WO2008015749A1 - Dispositif d'ascenseur - Google Patents

Dispositif d'ascenseur Download PDF

Info

Publication number
WO2008015749A1
WO2008015749A1 PCT/JP2006/315393 JP2006315393W WO2008015749A1 WO 2008015749 A1 WO2008015749 A1 WO 2008015749A1 JP 2006315393 W JP2006315393 W JP 2006315393W WO 2008015749 A1 WO2008015749 A1 WO 2008015749A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
force
speed
brake
braking
Prior art date
Application number
PCT/JP2006/315393
Other languages
English (en)
French (fr)
Inventor
Rikio Kondo
Hiroshi Kigawa
Takaharu Ueda
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2007515720A priority Critical patent/JP5214239B2/ja
Priority to US11/908,851 priority patent/US7931127B2/en
Priority to CN2006800129872A priority patent/CN101163634B/zh
Priority to PCT/JP2006/315393 priority patent/WO2008015749A1/ja
Priority to KR1020077022112A priority patent/KR100973880B1/ko
Priority to EP06782253.6A priority patent/EP2048105A4/en
Publication of WO2008015749A1 publication Critical patent/WO2008015749A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/32Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on braking devices, e.g. acting on electrically controlled brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • the present invention relates to an elevator apparatus having a brake control device that can control a braking force during emergency braking.
  • the deceleration of the force is variably controlled by controlling the current supplied to the brake coil during an emergency stop.
  • a speed command based on an emergency stop speed reference pattern having a predetermined deceleration is output from the speed reference generation unit (see, for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 7-206288
  • the present invention has been made to solve the above-described problems, and prevents the car from reaching the terminal end of the hoistway while preventing excessive deceleration during emergency braking.
  • the purpose is to obtain an elevator apparatus that can be avoided more reliably.
  • An elevator apparatus controls a car, a braking device that brakes the traveling of a force, and a braking device, and performs braking force reduction control that reduces the braking force of the braking device during emergency braking of the car.
  • the brake control device is equipped with a brake control device that can monitor the running state of the car during emergency braking of the car and enable braking force reduction control so that the force stops within a preset allowable stop distance. Switch to disabled.
  • FIG. 1 is a configuration diagram showing an elevator apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing the brake control device of FIG.
  • FIG. 3 is a graph showing changes over time in braking force, deceleration, speed, and car position when deceleration control during emergency braking is performed by the brake control device of FIG.
  • FIG. 4 is a graph showing temporal changes in braking force, speed, and car position when deceleration control during emergency braking is performed by the brake control device for an elevator apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a graph showing temporal changes in braking force, speed, and car position when deceleration control during emergency braking is performed by the brake control device for an elevator apparatus according to Embodiment 3 of the present invention.
  • FIG. 6 is a graph showing temporal changes in braking force, speed, and car position when deceleration control during emergency braking is performed by the brake control device for an elevator apparatus according to Embodiment 4 of the present invention.
  • FIG. 7 is a graph showing an example of conditions for enabling braking reduction control in the brake control device for an elevator apparatus according to Embodiment 5 of the present invention.
  • FIG. 8 is a graph showing an example of conditions for enabling braking reduction control in the brake control device for an elevator apparatus according to Embodiment 6 of the present invention.
  • FIG. 1 is a configuration diagram showing an elevator apparatus according to Embodiment 1 of the present invention.
  • a force 1 and a counterweight 2 are suspended in a hoistway by a main rope (suspension means) 3, and are lifted and lowered in the hoistway by the driving force of the lifting machine 4.
  • the hoisting machine 4 includes a drive sheave 5 around which the main rope 3 is wound, a motor 6 that rotates the drive sheave 5, and a braking means 7 that brakes the rotation of the drive sheave 5.
  • the braking means 7 includes a brake wheel 8 that is rotated integrally with the drive sheave 5, and a brake device 9 that brakes the rotation of the brake wheel 8.
  • a brake drum or a brake disc is used as the brake car 8 .
  • Drive sheave 5, motor 6 and brake car 8 It is provided on the shaft.
  • the brake device 9 includes a plurality of brake shoes 10 that are brought into contact with and separated from the brake car 8, a plurality of brake springs that press the brake shoe 10 against the brake car, and a brake shoe 10 that brakes against the brake springs. It has a plurality of electromagnetic magnets that are separated from the car 8. Each electromagnetic magnet has a brake coil (electromagnetic coil) 11 that is excited when energized.
  • the motor 6 is provided with a hoisting machine encoder 12 as a speed detector that generates a signal corresponding to the rotational speed of its rotating shaft, that is, the rotational speed of the drive sheave 5.
  • a speed governor 13 is installed above the hoistway.
  • the governor 13 has a governor sheave 14 and a governor encoder 15 that generates a signal corresponding to the rotational speed of the governor sheave 14.
  • a governor rope 16 is wound around the governor sheave 14. Both ends of the governor rope 16 are connected to the operation mechanism of the emergency stop device mounted on the car 1. The lower end of the governor rope 16 is hung on a tension wheel 17 arranged at the lower part of the hoistway.
  • the driving of the hoisting machine 4 is controlled by the elevator control device 18.
  • the raising and lowering of the car 1 is controlled by the elevator controller 18.
  • the brake device 9 is controlled by a brake control device 19. Signals from the elevator control device 18 and the lifting machine encoder 12 are input to the brake control device 19.
  • FIG. 2 is a block diagram showing the brake control device 19 of FIG.
  • the brake control device 19 includes a command generation unit 21, a safety determination unit 22, a first safety relay 23, and a second safety relay 24.
  • the command generation unit 21 generates a brake device based on the signal S1 from the elevator control device 18. Determine whether device 9 is in emergency braking.
  • the command generator 21 detects (calculates) the car speed and the car deceleration based on the signal S2 from the lifting machine encoder 12. Furthermore, the command generation unit 21 generates a command to be given to the brake device 9 according to the car deceleration (or the car speed) when the brake device 9 is in an emergency braking state. That is, the brake control device 19 can perform a braking force reduction control for reducing the braking force of the brake device 9 in order to prevent an excessive deceleration from occurring during emergency braking.
  • the safety determination unit 22 determines whether or not the brake device 9 is in an emergency braking state.
  • the safety judgment unit 22 monitors the traveling state of the car 1 based on the signal S2 from the lifting machine encoder 12 during emergency braking so that the car 1 stops within the preset allowable stopping distance. Switches the braking force reduction control between valid and invalid.
  • the safety judgment unit 22 detects and monitors the car deceleration as the traveling state of the car 1.
  • opening and closing of the first and second safety relays 23, 24 are controlled by the safety judgment unit 22.
  • the first and second safety relays 23 and 24 are opened and closed in synchronization with each other.
  • the braking force reduction control by the command generation unit 21 becomes effective.
  • a brake command and a brake release command are selectively output to the brake coil 11 according to the car deceleration (or the force speed).
  • the first and second safety relays 23 and 24 correspond to the two brake coils 11 shown in FIG.
  • the brake release command in the braking force reduction control at the time of emergency braking is a command for reducing the braking force by the brake device 9 to some extent, not the command for completely releasing the brake device 9.
  • the braking force for decelerating the brake vehicle 8 is controlled by turning on and off a switch for applying a voltage to the brake coil 11 at a predetermined switching duty.
