ、適用性が広い。なお、本実施形態においても、第1の実施形態で説明した各変形例を適用することができる。
【0107】
[第4の実施形態]
上記第1の実施形態ならびに各変形例、第2の実施形態、及び第3の実施形態に係る各発光装置は、例えば、OLT(Optical Line Terminal)やONU(Optical Network Unit)など(図示省略)の光通信システムに用いられる種々の光通信用装置の送信用光源に適用することができる。
【0108】
また、かかる各発光装置は、図10に示すような、光通信システム4000に適用することができる。かかる光通信システム4000は、複数波長の光信号を多重化して伝送する波長多重化方式(WDM:Wavelength Division Multiplexing)を用いた光通信システムであり、例えば、基地局610、中継局620、および加入者端末630〜650を含んで構成される。基地局610、中継局620、および加入者端末630〜650は、光ファイバにより接続されている。
【0109】
基地局610では、複数の波長(λ1、λ2、λ3、・・・)を含む光信号を送受信することができる。中継局620では、基地局620から送られた光信号を分波して各加入者端末630〜650へ送信することができる。また、中継局620では、加入者端末630〜650から受信した光信号を合波して基地局610に送信することもできる。また、各加入者端末630〜650では、それぞれに割り当てられた波長帯の光信号を送受信することができるように構成されている。具体的には、加入者端末630では、波長λ1の光信号が送受信され、加入者端末640では、波長λ2の光信号が送受信され、加入者端末650では、波長λ3の光信号が送受信されることによりデータ通信が行われる。
【0110】
ここで、上記各発光装置は、基地局610内、中継局620内および加入者端末内に設置される光通信用装置(図示省略)内で用いられ、光信号のデータ送信を行う。
【0111】
このように、かかる光通信システム4000によれば、基地局610から加入者端末630〜650に至る通信経路を光ファイバで統一したいわゆる全光アクセス方式(FTTH:Fiber To The Home)の比較的大規模な通信システムから光LANなどの比較的小規模な通信システムまで種々の通信システムを構築することができる。
【0112】
なお、本発明に好適な実施の形態は、上述したものに限られず、本発明の要旨範囲内で各種態様を取り得る。
【図面の簡単な説明】
【図1】図1(A)は、本発明の第1の実施形態に係る発光装置を模式的に示す断面図である。図1(B)は、本発明の第1の実施形態に係る発光装置のスラブ層を説明するための図である。図1(C)は、本発明の第1の実施形態に係る発光装置を模式的に示す平面図である。
【図2】図2は、本発明の第1の実施形態に係る発光装置のスラブ層を説明するための図である。
【図3】図3(A)及び図3(B)は、本発明の第1の実施形態に係る発光装置のスラブ層における低屈折領域の周期的配列を説明するための図である。
【図4】図4(A)〜図4(E)は、本発明の第1の実施形態に係る発光装置のスラブ層における点状欠陥の断面形状を説明するための図である。
【図5】図5(A)及び図5(B)は、本発明の第1の実施形態に係る発光装置のスラブ層の形成方法を説明するための図である。
【図6】図6(A)は、本発明の第1の実施形態に係る発光装置における発光層で発生する光を説明するための図である。図6(B)は、本発明の第1の実施形態に係る発光装置の出射光を説明するための図である。
【図7】図7(A)は、本発明の第1の実施形態の変形例1に係る発光装置を模式的に示す断面図である。図7(B)は、本発明の第1の実施形態の変形例1に係る発光装置を模式的に示す平面図である。
【図8】図8(A)は、本発明の第1の実施形態の変形例2に係る発光装置を模式的に示す断面図である。図8(B)は、本発明の第1の実施形態に係る変形例2に係る発光装置を模式的に示す平面図である。
【図9】図9(A)は、本発明の第1の実施形態の変形例3に係る発光装置を模式的に示す断面図である。図9(B)は、本発明の第1の実施形態に係る変形例3に係る発光装置における陰極と光反射膜との間を往復する光を説明するための図である。
【図10】図10は、本発明の第1の実施形態の変形例4に係る発光装置を模式的に示す断面図である。
【図11】図11(A)及び図11(B)は、本発明の第2の実施形態に係る発光装置を模式的に示す断面図である。
【図12】図12(A)及び図12(B)は、本発明の第2の実施形態に係る発光装置におけるスラブ層を説明するための図である。
【図13】図13(A)は、本発明の第3の実施形態に係る発光装置を模式的に示す断面図である。図13(B)及び図13(C)は、本発明の第3の実施形態に係る発光装置におけるスラブ層を説明するための図である。
【図14】図14は、本発明の第4の実施形態に係る光通信システムを模式的に示す図である。
【符号の説明】
10 基板
21、22、23 クラッド層
30、31、32 スラブ層
40 陽極
50、51、52 発光層
60、61、62 陰極
70 絶縁層
80 光反射膜
101、102、103、104 点状欠陥
200、201、202 線状欠陥
300 低屈折率領域
1000、1100、1200、1210、1300、2000、2100 発光装置
4000 光通信システム

