WO2008015134A1 - Verfahren zur herstellung von pentamethylen-1,5-diisocyanat - Google Patents

Verfahren zur herstellung von pentamethylen-1,5-diisocyanat Download PDF

Info

Publication number
WO2008015134A1
WO2008015134A1 PCT/EP2007/057646 EP2007057646W WO2008015134A1 WO 2008015134 A1 WO2008015134 A1 WO 2008015134A1 EP 2007057646 W EP2007057646 W EP 2007057646W WO 2008015134 A1 WO2008015134 A1 WO 2008015134A1
Authority
WO
WIPO (PCT)
Prior art keywords
pentamethylene
diisocyanate
reaction
decarboxylase
lysine
Prior art date
Application number
PCT/EP2007/057646
Other languages
English (en)
French (fr)
Inventor
Martin Fiene
Eckhard Stroefer
Wolfgang Siegel
Stephan Freyer
Oskar Zelder
Gerhard Schulz
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to JP2009522217A priority Critical patent/JP2009545553A/ja
Priority to US12/373,088 priority patent/US8044166B2/en
Priority to BRPI0714842-9A priority patent/BRPI0714842A2/pt
Priority to EP07787876A priority patent/EP2049675A1/de
Publication of WO2008015134A1 publication Critical patent/WO2008015134A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/001Acyclic or carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/14Derivatives of isocyanic acid containing at least two isocyanate groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products