  • the safety determination unit 22 turns on the first and second safety relays 23 and 24.
  • the braking force reduction control is enabled, otherwise the first and second safety relays 23, 24 are opened and the braking force reduction control is disabled. Even if the safety relays 23, 24 are released during the braking force reduction control, if it is determined that the stop within the allowable stop distance is possible, the safety relays 23, 24 May be closed again.
  • the functions of the command generation unit 21 and the safety determination unit 22 are realized by one or a plurality of microcomputers. That is, the microcomputer of the brake control device 19 stores a program for realizing the functions of the command generation unit 21 and the safety determination unit 22.
  • FIG. 3 is a graph showing changes over time in braking power, deceleration, speed, and car position when deceleration control during emergency braking is performed by the brake control device 19 in FIG.
  • a broken line L1 indicates a case where the load weight is small in the descending operation or a case where the load weight is large in the ascending operation.
  • the alternate long and short dash line L3 indicates a case where the loaded weight is large in the descending operation and a case where the loaded weight is small in the ascending operation.
  • the solid line L2 shows the case where the weight on the car 1 side and the weight on the counterweight 2 side are balanced, with the load weight being about halfway between L1 and L3 regardless of the direction of operation.
  • the distance from the start of the emergency braking operation to the stop is the longest (dashed line L3).
  • the force 1 is designed so that it can stop without reaching the end of the hoistway. Therefore, even if the braking force reduction control is performed in the vicinity of the terminal floor, if the car 1 is stopped at a distance shorter than the longest stop distance, the arrival of the car 1 at the end of the hoistway is avoided.
  • the safety judgment unit 22 monitors the car deceleration and determines whether or not the vehicle can be stopped within the allowable stopping distance. Open and close all relays 23 and 24.
  • the safety relays 23 and 24 are closed and controlled only when the car deceleration is larger than the reference deceleration ⁇ 1 in Fig. 3. Enable power reduction control. Thereby, the force deceleration is always maintained at a value larger than the reference deceleration ⁇ 1, and the force 1 can be safely stopped.
  • This reference deceleration ex 1 must be a value greater than at least the maximum deceleration when the stop distance is the longest. If the value is smaller than that value, the braking force will be reduced even when the stopping distance is the longest.Assuming that there will be an event that makes it impossible to stop at the longest stopping distance! Become.
  • the reference deceleration OC 1 is set to a value smaller than the target deceleration a 0 during the braking force reduction control.
  • the brake control device 19 monitors the running state of the force 1 during the emergency braking of the car 1, and performs braking force reduction control so that the car 1 stops within the allowable stopping distance. By switching between valid and invalid, it is possible to more reliably avoid the force 1 from reaching the end of the hoistway while preventing excessive deceleration during emergency braking.
  • the brake control device 19 monitors the car deceleration as the traveling state of the car 1, and makes the braking force reduction control effective when the car deceleration is larger than the reference deceleration ⁇ 1, so comparatively simple control is possible. Therefore, it is possible to more reliably avoid the force 1 from reaching the end of the hoistway.
  • FIG. 4 is a graph showing temporal changes in braking force, speed, and car position when deceleration control during emergency braking is performed by the brake control device 19 of an elevator apparatus according to Embodiment 2 of the present invention.
  • the brake control device 19 monitors the car speed and the time from the occurrence of the emergency stop command as the running state of the car 1.
  • brake The control device 19 activates the braking force reduction control by closing the safety relays 23 and 24 only when the brake device 9 is in an emergency braking state and the force speed in FIG. 4 is within the hatched permission area.
  • Other configurations and operations are the same as those in the first embodiment.
  • a solid line L1 in the figure indicates a change in the state quantity when the stop distance is the longest. Therefore, if the car 1 is stopped at a distance shorter than the stopping distance of the solid line L1, the car 1 can be stopped before reaching the end of the hoistway.
  • Boundary line (reference speed change curve) of the permitted area for enabling the braking force reduction control L2 is the speed change when the car 1 is emergency stopped without braking force reduction control in a certain loading state. It is a curve.
  • the safety judgment unit 22 opens the safety relays 23 and 24.
  • the hatched permitted area lower than the boundary line L2 cannot be entered unless it is in a state where it is easier to stop than in this loaded state. Therefore, when the braking force reduction control is performed within the permitted area and the state force boundary line L2 is exceeded, the velocity curve that maximizes the stopping distance of the point force on the boundary line L2 defines the boundary line L2. It can be calculated assuming the loaded weight.
  • the boundary line L2 is determined so that the speed curve of any point force on the boundary line L2 is at a lower speed than the speed curve L1 with the longest stopping distance.
  • the force 1 can be stopped within the allowable stop distance by enabling the braking force reduction control only when the relationship between the force speed and the time is within the hatched permission region.
  • Embodiment 2 is based on the premise that the loading state of the force 1 is not divided, it is acceptable even if the relationship between the loading state of the car 1 and the traveling direction is the condition where the stopping distance is the longest.
  • Safety relays 23 and 24 are controlled to stop the car 1 within the stopping distance. Therefore, if the force 1 is easy to decelerate, for example, the speed curves of point A and point B in FIG. 4 are the solid line L5 and the broken line L6, respectively, and there is sufficient margin between the solid line L1. Exists. Therefore, if it can be understood that the force 1 is in a state where it is easy to decelerate, the permitted area can be expanded to the solid line L1 side.
  • FIG. 5 is a graph showing temporal changes in braking force, speed, and car position when deceleration control during emergency braking is performed by the brake control device 19 of an elevator apparatus according to Embodiment 3 of the present invention.
  • the safety judging unit 22 judges whether or not the car 1 is in a state where it is easy to decelerate based on the information on the scale device power and the traveling direction of the car 1.
  • the load 1 is easy to decelerate, such as when the load weight is small during descending operation or when the load weight is large during ascending operation, the reference speed change curve is changed from the boundary line L2 to the boundary line L7. Extend the permitted area.
  • the brake control device 19 closes and controls the safety relays 23 and 24 only when the brake device 9 is in an emergency braking state and the relationship between the car speed and the time in FIG. Enable power reduction control. However, if it is determined that the force 1 is in a state of being easily decelerated, the safety relays 23 and 24 are closed even when the relationship between the force speed and the time is in the shaded area. Thus, the braking force reduction control is validated. As a result, the car 1 can be stopped within the allowable stopping distance. That is, in addition to the shaded area, the shaded area is the permitted area.
  • Boundary line L7 appears to be at a lower speed than the speed curve L1 with the longest stop distance in the cruising speed of car 1 to which boundary line L7 is applied. Determined.
  • the boundary line L7 has a speed change curve that is always lower than the solid line L1 when the reference point is determined at each time point, such as point C and point D, and the speed change curve is drawn.
  • the speed can be determined by a set of points.
  • the change of the permission area may be changed step by step by determining the ease of deceleration of the car 1 step by step or may be changed continuously.
  • FIG. 6 is a graph showing temporal changes in braking force, speed, and car position when deceleration control during emergency braking is performed by the brake control device 19 of an elevator apparatus according to Embodiment 4 of the present invention.
  • the safety judgment unit 22 monitors whether or not the force 1 is in a decelerating state, and the relationship between the force speed and the time that the force 1 is in the decelerating state is within the hatched permission area of FIG. Only when the theoretical product with a certain condition is true, the safety relays 23 and 24 are closed to enable the braking force reduction control.
  • the boundary line L2 of the permission area is the safety relay 23, 24 when the state force in which the braking force reduction control is performed in the permission area also exceeds the boundary line L2. It is necessary to determine that the car 1 can be stopped within the allowable stopping distance if is opened.
  • the safety relay since the braking force is working even if 23, 24 are closed, it is not necessary to consider the idle time of car 1 due to the brake gap when calculating the longest stop distance.
  • the relationship between the load weight and traveling direction of the car 1 is such that the car 1 is decelerated.
  • the idle time due to the brake gap may decelerate without braking force, so it is necessary to consider the idle time of car 1 when calculating the longest stop distance.
  • the stopping distance may be the longest because the weight on the force 1 side and the counterweight 2
  • the stopping distance may be the longest because the weight on the force 1 side and the counterweight 2
  • broken lines L4 and L6 extending from point E and point F are forced to stop without considering idle time in a state where the force due to imbalance works most in the direction of accelerating force 1 Is a velocity curve.
  • safety relays 23 and 24 are opened at time T11, and braking is generated at time T12.
  • safety relays 23 and 24 are opened at time T13, and braking force is generated at time T14.
  • the boundary line L2 When the boundary line L2 is drawn by changing the reference time for a speed curve that may have the longest stopping distance, the line is more than the solid line L1 at each time. This is a set of points where the reference speed is the maximum among those that always change at a low speed. Therefore, when the boundary line L2 is exceeded, the safety relays 23 and 24 are opened to forcibly stop, whereby the car 1 is stopped within the allowable stop distance.
  • the car speed, the time of force when an emergency stop command is generated, and whether the car 1 is in a decelerating state are monitored, and the condition that the car 1 is in a decelerating state and the force Since the braking force reduction control is effective when the theoretical product with the condition that the relationship between speed and time is within the permitted area (shaded area in Fig. 6) becomes true, the braking force reduction control is implemented.
  • the allowable range of possible speed and time relationships can be expanded compared to the second embodiment.
  • the permitted range of speed and time at which the braking force reduction control can be performed is further expanded than that of the fourth embodiment. Can do.
  • the ease of deceleration of the car 1 is monitored in consideration of the monitoring items of the fourth embodiment. If it is determined that the force 1 is likely to decelerate, the reference speed change curve is shifted to the solid line L1 side to extend the permitted area, and the force speed is the shaded area in FIG. Even when in the range, the safety relays 23 and 24 are closed to enable the braking force reduction control.
  • Embodiment 5 as the running state of the car 1, the car speed and the car position (remaining distance) are monitored.
  • FIG. 7 is a graph showing an example of conditions for enabling braking force reduction control in the brake control device 19 of an elevator apparatus according to Embodiment 5 of the present invention.
  • the vertical axis indicates the cage speed
  • the horizontal axis indicates the remaining distance to the allowable stop position.
  • the safety judgment unit 22 closes the safety relays 23 and 24 and activates the braking force reduction control only when the relationship between the remaining distance and the car speed is within the hatched permission area in the figure.
  • broken lines L2, L3, and L4 in FIG. 7 are speed curves when the vehicle is forcibly stopped from the G point, the H point, and the J point in the loading state where the stop distance is the longest.
  • the boundary L1 of the permitted area is set so that the speed becomes zero before the remaining distance becomes zero whenever a forced stop is performed from that state.
  • the boundary line L1 is defined by a set of points of the maximum speed at which stopping is possible within the allowable stopping distance for the state where each remaining distance is in the loaded state where the stopping distance is longest.
  • the command speed generated by the elevator control device 18 is determined so that the speed becomes 0 at the stop floor. Therefore, assuming that the stop floor is the end floor, the relationship between the time change of the command speed and the car position is estimated. The minimum remaining distance to the end of the descending road is estimated, and the remaining distance is reached to the allowable stop position. The distance can also be In this case, however, the actual car speed must appropriately follow the command speed.
  • the normal elevator apparatus has a braking ability that allows the car 1 to stop before reaching the end of the hoistway even in a loaded state where the stop distance is longest. If the longest stop distance at the speed at the start of the emergency braking operation is the remaining distance at that time, the force 1 that does not reach the end of the hoistway can be stopped.
  • the remaining distance ⁇ can be obtained by the following integral equation together with the time tO required for stopping.
  • the variables and constants are based on the car 1, and the total converted inertial quantity of the elevator device is m, the car acceleration is a (t), the braking force by the brake device 9 is F (t), the car The maximum acceleration force when the weight difference between the 1 side and the counterweight 2 side is the maximum is F2, and the speed at the start of the emergency braking operation is ⁇ .
  • the braking force by the brake device 9 is designed with a margin for the allowable stop distance, a remaining distance with a margin for the allowable stop position will be required.
  • FIG. 8 is a graph showing an example of conditions for enabling braking force reduction control in the brake control device 19 of an elevator apparatus according to Embodiment 6 of the present invention.
  • the ease of deceleration of the car 1 is monitored as shown in the third embodiment. If it is determined that the force 1 is likely to decelerate, the permitted area is expanded to the shaded area in FIG. 8, and the relationship between the force speed and the remaining distance is in the shaded area in FIG.
  • the safety relays 23 and 24 are closed to enable the braking force reduction control.
  • the boundary LI 1 of the permitted area at this time is based on the set of points of the maximum speed that can be stopped within the allowable stopping distance with respect to the state having each remaining distance in the grasped loading state. Determined.
  • the permitted range for the speed and remaining distance at which the braking force reduction control can be performed can be further expanded as compared with the fifth embodiment.
  • the emergency braking state is made based on the signal from the elevator control device 18, but the emergency is independently performed by the brake control device regardless of the signal from the elevator control device.
  • the determination of the braking state may be performed.
  • the emergency braking state may be determined by detecting the approach or contact of the brake shoe to the brake vehicle.
  • the current value of the brake coil is less than the predetermined value even though the force speed is equal to or greater than the predetermined value, it may be determined that the emergency braking state is set.
  • the car speed, the car deceleration, the car position, and the like were obtained using the signal from the hoisting machine encoder 12, but for example, mounted on the governor encoder 15 or the force cage. You may use the signal of other sensor powers, such as an acceleration sensor and a position sensor.
  • the safety determination unit 22 may be configured to open and close the safety relays 23 and 24.
  • the command generation / stop command may be given from the force safety determination unit 22 to the command generation unit 21.
  • safety judgment unit 22 and the command generation unit 21 may be configured separately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Description

エレベータ装置
技術分野
[0001] この発明は、非常制動時の制動力を制御可能なブレーキ制御装置を有するエレべ ータ装置に関するものである。
背景技術
[0002] 従来のエレベータ装置では、非常停止時に、ブレーキコイルへの通電電流を制御 することにより、力ごの減速度が可変制御される。非常停止時には、所定の減速度を 持つ非常停止用速度基準パターンに基づく速度指令が速度基準発生部から出力さ れる (例えば、特許文献 1参照)。
[0003] 特許文献 1 :特開平 7— 206288号公報
発明の開示
発明が解決しょうとする課題
[0004] 上記のような従来のエレベータ装置では、非常停止時にかご減速度を制御する場 合の停止距離の変化について考慮されていないため、万一、速度基準パターンから の誤差が大きくなつた場合や、制御機能自体が適正に働力な力つた場合などには、 停止距離が許容停止距離を超え、カゝごが昇降路終端部に突入する恐れがあった。
[0005] この発明は、上記のような課題を解決するためになされたものであり、非常制動時 に過大な減速度が発生するのを防止しつつ、かごの昇降路終端部への到達をより確 実に回避することができるエレベータ装置を得ることを目的とする。
課題を解決するための手段
[0006] この発明によるエレベータ装置は、かご、力ごの走行を制動するブレーキ装置、及 びブレーキ装置を制御するとともに、かごの非常制動時にブレーキ装置の制動力を 低減させる制動力低減制御を実施可能なブレーキ制御装置を備え、ブレーキ制御 装置は、かごの非常制動時に、かごの走行状態を監視し、予め設定された許容停止 距離内で力ごが停止するように制動力低減制御の有効 ·無効を切り換える。
図面の簡単な説明 [0007] [図 1]この発明の実施の形態 1によるエレベータ装置を示す構成図である。
[図 2]図 1のブレーキ制御装置を示すブロック図である。
[図 3]図 2のブレーキ制御装置により非常制動時の減速制御を行った場合の制動力、 減速度、速度及びかご位置の時間変化を示すグラフである。
[図 4]この発明の実施の形態 2によるエレベータ装置のブレーキ制御装置により非常 制動時の減速制御を行った場合の制動力、速度及びかご位置の時間変化を示すグ ラフである。
[図 5]この発明の実施の形態 3によるエレベータ装置のブレーキ制御装置により非常 制動時の減速制御を行った場合の制動力、速度及びかご位置の時間変化を示すグ ラフである。
[図 6]この発明の実施の形態 4によるエレベータ装置のブレーキ制御装置により非常 制動時の減速制御を行った場合の制動力、速度及びかご位置の時間変化を示すグ ラフである。
[図 7]この発明の実施の形態 5によるエレベータ装置のブレーキ制御装置における制 動力低減制御の有効化条件の一例を示すグラフである。
[図 8]この発明の実施の形態 6によるエレベータ装置のブレーキ制御装置における制 動力低減制御の有効化条件の一例を示すグラフである。
発明を実施するための最良の形態
[0008] 以下、この発明の好適な実施の形態について図面を参照して説明する。
実施の形態 1.
図 1はこの発明の実施の形態 1によるエレベータ装置を示す構成図である。図にお いて、力ご 1及び釣合おもり 2は、主索 (懸架手段) 3により昇降路内に吊り下げられて おり、卷上機 4の駆動力により昇降路内を昇降される。卷上機 4は、主索 3が巻き掛け られた駆動シーブ 5、駆動シーブ 5を回転させるモータ 6、及び駆動シーブ 5の回転を 制動する制動手段 7を有して 、る。
[0009] 制動手段 7は、駆動シーブ 5と一体に回転されるブレーキ車 8と、ブレーキ車 8の回 転を制動するブレーキ装置 9とを有している。ブレーキ車 8としては、ブレーキドラム又 はブレーキディスク等が用いられる。駆動シーブ 5、モータ 6及びブレーキ車 8は、同 軸上に設けられている。
[0010] ブレーキ装置 9は、ブレーキ車 8に接離される複数のブレーキシュ一 10と、ブレーキ シユー 10をブレーキ車に押し付ける複数のブレーキばねと、ブレーキばねに逆らつ てブレーキシュ一 10をブレーキ車 8から開離させる複数の電磁マグネットとを有して いる。各電磁マグネットは、通電することにより励磁されるブレーキコイル (電磁コイル ) 11を有している。
[0011] ブレーキコイル 11に電流を流すことにより、電磁マグネットが励磁され、ブレーキ装 置 9の制動力を解除するための電磁力が発生して、ブレーキシュ一 10がブレーキ車 8から開離される。また、ブレーキコイル 11への通電を遮断することにより、電磁マグ ネットの励磁が解除され、ブレーキばねのばね力によりブレーキシュ一 10がブレーキ 車 8に押し当てられる。さらに、ブレーキコイル 11に流れる電流値を制御することによ り、ブレーキ装置 9の開放の度合いを制御することができる。
[0012] モータ 6には、その回転軸の回転速度、即ち駆動シーブ 5の回転速度に応じた信 号を発生する速度検出器としての卷上機エンコーダ 12が設けられている。
[0013] 昇降路の上部には、調速機 13が設置されている。調速機 13は、調速機シーブ 14 と、調速機シーブ 14の回転速度に応じた信号を発生する調速機エンコーダ 15とを 有している。調速機シーブ 14には、調速機ロープ 16が巻き掛けられている。調速機 ロープ 16の両端部は、かご 1に搭載された非常止め装置の操作機構に接続されて いる。調速機ロープ 16の下端部は、昇降路の下部に配置された張り車 17に卷き掛 けられている。
[0014] 卷上機 4の駆動は、エレベータ制御装置 18によって制御される。即ち、かご 1の昇 降は、エレベータ制御装置 18によって制御される。ブレーキ装置 9は、ブレーキ制御 装置 19によって制御される。ブレーキ制御装置 19には、エレベータ制御装置 18及 び卷上機エンコーダ 12からの信号が入力される。
[0015] 図 2は図 1のブレーキ制御装置 19を示すブロック図である。ブレーキ制御装置 19は 、指令生成部 21、安全判断部 22、第 1の安全リレー 23及び第 2の安全リレー 24を有 している。
[0016] 指令生成部 21は、エレベータ制御装置 18からの信号 S1に基づいて、ブレーキ装 置 9が非常制動状態であるかどうかを判定する。また、指令生成部 21は、卷上機ェン コーダ 12からの信号 S2に基づいて、かご速度及びかご減速度を検出(算出)する。 さらに、指令生成部 21は、ブレーキ装置 9が非常制動状態のとき、かご減速度 (又は かご速度)に応じてブレーキ装置 9に与える指令を生成する。即ち、ブレーキ制御装 置 19は、非常制動時に、過大な減速度が生じるのを防止するためにブレーキ装置 9 の制動力を低減させる制動力低減制御を実施可能である。
[0017] 安全判断部 22は、エレベータ制御装置 18からの信号 S1に基づいて、ブレーキ装 置 9が非常制動状態であるかどうかを判定する。また、安全判断部 22は、非常制動 時に、卷上機エンコーダ 12からの信号 S2に基づいてかご 1の走行状態を監視し、予 め設定された許容停止距離内でかご 1が停止するように制動力低減制御の有効-無 効を切り換える。実施の形態 1では、安全判断部 22は、カゝご 1の走行状態としてかご 減速度を検出し監視する。
[0018] また、第 1及び第 2の安全リレー 23, 24の開閉は、安全判断部 22により制御される 。第 1及び第 2の安全リレー 23, 24は、互いに同期して開閉される。第 1及び第 2の 安全リレー 23, 24が閉成されることにより、指令生成部 21による制動力低減制御が 有効になる。制動力低減制御が有効である場合、かご減速度 (又は力ご速度)に応じ て、ブレーキ指令及びブレーキ解放指令が選択的にブレーキコイル 11に出力される 。第 1及び第 2の安全リレー 23, 24は、図 1の 2つのブレーキコイル 11にそれぞれ対 応している。
[0019] ここで、非常制動時の制動力低減制御におけるブレーキ解放指令は、ブレーキ装 置 9を完全解放させるための指令ではなぐブレーキ装置 9による制動力をある程度 低減させる指令である。具体的には、例えば、ブレーキコイル 11に電圧を印加するた めのスィッチを、所定のスイッチングデューティで ONZOFFすることにより、ブレーキ 車 8を減速する制動力が制御される。
[0020] また、第 1及び第 2の安全リレー 23, 24が開放されることにより、指令生成部 21によ る制動力低減制御は無効になる。制動力低減制御が無効である場合、指令生成部 2 1での演算結果によらず、ブレーキコイル 11への通電は遮断され、全制動力がブレ ーキ車 8にかかる。 [0021] 安全判断部 22は、ブレーキ装置 9が非常制動状態であり、かつ許容停止距離内で の停止が可能であると判断された場合に、第 1及び第 2の安全リレー 23, 24を閉成し 、制動力低減制御を有効とし、それ以外の場合は、第 1及び第 2の安全リレー 23, 24 を開放し、制動力低減制御を無効とする。なお、制動力低減制御の途中で安全リレ 一 23, 24がー且開放された後であっても、許容停止距離内での停止が可能となった と判断されれば、安全リレー 23, 24を再度閉成してもよい。
[0022] ここで、指令生成部 21及び安全判断部 22の機能は、 1つ又は複数のマイクロコン ピュータにより実現される。即ち、ブレーキ制御装置 19のマイクロコンピュータには、 指令生成部 21及び安全判断部 22の機能を実現するためのプログラムが格納されて いる。
[0023] 図 3は図 2のブレーキ制御装置 19により非常制動時の減速制御を行った場合の制 動力、減速度、速度及びかご位置の時間変化を示すグラフである。図中、破線 L1は 、下降運行で積載重量が小さい場合や、上昇運行で積載重量が大きい場合を示し ている。また、一点鎖線 L3は、 L1とは逆に、下降運行で積載重量が大きい場合や上 昇運行で積載重量が小さい場合を示している。さらに、実線 L2は、運行方向に関係 なぐ L1と L3との中間程度の積載重量で、かご 1側の重量と釣合おもり 2側の重量と が均衡する場合を示して 、る。
[0024] 時刻 T1に非常停止指令が発生すると、制動力は時刻 T2に発生する。即ち、非常 制動時には、モータ 6への通電も遮断されるため、非常停止指令が発生してから実 際に制動力が発生するまで (ブレーキシュ一 10がブレーキ車 8に当接するまで)の間 には、力ご 1側の重量と釣合おもり 2側の重量とのアンバランスによって、かご 1がカロ 速される場合 (一点鎖線 L3)と、かご 1が減速される場合 (破線 L1)とがある。
[0025] エレベータ装置にぉ 、ては、制動力低減制御を行わなければ、非常制動動作を開 始してから停止するまでの距離 (停止距離)が最長の場合 (一点鎖線 L3)であっても 、力ご 1が昇降路終端部に到達することなく停止できるように設計されている。従って 、終端階付近で制動力低減制御を行っても、最長の停止距離よりも短い距離でかご 1を停止させれば、力ご 1の昇降路終端部への到達は回避される。この例では、安全 判断部 22は、カゝご減速度を監視して許容停止距離内での停止の可否を判定し、安 全リレー 23, 24を開閉する。
[0026] かご減速度を基準として安全リレー 23, 24の開閉を判断する場合、かご減速度が 図 3の基準減速度 α 1よりも大きい場合にのみ安全リレー 23, 24を閉成して制動力 低減制御を有効化する。これにより、力ご減速度が常に基準減速度 α 1よりも大きい 値に保たれ、力ご 1を安全に停止させることができる。
[0027] この基準減速度 ex 1は、少なくとも停止距離が最長となる場合の最大減速度よりも 大きな値としなければならない。仮にその値よりも小さい値にすると、停止距離が最長 となる場合にも制動力を低減させてしま ヽ、想定して!/ヽる最長停止距離で停止できな くなる事象が起こり得ることになる。また、基準減速度 OC 1は、制動力低減制御中の目 標減速度 a 0よりも小さい値に設定されるのは勿論である。
[0028] 具体的には、基準減速度 (X 1は、かご 1を基準とした場合のエレベータ装置の全換 算慣性質量を m、ブレーキ装置 9による制動力の最大値を Fl、かご 1側と釣合おもり 2側との重量差が最大となる場合の最大の加速力を F2とすると、次式力 求められる a l = (Fl - F2) /m
[0029] このようなエレベータ装置では、ブレーキ制御装置 19が、かご 1の非常制動時に、 力ご 1の走行状態を監視し、許容停止距離内でかご 1が停止するように制動力低減 制御の有効,無効を切り換えるので、非常制動時に過大な減速度が発生するのを防 止しつつ、力ご 1の昇降路終端部への到達をより確実に回避することができる。 また、ブレーキ制御装置 19は、かご 1の走行状態としてかご減速度を監視し、かご 減速度が基準減速度 α 1よりも大きいときに制動力低減制御を有効とするので、比較 的簡単な制御により、力ご 1の昇降路終端部への到達をより確実に回避することがで きる。
[0030] 実施の形態 2.
次に、図 4はこの発明の実施の形態 2によるエレベータ装置のブレーキ制御装置 1 9により非常制動時の減速制御を行った場合の制動力、速度及びかご位置の時間変 化を示すグラフである。実施の形態 2では、ブレーキ制御装置 19は、かご 1の走行状 態として、かご速度と非常停止指令発生からの時間とを監視する。そして、ブレーキ 制御装置 19は、ブレーキ装置 9が非常制動状態であり、かつ図 4の力ご速度が斜線 の許可領域内にあるときのみ安全リレー 23, 24を閉成して制動力低減制御を有効 化する。他の構成及び動作は、実施の形態 1と同様である。
[0031] 図中の実線 L1は、停止距離が最長となる場合の状態量の変化を示している。従つ て、実線 L1の停止距離よりも短い距離でかご 1を停止させれば、昇降路終端部に到 達する前にかご 1を停止させることができる。
[0032] 制動力低減制御を有効化する許可領域の境界線 (基準速度変化曲線) L2は、ある 一定の積載状態で制動力低減制御を実施せずにかご 1を非常停止した場合の速度 変化曲線である。力ご速度がこの境界線 L2を超えると、安全判断部 22は安全リレー 23, 24を開放する。境界線 L2よりも低い斜線の許可領域には、この積載状態よりも 停止し易い状態になければ入り得ない。従って、許可領域内で制動力低減制御を実 施して 、る状態力 境界線 L2を超えた場合、境界線 L2上の点力 の停止距離が最 大となる速度曲線は、境界線 L2を定めた積載重量を想定して算出できる。
[0033] 仮に、力ご速度が A点で境界線 L2上に達したとすると、時刻 T3に安全リレー 23, 2 4が開放され制動力低減制御が無効化される(強制停止指令)。そして、時刻 T4に 制動力が発生する。この場合の速度曲線は、実線 L3となる。
[0034] また、力ご速度が B点で境界線 L2上に達したとすると、時刻 T5で安全リレー 23, 2 4が開放され制動力低減制御が無効化される(強制停止指令)。そして、時刻 T6に 制動力が発生する。この場合の速度曲線は、破線 L4となる。
[0035] このような停止距離が最長となるような速度曲線を算出するときには、制動力が発 生するまでの空走時間も考慮する必要がある。境界線 L2は、境界線 L2上のどの点 力 の速度曲線も、停止距離が最長となる速度曲線 L1よりも低い速度にあるように定 められる。そして、力ご速度と時間との関係が斜線の許可領域内にある場合にのみ 制動力低減制御を有効化することにより、力ご 1を許容停止距離内で停止させること ができる。
[0036] このようなエレベータ装置では、力ごの走行状態として、かご速度と非常停止指令 が発生して力もの時間とを監視し、力ご速度と時間との関係が許可領域内にあるとき に制動力低減制御を有効とするようにしたので、非常制動時に過大な減速度が発生 するのを防止しつつ、かご 1の昇降路終端部への到達をより確実に回避することがで きる。
[0037] 実施の形態 3.
次に、この発明の実施の形態 3について説明する。
実施の形態 2は、力ご 1の積載状態が分力つていないことを前提としているため、か ご 1の積載状態と走行方向との関係が停止距離を最長とする条件であっても許容停 止距離内にかご 1を停止させるように安全リレー 23, 24が制御される。このため、力ご 1が減速し易い状態であれば、例えば、図 4の A点及び B点力 の速度曲線は、それ ぞれ実線 L5及び破線 L6となり、実線 L1との間に十分な余裕が存在する。従って、 力ご 1が減速し易い状態であることが把握できれば、許可領域を実線 L1側に拡張す ることがでさる。
[0038] 図 5はこの発明の実施の形態 3によるエレベータ装置のブレーキ制御装置 19により 非常制動時の減速制御を行った場合の制動力、速度及びかご位置の時間変化を示 すグラフである。安全判断部 22は、秤装置力もの情報とかご 1の走行方向とに基づ いて、カゝご 1が減速し易い状態であるかどうかを判断する。そして、下降運行で積載 重量が小さい場合や、上昇運行で積載重量が大きい場合など、力ご 1が減速し易い 状態である場合、基準速度変化曲線を境界線 L2から境界線 L7に変更し、許可領域 を拡張する。
[0039] 仮に、力ご速度が C点で境界線 L7上に達したとすると、時刻 T7に安全リレー 23, 2 4が開放され制動力低減制御が無効化される(強制停止指令)。そして、時刻 T8に 制動力が発生する。この場合の速度曲線は、実線 L8となる。
[0040] また、力ご速度が D点で境界線 L7上に達したとすると、時刻 T9で安全リレー 23, 2 4が開放され制動力低減制御が無効化される(強制停止指令)。そして、時刻 T10に 制動力が発生する。この場合の速度曲線は、破線 L9となる。
[0041] ブレーキ制御装置 19は、ブレーキ装置 9が非常制動状態であり、かつ図 5のかご速 度と時間との関係が斜線の領域にあるときのみ安全リレー 23, 24を閉成して制動力 低減制御を有効化する。但し、力ご 1が減速し易い状態にあると判断された場合には 、力ご速度と時間との関係が網掛けの領域にあるときにも、安全リレー 23, 24を閉成 して制動力低減制御を有効化する。これにより、かご 1を許容停止距離内で停止させ ることができる。即ち、斜線の領域に加えて、網掛けの領域が許可領域となる。
[0042] 境界線 L7は、境界線 L7を適用するかご 1の走行状態において、境界線 L7上のど の点力 の速度曲線も、停止距離が最長となる速度曲線 L1よりも低い速度にあるよう に定められる。即ち、境界線 L7は、各時間において、 C点、 D点のように基準点を決 めて速度変化曲線を引いたときに、その速度変化曲線が実線 L1よりも常に低い速度 で推移するもののうち、速度が最大である点の集合により定めることができる。
[0043] このようなエレベータ装置では、力ご速度と非常停止指令が発生して力 の時間と に加えて、かご 1の減速し易さを監視し、力ご 1の減速し易さに応じて許可領域を変 更するので、力ご 1が減速し易い状態のときには、制動力低減制御を実施可能な速 度及び時間の許可領域を広げることができる。
[0044] このような許可領域の変更は、かご 1の減速し易さを段階的に判定することにより段 階的に変更しても、連続的に変更してもよい。
[0045] 実施の形態 4.
次に、図 6はこの発明の実施の形態 4によるエレベータ装置のブレーキ制御装置 1 9により非常制動時の減速制御を行った場合の制動力、速度及びかご位置の時間変 化を示すグラフである。安全判断部 22は、力ご 1が減速状態にあるかどうかを監視し 、力ご 1が減速状態であるという条件と、力ご速度と時間との関係が図 6の斜線の許可 領域内にあるという条件との理論積が真になる場合にのみ、安全リレー 23, 24を閉 成して制動力低減制御を有効化する。
[0046] 実施の形態 2で述べたように、許可領域の境界線 L2は、許可領域内で制動力低減 制御を実施している状態力も境界線 L2を超えたときに、安全リレー 23, 24を開放す れば、許容停止距離内でかご 1が停止できるように定める必要がある。実施の形態 4 で力ご速度と時間との関係が許可領域内にある場合、かご 1の積載重量及び走行方 向の関係がかご 1を加速させるような状態で減速しているときには、安全リレー 23, 2 4が閉成されていても制動力が働いているため、最長停止距離を算出する際にブレ ーキギャップによるかご 1の空走時間を考慮する必要がない。
[0047] 逆に、かご 1の積載重量及び走行方向の関係がかご 1を減速させるような状態のと きには、ブレーキギャップによる空走時間に、制動力が働かない状態で減速している こともあるため、最長停止距離を算出する際にはかご 1の空走時間を考慮する必要が ある。
[0048] 従って、減速状態にあるところ力 安全リレー 23, 24を開放して強制停止する場合 に、停止距離が最長となる可能性があるのは、力ご 1側の重量と釣合おもり 2側の重 量との不均衡による力が最も力ご 1を加速する方向に働く状態で空走時間を考慮せ ずに停止する場合と、不均衡による力が無い状態で空走時間を考慮せずに停止す る場合とである。
[0049] 図 6において、 E点及び F点から延びている破線 L4、 L6は、不均衡による力が最も 力ご 1を加速する方向に働く状態で空走時間を考慮せずに強制停止するときの速度 曲線である。破線 L4では、時刻 T11に安全リレー 23, 24が開放され、時刻 T12に制 動力が発生している。また、破線 L6では、時刻 T13に安全リレー 23, 24が開放され 、時刻 T14に制動力が発生している。
[0050] 境界線 L2は、これらのような停止距離が最長となる可能性がある速度曲線を、基準 とする時間を変化させて引いた場合に、各時間においてそれらの線が実線 L1よりも 常に低い速度で推移するもののうち、基準とする速度が最大となる点の集合である。 従って、境界線 L2を超えた場合に安全リレー 23, 24を開放して強制停止することに より、カゝご 1は許容停止距離内に停止される。
[0051] このようなエレベータ装置では、かご速度、非常停止指令が発生して力 の時間、 及びかご 1が減速状態にあるかどうかを監視し、かご 1が減速状態であるという条件と 、力ご速度と時間との関係が許可領域 (図 6の斜線の領域)内にあるという条件との理 論積が真になるときに制動力低減制御を有効とするので、制動力低減制御を実施可 能な速度及び時間の関係の許可領域を実施の形態 2よりも広げることができる。
[0052] なお、実施の形態 4の制御方法に実施の形態 3の制御方法を組み合わせることに より、制動力低減制御を実施可能な速度及び時間の許可領域を実施の形態 4よりも さらに広げることができる。この場合、実施の形態 4の監視項目にカ卩えて、かご 1の減 速し易さを監視する。そして、力ご 1が減速し易いと判断される場合には、基準速度 変化曲線を実線 L1側へシフトして許可領域を拡張し、力ご速度が図 6の網掛けの領 域にあるときにも、安全リレー 23, 24を閉成して制動力低減制御を有効化する。
[0053] 実施の形態 5.
次に、この発明の実施の形態 5について説明する。実施の形態 5では、かご 1の走 行状態として、かご速度及びかご位置 (残距離)を監視する。
図 7はこの発明の実施の形態 5によるエレベータ装置のブレーキ制御装置 19にお ける制動力低減制御の有効化条件の一例を示すグラフである。図 7において、縦軸 はカゝご速度、横軸は許容停止位置までの残距離を示している。安全判断部 22は、残 距離とかご速度との関係が図の斜線の許可領域内にある場合にのみ安全リレー 23, 24を閉成し制動力低減制御を有効化する。
[0054] 図 7の破線 L2、 L3、 L4は、停止距離が最長となる積載状態で、 G点、 H点、 J点か ら強制停止するときの速度曲線である。許可領域の境界線 L1は、その状態から強制 停止する場合は常に、残距離が 0となる前に速度が 0となるように定められている。即 ち、境界線 L1は、停止距離が最長となる積載状態で各残距離を持つ状態に対して 許容停止距離内での停止が可能となる最大速度の点の集合により定められている。
[0055] ここで、かご 1を速度指令に従って走行させている場合、エレベータ制御装置 18で 生成される指令速度は停止階で速度が 0となるように定められている。従って、停止 階が終端階であると想定することで、指令速度の時間変化とかご位置との関係力 昇 降路終端部までの最小残距離を推定して、その残距離を許容停止位置までの距離 とすることもできる。但し、この場合、実際のかご速度が指令速度に適正に追従してい ることが必要である。
[0056] これに対して、通常のエレベータ装置では、停止距離が最長となる積載状態にお いても、かご 1が昇降路終端部に到達する前に停止できる制動能力を持っているた め、非常制動動作開始時における速度での最長停止距離をその時点での残距離と すれば、昇降路終端部に到達することなぐ力ご 1を停止させることができる。
[0057] この場合、残距離 χθは、停止までに要する時間 tOとともに、次の積分方程式により 求めることができる。
[数 1]
Figure imgf000014_0001
[数 2] F2to
Figure imgf000014_0002
2m
[0058] ここで、各変数及び定数は、かご 1を基準として、エレベータ装置の全換算慣性質 量を m、かご加速度を a (t)、ブレーキ装置 9による制動力を F (t)、かご 1側と釣合お もり 2側との重量差が最大となる場合の最大の加速力を F2、非常制動動作開始時の 速度を νθとしている。但し、ブレーキ装置 9による制動力が許容停止距離に対して余 裕を持って設計されて ヽる場合、許容停止位置に対して余裕を持った残距離が求め られること〖こなる。
[0059] このようなエレベータ装置では、力ご 1の走行状態として、力ご速度と、昇降路終端 部までの残距離又は許容停止位置までの残距離とを監視し、かご速度と残距離との 関係が予め設定された許可領域内にあるときに制動力低減制御を有効とするので、 非常制動時に過大な減速度が発生するのを防止しつつ、かご 1の昇降路終端部へ の到達をより確実に回避することができる。また、より多くの場合において制動力低減 制御を実施可能とすることができる。
[0060] 実施の形態 6.
次に、図 8はこの発明の実施の形態 6によるエレベータ装置のブレーキ制御装置 1 9における制動力低減制御の有効化条件の一例を示すグラフである。この例では、 実施の形態 5の監視項目に加えて、実施の形態 3に示したようにかご 1の減速し易さ を監視する。そして、力ご 1が減速し易いと判断される場合には、許可領域を図 8の網 掛けの領域まで広げ、力ご速度と残距離との関係が図 8の網掛けの領域にあるときに も、安全リレー 23, 24を閉成して制動力低減制御を有効化する。 [0061] このときの許可領域の境界線 LI 1は、把握された積載状態において、各残距離を 持つ状態に対して許容停止距離内での停止が可能となる最大速度の点の集合によ り定められる。これにより、制動力低減制御を実施可能な速度及び残距離の許可領 域を実施の形態 5よりもさらに広げることができる。
[0062] なお、上記の例では、エレベータ制御装置 18からの信号により非常制動状態であ るかどうかを判定したが、エレベータ制御装置からの信号によらず、ブレーキ制御装 置で独立して非常制動状態の判定を行うようにしてもよい。例えば、ブレーキシュ一 のブレーキ車への接近や接触を検出することにより非常制動状態の判定を行っても よい。また、力ご速度が所定値以上であるにも拘わらずブレーキコイルの電流値が所 定値未満である場合に、非常制動状態であると判定してもよ ヽ。
[0063] また、上記の例では、卷上機エンコーダ 12からの信号を用いてかご速度、かご減 速度及びかご位置等を求めたが、例えば調速機エンコーダ 15、又は力ごに搭載され た加速度センサや位置センサなど、他のセンサ力もの信号を用いてもよい。
さらに、上記の例では、安全判断部 22が安全リレー 23, 24を開閉する構成とした 力 安全判断部 22から指令生成部 21に指令の生成 ·停止指令を与えるようにしても よい。
さらにまた、安全判断部 22と指令生成部 21とは別体で構成してもよい。

Claims

請求の範囲
[1] かご、
上記力ごの走行を制動するブレーキ装置、及び
上記ブレーキ装置を制御するとともに、上記かごの非常制動時に上記ブレーキ装 置の制動力を低減させる制動力低減制御を実施可能なブレーキ制御装置
を備え、
上記ブレーキ制御装置は、上記かごの非常制動時に、上記かごの走行状態を監視 し、予め設定された許容停止距離内で上記力ごが停止するように上記制動力低減制 御の有効 ·無効を切り換えるエレベータ装置。
[2] 上記ブレーキ制御装置は、上記力ごの走行状態としてかご減速度を監視し、予め 設定された基準減速度よりもかご減速度が大きいときに上記制動力低減制御を有効 とする請求項 1記載のエレベータ装置。
[3] 上記ブレーキ制御装置は、上記力ごの走行状態として、かご速度と非常停止指令 が発生して力もの時間とを監視し、力ご速度と時間との関係が予め設定された許可 領域内にあるときに上記制動力低減制御を有効とする請求項 1記載のエレベータ装 置。
[4] 上記ブレーキ制御装置は、上記力ごの走行状態として、積載重量と上記力ごの走 行方向とに基づいて上記かごが減速し易い状態であるかどうかを監視し、上記かご の減速し易さに応じて上記許可領域を変更する請求項 3記載のエレベータ装置。
[5] 上記ブレーキ制御装置は、上記力ごの走行状態として、かご速度、非常停止指令 が発生して力もの時間、及び上記かごが減速状態にあるかどうかを監視し、上記かご が減速状態であるという条件と、力ご速度と時間との関係が予め設定された許可領域 内にあるという条件との理論積が真になるときに上記制動力低減制御を有効とする請 求項 1記載のエレベータ装置。
[6] 上記ブレーキ制御装置は、上記力ごの走行状態として、積載重量と上記力ごの走 行方向とに基づいて上記かごが減速し易い状態であるかどうかを監視し、上記かご の減速し易さに応じて上記許可領域を変更する請求項 5記載のエレベータ装置。
[7] 上記ブレーキ制御装置は、上記力ごの走行状態として、かご速度と昇降路終端部 までの残距離とを監視し、かご速度と残距離との関係が予め設定された許可領域内 にあるときに上記制動力低減制御を有効とする請求項 1記載のエレベータ装置。
[8] 上記ブレーキ制御装置は、上記力ごの走行状態として、力ご速度と許容停止位置 までの残距離とを監視し、かご速度と残距離との関係が予め設定された許可領域内 にあるときに上記制動力低減制御を有効とする請求項 1記載のエレベータ装置。
[9] 上記ブレーキ制御装置は、上記力ごの走行状態として、積載重量と上記力ごの走 行方向とに基づいて上記かごが減速し易い状態であるかどうかを監視し、上記かご の減速し易さに応じて上記許可領域を変更する請求項 8記載のエレベータ装置。
PCT/JP2006/315393 2006-08-03 2006-08-03 Dispositif d'ascenseur WO2008015749A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007515720A JP5214239B2 (ja) 2006-08-03 2006-08-03 エレベータ装置
US11/908,851 US7931127B2 (en) 2006-08-03 2006-08-03 Elevator apparatus
CN2006800129872A CN101163634B (zh) 2006-08-03 2006-08-03 电梯装置
PCT/JP2006/315393 WO2008015749A1 (fr) 2006-08-03 2006-08-03 Dispositif d'ascenseur
KR1020077022112A KR100973880B1 (ko) 2006-08-03 2006-08-03 엘리베이터 장치
EP06782253.6A EP2048105A4 (en) 2006-08-03 2006-08-03 Elevator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/315393 WO2008015749A1 (fr) 2006-08-03 2006-08-03 Dispositif d'ascenseur

Publications (1)

Publication Number Publication Date
WO2008015749A1 true WO2008015749A1 (fr) 2008-02-07

Family

ID=38996937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315393 WO2008015749A1 (fr) 2006-08-03 2006-08-03 Dispositif d'ascenseur

Country Status (6)

Country Link
US (1) US7931127B2 (ja)
EP (1) EP2048105A4 (ja)
JP (1) JP5214239B2 (ja)
KR (1) KR100973880B1 (ja)
CN (1) CN101163634B (ja)
WO (1) WO2008015749A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100316A1 (en) * 2009-03-05 2010-09-10 Kone Corporation Elevator system
JP2011057316A (ja) * 2009-09-07 2011-03-24 Toshiba Elevator Co Ltd エレベータ
EP2364947A1 (en) * 2008-12-05 2011-09-14 Mitsubishi Electric Corporation Elevator device
JP5381716B2 (ja) * 2007-12-27 2014-01-08 三菱電機株式会社 エレベータ装置
JP5554336B2 (ja) * 2009-09-09 2014-07-23 三菱電機株式会社 エレベータの制御装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088599A1 (ja) * 2006-02-01 2007-08-09 Mitsubishi Denki Kabushiki Kaisha エレベータ装置
WO2007099633A1 (ja) * 2006-03-02 2007-09-07 Mitsubishi Denki Kabushiki Kaisha エレベータ装置
US7891466B2 (en) * 2006-03-17 2011-02-22 Mitsubishi Electric Corporation Elevator apparatus for emergency braking
WO2007108091A1 (ja) * 2006-03-20 2007-09-27 Mitsubishi Denki Kabushiki Kaisha エレベータ装置
WO2008012896A1 (fr) * 2006-07-27 2008-01-31 Mitsubishi Electric Corporation Dispositif d'ascenseur
FR2904594B1 (fr) * 2006-08-04 2008-10-17 Pomagalski Sa Procede de commande d'une unite de freinage d'une installation de transport par cable et unite de freinage.
FR2909060B1 (fr) * 2006-11-23 2009-02-13 Pomagalski Sa Procede de simulation du freinage d'une installation de transport par cable, procede de diagnostic du freinage d'une telle installation dispositif de commande de l'intallation.
EP2142023B1 (en) * 2007-03-22 2015-05-13 Carraro S.R.L. Anti-electric-shock garment
KR101121793B1 (ko) 2007-04-26 2012-03-20 미쓰비시덴키 가부시키가이샤 엘리베이터 장치
CN101687610B (zh) * 2007-06-14 2012-07-04 三菱电机株式会社 电梯装置
US8316996B2 (en) * 2007-07-25 2012-11-27 Mitsubishi Electric Corporation Elevator apparatus having rescue operation controller
CN101861278B (zh) * 2007-11-14 2013-10-09 因温特奥股份公司 用于驱动和保持电梯轿厢的电梯驱动装置和方法,相应的方法以及制动装置和用于减速和保持电梯轿厢的方法和附属的方法
WO2009078088A1 (ja) * 2007-12-17 2009-06-25 Mitsubishi Electric Corporation エレベータ装置
FR2928124B1 (fr) * 2008-02-29 2012-02-10 Pomagalski Sa Procede de controle d'un organe de freinage ou de mise en mouvement auxiliaire d'une installation de transport par cable.
JP5383664B2 (ja) * 2008-04-15 2014-01-08 三菱電機株式会社 エレベータ装置
EP2297017B1 (en) * 2008-06-03 2013-01-16 Otis Elevator Company Single brakeshoe test (electrical) for elevators
US9637349B2 (en) 2010-11-04 2017-05-02 Otis Elevator Company Elevator brake including coaxially aligned first and second brake members
CN107000961B (zh) * 2014-11-24 2021-05-07 奥的斯电梯公司 电磁制动系统
EP3106417B1 (en) * 2015-06-16 2018-08-08 KONE Corporation A control arrangement and a method
CN108290705A (zh) * 2015-11-02 2018-07-17 因温特奥股份公司 电梯的交错制动
US9809418B2 (en) * 2016-02-29 2017-11-07 Otis Elevator Company Advanced smooth rescue operation
CN108033333B (zh) * 2017-11-17 2019-06-07 嘉世达电梯有限公司 一种具有单电机双升降室驱动结构的升降电梯
EP4008664A1 (en) * 2020-12-04 2022-06-08 Otis Elevator Company Method of preventing gravity jump at emergency stop in elevator systems
CN115321302B (zh) * 2022-08-30 2024-03-22 苏州汇川控制技术有限公司 电梯制动方法、装置、系统与计算机可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050706B2 (ja) * 1977-08-17 1985-11-09 三菱電機株式会社 エレベ−タの停電時自動着床装置
JPH0729746B2 (ja) * 1984-01-11 1995-04-05 株式会社日立製作所 エレベ−タ−の非常停止制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220222A (en) * 1977-07-18 1980-09-02 Mitsubishi Denki Kabushiki Kaisha Automatic landing apparatus in service interruption
JPH0697875B2 (ja) * 1987-05-20 1994-11-30 日本オ−チス・エレベ−タ株式会社 エレベ−タ駆動用インバ−タ
JPH04333487A (ja) * 1991-05-09 1992-11-20 Hitachi Ltd エレベーター並びに制動装置
US5402863A (en) * 1991-05-29 1995-04-04 Mitsubishi Denki Kabushiki Kaisha Apparatus to automatically adjust spring tension of an elevator brake to maintain brake torque
TW201293B (en) * 1991-05-29 1993-03-01 Mitsubishi Electric Machine A brake torque regulation device for lift
KR0141361B1 (ko) 1991-06-29 1998-06-01 한형수 착색 알루미나 자기조성물
JPH0543150A (ja) * 1991-08-20 1993-02-23 Hitachi Ltd エレベータ
JPH07157211A (ja) 1993-12-03 1995-06-20 Mitsubishi Electric Corp エレベーターのブレーキ装置
JPH07206288A (ja) * 1994-01-14 1995-08-08 Toshiba Corp エレベーター
JPH0840662A (ja) * 1994-07-28 1996-02-13 Hitachi Ltd エレベータ装置
JPH08333058A (ja) * 1995-06-08 1996-12-17 Hitachi Ltd エレベータ装置
JP4513176B2 (ja) * 2000-06-22 2010-07-28 三菱電機株式会社 エレベータの制御装置
JP4335511B2 (ja) * 2002-10-01 2009-09-30 三菱電機株式会社 エレベータ装置
JP4267335B2 (ja) * 2003-01-30 2009-05-27 三菱電機株式会社 エレベータの制動制御装置
US6802395B1 (en) * 2003-03-28 2004-10-12 Kone Corporation System for control and deceleration of elevator during emergency braking
JP4456945B2 (ja) * 2004-06-25 2010-04-28 三菱電機株式会社 エレベータ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050706B2 (ja) * 1977-08-17 1985-11-09 三菱電機株式会社 エレベ−タの停電時自動着床装置
JPH0729746B2 (ja) * 1984-01-11 1995-04-05 株式会社日立製作所 エレベ−タ−の非常停止制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2048105A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381716B2 (ja) * 2007-12-27 2014-01-08 三菱電機株式会社 エレベータ装置
EP2364947A1 (en) * 2008-12-05 2011-09-14 Mitsubishi Electric Corporation Elevator device
EP2364947A4 (en) * 2008-12-05 2014-05-28 Mitsubishi Electric Corp LIFT DEVICE
WO2010100316A1 (en) * 2009-03-05 2010-09-10 Kone Corporation Elevator system
US8235180B2 (en) 2009-03-05 2012-08-07 Kone Corporation Elevator system with a brake control circuit using a controllable switch switched with short pulses
EP3549894A3 (en) * 2009-03-05 2020-05-27 KONE Corporation Elevator system
JP2011057316A (ja) * 2009-09-07 2011-03-24 Toshiba Elevator Co Ltd エレベータ
JP5554336B2 (ja) * 2009-09-09 2014-07-23 三菱電機株式会社 エレベータの制御装置

Also Published As

Publication number Publication date
CN101163634B (zh) 2011-02-09
JP5214239B2 (ja) 2013-06-19
KR100973880B1 (ko) 2010-08-03
US20090229924A1 (en) 2009-09-17
US7931127B2 (en) 2011-04-26
EP2048105A4 (en) 2017-08-02
EP2048105A1 (en) 2009-04-15
JPWO2008015749A1 (ja) 2009-12-17
CN101163634A (zh) 2008-04-16
KR20080033139A (ko) 2008-04-16

Similar Documents

Publication Publication Date Title
JP5214239B2 (ja) エレベータ装置
KR100973881B1 (ko) 엘리베이터 장치
KR101152565B1 (ko) 엘리베이터 장치
JP4705407B2 (ja) エレベータ制御装置
WO2008012895A1 (fr) Dispositif ascenceur
WO2009084076A1 (ja) エレベータ装置
WO2012137346A1 (ja) マルチカー式エレベータ及びその制御方法
JPWO2008117423A1 (ja) エレベータのブレーキ装置
WO2010125689A1 (ja) エレベータ装置
KR20120023105A (ko) 엘리베이터 장치
JP5031767B2 (ja) エレベータ装置
JP5114972B2 (ja) エレベータの制御装置
JPWO2009078088A1 (ja) エレベータ装置
JP5355543B2 (ja) エレベータ装置
JP5111502B2 (ja) エレベータ装置
KR20090014190A (ko) 엘리베이터 제어 장치
JP5265009B2 (ja) エレベータの制御装置
JP4537043B2 (ja) エレベーターのブレーキ制御装置
KR101246994B1 (ko) 엘리베이터 장치
JP5310551B2 (ja) エレベータ装置
JPH11322218A (ja) エレベーターの異常時制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680012987.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007515720

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11908851

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077022112

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006782253

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06782253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU