WO2008023806A1 - Procédé de correction de sensibilité et dispositif imageur - Google Patents

Procédé de correction de sensibilité et dispositif imageur Download PDF

Info

Publication number
WO2008023806A1
WO2008023806A1 PCT/JP2007/066492 JP2007066492W WO2008023806A1 WO 2008023806 A1 WO2008023806 A1 WO 2008023806A1 JP 2007066492 W JP2007066492 W JP 2007066492W WO 2008023806 A1 WO2008023806 A1 WO 2008023806A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
unit
accumulated
correction
image
Prior art date
Application number
PCT/JP2007/066492
Other languages
English (en)
French (fr)
Inventor
Takatoshi Nakata
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to JP2008530974A priority Critical patent/JP4620780B2/ja
Priority to CN2007800316799A priority patent/CN101507263B/zh
Priority to US12/438,715 priority patent/US8049796B2/en
Priority to EP07806078.7A priority patent/EP2061235B1/en
Publication of WO2008023806A1 publication Critical patent/WO2008023806A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device

Definitions

  • the present invention relates to a sensitivity correction method and an imaging apparatus, and in particular, when a signal from a subject is simultaneously received by a plurality of imaging elements and an image of the subject is read, sensitivity for removing the influence of shading from the read image.
  • the present invention relates to a correction method and an imaging apparatus.
  • an image pickup apparatus including a plurality of image pickup devices that pick up an image of an object and an image pickup optical system that images light from the object onto the image pickup device has been used, for example, an X-ray CT, a copier, a facsimile machine, and the like.
  • an X-ray CT X-ray CT
  • copier copier
  • facsimile machine and the like.
  • Widely developed for applications such as scanners, camera modules such as digital cameras, surveillance cameras, and in-vehicle cameras.
  • an image is read by detecting the intensity of light from the subject with the image sensor, but the light received by each image sensor due to a decrease in the amount of light around the lens and variations in sensitivity of the image sensor. The amount deviates from the actual signal! / ⁇ It is known that the output image will be uneven. Therefore, shading correction is performed to eliminate this image unevenness.
  • Japanese Patent Application Laid-Open No. 10-97617 a shading correction data based on a white reference image signal obtained by imaging a white reference plate in advance and a black reference image signal obtained by imaging a black reference plate is created.
  • a method for correcting data when an object is imaged based on the correction data is disclosed.
  • Japanese Patent Laid-Open No. 11-69154 discloses a correction method in which a histogram maximum frequency calculation process is performed for each image sensor and shading correction is performed using the histogram maximum frequency value.
  • Japanese Patent Laid-Open No. 2000-358142 discloses a correction method in which data obtained from light from a light source through a correction member is used as shading data at the same time when a subject is irradiated with light from the light source. ing.
  • Japanese Patent Application Laid-Open No. 2005-80062 discloses a digital camera that performs shading correction by multiplying a shading correction coefficient in a first direction by a shading correction coefficient in a second direction perpendicular to the first direction. Is disclosed.
  • Japanese Patent Application Laid-Open No. 2005-269339 also includes a first photosensitive portion and a second photosensitive portion having different sensitivities, and a color squeezing correction (chromatic aberration correction) in each image sensor based on the difference in the amount of light received by the two photosensitive portions. It is disclosed that color shading correction in each pixel (imaging device) having a wide dynamic range can be performed in a short time and with a small memory capacity.
  • CMOS Complementary Metal Oxide Semiconductor Sensor
  • multiple image sensors can be read simultaneously. Charge accumulation starts at the timing, then the charge accumulation ends at the same time, and at the same time, the charge accumulated in each image sensor is read in order, and all the images are exposed simultaneously, so the movement of the object is fast Even in this case, the image has a feature that it is not distorted.
  • the time from the end of charge accumulation to the readout differs for each image sensor.
  • the amount of charge accumulated in the image sensor varies depending on the amount of received light and the accumulation time. Therefore, the amount of charge accumulated in the image sensor increases until it is read out, and the image strength is also different because the amount of charge that increases for each image sensor differs.
  • the amount of charge to be corrected fluctuates according to the amount of charge accumulated in this image sensor is not limited to the global shirter system using a CMOS sensor, but an image for one screen using a plurality of image sensors. This is a phenomenon that generally occurs in imaging devices that simultaneously read images. In either case, an accurate shading correction method has been demanded.
  • the method of obtaining the difference in the amount of light received by the two photosensitive portions and performing the color shading correction in each pixel from the difference can correct the color shading in each pixel. Image unevenness due to the effect of leakage of charge accumulated in each image sensor could not be corrected.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a sensitivity correction method and an imaging apparatus capable of performing highly accurate shading correction with a simple configuration.
  • the sensitivity correction method of the present invention is a sensitivity correction method for removing shading that occurs when an image of a subject is read by receiving light from the subject with a plurality of imaging elements
  • the imaging device receives incident light and performs photoelectric conversion, a charge storage unit that transfers and temporarily accumulates charges accumulated in the photosensitive unit by the incident light, and leaks into the charge accumulation unit.
  • a charge correction unit that estimates the charge to be received, and the light from the subject is received by the plurality of imaging elements and accumulated, and then the charge accumulated in the photosensitive unit is transferred to the charge accumulation unit.
  • Charges for a plurality of image sensors are obtained by using the third charge amount corrected by the second charge amount leaking to the charge correction unit as the charge amount of each image sensor. Output the quantity sequentially. It is an butterfly.
  • the sensitivity correction method of the present invention it is preferable that the light from the subject is received by the plurality of imaging elements and the charges are simultaneously accumulated, and then the charge amounts for the plurality of imaging elements are sequentially output.
  • the charge accumulated in the photosensitive portion by incident light is transferred to the charge accumulating portion for temporarily accumulating the amount of charge leaked over time to each charge accumulating portion. Since the charge correction unit directly estimates and corrects each, it is possible to correct the influence of the leakage charge to each image sensor.
  • the charge accumulation unit Even if the time from when charge is accumulated in the charge accumulation unit to the output by the data output method that sequentially outputs the charge amount for each image sensor varies depending on the amount of charge that leaks over time, the charge accumulation unit Even if the first charge amount accumulated in the image sensor differs for each image sensor, the third charge is corrected by the second charge amount leaked into the charge correction unit to eliminate the effect of charge leakage due to aging.
  • the amount of each imaging element By outputting a charge amount, it is possible to perform accurate Shiwedin grayed correction with a simple configuration.
  • the charge storage unit and the charge correction unit are formed of the same member disposed at the same distance from the photosensitive unit, and the charge storage unit and the charge correction unit are connected to the floating diffusion. It is desirable to use an amplifier.
  • the charge storage unit and the charge correction unit are configured by the same member disposed at the same distance from the photosensitive unit, so that the member arrangement can be easily adjusted and the calculation can be easily performed. It is.
  • the area occupied by the charge accumulating portion and the charge correcting portion is 1/10 or less than the area occupied by the photosensitive portion.
  • the charge storage unit and the charge correction unit can be a floating diffusion amplifier.
  • the shatter can be opened and closed, the timing for storing charges is easily adjusted, and a photosensitive unit such as a photodiode is formed. Since the size is smaller than that of the member, it is desirable in that a clearer image can be formed by increasing the number of pixels.
  • the area occupied by the charge storage unit and the charge correction unit is set to be 1/10 or less of the area occupied by the photosensitive unit. This is desirable in that a clearer image can be formed.
  • the plurality of image sensors are provided in a row, and are composed of two image sensors adjacent to each other.
  • a charge correcting portion is provided between the two photosensitive portions included in the group, and one charge correcting portion is shared between two adjacent image sensors. desirable. Accordingly, the number of charge correction units can be reduced.
  • the imaging apparatus of the present invention includes an imaging unit that captures the subject by receiving light from the subject with a plurality of imaging elements, and the subject.
  • An imaging system that forms an image on the imaging unit, and receives light from the subject through the optical system by the plurality of imaging elements and outputs accumulated charges,
  • a charge correction unit that estimates the amount, and transfers the charge accumulated in the photosensitive part in each of the image sensors to leak the first charge amount accumulated in the charge accumulation part to the charge correction unit.
  • the charge accumulation and output method in the image pickup apparatus of the present invention is configured to receive the light from the subject by the plurality of image pickup elements and simultaneously accumulate the charge, and then charge the plurality of image pickup elements. It is desirable that the system output the quantities sequentially.
  • the imaging apparatus of the present invention since the sensitivity correction method is provided, it is possible to perform accuracy correction and shading correction with the above-described simple configuration, and there is no image unevenness and a high-precision image. Can be stored, and when this stored image is played back, there will be no image blur! /, Accuracy, and image.
  • the imaging unit is a complementary metal oxide semiconductor (CMOS) sensor.
  • CMOS complementary metal oxide semiconductor
  • CMOS complementary metal oxide semiconductor
  • the plurality of image sensors are arranged in a row, and are two adjacent image sensors.
  • the group only one charge correction unit is provided between the two photosensitive units included in the group, and the calculation unit is stored in the charge correction unit. It is desirable to correct the first charge amount accumulated in the plurality of charge accumulation units in the group including the charge correction unit with the second charge amount. As a result, the number of charge correction units can be reduced, and the imaging apparatus can be reduced in size.
  • FIG. 1 is a schematic configuration diagram showing a schematic configuration of an in-vehicle camera module which is an example of a first embodiment of an imaging apparatus to which the sensitivity correction method of the present invention is applied.
  • FIG. 2 is a conceptual diagram showing a schematic configuration of the image sensor 3 of the camera module 1 of FIG.
  • FIG. 3 is a schematic diagram showing a detailed configuration of the image sensor 3 of FIG.
  • FIG. 4 is a schematic diagram illustrating an example of the order in which the light reception signals are output from the imaging elements.
  • FIG. 5 is a schematic configuration diagram showing a schematic configuration of a projector connection scanner which is an example of a second embodiment of an imaging apparatus to which the sensitivity correction method of the present invention is applied.
  • FIG. 6A is a diagram schematically showing the arrangement of the photosensitive unit 15, the charge storage unit 18, and the charge correction unit 20 in the above-described embodiment.
  • FIG. 6B is a diagram schematically showing the arrangement of the photosensitive section 15, the charge storage section 18, and the charge correction section 20 in the present embodiment.
  • FIG. 7 is a diagram for explaining a reading operation in the camera module of the present embodiment.
  • FIG. 8 is a diagram for explaining a reading operation in the camera module of the present embodiment.
  • FIG. 9 is a diagram for explaining a reading operation in the camera module of the present embodiment.
  • FIG. 10 is a diagram for explaining a reading operation in the camera module of the present embodiment.
  • FIG. 1 shows a schematic configuration of an in-vehicle camera module that is a first embodiment of an imaging apparatus to which the sensitivity correction method of the present invention is applied.
  • the camera module 1 includes an optical unit 2 configured to include a lens for imaging light from a subject, and a rear side of the optical unit 2 on the optical axis.
  • a plurality of installed image sensors 3, an A / D converter 4 that converts an analog signal stored in each image sensor 3 and output from the image sensor 3 into a digital signal, a main memory 10, and a main control unit 12 and an output terminal 14 are provided.
  • a plurality of image sensors 3 and an A / D converter 4 that converts analog read data output from each image sensor 3 into digital read data are included in the CMOS sensor 8. It is provided.
  • the digital read data converted by the A / D converter 4 is stored in the main memory 10 and data such as ⁇ correction, white balance correction, etc., as required by the main control unit 12. After processing, it is output to the output terminal 14 as image data. Then, the data is transmitted from the output terminal 14 to a display unit (not shown) for displaying the read image installed in the vehicle, and the image is displayed.
  • FIG. 2 shows a schematic configuration of the image sensor 3.
  • each imaging device 3 includes a photosensitive unit 15 that photoelectrically converts incident light, and a sensor driving unit 16 that charges accumulated in the photosensitive unit 15 by the incident light.
  • a charge accumulating unit 18 that is temporarily transferred and accumulated by a shirter 17 or the like controlled by an electric charge, and a charge correcting unit 20 that estimates an amount of charge that leaks into the charge accumulating unit 18.
  • photosensitive part 15 is referred to as PD.