Definitions

  • the present invention relates to a process for the preparation of pentamethylene-1, 5-diisocyanate, thus prepared pentamethylene-1, 5-diisocyanate and its use.
  • pentamethylene diisocyanate from 1,5-pentanediamine is known per se and can be phosgene-free (T. Lesiak, K. Seyda, Journal of Practical Chemistry (Leipzig), 1979, 321 (1), 161-163) or by reaction with phosgene (eg DE 2625075).
  • DE 1900514 (corresponding to GB 1225450) describes the two-stage preparation of pentamethylene-1,5-diisocyanate from caprolactam by conversion into the hydroxyamic acids and their subsequent phosgenation.
  • Caprolactam is produced on a large scale either from benzene by hydrogenation of the nucleus to cyclohexane, oxidation to cyclohexanone and Beckmann rearrangement with hydroxylamine or from 1,4-butadiene by hydrocyanation and selective hydrogenation and subsequent cyclization to caprolactam.
  • the base is a hydrocarbon from petroleum chemistry.
  • 1, 5-pentanediamine is known by enzymatic decarboxylation of lysine with, for example, lysine decarboxylase (EP 1482055 A1 or JP 2004-222569 A) in a cell-free system or by thermal or catalytic decarboxylation (G. Gautret de Ia Moriciere, G. Chatelus, Bull. Soc. Chim. France (1969, 12, 4421-4425) or by hydrogenation of the corresponding nitriles (for example EP 161419 or WO 2003/99768).
  • lysine decarboxylase EP 1482055 A1 or JP 2004-222569 A
  • thermal or catalytic decarboxylation G. Gautret de Ia Moriciere, G. Chatelus, Bull. Soc. Chim. France (1969, 12, 4421-4425) or by hydrogenation of the corresponding nitriles (for example EP 161419 or WO 2003/99768).
  • WO 2006/005603 describes a biochemical process for the preparation of 1, 4-butanediamine from ornithine using ornithine decarboxylase and its use as starting compound for the polyamide production.
  • Object of the present invention was to produce pentamethylene-1, 5-diisocyanate, which can be prepared from renewable resources.
  • the object has been achieved by a process for the preparation of pentamethylene-1,5-diisocyanate in which b) lysine is converted into 1,5-pentanediamine and c) the 1,5-pentanediamine thus obtained is converted into pentamethylene-1,5-diisocyanate transferred.
  • the advantage of the process according to the invention is that, in the preparation of the pentamethylene-1,5-diisocyanate, it is independent of crude oil as a raw material base.
  • the pentamethylene-1, 5-diisocyanate prepared in this way has a lower color than conventionally produced because it is thermally less stressed.
  • the inventive choice of the raw material base lysine or renewable raw materials is obtained by the process according to the invention an at least almost isomerically pure pentamethylene-1, 5-diisocyanate, whereas the conventionally prepared pentamethylene-1, 5-diisocyanate a proportion of isomeric penta- methylene diisocyanates, in particular pentamethylene-1, 4-diisocyanate. This proportion can be up to several percent by weight depending on its production.
  • the pentamethylene-1,5-diisocyanate prepared according to the invention has a fraction of the branched pentamethylene diisocyanates of isomers of less than 100 ppm in each case.
  • Another object of the present process is a mixture consisting of at least two different Pentamethylendiisocyanatisomeren, of which the main constituent is pentamethylene-1, 5-diisocyanate and the isomer contained in minor amounts is contained in amounts of not more than 100 ppm, with the Provided that the sum is 100% by weight.
  • Another object of the present invention is a mixture consisting of pentamethylene-1, 5-diisocyanate and pentamethylene-1, 4-diisocyanate, wherein the proportion of pentamethylene-1, 4-diisocyanate not more than 10000 ppm, preferably 7500 ppm, especially preferably 5000 ppm, very particularly preferably 2500 ppm, in particular 1000 ppm, especially 500 ppm and even 100 ppm and the proportion of pentamethylene-1, 5-diisocyanate makes up the remainder to 100% by weight.
  • the pentamethylene-1, 5-diisocyanate prepared according to the invention has almost exclusively two primary isocyanate groups and therefore exhibits a more uniform reactivity in reactions of the isocyanate groups, for example in the preparation of polyurethanes.
  • Branched pentamethylene diisocyanate isomers in contrast, have a primary and a secondary isocyanate group, which are different reactive.
  • the pentamethylene-1, 5-diisocyanate obtained by the process according to the invention generally has a color number of not more than 15 APHA according to DIN ISO 6271.
  • the inventive step b) consists of a conversion of lysine in 1, 5-pentanediamine.
  • Lysine can be used in pure form or can be formed during the course of the reaction (see below for step a)). Furthermore, lysine may be in the form of an aqueous solution, buffer solution or lysine-containing reaction mixture having a lysing content of preferably at least 5% by weight up to the limit of solubility in the particular reaction mixture at the respective temperatures. In general, the content can be up to 45% by weight, preferably up to 40, particularly preferably up to 35 and very particularly preferably up to 30% by weight.
  • the lysine (2,6-diaminohexanoic acid) used for the process according to the invention is derived preferably from biological material and can be used as D-enantiomer, as
  • Enantiomer or as any desired mixture of these enantiomers, for example as racemate, preferably in the form of the L-enantiomer ([(S) -2,6-diaminohexanoic acid).
  • It can be used in free form or as an internal salt, in the form of its anion as carboxylate or mono- or di-protonated in the form of its mono- or di-ammonium salt, for example as chloride.
  • the lysine can be used in the form of its ester, for example as methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl or iso-butyl ester.
  • Step b) is preferably a decarboxylation.
  • decarboxylation is lysine, optionally dissolved in a solvent or suspended at a temperature above 80 0 C, preferably above 100 0 C, particularly preferably above 120 0 C, most preferably above 150 0 C. and especially heated above 180 0 C (thermal decarboxylation).
  • the temperature may be up to 250 0 C, preferably up to 230 0 C, particularly preferably up to 210 0 C and most preferably up to 200 0 C.
  • pressure can be applied to keep any solvent present in the reaction mixture.
  • solvents are aromatic and / or (cyclo) aliphatic hydrocarbons and mixtures thereof, halogenated hydrocarbons, esters, ethers and alcohols.
  • aromatic hydrocarbons (cyclo) aliphatic hydrocarbons, alkanoic acid alkyl esters, alkoxylated alkanoic acid alkyl esters and mixtures thereof.
  • Particularly preferred are mono- or polyalkylated benzenes and naphthalenes, Alkanklarealkylester and alkoxylated Alkanklarealkylester and mixtures thereof.
  • aromatic hydrocarbon mixtures preferred are those which comprise predominantly aromatic C7- to Cu-hydrocarbons and may comprise a boiling range from 1 10 to 300 0 C, more preferably toluene, o-, m- or p-xylose lol, trimethylbenzene isomers, tetramethylbenzene , Ethylbenzene, cumene, tetrahydronaphthalene and mixtures containing such.
  • Solvesso® brands of ExxonMobil Chemical especially Solvesso® 100 (CAS No. 64742-95-6, predominantly C 9 and Cio-aromatics, boiling range about 154-178 0 C), 150 (boiling range about 182 - 207 0 C) and 200 (CAS No. 64742-94-5), as well as the Shellsol® brands of Shell.
  • Hydrocarbon mixtures of paraffins, cycloparaffins and aromatics are also available under the designations crystal oil (for example, crystal oil 30, boiling range about 158-198 0 C or crystal oil. 60: CAS No. 64742-82-1), petroleum spirit (for example likewise CAS No. 64742-.
  • hydrocarbon mixtures are generally more than 90% by weight, preferably more than 95, more preferably more than 98% and very particularly preferably more than 99% by weight. It may be useful to use hydrocarbon mixtures with a particularly reduced content of naphthalene.
  • Halogenated hydrocarbons are, for example, chlorobenzene and dichlorobenzene or isomeric mixtures thereof.
  • esters are n-butyl acetate, ethyl acetate, 1-methoxypropyl acetate-2 and 2-methoxyethyl acetate, and the mono- and diacetyl esters of ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol or tripropylene glycol, for example butyl glycol acetate.
  • Further examples are also carbonates, such as preferably 1, 2-ethylene carbonate, 1, 2-propylene carbonate or 1, 3-propylene carbonate.
  • Ethers are, for example, tetrahydrofuran (THF), dioxane and the dimethyl, ethyl or n-butyl ethers of ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol or tripropylene glycol.
  • THF tetrahydrofuran
  • dioxane dioxane
  • dimethyl, ethyl or n-butyl ethers of ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol or tripropylene glycol.
  • Examples of (cyclo) aliphatic hydrocarbons include decalin, alkylated decalin and isomer mixtures of straight-chain or branched alkanes and / or cycloalkanes.
  • Alcohols are, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, isobutanol, pentanol isomer mixtures, hexanol isomer mixtures, 2-ethylhexanol or octanol.
  • Particularly suitable is water.
  • a base for example an organic base, preferably an amine, more preferably a secondary or tertiary amine, or an inorganic base, such as alkali or alkaline earth metal oxides, hydroxides, carbonates or bicarbonates, preferably sodium hydroxide , Potassium hydroxide, sodium bicarbonate, sodium carbonate, potassium bicarbonate, calcium hydroxide, milk of lime or potassium carbonate (catalytic decarboxylation).
  • a base for example an organic base, preferably an amine, more preferably a secondary or tertiary amine, or an inorganic base, such as alkali or alkaline earth metal oxides, hydroxides, carbonates or bicarbonates, preferably sodium hydroxide , Potassium hydroxide, sodium bicarbonate, sodium carbonate, potassium bicarbonate, calcium hydroxide, milk of lime or potassium carbonate (catalytic decarboxylation).
  • lysine when used in the form of an ester, preferably of the methyl ester, carrying out the reaction as Desalkoxycarbonylierung under so-called "Krapcho" conditions is preferred, wherein the reaction mixture, a nucleophile, preferably a iodide or bromide, more preferably an iodide is added and is heated under these reaction conditions.
  • a nucleophile preferably a iodide or bromide, more preferably an iodide is added and is heated under these reaction conditions.
  • the decarboxylation is particularly preferably carried out with the aid of an enzyme
  • lyases EC 4.-.-.-
  • carbon-carbon-lyases EC 4.1.-.-
  • carboxy-lyases EC 4.1.1.-
  • Lysine decarboxylase (E.C. 4.1.1.18, especially CAS No. 9024-76-4).
  • a particularly preferred embodiment of the present invention is in that the 1, 5-pentanediamine fermentatively produced by living microorganisms from suitable substrates.
  • the decarboxylation is particularly preferably carried out in the presence of genetically modified microorganisms, as described, for example, in EP 1482055 and in International Patent Application with the file reference PCT / EP2007 / 052783, the submission date March 23, 2007 and the title "Process for the production of cadaverine” , both of which are hereby incorporated by reference into this disclosure.
  • Preferred microorganisms are genetically modified recombinant microorganisms which carry genes with lysine decarboxylase activity, preferably the cadA gene (Kyoto Encyclopaedia of Genes and Genomes, Entry b4131) and the IdcC gene (Kyoto Encyclopedia of Genes and Genomes, Entry JW0181). of Escherichia coli.
  • the microorganisms are particularly preferably Corynebacteria and particularly preferably Corynebacterium glutamicum.
  • step b) conversion of lysine in 1, 5-pentanediamine to carry out a one-step synthesis of 1, 5-pentanediamine starting from a suitable substrate in a step a).
  • step b) typically in the form of intracellular conversion of the substrate to lysine followed by intracellular conversion of lysine to 1,5-pentanediamine.
  • lysine it does not matter whether lysine is isolated in pure form, is contained in a mixture obtained as an intermediate or is formed only intermediately, for example intracellularly, in the course of step a). Moreover, in the latter variant, it does not matter whether lysine is actually formed as an intermediate or whether the intermediate has only one lysine basic structure and, for example, the carboxyl group is esterified or the amino groups are substituted.
  • step a) A preferred method for carrying out step a) is described in International Patent Application Serial No. PCT / EP2007 / 052783, the Date of filing March 23, 2007 and titled "Process for the production of cadaverine", which is hereby incorporated by reference into this disclosure.
  • Suitable substrates for the reaction are renewable raw materials. These are, as defined by Römpp-Online, keyword “Renewable Resources", document RD-14-00046, as of August 2005, agricultural and forestry-derived products for non-food use. Accordingly, the renewable raw materials include both primary raw materials such as wood, as well as products of the first and second processing stage such as cellulose, starch, monomeric carbohydrates, chitin, animal or vegetable fats and oils, as well as proteins and animal products such. Virgin wool, leather and skins, tallow, gelatin and casein, as well as organic residues such as straw. Starch may be, for example, those of potatoes, cassava, cereals, e.g. Wheat, maize, barley, rye, triticale or rice, and various types of millet, e.g. Careful and MiIo, act.
  • Preferred suitable substrates are monosaccharides, oligosaccharides and polysaccharides of pentoses and / or hexoses, such as mannose, galactose, sorbose, xylose, arabinose, ribose, glucose, sucrose, lactose, fructose, maltose, molasses, starch or cellulose, but also oils and Fats, such as Soybean oil, sunflower oil, peanut oil, coconut oil or rapeseed oil, or fatty acids, e.g. Palmitic acid, stearic acid and linolenic acid, or alcohols, such as glycerine and ethanol, or organic acids, e.g. Acetic acid.
  • glucose, fructose or sucrose are used as carbon source. These compounds can be used singly or as a mixture.
  • organic compounds containing nitrogen such as peptone, yeast extract, meat extract, malt extract, soybean meal and urea
  • inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate, or a mixture of said compounds can be used be used.
  • Phosphorus sources that can be used are phosphoric acid, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, or the corresponding sodium compounds.
  • the culture medium may further contain metal salts, for example magnesium sulfate or iron sulfate, which are necessary for growth. Further, essential growth-promoting compounds such as amino acids or vitamins may be used in addition to the above-mentioned compounds. Corresponding precursors may also be added to the culture medium.
  • the enzymatic decarboxylation is generally carried out at 0 to 100 0 C, preferably 20 to 80 0 C, more preferably 20 to 70 0 C, most preferably 20 to 60 ° C.
  • the pH of the culture medium is usually maintained between 6.0 and 8.5.
  • the enzyme content in the reaction medium is generally in the range of about 0.1 to 10 wt .-%, based on the lysine used.
  • the reaction time depends, inter alia, on the temperature, the amount used and the activity of the enzyme catalyst or microorganism and the required conversion.
  • the reaction time is preferably adjusted so that the conversion of all carboxy functions originally contained in the lysine is at least 70%, preferably at least 80, particularly preferably at least 90, very particularly preferably at least 95%, in particular at least 98% and especially at least 99%.
  • 1 to 48 hours and preferably 1 to 12 hours are sufficient for this.
  • the reaction can take place in organic solvents or mixtures thereof or without the addition of solvents.
  • solvents water can also be used as the solvent.
  • organic solvents are for example 0.01-90 wt .-%.
  • Suitable organic solvents are known for this purpose, for example tertiary monools, such as Cs-C ⁇ alcohols, preferably tert-butanol, tert-amyl alcohol, pyridine, poly-Ci-C4-alkylenglykoldi-Ci-C4-alkyl ether, preferably Polyethylenglycoldi -Ci-C4-alkyl ethers, such as 1,2-dimethoxyethane, diethylene glycol dimethyl ether, polyethylene glycol dimethyl ether 500, C 1 -C 4 -alkylene carbonates, in particular propylene carbonate, C 3 -C 6 -alkyl acetic acid ester, in particular tert-butylacetic acid ester, THF, toluene, 1, 3-dioxolane, acetone, isopropanol Butyl methyl ketone
  • aqueous solvents can be added to the organic solvents, so that - depending on the organic solvent - single- or multi-phase reaction solutions.
  • aqueous solvents are water as well aqueous, dilute (eg 10 to 10 mM) buffer, for example having a pH in the range of about 6 to 8, such as potassium phosphate or TRIS-HCl buffer.
  • the substrates are either dissolved, suspended as solids or in emulsion in the reaction medium before.
  • the initial concentration of the reactants is in the range of about 0.1 to 20 mol / l, more preferably 0.15 to 10 mol / l or 0.2 to 5 mol / l.
  • the reaction can be carried out continuously, for example in a tubular reactor or in a stirred reactor cascade, or discontinuously.
  • the reaction can be carried out in all reactors suitable for such a reaction. Such reactors are known to the person skilled in the art.
  • the reaction preferably takes place in a stirred tank reactor or a fixed bed reactor.
  • reaction medium can be mono- or polyphase and the reactants are dissolved, suspended or emulsified therein, optionally charged and mixed with the enzyme preparation at the start of the reaction and, if appropriate, once or several times in the course of the reaction.
  • the temperature is adjusted to the desired value during the reaction and, if desired, can be increased or decreased during the course of the reaction.
  • the fixed bed reactor is preferably equipped with immobilized enzymes, the reaction mixture being pumped through a column filled with the enzyme. It is also possible to carry out the reaction in a fluidized bed, wherein the enzyme is used immobilized on a support.
  • the reaction mixture can be pumped continuously through the column, with the flow rate, the residence time and thus the desired conversion is controllable. It is also possible to pump the reaction mixture through a column in the circulation.
  • reaction mixture obtainable from b) or a) can be reused without further purification or it is preferably purified before it is used in step c).
  • the reaction mixture obtained from the preceding reaction step generally contains in addition to 1, 5-pentanediamine and water still unreacted substrate, metabolites of the Subtsrats used and optionally organic solvents, and further possibly enzyme, intact or lysed microorganisms. As a rule, only the enzyme used is separated off from the reaction mixture and the reaction product is separated from any organic solvent used.
  • a separation from the enzyme is usually carried out by crystallization, precipitation, chromatography, reverse osmosis, electrophoresis, electrodialysis, extraction, distillation, filtration, absorption, centrifugation or decantation.
  • the separated enzyme can then be used for further reactions.
  • a separation from the microorganism or lysate is usually carried out by extraction, distillation, filtration, absorption, discontinuous or continuous centrifugation, Querstromzentrifugation or decantation. Separated intact microorganisms can then be used for further reactions.
  • microorganisms may still be digested, if desired, e.g. by shear.
  • the separation from the organic solvent is usually carried out by distillation, rectification.
  • a distillation column having 1 to 20 theoretical plates can be placed on the reaction vessel, in which the return can be adapted to the separation requirements.
  • the separation of the low boilers from the reaction mixture may be carried out by passing a stream of gas substantially inert under the reaction conditions (stripping), e.g. an oxygen-depleted. mixture of air and nitrogen (lean air) or preferably nitrogen or carbon dioxide are supported.
  • a stream of gas substantially inert under the reaction conditions (stripping), e.g. an oxygen-depleted. mixture of air and nitrogen (lean air) or preferably nitrogen or carbon dioxide are supported.
  • the removal of the water is then preferably carried out continuously or stepwise in a manner known per se, e.g. by vacuum, azeotropic removal, absorption, pervaporation and diffusion across membranes.
  • 1,5-pentanediamine into a salt, preferably into the hydrochloride, and to precipitate with water-soluble organic solvents, for example alcohols or acetone.
  • the precipitate can be purified by washing and / or crystallization, and the 5,5-diamine is subsequently released again by addition of a base.
  • a base for absorption are preferably molecular sieves or zeolites (pore size, for example in the range of about 3-10 Angstrom), alternatively a separation by distillation or with the aid of suitable semipermeable membranes.
  • the resulting 1, 5-pentanediamine can, if necessary, be distilled again, so that the degree of purity is usually at least 98%, preferably at least 99%, more preferably at least 99.5% and most preferably at least 99.8% ,
  • the step c) can be phosgene-free or in the presence of phosgene, in the latter variant, the phosgenation can be carried out in the liquid phase or in the gas phase.
  • Phosgene-free processes for the preparation of isocyanates are known, for example, from EP 18588 A1, EP 28338 A2, EP 27952, EP 126299 and in particular EP 566925 A2.
  • the amine is reacted with urea and at least one, preferably exactly one, alcohol in a molar ratio of amine, urea and alcohol such as 1: 2 to 20: 5 to 40 at temperatures of 50-300 ° C. and in particular 180 ° C. 220 0 C under a pressure of 0.1 to 30 bar, preferably 5 - 20 bar reacted. Under these reaction conditions, the process has average reaction times of fractions of seconds to minutes.
  • the reaction can conveniently be carried out in the presence of dialkyl carbonates, advantageously in an amount of 0.1 to 30 mol%, preferably 1 to 10 mol%, or carbamic acid alkyl esters in an amount of 1 to 20 mol%, preferably of 5 to 15 mol%, based on the diamine.
  • dialkyl carbonates advantageously in an amount of 0.1 to 30 mol%, preferably 1 to 10 mol%, or carbamic acid alkyl esters in an amount of 1 to 20 mol%, preferably of 5 to 15 mol%, based on the diamine.
  • dialkyl carbonates and / or carbamic acid esters are those whose alkyl radicals correspond to the alkyl radical of the alcohol used.
  • the reaction can also be carried out in the presence of catalysts.
  • catalysts are expediently used in amounts of from 0.001 to 20% by weight, preferably from 0.001 to 5% by weight, in particular from 0.01 to 0.1% by weight, based on the weight of the amine.
  • Suitable catalysts are inorganic or organic compounds containing one or more cations, preferably a cation of metals of group IA, IB, IIA, IIB, HIB, IVA, IVB, VA, VB, VIB, VIIB, VIIIB of the Periodic Table of the Elements as defined in Handbook of Chemistry and Physics 14th Edition, published by Chemical Rubber Publishing Co., 23 Superior Ave. NE, Cleveland, Ohio.
  • the cations of the following metals may be mentioned by way of example: lithium, sodium, potassium, magnesium, calcium, aluminum, gallium, tin, lead, bismuth, antimony, copper, silver, gold, zinc, mercury, cerium, titanium, vanadium, chromium, molybdenum, Manganese, iron and cobalt.
  • the catalyst may further contain at least one anion, for example halides, such as chlorides and bromides, sulfates, phosphates, nitrates, borates, alcoholates, phenates, sulfonates, oxides, oxide hydrates, hydroxides, carboxylates, chelates, carbonates and thio- or dithiocarbamates.
  • halides such as chlorides and bromides, sulfates, phosphates, nitrates, borates, alcoholates, phenates, sulfonates, oxides, oxide hydrates, hydroxides, carboxylates, chelates, carbonates and thio- or dithiocarbamates.
  • the catalysts can also be used in the form of their hydrates or ammoniaates without noticeable significant disadvantages.
  • Examples of typical catalysts are: lithium methoxide, lithium ethanolate, lithium propoxide, lithium butanolate, sodium methoxide, potassium tert-butoxide, magnesium methoxide, calcium methoxide, tin (II) chloride, tin (IV) chloride, Lead acetate, lead phosphate, antimony (III) chloride, antimony (V) chloride, aluminum acetylacetonate, aluminum isobutoxide, aluminum trichloride, bismuth (III) chloride, copper (II) acetate, copper (II) sulfate, copper (II) nitrate, bis (triphenylphosphine oxido) copper (II) chloride, copper molybdate, silver acetate, gold acetate, zinc oxide, zinc chloride, zinc acetate, zinc acetonyl acetate, zinc octoate, zinc oxalate, zinc hexy-lat, Zinc benzoate,
  • Examples of preferred catalysts are the following compounds: lithium butanolate, aluminum acetylacetonate, zinc acetylacetonate, titanium tetrabutoxide and zirconium tetrabutoxide.
  • the mixing of the educt streams can preferably be carried out in a suitable special mixing device, which is characterized by short mixing times.
  • the mixed educt stream is then passed to a reaction device which may be backmixed or designed as a tubular reactor or a combination thereof.
  • the reaction mixture is reacted in the reactor at an average of 10 seconds to 5 hours, preferably 20 seconds to 20 minutes, more preferably 30 seconds to 10 minutes.
  • the temperature is generally between 50 0 C and 300 0 C, preferably between 180 0 C and 220 0 C.
  • the pressure is generally between 0.1 bar abs and 30 bar abs and preferably between 5 and 20 bar abs.
  • the residence time is chosen so that the conversion, based on amino groups in the amine used to urethane groups, after leaving the reactor is at least 95%, preferably at least 98, more preferably at least 99 and most preferably at least 99.5%.
  • the conversion based on amino groups in the amine used to form urethane groups, is not complete after leaving the reactor and is, for example, less than 95%, then the discharge can be further reacted.
  • ammonia is separated by distillation. This succeeds in a good
  • the separation takes place in a pressure range of 0.01 to 20 bar, preferably 0.04 to 15 bar.
  • the necessary temperatures depend on the alcohol or alcohol mixture used.
  • the temperature is for example at 60-150 0 C, preferably at 80 to 140 0 C.
  • This distillation unit is of a known type and has the usual installations.
  • all standard installations are suitable as column internals, for example trays, packings and / or fillings.
  • trays bubble-cap trays, sieve trays, valve trays, Thormann trays and / or dual-flow trays are preferred; of the trays are those with rings, coils, calipers, Raschig, Intos or Pall rings, Barrel or Intalox saddles, Top-Pak etc. or braids preferred.
  • Floors are preferably used, more preferably bubble trays.
  • the distillation column preferably has 10 to 20 theoretical plates. Alcohol, dialkyl carbonates, if they are formed or present in the reaction mixture, or alkyl carbamates or mixtures of at least two of these components are then removed from the resulting ammonia-depleted reaction mixture and preferably recycled to the reaction stage.
  • the reaction mixture is advantageously expanded from the pressure level of the reaction stage to a pressure in the range from 1 to 500 mbar, preferably from 10 to 100 mbar.
  • the resulting vapors are separated in subsequent expedient purification stages, preferably by rectification, and the isolated products of value alcohol and Carbamidklarealkylester, individually or as a mixture, preferably recycled to the reaction stage to form the monomeric urethanes.
  • This apparatus may be a container or a combination of container and column, preferably a column, wherein in the head of the alcohol or the alcohol mixture and in the bottom, the urethane can be withdrawn. In the top of the column, in addition to the alcohol, more easily than the urethane boiling substances may be included.
  • the separation takes place in a pressure range of 0.001 to 1 bar, preferably 0.02 to 0.5 bar.