Claims (17)

  1. 基板と、
    前記基板上に配置され、少なくとも一方の電極が光を透過する透明電極である陰極及び陽極と、
    前記陰極と前記陽極との間に配置され、エレクトロルミネッセンスにより光を発生する発光層と、
    前記発光層に対して前記透明電極側に配置されるスラブ層と、を含み、
    前記スラブ層は、
    低屈折率領域が周期的に配列された2次元フォトニック結晶構造を有し、
    前記2次元フォトニック結晶内に形成され、導波路として機能する線状欠陥と、
    前記2次元フォトニック結晶内に形成され、特定の波長の光を捕獲して前記線状欠陥へ導入する複数の点状欠陥と、を含み、
    複数の前記点状欠陥は、2以上の異なる波長に対応するものを含むとともに、前記発光層から前記基板と交叉する方向に発生する光を捕獲可能な位置に配置される、発光装置。
  2. 基板と、
    前記基板上に配置され、少なくとも一方の電極が光を透過する透明電極である陰極及び陽極と、
    前記陰極と前記陽極との間に配置され、エレクトロルミネッセンスにより光を発生する発光層と、
    前記発光層に対して前記透明電極側に配置される複数のスラブ層と、を含み、
    複数の前記スラブ層は、
    低屈折率領域が周期的に配列された2次元フォトニック結晶構造を有し、
    前記2次元フォトニック結晶内に形成され、導波路として機能する線状欠陥と、
    前記2次元フォトニック結晶内に形成され、特定の波長の光を捕獲して前記線状欠陥へ導入する少なくとも一つの点状欠陥と、を含み、
    前記点状欠陥は、前記発光層から前記基板と交叉する方向に発生する光を捕獲可能な位置に配置され、
    複数の前記スラブ層からは、それぞれ異なる波長の光が出射される、発光装置。
  3. 請求項2において、
    前記点状欠陥は、前記線状欠陥から特定の波長の光を捕獲して放出する機能を有する、発光装置。
  4. 請求項2または3において、
    前記線状欠陥は、該線状欠陥を含む前記スラブ層に対して少なくとも上下いずれか一方に配置される他の前記スラブ層の前記線状欠陥と重ならない位置に配置される、発光装置。
  5. 請求項1〜4のいずれかにおいて、
    前記陰極及び前記陽極の少なくとも一方の電極と前記発光層とは、複数の前記点状欠陥において捕獲される波長の種類に対応して複数配置される、発光装置。
  6. 請求項1〜5のいずれかにおいて、
    前記スラブ層に同じ波長の光を捕獲する点状欠陥が複数配置された、発光装置。
  7. 請求項1〜6のいずれかにおいて、
    前記陰極及び前記陽極の一方の電極は、光を反射する機能を有し、
    前記光を反射する機能を有する電極と、少なくとも前記発光層及び前記スラブ層を介して対向する位置に光反射膜が配置された、発光装置。
  8. 請求項1〜7にいずれかにおいて、
    前記透明電極は、前記発光層に対して前記基板側に配置され、
    前記基板は、光を透過する機能を有し、
    前記スラブ層は、前記基板に対して前記発光層が配置される側と反対側に配置される、発光装置。
  9. 請求項1〜8のいずれかにおいて、
    前記点状欠陥は、形状によって捕獲される光の波長が異なる、発光装置。
  10. 請求項1〜9のいずれかにおいて、
    前記点状欠陥は、上下非対称の柱状構造である、発光装置。
  11. 請求項1〜10のいずれかにおいて、
    前記点状欠陥の前記スラブ層の面に対して一方の側に、光を反射する反射部材が配置される、発光装置。
  12. 請求項1〜11のいずれかにおいて、
    前記スラブ層の上及び下の少なくとも一方に、該スラブ層の材料より屈折率が低いクラッド層が存在する、発光装置。
  13. 請求項1〜12のいずれかにおいて、
    前記線状欠陥の一方の端部が前記低屈折率領域の周期的配列によって閉じられた、発光装置。
  14. 請求項1〜13のいずれかにおいて、
    前記周期的配列は、三角格子状または正方格子状の配列である、発光装置。
  15. 請求項1〜14のいずれかにおいて、
    前記低屈折率領域は、前記スラブ層に形成された溝および貫通孔の少なくとも一方である、発光装置。
  16. 請求項1〜15のいずれかに記載された発光装置を含む光通信用装置。
  17. 請求項1〜15のいずれかに記載された発光装置を含む光通信システム。
JP2002181360A 2002-06-21 2002-06-21 発光装置、光通信用装置及び光通信システム Withdrawn JP2004030964A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181360A JP2004030964A (ja) 2002-06-21 2002-06-21 発光装置、光通信用装置及び光通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181360A JP2004030964A (ja) 2002-06-21 2002-06-21 発光装置、光通信用装置及び光通信システム

Publications (1)

Publication Number Publication Date
JP2004030964A true JP2004030964A (ja) 2004-01-29

Family

ID=31178222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181360A Withdrawn JP2004030964A (ja) 2002-06-21 2002-06-21 発光装置、光通信用装置及び光通信システム

Country Status (1)

Country Link
JP (1) JP2004030964A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119671A (ja) * 2002-09-26 2004-04-15 Mitsubishi Electric Corp 光アクティブデバイス
JP2005064471A (ja) * 2003-07-25 2005-03-10 Mitsubishi Electric Corp 光デバイスとその製造方法および半導体レーザ発振器
KR100638308B1 (ko) 2004-03-03 2006-10-25 가부시키가이샤 히타치 디스프레이즈 발광 소자, 발광형 표시 장치 및 조명 장치
WO2006134218A1 (en) * 2005-06-15 2006-12-21 Braggone Oy Optical device structure
JP2007017951A (ja) * 2005-06-07 2007-01-25 Canon Inc 共振器及びこれを用いた発光素子
WO2008026721A1 (fr) * 2006-08-31 2008-03-06 The Furukawa Electric Co., Ltd. Laser d'émission de surface de résonateur vertical
JP2009094471A (ja) * 2007-10-09 2009-04-30 Seoul Opto Devices Co Ltd ナノパターンを有するレーザーダイオード及びその製造方法
KR101232507B1 (ko) 2006-04-10 2013-02-12 삼성전자주식회사 표면발광소자 및 그의 제조방법
JP2019125735A (ja) * 2018-01-18 2019-07-25 日本電信電話株式会社 ナノワイヤ光デバイス

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119671A (ja) * 2002-09-26 2004-04-15 Mitsubishi Electric Corp 光アクティブデバイス
JP4569942B2 (ja) * 2002-09-26 2010-10-27 三菱電機株式会社 光アクティブデバイス
JP2005064471A (ja) * 2003-07-25 2005-03-10 Mitsubishi Electric Corp 光デバイスとその製造方法および半導体レーザ発振器
KR100638308B1 (ko) 2004-03-03 2006-10-25 가부시키가이샤 히타치 디스프레이즈 발광 소자, 발광형 표시 장치 및 조명 장치
JP2007017951A (ja) * 2005-06-07 2007-01-25 Canon Inc 共振器及びこれを用いた発光素子
WO2006134218A1 (en) * 2005-06-15 2006-12-21 Braggone Oy Optical device structure
US10690847B2 (en) 2005-06-15 2020-06-23 Braggone Oy Method of making a photonic crystal device and photonic crystal device
KR101232507B1 (ko) 2006-04-10 2013-02-12 삼성전자주식회사 표면발광소자 및 그의 제조방법
WO2008026721A1 (fr) * 2006-08-31 2008-03-06 The Furukawa Electric Co., Ltd. Laser d'émission de surface de résonateur vertical
JP2009094471A (ja) * 2007-10-09 2009-04-30 Seoul Opto Devices Co Ltd ナノパターンを有するレーザーダイオード及びその製造方法
JP2019125735A (ja) * 2018-01-18 2019-07-25 日本電信電話株式会社 ナノワイヤ光デバイス

Similar Documents

Publication Publication Date Title
KR101067137B1 (ko) 집적된 변조기 어레이 및 하이브리드 결합된 다중 파장 레이저 어레이를 갖는 송신기-수신기
US7733936B2 (en) Surface emitting laser
US7181120B2 (en) Optical active device
JP4921038B2 (ja) 共振器及びこれを用いた発光素子
US20070097680A1 (en) Light-emitting photonic device
JP2012151157A (ja) 水平共振器垂直出射レーザとその製造方法及び受光素子、並びに水平共振器垂直出射レーザアレイ
JP2002303836A (ja) フォトニック結晶構造を有する光スイッチ
JP2011138156A (ja) フォトニック結晶半導体デバイスおよびその製造方法
JP2009038239A (ja) 光半導体装置
JP2006047663A (ja) 3次元フォトニック結晶およびそれを用いた光学素子
JP2004030964A (ja) 発光装置、光通信用装置及び光通信システム
US6912334B2 (en) Optical switch
JP2003014963A (ja) 半導体光集積素子とその製造方法並びに光通信用モジュール
CN105914581B (zh) 面发光型半导体激光器和面发光型半导体激光器阵列
JP6162401B2 (ja) 光半導体デバイス
JP4906704B2 (ja) 面発光レーザ、及び面発光レーザを備えた発光装置
US6917744B2 (en) Optical multiplexing and demultiplexing device, optical communication apparatus, and optical communication system
JP2004012781A (ja) 発光装置、光通信用装置および光通信システム
JP2008147290A (ja) 量子構造及びそれを含む光増幅器、波長可変レーザ
JP2005274927A (ja) フォトニック結晶デバイス
JP2000182781A (ja) El装置
JP4321970B2 (ja) 半導体光増幅器およびase放射用光源装置および光ゲートアレイおよび波長可変レーザ装置および多波長レーザ装置および光伝送システム
US6937633B2 (en) Multi-wavelength semiconductor lasers
JP2002110362A (ja) 面発光装置
US9057828B2 (en) Multi-port light sources of photonic integrated circuits

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906