  • the imaging device 3 has a configuration in which the charge storage unit 18 and the charge correction unit 20 are connected to the grounds 25 and 26 by resets 22 and 23, respectively, when the charge storage unit 18 and the charge correction unit 20 do not store charges. It has become. Furthermore, after the charges accumulated in the charge accumulating unit 18 and the charge correcting unit 20 are output, the first charge amount ⁇ accumulated in the charge accumulating unit 18 and the charge correcting unit 20 are accumulated by the calculation means 28. The second charge amount ⁇ to the third charge The quantity is calculated and output from the column switch 29 to the A / D converter 4.
  • FIG. 1 a schematic diagram showing the detailed configuration of the image sensor 3 of FIG. 2 is shown in FIG.
  • the first charge amount p accumulated in the charge accumulating unit 18 is only the amount of charge N transferred from the photosensitive unit 15.
  • charge diffusion (M in FIG. 3: changes with time and depending on the light reception intensity) occurs or light reflected by the light-shielding aluminum plate 30 (see FIG. 3).
  • charge diffusion (M in FIG. 3) from the lower portion of the photosensitive portion 15 such as a photodiode as shown in FIG. 3 and reflection from the light shielding aluminum plate 30 (FIG. 3).
  • the amount of leakage charge generated by the M) factor is
  • the third charge amount p calculated by correcting the first charge amount p stored in the charge storage unit 18 by the calculation means 28 with the second charge amount p stored in the charge correction unit 20 is calculated.
  • the fluctuation amount of the charge over time and the fluctuation amount according to the received light intensity of each image sensor 3 can be corrected for each image sensor 3, so that the fluctuation of the charge amount due to the leakage charge of each image sensor 3
  • the amount of charge can be adjusted to a charge accumulation amount that is proportional to the amount of received light received, regardless of the reading order of each image sensor 3.
  • the second charge amount p is not necessarily the same as the charge amount that leaks into the charge storage unit 18.
  • the second charge amount p is not necessary to be different from the charge amount leaking into the charge storage unit 18.
  • the calculation unit 28 leaks the second charge amount p into the charge storage unit 18. Correction can be made by subtracting from the first charge amount Pi by increasing / decreasing the charge amount to be the same as the charge amount.
  • the charge accumulating unit 18 and the charge correcting unit 20 are composed of the same member disposed at the same distance from the photosensitive unit 15! /, And the force is adjusted. Can be easily performed, and the calculation in the calculation means 28 can be performed by simple subtraction, so that the memory of the calculation means 28 can be small. Note that other shading corrections such as ⁇ correction and white balance correction can be performed by the calculation means 28 of each image sensor 3.
  • the rate of increase of the leakage charge with respect to the wavelength is calculated in advance, so that the first charge amount ⁇ and the second charge amount are calculated. It is also possible to perform color shading correction from contrast with ⁇ .
  • the charge storage unit 18 and the charge correction unit 20 are floating diffusion amplifiers (FD1, FD2).
  • the photosensitive portion 15 is a member that occupies a large area on the light receiving surface of the image sensor 3 such as a photodiode.
  • the floating diffusion amplifier has a small area, so that the light receiving area of each image sensor 3 can be reduced.
  • the number of pixels corresponding to the number of image sensors of the CMOS sensor 8 can be increased and a clearer image can be formed. .
  • the area occupied by the charge accumulating unit 18 and the charge correcting unit 20 is 1/10 or less of the area occupied by the photosensitive unit 15. This is desirable in that a clearer image can be formed.
  • a CCD element charge coupled device
  • the charge storage unit 18 and the charge can be easily configured in the CMOS sensor 8.
  • the sensitivity correction method is particularly effective because the correction unit 20 can be formed and signal control can be easily performed.
  • the data processing method in the present embodiment will be described more specifically.
  • the plurality of image sensors 3 are arranged in an array of m rows and X n columns. Then, charge accumulation is started simultaneously for all the image pickup devices 3 for one screen and the charge accumulation is finished at the same time, and the accumulated charges are transferred to each charge accumulation unit 18 at the same time as the completion.
  • each charge storage section 18 Based on the charge amount p stored in each charge storage section 18, it is output as read data of each image sensor 3 (a, a ... !!!).
  • the first charge amount p stored in the charge storage unit 18 is corrected and corrected by the second charge amount p stored in the charge correction unit 20 in the calculation unit 28.
  • the third charge amount p, and the signal sensed by each image sensor 3 is the IJ switch 29.
  • each image sensor 3 is not limited to the above order, and may be read from the row direction or other order.
  • the sensitivity correction method of the present invention can also be applied to a rolling shirt method in which charges are sequentially output after a plurality of image sensors sequentially accumulate charges.
  • FIG. 5 shows a schematic configuration of a scanner for projector connection, which is an example of the second embodiment of the imaging apparatus to which the sensitivity correction method of the present invention is applied.
  • the scanner 41 of the present embodiment includes an original document placing table 42 made of a transparent glass plate on which an original is placed, and an original force bar provided so as to be openable and closable so as to cover the upper surface of the document placing table 42. 43, an illumination lamp 44 for illuminating a document placed and fixed on the document table 42, a lens unit 47 having a lens 46, and a light reflected from the document by irradiating the illumination lamp 44 to the document and receiving the light.
  • Output terminal 52 for outputting to an external device (not shown) such as a projector d * o
  • the illumination lamp 44 is irradiated on the document placed and fixed on the document table 42, and the light reflected from the document passes through a plurality of optical members to form a lens 46 (two in FIG.
  • the lens unit 47 forms an image of the reflected light from the document on the image sensor 45.
  • the lens unit 47 is movable along the optical axis of incident light, and can be imaged on the image sensor 45 at a desired magnification.
  • the image recorded on the document placed on the document placement table 42 is read by the image sensor 45.
  • Read data is generated from the result of reading by the image sensor 45, and is output from the output terminal 52 to an external device (not shown) such as a projector.
  • the light from the original is simultaneously exposed to all the image pickup elements 45 for one screen, and the exposure is simultaneously ended. Then, each imaging element 45 leaks into the photosensitive part that photoelectrically converts incident light, the charge storage part that transfers and temporarily stores the charge accumulated in the photosensitive part, and the charge storage part.
  • a charge correction unit for estimating the amount of charge is calculated. Then, by calculating and outputting the third charge amount p obtained by sequentially correcting the first charge amount p accumulated in the charge accumulation unit with the second charge amount p accumulated in the charge correction unit,
  • the amount of change in charge over time is corrected, and shading that occurs when a subject image is simultaneously accumulated and read by a plurality of image sensors 45 can be corrected with a simple configuration with high accuracy.
  • each image pickup device has a configuration in which one photosensitive portion and a charge accumulation portion and a charge correction portion are separately provided on both sides thereof. Therefore, when there are two photosensitive sections, the force that requires two charge storage sections and two charge correction sections.
  • adjacent imaging In the element a part of the configuration may be shared, and more specifically, the charge correction unit may be shared.
  • FIG. 6A schematically shows the arrangement of the photosensitive unit 15, the charge storage unit 18 and the charge correction unit 20 in the above-described embodiment
  • FIG. 6B shows the photosensitive unit 15 and the charge storage unit 18 in the present embodiment.
  • 3 is a diagram schematically showing the arrangement of the charge correction unit 20.
  • the grounds 25 and 26 are provided corresponding to the force charge accumulating unit 18 and the charge correcting unit 20 which are omitted to prevent the diagram from becoming complicated.
  • FIG. 6A the configuration of the minimum photosensitive unit 15, charge accumulating unit 18 and charge correcting unit 20 necessary for the configuration including two photosensitive units 15 is defined as one group 60.
  • the configuration of the minimum photosensitive portion 15, charge storage portion 18, and charge correction portion 20 necessary for the configuration including one photosensitive portion 15 is made into one group 61.
  • the photosensitive portions 15 included in one gnolepe 60 and 61 are shown as PD1 and PD2.
  • the charge correcting unit 20 corresponding to each of the adjacent photosensitive units 15 is shared by the image sensor 3 including the two photosensitive units 15 respectively. ing.
  • the charge accumulation unit 18, the photosensitive unit 15, and the charge correction unit 20 include the charge accumulation unit 18, the photosensitive unit 15, the charge correction unit 20, and the charge accumulation unit. 18, photosensitive portion 15, charge correction portion 20, etc.
  • a sample hold circuit 71 is provided as the arithmetic means 28 described above.
  • the sample-and-hold circuit 71 is a comparator 74 that obtains and outputs the difference in charge amount between the first and second parts 72 and 73 capable of storing charges and the charge stored in the first and second parts 72 and 73, respectively. It is comprised including. Since the first and second portions 72 and 73 have the same configuration, only the first portion 72 will be described, and for the second portion 73, the same configuration as the first portion 72 is denoted by the same reference numeral. Therefore, the explanation is omitted.
  • the first portion 72 includes two buffer amplifiers Al and A2, two switches Bl and B2, and one capacitor C.
  • Buffer amplifier A1 The inverting input section is connected to the input section of the sample and hold circuit, and the inverting input section of the buffer amplifier A1 is connected to the output section of the buffer amplifier A1.
  • the output section of the buffer amplifier A1 is connected to one end of the capacitor C via the switch B1.
  • One end of the capacitor C is connected to the ground via the switch B2.
  • the switches Bl and B2 are on / off switches and are realized by field effect transistors.
  • Switch B1 is turned on when a voltage higher than the threshold is applied to the gate, electrically connects the output of buffer amplifier A1 and one end of capacitor C, and the voltage applied to the gate is less than the threshold.
  • the output of the buffer amplifier A1 is electrically insulated from one end of the capacitor C.
  • the other end of capacitor C is connected to ground.
  • Switch B2 is turned on when a voltage equal to or higher than the threshold is applied to the gate and electrically connects one end of capacitor C to the ground.
  • capacitor C Electrically insulates one end from the ground.
  • the other end of the capacitor C is connected to the non-inverting input part of the buffer amplifier A2, and the inverting input part of the buffer amplifier A2 is connected to the output part of the buffer amplifier A2.
  • the output of the buffer amplifier A2 is connected to the input of the comparator 74, and the output of the comparator is connected to the row switch 29.
  • each photosensitive portion 15 receives light, and charges are accumulated in each photosensitive portion 15.
  • the respective switches Bl and B2 of the first and second portions 71 and 72 are in the off state.
  • the charge storage unit 18 and the charge correction unit 20 are electrically connected to the input unit of the sample hold circuit 71.
  • the charge correction unit 20 (FD2) the first charge amount p acquired by the photosensitive unit 15 (PD1) is corrected.
  • the charges accumulated in the charge accumulation unit 18 (FD1), the photosensitive unit 15 (PD1), and the charge correction unit 20 (FD2) arranged in the first to third order are moved in order from one side of the arrangement direction.
  • the switch 17 causes the charge of the photosensitive portion 15 (PD1) to be transferred to one of the charge accumulating portions 18 (P D1) in the arrangement direction.
  • FD1) Apply a voltage above the threshold to the gate of the switch Bl of the 2 part 73 to turn it on.
  • the switch B1 of the second part 73 is energized, the charge moves as indicated by the arrow F2 in FIG. 7, and the charge of the charge correction unit 20 (FD2) is charged to the capacitor C of the second part 73.
  • the switch 17 and the switch B1 of the second portion 73 are turned off, and a voltage higher than the threshold is applied to the gate of the switch B1 of the first portion 72 to turn it on.
  • the switch B1 of the first part 72 is energized, the charge moves as indicated by the arrow F3 in FIG. 8, and the charge of the charge storage unit 18 (FD1) is C is charged.
  • the switch B1 of the first portion 72 is turned off, and the reset operation is performed on the charge storage unit 18, the photosensitive unit 15, and the charge correction unit 20 in order from one side in the arrangement direction. That is, in order from one side in the arrangement direction, the switches 17, 25, and 26 corresponding to the three of the charge storage unit 18, the photosensitive unit 15, and the charge correction unit 20 are turned on and electrically connected to these grounds. .
  • a voltage higher than the threshold value is applied to the gate of the switch B2 of the first portion 72 to turn it on.
  • the switch B2 of the first portion 72 is energized, moves to the charge force ground stored in the capacitor C, and is stored in the capacitor C, as indicated by the arrow F4 in FIG. Charge amount becomes zero.
  • the charge of the charge storage unit 18 (FD1) is changed to the first portion 72.
  • Charcoal C is charged.
  • Charge is already accumulated in the capacitor C of the second part 73, and the first and second parts 72 and 73 are thus Charges are accumulated in the respective capacitors C, and the comparator 74 uses the first charge amount p accumulated in the capacitor C of the first part 72 and the second charge accumulated in the capacitor C of the second part 73.
  • the third charge amount p which is the difference from the charge amount p, is output from the sample hold circuit 71.
  • the imaging element 3 can be downsized and the imaging apparatus can be downsized as compared with the above-described embodiments.
  • the present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects, and the scope of the present invention is shown in the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the scope of claims are within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