  • the liquid mixture containing the monomeric diurethanes, and optionally oligourea-polyurethanes and high-boiling oligomers obtained after removal of the vapors in the rule as sump discharge can either be performed completely in the subsequent stage or is preferably divided into two partial streams, wherein the weight ratio of the subsets 5 to 50:95 to 50 parts by weight, preferably 10 to 30:90 to 70 parts by weight.
  • the equal or preferably smaller subset is separated by distillation by means of a conventional distillation unit, preferably a thin film evaporator, at a temperature of 170 to 240 0 C, preferably from 180 to 230 0 C and under a pressure of 0.001 - 1 bar, preferably 0.002 - , 01 bar, into a desired product which contains the diurethanes and the lower-boiling by-products, and non-distillable by-products which are separated from the preparation process and are usually discarded as non-recyclable residue.
  • the desired product (distillate) is combined with the same or preferably larger other subset and fed the combined diurethane containing reaction mixture of the thermal cleavage.
  • Thin-film evaporators or short-path evaporators can be used as distillation devices.
  • the urethane is distilled at pressures of 0.001-1 bar, preferably in the range of 0.002-0.01 bar.
  • the distillate is fed to the cleavage.
  • the high-boiling marsh is preferably discarded or, less preferably, partially re-urethanized.
  • the resulting diurethane-containing reaction mixture is in a suitable apparatus, preferably solvent-free in the liquid phase in the presence of catalysts at temperatures of 200 to 300 0 C, preferably 220 to 280 0 C and under reduced pressure of 0.01 - 0.6 bar , preferably continuously thermally split in the range of 0.02-0.1 bar.
  • the conversion of diurethane to diisocyanate in the apparatus for thermal cleavage can be chosen largely freely and is expediently in a range of 10 to 98 wt.%, Preferably 40 to 90 wt.% Of the amount supplied.
  • the uncleaved portion of the reaction mixture which contains unreacted diurethanes, oligourea-polyurethanes, high-boiling oligomers and other recyclable and unreachable by-products, is separated, continuously discharged from the cleavage apparatus and recycled directly or optionally after reaction with alcohol in the reurethanization in the reaction stage.
  • Particularly useful and therefore preferably used are dibutyltin dilaurate, iron (III) acetylacetonate, cobalt (II) acetylacetonate, zinc acetylacetonate, zirconium tetra-n-butoxide and tin (II) dioctoate.
  • cleavage devices are, for example, cylindrical cleavage reactors, such as tube ovens or preferably evaporator, for example, thin-film or Bulk evaporators, such as Robert evaporator, Herbert evaporator, caddle-type evaporator, Plattenspalter and preferably Schukerzenverdampfer.
  • cylindrical cleavage reactors such as tube ovens or preferably evaporator
  • thin-film or Bulk evaporators such as Robert evaporator, Herbert evaporator, caddle-type evaporator, Plattenspalter and preferably Schukerzenverdampfer.
  • the separation of the cleavage products takes place in a column, in which usually the isocyanate in the side and the alcohol are taken off at the top.
  • the crude isocyanate mixture is freed in a subsequent distillation of recombination products, by-products and, if present, the solvent.
  • the by-products are preferably recycled to the thermal cleavage. A part can also be removed.
  • the cleavage products formed in the thermal cleavage which are mainly composed of alcohol, diisocyanate, and partially cleaved diurethanes, are then advantageously with the aid of one or more distillation columns, preferably by rectification at temperatures of 100 to 220 0 C, preferably 120 to 170 0 C and a pressure of 1 to 200 mbar, preferably 5 to 50 mbar, in low boilers and especially alcohol and a crude diisocyanate mixture having a diisocyanate content of 85 to 99 wt.%, Preferably from 95 to 99 wt.
  • the higher-boiling by-products obtained in the distillative separation and in particular the uncleaved and partially split diurethanes are preferably fed into the cleavage apparatus and / or reurethanization.
  • the crude isocyanate mixture preferably obtained by rectification, is purified by distillation at a temperature of from 100 to 180 ° C. and under a pressure of from 1 to 50 mbar, the individual fractions being recycled or isolated as a pure product.
  • the top fraction which is preferably composed of diisocyanate
  • the side fraction consisting of pure diisocyanate, preferably with a purity of at least 98 % By weight, in particular more than 99% by weight, is discharged and fed to the storage and the bottoms fraction, which contains as essential components the partially split diurethanes and diisocyanates, is preferably recycled to the cleavage device for thermal cleavage.
  • reaction of the reaction effluent and / or distillation residues are preferably recirculated to the process.
  • the isocyanate groups contained in this mixture and / or allophanates and / or ureas or other reactive constituents are converted to urethanes with alcohol. It is possible, these reactions in separate reactors such.
  • For the alcoholysis of the residues are
  • the streams can be combined with alcohol, wherein the molar ratio of NCO groups or their equivalents, ie for example urethane groups, to hydroxy groups up to 1: 100, preferably up to 1: 20, particularly preferably up to 1: 10.
  • This reaction mixture is in the presence or absence of catalysts within 1 to 150 minutes, preferably 3 to 60 minutes at a temperature of 20 to 200 0 C, preferably 50 to 170 0 C at a pressure of 0.5 to 20 bar, preferably 1 to 15 bar implemented.
  • the reaction can be carried out in a continuous boiler cascade or in a tubular reactor.
  • catalysts in principle, all compounds in question, which promote the reaction of NCO- with OH groups. Examples which may be mentioned are tin octoate, dibutyltin dilaurate, tin chloride, zinc dichloride, tin (II) dioctoate and triethylamine.
  • the 1, 5-pentanediamine obtained from step b) is optionally pre-dissolved in free form or optionally as a hydrochloride in a solvent.
  • the water content of the used in the step c) 1, 5-pentanediamine depends on the nature of the reaction in step c) and should in the case of a phosgenation preferably below 200 ppm by weight, in the case of a phosgene-free implementation preferably below 10% by weight, particularly preferably below 1% by weight and very particularly preferably below 1000 ppm by weight.
  • chlorobenzene o- or p-dichlorobenzene, trichlorobenzene, chlorotoluenes, chlorol, chloroethylbenzene, chloronaphthalenes, chlorodiphenyls, methylene chloride, perchlorethylene, toluene, xylene, hexane, decahydronaphthalene, diethyl isophthalate (DEIP) and other carboxylic acid esters, such as No. 5,136,086, column 3, lines 3 to 18, tetrahydrofuran (THF), dimethylformamide (DMF), benzene and mixtures thereof are preferred. Particularly preferred is chlorobenzene and dichlorobenzene.
  • the content of amine in the amine / solvent mixture is usually between 1 and 50% by mass, preferably between 2 and 40% by mass, more preferably between 3 and 30% by mass.
  • the phosgene is used as a mixture with the same or another inert solvent, preferably the same, or pure. Particularly preferred as phosgene is at least partially a recycled stream from the workup used, which is supplemented according to the desired stoichiometry by fresh phosgene.
  • the phosgene can generally be used in the form of 10 to 100, preferably 30 to 95 and in particular 40 to 90% strength by weight, solutions in inert solvents, the phosgene preferably being used for this purpose same solvent as used for the amine.
  • the temperature of the phosgene solution should be between -35 0 C and 180 0 C, preferably between -30 0 C and 150 0 C.
  • the temperature of the amine feed to the mixing device may be between 10 and 150 0 C, preferably 15-120 0 C and most preferably 20-100 0 C.
  • the molar ratio of total phosgene fed into the reaction to amino groups used is generally from 1.1: 1 to 30: 1, preferably from 1.3: 1 to 25: 1.
  • the mixing of the educt streams is preferably carried out in a suitable special mixing device, which is characterized by low mixing times.
  • the mean residence time in the reaction after mixing is generally 5 minutes to 15 hours, preferably 10 minutes to 12 hours, more preferably 15 minutes to 10 hours.
  • the temperature in the reaction is generally between 90 0 C and 250 0 C, preferably between 100 0 C and 240 0 C and particularly preferably between 1 10 and 230 0 C.
  • the pressure in the reaction is generally between 1, 1 bar and 80 bar abs, preferably between 1, 5 and 50 bar abs, more preferably between 2 and 35 bar abs, most preferably between 3 and 10 bar abs, and in particular between 4 and 8 bar abs.
  • the reaction can be carried out in a back-mixed reactor or in a tubular reactor, or also in a combination of a back-mixed reactor, which is followed by a tubular reactor.
  • the reaction mixture is then purified by distillation.
  • it may be a distillation column.
  • This distillation unit is of a known type and has the usual installations. In principle, all standard installations are suitable as column internals, for example trays, packings and / or fillings. Of the soils, bell bottoms, sieve trays, valve trays, Thormann trays and / or dual-flow trays are preferred, of the trays are those with rings, coils, calipers, Raschig, Intos or Pall rings, Barrel or Intalox Saddling, top Pak etc. or braids preferred.
  • Floors are preferably used, more preferably bubble trays.
  • the distillation column preferably has 10 to 80 theoretical plates.
  • the generation of the gas phase in the bottom of the column is carried out by the operation of an evaporator which may be installed in the sump, for example a Robert evaporator, or in circulation with an external evaporator, for. B. tube or plate heat exchanger.
  • an evaporator which may be installed in the sump, for example a Robert evaporator, or in circulation with an external evaporator, for. B. tube or plate heat exchanger.
  • a circulation is then for example a forced circulation or a natural circulation.
  • the evaporation takes place in a natural circulation.
  • a further invention consists in generating a gas stream in the column by blowing in gaseous or superheated phosgene and / or inert solvent and / or inert gases.
  • the average residence time in the column is between 10 minutes and 12 hours, preferably 15 minutes to 11 hours and more preferably 15 minutes to 10 hours.
  • the bottom temperature in the distillation column is generally between 90 0 C and 250 0 C, preferably between 100 0 C and 240 0 C and particularly preferably between 1 10 and 230 0 C.
  • the top pressure in the distillation column is usually between 1, 1 bar abs and 80 bar abs, preferably between 1, 5 and 50 bar abs, more preferably between 2 and 35 bar abs, most preferably between 3 and 10 bar abs and in particular between 4 and 8 bar abs.
  • the phosgenation in the gas phase can be carried out, for example, as described in EP 1 275 639 A1, EP 1 275 640 A1, EP 1 449 826 A1, DE 10359627 A1 or in the German patent application DE 102005042392.
  • the gas phase phosgenation can be carried out as follows:
  • the compounds occurring in the course of the reaction ie starting materials (diamine and phosgene), intermediates (in particular the intermediately formed mono- and dicarbamoyl chlorides), end products (diisocyanate), and optionally metered inert compounds, among the Reaction conditions remain in the gas phase.
  • starting materials diamine and phosgene
  • intermediates in particular the intermediately formed mono- and dicarbamoyl chlorides
  • end products diisocyanate
  • optionally metered inert compounds among the Reaction conditions remain in the gas phase.
  • these or other components e.g. deposited on the reactor wall or other apparatus components, it can be changed by these deposits, the heat transfer or the flow through the affected components undesirable. This is especially true for occurring amine hydrochlorides, which are formed from free amino groups and hydrogen chloride (HCl), since the resulting amine hydrochlorides are easily precipitated and are difficult to re-evaporate.
  • the educts can be metered into the mixing chamber together with at least one inert medium.
  • the inert medium is a medium which is gaseous in the reaction space at the reaction temperature and does not react with the compounds occurring in the course of the reaction.
  • the inert medium is generally mixed with amine and / or phosgene before the reaction, but can also be metered in separately from the educt streams.
  • nitrogen, noble gases such as helium or argon, or aromatics such as chlorobenzene, chlorotoluene, o-dichlorobenzene, toluene, xylene, chloronaphthalene, decahydronaphthalene, carbon dioxide or carbon monoxide can be used.
  • nitrogen and / or chlorobenzene is used as the inert medium.
  • the inert medium is used in an amount such that the ratio of the gas volumes of inert medium to amine or to phosgene is more than 0.0001 to 30, preferably more than 0.01 to 15, particularly preferably more than 0.1 to 5 is.
  • the starting amines are evaporated before carrying out the process according to the invention and heated to 200 0 C to 600 0 C, preferably 300 ° C to 500 0 C and optionally diluted with an inert gas or with the vapors of an inert solvent by the mixing device fed to the reactor ,
  • the phosgene used in the phosgenation is also heated to a temperature within the range of 200 ° C to 600 ° C, preferably 300 0 C to 500 ° C before carrying out the inventive method optionally diluted with an inert gas or with the vapors of an inert solvent.
  • phosgene is used in excess with respect to amino groups.
  • a molar ratio of phosgene to amino groups of 1, 1: 1 to 20: 1, preferably from 1, 2: 1 to 5: 1 before.
  • the reaction generally starts with contact of the reactants immediately after mixing.
  • the educt streams are mixed as completely as possible in a short time.
  • the preheated stream containing amine or mixtures of amines and the preheated stream containing phosgene are passed continuously into the reactor, preferably a tubular reactor.
  • the reactors are generally made of steel, glass, alloyed or enameled steel and have a length sufficient to allow complete reaction of the diamine with the phosgene under the process conditions.
  • reactor types known from the prior art can be used.
  • reactors are known from EP-B1 289840, Sp. 3, Z. 49 - Sp. 4, Z. 25, EP-B1 593334, WO 2004/026813, S. 3, Z. 24 - P. 6, Z 10, WO 03/045900, page 3, Z. 34 - page 6, line 15, EP-A1 1275639, page 4, line 17 - page 5, line 17 and EP-B1 570799, Sp. 2, Z. 1 - Sp. 3, Z. 42, which are expressly referred to within the scope of this disclosure.
  • the reaction of phosgene with amine in the reaction space takes place at absolute pressures of more than 0.1 bar to less than 20 bar, preferably between 0.5 bar and 15 bar and particularly preferably between 0.7 and 10 bar.
  • the absolute pressure is very particularly preferably between 0.7 bar and 5 bar, in particular from 0.8 to 3 bar and especially 1 to 2 bar.
  • the pressure in the feed lines to the mixing device is higher than the above-mentioned pressure in the reactor. Depending on the choice of mixing device drops at this pressure.
  • the pressure in the supply lines is preferably 20 to 2000 mbar, particularly preferably 30 to 1000 mbar, higher than in the reaction space.
  • reaction in the gas phase is understood to mean that the conversion of the educt streams and intermediates to the products in the gaseous state react with one another and in the course of the reaction during the course of the reaction. gangs through the reaction space to at least 95%, preferably at least 98%, more preferably at least 99%, most preferably at least 99.5%, in particular at least 99.8 and especially at least 99.9% remain in the gas phase ,
  • Intermediates are, for example, the monomino-monocarbamoyl chlorides, dicarbamoyl chlorides, monoamino monoisocyanates and monoisocyanato monocarbamoyl chlorides formed from the diamines, and the hydrochlorides of the amino compounds.
  • the temperature in the reaction space is chosen so that it is above the boiling point of the diamine used, based on the pressure conditions prevailing in the reaction space.
  • an advantageous temperature in the reaction space of more than 200 0 C yields usually, preferably more than 260 0 C and most preferably greater than 300 0 C.
  • the temperature is up to 600, preferably up to 570 0 C.
  • the average contact time of the reaction mixture in the process according to the invention is generally between 0.001 seconds and less than 5 seconds, preferably from more than 0.01 seconds to less than 3 seconds, more preferably from more than 0.015 seconds to less than 2 seconds.
  • the average contact time is very particularly preferably from 0.015 to 1.5 seconds, in particular from 0.015 to 0.5 seconds, especially from 0.020 to 0.1 seconds and often from 0.025 to 0.05 seconds.
  • the gaseous reaction mixture passes through the reaction space at a flow rate of 10 to 300 meters / second, preferably from 25 to 250 meters / second, more preferably 40 to 230, most preferably 50 to 200, in particular more than 150 to 190 and especially 160 to 180 meters / second.
  • the gaseous reaction mixture is preferably washed at temperatures greater than 130 0 C with a solvent (quench).
  • Suitable solvents are preferably hydrocarbons which are optionally substituted by halogen atoms, such as, for example, hexane, benzene, nitrobenzene, anisole, chlorobenzene, chlorotoluene, o-dichlorobenzene, trichlorobenzene, diethyl isophthalate (DEIP), tetrahydrofuran (THF), dimethylformamide (DMF), Xylene, chloronaphthalene, decahydronaphthalene, and Toluene.
  • the solvent used is particularly preferably monochlorobenzene.
  • the solvent used may also be the isocyanate.
  • the isocyanate is selectively transferred to the wash solution. Subsequently, the remaining gas and the resulting wash solution are preferably separated by rectification in isocyanate, solvent, phosgene and hydrogen chloride.
  • the reaction mixture After the reaction mixture has been reacted in the reaction space, it is passed into the workup device with quench.
  • this is a so-called scrubbing tower, wherein the isocyanate formed is separated from the gaseous mixture by condensation in an inert solvent, while excess phosgene, hydrogen chloride and optionally the inert medium pass through the work-up device in gaseous form.
  • the temperature of the inert solvent above the solution temperature of the carbamoyl chloride belonging to the amine is preferably maintained in the selected quench medium. In this case, the temperature of the inert solvent is particularly preferably kept above the melting temperature of the carbamyl chloride belonging to the amine
  • the pressure in the workup device is lower than in the reaction space.
  • the pressure is preferably 50 to 500 mbar, more preferably 80 to 150 mbar, lower than in the reaction space.
  • the laundry may be placed in a stirred tank or other conventional equipment, e.g. in a column or mixer-settler apparatus.
  • a suitable quench is known, for example, from EP-A1 1403248, Sp. 2, Z. 39 - Sp. 3, Z. 18, to which reference is expressly made in the scope of this disclosure.
  • the reaction mixture which consists essentially of the isocyanates, phosgene and hydrogen chloride, is mixed intensively with the injected liquid.
  • the mixing is effected such that the temperature of the reaction mixture 0 C C, preferably at 140 to 180 0 C to 100 to 200 0 lowered starting from 200 to 570 and the isocyanate present in the reaction mixture by con- completely or partially into the sprayed-liquid droplets, while the phosgene and the hydrogen chloride remain substantially completely in the gas phase.
  • the proportion of the isocyanate contained in the gaseous reaction mixture, which passes into the liquid phase in the quench zone, is preferably from 20 to 100% by weight, more preferably from 50 to 99.5% by weight and in particular from 70 to 99% by weight, based on the isocyanate contained in the reaction mixture.
  • the reaction mixture preferably flows through the quench zone from top to bottom.
  • a collection container is arranged, in which the liquid phase is separated, collected and removed via an outlet from the reaction space and then worked up.
  • the remaining gas phase is removed from the reaction space via a second outlet and also worked up.
  • the quench can be carried out, for example, as described in EP 1403248 A1, or as described in international application WO 2005/123665.
  • the liquid droplets are for this purpose by means of single- or Zweistoffzerstäuberdüsen, preferably Einstoffzerstäuberdüsen generated and produce depending on the embodiment, a spray cone angle of 10 to 140 °, preferably from 10 to 120 °, particularly preferably from 10 ° to 100 °.
  • the liquid that is injected via the atomizer nozzles must have a good solubility for isocyanates.
  • organic solvents are used.
  • aromatic solvents which may be substituted by halogen atoms.
  • the work-up of the diisocyanate thus obtained can be carried out in a manner known per se, for example as described above in liquid phase phosgenation.
  • Another object of the present invention is 1, 5-pentamethylene diisocyanate having a 14 C: 12 C isotopic ratio of 0.5 x 10 "12 to 5 x 10 " 12 , preferably 1, 0 * 10 " 12 to 4 x 10 " 12 , and more preferably 1, 5 * 10 "12 to 3 x 10 " 12 .
  • Such 1,5-pentamethylene diisocyanate is obtainable when carrying out step a) or b) starting from biological material.
  • Pentamethylene diisocyanate which is produced on a petrochemical basis, has an unnatural content, which is usually below 0.3 * 10 " 12 , usually below 0.2 x 10 "12 and usually less than 0.1 x 10 " 12 .
  • This invention 1 5-pentamethylene diisocyanate can then be used because of its isotopic content for the synthesis of compounds to be used as probes for example 14 C studies.
  • Another object of the present invention is 1, 5-pentamethylene diisocyanate, which additionally has a total chlorine content below 50 ppm by weight and a content of hydrolyzable chlorine below 10 ppm by weight.
  • 1,5-pentamethylene diisocyanate is obtainable if the step c) is carried out without phosgene. In this way, 1, 5-pentamethylene diisocyanate is available, which has been completely prepared waiving petrochemical and chlorine chemistry.
  • the inventively prepared 1, 5-pentamethylene diisocyanate is suitable by its above-mentioned advantageous properties especially for the preparation of isocyanurate polyisocyanates containing uretdione polyisocyanates, biuret polyisocyanates having urethane or al- lophanat phenomenon containing polyisocyanates, Oxadiazintrion phenomenon or imino xadiazindion phenomenon containing polyisocyanates and / or uretonimine-modified polyisocyanates.
  • Such polyisocyanates are used, for example, in the production of urethane, isocyanurate, amide and / or urea group-containing plastics by the polyisocyanate polyaddition process.
  • Such polyisocyanate mixtures are used in particular for the production of light-resistant polyurethane coatings and coatings.
  • the polyisocyanates obtainable on the basis of the 1,5-pentamethylene diisocyanate prepared according to the invention are generally used in the paint industry.
  • the mixtures according to the invention can be used, for example, in coating compositions for 1-component or 2-component polyurethane coatings, for example for primers, fillers, basecoats, unpigmented topcoats, pigmented topcoats and clearcoats in industrial, in particular aircraft or large-vehicle painting, wood, automotive , in particular OEM or automotive refinish, or decoration paint can be used.
  • Particularly suitable are the coating compositions for applications in which a particularly high application safety, outdoor weathering resistance, appearance, solvent and / or chemical resistance are required.
  • the curing of these coating compositions is not essential according to the invention.
  • thermoplastic polyurethanes TPU
  • Kunststoffhandbuch, Volume 7 "Polyurethane", Carl Hanser Verlag Kunststoff Vienna, 3rd edition 1993, pages 455-466 TPU
  • diisocyanates They are prepared by reacting diisocyanates with compounds having at least two isocyanate-reactive hydrogen atoms, preferably difunctional alcohols.
  • isocyanate-reactive compounds generally known polyhydroxy compounds having molecular weights of 500 to 8,000, preferably 600 to 6,000, especially 800 to 4,000, and preferably an average functionality of 1, 8 to 2.6, preferably 1, 9 to 2.2 , in particular 2, for example polyesterols, polyetherols and / or polycarbonate diols.
  • polyesterdiols obtainable by reacting butanediol and hexanediol as diol with adipic acid as dicarboxylic acid, the weight ratio of butanediol to hexanediol preferably being 2: 1.
  • polytetrahydrofuran having a molecular weight of 750 to 2500 g / mol, preferably 750 to 1200 g / mol.
  • chain extenders it is possible to use generally known compounds, for example diamines and / or alkanediols having 2 to 10 C atoms in the alkylene radical, in particular ethylene glycol and / or butanediol-1, 4, and / or hexanediol and / or di- and / or Tri-oxyalkylene glycols having 3 to 8 carbon atoms in the oxyalkylene radical, preferably corresponding oligo-polyoxypropylene glycols, it also being possible to use mixtures of the chain extenders.
  • diamines and / or alkanediols having 2 to 10 C atoms in the alkylene radical in particular ethylene glycol and / or butanediol-1, 4, and / or hexanediol and / or di- and / or Tri-oxyalkylene glycols having 3 to 8 carbon atoms in the oxyalkylene radical, preferably corresponding oligo-pol
  • chain extenders it is also possible to use 1,4-bis (hydroxymethyl) benzene (1,4-BHMB), 1,4-bis (hydroxyethyl) benzene (1,4-BHEB) or 1,4-bis (2 -hydroxyethoxy) -benzene (1, 4-HQEE) are used.
  • Preferred chain extenders are ethylene glycol and hexanediol, particularly preferably ethylene glycol.
  • catalysts which accelerate the reaction between the NCO groups of the diisocyanates and the hydroxyl groups of the synthesis components, for example tertiary amines, such as triethylamine, dimethylcyclohexylamine, N-methylmorpholine, N, N'-dimethylpiperazine, 2- (dimethylaminoethoxy) - ethanol, diazabicyclo- (2,2,2) -octane and the like and in particular organic metal compounds such as titanic acid esters, iron compounds such as iron (Ml) - acetylacetonate, tin compounds such as tin diacetate, tin dilaurate or Zinndialkylsalze aliphatic carboxylic acids such as dibutyltin diacetate, dibutyltin dilaurate or similar.
  • tertiary amines such as triethylamine, dimethylcyclohexylamine, N-methylmorpholine, N, N'
  • the catalysts are usually used in amounts of 0.0001 to 0.1 parts by weight per 100 parts by weight of polyhydroxyl compound.
  • catalysts can be added to the structural components to also conventional auxiliaries. Mention may be made, for example, of surface-active substances, flame retardants, nucleating agents, lubricants and mold release agents, dyes and pigments, inhibitors, stabilizers against hydrolysis, light, heat, oxidation or coloration, protective agents against microbial degradation, inorganic and / or organic fillers, reinforcing agents and plasticizers ,
  • the preparation of the TPU is usually carried out by conventional methods, such as by belt systems or reaction extruder.
  • the TPUs are preferably mixed with expandable microspheres and thermoplastically processed to the desired shaped articles. This can be done for example by injection molding sintering or by extrusion.
  • the temperature during the thermoplastic processing leads to an expansion of the expandable microspheres and thus to the formation of the expanded TPU.
  • the melt is introduced into molds and cures there.
  • Expanded TPUs can be used, for example, as films, tubes, profiles, fibers, cables, shoe soles, other shoe parts, ear tags, automobile parts, agricultural products, electrical products, damping elements; armrests; Plastic furniture elements, ski boots, bumpers, wheels, ski goggles, Powderslushober lake be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Pentamethylen- 1,5-diisocyanat, so hergestelltes Pentamethylen-1,5-diisocyanat und dessen Verwendung.

Description

Verfahren zur Herstellung von Pentamethylen-1 ,5-diisocyanat
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Pentamethylen- 1 ,5-diisocyanat, so hergestelltes Pentamethylen-1 ,5-diisocyanat und dessen Verwendung.
Die Herstellung von Pentamethylendiisocyanat aus 1 ,5-Pentandiamin ist an sich be- kannt und kann phosgenfrei (T. Lesiak, K. Seyda, Journal für Praktische Chemie (Leipzig), 1979, 321 (1 ), 161 - 163) oder durch Umsetzung mit Phosgen (z.B. DE 2625075) erfolgen.
DE 1900514 (entspr. GB 1225450) beschreibt die zweistufige Herstellung von Penta- methylen-1 ,5-diisocyanat aus Caprolactam durch Überführung in die Hydroxyamsäuren und deren anschließende Phosgenierung.
Die in dieser Schrift angegebene Ausbeute für die Umwandlung von Caprolactam in Pentamethylen-1 ,5-diisocyanat beträgt lediglich ca. 32%.
Caprolactam wird großtechnisch entweder mehrstufig aus Benzol durch Kernhydrierung zu Cyclohexan, Oxidation zu Cyclohexanon und Beckmann-Umlagerung mit Hy- droxylamin oder aus 1 ,4-Butadien durch Hydrocyanierung und selektive Hydrierung und anschließende Cyclisierung zum Caprolactam hergestellt. In beiden Fällen ist die Basis ein Kohlenwasserstoff aus der Erdölchemie.
Somit handelt es sich dabei um eine petrochemisch basierte Herstellung über jeweils fünf Stufen ausgehend von Benzol bzw. von Butadien.
Die Herstellung von 1 ,5-Pentandiamin ist bekannt durch enzymatische Decarboxylie- rung von Lysin mit beispielsweise Lysin Decarboxylase (EP 1482055 A1 oder JP 2004- 222569 A) in einem zellfreien System oder durch thermische oder katalytische Decar- boxylierung (G. Gautret de Ia Moriciere, G. Chatelus, Bull. Soc. Chim. France (1969, 12, 4421 - 4425) oder durch Hydrierung der entsprechenden Nitrile (beispielsweise EP 161419 oder WO 2003/99768).
1 ,5-Pentandiamin war bisher nicht großtechnisch verfügbar.
WO 2006/005603 beschreibt ein biochemisches Verfahren zur Herstellung von 1 ,4- Butandiamin aus Ornithin mit Hilfe von Ornithin Decarboxylase und dessen Verwendung als Ausgangsverbindung für die Polyamidherstellung. Aufgabe der vorliegenden Erfindung war es, Pentamethylen-1 ,5-diisocyanat herzustellen, das aus nachwachsenden Rohstoffen hergestellt werden kann.
Die Aufgabe wurde gelöst durch ein Verfahren zur Herstellung von Pentamethylen-1 ,5- diisocyanat, in dem man b) Lysin in 1 ,5-Pentandiamin überführt und c) das so erhaltene 1 ,5-Pentandiamin in Pentamethylen-1 ,5-diisocyanat überführt.
Der Vorteil des erfindungsgemäßen Verfahren beruht darin, daß man bei der Herstel- lung des Pentamethylen-1 ,5-diisocyanat unabhängig von Erdöl als Rohstoffbasis ist. Zudem weist das auf diese Weise hergestellte Pentamethylen-1 ,5-diisocyanat eine geringere Farbe auf als konventionell hergestelltes, da es thermisch geringer belastet wird.
Durch die erfindungsgemäße Wahl der Rohstoffbasis Lysin bzw. nachwachsende Rohstoffe erhält man nach dem erfindungsgemäßen Verfahren ein zumindest nahezu iso- merenreines Pentamethylen-1 ,5-diisocyanat, wohingegen das auf herkömmlichem Wege hergestellte Pentamethylen-1 ,5-diisocyanat einen Anteil an isomeren Penta- methylendiisocyanaten, insbesondere Pentamethylen-1 ,4-diisocyanat enthält. Dieser Anteil kann abhängig von dessen Herstellung bis zu mehreren Gew% betragen.
Das erfindungsgemäß hergestellte Pentamethylen-1 ,5-diisocyanat weist dagegen einen Anteil an den verzweigten Pentamethylendiisocyanaten Isomeren von jeweils weniger als 100 ppm auf.
Somit ist ein weiterer Gegenstand des vorliegenden Verfahrens ein Gemisch, bestehend aus mindestens zwei verschiedenen Pentamethylendiisocyanatisomeren, von denen der Hauptbestandteil Pentamethylen-1 ,5-diisocyanat ist und das in geringeren Mengen enthaltene Isomer in Mengen von nicht mehr als 100 ppm enthalten ist, mit der Maßgabe, daß die Summe 100 Gew% beträgt.
Ein weiterer Gegenstand des vorliegenden Verfahrens ist ein Gemisch, bestehend aus Pentamethylen-1 ,5-diisocyanat und Pentamethylen-1 ,4-diisocyanat, wobei der Anteil an Pentamethylen-1 ,4-diisocyanat nicht mehr als 10000 ppm, bevorzugt 7500 ppm, besonders bevorzugt 5000 ppm, ganz besonders bevorzugt 2500 ppm, insbesondere 1000 ppm, speziell 500 ppm und sogar 100 ppm ausmacht und der Anteil von Penta- methylen-1 ,5-diisocyanat den Rest zu 100 Gew% ausmacht.
Infolgedessen weist das erfindungsgemäß hergestellte Pentamethylen-1 ,5-diisocyanat nahezu ausschließlich zwei primäre Isocyanatgruppen auf und zeigt deswegen eine gleichmäßigere Reaktivität in Umsetzungen der Isocyanatgruppen, beispielsweise in der Herstellung von Polyurethanen. Verzweigte Pentamethylendiisocyanat-Isomere dagegen weisen eine primäre und eine sekundäre Isocyanatgruppe auf, die unterschiedlich reaktiv sind.
Das nach dem erfindungsgemäßen Verfahren erhaltene Pentamethylen-1 ,5- diisocyanat weist in der Regel eine Farbzahl von nicht mehr als 15 APHA gemäß DIN ISO 6271 auf.
Der erfindungsgemäße Schritt b) besteht aus einer Überführung von Lysin in 1 ,5- Pentandiamin.
Lysin kann in reiner Form eingesetzt werden oder kann im Verlauf der Reaktion erst gebildet werden (siehe unten zu Schritt a)). Weiterhin kann Lysin in Form einer wäßrigen Lösung, Pufferlösung oder als lysinhaltiges Reaktionsgemisch mit einem Lysinge- halt von bevorzugt mindestens 5 Gew% bis zur Löslichkeitsgrenze in dem jeweiligen Reaktionsgemisch bei den jeweiligen Temperaturen. In der Regel kann der Gehalt bis zu 45 Gew%, bevorzugt bis zu 40, besonders bevorzugt bis zu 35 und ganz besonders bevorzugt bis zu 30 Gew% betragen.
Das für das erfindungsgemäße Verfahren eingesetzte Lysin (2,6-Diaminohexansäure) stammt aus bevorzugt biologischem Material und kann als D-Enantiomer, als L-
Enantiomer, oder als beliebiges Gemisch dieser Enantiomeren, beispielsweise als Ra- cemat, vorliegen, bevorzugt in Form des L-Enantiomers ([(S)-2,6-Diaminohexansäure).
Es kann in freier Form oder als inneres Salz eingesetzt werden, in Form seines Anions als Carboxylat oder einfach oder zweifach protoniert in Form seines Mono- oder Di- ammoniumsalzes, beispielsweise als Chlorid.
Ferner kann das Lysin in Form seines Esters, beispielsweise als Methyl-, Ethyl, n- Propyl-, iso-Propyl-, n-Butyl-, sek-Butyl- oder iso-Butylesters eingesetzt werden.
Bei dem Schritt b) handelt es sich bevorzugt um eine Decarboxylierung.
In einer Möglichkeit einer Decarboxylierung wird Lysin, gegebenenfalls in einem Lösungsmittel gelöst oder suspendiert, bei einer Temperatur oberhalb von 80 0C, bevor- zugt oberhalb von 100 0C, besonders bevorzugt oberhalb von 120 0C, ganz besonders bevorzugt oberhalb von 150 0C und insbesondere oberhalb von 180 0C erhitzt (thermische Decarboxylierung).
Die Temperatur kann bis zu 250 0C betragen, bevorzugt bis zu 230 0C, besonders be- vorzugt bis zu 210 0C und ganz besonders bevorzugt bis zu 200 0C. Gegebenenfalls kann Druck angelegt werden, um eventuell vorhandenes Lösungsmittel im Reaktionsgemisch zu halten.
Beispiele für Lösungsmittel sind aromatische und/oder (cyclo)aliphatische Kohlenwas- serstoffe und deren Gemische, halogenierte Kohlenwasserstoffe, Ester, Ether und Alkohole.
Bevorzugt sind aromatische Kohlenwasserstoffe, (cyclo)aliphatische Kohlenwasserstoffe, Alkansäurealkylester, alkoxylierte Alkansäurealkylester und deren Gemische.
Besonders bevorzugt sind ein- oder mehrfach alkylierte Benzole und Naphthaline, Alkansäurealkylester und alkoxylierte Alkansäurealkylester sowie deren Gemische.
Als aromatische Kohlenwasserstoffgemische sind solche bevorzugt, die überwiegend aromatische C7- bis Cu-Kohlenwasserstoffe umfassen und einen Siedebereich von 1 10 bis 300 0C umfassen können, besonders bevorzugt sind Toluol, o-, m- oder p-Xy- lol, Trimethylbenzolisomere, Tetramethylbenzolisomere, Ethylbenzol, Cumol, Tetrahyd- ronaphthalin und solche enthaltende Gemische.
Beispiele dafür sind die Solvesso®-Marken der Firma ExxonMobil Chemical, besonders Solvesso® 100 (CAS-Nr. 64742-95-6, überwiegend C9 und Cio-Aromaten, Siedebereich etwa 154 - 178 0C), 150 (Siedebereich etwa 182 - 207 0C) und 200 (CAS-Nr. 64742-94-5), sowie die Shellsol®-Marken der Firma Shell. Kohlenwasserstoffgemische aus Paraffinen, Cycloparaffinen und Aromaten sind auch unter den Bezeichnungen Kristallöl (beispielsweise Kristallöl 30, Siedebereich etwa 158 - 198 0C oder Kristallöl 60: CAS-Nr. 64742-82-1), Testbenzin (beispielsweise ebenfalls CAS-Nr. 64742-82-1 ) oder Solventnaphtha (leicht: Siedebereich etwa 155 - 180 0C, schwer: Siedebereich etwa 225 - 300 0C,) im Handel erhältlich. Der Aromatengehalt derartiger Kohlenwasserstoffgemische beträgt in der Regel mehr als 90 Gew%, bevorzugt mehr als 95, be- sonders bevorzugt mehr als 98 und ganz besonders bevorzugt mehr als 99 Gew%. Es kann sinnvoll sein, Kohlenwasserstoffgemische mit einem besonders verringerten Gehalt an Naphthalin einzusetzen.
Halogenierte Kohlenwasserstoffe sind beispielsweise Chlorbenzol und Dichlorbenzol oder dessen Isomerengemische.
Ester sind beispielsweise n-Butylacetat, Ethylacetat, 1 -Methoxypropylacetat-2 und 2- Methoxyethylacetat, sowie die Mono- und Diacetylester von Ethylenglykol, Diethy- lenglykol, Triethylenglykol, Propylenglykol, Dipropylenglykol oder Tripropylenglykol, wie beispielsweise Butylglykolacetat. Weitere Beispiele sind auch Carbonate, wie bevorzugt 1 ,2-Ethylencarbonat, 1 ,2-Propylencarbonat oder 1 ,3-Propylencarbonat. Ether sind beispielsweise Tetrahydrofuran (THF), Dioxan sowie die Dimethyl-, -ethyl- oder -n-butylether von Ethylenglykol, Diethylenglykol, Triethylenglykol, Propylenglykol, Dipropylenglykol oder Tripropylenglykol.
(Cyclo)aliphatische Kohlenwasserstoffe sind beispielsweise Dekalin, alkyliertes Dekalin und Isomerengemische von geradlinigen oder verzweigten Alkanen und/oder Cycloal- kanen.
Alkohole sind beispielsweise Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol, sek-Butanol, iso-Butanol, Pentanol-Isomerengemische, Hexanol-Isomerengemische, 2-Ethylhexanol oder Oktanol.
Besonders geeignet ist Wasser.
Zur Decarboxylierung kann zusätzlich noch eine Base zugegeben werden, beispielsweise eine organische Base, bevorzugt ein Amin, besonders bevorzugt ein sekundäres oder tertiäres Amin, oder eine anorganische Base, wie beispielsweise Alkali- oder Erdalkalimetalloxide, -hydroxide, -carbonate oder -hydrogencarbonate, bevorzugt Natronlauge, Kalilauge, Natriumhydrogencarbonat, Natriumcarbonat, Kaliumhydrogencarbo- nat, Kalziumhydroxid, Kalkmilch oder Kaliumcarbonat (katalytische Decarboxylierung).
Insbesondere wenn Lysin in Form eines Esters, bevorzugt des Methylesters eingesetzt wird, ist eine Durchführung der Reaktion als Desalkoxycarbonylierung unter sogenannten "Krapcho"-Bedingungen bevorzugt, wobei dem Reaktionsgemisch ein Nukleophil, bevorzugt eine lodid oder Bromid, besonders bevorzugt ein lodid zugegeben wird und unter diesen Reaktionsbedingungen erhitzt wird.
Besonders bevorzugt wird jedoch die Decarboxylierung mit Hilfe eines Enyzyms durchgeführt,
Bevorzugt handelt es sich um Lyasen (E. C. 4.-.-.-), besonders bevorzugt um Kohlen- stoff-Kohlenstoff-Lyasen (E. C. 4.1.-.-) und ganz besonders bevorzugt um Carboxy- Lyasen (E.C. 4.1.1.-)
Beispiele dafür sind:
EC 4.1.1.1 pyruvate decarboxylase EC 4.1.1.2 Oxalate decarboxylase EC 4.1.1.3 oxaloacetate decarboxylase EC 4.1.1.4 acetoacetate decarboxylase EC 4.1.1.5 acetolactate decarboxylase EC 4.1.1.6 aconitate decarboxylase EC 4.1.1.7 benzoylformate decarboxylase
EC 4.1.1.8 oxalyl-CoA decarboxylase
EC 4.1.1.9 malonyl-CoA decarboxylase
EC 4.1.1.1 1 aspartate 1 -decarboxylase EC 4.1.1.12 aspartate 4-decarboxylase
EC 4.1.1.14 valine decarboxylase
EC 4.1.1.15 glutamate decarboxylase
EC 4.1.1.16 hydroxyglutamate decarboxylase
EC 4.1.1.17 Ornithine decarboxylase EC 4.1.1.18 lysine decarboxylase
EC 4.1.1.19 arginine decarboxylase
EC 4.1.1.20 diaminopimelate decarboxylase
EC 4.1.1.21 phosphoribosylaminoimidazole carboxylase
EC 4.1.1.21 phosphoribosylaminoimidazole carboxylase EC 4.1.1.22 histidine decarboxylase
EC 4.1.1.23 orotidine-5'-phosphate decarboxylase
EC 4.1.1.24 aminobenzoate decarboxylase
EC 4.1.1.25 tyrosine decarboxylase
EC 4.1.1.28 aromatic-L-amino-acid decarboxylase EC 4.1.1.29 sulfoalanine decarboxylase
EC 4.1.1.30 pantothenoylcysteine decarboxylase
EC 4.1.1.31 phosphoenolpyruvate carboxylase
EC 4.1.1.32 phosphoenolpyruvate carboxykinase (GTP)
EC 4.1.1.33 diphosphomevalonate decarboxylase EC 4.1.1.34 dehydro-L-gulonate decarboxylase
EC 4.1.1.35 UDP-glucuronate decarboxylase
EC 4.1.1.36 phosphopantothenoylcysteine decarboxylase
EC 4.1.1.37 uroporphyrinogen decarboxylase
EC 4.1.1.38 phosphoenolpyruvate carboxykinase (diphosphate) EC 4.1.1.39 ribulose-bisphosphate carboxylase
EC 4.1.1.40 hydroxypyruvate decarboxylase
EC 4.1.1.41 methylmalonyl-CoA decarboxylase
EC 4.1.1.42 carnitine decarboxylase
EC 4.1.1.43 phenylpyruvate decarboxylase EC 4.1.1.44 4-carboxymuconolactone decarboxylase
EC 4.1.1.45 aminocarboxymuconate-semialdehyde decarboxylase
EC 4.1.1.46 o-pyrocatechuate decarboxylase
EC 4.1.1.47 tartronate-semialdehyde synthase
EC 4.1.1.48 indole-3-glycerol-phosphate synthase EC 4.1.1.49 phosphoenolpyruvate carboxykinase (ATP)
EC 4.1.1.50 adenosylmethionine decarboxylase
EC 4.1.1.51 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 4-decarboxylase EC 4.1.1.52 6-methylsalicylate decarboxylase
EC 4.1.1.53 Phenylalanine decarboxylase
EC 4.1.1.54 dihydroxyfumarate decarboxylase
EC 4.1.1.55 4,5-dihydroxyphthalate decarboxylase EC 4.1.1.56 3-oxolaurate decarboxylase
EC 4.1.1.57 methionine decarboxylase
EC 4.1.1.58 orsellinate decarboxylase
EC 4.1.1.59 gallate decarboxylase
EC 4.1.1.60 stipitatonate decarboxylase EC 4.1.1.61 4-hydroxybenzoate decarboxylase
EC 4.1.1.62 gentisate decarboxylase
EC 4.1.1.63 protocatechuate decarboxylase
EC 4.1.1.64 2,2-dialkylglycine decarboxylase (pyruvate)
EC 4.1.1.65 phosphatidylserine decarboxylase EC 4.1.1.66 uracil-5-carboxylate decarboxylase
EC 4.1.1.67 UDP-galacturonate decarboxylase
EC 4.1.1.68 5-oxopent-3-ene-1 ,2,5-tricarboxylate decarboxylase
EC 4.1.1.69 3,4-dihydroxyphthalate decarboxylase
EC 4.1.1.70 glutaconyl-CoA decarboxylase EC 4.1.1.71 2-oxoglutarate decarboxylase
EC 4.1.1.72 branched-chain-2-oxoacid decarboxylase
EC 4.1.1.73 tartrate decarboxylase
EC 4.1.1.74 indolepyruvate decarboxylase
EC 4.1.1.75 5-guanidino-2-oxopentanoate decarboxylase EC 4.1.1.76 arylmalonate decarboxylase
EC 4.1.1.77 4-oxalocrotonate decarboxylase
EC 4.1.1.78 acetylenedicarboxylate decarboxylase
EC 4.1.1.79 sulfopyruvate decarboxylase
EC 4.1.1.80 4-hydroxyphenylpyruvate decarboxylase EC 4.1.1.81 threonine-phosphate decarboxylase
EC 4.1.1.82 phosphonopyruvate decarboxylase
EC 4.1.1.83 4-hydroxyphenylacetate decarboxylase
EC 4.1.1.84 D-dopachrome decarboxylase
EC 4.1.1.85 3-dehydro-L-gulonate-6-phosphate decarboxylase
Insbesondere bevorzugt ist die (enzymatische Decarboxylierung) in Gegenwart von
Lysin-Decarboxylase (E. C. 4.1.1.18, besonders CAS-Nr. 9024-76-4).
Dabei ist es zunächst nicht erforderlich, zwischen der Durchführung des Schrittes b) in einem zellfreien System und einer fermentativen Durchführung zu unterscheiden. Eine besonders bevorzugte Ausführungsform der vorliegenden Erfindung besteht jedoch darin, das 1 ,5-Pentandiamin fermentativ durch lebende Mikroorganismen aus geeigneten Substraten herzustellen.
Besonders bevorzugt wird die Decarboxylierung in Gegenwart genetisch veränderter Mikroorganismen durchgeführt, wie beispielsweise beschrieben in der EP 1482055 und in der Internationalen Patentanmeldung mit dem Aktenzeichen PCT/EP2007/052783, dem Einreichungsdatum 23. März 2007 und dem Titel "Process for the production of cadaverine", die beide hiermit durch Referenznahme Bestandteil dieser Offenbarung seien.
Bevorzugte Mikroorganismen sind genetisch veränderte rekombinante Mikroorganismen, die Gene mit Lysin-Decarboxylase-Aktivität tragen, bevorzugt das cadA Gen (Kyoto Encyclopedia of Genes and Genomes, Entry b4131 ) und das IdcC Gen (Kyoto En- cyclopedia of Genes and Genomes, Entry JW0181 ) von Escherichia coli.
Besonders bevorzugt handelt es sich bei den Mikroorganismen um Corynebacterien und besonders bevorzugt um Corynebacterium glutamicum.
Es stellt eine besonders bevorzugte Ausführungsform der vorliegenden Erfindung dar, anstelle des Schrittes b) (Umwandlung von Lysin in 1 ,5-Pentandiamin) eine einstufige Synthese von 1 ,5-Pentandiamin ausgehend von einem geeigneten Substrat in einem Schritt a) durchzuführen. Dies umfaßt den Schritt b) in der Regel in Form einer intrazellulären Umwandlung des Substrats in Lysin und anschließend die ebenfalls intrazelluläre Umwandlung von Lysin in 1 ,5-Pentandiamin.
Dabei spielt es erfindungsgemäß keine Rolle, ob Lysin in reiner Form isoliert wird, in einem als Zwischenprodukt erhaltenen Gemisch enthalten ist oder im Verlauf des Schrittes a) lediglich intermediär, beispielsweise intrazellulär gebildet wird. Bei letzterer Variante spielt es darüberhinaus keine Rolle, ob tatsächlich Lysin als Intermediat ent- steht oder ob das Intermediat lediglich eine Lysin-Grundstruktur aufweist und beispielsweise die Carboxylgruppe verestert oder die Aminogruppen substituiert sind.
Ohne an eine Theorie gebunden sein zu wollen wird vermutet, daß in der Biosynthese von Lysin ein Monosaccharid über eine Anzahl von Zwischenstufen in Asparaginsäure umgewandelt wird, das nach Umwandlung in 4-Oxo-2-Aminobuttersäure mit Pyruvat zu dem Intermediat Dihydropicolin-2,6-dicarbonsäure reagiert. Diese wird in Tetrahydropi- colin-2,6-dicarbonsäure umgewandelt, die schließlich zu Diaminopimelinsäure reagiert, das durch Decarboxylierung in Lysin umgewandelt wird.
Ein bevorzugtes Verfahren zur Durchführung des Schrittes a) ist beschrieben in der Internationalen Patentanmeldung mit dem Aktenzeichen PCT/EP2007/052783, dem Einreichungsdatum 23. März 2007 und dem Titel "Process for the production of cada- verine", die hiermit durch Referenznahme Bestandteil dieser Offenbarung sei.
Geeignete Substrate für die Reaktion sind nachwachsende Rohstoffe. Dabei handelt es sich gemäß der Definition von Römpp-Online, Stichwort "Nachwachsende Rohstoffe", Dokument RD-14-00046, Stand August 2005, um landwirtschaftlich und forstwirtschaftlich erzeugte Produkte, die einer Verwendung im Nichtnahrungsbereich zugeführt werden. Demnach zählen zu den nachwachsenden Rohstoffen sowohl primäre Rohstoffe, wie Holz, als auch Produkte der ersten und zweiten Verarbeitungsstufe wie Cellulose, Stärke, monomere Kohlenhydrate, Chitin, tierische oder pflanzliche Fette und Öle, sowie Proteine und tierische Produkte, wie z.B. Schurwolle, Leder und Häute, Talg, Gelatine und Casein, sowie organische Rückstände, wie Stroh. Bei Stärke kann es sich beispielsweise um solche von Kartoffeln, Cassava, Getreide, z.B. Weizen, Mais, Gerste, Roggen, Triticale oder Reis, und verschiedenen Hirsesorten, z.B. Sorg- hum und MiIo, handeln.
Bevorzugte geeignete Substrate sind Monosaccharide, Oligosaccharide und Polysaccharide von Pentosen und/oder Hexosen, wie beispielsweise Mannose, Galactose, Sorbose, Xylose, Arabinose, Ribose, Glucose, Sucrose, Lactose, Fructose, Maltose, Melasse, Stärke oder Cellulose, aber auch Öle und Fette, wie z.B. Sojaöl, Sonnenblumenöl, Erdnußöl, Kokusnußöl oder Rapsöl, oder Fettsäuren, wie z.B. Palmitinsäure, Stearinsäure und Linolensäure, oder Alkohole, wie Glycrin und Ethanol, oder organische Säuren, wie z.B. Essigsäure. In einer bevorzugten Ausführungsform werden Glucose, Fructose oder Sucrose als Kohlenstoffquelle eingesetzt. Diese Verbindungen können einzeln oder als Gemisch eingesetzt werden.
Ein bevorzugtes Verfahren zur Umwandlung von Stärke in Lysin ist beispielsweise beschrieben in WO 05/1 16228, die hiermit durch Referenznahme Bestandteil dieser Offenbarung sei.
Als Stickstoffquellen können organische Verbindungen eingesetzt werden, die Stickstoff etnhalten, beispielsweise Pepton, Hefeextrakt, Fleischextrakt, Malzextrakt, Sojamehl und Harnstoff, oder anorganische Verbindungen, wie Ammonium sulfat, Ammonium chlorid, Ammonium phosphat, Ammonium carbonat und Ammonium nitrat oder ein Gemisch der genannten Verbindungen eingesetzt werden.
Phosphorquellen, die eingesetzt werden können, sind Phosphorsäure, Kaliumdihydro- genphosphat, Dikaliumhydrogenphosphat, oder die entsprechenden Natriumverbindungen.
Das Kulturmedium kann weiterhin Metallsalze enthalten, beispielsweise Magnesium sulfate oder Eisen sulfat, die zum Wachstum nötig sind. Weiterin können essentielle wachstumsfördernde Verbindungen, wie z.B. Aminosäuren oder Vitamine zusätzlich zu den oben genannten Verbindungen eingesetzt werden. Entsprechende Vorläufer können ebenfalls zum Kulturmedium zugegeben werden.
Die enzymatische Decarboxylierung erfolgt im Allgemeinen bei 0 bis 1000C, bevorzugt 20 bis 80 0C, besonders bevorzugt 20 bis 700C, ganz besonders bevorzugt 20 bis 60 °C.
Der pH-Wert des Kulturmediums wird in der Regel zwischen 6,0 und 8,5 gehalten.
Der Enzymgehalt im Reaktionsmedium liegt in der Regel im Bereich von etwa 0,1 bis 10 Gew.-%, bezogen auf das eingesetzte Lysin.
Die Reaktionszeit hängt unter anderem von der Temperatur, der verwendeten Menge und der Aktivität des Enzymkatalysators oder des Mikroorganismus und vom geforderten Umsatz ab. Bevorzugt wird die Reaktionszeit so angepaßt, daß der Umsatz aller ursprünglich im Lysin enthaltenden Carboxyfunktionen mindestens 70%, bevorzugt mindestens 80, besonders bevorzugt mindestens 90, ganz besonders bevorzugt min- destens 95 %, insbesondere mindestens 98% und speziell mindestens 99% beträgt. In der Regel sind dafür 1 bis 48 Stunden und bevorzugt 1 bis 12 Stunden ausreichend.
Es kann erforderlich sein, Sauerstoff durch das Reaktionsgemisch zu leiten.
Die Reaktion kann in organischen Lösungsmitteln oder deren Gemischen oder ohne Zusatz von Lösungsmitteln ablaufen. Als Lösungsmittel kann aber auch Wasser eingesetzt werden.
Der Anteil organischer Lösungsmittel beträgt beispielsweise 0,01-90 Gew.-%. Geeigne- te organische Lösungsmittel sind solche für diese Zwecke bekannten, beispielsweise tertiäre Monoole, wie Cs-Cβ-Alkohole, bevorzugt tert-Butanol, tert-Amylalkohol, Pyridin, Poly-Ci-C4-alkylenglykoldi-Ci-C4-alkylether, bevorzugt Polyethylenglycoldi-Ci-C4-al- kylether, wie z.B. 1 ,2-Dimethoxyethan, Diethylenglycoldimethylether, Polyethylengly- coldimethylether 500, Ci-C4-Alkylencarbonate, insbesondere Propylencarbonat, C3-C6- Alkylessigsäureester, insbesondere tert.-Butyl-essigsäureester, THF, Toluol, 1 ,3- Dioxolan, Aceton, iso-Butyl-methylketon, Ethylmethylketon, 1 ,4-Dioxan, tert- Butylmethylether, Cyclohexan, Methylcyclohexan, Toluol, Hexan, Dimethoxymethan, 1 ,1-Dimethoxyethan, Acetonitril, sowie deren ein- oder mehrphasige Mischungen.
Wahlweise können zu den organischen Lösungsmitteln wässrige Lösungsmittel zugesetzt werden, so dass - je nach organischem Lösungsmittel - ein- oder mehrphasige Reaktionslösungen entstehen. Beispiele für wässrige Lösungsmittel sind Wasser sowie wässrige, verdünnte (z.B. 10 bis 10OmM) Puffer, beispielsweise mit einem pH-Wert im Bereich von etwa 6 bis 8, wie z.B. Kaliumphosphat- oder TRIS-HCI-Puffer.
Die Substrate liegen entweder gelöst, als Feststoffe suspendiert oder in Emulsion im Reaktionsmedium vor. Vorzugsweise liegt die anfängliche Konzentration der Reaktan- den im Bereich von etwa 0,1 bis 20 Mol/l, insbesondere bei 0,15 bis 10 Mol/l oder 0,2 bis 5 mol/l liegt.
Die Reaktion kann kontinuierlich, beispielsweise in einem Rohrreaktor oder in einer Rührreaktorkaskade, oder diskontinuierlich erfolgen.
Die Umsetzung kann in allen für eine solche Umsetzung geeigneten Reaktoren durchgeführt werden. Solche Reaktoren sind dem Fachmann bekannt. Bevorzugt erfolgt die Umsetzung in einem Rührkesselreaktor oder einem Festbettreaktor.
Zur Durchmischung des Reaktionsansatzes können beliebige Verfahren eingesetzt werden. Spezielle Rührvorrichtungen sind nicht erforderlich. Das Reaktionsmedium kann ein- oder mehrphasig sein und die Reaktanden werden darin gelöst, suspendiert oder emulgiert, gegebenenfalls vorgelegt und zum Start der Reaktion, sowie gegebe- nenfalls ein- oder mehrmals im Verlauf der Reaktion, mit dem Enzympräparat versetzt. Die Temperatur wird während der Reaktion auf den gewünschten Wert eingestellt und kann, falls gewünscht, während des Reaktionsverlauf erhöht oder verringert werden.
Wird die Reaktion im Festbettreaktor durchgeführt, so ist der Festbettreaktor bevorzugt mit immobilisierten Enzymen bestückt, wobei die Reaktionsmischung durch eine mit dem Enzym gefüllte Säule gepumpt wird. Es ist auch möglich, die Umsetzung im Wirbelbett durchzuführen, wobei das Enzym auf einem Träger immobilisiert eingesetzt wird. Die Reaktionsmischung kann kontinuierlich durch die Säule gepumpt werden, wobei mit der Fließgeschwindigkeit die Verweilzeit und damit der gewünschte Umsatz steuerbar ist. Es ist auch möglich, die Reaktionsmischung im Kreislauf durch eine Säule zu pumpen.
Nach Beendigung der Reaktion kann man das aus b) bzw. a) erhältliche Reaktionsgemisch ohne weitere Aufreinigung weiterverwenden oder es bevorzugt aufreinigen, be- vor man es in den Schritt c) einsetzt.
Das aus dem vorhergehenden Reaktionsschritt erhaltene Reaktionsgemisch enthält in der Regel neben 1 ,5-Pentandiamin und Wasser noch unumgesetztes Substrat, Meta- boliten des eingesetzten Subtsrats sowie gegebenenfalls organische Lösungsmittel, und weiterhin eventuell Enzym, intakte oder lysierte Mikroorganismen. In der Regel wird lediglich das eingesetzte Enzym sowie vom Reaktionsgemisch abgetrennt und das Reaktionsprodukt vom gegebenenfalls verwendeten organischen Lösungsmittel abgetrennt.
Eine Abtrennung vom Enzym erfolgt in der Regel durch Kristallisation, Fällung, Chromatographie, Reversosmose, Elektrophorese, Elektrodialyse, Extraktion, Destillation, Filtration, Absorption, Zentrifugation oder Dekantieren. Das abgetrennte Enzym kann anschließend für weitere Reaktionen eingesetzt werden.
Eine Abtrennung vom Mikroorganismen oder Lysat erfolgt in der Regel durch Extraktion, Destillation, Filtration, Absorption, diskontinuierliche oder kontinuierliche Zentrifugation, Querstromzentrifugation oder Dekantieren. Abgetrennte intakte Mikroorganismen können anschließend für weitere Reaktionen eingesetzt werden.
Vor der Abtrennung können Mikroorganismen, falls erwünscht, noch aufgeschlossen werden, z.B. durch Scherung.
Die Abtrennung vom organischen Lösungsmittel erfolgt in der Regel durch Destillation, Rektifikation.
Zur Destillation kann eine Destillationskolonne mit 1 bis 20 theoretischen Böden auf das Reaktionsgefäß aufgesetzt werden, in der der Rücklauf den Trennerfordernissen angepaßt werden kann. Bei niedrigsiedenden organischen Lösungsmittel kann auch eine einstufige Destillation über Flash-, Fallfilm-, Dünnfilm-, Kurzweg- und/oder Wisch- blattverdampfer, denen gegebenenfalls eine kurze Kolonne aufgesetzt sein kann.
Die Abtrennung der Leichtsieder aus dem Reaktionsgemisch kann durch das Durchleiten eines unter den Reaktionsbedingungen im wesentlichen inerten Gasstromes (Strippen), wie z.B. ein sauerstoffabgereichert.es Gemisch aus Luft und Stickstoff (Ma- gerluft) oder bevorzugt Stickstoff oder Kohlenstoffdioxid unterstützt werden.
Die Entfernung des Wassers erfolgt dann bevorzugt kontinuierlich oder schrittweise in an sich bekannter Weise, z.B. durch Vakuum, azeotrope Entfernung, Absorption, Per- vaporation und Diffusion über Membranen.
Es kann auch möglich sein, 1 ,5-Pentandiamin in ein Salz, bevorzugt in das Hydrochlo- rid zu überführen und mit wasserlöslichen organischen Lösungsmittel, beispielsweise Alkoholen oder Aceton, auszufällen. In diesem Fall kann man das Präzipitat durch Wäsche und/oder Kristallisation aufreinigen und das 1 ,5-Diamin anschließend durch Zu- gäbe einer Base wieder freisetzen. Zur Absorption eignen sich vorzugsweise Molekularsiebe oder Zeolithe (Porengröße z.B. im Bereich von etwa 3-10 Angström), alternativ eine Abtrennung durch Destillation oder mit Hilfe geeigneter semipermeabler Membranen.
Das so erhaltene 1 ,5-Pentandiamin kann, falls erforderlich, nochmals destilliert werden, so daß der Reinheitsgrad in der Regel bei mindestens 98%, bevorzugt mindestens 99% besonders bevorzugt mindestens 99,5% und ganz besonders bevorzugt mindestens 99,8% liegt.
Der Schritt c) kann phosgenfrei oder in Gegenwart von Phosgen erfolgen, bei letzterer Variante kann die Phosgenierung in Flüssigphase oder in Gasphase erfolgen.
Phosgenfreie Verfahren zur Herstellung von Isocyanaten sind bekannt beispielsweise aus der EP 18588 A1 , EP 28338 A2, EP 27952, EP 126299 und besonders EP 566925 A2.
Die im Stand der Technik bekannten phosgenfreien Verfahren können für das erfindungsgemäße Verfahren angewendet werden, bevorzugt jedoch das im folgenden beschriebene:
Zur Herstellung der Urethane wird das Amin mit Harnstoff und mindestens einem, bevorzugt genau einem Alkohol in einem molaren Verhältnis von Amin, Harnstoff und Alkohol wie 1 : 2 bis 20 : 5 bis 40 bei Temperaturen von 50 - 300 0C und insbesondere bei 180 - 220 0C unter einem Druck von 0,1 bis 30 bar, vorzugsweise 5 - 20 bar zur Reaktion gebracht. Bei diesen Reaktionsbedingungen ergeben sich für das Verfahren mittlere Reaktionszeiten von Bruchteilen von Sekunden bis Minuten.
Die Umsetzung kann in Gegenwart von Dialkylcarbonaten, zweckmäßigerweise in einer Menge von 0,1 bis 30 Mol%, vorzugsweise 1 bis 10 Mol% oder Carbamidsäureal- kylestern zweckmäßigerweise in einer Menge von 1 bis 20 Mol%, vorzugsweise von 5 bis 15 Mol%, bezogen auf das Diamin, durchgeführt werden. Insbesondere verwendet werden dabei Mischungen aus Dialkylcarbonaten und Carbamidsäurealkylestern in den genannten Mengenverhältnissen. Als Dialkylcarbonate und/oder Carbamidsäureester setzt man bevorzugt solche ein, deren Alkylreste dem Alkylrest des verwendeten Alko- hols entsprechen.
Die Umsetzung kann auch in Gegenwart von Katalysatoren erfolgen. Diese werden zweckmäßigerweise in Mengen von 0,001 bis 20 Gew% vorzugsweise 0,001 bis 5 Gew% insbesondere 0,01 bis 0,1 Gew%, bezogen auf das Gewicht des Amins, einge- setzt. Als Katalysatoren eignen sich anorganische oder organische Verbindungen, die ein oder mehrere Kationen, vorzugsweise ein Kation von Metallen der Gruppe IA, IB, IIA, IIB, HIB, IVA, IVB, VA, VB, VIB, VIIB, VIIIB des Periodensystems der Elemente enthalten, definiert gemäß Handbook of Chemistry and Physics 14th Edition, publiziert von Chemical Rubber Publishing Co., 23 Superior Ave. N. E., Cleveland, Ohio, enthalten. Beispielhaft genannt seien die Kationen folgender Metalle: Lithium, Natrium, Kalium, Magnesium, Calcium, Aluminium, Gallium, Zinn, Blei, Bismut, Antimon, Kupfer, Silber, Gold, Zink, Quecksilber, Cer, Titan, Vanadium, Chrom, Molybdän, Mangan, Eisen und Cobalt.
Der Katalysator kann weiterhin mindestens ein Anion enthalten, beispielsweise Halogenide, wie Chloride und Bromide, Sulfate, Phosphate, Nitrate, Borate, Alkoholate, Phenolate, Sulfonate, Oxide, Oxidhydrate, Hydroxide, Carboxylate, Chelate, Carbonate und Thio- oder Dithiocarbamate.
Die Katalysatoren können ohne erkennbare deutliche Nachteile auch in Form ihrer Hydrate oder Ammoniakate zum Einsatz kommen.
Als typische Katalysatoren seien beispielhaft folgende Verbindungen genannt: Li- thiummethanolat, Lithiumethanolat, Lithiumpropanolat, Lithiumbutanolat, Natrium- methanolat, Kalium-tert.-butanolat, Magnesiummethanolat, Calciummethanolat, Zinn- (ll)-chlorid, Zinn-(IV)-chlorid, Bleiacetat, Bleiphosphat, Antimon-(lll)-chlorid, Antimon- (V)-chlorid, Aluminiumacetylacetonat, Aluminium-iso-butylat, Aluminiumtrichlorid, Bis- mut-(lll)-chlorid, Kupfer-(ll)-acetat, Kupfer-(ll)-sulfat, Kupfer-(ll)-nitrat, Bis- (triphenylphosphinoxido)-kupfer-(ll)-chlorid, Kupfermolybdat, Silberacetat, Goldacetat, Zinkoxid, Zinkchlorid, Zinkacetat, Zinkacetonylacetat, Zinkoctoat, Zinkoxalat, Zinkhexy- lat, Zinkbenzoat, Zinkundecylenat, Cer-(IV)-oxid, Uranylacetat, Titantetrabutanolat, Titantetrachlorid, Titantetraphenolat, Titannaphtenat, Vanadium-(lll)-chlorid, Vanadiu- macetylacetonat, Chrom-(lll)-chlorid, Molybdän-(VI)-oxid, Molybdänacetylacetonat, Wolfram-(VI)-oxid, Mangan-(ll)-chlorid, Mangan-(ll)-acetat, Mangan-(lll)-acetat, Eisen- (ll)-acetat, Eisen-(lll)-acetat, Eisenphosphat, Eisenoxalat, Eisen-(lll)-chlorid, Eisen-(lll)- bromid, Cobaltacetat, Cobaltchlorid, Cobaltsulfat, Cobaltnaphthenat, Nickelchlorid, Ni- ckelacetat und Nickelnaphthenat sowie deren Gemische.
Als bevorzugte Katalysatoren seien beispielhaft folgende Verbindungen genannt: Lithiumbutanolat, Aluminiumacetylacetonat, Zinkacetylacetonat, Titantetrabutanolat und Zirkontetrabutylat.
Die Vermischung der Eduktströme kann bevorzugt in einer geeigneten speziellen Mischeinrichtung erfolgen, die sich durch geringe Mischzeiten auszeichnet. Der vermischte Eduktstrom wird dann in eine Reaktionseinrichtung geführt, die rückvermischt oder als Rohrreaktor oder als Kombination daraus gestaltet sein kann.
Das Reaktionsgemisch wird im Reaktor bei einer mittleren von 10 Sekunden bis 5 Stunden, bevorzugt 20 Sekunden bis 20 Minuten, besonders bevorzugt 30 Sekunden bis 10 Minuten umgesetzt. Die Temperatur beträgt im allgemeinen zwischen 50 0C und 300 0C, bevorzugt zwischen 180 0C und 220 0C. Der Druck beträgt in der Regel zwischen 0,1 bar abs und 30 bar abs und bevorzugt zwischen 5 und 20 bar abs.
Die Verweilzeit ist so gewählt, daß der Umsatz, bezogen auf Aminogruppen im eingesetzten Amin zu Urethangruppen, nach Verlassen des Reaktors mindestens 95%, bevorzugt mindestens 98, besonders bevorzugt mindestens 99 und ganz besonders bevorzugt mindestens 99,5% beträgt.
Ist der Umsatz, bezogen auf Aminogruppen im eingesetzten Amin zu Urethangruppen, nach Verlassen des Reaktors noch nicht vollständig und beträgt beispielsweise weniger als 95%, so kann der Austrag nochmals nachreagiert werden.
Zur Abtrennung des Ammoniaks werden zweckmäßigerweise Kolonnen verwendet, bevorzugt wird der Ammonik per Destillation abgetrennt. Dadurch gelingt eine gute
Trennung zwischen dem Alkohol und Ammoniak. Üblicherweise erfolgt die Abtrennung in einem Druckbereich von 0,01 - 20 bar, vorzugsweise bei 0,04 - 15 bar. Die notwendigen Temperaturen richten sich nach dem verwendeten Alkohol bzw. dem Alkoholgemisch. Für n-Butanol liegt die Temperatur beispielsweise bei 60 - 150 0C, bevorzugt bei 80 bis 140 0C.
Es hat sich als vorteilhaft erwiesen, das entstehende Ammoniak sofort aus der Reaktionsmischung abzutrennen, so daß eine Belegung durch Ammoniumcarbaminat, welches in minimalen Mengen aus Ammoniak und Kohlendioxid durch Zersetzung von Harnstoff gebildet wird, vermieden werden kann.
Diese Destillationseinheit ist von an sich bekannter Bauart und weist die üblichen Einbauten auf. Als Kolonneneinbauten kommen prinzipiell alle gängigen Einbauten in Betracht, beispielsweise Böden, Packungen und/oder Schüttungen. Von den Böden sind Glockenböden, Siebböden, Ventilböden, Thormannböden und/oder Dual-Flow-Böden bevorzugt, von den Schüttungen sind solche mit Ringen, Wendeln, Sattelkörpern, Raschig-, Intos- oder Pall-Ringen, Barrel- oder Intalox-Sätteln, Top-Pak etc. oder Geflechten bevorzugt. Bevorzugt werden Böden verwendet, besonders bevorzugt Glockenböden.
Die Destillationskolonne weist bevorzugt 10 - 20 theoretische Trennböden auf. Aus der erhaltenen ammoniakabgereicherten Reaktionsmischung werden dann Alkohol, Dialkylcarbonate, sofern solche gebildet wurden oder in der Reaktionsmischung vorliegen, oder Carbamidsäurealkylester oder Mischungen aus mindestens zwei dieser Komponenten abgetrennt und vorzugsweise in die Reaktionsstufe zurückgeführt.
Zur Abtrennung der Komponenten wird die Reaktionsmischung vorteilhafterweise vom Druckniveau der Reaktionsstufe auf einen Druck im Bereich von 1 bis 500 mbar, vorzugsweise von 10 bis 100 mbar entspannt. Man erhält hierbei gasförmige Brüden, die die überwiegende Alkoholmenge sowie 0 bis 30 Gew.%, vorzugsweise 1 bis 10 Gew.% Dialkylcarbonat und/oder 1 bis 50 Gew.%, vorzugsweise 1 bis 20 Gew.% Carbamidsäurealkylester enthalten, und einen flüssigen Austrag, der im wesentlichen aus dem monomeren Diurethan besteht und gegebenenfalls Oligoharnstoff-polyurethanen und hochsiedende Oligomere enthält.
Die erhaltenen Brüden werden in nachfolgenden zweckmäßigerweise destillativen Reinigungsstufen, vorzugsweise durch Rektifikation, getrennt und die hierbei isolierten Wertprodukte Alkohol und Carbamidsäurealkylester, einzeln oder als Mischung, vorzugsweise in die Reaktionsstufe zur Bildung der monomeren Urethane zurückgeführt.
Zur destillativen Abtrennung des Alkohols oder des Alkoholgemisches wird häufig ein sogenannter Flash eingesetzt. Dieser Apparat kann ein Behälter oder eine Kombination von Behälter und Kolonne vorzugsweise eine Kolonne sein, wobei im Kopf der Alkohol bzw. das Alkoholgemisch und im Sumpf das Urethan abgezogen werden kann. Im Kopf der Kolonne können neben dem Alkohol auch weitere leichter als das Urethan siedende Stoffe enthalten sein. Die Trennung erfolgt in einem Druckbereich von 0,001 bis 1 bar, vorzugsweise bei 0,02 - 0,5 bar.
Die nach Abtrennung der Brüden in der Regel als Sumpfaustrag erhaltene flüssige, die monomeren Diurethane, und gegebenenfalls Oligoharnstoff-polyurethane und hochsie- dende Oligomere enthaltende Reaktionsmischung kann entweder vollständig in die Folgestufe geführt werden oder wird bevorzugt in zwei Teilströme geteilt, wobei das Gewichtsverhältnis der Teilmengen 5 bis 50:95 bis 50 Gew.-Teile, vorzugsweise 10 bis 30:90 bis 70 Gew.-Teile beträgt.
Die gleich große oder vorzugsweise kleinere Teilmenge wird destillativ getrennt mittels einer üblichen Destillationsanlage, vorzugsweise eines Dünnschichtverdampfers, bei einer Temperatur von 170 bis 2400C, vorzugsweise von 180 bis 2300C und unter einem Druck von 0,001 - 1 bar, vorzugsweise 0,002 - 0,01 bar, in ein Wertprodukt, das die Diurethane und die leichter siedende Nebenprodukte enthält, und nicht destillierba- re Nebenprodukte, die aus dem Herstellungsverfahren abgetrennt und üblicherweise als nicht verwertbarer Rückstand verworfen werden. Das Wertprodukt (Destillat) wird mit der gleich großen oder vorzugsweise größeren anderen Teilmenge vereinigt und die vereinigte Diurethane enthaltende Reaktionsmischung der thermischen Spaltung zugeführt.
Durch diese Verfahrensmaßnahme wird der Anteil an nicht destillierbaren Nebenpro- dukten in der Reaktionsmischung, die sich bei den nacheinander ablaufenden Teilreaktionen bilden und durch die Rückführung verwertbarer Einsatzstoff im Reaktionskreislauf ständig anreichern würden, auf einen Gehalt von 3 bis 30 Gew.%, vorzugsweise 5 bis 20 Gew.% begrenzt und dadurch eine mit hoher Selektivität störungsfrei ablaufende Reaktion gewährleistet.
Als Destillationseinrichtungen können Dünnschichtverdampfer oder Kurzwegverdampfer zum Einsatz kommen. Das Urethan wird bei Drücken von 0,001 - 1 bar, vorzugsweise im Bereich von 0,002 - 0,01 bar destilliert. Das Destillat wird der Spaltung zugeführt.
Der hochsiederhaltige Sumpf wird bevorzugt verworfen oder kann weniger bevorzugt teilweise der Reurethanisierung zugeführt werden.
Die so erhaltene Diurethane-enthaltende Reaktionsmischung wird in einer geeigneten Vorrichtung, bevorzugt lösungsmittelfrei in flüssiger Phase in Gegenwart von Katalysatoren bei Temperaturen von 200 bis 3000C, vorzugsweise 220 bis 2800C und unter vermindertem Druck von 0,01 - 0,6 bar, vorzugsweise im Bereich von 0,02 - 0,1 bar kontinuierlich thermisch gespalten. Der Umsatz von Diurethan zu Diisocyanat in der Vorrichtung zur thermischen Spaltung kann weitgehend frei gewählt werden und liegt zweckmäßigerweise in einem Bereich von 10 bis 98 Gew.%, vorzugsweise 40 bis 90 Gew.% der zugeführten Menge.
Der ungespaltene Anteil der Reaktionsmischung, der nicht umgesetzte Diurethane, Oligoharnstoff-polyurethane, hochsiedende Oligomere und andere wieder verwertbare und unverwertbare Nebenprodukte enthält, wird abgetrennt, kontinuierlich aus der Spaltvorrichtung ausgeschleust und direkt oder gegebenenfalls nach Umsetzung mit Alkohol in der Reurethanisierung in die Reaktionsstufe zurückgeführt.
Als Katalysatoren zur chemischen Spaltung finden z.B. die vorgenannten, die Urethan- bildung katalysierende anorganischen und organischen Verbindungen Verwendung.
Besonders bewährt und daher vorzugsweise verwendet werden Dibutylzinndilaurat, Eisen-(lll)-acetylacetonat, Kobalt-(ll)-acetylacetonat, Zinkacetylacetonat, Zirkon tetra-n- butanolat und Zinn-(ll)-dioctoat.
Als Spaltvorrichtungen eignen sich beispielsweise zylinderförmige Spaltreaktoren, wie z.B. Röhrenöfen oder vorzugsweise Verdampfer, beispielsweise Dünnschicht- oder Bulkverdampfer, wie z.B. Robertverdampfer, Herbertverdampfer, caddle-typ- Verdampfer, Plattenspalter und vorzugsweise Heizkerzenverdampfer.
Die Trennung der Spaltprodukte erfolgt in einer Kolonne, bei der üblicherweise das Isocyanat in der Seite und der Alkohol am Kopf abgezogen werden.
Das Rohisocyanatgemisch wird in einer sich anschließenden Destillation von Rekombinationsprodukten, Nebenprodukten und sofern vorhanden dem Lösungsmittel befreit. Die Nebenprodukte werden vorzugsweise in die thermische Spaltung zurückgeführt. Ein Teil kann auch ausgeschleust werden.
Die bei der thermischen Spaltung gebildeten Spaltprodukte, die sich vor allem aus Alkohol, Diisocyanat, und partiell gespaltenen Diurethanen zusammensetzen, werden danach vorteilhafterweise mit Hilfe einer oder mehrerer Destillationskolonnen, vor- zugsweise durch Rektifikation bei Temperaturen von 100 bis 2200C, vorzugsweise 120 bis 1700C und einem Druck von 1 bis 200 mbar, vorzugsweise 5 bis 50 mbar, in Leichtsieder und besonders Alkohol und eine rohe Diisocyanatmischung mit einem Diisocyanatgehalt von 85 bis 99 Gew.%, vorzugsweise von 95 bis 99 Gew.% getrennt. Die bei der destillativen Trennung anfallenden höhersiedenden Nebenprodukte und insbesondere die ungespaltenen und partiell gespaltenen Diurethane werden vorzugsweise in die Spaltvorrichtung und/oder Reurethanisierung geführt.
Die vorzugsweise durch Rektifikation erhaltene rohe Isocyanatmischung wird durch Destillation bei einer Temperatur von 100 bis 1800C und unter einem Druck von 1 bis 50 mbar gereinigt, wobei die einzelnen Fraktionen zurückgeführt oder als Reinprodukt isoliert werden. Wie bereits ausgeführt wurde, wird bei der bevorzugt angewandten Reindestillation die Kopffraktion, die vorzugsweise aus Diisocyanat besteht, gegebenenfalls nach Umsetzung der freien Isocyanatgruppen mit Alkohol in die Reaktionsstufe zurückgeführt, die Seitenfraktion, die aus reinem Diisocyanat, vorzugsweise mit ei- ner Reinheit von mindestens 98 Gew.%, insbesondere über 99 Gew.% besteht, wird abgeleitet und der Lagerung zugeführt und die Sumpffraktion, die als wesentliche Komponenten die partiell gespaltenen Diurethane und Diisocyanate enthält, wird vorzugsweise in die Spaltvorrichtung zur thermischen Spaltung zurückgeführt.
Die Umsetzung des Reaktionsaustrages und/oder Destillationsrückstände werden vorzugsweise erneut dem Prozess zugeführt. Dabei werden mit Alkohol die in diesem Gemisch enthaltenen Isocyanatgruppen und/oder Allophanate und/oder Harnstoffe oder sonstige reaktive Bestandteile zu Urethanen umgewandelt. Es besteht die Möglichkeit, diese Reaktionen in separaten Reaktoren wie z. B. Mischreaktoren oder Strö- mungsrohren oder auch in durchzuführen. Für die Alkoholyse der Rückstände sind
Temperaturen von 100 - 250 0C, vorzugsweise 150 - 220 0C erforderlich. Die mittleren Verweilzeiten liegen dabei im Bereich von wenigen Minuten bis Stunden. Dazu können beispielsweise die Ströme mit Alkohol zusammengeführt werden, wobei das Molverhältnis von NCO-Gruppen bzw. deren Äquivalenten, also beispielsweise Urethangruppen, zu Hydroxygruppen bis zu 1 :100, bevorzugt bis zu 1 :20, besonders bevorzugt bis zu 1 :10 beträgt.
Diese Reaktionsmischung wird in Gegenwart oder Abwesenheit von Katalysatoren innerhalb von 1 bis 150 min, bevorzugt 3 bis 60 min bei Temperatur von 20 bis 200 0C, bevorzugt 50 bis 170 0C bei einem Druck von 0,5 bis 20 bar, bevorzugt 1 bis 15 bar umgesetzt.
Die Umsetzung kann in einer kontinuierlichen Kesselkaskade oder in einem Rohrreaktor durchgeführt werden.
Als Katalysatoren kommen grundsätzlich alle Verbindungen in Frage, die die Reaktion von NCO- mit OH-Gruppen fördern. Beispielsweise seien genannt Zinnoctoat, Dibutyl- zinndilaurat, Zinnchlorid, Zinkdichlorid, Zinn-(ll)-dioctoat und Triethylamin.
Die Durchführung der Phosgenierung in der Flüssigphase ist ebenfalls an sich bekannt und kann bevorzugt wie folgt ausgeführt werden:
Das aus Schritt b) erhaltene 1 ,5-Pentandiamin wird wahlweise in freier Form oder als Hydrochlorid gegebenenfalls in einem Lösungsmittel vorgelöst.
Der Wassergehalt des in die Stufe c) eingesetzten 1 ,5-Pentandiamin richtet sich nach der Art der Reaktion in der Stufe c) und sollte im Falle einer Phosgenierung bevorzugt unter 200 Gew.ppm, im Falle einer phosgenfreien Durchführung bevorzugt unter 10 Gew%, besonders bevorzugt unter 1 Gew% und ganz besonders bevorzugt unter 1000 Gew.ppm betragen.
Dabei sind Chlorbenzol, o- oder p-Dichlorbenzol, Trichlorbenzol, Chlortoluole, Chlorxy- lole, Chlorethylbenzol, Chlornaphthaline, Chlordiphenyle, Methylenchlorid, Perchlor- ethylen, Toluol, XyIoIe, Hexan, Dekahydronaphthalin, Diethylisophthalat (DEIP) und andere Carbonsäureester, wie sie beispielsweise in der US 5,136,086, Spalte 3, Zeilen 3 bis 18 aufgeführt sind, Tetrahydrofuran (THF), Dimethylformamid (DMF), Benzol und deren Gemische bevorzugt. Besonders bevorzugt ist Chlorbenzol und Dichlorbenzol.
Der Gehalt an Amin im Gemisch Amin/Lösungsmittel beträgt üblicherweise zwischen 1 und 50 Massen-%, bevorzugt zwischen 2 und 40 Massen-%, besonders bevorzugt zwischen 3 und 30 Massen%. Das Phosgen wird als Gemisch mit dem gleichen oder einem anderen inerten Lösungsmittel, bevorzugt dem gleichen, oder rein eingesetzt. Besonders bevorzugt wird als Phosgen zumindest teilweise ein rückgewonnener Strom aus der Aufarbeitung verwendet, der entsprechend der gewünschten Stöchiometrie durch frisches Phosgen ergänzt wird.
Das Phosgen kann beim erfindungsgemäßen Verfahren im allgemeinen in Form von 10- bis 100-, vorzugsweise 30-bis 95- und insbesondere 40- bis 90-gew.-%igen, Lösungen in inerten Lösungsmitteln zum Einsatz kommen, wobei vorzugsweise für das Phosgen das gleiche Lösungsmittel wie für das Amin verwendet wird.
Die Temperatur der Phosgenlösung sollte zwischen -35 0C und 180 0C, bevorzugt zwischen -30 0C und 1500C betragen.
Beispielsweise kann die Temperatur des Aminzulaufs zur Mischeinrichtung zwischen 10 und 150 0C, bevorzugt 15 - 120 0C und besonders bevorzugt 20 - 100 0C betragen.
Das molare Verhältnis von insgesamt in die Reaktion eingespeistem Phosgen zu eingesetzten Aminogruppen beträgt im allgemeinen 1 ,1 : 1 bis 30 : 1 , bevorzugt von 1 ,3:1 bis 25:1.
Die Vermischung der Eduktströme erfolgt bevorzugt in einer geeigneten speziellen Mischeinrichtung, die sich durch geringe Mischzeiten auszeichnet.
Die mittlere Verweilzeit in der Reaktion nach der Vermischung beträgt in der Regel 5 min bis 15 h, bevorzugt 10 min bis 12 h, besonders bevorzugt 15 min bis 10 h.
Die Temperatur in der Reaktion beträgt im allgemeinen zwischen 90 0C und 250 0C, bevorzugt zwischen 100 0C und 240 0C und besonders bevorzugt zwischen 1 10 und 230 0C.
Der Druck in der Reaktion beträgt in der Regel zwischen 1 ,1 bar und 80 bar abs, bevorzugt zwischen 1 ,5 und 50 bar abs, besonders bevorzugt zwischen 2 und 35 bar abs, ganz besonders bevorzugt zwischen 3 und 10 bar abs, und insbesondere zwischen 4 und 8 bar abs.
Die Reaktion kann in einem rückvermischten Reaktor oder in einem Rohrreaktor erfolgen, oder auch in einer Kombination aus einem rückvermischten Reaktor, dem ein Rohrreaktor nachgeschaltet ist.
Das Reaktionsgemisch wird anschließend destillativ gereinigt. Beispielsweise kann es sich dabei um eine Destillationskolonne handeln. Diese Destillationseinheit ist von an sich bekannter Bauart und weist die üblichen Einbauten auf. Als Kolonneneinbauten kommen prinzipiell alle gängigen Einbauten in Betracht, beispielsweise Böden, Packungen und/oder Schüttungen. Von den Böden sind Glocken- böden, Siebböden, Ventilböden, Thormannböden und/oder Dual-Flow-Böden bevorzugt, von den Schüttungen sind solche mit Ringen, Wendeln, Sattelkörpern, Raschig-, Intos- oder Pall-Ringen, Barrel- oder Intalox-Sätteln, Top-Pak etc. oder Geflechten bevorzugt. Bevorzugt werden Böden verwendet, besonders bevorzugt Glockenböden.
Die Destillationskolonne weist bevorzugt 10 - 80 theoretische Trennböden auf.
In dieser Kolonne werden die Gasphase von unten nach oben und die Flüssigphase von oben nach unten durch die Kolonne geführt.
Die Erzeugung der Gasphase im Sumpf der Kolonne erfolgt durch den Betrieb eines Verdampfers, der in den Sumpf eingebaut sein kann, beispielsweise ein Robert- Verdampfer, oder im Umlauf mit einem externen Verdampfer, z. B. Röhren- oder Plattenwärmetauscher.
Ein Umlauf ist dann beispielsweise ein Zwangsumlauf oder ein Naturumlauf. Bevorzugt erfolgt die Verdampfung in einem Naturumlauf.
Eine weitere erfindungsgemäße besteht in der Erzeugung eines Gasstromes in der Kolonne durch Einblasen von gasförmigen oder überhitztem Phosgen und/oder inertem Lösungsmittel und/oder inerten Gasen.
Die mittlere Verweilzeit in der Kolonne beträgt zwischen 10 min und 12 h, bevorzugt 15 min - 11 h und besonders bevorzugt 15 min - 10 h.
Die Sumpftemperatur in der Destillationskolonne beträgt im allgemeinen zwischen 90 0C und 250 0C, bevorzugt zwischen 100 0C und 240 0C und besonders bevorzugt zwischen 1 10 und 230 0C. Der Kopfdruck in der Destillationskolonne beträgt in der Regel zwischen 1 ,1 bar abs und 80 bar abs, bevorzugt zwischen 1 ,5 und 50 bar abs, besonders bevorzugt zwischen 2 und 35 bar abs, ganz besonders bevorzugt zwischen 3 und 10 bar abs und insbesondere zwischen 4 und 8 bar abs.
Am Sumpf der Kolonne wird dann ein das Isocyanat als Produkt enthaltender flüssiger und/oder gasförmiger Strom entnommen.
Die Phosgenierung in der Gasphase kann beispielsweise erfolgen, wie beschrieben in EP 1 275 639 A1 , EP 1 275 640 A1 , EP 1 449 826 A1 , DE 10359627 A1 oder in der deutschen Patentanmeldung DE 102005042392. Bevorzugt kann die Gasphasenphosgenierung durchgeführt werden wie folgt:
Bei der Gasphasenphosgenierung ist es definitionsgemäß anzustreben, daß die im Reaktionsverlauf auftretenden Verbindungen, also Edukte (Diamin und Phosgen), Zwischenprodukte (insbesondere die intermediär entstehenden Mono- und Dicarbamoy- chloride), Endprodukte (Diisocyanat), sowie gegebenenfalls zudosierte inerte Verbindungen, unter den Reaktionsbedingungen in der Gasphase verbleiben. Sollten diese oder andere Komponenten sich aus der Gasphase z.B. an der Reaktorwand oder an- deren Apparatebauteilen abscheiden, so kann durch diese Abscheidungen der Wärmeübergang oder die Durchströmung der betroffenen Bauteile unerwünscht verändert werden. Dies gilt insbesondere für auftretende Aminhydrochloride, die sich aus freien Aminogruppen und Chlorwasserstoff (HCl) bilden, da die resultierenden Aminhydrochloride leicht ausfallen und nur schwer wieder verdampfbar sind.
Die Edukte, oder auch nur eines von ihnen, können zusammen mit mindestens einem Inertmedium in den Mischraum eindosiert werden.
Bei dem Inertmedium handelt es sich um ein Medium, das bei der Reaktionstemperatur gasförmig im Reaktionsraum vorliegt und nicht mit den im Reaktionsverlauf auftretenden Verbindungen reagiert. Das Inertmedium wird im allgemeinen vor der Umsetzung mit Amin und/oder Phosgen vermischt, kann aber auch getrennt von den Eduktströmen zudosiert werden. Beispielsweise können Stickstoff, Edelgase, wie Helium oder Argon, oder Aromaten, wie Chlorbenzol, Chlortoluol, o-Dichlorbenzol, Toluol, XyIoI, Chlornaph- thalin, Decahydronaphthalin, Kohlenstoffdioxid oder Kohlenstoffmonoxid, verwendet werden. Bevorzugt wird Stickstoff und/oder Chlorbenzol als Inertmedium verwendet.
Im allgemeinen wird das Inertmedium in einer Menge eingesetzt, so dass das Verhältnis der Gasvolumina von Inertmedium zu Amin bzw. zu Phosgen mehr als 0,0001 bis 30, bevorzugt mehr als 0,01 bis 15, besonders bevorzugt mehr als 0,1 bis 5 beträgt.
Die Ausgangsamine werden vor der Durchführung des erfindungsgemäßen Verfahrens verdampft und auf 2000C bis 6000C, vorzugsweise 300°C bis 5000C erhitzt und gegebenenfalls verdünnt mit einem Inertgas oder mit den Dämpfen eines inerten Lösungs- mittels durch die Mischeinrichtung dem Reaktor zugeführt.
Das bei der Phosgenierung verwendete Phosgen wird vor Durchführung des erfindungsgemäßen Verfahrens gegebenenfalls verdünnt mit einem Inertgas oder mit den Dämpfen eines inerten Lösungsmittels ebenfalls auf eine Temperatur innerhalb des Bereichs von 200°C bis 600°C, vorzugsweise 3000C bis 500°C erhitzt. Erfindungsgemäß wird Phosgen im Überschuss bezüglich Aminogruppen eingesetzt. Üblicherweise liegt ein molares Verhältnis von Phosgen zu Aminogruppen von 1 ,1 :1 bis 20 : 1 , bevorzugt von 1 ,2 :1 bis 5 :1 vor.
Die Reaktion setzt in der Regel mit Kontakt der Edukte unmittelbar nach der Vermischung ein.
In der Mischeinrichtung werden die Eduktströme in kurzer Zeit möglichst vollständig vermischt.
Zur Durchführung der erfindungsgemäßen Umsetzung werden der vorerhitzte Strom enthaltend Amin oder Gemische von Aminen und der vorerhitzte Strom enthaltend Phosgen kontinuierlich in den Reaktor, bevorzugt einen Rohrreaktor geleitet.
Die Reaktoren bestehen im allgemeinen aus Stahl, Glas, legiertem oder emaillierten Stahl und weisen eine Länge auf, die ausreichend ist, um unter den Verfahrensbedingungen eine vollständige Umsetzung des Diamins mit dem Phosgen zu ermöglichen.
Es können im allgemeinen die aus dem Stand der Technik bekannten Reaktorbauty- pen verwendet werden. Beispiele für Reaktoren sind bekannt aus EP-B1 289840, Sp. 3, Z. 49 - Sp. 4, Z. 25, EP-B1 593334, WO 2004/026813, S. 3, Z. 24 - S. 6, Z. 10, WO 03/045900, S. 3, Z. 34 - S. 6, Z. 15, EP-A1 1275639, Sp. 4, Z. 17 - Sp. 5, Z. 17 und EP-B1 570799, Sp. 2, Z. 1 - Sp. 3, Z. 42, auf die jeweils im Umfang dieser Offenbarung ausdrücklich Bezug genommen sei.
Bevorzugt verwendet werden Rohrreaktoren.
Die Umsetzung von Phosgen mit Amin im Reaktionsraum erfolgt bei Absolutdrücken von mehr als 0,1 bar bis weniger als 20 bar, bevorzugt zwischen 0,5 bar und 15 bar und besonders bevorzugt zwischen 0,7 und 10 bar. Im Fall der Umsetzung von (cyc- lo)aliphatischen Aminen beträgt der Absolutdruck ganz besonders bevorzugt zwischen 0,7 bar und 5 bar, insbesondere von 0,8 bis 3 bar und speziell 1 bis 2 bar.
Im allgemeinen ist der Druck in den Zuleitungen zur Mischvorrichtung höher, als der vorstehend angegebene Druck im Reaktor. Je nach Wahl der Mischvorrichtung fällt an dieser Druck ab. Bevorzugt ist der Druck in den Zuleitungen um 20 bis 2000 mbar, besonders bevorzugt von 30 bis 1000 mbar höher als im Reaktionsraum.
Gemäß dem erfindungsgemäßen Verfahren erfolgt die Umsetzung von Phosgen mit Amin in der Gasphase. Unter Umsetzung in der Gasphase ist zu verstehen, dass die Umwandlung der Eduktströme und Zwischenprodukte zu den Produkten im gasförmigen Zustand miteinander reagieren und im Verlauf der Reaktion während des Durch- gangs durch den Reaktionsraum zu mindestens 95%, bevorzugt zu mindestens 98%, besonders bevorzugt zu mindestens 99%, ganz besonders bevorzugt zu mindestens 99,5%, insbesondere zu mindestens 99,8 und speziell zu mindestens 99,9% in der Gasphase bleiben.
Zwischenprodukte sind dabei beispielsweise die aus den Diaminen gebildeten Mono- amino-monocarbamoylchloride, Dicarbamoylchloride, Monoamino-monoisocyanate und Monoisocyanato-monocarbamoylchloride sowie die Hydrochloride der Aminoverbin- dungen.
Bei dem erfindungsgemäßen Verfahren wird die Temperatur im Reaktionsraum so gewählt, dass sie oberhalb der Siedetemperatur des eingesetzten Diamins, bezogen auf die im Reaktionsraum herrschenden Druckverhältnisse, liegt. Je nach eingesetztem Amin und eingestelltem Druck ergibt sich üblicherweise eine vorteilhafte Temperatur im Reaktionsraum von mehr als 200 0C, bevorzugt mehr als 260 0C und besonders bevorzugt mehr als 300 0C. In der Regel beträgt die Temperatur bis zu 600, bevorzugt bis zu 570 0C.
Die mittlere Kontaktzeit des Umsetzungsgemisches im erfindungsgemäßen Verfahren beträgt im allgemeinen zwischen 0,001 Sekunden und weniger als 5 Sekunden, bevorzugt von mehr als 0,01 Sekunden bis weniger als 3 Sekunden, besonders bevorzugt von mehr als 0,015 Sekunden bis weniger als 2 Sekunden. Die mittlere Kontaktzeit ganz besonders bevorzugt von 0,015 bis 1 ,5 Sekunden, insbesondere von 0,015 bis 0,5 Sekunden, speziell von 0,020 bis 0,1 Sekunden und oft von 0,025 bis 0,05 Sekun- den betragen.
Bevorzugt durchläuft das gasförmige Reaktionsgemisch den Reaktionsraum mit einer Strömungsgeschwindigkeit von 10 bis 300 Meter/Sekunde, bevorzugt von 25 bis 250 Meter/Sekunde, besonders bevorzugt 40 bis 230, ganz besonders bevorzugt 50 bis 200, insbesondere mehr als 150 bis 190 und speziell 160 bis 180 Meter/Sekunde.
Durch die turbulente Strömung werden enge Verweilzeiten mit geringer Standardabweichung von meist nicht mehr als 6% wie in EP 570799 beschrieben und eine gute Vermischung erreicht. Maßnahmen, wie beispielsweise die in EP-A-593 334 beschrie- bene Verengung, die zudem verstopfungsanfällig ist, sind nicht notwendig.
Nach der Reaktion wird das gasförmige Umsetzungsgemisch bevorzugt bei Temperaturen größer 130 0C mit einem Lösungsmittel gewaschen (Quench). Als Lösungsmittel sind bevorzugt Kohlenwasserstoffe, die gegebenenfalls mit Halogenatomen substituiert sind, geeignet, wie beispielsweise Hexan, Benzol, Nitrobenzol, Anisol, Chlorbenzol, Chlortoluol, o-Dichlorbenzol, Trichlorbenzol, Diethylisophthalat (DEIP), Tetrahydrofuran (THF), Dimethylformamid (DMF), XyIoI, Chlornaphthalin, Decahydronaphthalin und Toluol. Als Lösungsmittel wird besonders bevorzugt Monochlorbenzol eingesetzt. Als Lösungsmittel kann auch das Isocyanat eingesetzt werden. Bei der Wäsche wird das Isocyanat selektiv in die Waschlösung übergeführt. Anschließend werden das verbleibende Gas und die erhaltene Waschlösung bevorzugt mittels Rektifikation in Isocyanat, Lösungsmittel, Phosgen und Chlorwasserstoff aufgetrennt.
Nachdem das Reaktionsgemisch im Reaktionsraum umgesetzt wurde, führt man es in die Aufarbeitungsvorrichtung mit Quench. Bevorzugt handelt es sich hier um einen sogenannten Waschturm, wobei aus dem gasförmigen Gemisch das gebildete Isocya- nat durch Kondensation in einem inerten Lösungsmittel abgetrennt wird, während ü- berschüssiges Phosgen, Chlorwasserstoff und gegebenenfalls das Inertmedium die Aufarbeitungsvorrichtung gasförmig durchlaufen. Bevorzugt wird dabei die Temperatur des inerten Lösungsmittels oberhalb der Lösungstemperatur des zum Amin gehörigen Carbamylchlorids im gewählten Quenchmedium gehalten. Besonders bevorzugt wird dabei die Temperatur des inerten Lösungsmittels oberhalb der Schmelztemperatur des zum Amin gehörigen Carbamylchlorids gehalten
Im allgemeinen ist der Druck in der Aufarbeitungsvorrichtung niedriger als im Reaktionsraum. Bevorzugt ist der Druck um 50 bis 500 mbar, besonders bevorzugt 80 bis 150 mbar, niedriger als im Reaktionsraum.
Die Wäsche kann beispielsweise in einem Rührbehälter oder in anderen herkömmlichen Apparaturen, z.B. in einer Kolonne oder Mixer-Settler-Apparatur, durchgeführt werden.
Verfahrenstechnisch können für eine Wäsche im erfindungsgemäßen Verfahren alle an sich bekannten Extraktions- und Waschverfahren und -apparate eingesetzt werden, z.B. solche, die in Ullmann's Encyclopedia of Industrial Chemistry, 6th ed, 1999 Electronic Release, Kapitel: Liquid - Liquid Extraction - Apparatus, beschrieben sind. Bei- spielsweise können dies ein- oder mehrstufige, bevorzugt einstufige Extraktionen, sowie solche in Gleich- oder Gegenstromfahrweise, bevorzugt Gegenstromfahrweise sein.
Ein geeigneter Quench ist beispielsweise bekannt aus EP-A1 1403248, Sp. 2, Z. 39 - Sp. 3, Z. 18, auf die im Umfang dieser Offenbarung ausdrücklich Bezug genommen sei.
In dieser Quenchzone wird das Reaktionsgemisch, das im wesentlichen aus den Iso- cyanaten, Phosgen und Chlorwasserstoff besteht, intensiv mit der eingedüsten Flüs- sigkeit vermischt. Die Vermischung erfolgt derart, dass die Temperatur des Reaktionsgemisches ausgehend von 200 bis 5700C auf 100 bis 200 0C, bevorzugt auf 140 bis 180 0C abgesenkt wird und das im Reaktionsgemisch enthaltene Isocyanat durch Kon- densation vollständig oder teilweise in die eingedüsten Flüssigkeitströpfchen übergeht, während das Phosgen und der Chlorwasserstoff im wesentlichen vollständig in der Gasphase verbleiben.
Der Anteil des im gasförmigen Reaktionsgemisch enthaltenen Isocyanats, das in der Quenchzone in die Flüssigphase übergeht, beträgt dabei vorzugsweise 20 bis 100 Gew.-%, besonders bevorzugt 50 bis 99,5 Gew.-% und insbesondere 70 bis 99 Gew.-%, bezogen auf das im Reaktionsgemisch enthaltene Isocyanat.
Das Reaktionsgemisch durchströmt die Quenchzone vorzugsweise von oben nach unten. Unterhalb der Quenchzone ist ein Sammelbehälter angeordnet, in dem die Flüssigphase abgeschieden, gesammelt und, über einen Auslass aus dem Reaktionsraum entfernt und anschließend aufgearbeitet wird. Die verbleibende Gasphase wird über einen zweiten Auslass aus dem Reaktionsraum entfernt und ebenfalls aufgearbei- tet.
Der Quench kann beispielsweise erfolgen, wie in der EP 1403248 A1 beschrieben, oder wie in der internationalen Anmeldung WO 2005/123665 beschrieben.
Die Flüssigkeitströpfchen werden dazu mittels Ein- oder Zweistoffzerstäuberdüsen, vorzugsweise Einstoffzerstäuberdüsen, erzeugt und erzeugen je nach Ausführungsform einen Sprühkegelwinkel von 10 bis 140°, bevorzugt von 10 bis 120°, besonders bevorzugt von 10° bis 100°.
Die Flüssigkeit, die über die Zerstäuberdüsen eingedüst wird, muss eine gute Löslichkeit für Isocyanate aufweisen. Vorzugsweise werden organische Lösungsmittel eingesetzt. Insbesondere eingesetzt werden aromatische Lösungsmittel, die mit Halogenatomen substituiert sein können.
Die Aufarbeitung des so erhaltenen Diisocyanats kann in an sich bekannter Weise erfolgen, beispielsweise wie oben bei der Flüssigphasenphosgenierung beschrieben.
Ein weiterer Gegenstand der vorliegenden Erfindung ist 1 ,5-Pentamethylendiisocyanat mit einem 14C : 12C-lsotopenverhältnis von 0,5 x 10"12 bis 5 x 10"12, bevorzugt 1 ,0 * 10" 12 bis 4 x 10"12 , und besonders bevorzugt 1 ,5 * 10"12 bis 3 x 10"12. Derartiges 1 ,5- Pentamethylendiisocyanat ist erhältlich, wenn man den Schritt a) bzw. b) ausgehend von biologischem Material durchführt.
Vorteil eines solchen 1 ,5-Pentamethylendiisocyanats ist, daß es einen 14C- Isotopengehalt aufweist, der natürlichen Material entspricht, wohingegen 1 ,5-
Pentamethylendiisocyanat, das auf petrochemischer Basis hergestellt wird, einen unnatürlichen Gehalt aufweist, der in der Regel unter 0,3 * 10"12 beträgt, meist unter 0,2 x 10"12 und meist unter 0,1 x 10"12. Dieses erfindungsgemäße 1 ,5- Pentamethylendiisocyanat kann dann wegen seines Isotopengehalts zur Synthese von Verbindungen eingesetzt werden, die als Sonden für z.B. 14C-Untersuchungen eingesetzt werden sollen.
Ein weiterer Gegenstand der vorliegenden Erfindung ist 1 ,5-Pentamethylendiisocyanat, das zusätzlich einen Gesamtchlorgehalt unter 50 Gew.ppm und einen Gehalt an hydro- lysierbarem Chlor unter 10 Gew.ppm aufweist. Derartiges 1 ,5- Pentamethylendiisocyanat ist erhältlich, wenn man den Schritt c) phosgenfrei durch- führt. Auf diese Weise ist 1 ,5-Pentamethylendiisocyanat erhältlich, das vollständig unter Verzicht auf Petro- und Chlorchemie hergestellt worden ist.
Das erfindungsgemäß hergestellte 1 ,5-Pentamethylendiisocyanat eignet sich durch seine oben angeführten vorteilhaften Eigenschaften vorzüglich zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten, Uretdiongruppen aufweisenden Polyisocyanaten, Biuretgruppen aufweisenden Polyisocyanaten, Urethan- oder Al- lophanatgruppen aufweisenden Polyisocyanaten, Oxadiazintriongruppen oder Iminoo- xadiazindiongruppen enthaltenden Polyisocyanaten und/oder Uretonimin-modifizierten Polyisocyanaten.
Derartige Polyisocyanate finden beispielsweise Anwendung in der Herstellung von Urethan-, Isocyanurat-, Amid- und/oder Harnstoffgruppen enthaltenden Kunststoffen nach dem Polyisocyanat-Polyadditionsverfahren. Derartige Polyisocyanatmischungen werden insbesondere zur Herstellung von lichtbeständigen Polyurethanlacken und -Überzügen verwendet.
Die so erhältlichen Polyisocyanate auf Basis des erfindungsgemäß hergestellten 1 ,5- Pentamethylendiisocyanats werden in der Regel in der Lackindustrie verwendet. Die die erfindungsgemäßen Gemische können beispielsweise in Beschichtungsmitteln für 1 K- oder 2K-Polyurethanlacke eingesetzt werden, beispielsweise für Grundierungen, Füller, Basecoats, unpigmentierte Decklacke, pigmentierte Decklacke und Klarlacke im Bereich Industrie-, insbesondere Flugzeug- oder Großfahrzeuglackierung, Holz-, Auto-, insbesondere OEM- oder Autoreparaturlackierung, oder Dekolackierung eingesetzt werden. Besonders geeignet sind die Beschichtungsmittel für Anwendungen, in denen eine besonders hohe Applikationssicherheit, Außenwitterungsbeständigkeit, Optik, Lösemittel- und/oder Chemikalienfestigkeit gefordert werden. Die Härtung dieser Beschichtungsmittel ist dabei erfindungsgemäß nicht wesentlich. Insbesondere in der Automobilindustrie werden zunehmend Mehrschichthärtungen, z.B. von Clear- und Basecoat, (sogenanntes two-in one), oder von Füller, Clear- und Basecoat, (sogenann- tes three-in-one), durchgeführt. Ferner kann das erfindungsgemäß hergestellte 1 ,5-Pentamethylendiisocyanat zur Herstellung von thermoplastischen Polyurethanen (TPU) eingesetzt werden, wie es beispielsweise im Kunststoffhandbuch, Band 7 „Polyurethane", Carl Hanser Verlag München Wien, 3. Auflage 1993, Seiten 455 bis 466 beschrieben ist.
Ihre Herstellung erfolgt durch Umsetzung von Diisocyanaten mit Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen, vorzugsweise difunktionellen Alkoholen.
Als gegenüber Isocyanaten reaktive Verbindungen können allgemein bekannte PoIy- hydroxylverbindungen mit Molekulargewichten von 500 bis 8000, bevorzugt 600 bis 6000, insbesondere 800 bis 4000, und bevorzugt einer mittleren Funktionalität von 1 ,8 bis 2,6, bevorzugt 1 ,9 bis 2,2, insbesondere 2 eingesetzt werden, beispielsweise Polyesterole, Polyetherole und/oder Polycarbonatdiole. Bevorzugt werden Polyesterdiole eingesetzt, die erhältlich sind durch Umsetzung von Butandiol und Hexandiol als Diol mit Adipinsäure als Dicarbonsäure, wobei das Gewichtsverhältnis von Butandiol zu Hexandiol bevorzugt 2 zu 1 beträgt. Bevorzugt ist weiterhin Polytetrahydrofuran mit einem Molekulargewicht von 750 bis 2500 g/mol, bevorzugt 750 bis 1200 g/mol.
Als Kettenverlängerungsmittel können allgemein bekannte Verbindungen eingesetzt werden, beispielsweise Diamine und/oder Alkandiole mit 2 bis 10 C-Atomen im Alky- lenrest, insbesondere Ethylenglykol und/oder Butandiol-1 ,4, und/oder Hexandiol und/oder Di- und/oder Tri-oxyalkylenglykole mit 3 bis 8 Kohlenstoffatomen im Oxyalky- lenrest, bevorzugt entsprechende Oligo-Polyoxypropylenglykole, wobei auch Mischun- gen der Kettenverlängerer eingesetzt werden können. Als Kettenverlängerer können auch 1 ,4-Bis-(hydroxymethyl)-benzol (1 ,4-BHMB), 1 ,4-Bis-(hydroxyethyl)-benzol (1 ,4- BHEB) oder 1 ,4-Bis-(2-hydroxyethoxy)-benzol (1 ,4-HQEE) zum Einsatz kommen. Bevorzugt werden als Kettenverlängerer Ethylenglykol und Hexandiol, besonders bevorzugt Ethylenglykol.
Üblicherweise werden Katalysatoren eingesetzt, welche die Reaktion zwischen den NCO-Gruppen der Diisocyanate und den Hydroxylgruppen der Aufbaukomponenten beschleunigen, beispielsweise tertiäre Amine, wie Triethylamin, Dimethylcyclohexyla- min, N-Methylmorpholin, N,N'-Dimethylpiperazin, 2-(Dimethylaminoethoxy)-ethanol, Diazabicyclo-(2,2,2)-octan und ähnliche sowie insbesondere organische Metallverbindungen wie Titansäureester, Eisenverbindungen wie z.B. Eisen— (Ml)- acetylacetonat, Zinnverbindungen, wie Zinndiacetat, Zinndilaurat oder die Zinndialkylsalze aliphati- scher Carbonsäuren wie Dibutylzinndiacetat, Dibutylzinndilaurat oder ähnliche. Die Katalysatoren werden üblicherweise in Mengen von 0,0001 bis 0,1 Gew.-Teilen pro 100 Gew.-Teile Polyhydroxylverbindung eingesetzt. Neben Katalysatoren können den Aufbaukomponenten bis auch übliche Hilfsstoffe hinzugefügt werden. Genannt seien beispielsweise oberflächenaktive Substanzen, Flammschutzmittel, Keimbildungsmittel, Gleit- und Entformungshilfen, Farbstoffe und Pigmente, Inhibitoren, Stabilisatoren gegen Hydrolyse, Licht, Hitze, Oxidation oder Ver- färbung, Schutzmittel gegen mikrobiellen Abbau, anorganische und/oder organische Füllstoffe, Verstärkungsmittel und Weichmacher.
Die Herstellung der TPU erfolgt zumeist nach üblichen Verfahren, wie mittels Bandanlagen oder Reaktionsextruder.
Zur Herstellung von expandierten TPU werden die TPU vorzugsweise mit expandierbaren Mikrospheren gemischt und thermoplastisch zu den gewünschten Formkörpern verarbeitet. Dies kann beispielsweise mittels Spritzguss Sintern oder mittels Extrusion erfolgen. Durch die Temperatur bei der thermoplastischen Verarbeitung kommt es zu einer Expansion der expandierbaren Mikrospheren und somit zur Ausbildung der expandierten TPU. Vorzugsweise wird die Schmelze in Formen eingetragen und härtet dort aus.
Expandierte TPU können beispielsweise als Folien, Schläuche, Profile, Fasern, Kabel, Schuhsohlen, sonstige Schuhteile, Ohrmarken, Automobilteile, Landwirtschaftliche Produkte, Elektroprodukte, Dämpfungselemente; Armlehnen; Kunststoffmöbelelemente, Skischuhe, Anschlagpuffer, Rollen, Skibrillen, Powderslushoberflächen verwendet werden.
Es stellt einen Vorteil des erfindungsgemäßen Verfahrens dar, daß es erstmals eine großtechnische Herstellung von 1 ,5-Pentandiisocyanat zuläßt. Unter den Begriff "großtechnisch" wird in dieser Schrift die Herstellung von mindestens 50 Tonnen/Jahr, bevorzugt mindestens 500 Tonnen/Jahr und besonders bevorzugt mindestens 1000 Tonnen/Jahr verstanden.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Pentamethylen-1 ,5-diisocyanat, dadurch gekennzeichnet, daß man b) Lysin in 1 ,5-Pentandiamin überführt und c) das so erhaltene 1 ,5-Pentandiamin in Pentamethylen-1 ,5-diisocyanat überführt.
2. Pentamethylen-1 ,5-diisocyanat erhalten nach einem Verfahren gemäß An- spruch 1.
3. Verfahren gemäß Anspruch 1 und Pentamethylen-1 ,5-diisocyanat gemäß Anspruch 2, dadurch gekennzeichnet, daß man den Schritt b) in Gegenwart eines Enzyms durchführt.
4. Verfahren gemäß Anspruch 1 und Pentamethylen-1 ,5-diisocyanat gemäß Anspruch 2, dadurch gekennzeichnet, daß man im Schritt b) Lysin thermisch in Abwesenheit eines Katalysators decarboxyliert.
5. Verfahren gemäß Anspruch 1 und Pentamethylen-1 ,5-diisocyanat gemäß Anspruch 2, dadurch gekennzeichnet, daß man den Schritt b) in Gegenwart eines Katalysators, der ein anderer als ein Enzym ist, durchführt.
6. Verfahren gemäß Anspruch 1 und Pentamethylen-1 ,5-diisocyanat gemäß An- spruch 2, dadurch gekennzeichnet, daß in einem Schritt a) 1 ,5-Pentandiamin aus einem geeigneten Substrat hergestellt wird.
7. Verfahren und Pentamethylen-1 ,5-diisocyanat gemäß Anspruch 6, dadurch gekennzeichnet, daß es sich bei dem geeigneten Substrat um Holz, Cellulose, Stärke, monomere Kohlenhydrate, Chitin, tierische Fette, pflanzliche Fette, tierische Öle, pflanzliche Öle, Proteine, Schurwolle, Leder, Häute, Talg, Gelatine, Casein oder Stroh handelt.
8. Verfahren und Pentamethylen-1 ,5-diisocyanat gemäß Anspruch 6, dadurch gekennzeichnet, daß es sich bei dem geeigneten Substrat um Monosaccharide, Oligosaccharide, Polysaccharide, Öle, Fette, Fettsäuren, Alkohole oder organische Säuren handelt.
9. Verfahren und Pentamethylen-1 ,5-diisocyanat gemäß Anspruch 6, dadurch gekennzeichnet, daß es sich bei dem geeigneten Substrat um Glucose, Suc- rose, Lactose, Fructose, Maltose, Melasse, Stärke oder Cellulose handelt.
10. Verfahren und Pentamethylen-1 ,5-diisocyanat gemäß einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß Lysin oder eine Lysin-Grundstruktur intrazellulär gebildet wird.
1 1. Verfahren und Pentamethylen-1 ,5-diisocyanat gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß man den Schritt c) phosgenfrei durchführt.
12. Verfahren und Pentamethylen-1 ,5-diisocyanat gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß man den Schritt c) in Gegenwart von flüssigem Phosgen durchführt.
13. Verfahren und Pentamethylen-1 ,5-diisocyanat gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß man den Schritt c) in Gegenwart von gasförmigem Phosgen durchführt.
14. Pentamethylen-1 ,5-diisocyanat gemäß einem der Ansprüche 2 bis 13, dadurch gekennzeichnet, daß es eine Farbzahl von nicht mehr als 15 APHA gemäß gemäß DIN ISO 6271 aufweist.
15. Pentamethylen-1 ,5-diisocyanat gemäß einem der Ansprüche 2 bis 13, dadurch gekennzeichnet, daß es einen Anteil an Pentamethylen-1 ,4-diisocyanat von nicht mehr als 10000 ppm aufweist.
16. Verwendung von Pentamethylen-1 ,5-diisocyanat gemäß einem der Ansprüche 2 bis 15 zur Herstellung von Polyisocyanaten oder thermoplastischen Polyurethanen.
17. 1 ,5-Pentamethylendiisocyanat mit einem 14C : 12C-lsotopenverhältnis von 0,5 x 10-12 bis 5 χ 10-12
18. 1 ,5-Pentamethylendiisocyanat gemäß Anspruch 1 1 oder 18 mit einem Gesamtchlorgehalt unter 50 Gew.ppm und einem Gehalt an hydrolysierbarem Chlor unter 10 Gew.ppm.
PCT/EP2007/057646 2006-08-01 2007-07-25 Verfahren zur herstellung von pentamethylen-1,5-diisocyanat WO2008015134A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009522217A JP2009545553A (ja) 2006-08-01 2007-07-25 ペンタメチレン−1,5−ジイソシアネートの製造方法
US12/373,088 US8044166B2 (en) 2006-08-01 2007-07-25 Process for preparing pentamethylene 1,5-diisocyanate
BRPI0714842-9A BRPI0714842A2 (pt) 2006-08-01 2007-07-25 processo para preparar um composto, composto, e, uso do composto
EP07787876A EP2049675A1 (de) 2006-08-01 2007-07-25 Verfahren zur herstellung von pentamethylen-1,5-diisocyanat

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06118256 2006-08-01
EP06118256.4 2006-08-01

Publications (1)

Publication Number Publication Date
WO2008015134A1 true WO2008015134A1 (de) 2008-02-07

Family

ID=38608738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/057646 WO2008015134A1 (de) 2006-08-01 2007-07-25 Verfahren zur herstellung von pentamethylen-1,5-diisocyanat

Country Status (6)

Country Link
US (1) US8044166B2 (de)
EP (2) EP2049675A1 (de)
JP (1) JP2009545553A (de)
CN (1) CN101495643A (de)
BR (1) BRPI0714842A2 (de)
WO (1) WO2008015134A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254764A (ja) * 2009-04-22 2010-11-11 Mitsui Chemicals Inc ポリイソシアヌレート組成物およびその製造方法、および、ポリウレタン樹脂
EP2684867A4 (de) * 2011-03-09 2014-09-24 Mitsui Chemicals Inc Pentamethylen-diisocyanat, verfahren zur herstellung von pentamethylen-diisocyanat, polyisocyanatzusammensetzung, polyurethanharz und polyharnstoffharz
WO2016042125A1 (de) 2014-09-19 2016-03-24 Covestro Deutschland Ag Verfahren zur herstellung von 1,5-pentandiisocyanat in der gasphase
WO2016169810A1 (de) 2015-04-20 2016-10-27 Basf Se Zweikomponentige beschichtungsmassen
US9968722B2 (en) 2013-12-20 2018-05-15 Nephrogenesis Llc Methods and apparatus for kidney dialysis and extracorporeal detoxification
WO2022041502A1 (zh) 2020-08-27 2022-03-03 中国科学院过程工程研究所 一种1,5-戊二异氰酸酯的制备方法
CN115322330A (zh) * 2022-04-07 2022-11-11 摩珈 (上海) 生物科技有限公司 由生物基1,5-五亚甲基二异氰酸酯产生的热塑性和弹性体聚氨酯

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906653B2 (en) * 2008-01-23 2014-12-09 Basf Se Method for fermentatively producing 1,5-diaminopentane
JP2011201863A (ja) * 2010-03-01 2011-10-13 Mitsui Chemicals Inc ペンタメチレンジイソシアネート、ポリイソシアネート組成物、ペンタメチレンジイソシアネートの製造方法、および、ポリウレタン樹脂
JP5700575B2 (ja) * 2010-03-01 2015-04-15 三井化学株式会社 1,5−ペンタメチレンジイソシアネートの製造方法
JP5764336B2 (ja) * 2011-01-28 2015-08-19 三井化学株式会社 ペンタメチレンジイソシアネートの製造方法
US9206106B2 (en) * 2012-11-27 2015-12-08 Kureha Corporation Production method of carbonyl compound
JPWO2015076238A1 (ja) * 2013-11-19 2017-03-16 東レ株式会社 1,5−ペンタメチレンジアミンおよびその製造方法
EP3271412B1 (de) 2015-03-16 2020-02-05 Covestro Deutschland AG Hydrophile polyisocyanate auf basis von 1,5-diisocyanatopentan
US10472455B2 (en) 2015-03-17 2019-11-12 Covestro Deutschland Ag Silane groups containing polyisocyanates based on 1,5-diisocyanatopentane
EP3286238B1 (de) 2015-04-21 2019-03-20 Covestro Deutschland AG Polyisocyanatmischung auf basis von 1,5-diisocyanatopentan
CN106045882A (zh) * 2016-06-03 2016-10-26 山东崇舜化工有限公司 一种合成五亚甲基二异氰酸酯的方法
WO2018019904A1 (en) * 2016-07-28 2018-02-01 Covestro Deutschland Ag Polyurethane dispersions of low hardness
CN109415307B (zh) * 2016-10-26 2021-06-04 三井化学株式会社 五亚甲基二异氰酸酯的制造方法
EP3543266A4 (de) * 2016-11-16 2020-07-08 Mitsui Chemicals, Inc. Polyurethanschaum, kleidungsmaterial, büstenhalterpolster, büstenhalterkörbchen und verfahren zur herstellung von polyurethanschaum
EP3960784A1 (de) * 2017-02-08 2022-03-02 Covestro (Netherlands) B.V. Wässrige beschichtungszusammensetzung
EP3604268A4 (de) * 2017-03-28 2020-10-28 Covestro Intellectual Property GmbH & Co. KG Aliphatisches amin, herstellungsverfahren dafür und anwendungen davon
CN107602419B (zh) * 2017-10-23 2020-05-12 南京工业大学 一种基于二氧化碳耦合的1,5-戊二异氰酸酯制备方法
CN108689884A (zh) * 2018-08-01 2018-10-23 南京工业大学 一种1,5-戊二异氰酸酯的制备方法
JP2022068377A (ja) * 2019-03-04 2022-05-10 太陽ホールディングス株式会社 ジアミン化合物の精製方法
KR102364914B1 (ko) * 2019-12-06 2022-02-18 에스케이씨 주식회사 디이소시아네이트 조성물 및 광학 렌즈의 제조방법
KR102456419B1 (ko) * 2019-12-06 2022-10-19 에스케이씨 주식회사 디이소시아네이트 조성물 및 광학 렌즈의 제조방법
KR102456421B1 (ko) * 2019-12-06 2022-10-19 에스케이씨 주식회사 디이소시아네이트 조성물 및 광학 렌즈의 제조방법
KR102456416B1 (ko) * 2019-12-06 2022-10-19 에스케이씨 주식회사 디아민 조성물, 및 이를 이용한 디이소시아네이트 조성물 및 광학 재료의 제조방법
US20230250219A1 (en) 2020-06-15 2023-08-10 Basf Se Thermoplastic polyurethane composition with high mechanical properties, good resistance against UV radiation and low blooming and fogging
WO2022043428A1 (de) * 2020-08-28 2022-03-03 Basf Se Geschäumtes granulat aus thermoplastischem polyurethan
CN114315647A (zh) * 2020-10-10 2022-04-12 广安摩珈生物科技有限公司 从1,5-戊二胺盐制备1,5-五亚甲基二异氰酸酯的改进的方法
US20220356150A1 (en) 2021-04-30 2022-11-10 Evoco Limited Biobased diisocyanates, and process for preparation of same
CN113461894A (zh) * 2021-08-25 2021-10-01 上海壳麦科技有限公司 一种由生物基异氰酸酯合成的海绵及由该海绵所制备的床垫
CN114149345B (zh) * 2021-12-09 2023-04-21 万华化学集团股份有限公司 一种制备异氰酸酯的方法
CN114407145B (zh) * 2022-02-24 2024-05-31 上海壳麦科技有限公司 一种生物基mdi粘合的欧松板的制备方法及其产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2625075A1 (de) * 1976-06-04 1977-12-22 Basf Ag Verfahren zur herstellung von carbamidsaeurechloriden und isocyanaten
EP0259233A2 (de) * 1986-09-03 1988-03-09 Rhone-Poulenc Chimie Verfahren zur Herstellung von Polyisocyanaten mit Biuretstruktur
EP1482055A1 (de) * 2003-05-26 2004-12-01 Ajinomoto Co., Inc. Verfahren zur Herstellung von Cadaverindicarboxylat und dessen Verwendung zur Herstellung von Nylon

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3424780A (en) 1964-03-16 1969-01-28 Upjohn Co Process for manufacturing polyisocyanates
DE1900514B2 (de) 1969-01-07 1976-08-26 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von aliphatischen diisocyanaten
DE2917490A1 (de) 1979-04-30 1980-11-13 Basf Ag Verfahren zur herstellung von aliphatischen und cycloaliphatischen di- und polyurethanen
DE2942503A1 (de) 1979-10-20 1981-05-07 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von aromatischen di- und/oder polyisocyanaten
DE2943480A1 (de) 1979-10-27 1981-05-07 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von n,o-disubstituierten urethanen, sowie ihre verwendung als ausgangsmaterial zur herstellung von isocyanaten
DE3314788A1 (de) 1983-04-23 1984-10-25 Basf Ag, 6700 Ludwigshafen Mehrstufenverfahren zur herstellung von hexamethylendiisocyanat-1,6 und/oder isomeren aliphatischen diisocyanaten mit 6 kohlenstoffatomen im alkylenrest
US4601859A (en) 1984-05-04 1986-07-22 Allied Corporation Selective hydrogenation of aliphatic dinitriles to omega-aminonitriles in ammonia with supported, finely dispersed rhodium-containing catalyst
DE3714439A1 (de) 1987-04-30 1988-11-10 Bayer Ag Verfahren zur herstellung von (cyclo)aliphatischen diisocyanaten
JPH02311452A (ja) 1989-05-26 1990-12-27 Daicel Chem Ind Ltd ジイソシアネート化合物
DE4213099A1 (de) 1992-04-21 1993-10-28 Basf Ag Mehrstufiges Verfahren zur kontinuierlichen Herstellung von organischen Polyisocyanaten
IT1255763B (it) 1992-05-15 1995-11-15 Franco Rivetti Procedimento per la preparazione di isocianati alchilici
DE4217019A1 (de) 1992-05-22 1993-11-25 Bayer Ag Verfahren zur Herstellung von aromatischen Diisocyanaten
FR2697017B1 (fr) 1992-10-16 1995-01-06 Rhone Poulenc Chimie Procédé de préparation de composés du type isocyanates aromatiques en phase gazeuse.
JP2000044649A (ja) 1998-08-03 2000-02-15 Asahi Chem Ind Co Ltd 新規な水性(ブロック)ポリイソシアネート組成物及びそれを用いた水性塗料組成物
JP2002223771A (ja) 2001-02-01 2002-08-13 Toray Ind Inc カダベリンの製造方法
DE10133729A1 (de) 2001-07-11 2003-01-23 Bayer Ag Verfahren zur Herstellung von (cyclo)aliphatischen Diisocyanaten
DE10133728A1 (de) 2001-07-11 2003-01-23 Bayer Ag Verfahren zur Herstellung von (cyclo)aliphatischen Diisocyanaten
DE10158160A1 (de) 2001-11-28 2003-06-12 Basf Ag Herstellung von Isocyanaten in der Gasphase
DE10223827A1 (de) 2002-05-28 2003-12-11 Basf Ag Verfahren zur Reduzierung des Gehalts an einem ungesättigten Amin in einer Mischung enthaltend ein Aminonitril, ein Diamin, ein Dinitril oder deren Gemische
DE10238995A1 (de) 2002-08-20 2004-02-26 Basf Ag Gasphasenphosgenierung bei moderaten Drücken
DE10245704A1 (de) 2002-09-30 2004-04-01 Bayer Ag Verfahren zum Quenchen eines gasförmigen Reaktionsgemisches bei der Gasphasenphosgenierung von Diaminen
JP4201582B2 (ja) 2002-11-26 2008-12-24 旭化成ケミカルズ株式会社 イソシアヌレート基を含有するポリイソシアネート組成物
JP2004222569A (ja) 2003-01-22 2004-08-12 Toray Ind Inc コリネ型細菌、ならびにカダベリンもしくはその塩およびそれらの製造方法
DE10307141A1 (de) 2003-02-20 2004-09-02 Bayer Ag Verfahren zur Herstellung von (Poly)isocyanaten in der Gasphase
DE10359627A1 (de) 2003-12-18 2005-07-21 Bayer Materialscience Ag Verfahren zur Herstellung von Diisocyanaten
DE102004026152A1 (de) 2004-05-28 2005-12-15 Basf Ag Fermentative Herstellung von Feinchemikalien
DE102004030164A1 (de) 2004-06-22 2006-01-19 Basf Ag Verfahren zur Herstellung von Isocyanaten
EA010179B1 (ru) 2004-07-15 2008-06-30 ДСМ АйПи АССЕТС Б.В. Биохимический синтез 1,4-бутандиамина
DE102005042392A1 (de) 2005-09-06 2007-03-08 Basf Ag Verfahren zur Herstellung von Isocyanaten

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2625075A1 (de) * 1976-06-04 1977-12-22 Basf Ag Verfahren zur herstellung von carbamidsaeurechloriden und isocyanaten
EP0259233A2 (de) * 1986-09-03 1988-03-09 Rhone-Poulenc Chimie Verfahren zur Herstellung von Polyisocyanaten mit Biuretstruktur
EP1482055A1 (de) * 2003-05-26 2004-12-01 Ajinomoto Co., Inc. Verfahren zur Herstellung von Cadaverindicarboxylat und dessen Verwendung zur Herstellung von Nylon

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE CAPLUS CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 1979, T. LESIAK ET AL.: "Preparation of aliphatic diisocyanates without using phosgene", XP002456997, retrieved from STN accession no. 1979:474165 Database accession no. 91:74165 *
See also references of EP2049675A1 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254764A (ja) * 2009-04-22 2010-11-11 Mitsui Chemicals Inc ポリイソシアヌレート組成物およびその製造方法、および、ポリウレタン樹脂
EP2684867A4 (de) * 2011-03-09 2014-09-24 Mitsui Chemicals Inc Pentamethylen-diisocyanat, verfahren zur herstellung von pentamethylen-diisocyanat, polyisocyanatzusammensetzung, polyurethanharz und polyharnstoffharz
KR101604961B1 (ko) * 2011-03-09 2016-03-18 미쓰이 가가쿠 가부시키가이샤 펜타메틸렌 다이아이소사이아네이트, 펜타메틸렌 다이아이소사이아네이트의 제조 방법, 폴리아이소사이아네이트 조성물, 폴리우레탄 수지 및 폴리유레아 수지
EP2684867B1 (de) 2011-03-09 2019-01-02 Mitsui Chemicals, Inc. Pentamethylen-diisocyanat, verfahren zur herstellung von pentamethylen-diisocyanat, polyisocyanatzusammensetzung, polyurethanharz und polyharnstoffharz
EP3486230A1 (de) * 2011-03-09 2019-05-22 Mitsui Chemicals, Inc. Pentamethylenediisocyanat, verfahren zur herstellung von pentamethylenediisocyanat, polyisocyanatzusammensetzung, polyurethanharz und polyharnstoffharz
US9968722B2 (en) 2013-12-20 2018-05-15 Nephrogenesis Llc Methods and apparatus for kidney dialysis and extracorporeal detoxification
WO2016042125A1 (de) 2014-09-19 2016-03-24 Covestro Deutschland Ag Verfahren zur herstellung von 1,5-pentandiisocyanat in der gasphase
WO2016169810A1 (de) 2015-04-20 2016-10-27 Basf Se Zweikomponentige beschichtungsmassen
US10358576B2 (en) 2015-04-20 2019-07-23 Basf Se Two-component coating compounds
WO2022041502A1 (zh) 2020-08-27 2022-03-03 中国科学院过程工程研究所 一种1,5-戊二异氰酸酯的制备方法
CN115322330A (zh) * 2022-04-07 2022-11-11 摩珈 (上海) 生物科技有限公司 由生物基1,5-五亚甲基二异氰酸酯产生的热塑性和弹性体聚氨酯

Also Published As

Publication number Publication date
US20090292100A1 (en) 2009-11-26
US8044166B2 (en) 2011-10-25
CN101495643A (zh) 2009-07-29
JP2009545553A (ja) 2009-12-24
BRPI0714842A2 (pt) 2013-05-21
EP2049675A1 (de) 2009-04-22
EP2418198A1 (de) 2012-02-15

Similar Documents

Publication Publication Date Title
WO2008015134A1 (de) Verfahren zur herstellung von pentamethylen-1,5-diisocyanat
EP1575904B2 (de) Verfahren zur kontinuierlichen herstellung von isocyanaten
EP1593669B1 (de) Mehrstufiges Verfahren zur kontinuierlichen Herstellung von cycloaliphatischen Diisocyanaten
EP1753715B1 (de) Verfahren zur herstellung von isocyanaten
EP2462109B1 (de) Verfahren zur herstellung von isocyanaten
WO2007014936A2 (de) Verfahren zur herstellung von diisocyanaten
EP1634868A2 (de) Mehrstufiges Verfahren zur kontinuierlichen Herstellung von cycloaliphatischen Diisocyanaten
WO2011051314A1 (de) Verfahren zur koppelproduktion von di- und/oder polyisocyanaten und glykolen
US7943724B2 (en) Process for preparing diaminodiphenylmethanes
EP2480525B1 (de) Verfahren zur herstellung von isocyanaten
EP1512680B1 (de) Mehrstufiges Verfahren zur kontinuierlichen Herstellung von cycloaliphatischen Diisocyanaten
EP1926707B1 (de) Verfahren zur herstellung von isocyanaten
EP1512682A1 (de) Mehrstufiges Verfahren zur kontinuierlichen Herstellung von cycloaliphatischen Diisocyanaten
EP1512681B1 (de) Mehrstufiges Verfahren zur kontinuierlichen Herstellung von cycloaliphatischen Diisocyanaten
WO2004058689A1 (de) Verfahren zur herstellung von isocyanaten
EP1602643B1 (de) Mehrstufiges Verfahren zur kontinuierlichen Herstellung von cycloaliphatischen Diisocyanaten
EP3134384B1 (de) Verfahren zur herstellung von isocyanaten in dialkylcarbonaten als lösungsmittel
WO2006063745A1 (de) Verfahren zur herstellung von vergilbungsarmen (cyclo)aliphatischen polyisocyanaten
WO2012163894A2 (de) Verfahren zur herstellung von polyisocyanaten
WO2008074645A1 (de) Verfahren zur herstellung von 2-methylpentan-1,5-diisocyanat aus methylglutarsäuredinitril
DE102006061471A1 (de) Mehrstufiges Verfahren zur kontinuierlichen Herstellung von cycloaliphatischen Diisocyanaten

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780028513.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07787876

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12373088

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007787876

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009522217

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 1161/CHENP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: PI0714842

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090121