明 細 書
感度補正方法および撮像装置
技術分野
[0001] 本発明は、感度補正方法および撮像装置に関し、特に被写体からの信号を複数の 撮像素子で同時に受光して前記被写体の画像を読み取る際に、読取画像からシェ ーデイングの影響を除去する感度補正方法および撮像装置に関する。
背景技術
[0002] 近年、被写体を撮像する複数の撮像素子と、被写体からの光を前記撮像素子に結 像させる撮像光学系とを具備する撮像装置が、例えば、 X線 CTや、複写機、ファクシ ミリ、スキャナ、さらにデジタルカメラや監視カメラ、車載カメラ等のカメラモジュールの ような用途に広く開発されている。
このような撮像装置では、撮像素子にて被写体からの光の強さを検知することによ つて画像を読み取っているが、レンズの周辺光量低下や撮像素子の感度ばらつきに よって各撮像素子の受光量が実際の信号からずれてしま!/ \出力される画像に画像 ムラができてしまうことが知られている。そこで、この画像ムラをなくすためにシエーデ イング補正が行なわれる。
例えば、特開平 10— 97617号公報では、予め白基準板を撮像して得られる白基 準影像信号と黒基準板を撮像して得られる黒基準影像信号とに基づくシエーデイン グ補正データを作成しておき、この補正データに基づいて被写体を撮像したときのデ ータ補正を行なう方法が開示されている。また、特開平 11— 69154号公報では、各 撮像素子ごとにヒストグラム最頻度計算処理を行ってこのヒストグラム最頻度値を用い てシェーディング補正する補正方法が開示されている。
さらに、特開 2000— 358142号公報では、被写体に光源からの光を照射すると同 時に、この光源からの光から補正部材を介して得たデータをシェーディングデータと して使用する補正方法が開示されている。また、特開 2005— 80062号公報では、 第 1の方向におけるシェーディング補正係数と第 1の方向とは垂直な第 2の方向にお けるシェーディング補正係数とを乗算してシェーディング補正を行なうデジタルカメラ について開示されている。
また、特開 2005— 269339号公報では、感度の異なる第 1の感光部と第 2の感光 部を備えて、 2つの感光部における受光量の差から各撮像素子における色シエーデ イング補正(色収差補正)を行なうことによって、広範囲なダイナミックレンジを有する 各画素(撮像素子)における色シェーディング補正が短時間かつ小さなメモリ容量で 行なえることが開示されて!/、る。
しかしながら、上述の特開平 10— 97617号公報、特開平 11 69154号公報、特 開 2000— 358142号公報および特開 2005— 80062号公報のようにシエーデイン グデータを別途準備してシェーディング補正を行なう補正方法では、被写体からの信 号を複数の撮像素子で同時に受光した後で各撮像素子の受光信号を順に読み込 む読取方式に対して、シェーディング補正が完全に行なえないという問題がある。 すなわち、画像ムラの要因として、上記レンズの周辺光量低下や撮像素子の感度 ばらつき以外にも撮像素子に信号を読み込む際の電荷量の変動がある。例えば、 C MOSセンサ(相補型金属酸化物半導体センサ; Complementary Metal Oxide Semic onductor sensor)を用いたグローバルシャツタ方式のように 1画面分の画像を同時に 読み込む方法では、複数の撮像素子に対して同時タイミングで電荷蓄積を開始し、 その後同時タイミングで電荷蓄積を終了し、終了と同時に各撮像素子に蓄積された 電荷を順に読出す方式であり、全撮像を同時に感光するので対象物の動きが早い 場合でも、像は歪まないという特長を有している。かかる方法では、各撮像素子によ つて電荷蓄積終了から読み出しまでの時間が異なる。一方、撮像素子に蓄積された 電荷量は種々の要因によって電荷が漏れ込み増加する力 受光量や蓄積時間によ つて電荷量の増加量が異なることが知られている。したがって、撮像素子に蓄積され た電荷量が読み出されるまでの間に増加してしまい、し力、も撮像素子ごとに増加する 電荷量が異なるために画像ムラが発生するという問題である。
これは、各撮像素子に蓄積された電荷量が読み出されるまでの間に、撮像素子を 構成するフォトダイオード等の感光部の下部に蓄えられた電荷が各撮像素子を構成 する電荷蓄積部内に漏れ込んでしまうことに起因する。さらに、この漏れ込む電荷量 は各撮像素子に蓄積された電荷量に応じて変動するために、従来のような別途シェ ーデイングデータを準備する方法では画像ムラを完全に補正することができないもの であった。
なお、この撮像素子に蓄積された電荷量に応じて補正すべき電荷量が変動するこ とは、 CMOSセンサを用いたグローバルシャツタ方式に限らず、複数の撮像素子に て 1画面分の画像を同時に読み込む撮像装置において一般的に発生する現象であ つた。そして、いずれの場合にも精度のよいシェーディング補正方法が求められてい た。
また、特開 2005— 269339号公報のように、 2つの感光部の受光量の差を求めて その差から各画素における色シェーディング補正を行なう方法では、各画素の色シェ ーデイング補正はできるものの、各撮像素子に蓄積された電荷の漏れ出しの影響に よる画像ムラを補正することができなかった。
発明の開示
本発明は上記問題点を解消するためになされたもので、簡単な構成で精度のよい シェーディング補正を行なうことができる感度補正方法および撮像装置を提供するこ とを目的とする。
本発明の感度補正方法は、被写体からの光を複数の撮像素子で受光することによ り前記被写体の画像を読み取る際に発生するシェーディングを除去するための感度 補正方法であって、それぞれの前記撮像素子が、入射光を受光して光電変換する 感光部と、前記入射光によって前記感光部に蓄積された電荷を転送して一時的に蓄 積する電荷蓄積部と、該電荷蓄積部に漏れ込む電荷を見積もる電荷補正部とを備え て、前記被写体からの光を前記複数の撮像素子で受光して電荷を蓄積した後、前記 感光部に蓄積された電荷を前記電荷蓄積部に転送して該電荷蓄積部に蓄積される 第 1の電荷量を前記電荷補正部に漏れ出した第 2の電荷量で補正した第 3の電荷量 を各撮像素子の電荷量として複数の撮像素子についての電荷量を順次出力するこ とを特徴とするものである。
なお、上記本発明の感度補正方法は、前記被写体からの光を前記複数の撮像素 子で受光して同時に電荷を蓄積した後、前記複数の撮像素子についての電荷量を 順次出力することが望ましい。 本発明の感度補正方法によれば、入射光によって前記感光部に蓄積された電荷を 転送して一時的に蓄積する電荷蓄積部に経時的に漏れ込む電荷量をそれぞれの電 荷蓄積部に対して電荷補正部にて直接見積もってそれぞれに補正することから、各 撮像素子への漏れ込み電荷の影響を補正することができ、特に、各撮像素子にて同 時に電荷を蓄積した後各撮像素子についての電荷量を順次出力するデータ出力方 式によって電荷蓄積部に電荷を蓄積してから出力するまでの時間が各撮像素子で 異なるような場合でも、経時的に漏れ込む電荷量によって電荷蓄積部に蓄積された 第 1の電荷量が各撮像素子で異なっても前記電荷補正部に漏れ込んだ第 2の電荷 量で補正して経時変化による電荷もれ込みの影響を取り除いた第 3の電荷量を各撮 像素子の電荷量として出力することによって、簡単な構成で精度のよいシヱーディン グ補正を行なうことができる。
ここで、前記電荷蓄積部と前記電荷補正部とを、前記感光部から同じ距離だけ離 間した位置に配置された同じ部材で構成すること、前記電荷蓄積部と前記電荷補正 部とをフローティングディフュージョンアンプとすることが望ましい。
ここで、前記電荷蓄積部と前記電荷補正部とを、前記感光部から同じ距離だけ離 間した位置に配置された同じ部材で構成することが、部材配置の調整が容易であり かつ演算も簡単である。
また、前記撮像素子の受光面において、前記電荷蓄積部および前記電荷補正部 それぞれの占める面積を前記感光部の占める面積に対して 1/10以下の大きさとす ることが望ましい。
また、前記電荷蓄積部と前記電荷補正部とをフローティングディフュージョンアンプ とすること力 シャツタの開閉が可能であり電荷を蓄積するタイミング調整が容易であ るとともに、例えばフォトダイオードのような感光部をなす部材に比べてサイズが小さ いことから、画素数を増してより鮮明な画像を形成することができる点で望ましい。ここ で、前記撮像素子の受光面において、前記電荷蓄積部および前記電荷補正部それ ぞれの占める面積を前記感光部の占める面積に対して 1/10以下の大きさとするこ とが画素数を増してより鮮明な画像を形成することができる点で望ましい。
また、前記複数の撮像素子を列状に設け、相互に隣接する 2つの撮像素子から成 るグループを形成し、前記グループに含まれる 2つの前記感光部の間に前記電荷補 正部を設けて、相互に隣接する 2つの撮像素子において、 1つの電荷補正部を共有 化して用いることが望ましい。これによつて、電荷補正部の数を少なくすることができ さらに、本発明の撮像装置は、被写体からの光を複数の撮像素子で受光すること により前記被写体を撮像する撮像部と、前記被写体の像を前記撮像部に結像させる 光学系とを具備し、前記光学系を通して前記被写体からの光を前記複数の撮像素 子で受光して蓄積した電荷を出力する撮像装置であって、それぞれの前記撮像素 子力 入射光を光電変換する感光部と、前記入射光によって前記感光部に蓄積され た電荷を転送して一時的に蓄積する電荷蓄積部と、該電荷蓄積部に漏れ込む電荷 量を見積もる電荷補正部とを備えて、前記それぞれの撮像素子における前記感光部 に蓄積された電荷を転送して前記電荷蓄積部に蓄積された第 1の電荷量を前記電 荷補正部に漏れ出した第 2の電荷量で補正する演算手段と、該演算手段によって算 出された第 3の電荷量を各撮像素子の電荷量として複数の撮像素子についての電 荷量を順次出力する出力手段とを具備することを特徴とするものである。
ここで、上記構成において、本発明の撮像装置における電荷蓄積および出力方式 が、前記被写体からの光を前記複数の撮像素子で受光して同時に電荷を蓄積した 後、前記複数の撮像素子についての電荷量を順次出力する方式であることが望まし い。
さらに、本発明の撮像装置によれば、上記感度補正方法を備えていることから、前 記簡単な構成で精度のょレ、シェーディング補正を行なうことができ、画像ムラがなく精 度のよい画像を記憶することができ、この記憶された画像を再生した場合には画像ム ラのな!/、精度のょレ、画像となる。
なお、前記撮像部が相補型金属酸化物半導体(CMOS)センサであることが望まし い。
なお、前記撮像部が相補型金属酸化物半導体(CMOS)センサである場合には、 簡単な構成で容易に信号制御が可能となる。
また、前記複数の撮像素子は列状に設けられ、相互に隣接する 2つの撮像素子か ら成るグループを形成したときに、前記グループにおいて前記電荷補正部は、前記 グループに含まれる 2つの前記感光部の間に 1つだけ設けられ、前記演算手段は、 前記電荷補正部に蓄積される第 2の電荷量で、この電荷補正部が含まれるグループ における複数の電荷蓄積部に蓄積された第 1の電荷量を補正することが望ましい。こ れによって、電荷補正部の数を少なくすることができ、撮像装置の小型化を図ること ができる。
図面の簡単な説明
本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確にな るであろう。
図 1は、本発明の感度補正方法が適用された撮像装置の第 1の実施形態の例であ る車載用のカメラモジュールの概略構成を示す概略構成図である。
図 2は、図 1のカメラモジュール 1の撮像素子 3についての概略構成を示す概念図 である。
図 3は、図 2の撮像素子 3の詳細構成を示す模式図である。
図 4は、各撮像素子から受光信号を出力する順序の一例を示す模式図である。 図 5は、本発明の感度補正方法が適用された撮像装置の第 2の実施形態の例であ るプロジェクタ接続用のスキャナの概略構成を示す概略構成図である。
図 6Aは、前述した実施の形態における感光部 15、電荷蓄積部 18および電荷補正 部 20の配置を模式的に示す図である。
図 6Bは、本実施の形態における感光部 15、電荷蓄積部 18および電荷補正部 20 の配置を模式的に示す図である。
図 7は、本実施の形態のカメラモジュールにおける読出し動作を説明するための図 である。
図 8は、本実施の形態のカメラモジュールにおける読出し動作を説明するための図 である。
図 9は、本実施の形態のカメラモジュールにおける読出し動作を説明するための図 である。
図 10は、本実施の形態のカメラモジュールにおける読出し動作を説明するための 図である。
発明を実施するための最良の形態
以下図面を参考にして本発明の好適な実施形態を詳細に説明する。
図 1には、本発明の感度補正方法が適用された撮像装置の第一の実施形態である 車載用のカメラモジュールの概略構成が示されて!/、る。
図 1によれば、本実施形態に係るカメラモジュール 1は、被写体からの光を結像させ るためのレンズを含んで構成された光学ユニット 2と、光学ユニット 2の光軸上の後方 に配設された複数の撮像素子 3と、各撮像素子 3内部に収納され撮像素子 3から出 力されたアナログ信号をデジタル信号に変換する A/Dコンバータ 4と、メインメモリ 1 0と、主制御部 12と、出力端子 14とを備えている。なお、図 1のカメラモジュール 1で は、複数の撮像素子 3と、各撮像素子 3から出力されるアナログ読取データをデジタ ル読取データに変換する A/Dコンバータ 4とは CMOSセンサ 8の内部に具備され ている。
なお、図 1のカメラモジュール 1によれば、 A/Dコンバータ 4が変換したデジタル読 取データはメインメモリ 10に記憶され、主制御部 12によって所望により γ補正ゃホヮ イトバランス補正等のデータ処理を行った後、出力端子 14に画像データとして出力さ れる。そして、出力端子 14から車内に設置された読込画像を表示する表示部(図示 せず。 )にデータが送信されて画像を表示する。
また、図 2に撮像素子 3についての概略構成を示す。図 2に示すように、本発明によ れば、それぞれの撮像素子 3が、入射光を光電変換する感光部 15と、前記入射光に よって感光部 15に蓄積された電荷をセンサ駆動部 16にて制御されるシャツタ 17等 によって転送して一時的に蓄積する電荷蓄積部 18と、電荷蓄積部 18に漏れ込む電 荷量を見積もる電荷補正部 20とを備えている。図において、感光部 15を PDと記載 する。また、撮像素子 3は、電荷蓄積部 18および電荷補正部 20に電荷を蓄積しない ときには、電荷蓄積部 18および電荷補正部 20のそれぞれがリセット 22、 23によって グランド 25、 26に接続される構成となっている。さらに、電荷蓄積部 18および電荷補 正部 20に蓄積された電荷は出力された後、演算手段 28にて電荷蓄積部 18に蓄積 された第 1の電荷量 ρと電荷補正部 20に蓄積された第 2の電荷量 ρから第 3の電荷 量が算出されて列スィッチ 29から A/Dコンバータ 4に出力される構成となっている。 ここで、図 2の撮像素子 3の詳細構成を示す模式図を図 3に示すが、電荷蓄積部 1 8に蓄積された第 1の電荷量 pは感光部 15から転送される電荷量 Nのみならず、感 光部 15の下部から電荷の拡散(図 3中の M :経時的かつ光の受光強度に応じて変 化する。)が発生したり、遮光アルミニウム板 30によって反射した光(図 3中の M :受
2 光する光の強さに応じて変化する。)が漏れ込む等の要因によって生じる漏れ込み 電荷量(図中の M)を含む。したがって、一画面分の全撮像素子 3に同時に感光し、 撮像素子 3に感光を行って蓄積された電荷量が、感光終了後に順次読み出されるよ うな撮像装置において、電荷蓄積部 18に蓄積された第 1の電荷量 pをそのまま受光 信号として出力すると、本来各撮像素子 3が受信した被写体力もの受光信号力もそ れぞれが規則性なくばらついた電荷蓄積量となって画像ムラを引き起こす。
しかしながら、本発明の感度補正方法によれば、図 3に示すようなフォトダイオード 等の感光部 15の下部からの電荷の拡散(図 3中の M )および遮光アルミニウム板 30 からの反射(図 3中の M )の要因によって発生する漏れ込み電荷量を電荷補正部 20
2
にて見積もって、演算手段 28にて電荷蓄積部 18に蓄積された第 1の電荷量 pを電 荷補正部 20に蓄積した第 2の電荷量 pで補正した第 3の電荷量 pを算出しこれを出
2 3
力することによって、経時的な電荷の変動量および各撮像素子 3の受光強度に応じ た変動量を各撮像素子 3ごとに補正できることから、各撮像素子 3の漏れ込み電荷に よる電荷量の変動分を各撮像素子 3の読み込み順に関係なぐかつ受信した受光量 に比例した電荷蓄積量に調整できる。
したがって、電荷蓄積部 18に漏れ込む電荷量のばらつきを正確に補正することが できること力、ら、特に、前記被写体の画像を受光して複数の撮像素子で同時に電荷 を蓄積する、すなわち、グローバルシャツタ方式のように同じタイミングで電荷蓄積を 開始して同じタイミングで電荷蓄積を終了する方式にて画像を読み取る際に発生す るシェーディングを簡単な構成で精度よく補正を行なうことができる。
ここで、第 2の電荷量 pは必ずしも電荷蓄積部 18に漏れ込む電荷量と同じである
2
必要はなぐ第 2の電荷量 pが電荷蓄積部 18に漏れ込む電荷量と異なる構成であつ
2
てもよい。この場合には演算手段 28で第 2の電荷量 pを電荷蓄積部 18に漏れ込む 電荷量と同じとなるように増減させて第 1の電荷量 Piから差し引くことによって補正で きる。し力もながら、電荷蓄積部 18と電荷補正部 20とが、感光部 15から同じ距離だ け離間した位置に配置された同じ部材で構成されて!/、ること力 部材の配置を調整 することが容易に行なえるとともに演算手段 28における演算も単純な引き算でよいの で演算手段 28のメモリが小さくて済む。なお、各撮像素子 3の演算手段 28にて、 γ 補正やホワイトバランス補正等の他のシェーディング補正をすることも可能である。ま た、漏れ込み電荷は長波長側で多くなるという性質を利用して、予め波長に対する 漏れ込み電荷量の増加率を算出しておくことによって、第 1の電荷量 ρと第 2の電荷 量 ρとの対比から色シェーディング補正を行なうことも可能である。
2
また、図 2に示すように、電荷蓄積部 18と電荷補正部 20とがフローティングディフユ 一ジョンアンプ(FD1、 FD2)であることが望ましい。これによつて、シャツタの開閉が 可能であり電荷を蓄積するタイミング調整が容易であるとともに、例えば感光部 15が フォトダイオードのように撮像素子 3の受光面において大きな面積を占める部材であ るのに比べてフローティングディフュージョンアンプは小さな面積であるので各撮像 素子 3の受光面積を小さくできる結果、 CMOSセンサ 8の撮像素子の数に相当する 画素数を増してより鮮明な画像を形成することができる。
ここで、撮像素子 3の受光面において、電荷蓄積部 18および電荷補正部 20それぞ れの占める面積が感光部 15の占める面積に対して 1/10以下の大きさであることが 画素数を増してより鮮明な画像を形成することができる点で望ましい。
さらに、撮像素子 3としては CCD素子(電荷結合素子; charge coupled device)を用 いることもできる力 CMOSセンサ 8を用いた場合には CMOSセンサ 8内に簡単な構 成で電荷蓄積部 18および電荷補正部 20を形成することができるとともに、容易に信 号制御が可能となるので、上記感度補正方法は特に有効である。
ここで、本実施形態におけるデータ処理方法についてより具体的に説明する。まず 、図 4に各撮像素子から受光信号を出力する順序の一例を示す模式図に示すように 、複数の撮像素子 3は m行 X n列に整列した状態で配置されている。そして、これら 一画面分の全撮像素子 3に対して同時に電荷蓄積を開始しかつ同時に電荷蓄積を 終了し、終了と同時に蓄積された電荷を各電荷蓄積部 18に転送する。そして、例え ば図 4に示す撮像素子 3の mif X n歹 IJの酉己歹 IJに対して、 a 、 a、 a - "a 、b 、b 、b ' "
1 2 3 n 1 2 3 m- 1 、m—l 、m、m、m - - - の順番でそれぞれの列スィッチ 29から
1 2 n 1 2 3 n
各電荷蓄積部 18に蓄積された電荷量 pに基づいて各撮像素子 3 (a , a…!!!)の読 取データとして出力される。
この時、本発明によれば、電荷蓄積部 18に蓄積された第 1の電荷量 pは演算手段 28にて電荷補正部 20に蓄積された第 2の電荷量 pによって補正され、補正された
2
第 3の電荷量 p 、この各撮像素子 3が感知した信号はそれぞれの歹 IJスィッチ 29か
3
らアナログ信号として順次出力され、 A/Dコンバータ 4でデジタル信号に変換しなが ら記憶手段としてのメインメモリ 10に記憶される。なお、各撮像素子 3の読取データの 読取順番は上記順番に限定されるものではなぐ列方向から読み取るものであっても よぐ他の順番であってもよい。
なお、本発明の感度補正方法は、複数の撮像素子が順に電荷を蓄積した後で順 に電荷を出力するローリングシャツタ方式についても適用することができる。
また、本発明の撮像装置は、上述したカメラモジュールに限定されるものではなぐ 例えば、プロジェクタに接続されるスキャナについても好適に応用することができる。 そこで、図 5に、本発明の感度補正方法が適用された撮像装置の第 2の実施形態 の例であるプロジェクタ接続用のスキャナの概略構成を示す。
図 5によれば、本実施形態のスキャナ 41は、原稿を載置する透明ガラス板製の原 稿載置台 42と、原稿載置台 42の上部表面を覆うため開閉可能に設けられた原稿力 バー 43と、原稿載置台 42に載置固定された原稿を照らすための照明ランプ 44と、レ ンズ 46を具備するレンズユニット 47と、照明ランプ 44を原稿に照射し原稿から反射し た光を受光する複数の撮像素子 45と、撮像素子 45から出力されたアナログ信号を デジタル信号に変換する A/Dコンバータ 49と、 A/Dコンバータ 49で変換したデジ タル読取データを保存するための記憶手段としてのメインメモリ 50と、メインメモリ 50 のデジタル読取データの読み込み順序やデータ処理を行なうプログラムやパラメータ などを格納する演算手段としての主制御部 51と、撮像素子 45で記憶した読込画像 をプロジェクタ等の外部装置(図示せず)に出力するための出力端子 52とを備えてい d * o そして、原稿載置台 42に載置固定された原稿に照明ランプ 44を照射し、原稿から 反射した光は、複数の光学部材を介して、結像光学系からなるレンズ 46 (図 4では 2 枚のレンズ)で構成されるレンズユニット 47に案内される。このレンズユニット 47によ つて、原稿からの反射光が撮像素子 45上に結像される。また、レンズユニット 47は入 射する光の光軸に沿って移動可能となっており、所望の倍率で撮像素子 45上に結 像することができるようになつている。これにより、撮像素子 45によって、原稿載置台 4 2に載置された原稿に記録されている画像が読み取られる。撮像素子 45による読み 取り結果から読取データが生成され、出力端子 52からプロジェクタ等の外部装置(図 示せず)に出力される。
本実施形態においても、原稿からの光を 1画面分の全撮像素子 45に同時に感光 を開始して同時に感光を終了する。そして、それぞれの撮像素子 45が、入射光を光 電変換する感光部と、この感光部に蓄積された電荷を転送して一時的に蓄積する電 荷蓄積部と、この電荷蓄積部に漏れ込む電荷量を見積もる電荷補正部とを備えてい る。そして、順次電荷蓄積部に蓄積された第 1の電荷量 pを電荷補正部に蓄積され た第 2の電荷量 pで補正した第 3の電荷量 pを算出しこれを出力することによって、
2 3
経時的な電荷の変動量が補正され、被写体の画像を複数の撮像素子 45で同時に 電荷を蓄積して読み取る際に発生するシェーディングを簡単な構成で精度よく補正 を fiなうことができる。
前述した実施の形態では、各撮像素子が、 1つの感光部と、その両側に電荷蓄積 部と電荷補正部とを個別に有する構成となっている。したがって、 2つの感光部が 2 つあるときには、 2つの電荷蓄積部と 2つの電荷補正部とが必要になる力 本発明の さらに他の実施の形態では、前述の実施の形態において、隣接する撮像素子にお いて、その一部の構成を共有し、具体的には荷電補正部を共有する構成としてもよ い。図 6Aは、前述した実施の形態における感光部 15、電荷蓄積部 18および電荷補 正部 20の配置を模式的に示し、図 6Bは、本実施の形態における感光部 15、電荷蓄 積部 18および電荷補正部 20の配置を模式的に示す図である。図 6A,図 6Bでは、 グランドについては図が煩雑となることを防止するために省略している力 電荷蓄積 部 18および電荷補正部 20のそれぞれに対応して、グランド 25, 26が設けられてい る。なお前述した実施の形態の構成と同様の部分については、同様の参照符号を付 して詳細な説明を省略する。
また図 6Aにおいて、 2つの感光部 15を含んで構成するときに必要となる最小限の 感光部 15、電荷蓄積部 18および電荷補正部 20の構成を 1つのグループ 60とし、図 6Bにおいて、 2つの感光部 15を含んで構成するときに必要となる最小限の感光部 1 5、電荷蓄積部 18および電荷補正部 20の構成を 1つのグループ 61としている。また 、図 6A,図 6Bでは、 1つのグノレープ 60, 61に含まれる感光部 15を PD1 , PD2とし て示している。
本実施の形態では、複数の撮像素子が列状に設けられ、隣接する感光部 15にそ れぞれ対応する荷電補正部 20を、 2つの感光部 15がそれぞれ含まれる撮像素子 3 で共有している。前述した各実施の形態では、 1つのグループ 60において、電荷蓄 積部 18と、感光部 15と、電荷補正部 20とが、電荷蓄積部 18、感光部 15、電荷補正 部 20、電荷蓄積部 18、感光部 15、電荷補正部 20のように記載した順番に並ぶ。し かしながら、本実施の形態では、 1つのグループ 61において、電荷補正部 18は、グ ループ 61に含まれる 2つの感光部 15の間に 1つだけ設けられ、すなわち電荷蓄積 部 18と、感光部 15と、電荷補正部 20とが、電荷蓄積部 18、感光部 15、電荷補正部 20、感光部 15、電荷蓄積部 18のように記載した順番に並ぶ。これによつて、 1つの グループ単位における電荷蓄積部 18および電荷補正部 20の総数を 3/4にするこ と力 Sできる。
図 7〜図 10は、本実施の形態のカメラモジュールにおける読出し動作を説明する ための図である。本実施の形態のカメラモジュールでは、前述した演算手段 28として 、サンプルホールド回路 71を備える。サンプルホールド回路 71は、それぞれ電荷を 蓄積可能な第 1および第 2部分 72, 73と、第 1および第 2部分 72, 73でそれぞれ蓄 積した電荷の電荷量の差を求めて出力するコンパレータ 74とを含んで構成される。 第 1および 2部分 72, 73は、同様の構成であるので、第 1部分 72についてのみ説 明し、第 2部分 73については、第 1部分 72と同様の構成には同様の参照符号を付し て、その説明を省略する。第 1部分 72は、 2つのバッファアンプ Al , A2と、 2つのスィ ツチ Bl , B2と、 1つのキャパシタ Cとを含んで構成される。バッファアンプ A1の非反 転入力部は、サンプルホールド回路の入力部に接続され、バッファアンプ A1の反転 入力部は、バッファアンプ A1の出力部に接続される。バッファアンプ A1の出力部は 、スィッチ B1を介して、キャパシタ Cの一端に接続される。またキャパシタ Cの一端は 、スィッチ B2を介してグランドに接続される。スィッチ Bl , B2は、オンオフスィッチで あり、電界効果型トランジスタによって実現される。スィッチ B1は、ゲートに閾値以上 の電圧が印加されたときにオン状態となってバッファアンプ A1の出力部と、キャパシ タ Cの一端とを電気的接続し、ゲートに与えられる電圧が閾値未満のときは、バッファ アンプ A1の出力部と、キャパシタ Cの一端とを電気的に絶縁する。キャパシタ Cの他 端は、グランドに接続される。スィッチ B2は、ゲートに閾値以上の電圧が印加された ときにオン状態となってキャパシタ Cの一端と、グランドとを電気的接続し、ゲートに与 えられる電圧が閾値未満のときは、キャパシタ Cの一端と、グランドとを電気的に絶縁 する。キャパシタ Cの他端は、バッファアンプ A2の非反転入力部に接続され、バッフ ァアンプ A2の反転入力部は、バッファアンプ A2の出力部に接続される。バッファァ ンプ A2の出力部は、コンパレータ 74の入力部に接続され、コンパレータの出力部は 、行スィッチ 29に接続される。
本実施の形態では、まず各感光部 15に受光させて、各感光部 15に電荷を蓄積さ せる。ここでは、感光部 15、電荷蓄積部 18および電荷補正部 20が配列される配列 方向の一方から 1つ目のグループ 61の動作について説明する力 グループ 61につ いても、同様である。ここで、第 1および第 2部分 71 , 72の各スィッチ Bl , B2はオフ 状態となっている。また電荷蓄積部 18および電荷補正部 20は、サンプルホールド回 路 71の入力部に電気的に接続されている。また感光部 15、電荷蓄積部 18および電 荷補正部 20が配列される配列方向の一方から順番に、第 1〜3番目に配列される電 荷蓄積部 18 (FD1)、感光部 15 (PD1)および電荷補正部 20 (FD2)の 3つに基づ いて、感光部 15 (PD1)で取得した第 1の電荷量 pを補正する。まず、配列方向の一 方から順番に、第 1〜3番目に配列される電荷蓄積部 18 (FD1)、感光部 15 (PD1) および電荷補正部 20 (FD2)に蓄積された電荷を移動させる。ここでは、スィッチ 17 によって、図 7の矢符 F1で示すように、感光部 15 (PD1)の電荷を、この感光部 15 (P D1)の配列方向の一方に配置される電荷蓄積部 18 (FD1)に移動させるとともに、第 2部分 73のスィッチ Blのゲートに閾値以上の電圧を印加して、オン状態とする。これ によって、第 2部分 73のスィッチ B1が通電して、図 7の矢符 F2で示すように電荷が 移動し、電荷補正部 20 (FD2)の電荷が第 2部分 73のキャパシタ Cに充電される。 次に、スィッチ 17および第 2部分 73のスィッチ B1をオフ状態にして、第 1部分 72の スィッチ B1のゲートに閾値以上の電圧を印加して、オン状態とする。これによつて、 第 1部分 72のスィッチ B1が通電して、図 8の矢符 F3で示すように電荷が移動し、電 荷蓄積部 18 (FD1)の電荷が、第 1部分 72のキヤバシタ Cに充電される。ここまでの 動作によって、第 1および第 2部分 72, 73のキヤバシタ Cにそれぞれ電荷が蓄積され 、コンパレータ 74によって、第 1部分 72のキヤバシタ Cに蓄積された第 1の電荷量 p と、第 2部分 73のキヤバシタ Cに蓄積された第 2の電荷量 pとの差分の第 3の電荷量
2
pがサンプルホールド回路 71から出力される。
3
次に、第 1部分 72のスィッチ B1をオフ状態にして、前記配列方向の一方から順番 に、電荷蓄積部 18、感光部 15および電荷補正部 20の 3つについてのリセット動作を 行う。すなわち、前記配列方向の一方から順番に、電荷蓄積部 18、感光部 15および 電荷補正部 20の 3つに対応するスィッチ 17, 25, 26をオン状態として、これらグラン ドに電気的に接続する。また第 1部分 72のスィッチ B2にゲートに閾値以上の電圧を 印加して、オン状態とする。これによつて、第 1部分 72のスィッチ B2が通電して、図 9 の矢符 F4で示すように、キヤバシタ Cに蓄積されている電荷力 グランドに移動して、 キヤバシタ Cに蓄積されていた電荷量が零になる。
次に、配列方向の一方から順番に、第 3〜5番目に配列される電荷補正部 20 (FD 2)、感光部 15 (PD2)および電荷蓄積部 18 (FD1)の 3つに基づ!/、て、感光部 15 (P D2)で取得した第 1の電荷量 pを補正する。ここでは、スィッチ 17によって、図 10の 矢符 F5で示すように、感光部 15 (PD2)に蓄積された電荷を、この感光部 15 (PD2) の配列方向の他方に配置される電荷蓄積部 18 (FD1)に移動させるとともに、第 1部 分 72のスィッチ B1をオン状態とする。これによつて、、第 1部分 73のスィッチ B1が通 電して、図 10の矢符 F6で示すように電荷が移動し、前記電荷蓄積部 18 (FD1)の電 荷が第 1部分 72のキヤバシタ Cに充電される。第 2部分 73のキヤバシタ Cには、既に 電荷が蓄積されており、ここまでの動作によって、第 1および第 2部分 72, 73のキヤ バシタ Cにそれぞれ電荷が蓄積されることになり、コンパレータ 74によって、第 1部分 72のキヤバシタ Cに蓄積された第 1の電荷量 pと、第 2部分 73のキヤバシタ Cに蓄積 された第 2の電荷量 pとの差分の第 3の電荷量 pがサンプルホールド回路 71から出
2 3
力される。
配列方向の一方から 1つ目のグループ 61について前述した動作を行うと、次に配 列方向の一方から 2つ目のグループ 61を処理対象として同様に動作し、グループ 61 の個数だけ配列方向の一方から他方に向かって順番に同様の動作を繰り返す。 以上の動作によって、電荷補正部 20の数を前述の実施の形態と比較して少な!/、個 数で構成しても、 1つのグループ 61に含まれる 2つの感光部 15からの第 1の電荷量 p がそれぞれ第 2の電荷量 pによって補正されて、補正された第 3の電荷量 pをそれ
1 2 3 ぞれ出力することができる。したがって、前述した各実施の形態と比較して、撮像素 子 3の小型化を実現することができ、また撮像装置の小型化を実現することができる。 本発明は、その精神または主要な特徴から逸脱することなぐ他のいろいろな形態 で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本 発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束され ない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のもので ある。

Claims

請求の範囲
[1] 被写体からの光を複数の撮像素子で受光することにより前記被写体の画像を読み 取る際に発生するシェーディングを除去するための感度補正方法であって、それぞ れの前記撮像素子が、入射光を受光して光電変換する感光部と、前記入射光によつ て前記感光部に蓄積された電荷を転送して一時的に蓄積する電荷蓄積部と、該電 荷蓄積部に漏れ込んだ電荷を見積もる電荷補正部とを備えて、前記被写体からの光 を前記複数の撮像素子で受光して電荷を蓄積した後、前記感光部に蓄積された電 荷を前記電荷蓄積部に転送して該電荷蓄積部に蓄積される第 1の電荷量を前記電 荷補正部に漏れ込んだ第 2の電荷量で補正した第 3の電荷量を各撮像素子の電荷 量として複数の撮像素子についての電荷量を順次出力することを特徴とする感度補 正方法。
[2] 前記被写体からの光を前記複数の撮像素子で受光して同時に電荷を蓄積した後、 前記複数の撮像素子についての電荷量を順次出力することを特徴とする請求項 1記 載の感度補正方法。
[3] 前記電荷蓄積部と前記電荷補正部とを、前記感光部から同じ距離だけ離間した位 置に配置された同じ部材で構成することを特徴とする請求項 1または 2記載の感度補 正方法。
[4] 前記電荷蓄積部と前記電荷補正部とをフローティングディフュージョンアンプとする ことを特徴とする請求項;!〜 3のいずれか 1つに記載の感度補正方法。
[5] 前記撮像素子の受光面において、前記電荷蓄積部および前記電荷補正部それぞ れの占める面積を前記感光部の占める面積に対して 1/10以下の大きさとすること を特徴とする請求項;!〜 4のいずれか 1つに記載の感度補正方法。
[6] 前記複数の撮像素子を列状に設け、相互に隣接する 2つの撮像素子から成るグノレ ープを形成し、前記グループに含まれる 2つの前記感光部の間に前記電荷補正部を 設けて、相互に隣接する 2つの撮像素子において、 1つの電荷補正部を共有化して 用いることを特徴とする請求項;!〜 5のいずれか 1つに記載の感度補正方法。
[7] 被写体からの光を受光する複数の撮像素子と、前記被写体の像を前記撮像素子 に結像させる光学系とを具備し、前記光学系を通して前記被写体からの光を前記複 数の撮像素子で受光して蓄積した電荷を出力する撮像装置であって、それぞれの前 記撮像素子が、入射光を光電変換する感光部と、前記入射光によって前記感光部 に蓄積された電荷を転送して一時的に蓄積する電荷蓄積部と、該電荷蓄積部に漏 れ込む電荷量を見積もる電荷補正部と、前記それぞれの撮像素子における前記感 光部に蓄積された電荷を転送して前記電荷蓄積部に蓄積された第 1の電荷量を前 記電荷補正部に漏れ込んだ第 2の電荷量で補正する演算手段と、該演算手段によ つて算出された第 3の電荷量を各撮像素子の電荷量として複数の撮像素子について の電荷量を順次出力する出力手段とを具備することを特徴とする撮像装置。
[8] 前記被写体からの光を前記複数の撮像素子で受光して同時に電荷を蓄積した後、 前記複数の撮像素子についての電荷量を順次出力することを特徴とする請求項 7記 載の撮像装置。
[9] 前記撮像部が相補型金属酸化物半導体(CMOS)センサであることを特徴とする 請求項 7または 8記載の撮像装置。
[10] 前記複数の撮像素子は列状に設けられ、相互に隣接する 2つの撮像素子から成る グループを形成したときに、前記グループにおいて前記電荷補正部は、前記グルー プに含まれる 2つの前記感光部の間に 1つだけ設けられ、
前記演算手段は、前記電荷補正部に蓄積される第 2の電荷量で、この電荷補正部 が含まれるグループにおける複数の電荷蓄積部に蓄積された第 1の電荷量を補正 することを特徴とする請求項 7〜9のいずれ力、 1つに記載の撮像装置。
PCT/JP2007/066492 2006-08-25 2007-08-24 Procédé de correction de sensibilité et dispositif imageur WO2008023806A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008530974A JP4620780B2 (ja) 2006-08-25 2007-08-24 感度補正方法および撮像装置
CN2007800316799A CN101507263B (zh) 2006-08-25 2007-08-24 灵敏度修正方法和摄像装置
US12/438,715 US8049796B2 (en) 2006-08-25 2007-08-24 Method of correcting sensitivity and imaging apparatus
EP07806078.7A EP2061235B1 (en) 2006-08-25 2007-08-24 Sensitivity correction method and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-229229 2006-08-25
JP2006229229 2006-08-25

Publications (1)

Publication Number Publication Date
WO2008023806A1 true WO2008023806A1 (fr) 2008-02-28

Family

ID=39106888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066492 WO2008023806A1 (fr) 2006-08-25 2007-08-24 Procédé de correction de sensibilité et dispositif imageur

Country Status (5)

Country Link
US (1) US8049796B2 (ja)
EP (1) EP2061235B1 (ja)
JP (1) JP4620780B2 (ja)
CN (1) CN101507263B (ja)
WO (1) WO2008023806A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175259A (ja) * 2011-02-18 2012-09-10 Olympus Corp 固体撮像装置
US8932783B2 (en) 2008-10-09 2015-01-13 Ceramic Fuel Cells Limited Solid oxide fuel cell or solid oxide fuel cell sub-component and methods of preparing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507263B (zh) * 2006-08-25 2011-04-20 京瓷株式会社 灵敏度修正方法和摄像装置
JP4290209B2 (ja) * 2007-04-05 2009-07-01 三菱電機株式会社 画像表示装置および画像表示方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205034A (ja) * 1995-01-20 1996-08-09 Nissan Motor Co Ltd イメージセンサ
JPH1097617A (ja) 1996-09-24 1998-04-14 Security- Japan:Kk 画像処理システム
JPH1169154A (ja) 1997-08-19 1999-03-09 Canon Inc シェーディング補正方法及び装置
JP2000023044A (ja) * 1998-06-30 2000-01-21 Toshiba Corp 撮像装置
JP2000358142A (ja) 1999-04-12 2000-12-26 Fuji Photo Film Co Ltd 感度補正方法及び画像読取装置
JP2005080062A (ja) 2003-09-02 2005-03-24 Fuji Photo Film Co Ltd デジタルカメラ
JP2005175682A (ja) * 2003-12-09 2005-06-30 Canon Inc 撮像装置
JP2005269339A (ja) 2004-03-19 2005-09-29 Fuji Photo Film Co Ltd 広ダイナミックレンジ固体撮像素子の色シェーディング補正方法および固体撮像装置
JP2005328420A (ja) * 2004-05-17 2005-11-24 Sony Corp 撮像装置および撮像方法
JP2006197383A (ja) * 2005-01-14 2006-07-27 Canon Inc 固体撮像装置、その制御方法及びカメラ
JP2006217410A (ja) * 2005-02-04 2006-08-17 Tohoku Univ 光センサおよび固体撮像装置
JP2006217548A (ja) * 2005-02-07 2006-08-17 Matsushita Electric Ind Co Ltd 固体撮像装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879730B1 (en) * 1999-04-12 2005-04-12 Fuji Photo Film Co., Ltd. Sensitivity correction method and image reading device
JP2003143489A (ja) 2001-11-01 2003-05-16 Victor Co Of Japan Ltd 映像信号発生装置
JP2004056048A (ja) 2002-07-24 2004-02-19 Microsignal Kk 固体撮像素子
JP2004304331A (ja) * 2003-03-28 2004-10-28 Matsushita Electric Ind Co Ltd 固体撮像装置
JP4266726B2 (ja) * 2003-05-30 2009-05-20 キヤノン株式会社 撮像装置
CN101507263B (zh) * 2006-08-25 2011-04-20 京瓷株式会社 灵敏度修正方法和摄像装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205034A (ja) * 1995-01-20 1996-08-09 Nissan Motor Co Ltd イメージセンサ
JPH1097617A (ja) 1996-09-24 1998-04-14 Security- Japan:Kk 画像処理システム
JPH1169154A (ja) 1997-08-19 1999-03-09 Canon Inc シェーディング補正方法及び装置
JP2000023044A (ja) * 1998-06-30 2000-01-21 Toshiba Corp 撮像装置
JP2000358142A (ja) 1999-04-12 2000-12-26 Fuji Photo Film Co Ltd 感度補正方法及び画像読取装置
JP2005080062A (ja) 2003-09-02 2005-03-24 Fuji Photo Film Co Ltd デジタルカメラ
JP2005175682A (ja) * 2003-12-09 2005-06-30 Canon Inc 撮像装置
JP2005269339A (ja) 2004-03-19 2005-09-29 Fuji Photo Film Co Ltd 広ダイナミックレンジ固体撮像素子の色シェーディング補正方法および固体撮像装置
JP2005328420A (ja) * 2004-05-17 2005-11-24 Sony Corp 撮像装置および撮像方法
JP2006197383A (ja) * 2005-01-14 2006-07-27 Canon Inc 固体撮像装置、その制御方法及びカメラ
JP2006217410A (ja) * 2005-02-04 2006-08-17 Tohoku Univ 光センサおよび固体撮像装置
JP2006217548A (ja) * 2005-02-07 2006-08-17 Matsushita Electric Ind Co Ltd 固体撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2061235A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932783B2 (en) 2008-10-09 2015-01-13 Ceramic Fuel Cells Limited Solid oxide fuel cell or solid oxide fuel cell sub-component and methods of preparing same
JP2012175259A (ja) * 2011-02-18 2012-09-10 Olympus Corp 固体撮像装置

Also Published As

Publication number Publication date
US8049796B2 (en) 2011-11-01
EP2061235A4 (en) 2011-05-04
EP2061235B1 (en) 2014-11-19
CN101507263A (zh) 2009-08-12
JP4620780B2 (ja) 2011-01-26
US20100253812A1 (en) 2010-10-07
EP2061235A1 (en) 2009-05-20
JPWO2008023806A1 (ja) 2010-01-14
CN101507263B (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
US6750437B2 (en) Image pickup apparatus that suitably adjusts a focus
US7999866B2 (en) Imaging apparatus and processing method thereof
KR102337317B1 (ko) 고체 촬상 장치 및 그 구동 방법, 및 전자 기기
JP6041495B2 (ja) 撮像装置及び欠陥画素の判定方法
EP2161919B1 (en) Read out method for a CMOS imager with reduced dark current
US20020025164A1 (en) Solid-state imaging device and electronic camera and shading compensation method
US8451350B2 (en) Solid-state imaging device, camera module, and imaging method
WO2016027397A1 (ja) 固体撮像装置及びカメラ
JP2007184840A (ja) 固体撮像素子及びこれを用いた電子カメラ
US20060125945A1 (en) Solid-state imaging device and electronic camera and shading compensaton method
JP6024102B2 (ja) 撮像装置
JP4620780B2 (ja) 感度補正方法および撮像装置
US7349015B2 (en) Image capture apparatus for correcting noise components contained in image signals output from pixels
JP2014165778A (ja) 固体撮像素子、撮像装置及び焦点検出装置
JP2008306565A (ja) 撮像装置及びその信号補正方法
JP3977342B2 (ja) 固体撮像装置の設計方法及び撮像システム
JP5058840B2 (ja) 撮像装置
JP5720213B2 (ja) 撮像装置
WO2018124056A1 (ja) 撮像装置及びその制御方法
JP4703529B2 (ja) シェーディング補正方法および撮像装置
JP4542063B2 (ja) 固体撮像装置およびそれを用いた撮像システム
JP2016167886A (ja) 画像処理装置及び画像処理方法
JP4659641B2 (ja) 感度補正方法および撮像装置
JP2015005880A (ja) 撮像素子および撮像装置
JP4370977B2 (ja) 撮像装置及び撮像方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780031679.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806078

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008530974

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12438715

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007806078

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU