WO2008012954A1 - Appareil de communication sans fil, système lan sans fil, procédé de détection d'interférence, et procédé d'évitement d'interférence - Google Patents

Appareil de communication sans fil, système lan sans fil, procédé de détection d'interférence, et procédé d'évitement d'interférence Download PDF

Info

Publication number
WO2008012954A1
WO2008012954A1 PCT/JP2007/050694 JP2007050694W WO2008012954A1 WO 2008012954 A1 WO2008012954 A1 WO 2008012954A1 JP 2007050694 W JP2007050694 W JP 2007050694W WO 2008012954 A1 WO2008012954 A1 WO 2008012954A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
packet
error
transmission
wireless communication
Prior art date
Application number
PCT/JP2007/050694
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Hoshi
Yasuharu Hashimoto
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to EP07706998.7A priority Critical patent/EP2056528A4/en
Priority to US12/375,383 priority patent/US8255756B2/en
Publication of WO2008012954A1 publication Critical patent/WO2008012954A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions

Definitions

  • Wireless communication apparatus wireless LAN system, interference detection method and interference avoidance method
  • the present invention relates to a wireless communication apparatus that detects interference and avoids interference when interference occurs, a wireless LAN system, an interference detection method, and an interference avoidance method.
  • WLAN Wireless Local Area Network
  • IEEE802.11 standardized by the Institute of Electrical and Electronics Engineers (IEEE).
  • IEEE802.11 standardized by the Institute of Electrical and Electronics Engineers (IEEE).
  • IEEE802.11 standardized by the Institute of Electrical and Electronics Engineers (IEEE).
  • IEEE802.11 standardized by the Institute of Electrical and Electronics Engineers (IEEE).
  • IEEE802.11 standardized by the Institute of Electrical and Electronics Engineers (IEEE).
  • IEEE Institute of Electrical and Electronics Engineers
  • This standardized technology defines the physical layer to the MAC (Medium Access Control) layer under the data link in the OSI model, and is a wired LAN transmission path Ethernet. It has become a specification that can be replaced, and can also provide a roaming function as an additional function of wireless and later.
  • WLAN Wireless Local Area Network
  • Bluetooth registered trademark
  • UWB Ultra Wideband
  • WLAN is widely used in portable information terminals such as portable notebook computers having PDA function and personal digital assistants (PDAs).
  • PDAs personal digital assistants
  • B1 uetooth registered trademark
  • UWB Ultra Wideband
  • the wireless communication unit is provided with a 2.4 GHz band front end circuit and a 5 GHz band front end circuit.
  • WLAN system by supporting the two frequency bands of The number of channels that can be set simultaneously in the same area will be greatly increased, and the risk of communication links being interrupted by jamming will be reduced.
  • FIG. 1 is a diagram showing a configuration of a wireless communication apparatus in a conventional WLAN.
  • the wireless communication device 10 is configured to include an antenna 11, a transmission / reception switching switch (TZR SW) 12, a WLAN transmission circuit 13, a WLAN reception circuit 14, and a WLAN control circuit 15.
  • ZR SW transmission / reception switching switch
  • the transmission / reception switching switch (TZR SW) 12 switches the SW at a transmission timing and a reception timing.
  • the WLAN transmission circuit 13 transmits a signal in WLAN.
  • the WLAN receiving circuit 14 receives a signal in the WLAN.
  • the WLAN control circuit 15 controls the WLAN transmission circuit 13 and the WLAN reception circuit 14.
  • WLAN can be used to move each terminal forming WLAN within the communicable range compared to wired LAN, which has been used since the introduction of WLAN. Is high, but the boundaries indicating the communicable range are ambiguous. If there are multiple WLANs adjacent to each other, the terminal exists in the overlapping range of each W LAN because the boundary indicating the communicatable range is ambiguous. Sometimes. As these terminals receive radio waves in WLANs adjacent to each other, radio interference problems may occur and throughput may decrease.
  • Patent Document 2 discloses a technique of detecting interference based on the ID reception rate of a Basic Service Set (BSS) received from other than the AP (Access Point) with which the own station is communicating. Is disclosed.
  • the radio interference detection method described in Patent Document 2 includes an external BSSID reception rate calculation unit that calculates a reception rate of a frame including an ID of another BSS different from the ID of the corresponding BSS in the entire received frame. Based on the external BSSID reception rate calculated by the external BSSID reception rate calculation unit, it is detected whether interference has occurred between BSSs.
  • Patent Document 3 discloses a technique for determining interference based on the received power of a wireless signal transmitted from a wireless device other than the AP with which the own station is communicating.
  • interference should be avoided by determining the degree of interference from the interference amount monitor signal output from the wireless interface unit and changing the operation channel. It has a function to judge whether or not.
  • Patent Document 4 discloses a technique for performing interference avoidance by changing a frequency channel when radio wave interference is detected.
  • the radio wave interference avoidance method described in Patent Document 4 is based on a signal received by a wireless antenna when a plurality of frequency channels are selectively set in a wireless network system and wireless communication connection is made with an apparatus terminal.
  • the radio wave level of each of a plurality of frequency channels is measured at a predetermined cycle, and the measured others are compared with a predetermined threshold to determine whether each frequency channel is used or not, and used for each frequency channel. It is stored as statistical data of the frequency, and while performing radio communication with the device terminal, the frequency channel is changed based on the statistical data as needed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-33676
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2006-109448
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-357056
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2005-333310
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2005-278052
  • FIGS. 2A to 2C are diagrams showing the relationship between interference waves and communication carriers.
  • interference waves are generated periodically or in bursts.
  • the communication carrier is the packet length of the frequency band transmitted and received by the wireless communication device.
  • the fallback control to reduce the transmission rate by changing the throughput setting is performed. carry out. As shown in FIG.
  • the fallback increases the packet length and the communication packet becomes longer on the time axis, so that the communication packet after fallback is more likely to collide with the next interference wave. In other words, due to fallback, it always shifts in the direction of collision with the interference wave.
  • FIG. 3 is a diagram showing the relationship between an interference wave and the number of packet retransmissions.
  • the interference wave generation time domain is retransmitted 3 to 7 times in order to avoid jitter in the wireless section.
  • the interference wave generation time domain can not be exceeded. Interference waves can not be avoided. That is, because the number of retransmissions is small, interference waves can not reach the time domain.
  • Figs. 4A-B are diagrams showing the relationship between the interference wave and the number of packet retransmissions
  • Fig. 4A describes the above problem (1)
  • Fig. 4B describes the above problem (2).
  • the microwave oven becomes an interference wave generation source, and the area between microwave ovens on becomes an interference section.
  • the microwave oven generates jamming over a wide frequency band including the 2.4 GHz frequency band used in WLAN, and when the microwave oven is on, it interferes in a bursty manner, and furthermore, it is totally asynchronous with WLAN.
  • Beacon is sent periodically from the access point and has a packet length of about 1 msec.
  • microwave oven ON interference section
  • FIG. 4A if interference occurs during transmission, control is performed to reduce the transmission rate by fallback operation together with the occurrence of a communication error, and as a result, retransmission is performed with the packet length increased 1, 2 , 3, ... are implemented.
  • the packet size is large, it can not get out of the gap of microwave oven ON (interference section), and it can not communicate because it collides with the interference wave.
  • the present invention has been made in view of the point of force, and a wireless communication device, a wireless LAN system, an interference detection method, and interference avoidance for detecting that a communication error has occurred due to a cause of the occurrence of interference. Intended to provide a method.
  • the present invention relates to a wireless communication apparatus, a wireless LAN system, an interference detection method, and a wireless communication system capable of avoiding interference when affected by an interference wave from an interference source such as a microwave at the time of WLAN communication. It aims to provide an interference avoidance method.
  • the wireless communication apparatus of the present invention is determined by communication state determination means for determining a wireless communication state, packet error detection means for detecting that a packet transmitted or received is an error, and the communication state determination means.
  • the communication state determination means determines whether a packet transmitted or received is an error.
  • the radio communication apparatus is a radio communication apparatus that performs fallback control to lower the transmission rate when a communication error occurs, and stops the fallback control to detect a transmission rate when interference error is detected.
  • a configuration is provided that includes interference avoidance control means that fixes at a rate and increases the number of retransmissions over normal communication.
  • the radio communication apparatus of the present invention is a radio communication apparatus that performs rate control to increase the transmission rate when communication errors improve, and when interference error is detected, fallback control is stopped and the transmission rate is constant.
  • interference avoidance control means that increases the number of retransmissions compared to normal communication.
  • a wireless LAN system is a wireless LAN system in which a plurality of wireless communication devices are connected through a wireless network, and includes the above-described wireless communication device.
  • the interference detection method of the present invention comprises the steps of: measuring a level ED (Energy Detect) value of an interference wave before transmitting a packet; detecting an Ack error for the transmitted packet; and determining the measured ED value as an interference. And determining the interference error if the Ack error is detected for the packet transmitted under the condition where the threshold is exceeded.
  • ED Errgy Detect
  • the interference detection method of the present invention comprises the steps of: measuring an ED value before transmitting a packet; detecting a transmission error when the transmitted packet can not be retransmitted with a predetermined number of retransmissions; and measuring the ED value And determining the interference error if the transmission error is detected for the packet transmitted under the condition that the interference determination threshold is exceeded.
  • the interference detection method of the present invention comprises the steps of measuring a Noisefloor (NF) value which is a noise level at the time of acquisition of a received packet, and detecting that the received packet is a reception error including an FCS error; And determining the interference error when the reception error is detected for the packet received under the condition that the measured Noisefloor value exceeds the interference determination threshold.
  • NF Noisefloor
  • the interference detection method of the present invention comprises the steps of: measuring a Noisefloor value when receiving a Beacon; detecting that the received packet is a reception error including an FCS error; and measuring the Noisefloor value as an interference determination threshold. For packets received on conditions that exceeded Determining an interference error if the reception error is detected.
  • the interference avoidance method according to the present invention comprises the steps of stopping fallback control to lower the transmission rate to detect the interference error and fixing the transmission rate to a constant rate, and increasing the number of retransmissions from normal communication. Have.
  • FIG. 1 A diagram showing the configuration of a wireless communication apparatus in a conventional WLAN.
  • FIG. 5 A block diagram showing a configuration of a wireless communication apparatus in a WLAN according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram for explaining a transmission packet interference error detection method by the transmission packet interference error detection circuit of the wireless communication apparatus according to the above embodiment.
  • FIG. 7 A block diagram showing a configuration of a wireless communication apparatus in a WLAN according to Embodiment 2 of the present invention.
  • FIG. 8 is a view for explaining a transmission packet interference error detection method by the transmission packet interference error detection circuit of the wireless communication apparatus according to the above embodiment.
  • FIG. 9 A block diagram showing a configuration of a wireless communication apparatus in a WLAN according to Embodiment 3 of the present invention.
  • FIG. 10 A diagram for explaining a received packet interference error detection method by the received packet interference error detection circuit of the wireless communication apparatus according to the above embodiment.
  • FIG. 11 A diagram showing the relationship between the interference wave and the number of packet retransmissions by the interference avoiding circuit of the wireless communication apparatus according to the above embodiment.
  • FIG. 12 A flowchart showing an interference avoidance process by the interference error avoidance circuit of the wireless communication apparatus according to the above embodiment.
  • FIG. 13 is a table showing the operation contents of interference wave level determination and interference error determination of the wireless communication apparatus according to the above embodiment.
  • FIG. 14 A block diagram showing a configuration of a wireless communication apparatus in a WLAN according to a fifth embodiment of the present invention
  • FIG. 15 A diagram showing an example of an interference avoidance table to which the rate Z retransmission number determination circuit of the wireless communication apparatus according to the above embodiment refers.
  • FIG. 16 is a diagram showing the relationship between the interference wave and the number of packet retransmissions by the interference avoiding circuit of the wireless communication apparatus according to the above embodiment.
  • FIG. 17 A flowchart showing an interference avoidance process by the interference error avoidance circuit of the wireless communication apparatus according to the above embodiment.
  • Embodiments 1 to 3 are application examples of the interference detection circuit and method
  • Embodiments 4 and 5 are application examples of the interference avoidance circuit and method.
  • FIG. 5 is a block diagram showing a configuration of a wireless communication apparatus in a WLAN according to Embodiment 1 of the present invention.
  • the present embodiment is an example applied to a wireless communication apparatus in WLAN.
  • wireless communication apparatus 100 is a mobile phone ZPHS (Personal) that performs wireless communication.
  • WLAN wireless communication terminal
  • Information distribution services using networks other than carriers include WLAN power, Bluetooth (registered trademark), and low-power short-range two-way wireless communication methods such as UWB.
  • Radio communication apparatus 100 includes antenna 101, transmission / reception switching switch (TZR SW) 102, WLAN transmission circuit 103, WLAN reception circuit 104, ED (Energy Detect) value detection circuit 105, ACK error detection circuit 106, transmission Packet interference error determination circuit 107, interference avoidance control circuit 108, a rate control circuit 109, a retransmission number control circuit 110, and a WLAN control circuit 111.
  • TSR SW transmission / reception switching switch
  • WLAN transmission circuit 103 includes WLAN transmission 103, WLAN reception circuit 104, ED (Energy Detect) value detection circuit 105, ACK error detection circuit 106, transmission Packet interference error determination circuit 107, interference avoidance control circuit 108, a rate control circuit 109, a retransmission number control circuit 110, and a WLAN control circuit 111.
  • ED Electronicgy Detect
  • the ED value detection circuit 105, the Ack error detection circuit 106, and the transmission packet interference error determination circuit 107 collectively constitute a transmission packet interference error detection circuit 120, and the interference avoidance control circuit 108 and the rate control circuit 109. And, the number-of-retransmissions control circuit 110 constitutes an interference avoidance circuit 130 as a whole.
  • the transmission / reception switching switch (TZR SW) 102 switches the SW at the transmission timing and the reception timing.
  • the WLAN transmission circuit 103 transmits a signal in WLAN.
  • the WLAN reception circuit 104 receives a signal in the WLAN.
  • the WLAN control circuit 111 controls the WLAN transmission circuit 103 and the WLAN reception circuit 104.
  • the ED value detection circuit 105 Before transmitting the packet, the ED value detection circuit 105 measures the level (ED value) of the interference wave and compares it with the interference determination threshold value to determine that it has exceeded. The Ack error detection circuit 106 detects that the Ack for the transmitted packet is missing. The transmission packet interference error judgment circuit 107 judges from the ED value detected by the ED value detection circuit 105 and the Ack error detection by the Ack error detection circuit 106 that the transmission packet interference error has occurred.
  • the interference avoidance control circuit 108 controls the transmission rate and the number of retransmissions in order to avoid interference when an interference error occurs.
  • the rate control circuit 109 actually changes the rate according to the request of the interference avoidance control circuit 108.
  • the number-of-retransmissions control circuit 110 changes the number of retransmissions in accordance with the request of the interference avoidance control circuit 108.
  • the details of the interference avoidance control by the interference avoidance circuit 130 will be described later in Embodiment 4 and Embodiment 5.
  • the generated communication error is due to interference or not due to interference Determine if That is, this interference detection method detects whether a communication error has actually occurred due to the cause of the interference.
  • the present interference detection method there is an interference detection method relating to a transmission packet, a reception packet, and three packets of Beacon In this embodiment, a transmission packet interference error detection method will be described.
  • FIG. 6 is a diagram for explaining a transmission packet interference error detection method by the transmission packet interference error detection circuit 120. This interference detection method is called an Ack error determination method.
  • the ED value detection circuit 105 measures the ED value to be detected before transmitting the socket, and the Ack error detection circuit 106 determines in advance the interference judgment set in advance.
  • Access point (AP) power to packets sent under the condition that the threshold is exceeded Detects Ack response.
  • the transmission packet interference error determination circuit 107 determines that there is a transmission packet error due to interference when the Ack response from the AP to the transmitted packet is lost.
  • the transmission packet interference error detection method will be specifically described with reference to FIG.
  • (1) ED value detection circuit 105 before transmitting a packet, measures the ED value to detect an interference wave level transmitted in the vicinity. The measured ED value is compared with the previously set interference determination threshold to determine whether this ED value exceeds the interference determination threshold (see FIG. 6a.).
  • packet transmission (transmission 1) shown in FIG. 6b is performed, but this transmission 1 collides with an interference section such as electronic range ON, and Ack for the transmitted packet is lost (see FIG. 6c).
  • the WLAN control circuit 111 retransmits the corresponding packet to the WLAN transmission circuit 103 (see FIG. 6 d.). This retransmission also collides with the interference section and Ack is lost.
  • the transmission packet interference error detection circuit 120 detects an Ack drop for a packet transmitted by the Ack error detection circuit 106 at the timing shown in FIG. 6 c. Separately from the above-mentioned retransmission operation. That is, the Ack error detection circuit 106 detects an Ack for the transmitted packet. Make an Ack error judgment as to whether or not it can be output. Now, in Fig. 6e, it is assumed that the Ack dropout and the interference judgment threshold exceed the ED value occur.
  • the transmission packet interference error judgment circuit 107 when the packet transmitted on condition that the ED value detected in the above (1) exceeds the interference judgment threshold results in an Ack error, transmission by interference is performed. Determined as packet error (referred to as interference error) (see Figure 6 f.).
  • interference error the level of the interference wave is detected, and the force that has been judged as the interference generation The interference wave is generated, and it is detected whether the error actually occurs under the environment. It was not implemented.
  • the present invention is characterized in that the interference wave level is detected based on the ED value, and it is actually determined whether the packet transmitted under the condition where the interference wave is generated has an error.
  • the transmission packet interference error detection circuit 120 determines an interference error when a packet transmitted on the condition that the measured ED value exceeds the interference determination threshold results in an Ack error.
  • the WLAN control circuit 111 causes the interference avoidance circuit 130 to execute the interference avoidance mode (see FIG. 6g).
  • the interference avoidance control by the interference avoidance circuit 130 will be described later in Embodiment 4 to Embodiment 5.
  • interference avoidance circuit 130 sets the transmission rate to the previously set rate, and the number of retransmissions and the number of retransmissions are fixed. Set up> (see Figure 6h).
  • rate setting and retransmission number setting are performed, and packet transmission (transmission 2) shown in FIG. 6i is performed according to the rate setting and retransmission number setting.
  • this transmission 2 also collides with the interference section, and the Ack for the transmitted bucket drops (see Fig. 6j.).
  • the WLAN control circuit 111 repeats retransmission of the corresponding packet to the WLAN transmission circuit 103 (see FIG. 6k), it leaves the interference section and succeeds in retransmission (see FIG. 61). Communication is OK when Ack is received (see Figure 6 m.).
  • the reason for enabling the rapid interference avoidance is that the interference avoidance circuit 130 immediately performs the interference avoidance control by the rate setting and the number of times of retransmission in response to the interference error detection by the transmission packet interference error detection circuit 120. It is because it carries out.
  • the wireless communication device 100 measures the ED value before transmitting a packet, the ED value detection circuit 105, and detects an Ack error with respect to the transmitted buckett.
  • the transmission packet interference error detection circuit 120 including the circuit 106 and the transmission packet interference error determination circuit 107 is provided. Since it is determined that there is an interference error, it is possible to actually detect that a communication error has occurred due to the occurrence of interference. In the conventional example, it has been necessary to detect whether or not an interference wave is generated.
  • the present embodiment it is possible to distinguish whether the communication error that has occurred is due to interference error or not, and it is possible to cope with the content of the communication error.
  • interference avoidance control by the interference avoidance circuit 130 can be implemented.
  • interference avoidance circuit 130 when interference is detected by transmission packet interference error detection circuit 120, interference avoidance circuit 130 performs rate setting and the number of retransmissions to implement interference avoidance control, When the interference from the interference source such as the microwave oven shown in FIG. 6 is affected, the interference can be effectively avoided.
  • FIG. 7 is a block diagram showing a configuration of a wireless communication apparatus in a WLAN according to Embodiment 2 of the present invention.
  • the same components as in FIG. 5 will be assigned the same reference numerals and explanations of duplicate parts will be omitted.
  • the present embodiment is an example applied to an interference error detection method of a transmission packet.
  • wireless communication apparatus 200 includes antenna 101, transmission / reception switching switch (TZR SW) 102, WLAN transmission circuit 103, WLAN reception circuit 104, ED value detection circuit 105, transmission error detection circuit 211, transmission packet interference.
  • An error judgment circuit 212, an interference avoidance control circuit 108, a rate control circuit 109, a retransmission number control circuit 110, and a WLAN control circuit 111 are provided.
  • the determination circuit 212 constitutes a transmission packet interference error detection circuit 220 as a whole.
  • the transmission packet interference error detection circuit 220 includes the Ack error detection circuit 106 and the transmission packet interference error determination circuit 107 of the transmission packet interference error detection circuit 120 of FIG. 5 as the transmission error detection circuit 211 and the transmission packet interference error determination circuit 212. The only difference is that
  • the transmission error detection circuit 211 detects, as a transmission error, that a transmitted packet can not be transmitted by a specified retransmission.
  • Transmission packet interference error determination circuit 212 detects E detected by ED value detection circuit 105.
  • the packet transmitted under the condition that the ED value exceeds the interference determination threshold becomes an Ack error, it is determined as an interference error.
  • the operation is different only in that it is determined as an interference error.
  • FIG. 8 is a diagram for explaining a transmission packet interference error detection method by the transmission packet interference error detection circuit 220. This interference error detection method is called a transmission error determination method.
  • ED value detection and detection of the presence of a communication carrier of a wireless LAN are performed to detect whether another communication carrier exists before transmission of a transmission packet. To be implemented.
  • the ED value detection circuit 105 measures the ED value to be detected before transmitting the socket, and the transmission error detection circuit 211 exceeds the interference determination threshold value set in advance. It is detected whether the packet sent under the above conditions can be sent by the specified retransmission.
  • the transmission packet interference error determination circuit 212 determines as an interference error when a packet transmitted under the condition that the ED value exceeds the interference determination threshold can not be transmitted even by multiple retransmissions.
  • the transmission packet interference error detection method will be specifically described with reference to FIG.
  • the ED value detection circuit 105 before transmitting a packet, disturbances transmitted in the vicinity Measure ED value to detect wave level. It is judged whether the ED value exceeds the interference judgment threshold by comparing with the previously set interference judgment threshold (see Fig. 8a.). Next, packet transmission shown in Fig. 8b is performed (transmission 1). This transmission 1 collides with an interference section such as microwave ON, and Ack for the transmitted packet is lost (see Fig. 8c). Upon receiving the Ack, the WLAN control circuit 111 retransmits the corresponding packet to the WLAN transmission circuit 103 (see FIG. 8 d.). This retransmission also collides with the interference section and Ack is lost
  • the transmission packet interference error judgment circuit 212 the packet transmitted under the condition that the ED value detected in the above (1) exceeds the interference judgment threshold can not be transmitted even by the specified retransmission, and the error ( Detect transmission errors) (see Figure 8f).
  • the error Detect transmission errors
  • the interference wave level is detected based on the ED value, and in fact, the packet transmitted under the condition where the interference wave is generated can not be transmitted even by the specified retransmission, resulting in a transmission error. It is characterized by determining whether it is.
  • the transmission packet interference error detection circuit 220 determines an interference error when the packet transmitted under the condition that the ED value exceeds the interference determination threshold results in a transmission error.
  • the WLAN control circuit 111 causes the interference avoidance circuit 130 to execute an interference avoidance mode (see FIG. 8g.).
  • Interference avoidance control by interference avoidance circuit 130 will be described later in Embodiment 4 and Embodiment 5.
  • interference detection circuit 130 detects interference, it sets the transmission rate to a preset rate, and sets the number of retransmissions, as well as the number of retransmissions. Set up> (see Figure 8h). Based on the interference avoidance control by the interference avoidance circuit 130, rate setting and retransmission number setting are performed, and packet transmission (transmission 2) shown in FIG. 8i is performed according to the rate setting and retransmission number setting. Here, this transmission 2 also collides with the interference section, and the Ack for the transmitted bucket drops out (see the figure). In response to the missing Ack, when the WLAN control circuit 111 repeats retransmission of the corresponding packet to the WLAN transmission circuit 103 (see FIG. 8k), it leaves the interference section and succeeds in retransmission (see FIG. 81). Communication is OK when Ack is received (see Figure 8 m.).
  • the Ack error determination method relates to interference wave determination!
  • the method that is excellent in quick response is that the determination based on the transmission error according to the present embodiment actually means that the packet is an error. It is a method with certainty to determine that it has become. For example, even if there is an Ack error, communication may actually continue without error due to retransmission. Therefore, it is preferable to adaptively select an Ack error determination method which is excellent in quick response and a determination method using transmission error which is excellent in certainty in the application environment of WLAN.
  • FIG. 9 is a block diagram showing the configuration of a wireless communication apparatus in a WLAN according to Embodiment 3 of the present invention.
  • the same components as in FIG. 5 will be assigned the same reference numerals and explanations of duplicate parts will be omitted.
  • the present embodiment is an example applied to an interference error detection method for received packets.
  • wireless communication apparatus 300 includes antenna 101, transmission / reception switching switch (TZR SW) 102, WLAN transmission circuit 103, WLAN reception circuit 104, Noisefloor (interference wave level M direct measurement circuit 310, reception error detection circuit 311 includes a received packet (Beacon) interference error determination circuit 312, an interference avoidance control circuit 108, a rate control circuit 109, a retransmission number control circuit 110, and a WLAN control circuit 111.
  • TSR SW transmission / reception switching switch
  • WLAN transmission circuit 103 includes WLAN transmission circuit 103, WLAN reception circuit 104, Noisefloor (interference wave level M direct measurement circuit 310
  • reception error detection circuit 311 includes a received packet (Beacon) interference error determination circuit 312, an interference avoidance control circuit 108, a rate control circuit 109, a retransmission number control circuit 110, and a WLAN control circuit 111.
  • the Noise floor value measurement circuit 310, the reception error detection circuit 311, and the reception packet (Be aeon) interference error determination circuit 312 collectively constitute a reception packet interference error detection circuit 320.
  • the receive packet interference error detection circuit 320 is used in place of the transmit packet interference error detection circuit 120 of FIG.
  • the Noisefloor (NF) value measurement circuit 310 measures Noisefloor (noise level) measured before and after the received packet.
  • the received packet has an error (F CS error: It is determined that a Frame Check Sequence error has occurred.
  • F CS error It is determined that a Frame Check Sequence error has occurred.
  • the interference error judgment circuit 312 of the reception packet judges whether the reception packet error is an interference error.
  • Embodiments 1 and 2 have determined an interference error from the transmission packet.
  • the present embodiment is an interference detection method for detecting an interference error from a received packet and a beacon.
  • FIG. 10 is a diagram for explaining a received packet interference error detection method by the received packet interference error detection circuit 320.
  • the Noisefloor value at the time of acquisition of the received packet is measured, and when the packet received in a state where the interference determination threshold value set in advance is exceeded becomes an error, it is determined as a received packet error due to interference.
  • the received packet interference error detection method will be specifically described with reference to FIG.
  • Noisefloor Value Measurement Circuit 310 measures the noise floor measured before and after the received packet. It is judged whether the Noisefloor value exceeds the interference judgment threshold by comparing with the previously set interference judgment threshold (see Fig. 10a.). Next, the packet shown in Fig. 10b is received (reception 1), but this reception 1 can not be received due to collision with an interference section such as microwave ON, and Ack for the received packet is not transmitted (Fig. 10). 10c. In response to Ack unsent, the WLAN control circuit 111 retransmits the corresponding packet to the WLAN transmission circuit 103 (see FIG. 10 d.). This retransmission also collides with the interference section and Ack is not transmitted.
  • the received packet interference error detection circuit 320 has an error (FCS error) in the received packet by the reception error detection circuit 311 at the timing shown in FIG. 10e, separately from the above-mentioned retransmission operation. Determine Now, suppose that Noisefloor value judgment and FCS error occur in Fig. 10e.
  • the present invention is characterized in that the interference wave level is detected based on the Noisefloor value, and it is determined whether the packet received under the condition in which the interference wave is actually generated is an error.
  • the received packet interference error detection circuit 320 determines an interference error when a packet received with the Noisefloor value exceeding the interference determination threshold results in an FCS error.
  • the WLAN control circuit 111 causes the interference avoidance circuit 130 to execute the interference avoidance mode (see FIG. 10g).
  • the interference avoidance control by the interference avoidance circuit 130 will be described later in Embodiment 4 and Embodiment 5.
  • interference avoidance circuit 130 sets the transmission rate to the previously set rate, and the number of retransmissions, as well as the number of retransmissions. Set up> (see Figure 10h).
  • the WLAN control circuit 111 Based on the interference avoidance control by the interference avoiding circuit 130, rate setting and retransmission number setting are performed, and packet transmission (transmission 1) shown in FIG. 10i is performed according to the rate setting and retransmission number setting.
  • this transmission 1 also collides with the interference section, and the Ack for the transmitted packet is lost (see FIG. 10j).
  • the WLAN control circuit 111 repeats the retransmission of the corresponding packet to the WLAN transmission circuit 103 (see FIG. 10k), exits the interference section and succeeds in the retransmission (see FIG. 101).
  • the communication between the transmit and receive packets becomes OK (see Fig. 10 ..).
  • the wireless communication device 300 measures the Noisefloor value measurement circuit 310 that measures the Noisefloor value of the received packet or Beacon and detects that the received packet is an FCS error.
  • Received packet (Be aeon) interference error judgment circuit 312 consisting of reception error detection circuit 311, interference error when an FCS error is detected for a packet received under the condition that the measured Noisefloor value exceeds the interference judgment threshold And Therefore, it is possible to detect the same effect as in Embodiments 1 and 2, that is, the fact that a communication error has occurred due to the occurrence of interference, and is the communication error that has occurred due to interference error? It can distinguish whether it is not so.
  • the same effect can be obtained by measuring the Noisefloor value of the received packet and measuring the Noisefloor value at the time of acquiring the beacon.
  • reception error a reception error other than a force FCS error detecting an FCS error of a received packet or an SZN value may be used.
  • Embodiment 4 and Embodiment 5 describe interference avoidance control for avoiding interference when interference occurs by the above interference detection method.
  • the interference avoidance circuit of the present embodiment is an example applied to the interference avoidance circuit of the wireless communication apparatus in WLAN.
  • an example applied to the interference avoidance circuit 130 of the wireless communication apparatus of FIG. 5, FIG. 7 or FIG. 9 will be described.
  • the interference avoidance circuit 130 controls the transmission rate and the number of retransmissions in order to avoid interference when an interference error occurs, and the interference avoidance control circuit 108. And a retransmission number control circuit 110 for changing the number of retransmissions according to the request of the interference avoidance control circuit 108.
  • this microwave oven becomes an interference wave generation source, and the interval between microwave oven ON becomes an interference zone.
  • FIG. 4A if interference occurs during transmission, the transmission rate is reduced by fallback, and as a result, retransmission is performed with a long packet length, and only retransmission is performed as shown in FIG. 4B.
  • the number of times was a small specified number. For this reason, since the packet length becomes longer as the transmission rate is dropped due to fallback, retransmission packets can not go through the gap of microwave ON (interference section), and the number of retransmissions is a specified number that is small. Therefore, retransmission exceeding microwave oven ON (interference zone) is not realized!
  • FIG. 11 is a diagram showing the relationship between the interference wave and the number of packet retransmissions by the interference avoiding circuit 130 of the radio communication apparatus of the present embodiment. Take the case where the microwave oven ON (interference zone) occurs intermittently during 20 msec. Also, Beacon has a packet length of about 1 msec.
  • the interference avoidance circuit 130 shifts to the interference avoidance mode ((FIGS. 5, 7 and 9g).
  • the interference avoidance control circuit 108 stops the fallback control for the rate control circuit 109 and sets the transmission rate to the preset rate. For example, as shown in FIG. 11, the transmission rate is fixed at a rate that can be avoided in the gap between the microwave oven ON (interference zone) and the next microwave oven ON (interference zone).
  • the rate control circuit 109 retransmits without lengthening the packet length by stopping the fallback control and fixing the transmission rate to a fixed rate.
  • the interference avoidance control circuit 108 sets the number of retransmissions to the number of retransmissions control circuit 110 to the number of retransmissions larger than that in the normal operation.
  • the number of retransmissions is about 3 to 7, but when interference is detected, the number of retransmissions is set to 10 or more.
  • the communication is successful by performing the retransmission with the number of retransmissions exceeding the microwave oven ON (interference zone).
  • FIG. 12 is a flow chart showing an interference avoidance process by the interference error avoidance circuit 130.
  • S indicates each step of the flow.
  • FIG. 13 is a table showing the operation content of interference wave level determination and interference error determination.
  • the interference error detection circuits 120, 220, and 320 monitor the communication state, and in step S2, the interference wave level is determined.
  • the interference wave level judgment measures the ED value before transmission, and the measured ED value exceeds the interference judgment threshold. (See Embodiments 1 and 2).
  • [Receive packet] the Noisefloor value at reception is measured, and it is determined whether the measured Noisefloor value exceeds the interference determination threshold (see Embodiment 3). If the ED value or the Noisefloor value is less than the interference determination threshold, an interference wave is generated and the situation is, so transition to the interference avoidance operation is not performed and the normal communication state is continued. It returns to said step S1.
  • interference error determination is performed in step S3.
  • the interference wave error determination lacks the Ack of AP power for the packet transmitted under the condition that the ED value exceeds the interference determination threshold. In this case, an interference error is determined (see Embodiment 1).
  • a packet transmitted under the condition that the ED value exceeds the interference determination threshold can not be transmitted due to the specified retransmission, it is determined as an interference error (see Embodiment 2).
  • [Received packet] it is judged as an interference error if the packet received under the condition that the Noisefloor value exceeds the interference judgment threshold is an error. As described above, if a large level occurs such that the interference wave level exceeds the predetermined interference judgment threshold and the packet transmitted or received in the environment becomes an error, an interference error occurs. Determine that there is.
  • step S3 the ED value or the Noisefloor value exceeds the interference determination threshold! /, But an error occurs. In this case, it is not necessary to execute this interference avoidance, so Keep the communication status.
  • the transmission rate is set to a fixed rate set in advance so that communication can be performed in the gap of the interference source (for example, microwave oven ON) in step S4. This flow is ended by setting the number of retransmissions for which the number of retransmissions is larger than in normal communication.
  • the rate control circuit 109 stops the fallback control and sets the transmission rate to the previously set transmission rate.
  • the retransmission number control circuit 110 operates normally. Set to more than the number of retransmissions. For example, in normal communication, the number of retransmissions of about 3 to 7 is increased to about 10 or so.
  • the rate is set so that the packet length becomes fixed when fallback control is stopped, and the number of retransmissions is increased and retransmission is performed.
  • the number of retransmissions set in advance to achieve the correct packet size will be retransmitted more than the normal number of times, the hit rate that passes through the gap of the interference source will improve, and the gap of the interference source will pass through and communication will occur. Possible effects can be expected.
  • interference avoidance circuit 130 including interference avoidance control circuit 108, rate control circuit 109, and retransmission number control circuit 110 is provided, and interference avoidance circuit 130 detects an interference error. Since the fallback control to lower the transmission rate is stopped to fix the transmission rate to a fixed rate and the number of retransmissions is set larger than in normal communication, the gap of the interference source is retransmitted with a certain packet length. In WLAN communication, when it is affected by interference from an interference source such as a microwave, interference can be avoided and communication can be performed.
  • the fallback control is stopped at the time of interference detection, the transmission rate is fixed at a fixed rate, and the number of retransmissions is set to be larger than that in normal communication to perform interference avoidance in the gap of the interference source. It became possible.
  • the present embodiment is an example in which the transmission rate and the number of retransmissions at the time of avoiding the interference are set in accordance with the data size to be transmitted.
  • FIG. 14 is a block diagram showing a configuration of a wireless communication apparatus in a WLAN according to Embodiment 5 of the present invention.
  • the same reference numerals as in FIGS. 5 and 9 denote the same parts as in FIGS.
  • the present embodiment is an example applied to a method of detecting an interference error of a transmission packet and a reception packet.
  • wireless communication apparatus 400 includes antenna 101, transmission / reception switching switch (TZR SW) 102, WLAN transmission circuit 103, WLAN reception circuit 104, ED value detection circuit 105, Ack error detection circuit 106, transmission packet Interference error determination circuit 107, Noisefloor (interference wave level) value measurement circuit 310, reception error detection circuit 311, reception packet (Beacon) interference error determination circuit 312, packet size input circuit 431, rate Z retransmission number determination circuit 432, An interference avoidance control circuit 433, a rate control circuit 109, a retransmission number control circuit 110, and a WLAN control circuit 111 are provided.
  • TSR SW transmission / reception switching switch
  • the value measurement circuit 310, the reception error detection circuit 311, and the reception packet interference error determination circuit 312 collectively constitute a packet interference error detection circuit 420, the packet size input circuit 431, the rate Z retransmission number
  • the decision circuit 432, the interference avoidance control circuit 433, the rate control circuit 109, and the number-of-retransmissions control circuit 110 collectively constitute an interference avoidance circuit 430.
  • the packet interference error detection circuit 420 is configured to have both the transmission packet interference error detection circuit 120 of FIG. 5 and the reception packet interference error detection circuit 320 of FIG.
  • Interference avoidance circuit 430 has packet size input circuit 431 and rate Z retransmission number determination circuit 432 added to interference avoidance circuit 130 in FIG. 5, and interference avoidance control circuit 433 has a transmission rate and number of retransmissions. There is a difference in that control to be set is added according to the data size for sending.
  • the packet size input circuit 431 inputs the packet size to be transmitted to the rate Z retransmission number determination circuit 432.
  • the rate Z retransmission number determination circuit 432 determines the number of rate Z retransmissions according to a table set in advance as well as the input packet size.
  • FIG. 15 is a diagram showing an example of the interference avoidance table to which the rate Z retransmission number determination circuit 432 refers.
  • transmission rates A, B, C "-[Mbps] and packet retransmission counts R with packet sizes P (A), P (B), P (C), ... (a), R (B), R (C), which stores the & ... a rough mosquito ⁇ Ji fit table values.
  • the data size ( cybersecuritytosa I's) for transmitting the P (a) is input
  • the transmission rate and the number of retransmissions corresponding to the packet size P (A) are referred to, and in this case, the transmission rate A [Mbps] and the number of retransmissions R (A) are read.
  • FIGS. 16A-B are diagrams showing the relationship between the interference wave by the interference avoiding circuit 430 of the radio communication apparatus of the present embodiment and the number of times of packet retransmission.
  • Microwave oven ON (interference for 20 msec) Take an example in which a section occurs intermittently. Also, the packet length of Beacon is about 1 msec.
  • the transmission rate and the number of retransmissions at the time of interference avoidance are set according to the data size to be transmitted.
  • the basic operation after setting the transmission rate and the number of retransmissions is the same as that of the fourth embodiment.
  • the interference avoidance circuit 430 shifts to the interference avoidance mode>.
  • the packet size input circuit 431 of the interference avoidance circuit 430 inputs the size of the packet to be transmitted to the rate Z retransmission number determination circuit 432.
  • Rate Z retransmission number determination circuit 432 refers to interference avoidance setting table 500 and determines the transmission rate A, B, C to [Mbps] corresponding to the input packet size to be transmitted and the number of retransmissions R (A), Read out R (B), R (C), ...
  • the data size to be transmitted (packet size) P (A) is input, and the transmission rate A [Mbps] and retransmission count R (A) corresponding to the packet size P (A) are read and set.
  • the data size to be transmitted (packet size) P (C) is input, and the transmission rate C [Mbp s] corresponding to the packet size P (C) and the number of retransmissions R (C) are read. Shows the case where it is set.
  • the interference avoidance control circuit 433 stops the fallback control for the rate control circuit 109 and fixes the transmission rate to the rate set by the rate Z retransmission number determination circuit 432.
  • the transmission rate can be avoided in the gap between microwave ON (interference section) and next microwave ON (interference section) corresponding to the generated transmission packet size P (A). Fixed at a transmission rate of A [Mbps].
  • the transmission rate set by the rate control circuit 109 is variable according to the data size to be transmitted. For example, as shown in FIG.
  • the interference avoidance control circuit 433 sets the number of retransmissions for the number of retransmissions control circuit 110 to the number of retransmissions determined by the rate Z number of retransmissions determination circuit 432.
  • the basic value of the number of retransmissions determined by the rate Z retransmission number determination circuit 432 is more than the normal operation itself, is the number of retransmissions, and the number of retransmissions adjusted according to the transmission data size is set.
  • the number of retransmissions R (A) and the number of retransmissions R (C) are respectively set according to the packet size P (A) and the packet size P (C).
  • the number of retransmissions is about 3 to 7, but when interference is detected, the number of retransmissions R (A) and R (C) is set to 10 or more.
  • the retransmission is repeated so as to exceed the microwave oven ON (interference zone), and the communication by the retransmission succeeds.
  • FIG. 17 is a flow chart showing an interference avoidance process by the interference error avoidance circuit 430.
  • the interference error detection circuit 420 monitors the communication state in step S1, and the interference wave level is determined in step S2. As shown in the table of FIG. 13 for interference wave level determination, if [transmission packet] is used, the ED value before transmission is measured, and the measured ED value exceeds the interference determination threshold. It is determined whether or not it is force. When using [Received packet], measure the Noisefloor value at the time of reception, and determine whether or not the measured Noisefloor value exceeds the interference determination threshold. If the ED value or the NF value is less than the interference determination threshold, the interference wave level is low, so an interference wave is generated, and it is determined that the process returns to step S1.
  • the interference error determination is performed in step S3.
  • the interference wave error judgment is shown in the table of FIG.
  • [Transmission Packet] when an Ack from the AP for a packet transmitted under the condition that the ED value exceeds the interference determination threshold is missing, it is determined as an interference error.
  • a packet transmitted under the condition that the ED value exceeds the interference determination threshold can not be transmitted due to the specified retransmission, it is determined as an interference error.
  • [Received packet] if the noisefloor value exceeds the interference determination threshold, and the packet received under the condition is an error, it is determined as an interference error. If an error occurs in a packet transmitted or received under such a condition that an interference wave is generated, it is determined that the error is an interference error.
  • step S3 If it is determined in step S3 that the ED value or the Noisefloor value exceeds the interference determination threshold but it is not an interference error, communication can be continued even in the state where an interference wave is generated. Therefore, the normal communication state is continued.
  • the packet size is calculated in step S11.
  • the generated transmission data size is input by the packet size input circuit 431, and the packet size input power also calculates the packet size.
  • the transmission rate is set by referring to the interference avoidance setting table 500 set beforehand, and in step S13 the interference avoidance setting table 500 is referred to. Set the number of retransmissions and terminate this flow.
  • the transmission rate set with reference to the interference avoidance setting table 500 is a fixed transmission rate set in advance so that communication can be performed in the gap of the interference source (for example, microwave oven ON).
  • the number of retransmissions set with reference to the interference avoidance setting table 500 is the number of retransmissions, which is more than the normal operation.
  • the rate is set to a fixed packet length at fallback control stop, and retransmission is performed with an increase in the number of retransmissions.
  • the number of retransmissions of the packet size will be retransmitted more than the normal number of times, and the hit rate that passes through the gap of the interference source will be improved, and the effect of enabling communication through the gap of the interference source can be expected.
  • the transmission rate and the number of retransmissions are set according to the size of the packet to be transmitted, it is appropriate to retransmit with a fixed packet length. Transmission rate and number of retransmissions can be set. The effect of interference avoidance can be expected to be further enhanced when affected by interference from the source of interference.
  • the transmission rate and the number of retransmissions are set according to the previously set interference avoidance setting table 500 according to the packet size to be transmitted according to the data size to be transmitted. Any method may be used as long as the transmission rate or the number of retransmissions is set.
  • a method of calculating the transmission rate may be used so as to obtain a certain packet length from the packet size to be transmitted without having a table.
  • a packet length at the time of interference avoidance may be set in advance, and a method of automatically calculating a transmission rate to be the packet length from the generated transmission data size may be used.
  • a method may be used in which the time of the gap of the interference wave is detected for a certain period, and the communicable transmission rate and the number of retransmissions can be calculated through the gap.
  • any interference source described for a particular interference source such as a microwave oven that does not belong to a wireless LAN system, can be applied to any interference device that affects any inside or outside of the wireless LAN system.
  • wireless communication device wireless LAN system, interference detection method and interference avoidance method
  • a mobile terminal a wireless communication device, a wireless
  • a communication control method radio wave interference cancellation method, etc.
  • each circuit unit constituting the wireless communication apparatus is not limited to the above-described embodiment.
  • the interference detection method and the interference avoidance method described above are also realized by a program for causing the interference detection method and the interference avoidance method to function.
  • This program is stored in a computer readable recording medium.
  • the wireless communication apparatus of the present invention is determined by communication state determination means for determining a wireless communication state, packet error detection means for detecting that a packet transmitted or received is an error, and the communication state determination means.
  • communication state determination means for determining a wireless communication state
  • packet error detection means for detecting that a packet transmitted or received is an error
  • the communication state determination means When an error is detected by the packet error detection means when the wireless communication state is under a predetermined interference determination condition, interference due to an interference source is detected. And an interference error determination unit that determines an error.
  • the communication state determination means may measure the ED value before packet transmission.
  • the communication state determination means measures the disturbance wave level before packet transmission.
  • the communication state determination means may measure the Noisefloor value at the time of reception packet acquisition, and the communication state determination means may measure the Noisefloor value at the time of Beacon reception. Further, the communication state determination means may measure SZ N at the time of acquisition of the received packet.
  • the packet error detection means may detect an Ack error for the transmitted packet.
  • the packet error detection means may detect that the transmitted packet can not be retransmitted at a predetermined number of retransmissions. Furthermore, the packet error detection means may detect that the received packet is an FCS error.
  • the wireless communication apparatus of the present invention is a wireless communication apparatus that performs fallback control to lower the transmission rate when a communication error occurs, and stops the fallback control to detect a constant transmission rate when an interference error is detected.
  • a configuration is provided that includes interference avoidance control means that fixes at a rate and increases the number of retransmissions over normal communication.
  • the wireless communication apparatus of the present invention is a wireless communication apparatus that performs rate control to increase the transmission rate when communication errors improve, and when interference error is detected, the fallback control is stopped and the transmission rate is constant. And interference avoidance control means for increasing the number of retransmissions compared to the normal communication.
  • the interference avoidance control means may set the transmission rate of a packet size passing through the gap to the gap of the interference section of a specific interference source.
  • the control means may set the number of times of retransmission to reach the gap for the gap of the interference section possessed by a specific interference source. Further, the interference avoidance control means may set the size of the packet to be transmitted. The transmission rate and Z or the number of retransmissions may be set accordingly.
  • the wireless communication apparatus of the present invention further includes interference detection means for detecting an interference error, and the interference detection means includes communication state determination means for determining a wireless communication state, transmission or reception.
  • An error is detected by the packet error detection means when the packet error detection means detects that the received packet is an error, and the wireless communication state determined by the communication state determination means is in a predetermined interference determination condition.
  • an interference error determination unit that determines an interference error due to an interference source.
  • the wireless LAN system of the present invention is a wireless LAN system in which a plurality of wireless communication devices are connected through a wireless network, and the wireless communication device is a wireless communication device according to any one of the above. take.
  • the interference detection method of the present invention comprises the steps of: measuring an ED value before transmitting a packet; detecting an Ack error for the transmitted packet; and on condition that the measured ED value exceeds an interference determination threshold value. And determining the transmitted packet as an interference error if the Ack error is detected.
  • the interference detection method of the present invention comprises the steps of: measuring an ED value before transmitting a packet; detecting a transmission error where the transmitted packet can not be retransmitted with a predetermined number of retransmissions; And determining the interference error if the transmission error is detected for the packet transmitted under the condition that the interference determination threshold is exceeded.
  • the interference detection method comprises the steps of measuring the Noisefloor value at the time of acquisition of a received packet, detecting that the received packet is a reception error including an FCS error, and measuring the Noisefloor value. Determining an interference error when the reception error is detected with respect to a packet received under a condition where the determination threshold is exceeded.
  • the interference detection method comprises the steps of: measuring a Noisefloor value at the time of Beacon reception; detecting a received packet that is a reception error including an FCS error; and measuring the Noisefloor value as an interference determination threshold. And determining the interference error when the reception error is detected for the packet received under the condition that
  • the interference avoidance method comprises the steps of stopping fallback control to lower the transmission rate and stopping the transmission rate at a fixed rate when detecting an interference error, and increasing the number of retransmissions from normal communication. Have.
  • the gap of the interference section of a specific interference source is The transmission rate of the packet size passing through the gap may be set.
  • the number of times of retransmission reaching the gap may be set for the gap of the interference section of a specific interference source.
  • the transmission rate may be set according to the packet size to be transmitted, and in the retransmission number step, the retransmission number may be set according to the packet size to be transmitted. .
  • the interference avoidance method of the present invention further includes an interference detection step of detecting an interference error.
  • the interference detection step includes a step of determining a wireless communication state, a step of detecting that the transmitted or received packet is an error, and the determined wireless communication state is in a predetermined interference determination condition.
  • the steps of determining an interference error are sequentially performed.
  • the wireless communication device, the wireless LAN system, the interference detection method, and the interference avoidance method according to the present invention have the effect of detecting the occurrence of interference and avoiding the interference, and in particular, wireless communication devices are used for wireless communication.
  • the present invention is effective for a wireless communication device and a wireless communication control method that constitute a wireless LAN system connected via a network.

Description

明 細 書
無線通信装置、無線 LANシステム、干渉検出方法及び干渉回避方法 技術分野
[0001] 本発明は、干渉が発生した場合に、干渉を検出して干渉を回避する無線通信装置 、無線 LANシステム、干渉検出方法及び干渉回避方法に関する。
背景技術
[0002] 近年、敷設の容易性、導入コストの経済性等を考慮して、オフィスや家庭等で、無 線 LAN (以下、 WLAN: Wireless Local Area Networkと!、う)を構築するケースが増 えてきている。 WLANの代表的な技術には、 IEEE (Institute of Electrical and Electr onics Engineers)により標準化された IEEE802. 11力ある。この標準化された技術は 、 OSIモデルにおける、物理層から、データリンクの下位層である MAC (Medium Acc ess Control:媒体アクセス制御)層までを規定しており、有線の LAN伝送路であるィ ーサーネットと置きかえることができ、さらに、ワイヤレスであるが故の付加機能として 、ローミング (roaming)機能も提供できる仕様になって 、る。
[0003] また、キャリア以外のローカルネットワークにアクセスできるシステムとして上記 WLA Nや Bluetooth (登録商標)、 UWB (Ultra Wideband)が使用される。 WLANは、 WL AN機能を持つ携帯ノート型パソコン、 PDA (Personal Digital Assistants)などの携帯 情報端末に幅広く用いられている。より低消費電力が要求される携帯電話機では、 B1 uetooth (登録商標) , UWBなどの小電力近距離双方向無線通信方式が注目されて いる。
[0004] 無線ネットワークにお 、て、送信機、受信機がある特定の周波数 (通信チャンネル) で通信している場合、同じ通信チャンネルを別の送信機、受信機のペアが使用する 場合、データ伝送の帯域が減少するため、後から通信チャンネルを使用する機器は 、空 、て 、る通信チャンネルに自動的に変更する必要がある。
[0005] 通信チャンネルを変更する無線通信機器として、例えば特許文献 1では、無線通 信部が、 2. 4GHz帯のフロントエンド回路と 5GHz帯のフロントエンド回路を設けて、 2. 4GHz帯と 5GHz帯の 2つの周波数帯に対応したものとすることで、 WLANシステ ムで、同一エリア内で同時に設定可能なチャンネル数を大幅に増加し、妨害電波に よって通信リンクが途切れてしまうおそれを低減しょうとする。
[0006] 図 1は、従来の WLANにおける無線通信装置の構成を示す図である。図 1にお ヽ て、無線通信装置 10は、アンテナ 11、送受信切替スィッチ (TZR SW) 12、 WLAN 送信回路 13、 WLAN受信回路 14、及び WLAN制御回路 15を備えて構成される。
[0007] 送受信切替スィッチ (TZR SW) 12は、送信するタイミング及び受信するタイミング において SWを切り替える。 WLAN送信回路 13は、 WLANにおける信号を送信す る。 WLAN受信回路 14は、 WLANにおける信号を受信する。 WLAN制御回路 15 は、 WLAN送信回路 13及び WLAN受信回路 14を制御する。
[0008] ところで、 WLANは、 WLAN導入以前より使用されて!、た有線 LANと比較して、 通信可能な範囲内にお 、て、 WLANを形成する各端末を移動させることが可能で 機動性が高いが、通信可能な範囲を示す境界が曖昧である。通信可能な範囲を示 す境界が曖昧であるために、複数の WLANが隣接して存在している場合、複数の W LAN夫々の通信可能な範囲が重複する範囲に、端末が存在してしまうことがある。こ れらの端末は互いに隣接する WLAN内の夫々の電波を受信することで、電波干渉 問題が発生し、スループットが低下する場合がある。
[0009] 〔電波干渉検出技術〕
上記電波干渉を検出する方法として、例えば特許文献 2には、自局が通信している AP (Access Point)以外から受信した BSS (Basic Service Set)の ID受信率を基に干 渉検出する技術が開示されている。特許文献 2記載の電波干渉検出方法は、受信さ れたフレーム全体の中で対応する BSSの IDとは異なる他の BSSの IDを含むフレー ムの受信率を算出する外部 BSSID受信率算出部と、この外部 BSSID受信率算出 部が算出した外部 BSSID受信率に基づいて、 BSSの間で干渉が発生したか否かを 検出する。
[0010] また、特許文献 3には、自局が通信している AP以外の無線機器力も送信された無 線信号の受信電力を基に干渉を判定する技術が開示されて 、る。特許文献 3記載 の電波干渉判定方法は、無線インターフェース部から出力される干渉量モニタ信号 から干渉の度合いを判定し、運用チャンネルを変更することで、干渉を回避するべき か否かを判断する機能を備えて ヽる。
[0011] 〔電波干渉回避技術〕
電波干渉を検出した場合に、以下のような干渉回避方法が採られる。特許文献 4に は、電波干渉を検出した場合に、周波数チャンネルを変更することにより干渉回避を 実施する技術が開示されている。特許文献 4記載の電波干渉回避方法は、無線ネッ トワークシステムにお 、て、複数の周波数チャンネルを選択的に設定して機器端末と 無線通信接続する場合に、無線アンテナで受信した信号に基づいて、複数の周波 数チャンネル毎の電波のレベルを所定の周期で測定し、この測定された他を所定の 閾値と比較して周波数チャンネル毎に使用あるいは未使用を判定して周波数チャン ネル毎に使用頻度の統計データとして記憶し、上記機器端末と無線通信を実行中に 、必要に応じてその統計データに基づいて周波数チャンネルを変更するようにする。
[0012] また、通信エラーが発生した場合、伝送レートを落として!/、き、伝送距離を伸ばすフ オールバック制御が実施される。しかし、フォールバックにより伝送レートを最低レート まで落としてしまうと大幅にスループットが低下することになる。特許文献 5には、干渉 発生によりエラーが発生した場合に、フォールバックにより伝送レートを最低レートま で落とすことによる大幅なスループット低下を避けるために、干渉時の基準スループ ットを設けてそのスループットになるように速度モードを制御し、一定レベルのスルー プットを確保しょうとする。具体的には、無線通信装置が受信すべき周波数帯と同じ 周波数帯で動作し、かつ、無線通信装置の通信に用いる規格とは異なる規格に基づ V、て動作する干渉機器力もの干渉の有無を無線通信装置が検知した場合には、速 度モードを変更する際の基準となるスループットを干渉スループットとして無線通信 装置が設定し、それによつて速度モードを変更する。
特許文献 1:特開 2002— 33676号公報
特許文献 2 :特開 2006— 109448号公報
特許文献 3:特開 2004— 357056号公報
特許文献 4:特開 2005— 333510号公報
特許文献 5:特開 2005 - 278052号公報
発明の開示 発明が解決しょうとする課題
[0013] し力しながら、このような従来の電波干渉回避方法にあっては、以下のような問題点 かあつた。
[0014] (1)干渉発生時においても、干渉波の影響により通信エラーが発生するため、伝送 レートを落とすフォールバックが行われる。し力し、フォールバックにより伝送レートを 落とすと、パケット長は大きくなるため、逆に干渉に対する影響を受けやすくなる弊害 がある。
[0015] 図 2A— Cは、干渉波と通信キャリアとの関係を示す図である。図 2Aに示すように、 周期的又はバーストで干渉波が発生している。電波干渉が生じている状態にある通 信キャリア(図 2B参照)では、通信エラーが発生した場合と同様に、フォールバックに より伝送レートを落とし伝送距離を伸ばすように制御される。(図 2C参照)。上記通信 キャリアとは、ここでは、無線通信装置が送受信する周波数帯のパケット長であり、無 線通信装置は干渉波を検出した場合には、スループット設定を変えて伝送レートを 落とすフォールバック制御を実施する。図 2Cに示すように、フォールバックによりパケ ット長は大きくなり通信パケットは時間軸上に長くなるため、フォールバック後の通信 パケットは、次の干渉波に衝突する可能性が高まる。つまり、フォールバックにより常 に干渉波と衝突する方向へ推移してしまう。
[0016] (2)低レートの場合において干渉発生時の再送回数を多く設定すると、無線区間 のジッタ(時間軸上の変動)が大きくなるため、通常 3〜7回程度に設定される。
[0017] 図 3は、干渉波とパケット再送回数との関係を示す図である。
[0018] 低レートの場合は、無線区間のジッタを避けるため、干渉波発生時間領域の再送 は 3〜7回である。しかし、図 3に示すように、高レートで通信している場合には、パケ ット長が短いため、再送を 3〜7回繰り返したとしても、干渉波発生時間領域を超える ことができず干渉波を回避することができない。すなわち、再送回数が少ないため、 干渉波のな 、時間領域まで到達できな 、。
[0019] 上記課題(1) (2)について更に詳細に説明する。
[0020] 図 4A— Bは、干渉波とパケット再送回数との関係を示す図であり、図 4Aは、上記 課題(1)を、図 4Bは、上記課題 (2)を説明する。 [0021] 無線通信装置が送受信を行って!/、る通信キャリアの周波数帯域で電子レンジが O Nした場合、この電子レンジが干渉波発生源となり、電子レンジ ONの間が干渉区間 となる。なお、電子レンジは、 WLANで使用される 2. 4GHz周波数帯を含む広範囲 の周波数帯にわたって妨害電波を発生させ、かつ電子レンジ ONの時はバースト的 に干渉し、さらに WLANとは全くの非同期で干渉を発生させる。また、 Beaconは、ァ クセスポイントから定期的に送出され、 1msec程度のパケット長である。
[0022] いま、 20msecの間に電子レンジ ON (干渉区間)が断続的に発生した場合を例に とる。図 4Aに示すように、送信時に干渉が発生すると、通信エラーの発生とともにフ オールバック動作により伝送レートを落とす制御が実行されるため、結果的にパケット 長が長くなつた状態で再送 1, 2, 3,…が実施される。しかしながら、パケットサイズが 大きいため、電子レンジ ON (干渉区間)の隙間を抜けることができず干渉波と衝突し て通信ができない。
[0023] また、図 4Bに示すように、送信時に干渉が発生し、再送 1, 2, 3,…を繰り返しても 再送回数が少ない規定数であるため、電子レンジ ON区間(干渉区間)を超える再送 が成功せず干渉を回避できな!/、。
[0024] このように、従来は、 WLAN通信時に、電子レンジなどによる干渉を受けた場合に
、フォールバックによる伝送レート低下によりパケット長が長くなる弊害及び規定のパ ケット再送回数では干渉を回避できず通信ができなくなる課題がある。
[0025] 本発明は、力かる点に鑑みてなされたものであり、干渉の発生による要因で通信ェ ラーが発生したことを検出する無線通信装置、無線 LANシステム、干渉検出方法及 び干渉回避方法を提供することを目的とする。
[0026] また、本発明は、 WLAN通信時に、電子レンジなどの干渉源による妨害波の影響 を受けた際に、干渉を回避することができる無線通信装置、無線 LANシステム、干 渉検出方法及び干渉回避方法を提供することを目的とする。
課題を解決するための手段
[0027] 本発明の無線通信装置は、無線通信状態を判定する通信状態判定手段と、送信 又は受信したパケットがエラーであることを検出するパケットエラー検出手段と、前記 通信状態判定手段により判定された無線通信状態が所定の干渉判定条件にあると き、前記パケットエラー検出手段によりエラーが検出された場合に干渉源による干渉 エラーと判定する干渉エラー判定手段とを備える構成をとる。
[0028] 本発明の無線通信装置は、通信エラー発生時に伝送レートを下げるフォールバッ ク制御を行う無線通信装置であって、干渉エラー検出時、前記フォールバック制御を 停止して伝送レートを一定のレートに固定し、かつ、再送回数を通常通信より増やす 干渉回避制御手段を備える構成をとる。
[0029] 本発明の無線通信装置は、通信エラーが改善した際に、伝送レートを上げるレート 制御を行う無線通信装置であって、干渉エラー検出時、フォールバック制御を停止し て伝送レートを一定のレートに固定し、かつ、再送回数を通常通信より増やす干渉回 避制御手段を備える構成をとる。
[0030] 本発明の無線 LANシステムは、複数の無線通信装置を無線ネットワークを通じて 接続する無線 LANシステムであって、上記無線通信装置を備える構成をとる。
[0031] 本発明の干渉検出方法は、パケット送信前に干渉波のレベル ED (Energy Detect) 値を測定するステップと、送信したパケットに対する Ackエラーを検出するステップと 、測定した ED値が干渉判定閾値を超過した条件で送信したパケットに対して、前記 Ackエラーが検出された場合に干渉エラーと判定するステップとを有する。
[0032] 本発明の干渉検出方法は、パケット送信前の ED値を測定するステップと、送信し たパケットが所定の再送回数で再送できな 、送信エラーを検出するステップと、測定 した ED値が干渉判定閾値を超過した条件で送信したパケットに対して、前記送信ェ ラーが検出された場合に干渉エラーと判定するステップとを有する。
[0033] 本発明の干渉検出方法は、受信パケット取得時のノイズレベルである Noisefloor ( NF)値を測定するステップと、受信したパケットが FCSエラーを含む受信エラーであ ることを検出するステップと、測定した Noisefloor値が干渉判定閾値を超過した条件 で受信したパケットに対して、前記受信エラーが検出された場合に干渉エラーと判定 するステップとを有する。
[0034] 本発明の干渉検出方法は、 Beacon受信時の Noisefloor値を測定するステップと 、受信したパケットが FCSエラーを含む受信エラーであることを検出するステップと、 測定した Noisefloor値が干渉判定閾値を超過した条件で受信したパケットに対して 、前記受信エラーが検出された場合に干渉エラーと判定するステップとを有する。
[0035] 本発明の干渉回避方法は、干渉エラー検出時、伝送レートを下げるフォールバック 制御を停止して伝送レートを一定のレートに固定するステップと、再送回数を通常通 信より増やすステップとを有する。
発明の効果
[0036] 本発明によれば、実際に、干渉の発生による要因で通信エラーが発生したことを検 出することができる。
[0037] また、 WLAN通信時に、電子レンジなどの干渉源による妨害波の影響を受けた際 に、干渉を回避することができ、通信を行うことができる。
図面の簡単な説明
[0038] [図 1]従来の WLANにおける無線通信装置の構成を示す図
[図 2]干渉波と通信キャリアとの関係を示す図
[図 3]干渉波とパケット再送回数との関係を示す図
[図 4]干渉波とパケット再送回数との関係を示す図
[図 5]本発明の実施の形態 1に係る WLANにおける無線通信装置の構成を示すプロ ック図
[図 6]上記実施の形態に係る無線通信装置の送信パケット干渉エラー検出回路によ る送信パケット干渉エラー検出方法を説明する図
[図 7]本発明の実施の形態 2に係る WLANにおける無線通信装置の構成を示すプロ ック図
[図 8]上記実施の形態に係る無線通信装置の送信パケット干渉エラー検出回路によ る送信パケット干渉エラー検出方法を説明する図
[図 9]本発明の実施の形態 3に係る WLANにおける無線通信装置の構成を示すプロ ック図
[図 10]上記実施の形態に係る無線通信装置の受信パケット干渉エラー検出回路によ る受信パケット干渉エラー検出方法を説明する図
[図 11]上記実施の形態に係る無線通信装置の干渉回避回路による干渉波とパケット 再送回数との関係を示す図 [図 12]上記実施の形態に係る無線通信装置の干渉エラー回避回路による干渉回避 処理を示すフロー図
[図 13]上記実施の形態に係る無線通信装置の干渉波レベル判定と干渉エラー判定 の動作内容を表にして示す図
[図 14]本発明の実施の形態 5に係る WLANにおける無線通信装置の構成を示すブ ロック図
[図 15]上記実施の形態に係る無線通信装置のレート Z再送回数決定回路が参照す る干渉回避テーブルの一例を示す図
[図 16]上記実施の形態に係る無線通信装置の干渉回避回路による干渉波とパケット 再送回数との関係を示す図
[図 17]上記実施の形態に係る無線通信装置の干渉エラー回避回路による干渉回避 処理を示すフロー図
発明を実施するための最良の形態
[0039] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[0040] 実施の形態 1乃至 3は、干渉検出回路及び方法についての適用例、実施の形態 4 及び 5は、干渉回避回路及び方法についての適用例である。
[0041] (実施の形態 1)
図 5は、本発明の実施の形態 1に係る WLANにおける無線通信装置の構成を示す ブロック図である。本実施の形態は、 WLANにおける無線通信装置に適用した例で ある。
[0042] 図 5において、無線通信装置 100は、無線通信を行う携帯電話機 ZPHS (Personal
Handy-Phone System)や PDAなどの無線通信端末であり、キャリア以外のローカル ネットワークにアクセスできるシステムとして WLAN機能を備える。キャリア以外のネッ トワークを使った情報配信サービスとして WLANのほ力、 Bluetooth (登録商標)、 U WBなどの小電力近距離双方向無線通信方式がある。
[0043] 無線通信装置 100は、アンテナ 101、送受信切替スィッチ (TZR SW) 102、 WL AN送信回路 103、 WLAN受信回路 104、 ED (Energy Detect)値検出回路 105、 A ckエラー検出回路 106、送信パケット干渉エラー判定回路 107、干渉回避制御回路 108、レート制御回路 109、再送回数制御回路 110、及び WLAN制御回路 111を 備えて構成される。
[0044] 上記 ED値検出回路 105、 Ackエラー検出回路 106及び送信パケット干渉エラー 判定回路 107は、全体として、送信パケット干渉エラー検出回路 120を構成し、上記 干渉回避制御回路 108、レート制御回路 109及び再送回数制御回路 110は、全体 として、干渉回避回路 130を構成する。
[0045] 送受信切替スィッチ (TZR SW) 102は、送信するタイミング及び受信するタイミン グにおいて SWを切り替える。 WLAN送信回路 103は、 WLANにおける信号を送信 する。 WLAN受信回路 104は、 WLANにおける信号を受信する。 WLAN制御回路 111は、 WLAN送信回路 103及び WLAN受信回路 104を制御する。これらは、図 1 の無線通信装置 10と同一の構成である。
[0046] 〔送信パケット干渉エラー検出回路 120構成〕
ED値検出回路 105は、パケットを送信する前に、妨害波のレベル (ED値)を測定 し、干渉判定閾値と比較し超過していることを判定する。 Ackエラー検出回路 106は 、送信したパケットに対する Ackが欠落したことを検出する。送信パケット干渉エラー 判定回路 107は、 ED値検出回路 105により検出された ED値と Ackエラー検出回路 106により検出された Ackエラー検出から送信パケット干渉エラーが発生したことを 判定する。
[0047] 〔干渉回避回路 130構成〕
干渉回避制御回路 108は、干渉エラーが発生したときに、干渉回避のために、伝 送レートと再送回数を制御する。レート制御回路 109は、干渉回避制御回路 108の 要求に従い、実際にレートを変更する。再送回数制御回路 110は、干渉回避制御回 路 108の要求に従い、再送回数を変更する。干渉回避回路 130による干渉回避制 御の詳細については、実施の形態 4及び実施の形態 5により後述する。
[0048] 以下、上述のように構成された無線通信装置の干渉検出方法について説明する。
[0049] 従来例では、単に干渉波が発生しているかどうかを検出するのみであり、干渉波の 発生により通信エラーが発生して 、るかどうかを検出することは実施されて 、なかつ た。本実施の形態では、発生した通信エラーが干渉によるものか干渉によらないもの かを判定する。すなわち、本干渉検出方法は、実際に干渉の発生による要因で通信 エラーが発生したか否かを検出する。本干渉検出方法として、送信パケット、受信パ ケット及び Beaconの 3パケットに関する干渉検出方法がある力 本実施の形態では、 送信パケット干渉エラー検出方法について説明する。
[0050] 図 6は、送信パケット干渉エラー検出回路 120による送信パケット干渉エラー検出 方法を説明する図である。本干渉検出方法を Ackエラー判定方法と呼ぶ。
[0051] WLANの通常動作において、送信パケットの送信前に WLAN以外の他システム の通信キャリアが存在するかどうかを検出する又は電子レンジ等の妨害波が発生し て!、るかを検出するために ED (Energy Detect)値の検出と WLANの通信キャリアの 存在を検出するキャリアセンス (CS)が実施される。
[0052] まず、送信パケット干渉エラー検出回路 120において、 ED値検出回路 105は、ノ ケット送信前に検出する ED値を測定し、 Ackエラー検出回路 106は、あら力じめ設 定した干渉判定閾値を超過した条件で送信したパケットに対する AP (Access Point) 力もの Ack応答を検出する。送信パケット干渉エラー判定回路 107では、送信したパ ケットに対する APからの Ack応答が欠落した場合、干渉による送信パケットエラーと 判定する。
[0053] 図 6を参照して、送信パケット干渉エラー検出方法を具体的に説明する。
[0054] (1) ED値検出回路 105では、パケットを送信する前に、周辺で送信している妨害 波レベルを検出するために、 ED値を測定する。測定した ED値をあら力じめ設定した 干渉判定閾値と比較し、この ED値が干渉判定閾値を超過しているかを判定する(図 6a.参照)。次いで、図 6b.に示すパケット送信 (送信 1)を行うが、この送信 1は、電 子レンジ ONなどの干渉区間に衝突し、送信したパケットに対する Ackが欠落する( 図 6c.参照)。 Ack欠落を受けて、 WLAN制御回路 111は、 WLAN送信回路 103 に対して該当パケットを再送させる(図 6d.参照)。この再送についても干渉区間に衝 突して Ackが欠落する。
[0055] (2) 送信パケット干渉エラー検出回路 120は、上記再送動作とは別に、図 6c.の タイミングで、 Ackエラー検出回路 106により送信したパケットに対する Ack欠落を検 出する。すなわち、 Ackエラー検出回路 106は、送信したパケットに対する Ackが検 出できたか否かの Ackエラー判定を行う。いま、図 6e.で Ack欠落及び ED値の干渉 判定閾値超過が発生したとする。
[0056] (3) 送信パケット干渉エラー判定回路 107では、上記(1)で検出した ED値が干 渉判定閾値を超過した条件で送信したパケットが Ackエラーとなった場合に、干渉に よる送信パケットエラー (干渉エラーという)と判定する(図 6f.参照)。従来技術にお いては、干渉波のレベルを検出し干渉発生と判断していた力 その干渉波が発生し て 、る環境下で実際にエラーが発生して 、るかどうかを検出することは実施して 、な かった。
[0057] 本発明においては、 ED値により干渉波レベルを検出するとともに、実際に、干渉波 が発生している条件下で送信したパケットがエラーになったかどうかを判定することを 特徴としている。本実施の形態の送信パケット干渉エラー検出回路 120は、測定した ED値が干渉判定閾値を超過した条件で送信したパケットが Ackエラーとなった場合 に、干渉エラーと判定する。
[0058] 送信パケット干渉エラー検出回路 120により、干渉エラーが判定されると、 WLAN 制御回路 111は、干渉回避回路 130に対して干渉回避モードを実行させる(図 6g. 参照)。
[0059] 干渉回避回路 130による干渉回避制御については、実施の形態 4乃至実施の形 態 5により後述する。
[0060] ここでは、簡略して説明すると、干渉回避回路 130は、干渉を検出した場合に、伝 送レートをあらかじめ設定したレートに設定するくレート設定〉と、再送回数を固定する く再送回数設定〉を実施する(図 6h.参照)。
[0061] 干渉回避回路 130による干渉回避制御に基づいて、レート設定及び再送回数設定 が実施され、このレート設定及び再送回数設定に従って、図 6i.に示すパケット送信 (送信 2)を行う。ここでは、この送信 2についても干渉区間に衝突し、送信したバケツ トに対する Ackが欠落する(図 6j.参照)。この Ack欠落を受けて、 WLAN制御回路 111は、 WLAN送信回路 103に対して該当パケットの再送を繰り返すと(図 6k.参照 )、干渉区間を抜けて再送が成功し(図 61.参照)、 Ack受信により通信 OKとなる(図 6m.参照)。 [0062] 上記、速やかな干渉回避を可能にしたのは、送信パケット干渉エラー検出回路 12 0による干渉エラー検出を受けて、干渉回避回路 130が、レート設定及び再送回数 設定による干渉回避制御を直ちに実施するからである。
[0063] 以上説明したように、本実施の形態によれば、無線通信装置 100は、パケット送信 前の ED値を測定する ED値検出回路 105、送信したバケツトに対する Ackエラーを 検出する Ackエラー検出回路 106及び送信パケット干渉エラー判定回路 107からな る送信パケット干渉エラー検出回路 120を備え、測定した ED値が干渉判定閾値を 超過した条件で送信したパケットに対して、 Ackエラーが検出された場合に干渉エラ 一と判定するので、実際に、干渉の発生による要因で通信エラーが発生したことを検 出することができる。従来例では、干渉波が発生しているかどうかを検出するにとどま つていた。これに対して、本実施の形態では、発生した通信エラーが干渉エラーによ るものかそうでないかを区別することができ、通信エラーの内容に応じた対応が可能 になる。例えば、干渉エラーの場合は、干渉回避回路 130による干渉回避制御が実 施できる。
[0064] また、本実施の形態では、送信パケット干渉エラー検出回路 120により干渉を検出 した場合に、干渉回避回路 130が、レート設定と再送回数を設定して干渉回避制御 を実施することにより、図 6に示す電子レンジなどの干渉源による妨害波の影響を受 けた際に、干渉を有効に回避することができる。
[0065] (実施の形態 2)
図 7は、本発明の実施の形態 2に係る WLANにおける無線通信装置の構成を示す ブロック図である。図 5と同一構成部分には同一符号を付して重複箇所の説明を省 略する。本実施の形態は、送信パケットの干渉エラー検出方法に適用した例である。
[0066] 図 7において、無線通信装置 200は、アンテナ 101、送受信切替スィッチ (TZR S W) 102、 WLAN送信回路 103、 WLAN受信回路 104、 ED値検出回路 105、送信 エラー検出回路 211、送信パケット干渉エラー判定回路 212、干渉回避制御回路 10 8、レート制御回路 109、再送回数制御回路 110、及び WLAN制御回路 111を備え て構成される。
[0067] 上記 ED値検出回路 105、送信エラー検出回路 211及び送信パケット干渉エラー 判定回路 212は、全体として、送信パケット干渉エラー検出回路 220を構成する。送 信パケット干渉エラー検出回路 220は、図 5の送信パケット干渉エラー検出回路 120 の Ackエラー検出回路 106及び送信パケット干渉エラー判定回路 107を、送信エラ 一検出回路 211及び送信パケット干渉エラー判定回路 212に代えた点のみが異なる
[0068] 送信エラー検出回路 211は、送信したパケットが規定の再送で送信できな力つたこ とを送信エラーとして検出する。
[0069] 送信パケット干渉エラー判定回路 212は、 ED値検出回路 105により検出された E
D値と送信エラー検出回路 211により検出された送信エラー検出結果力 送信パケ ット干渉エラーが発生したことを判定する。
[0070] 以下、上述のように構成された無線通信装置の干渉検出方法について説明する。
実施の形態 1は、 ED値が干渉判定閾値を超過した条件で送信したパケットが Ackェ ラーとなった場合に、干渉エラーと判定していた。本実施の形態では、同様の条件で 送信したパケットが複数回の再送によっても送信できな力 た場合に、干渉エラーと 判定する点のみの動作が異なる。
[0071] 図 8は、送信パケット干渉エラー検出回路 220による送信パケット干渉エラー検出 方法を説明する図である。本干渉エラー検出方法を送信エラー判定方法と呼ぶ。
[0072] WLANの通常動作において、送信パケットの送信前に他の通信キャリアが存在す るかどうかを検出するために ED値検出と無線 LANの通信キャリアの存在を検出する キャリアセンス (CS)が実施される。
[0073] まず、送信パケット干渉エラー検出回路 220において、 ED値検出回路 105は、ノ ケット送信前に検出する ED値を測定し、送信エラー検出回路 211は、あらかじめ設 定した干渉判定閾値を超過した条件で送信したパケットが規定の再送で送信できた 力どうかを検出する。送信パケット干渉エラー判定回路 212では、 ED値が干渉判定 閾値を超過した条件で送信したパケットが複数回の再送によっても送信できな力つた 場合に、干渉エラーと判定する。
[0074] 図 8を参照して、送信パケット干渉エラー検出方法を具体的に説明する。
[0075] (1) ED値検出回路 105では、パケットを送信する前に、周辺で送信している妨害 波レベルを検出するために、 ED値を測定する。あら力じめ設定した干渉判定閾値と 比較し、 ED値が干渉判定閾値を超過しているかを判定する(図 8a.参照)。次いで、 図 8b.に示すパケット送信 (送信 1)を行うが、この送信 1は、電子レンジ ONなどの干 渉区間に衝突し、送信したパケットに対する Ackが欠落する(図 8c.参照)。 Ack欠 落を受けて、 WLAN制御回路 111は、 WLAN送信回路 103に対して該当パケットを 再送させる(図 8d.参照)。この再送についても干渉区間に衝突して Ackが欠落する
[0076] (2) 送信エラー検出回路 211は、送信したパケットが規定の再送で送信できなか つたことを送信エラーとして検出する。いま、図 8e.で送信エラー及び ED値の干渉 判定閾値超過が発生したとする。
[0077] (3) 送信パケット干渉エラー判定回路 212では、上記(1)で検出した ED値が干 渉判定閾値を超過した条件で送信したパケットが規定の再送によっても送信できず 終了したエラー (送信エラー)を検出する(図 8f.参照)。従来技術においては、干渉 波のレベルを検出し干渉発生と判断していた力 その干渉波が発生している環境下 でエラーが発生しているかどうかを検出することは実施していな力つた。
[0078] 本発明においては、 ED値により干渉波レベルを検出するとともに、実際に、干渉波 が発生している条件下で送信したパケットが規定の再送によっても送信できずに送 信エラーになったかどうかを判定することを特徴としている。本実施の形態の送信パ ケット干渉エラー検出回路 220は、 ED値が干渉判定閾値を超過した条件で送信し たパケットが送信エラーとなった場合に、干渉エラーと判定する。
[0079] 送信パケット干渉エラー検出回路 220により、干渉エラーが判定されると、 WLAN 制御回路 111は、干渉回避回路 130に対して干渉回避モードを実行させる(図 8g. 参照)。
[0080] 干渉回避回路 130による干渉回避制御については、実施の形態 4及び実施の形 態 5により後述する。
[0081] ここでは、簡略して説明すると、干渉回避回路 130は、干渉を検出した場合に、伝 送レートをあらかじめ設定したレートに設定するくレート設定〉と、再送回数を設定する く再送回数設定〉を実施する(図 8h.参照)。 [0082] 干渉回避回路 130による干渉回避制御に基づいて、レート設定及び再送回数設定 が実施され、このレート設定及び再送回数設定に従って、図 8i.に示すパケット送信 (送信 2)を行う。ここでは、この送信 2についても干渉区間に衝突し、送信したバケツ トに対する Ackが欠落する(図 .参照)。この Ack欠落を受けて、 WLAN制御回路 111は、 WLAN送信回路 103に対して該当パケットの再送を繰り返すと(図 8k.参照 )、干渉区間を抜けて再送が成功し(図 81.参照)、 Ack受信により通信 OKとなる(図 8m.参照)。
[0083] 前述した実施の形態 1による Ackエラー判定方法は、干渉波判定につ!、て即応性 に優れる方法ではある力 本実施の形態による送信エラーによる判定は、実際にパ ケットがエラーになったことを判定するため、確実性がある方法である。例えば、 Ack エラーがあっても実際には再送によって通信がエラーなく継続されている場合がある 。したがって、即応性に優れる Ackエラー判定方法と確実性に優れる送信エラーによ る判定方法とを、 WLANの適用環境において適応的に選択することが好ましい。
[0084] (実施の形態 3)
図 9は、本発明の実施の形態 3に係る WLANにおける無線通信装置の構成を示す ブロック図である。図 5と同一構成部分には同一符号を付して重複箇所の説明を省 略する。本実施の形態は、受信パケットの干渉エラー検出方法に適用した例である。
[0085] 図 9において、無線通信装置 300は、アンテナ 101、送受信切替スィッチ (TZR S W) 102、 WLAN送信回路 103、 WLAN受信回路 104、 Noisefloor (干渉波レベル M直測定回路 310、受信エラー検出回路 311、受信パケット (Beacon)干渉エラー判 定回路 312、干渉回避制御回路 108、レート制御回路 109、再送回数制御回路 110 、及び WLAN制御回路 111を備えて構成される。
[0086] 上記 Noisefloor値測定回路 310、受信エラー検出回路 311及び受信パケット(Be aeon)干渉エラー判定回路 312は、全体として、受信パケット干渉エラー検出回路 3 20を構成する。受信パケット干渉エラー検出回路 320は、図 5の送信パケット干渉ェ ラー検出回路 120に代えて用いられる。
[0087] Noisefloor (NF)値測定回路 310は、受信パケットの前後で測定した Noisefloor ( ノイズレベル)を測定する。受信エラー検出回路 311は、受信したパケットがエラー (F CSエラー: Frame Check Sequenceエラー)となったことを判定する。受信パケット(Be aeonも含む)干渉エラー判定回路 312は、 Noisefloor (ノイズレベル)と受信エラー 検出回路 311から通知された情報を基に、受信パケットエラーが干渉エラーかどうか を判定する。
[0088] 以下、上述のように構成された無線通信装置の干渉検出方法について説明する。
[0089] 実施の形態 1, 2は、送信パケットから干渉エラーを判定していた。本実施の形態で は、受信パケット及び Beaconから干渉エラーを検出する干渉検出方法である。
[0090] 図 10は、受信パケット干渉エラー検出回路 320による受信パケット干渉エラー検出 方法を説明する図である。
[0091] 受信パケット取得時の Noisefloor値を測定し、あらかじめ設定した干渉判定閾値を 超過した状態で受信したパケットがエラーとなった場合に、干渉による受信パケットェ ラーと判定する。
[0092] 図 10を参照して、受信パケット干渉エラー検出方法を具体的に説明する。
[0093] (1) Noisefloor値測定回路 310では、受信パケットの前後で測定した Noisefloo rを測定する。あら力じめ設定した干渉判定閾値と比較し、 Noisefloor値が干渉判定 閾値を超過しているかを判定する(図 10a.参照)。次いで、図 10b.に示すパケット を受信 (受信 1)するが、この受信 1は、電子レンジ ONなどの干渉区間に衝突して受 信できず、受信するパケットに対する Ackが未送信となる(図 10c.参照)。 Ack未送 信を受けて、 WLAN制御回路 111は、 WLAN送信回路 103に対して該当パケットを 再送させる(図 10d.参照)。この再送についても干渉区間に衝突して Ack未送信と なる。
[0094] (2) 受信パケット干渉エラー検出回路 320は、上記再送動作とは別に、図 10e. のタイミングで、受信エラー検出回路 311により、受信したパケットがエラー (FCSエラ 一)となったことを判定する。いま、図 10e.で Noisefloor値判定及び FCSエラーが 発生したとする。
[0095] (3) 受信パケット (Beacon)干渉エラー判定回路 312では、上記(1)で検出した N oisefloor値が干渉判定閾値を超過した条件で受信したパケットがエラーとなった場 合に、干渉による受信パケットエラーと判定する(図 10f.参照)。従来技術において は、干渉波のレベルを検出し干渉発生と判断していた力 その干渉波が発生してい る環境下でエラーが発生して 、るかどうかを検出することは実施して 、なかった。
[0096] 本発明においては、 Noisefloor値により干渉波レベルを検出するとともに、実際に 、干渉波が発生している条件下で受信したパケットがエラーになったかどうかを判定 することを特徴としている。本実施の形態の受信パケット干渉エラー検出回路 320は 、 Noisefloor値が干渉判定閾値を超過した状態で受信したパケットが FCSエラーと なった場合に、干渉エラーと判定する。
[0097] 受信パケット干渉エラー検出回路 320により、干渉エラーが判定されると、 WLAN 制御回路 111は、干渉回避回路 130に対して干渉回避モードを実行させる(図 10g .参照)。
[0098] 干渉回避回路 130による干渉回避制御については、実施の形態 4及び実施の形 態 5により後述する。
[0099] ここでは、簡略して説明すると、干渉回避回路 130は、干渉を検出した場合に、伝 送レートをあらかじめ設定したレートに設定するくレート設定〉と、再送回数を設定する く再送回数設定〉を実施する(図 10h.参照)。
[0100] 干渉回避回路 130による干渉回避制御に基づいて、レート設定及び再送回数設定 が実施され、このレート設定及び再送回数設定に従って、図 10i.に示すパケット送 信 (送信 1)を行う。ここでは、この送信 1についても干渉区間に衝突し、送信したパケ ットに対する Ackが欠落する(図 10j .参照)。この Ack欠落を受けて、 WLAN制御回 路 111は、 WLAN送信回路 103に対して該当パケットの再送を繰り返すと(図 10k. 参照)、干渉区間を抜けて再送が成功し (図 101.参照)、 Ack受信後(図 10m.参照 )、受信パケットも干渉以外の区間で受信(図 10η.参照)することができれば送信及 び受信パケット相互の通信が OKとなる(図 10ο.参照)。
[0101] このように、本実施の形態によれば、無線通信装置 300は、受信パケット又は Beac onの Noisefloor値を測定する Noisefloor値測定回路 310及び受信したパケットが FCSエラーであることを検出する受信エラー検出回路 311からなる受信パケット(Be aeon)干渉エラー判定回路 312、測定した Noisefloor値が干渉判定閾値を超過し た条件で受信したパケットに対して、 FCSエラーが検出された場合に干渉エラーと判 定するので、実施の形態 1, 2と同様の効果、すなわち実際に、干渉の発生による要 因で通信エラーが発生したことを検出することができ、発生した通信エラーが干渉ェ ラーによるものかそうでないかを区別することができる。
[0102] なお、本実施の形態では、受信パケットの Noisefloor値を測定して!/、るが Beacon 取得時の Noisefloor値を測定してもよぐ同様の効果を得ることができる。
[0103] また、受信エラーとして、受信したパケットの FCSエラーを検出している力 FCSェ ラー以外の受信エラーや SZN値であってもよ 、。
[0104] (実施の形態 4)
実施の形態 4及び実施の形態 5は、上記干渉検出方法により干渉が発生した場合 に干渉を回避する干渉回避制御について説明する。
[0105] 本実施の形態の干渉回避回路は、 WLANにおける無線通信装置の干渉回避回 路に適用した例である。ここでは、図 5、図 7又は図 9の無線通信装置の干渉回避回 路 130に適用した例により説明する。
[0106] 例えば、図 5において、干渉回避回路 130は、干渉エラーが発生したときに、干渉 回避のために、伝送レートと再送回数を制御する干渉回避制御回路 108と、干渉回 避制御回路 108の要求に従い、実際にレートを変更するレート制御回路 109と、干 渉回避制御回路 108の要求に従い、再送回数を変更する再送回数制御回路 110と から構成される。
[0107] 以下、上述のように構成された無線通信装置の干渉回避方法について説明する。
[0108] 無線通信装置が送受信を行って!/、る通信キャリアの周波数帯域で電子レンジが O Nした場合、この電子レンジが干渉波発生源となり、電子レンジ ONの間が干渉区間 となる。従来例では、図 4Aに示すように、送信時に干渉が発生すると、フォールバッ クにより伝送レートを落とし、結果としてパケット長が長くなつた状態で再送され、しか も図 4Bに示すように、再送回数は少ない規定数であった。このため、フォールバック により伝送レートを落とすのに伴いパケット長が長くなるために、再送パケットが電子 レンジ ON (干渉区間)の隙間を抜けることができず、また、再送回数が少ない規定数 であるため、電子レンジ ON (干渉区間)を超える再送が実現しな!ヽ。
[0109] そこで、本実施の形態では、(1)干渉検出時にフォールバック制御を停止して伝送 レートを一定のレートに固定し、(2)干渉検出時には再送回数を通常通信より多く設 定する。
[0110] 図 11は、本実施の形態の無線通信装置の干渉回避回路 130による干渉波とパケ ット再送回数との関係を示す図である。 20msecの間に電子レンジ ON (干渉区間)が 断続的に発生した場合を例にとる。また、 Beaconは、 1msec程度のパケット長である
[0111] (1)伝送レートの固定
干渉エラー検出回路 120, 220, 320により干渉を検出すると(図 5,図 7,図 9f.参 照)、干渉回避回路 130はく干渉回避モード〉に移行し(図 5,図 7,図 9g.参照)、干 渉回避制御回路 108は、レート制御回路 109に対してフォールバック制御を停止し て伝送レートをあら力じめ設定したレートに設定する。例えば、図 11に示すように、伝 送レートを電子レンジ ON (干渉区間)と次の電子レンジ ON (干渉区間)の隙間にお いて回避できるようなレートに固定する。レート制御回路 109が、フォールバック制御 を停止して伝送レートを一定のレートに固定することでパケット長を長くせずに再送す る。これにより、干渉回避時にあら力じめ想定したパケット長に制御することが可能と なるため図 11a.の再送 n及び図 11c.の受信のように、電子レンジ ON (干渉区間) の隙間を抜けることが可能になる。なお、図 l ib.は再送 nの Ack、図 l id.は受信に 対する Ackである。
[0112] (2)再送回数の設定
また、干渉回避制御回路 108は、再送回数制御回路 110に対して再送回数を、通 常動作よりも多い再送回数に設定する。例えば、通常動作において、再送回数は 3 〜7回程度であるが、干渉を検出した場合には、 10数回以上の再送回数に設定する 。これにより、図 11a.の再送 nに示すように、電子レンジ ON (干渉区間)を超えるよう な再送回数による再送が実施されることで通信が成功する。
[0113] 以上述べた干渉回避制御についてさらに詳細に説明する。
[0114] 図 12は、干渉エラー回避回路 130による干渉回避処理を示すフロー図である。図 中、 Sはフローの各ステップを示す。図 13は、干渉波レベル判定と干渉エラー判定の 動作内容を表にして示す図である。 [0115] まず、ステップ S Iで干渉エラー検出回路 120, 220, 320が通信状態を監視してお り、ステップ S2で干渉波レベルを判定する。干渉波レベル判定は、図 13の表に示す ように、〔送信パケット〕を用いる場合には、送信する前の ED値を測定し、測定した E D値が干渉判定閾値を超過している力否かを判定する(実施の形態 1, 2参照)。〔受 信パケット〕を用いる場合には、受信時の Noisefloor値を測定し、測定した Noiseflo or値が干渉判定閾値を超過して ヽるか否かを判定する(実施の形態 3参照)。上記 E D値又は Noisefloor値が干渉判定閾値未満の場合は、干渉波が発生して 、な 、状 況であるため、干渉回避動作への移行は実施せず、通常の通信状態を継続するた め上記ステップ S 1に戻る。
[0116] 上記ステップ S2で ED値又は Noisefloor値が干渉判定閾値を超過して!/、る場合は 、ステップ S3で干渉エラー判定を行う。干渉波エラー判定は、図 13の表に示すよう に、〔送信パケット〕を用いる場合には、 ED値が干渉判定閾値を超過している条件で 送信されたパケットに対する AP力もの Ackが欠落した場合に干渉エラーと判定する( 実施の形態 1参照)。あるいは、 ED値が干渉判定閾値を超過している条件で送信さ れたパケットが規定の再送にぉ 、て送信できな力つた場合に干渉エラーと判定する( 実施の形態 2参照)。〔受信パケット〕を用いる場合には、 Noisefloor値が干渉判定 閾値を超過している条件で受信したパケットがエラーであった場合に干渉エラーと判 定する。このように、干渉波レベルがあら力じめ設定した干渉判定閾値を超過するよ うな大きなレベルが発生して 、る環境下で 送信した又は受信したパケットがエラーと なる場合には、干渉エラーであると判定する。
[0117] 上記ステップ S3で ED値又は Noisefloor値が干渉判定閾値を超過して!/、るがエラ 一が発生して 、な 、場合は、本干渉回避を実行する必要がな 、ため通常の通信状 態を継続する。上記ステップ S3で干渉エラーであると判定した場合は、ステップ S4で 干渉源(例えば電子レンジ ON)の隙間において通信可能なようにあらかじめ設定し た固定のレートに伝送レートを設定し、ステップ S5で再送回数を通常通信よりも大き くする再送回数を設定して本フローを終了する。上記伝送レート設定では、レート制 御回路 109がフォールバック制御を停止して伝送レートをあら力じめ設定した伝送レ ートに設定する。また、上記再送回数設定では、再送回数制御回路 110が通常動作 よりも多い再送回数に設定する。例えば、通常通信において、 3〜7回程度の再送回 数を 10数回程度まで再送回数を増加させる。
[0118] 上述した干渉回避動作により、フォールバック制御停止で固定のパケット長になる ようにレート設定し、かつ再送回数を増加して再送することで、干渉エラー検出時に は干渉波の隙間に対して適正なパケットサイズとなるようにあら力じめ設定した再送 が通常回数よりも数多く再送されることになり、干渉源の隙間を抜けるヒット率が向上 し、干渉源の隙間を抜けて通信が可能となる効果が期待できる。
[0119] このように、本実施の形態によれば、干渉回避制御回路 108、レート制御回路 109 及び再送回数制御回路 110からなる干渉回避回路 130を備え、干渉回避回路 130 は、干渉エラー検出時、伝送レートを下げるフォールバック制御を停止して伝送レー トを一定のレートに固定し、かつ再送回数を通常通信より多く設定するので、ある一 定のパケット長により再送しながら、干渉源の隙間において通信可能となり、 WLAN 通信時に、電子レンジなどの干渉源による妨害波の影響を受けた際に、干渉を回避 することができ、通信を行うことができる。
[0120] (実施の形態 5)
実施の形態 4では、干渉検出時にフォールバック制御を停止し、伝送レートを一定 のレートに固定し、かつ再送回数を通常通信より多く設定することで、干渉源の隙間 で干渉回避を行うことが可能になった。本実施の形態では、上記干渉回避時におけ る伝送レートと再送回数を、送信するデータサイズに応じて設定する例である。
[0121] 図 14は、本発明の実施の形態 5に係る WLANにおける無線通信装置の構成を示 すブロック図である。図 5及び図 9と同一構成部分には同一符号を付して重複箇所の 説明を省略する。本実施の形態は、送信パケット及び受信パケットの干渉エラー検出 方法に適用した例である。
[0122] 図 14において、無線通信装置 400は、アンテナ 101、送受信切替スィッチ (TZR SW) 102、 WLAN送信回路 103、 WLAN受信回路 104、 ED値検出回路 105、 Ac kエラー検出回路 106、送信パケット干渉エラー判定回路 107、 Noisefloor (干渉波 レベル)値測定回路 310、受信エラー検出回路 311、受信パケット (Beacon)干渉ェ ラー判定回路 312、パケットサイズ入力回路 431、レート Z再送回数決定回路 432、 干渉回避制御回路 433、レート制御回路 109、再送回数制御回路 110、及び WLA N制御回路 111を備えて構成される。
[0123] 上記 ED値検出回路 105、 Ackエラー検出回路 106、送信パケット干渉エラー判定 回路 107、?^^6£1001:値測定回路310、受信エラー検出回路 311及び受信パケット 干渉エラー判定回路 312は、全体として、パケット干渉エラー検出回路 420を構成し 、上記パケットサイズ入力回路 431、レート Z再送回数決定回路 432、干渉回避制御 回路 433、レート制御回路 109及び再送回数制御回路 110は、全体として、干渉回 避回路 430を構成する。
[0124] パケット干渉エラー検出回路 420は、図 5の送信パケット干渉エラー検出回路 120 と図 9の受信パケット干渉エラー検出回路 320を併せ持つ構成である。
[0125] 干渉回避回路 430は、図 5の干渉回避回路 130に、パケットサイズ入力回路 431及 びレート Z再送回数決定回路 432が追加され、干渉回避制御回路 433は、伝送レ ートと再送回数を送信するデータサイズに応じて設定する制御が付加される点が異 なる。
[0126] パケットサイズ入力回路 431は、送信するパケットサイズをレート Z再送回数決定回 路 432に入力する。
[0127] レート Z再送回数決定回路 432は、入力されたパケットサイズ力もあらかじめ設定し たテーブルに従い、レート Z再送回数を決定する。
[0128] 図 15は、レート Z再送回数決定回路 432が参照する干渉回避テーブルの一例を 示す図である。
[0129] 図 15において、干渉回避設定テーブル 500は、パケットサイズ P (A) , P (B) , P (C ) ,…における伝送レート A, B, C"- [Mbps]と、再送回数 R (A) , R(B) , R (C) , · ·· とをあらカゝじめテーブル値として格納する。例えば、送信するデータサイズ (パケットサ ィズ) P (A)が入力されると、このパケットサイズ P (A)に対応する伝送レートと再送回 数が参照され、この場合は伝送レート A[Mbps]と再送回数 R(A)が読み出される。
[0130] 以下、上述のように構成された無線通信装置の干渉回避方法について説明する。
[0131] 図 16A— Bは、本実施の形態の無線通信装置の干渉回避回路 430による干渉波 とパケット再送回数との関係を示す図である。 20msecの間に電子レンジ ON (干渉 区間)が断続的に発生した場合を例にとる。また、 Beaconのパケット長は、 1msec程 度である。
[0132] 本実施の形態では、干渉回避時における伝送レートと再送回数を、送信するデー タサイズに応じて設定する。伝送レートと再送回数の設定後の基本動作は、実施の 形態 4と同様である。
[0133] (1)送信するデータサイズ入力
干渉エラー検出回路 420により干渉を検出すると、干渉回避回路 430はく干渉回避 モード〉に移行する。
[0134] 干渉回避回路 430のパケットサイズ入力回路 431では、送信するパケットサイズを レート Z再送回数決定回路 432に入力する。
[0135] (2)伝送レート Z再送回数決定
レート Z再送回数決定回路 432では、干渉回避設定テーブル 500を参照して、入 力された送信するパケットサイズに対応する伝送レート A, B, C〜[Mbps]と再送回 数 R (A) , R (B) , R (C) ,…を読み出す。図 16Aは、送信するデータサイズ (パケット サイズ) P (A)が入力され、パケットサイズ P (A)に対応する伝送レート A[Mbps]と再 送回数 R (A)が読み出されて設定された場合を、図 16Bは、送信するデータサイズ( パケットサイズ) P (C)が入力され、パケットサイズ P (C)に対応する伝送レート C[Mbp s]と再送回数 R(C)が読み出されて設定された場合を示す。
[0136] (3)伝送レートの設定
干渉回避制御回路 433は、レート制御回路 109に対してフォールバック制御を停 止して、伝送レートをレート Z再送回数決定回路 432により設定したレートに固定す る。例えば、図 16Aに示すように、発生した送信パケットサイズ P (A)に対応し、かつ 伝送レートを電子レンジ ON (干渉区間)と次の電子レンジ ON (干渉区間)の隙間に おいて回避できるような伝送レート A[Mbps]に固定する。本実施の形態では、レート 制御回路 109により設定される伝送レートは、送信するデータサイズに応じて可変さ れることになる。例えば、図 16Bに示すように、発生した送信データサイズがパケット サイズ P (C)である場合には、この送信データサイズのパケットを送信でき、かつ電子 レンジ ON (干渉区間)と次の電子レンジ ON (干渉区間)の隙間において回避できる ような伝送レート C[Mbps]に設定する。図 16では、パケットサイズ P (A)とパケットサ ィズ P (C)に応じて、再送及び受信の伝送レート A[Mbps]と伝送レート C[Mbps]と が異なるが、電子レンジ ON (干渉区間)の隙間にて通信できるようなパケット長に設 定されるこれにより、送信パケット及び再送パケット長は、送信データサイズに対応し た干渉回避可能なパケットサイズとなり、図 16A, (b)の再送を繰り返すことで電子レ ンジ ON (干渉区間)の隙間を抜けることが可能になる。(4)再送回数の設定
また、干渉回避制御回路 433は、再送回数制御回路 110に対して、再送回数をレ ート Z再送回数決定回路 432により決定した再送回数に設定する。レート Z再送回 数決定回路 432が決定する再送回数の基本値自体が、通常動作よりも多!、再送回 数であり、かっこれに送信データサイズに応じた調整が施された再送回数が設定さ れる。図 16では、パケットサイズ P (A)とパケットサイズ P (C)に応じて、再送回数 R(A )と再送回数 R(C)とがそれぞれ設定される。通常動作において、再送回数は 3〜7 回程度であるが、干渉を検出した場合には、 10数回以上の再送回数 R(A) , R (C) が設定される。これにより、図 16A, (b)の再送 nに示すように、電子レンジ ON (干渉 区間)を超えるように再送が繰り返されることで再送による通信が成功する。
[0137] 以上述べた干渉回避制御についてさらに詳細に説明する。
[0138] 図 17は、干渉エラー回避回路 430による干渉回避処理を示すフロー図である。図
12のフローと同一処理を行うステップには同一符号を付している。
[0139] まず、ステップ S1で干渉エラー検出回路 420が通信状態を監視しており、ステップ S 2で干渉波レベルを判定する。干渉波レベル判定は、前記図 13の表に示すよう〖こ 、〔送信パケット〕を用いる場合には、送信する前の ED値を測定し、測定した ED値が 干渉判定閾値を超過している力否かを判定する。〔受信パケット〕を用いる場合には、 受信時の Noisefloor値を測定し、測定した Noisefloor値が干渉判定閾値を超過し ているカゝ否かを判定する。上記 ED値又は NF値が干渉判定閾値未満の場合は、干 渉波のレベルが低 、ため干渉波が発生して 、な 、と判断し、上記ステップ S1に戻る
[0140] 上記ステップ S2で ED値又は Noisefloor値が干渉判定閾値を超過している場合は 、ステップ S3で干渉エラー判定を行う。干渉波エラー判定は、前記図 13の表に示す ように、〔送信パケット〕を用いる場合には、 ED値が干渉判定閾値を超過している条 件で送信されたパケットに対する APからの Ackが欠落した場合に干渉エラーと判定 する。あるいは、 ED値が干渉判定閾値を超過している条件で送信されたパケットが 規定の再送にぉ 、て送信できな力つた場合に干渉エラーと判定する。〔受信パケット 〕を用いる場合には、 Noisefloor値が干渉判定閾値を超過して 、る条件で受信した パケットがエラーであった場合に干渉エラーと判定する。このように干渉波が発生して いる条件で送信又は受信したパケットがエラーとなった場合に、干渉エラーであると 判定する。
[0141] 上記ステップ S3で ED値又は Noisefloor値が干渉判定閾値を超過しているが干渉 エラーでないと判定した場合は、干渉波が発生している状態においても、通信を継 続することができるため、通常の通信状態を継続する。
[0142] 上記ステップ S3で干渉エラーであると判定した場合は、ステップ S 11でパケットサイ ズを算出する。発生した送信データサイズをパケットサイズ入力回路 431により入力 し、このパケットサイズ入力力もパケットサイズを算出する。次いで、ステップ S 12で算 出したパケットサイズに応じて、あら力じめ設定した干渉回避設定テーブル 500を参 照して伝送レートを設定し、ステップ S 13で干渉回避設定テーブル 500を参照して再 送回数を設定して本フローを終了する。干渉回避設定テーブル 500を参照して設定 される伝送レートは、干渉源 (例えば電子レンジ ON)の隙間において通信可能なよう にあらかじめ設定した固定の伝送レートである。干渉回避設定テーブル 500を参照し て設定される再送回数は、通常動作よりも多!、再送回数である。
[0143] 上述した干渉回避動作により、フォールバック制御停止で固定のパケット長にレート 設定し、かつ再送回数を増加して再送することで、干渉エラー検出時にはあら力じめ 干渉回避のために設定したパケットサイズの再送が通常回数よりも数多く再送される ことになり、干渉源の隙間を抜けるヒット率が向上し、干渉源の隙間を抜けて通信が 可能になる効果が期待できる。
[0144] このように、本実施の形態によれば、さら〖こ、送信するパケットサイズに応じて伝送レ ート及び再送回数を設定するので、一定のパケット長により再送する場合に、適正な 伝送レート及び再送回数を設定することができ、 WLAN通信時に、電子レンジなど の干渉源による妨害波の影響を受けた際に、干渉回避の実効をより一層高める効果 が期待できる。
[0145] ここで、本実施の形態では、送信するパケットサイズに応じて、あら力じめ設定した 干渉回避設定テーブル 500に従い伝送レート及び再送回数を設定している力 送信 するデータサイズに応じて伝送レート又は再送回数を設定するものであればどのよう な方法でもよい。例えば、伝送レート設定において、テーブルを持たずに送信するパ ケットサイズから、ある一定のパケット長になるように、伝送レートを算出する方法を用 いてもよい。あるいは、あら力じめ干渉回避時におけるパケット長を設定し、発生した 送信データサイズからそのパケット長になるような伝送レートを自動的に算出する方 法を用いてもよい。また、ある一定期間干渉波の隙間の時間を検出し、その隙間にて 通信可能な伝送レート及び再送回数を算出する方法を用いてもよい。
[0146] 以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに 限定されることはない。例えば、無線 LANシステムに属さない電子レンジなどの特定 の干渉源について説明した力 干渉源はどのようなものでも良ぐ無線 LANシステム 内外で影響を与える干渉機器に全て適用できる。
[0147] また、上記各実施の形態では、無線通信装置、無線 LANシステム、干渉検出方法 及び干渉回避方法という名称を用いたが、これは説明の便宜上であり、移動端末、 無線通信機器、無線通信制御方法、電波干渉解消方法等でもよいことは勿論である
[0148] また、上記無線通信装置を構成する各回路部の種類、数及び接続方法などは前 述した実施の形態に限られない。
[0149] また、以上説明した干渉検出方法及び干渉回避方法は、この干渉検出方法及び 干渉回避方法を機能させるためのプログラムでも実現される。このプログラムはコンビ ユータで読み取り可能な記録媒体に格納されている。
[0150] 本発明の無線通信装置は、無線通信状態を判定する通信状態判定手段と、送信 又は受信したパケットがエラーであることを検出するパケットエラー検出手段と、前記 通信状態判定手段により判定された無線通信状態が所定の干渉判定条件にあると き、前記パケットエラー検出手段によりエラーが検出された場合に干渉源による干渉 エラーと判定する干渉エラー判定手段とを備える構成を採る。
[0151] 前記通信状態判定手段は、パケット送信前の ED値を測定するものであってもよぐ 前記通信状態判定手段は、パケット送信前の妨害波レベルを測定するものであって ちょい。
[0152] 前記通信状態判定手段は、受信パケット取得時の Noisefloor値を測定するもので あってもよぐ前記通信状態判定手段は、 Beacon受信時の Noisefloor値を測定す るものであってもよく、さらに、前記通信状態判定手段は、受信パケット取得時の SZ Nを測定するものであってもよ 、。
[0153] 前記パケットエラー検出手段は、送信したパケットに対する Ackエラーを検出するも のであってもよぐ前記パケットエラー検出手段は、送信したパケットが所定の再送回 数で再送できないことを検出するものであってもよぐさらに、前記パケットエラー検出 手段は、受信したパケットが FCSエラーであることを検出するものであってもよい。
[0154] 本発明の無線通信装置は、通信エラー発生時に伝送レートを下げるフォールバッ ク制御を行う無線通信装置であって、干渉エラー検出時、前記フォールバック制御を 停止して伝送レートを一定のレートに固定し、かつ、再送回数を通常通信より増やす 干渉回避制御手段を備える構成を採る。
[0155] 本発明の無線通信装置は、通信エラーが改善した際に、伝送レートを上げるレート 制御を行う無線通信装置であって、干渉エラー検出時、フォールバック制御を停止し て伝送レートを一定のレートに固定し、かつ、再送回数を通常通信より増やす干渉回 避制御手段を備える構成を採る。
[0156] 前記干渉回避制御手段は、特定の干渉源が持つ干渉区間の隙間に対して、該隙 間を通過するパケットサイズの前記伝送レートを設定するものであってもよぐ前記干 渉回避制御手段は、特定の干渉源が持つ干渉区間の隙間に対して、該隙間に到達 する前記再送回数を設定するものであってもよぐさらに、前記干渉回避制御手段は 、送信するパケットサイズに応じて前記伝送レート及び Z又は前記再送回数を設定 するものであってもよい。
[0157] 本発明の無線通信装置は、さらに、干渉エラーを検出する干渉検出手段を備え、 前記干渉検出手段は、無線通信状態を判定する通信状態判定手段と、送信又は受 信したパケットがエラーであることを検出するパケットエラー検出手段と、前記通信状 態判定手段により判定された無線通信状態が所定の干渉判定条件にあるとき、前記 パケットエラー検出手段によりエラーが検出された場合に干渉源による干渉エラーと 判定する干渉エラー判定手段とを備える構成を採る。
[0158] 本発明の無線 LANシステムは、複数の無線通信装置を無線ネットワークを通じて 接続する無線 LANシステムであって、前記無線通信装置は、上記のいずれかに記 載の無線通信装置である構成を採る。
[0159] 本発明の干渉検出方法は、パケット送信前の ED値を測定するステップと、送信し たパケットに対する Ackエラーを検出するステップと、測定した ED値が干渉判定閾 値を超過した条件で送信したパケットに対して、前記 Ackエラーが検出された場合に 干渉エラーと判定するステップとを有する。
[0160] 本発明の干渉検出方法は、パケット送信前の ED値を測定するステップと、送信し たパケットが所定の再送回数で再送できな 、送信エラーを検出するステップと、測定 した ED値が干渉判定閾値を超過した条件で送信したパケットに対して、前記送信ェ ラーが検出された場合に干渉エラーと判定するステップとを有する。
[0161] 本発明の干渉検出方法は、受信パケット取得時の Noisefloor値を測定するステツ プと、受信したパケットが FCSエラーを含む受信エラーであることを検出するステップ と、測定した Noisefloor値が干渉判定閾値を超過した条件で受信したパケットに対 して、前記受信エラーが検出された場合に干渉エラーと判定するステップとを有する
[0162] 本発明の干渉検出方法は、 Beacon受信時の Noisefloor値を測定するステップと 、受信したパケットが FCSエラーを含む受信エラーであることを検出するステップと、 測定した Noisefloor値が干渉判定閾値を超過した条件で受信したパケットに対して 、前記受信エラーが検出された場合に干渉エラーと判定するステップとを有する。
[0163] 本発明の干渉回避方法は、干渉エラー検出時、伝送レートを下げるフォールバック 制御を停止して伝送レートを一定のレートに固定するステップと、再送回数を通常通 信より増やすステップとを有する。
[0164] 前記伝送レートステップでは、特定の干渉源が持つ干渉区間の隙間に対して、該 隙間を通過するパケットサイズの前記伝送レートを設定するものであってもよい。
[0165] 前記再送回数ステップでは、特定の干渉源が持つ干渉区間の隙間に対して、該隙 間に到達する前記再送回数を設定するものであってもよい。
[0166] 前記伝送レートステップでは、送信するパケットサイズに応じて前記伝送レートを設 定し、前記再送回数ステップでは、送信するパケットサイズに応じて前記再送回数を 設定するものであってもよ 、。
[0167] 本発明の干渉回避方法は、さらに、干渉エラーを検出する干渉検出ステップを有し
、前記干渉検出ステップでは、無線通信状態を判定するステップと、送信又は受信し たパケットがエラーであることを検出するステップと、判定された無線通信状態が所定 の干渉判定条件にあるとき、前記エラーが検出された場合に干渉エラーと判定する ステップとを順次実行する。
[0168] 本明細書は、 2006年 7月 27曰出願の特願 2006— 205395に基づく。この内容は すべてここに含めておく。
産業上の利用可能性
[0169] 本発明に係る無線通信装置、無線 LANシステム、干渉検出方法及び干渉回避方 法は、干渉の発生を検出しこの干渉を回避する効果を有し、特に複数の無線通信装 置を無線ネットワークを通じて接続する無線 LANシステムを構成する無線通信装置 及び無線通信制御方法に有効である。

Claims

請求の範囲
[1] 無線通信状態を判定する通信状態判定手段と、
送信又は受信したパケットがエラーであることを検出するパケットエラー検出手段と 前記通信状態判定手段により判定された無線通信状態が所定の干渉判定条件に あるとき、前記パケットエラー検出手段によりエラーが検出された場合に干渉源による 干渉エラーと判定する干渉エラー判定手段と
を備える無線通信装置。
[2] 前記通信状態判定手段は 、パケット送信前の ED値を測定する請求項 1記載の無 線通信装置。
[3] 前記通信状態判定手段は、パケット送信前の妨害波レベルを測定する請求項 1記 載の無線通信装置。
[4] 前記通信状態判定手段は、受信パケット取得時の Noisefloor値を測定する請求 項 1記載の無線通信装置。
[5] 前記通信状態判定手段は、 Beacon受信時の Noisefloor値を測定する請求項 1 記載の無線通信装置。
[6] 前記通信状態判定手段は、受信パケット取得時の SZNを測定する請求項 1記載 の無線通信装置。
[7] 前記パケットエラー検出手段は、送信したパケットに対する Ackエラーを検出する 請求項 1記載の無線通信装置。
[8] 前記パケットエラー検出手段は、送信したパケットが所定の再送回数で再送できな いことを検出する請求項 1記載の無線通信装置。
[9] 前記パケットエラー検出手段は、受信したパケットが FCSエラーであることを検出す る請求項 1記載の無線通信装置。
[10] 複数の無線通信装置を無線ネットワークを通じて接続する無線 LANシステムであ つて、
前記無線通信装置は、請求項 1記載の無線通信装置である無線 LANシステム。
[11] パケット送信前の ED値を測定するステップと、 送信したパケットに対する Ackエラーを検出するステップと、
測定した ED値が干渉判定閾値を超過した条件で送信したパケットに対して、前記 Ackエラーが検出された場合に干渉エラーと判定するステップと
を有する干渉検出方法。
[12] パケット送信前の ED値を測定するステップと、
送信したパケットが所定の再送回数で再送できない送信エラーを検出するステップ と、
測定した ED値が干渉判定閾値を超過した条件で送信したパケットに対して、前記 送信エラーが検出された場合に干渉エラーと判定するステップと
を有する干渉検出方法。
[13] 受信パケット取得時の Noisefloor値を測定するステップと、
受信したパケットが FCSエラーを含む受信エラーであることを検出するステップと、 測定した Noisefloor値が干渉判定閾値を超過した条件で受信したパケットに対し て、前記受信エラーが検出された場合に干渉エラーと判定するステップと
を有する干渉検出方法。
[14] Beacon受信時の Noisefloor値を測定するステップと、
受信したパケットが FCSエラーを含む受信エラーであることを検出するステップと、 測定した Noisefloor値が干渉判定閾値を超過した条件で受信したパケットに対し て、前記受信エラーが検出された場合に干渉エラーと判定するステップと
を有する干渉検出方法。
PCT/JP2007/050694 2006-07-27 2007-01-18 Appareil de communication sans fil, système lan sans fil, procédé de détection d'interférence, et procédé d'évitement d'interférence WO2008012954A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07706998.7A EP2056528A4 (en) 2006-07-27 2007-01-18 Wireless communication apparatus, wireless lan system, interference detecting method, and interference avoidance method
US12/375,383 US8255756B2 (en) 2006-07-27 2007-01-18 Wireless communication apparatus, wireless LAN system, interference detecting method, and interference avoidance method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006205395 2006-07-27
JP2006-205395 2006-07-27

Publications (1)

Publication Number Publication Date
WO2008012954A1 true WO2008012954A1 (fr) 2008-01-31

Family

ID=38981270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050694 WO2008012954A1 (fr) 2006-07-27 2007-01-18 Appareil de communication sans fil, système lan sans fil, procédé de détection d'interférence, et procédé d'évitement d'interférence

Country Status (4)

Country Link
US (1) US8255756B2 (ja)
EP (1) EP2056528A4 (ja)
JP (3) JP5351313B2 (ja)
WO (1) WO2008012954A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013530651A (ja) * 2010-06-18 2013-07-25 トムソン ライセンシング 無線送信機におけるパケット再送信方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10350063A1 (de) * 2003-10-27 2005-05-25 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Vorrichtung zur Messung von Funkstörpegeln mit Frequenznachführung
US8040837B2 (en) * 2005-06-10 2011-10-18 Panasonic Corporation Wireless communication apparatus and wireless communication method
EP1990954B1 (en) * 2006-03-02 2018-06-27 Panasonic Intellectual Property Management Co., Ltd. Transmitting device, wireless communication system and transmitting method
JP4901681B2 (ja) * 2007-10-05 2012-03-21 株式会社東芝 無線通信装置及び無線通信方法
EP2495896B1 (en) * 2009-10-28 2018-12-26 Panasonic Corporation Wireless communication device
KR101102091B1 (ko) * 2010-01-29 2012-01-04 주식회사 팬택 통신장치 및 통신장치의 간섭 회피 방법
US10504360B2 (en) 2011-04-08 2019-12-10 Ross Gilson Remote control interference avoidance
US9585156B2 (en) 2011-11-14 2017-02-28 Qualcomm Incorporated Supporting different LTE-TDD configurations in neighboring regions and/or adjacent carriers
JP5939262B2 (ja) 2011-12-12 2016-06-22 富士通株式会社 送信制御方法、ノードおよび送信制御プログラム
US9930678B2 (en) * 2012-07-19 2018-03-27 Qualcomm Incorporated Multiplexing UEs with different TDD configurations and some techniques to mitigate UE-to-UE and base station-to-base station interference
CN104685832B (zh) 2012-10-31 2019-06-14 富士通株式会社 通信控制方法、网络系统以及通信装置
EP2852203B1 (en) 2013-06-28 2017-08-16 Panasonic Corporation Channel determination method and wireless communication apparatus
US9083647B2 (en) * 2013-11-22 2015-07-14 Litepoint Corporation System and method for dynamic signal interference detection during testing of a data packet signal transceiver
JP6292505B2 (ja) * 2014-01-23 2018-03-14 パナソニックIpマネジメント株式会社 無線通信方法、無線通信システム、通信装置
JP6218639B2 (ja) * 2014-02-27 2017-10-25 シャープ株式会社 無線通信システム及び無線通信装置
JP2016036111A (ja) * 2014-08-04 2016-03-17 株式会社東芝 無線通信装置
JP6300210B2 (ja) 2014-10-28 2018-03-28 パナソニックIpマネジメント株式会社 無線通信装置
US10211899B1 (en) * 2015-09-17 2019-02-19 Sprint Spectrum L.P. Systems and methods for detecting interference at an access node
JP6334494B2 (ja) * 2015-10-13 2018-05-30 株式会社東芝 無線通信装置および無線通信方法
JP6460959B2 (ja) * 2015-11-06 2019-01-30 日本電信電話株式会社 デジタル情報伝送システムおよびデジタル情報伝送方法
TWI631832B (zh) * 2016-08-06 2018-08-01 新加坡商雲網科技新加坡有限公司 一種可感知干擾源的系統及方法
WO2018151121A1 (ja) * 2017-02-17 2018-08-23 日本電気株式会社 通信装置および通信方法
CN107155208A (zh) * 2017-05-22 2017-09-12 燕山大学 基于信道优先级排序的ZigBee抗干扰方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514290A (ja) * 1991-07-08 1993-01-22 Nippon Telegr & Teleph Corp <Ntt> 干渉検出方式
JPH09200846A (ja) * 1996-01-12 1997-07-31 Matsushita Electric Ind Co Ltd 移動通信システム
JP2002033676A (ja) 2000-07-17 2002-01-31 Sony Corp 無線通信装置および無線通信機器
JP2004357056A (ja) 2003-05-29 2004-12-16 Toshiba Corp 電波干渉解消方法及び無線通信機器
JP2005278052A (ja) 2004-03-26 2005-10-06 Tdk Corp 無線通信装置の制御方法及び無線通信装置
JP2005333510A (ja) 2004-05-21 2005-12-02 Toshiba Corp 無線通信制御装置およびその制御方法
JP2006109448A (ja) 2004-09-30 2006-04-20 Samsung Electronics Co Ltd 無線lanシステムにおける隣接bss間の干渉検出装置及び干渉検出方法
JP2006205395A (ja) 2005-01-25 2006-08-10 Bridgestone Corp 高分子・金属複合体

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116484A (ja) * 1995-10-17 1997-05-02 Nippon Telegr & Teleph Corp <Ntt> 無線パケットチャネル切替方法
US5701311A (en) * 1996-02-08 1997-12-23 Motorola, Inc. Redundant acknowledgements for packetized data in noisy links and method thereof
US5889772A (en) * 1997-04-17 1999-03-30 Advanced Micro Devices, Inc. System and method for monitoring performance of wireless LAN and dynamically adjusting its operating parameters
JPH11205216A (ja) * 1998-01-07 1999-07-30 Matsushita Electric Ind Co Ltd パケット通信方法およびパケット通信装置
EP1041771B1 (en) * 1999-04-01 2009-06-17 Lucent Technologies Inc. Enhanced data rate control for wireless communication
JP2001094574A (ja) * 1999-09-24 2001-04-06 Nippon Telegr & Teleph Corp <Ntt> 無線lanシステム
EP1119153A1 (en) * 2000-01-19 2001-07-25 Lucent Technologies Inc. Method and device for robust fallback in data communication systems
US6643322B1 (en) * 2000-09-20 2003-11-04 Aperto Networks, Inc. Dynamic wireless link adaptation
US6922557B2 (en) * 2000-10-18 2005-07-26 Psion Teklogix Inc. Wireless communication system
CN1146261C (zh) * 2000-10-27 2004-04-14 清华大学 一种在衰落信道中重传丢失分组的方法
US7103817B1 (en) * 2001-04-19 2006-09-05 Cisco Technology, Inc. Method and system for dynamically controlling frame retransmissions in a wireless network
DE60107207T2 (de) 2001-05-08 2005-12-01 Lucent Technologies Inc. Drahtloses lokales Netz mit dynamischer Frequenzwahl
US6915477B2 (en) * 2001-12-28 2005-07-05 Lucent Technologies Inc. Delay sensitive adaptive quality control loop for rate adaptation
KR100850989B1 (ko) * 2002-01-05 2008-08-12 엘지전자 주식회사 자동 반복 요청(arq)시스템에서응답정보(ack/nack)신호에 대한 전력제어 방법
JP4198921B2 (ja) * 2002-02-28 2008-12-17 株式会社エヌ・ティ・ティ・ドコモ 適応無線パラメータ制御方法、QoS制御装置、基地局及び無線通信システム
US6996763B2 (en) * 2003-01-10 2006-02-07 Qualcomm Incorporated Operation of a forward link acknowledgement channel for the reverse link data
JP4335060B2 (ja) * 2003-05-21 2009-09-30 シャープ株式会社 無線通信装置、送信機、受信機、無線通信システム、ワイヤレスavシステム、無線伝送方法並びに動作制御プログラム及びそのプログラムを記録した記録媒体
JP2005252608A (ja) * 2004-03-03 2005-09-15 Nippon Telegr & Teleph Corp <Ntt> 無線特性情報を基にした送信方式選択方法および装置、ならびにそのプログラムと記録媒体
EP1735935B1 (en) * 2004-04-05 2008-03-12 Wireless Audio IP B.V. Wireless audio transmission system and method with dynamic slot allocation
EP1787418A1 (en) * 2004-08-30 2007-05-23 Koninklijke Philips Electronics N.V. A method and system for link adaptation in wireless networks
JP2008512025A (ja) * 2004-08-30 2008-04-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線網におけるエラー識別のための方法及びシステム
JP4434920B2 (ja) 2004-10-26 2010-03-17 株式会社東芝 無線通信装置および無線通信方法
US20060221847A1 (en) * 2005-03-29 2006-10-05 Dacosta Behram M Method and apparatus for selecting transmission modulation rates in wireless devices for A/V streaming applications
US20060268924A1 (en) * 2005-04-01 2006-11-30 Interdigital Technology Corporation Method and apparatus for dynamically adjusting a deferred transmission level and a transmission power level in a wireless communication system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514290A (ja) * 1991-07-08 1993-01-22 Nippon Telegr & Teleph Corp <Ntt> 干渉検出方式
JPH09200846A (ja) * 1996-01-12 1997-07-31 Matsushita Electric Ind Co Ltd 移動通信システム
JP2002033676A (ja) 2000-07-17 2002-01-31 Sony Corp 無線通信装置および無線通信機器
JP2004357056A (ja) 2003-05-29 2004-12-16 Toshiba Corp 電波干渉解消方法及び無線通信機器
JP2005278052A (ja) 2004-03-26 2005-10-06 Tdk Corp 無線通信装置の制御方法及び無線通信装置
JP2005333510A (ja) 2004-05-21 2005-12-02 Toshiba Corp 無線通信制御装置およびその制御方法
JP2006109448A (ja) 2004-09-30 2006-04-20 Samsung Electronics Co Ltd 無線lanシステムにおける隣接bss間の干渉検出装置及び干渉検出方法
JP2006205395A (ja) 2005-01-25 2006-08-10 Bridgestone Corp 高分子・金属複合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2056528A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013530651A (ja) * 2010-06-18 2013-07-25 トムソン ライセンシング 無線送信機におけるパケット再送信方法
US9544096B2 (en) 2010-06-18 2017-01-10 Thomson Licensing Packet retransmission method in a wireless transmitter
US10361819B2 (en) 2010-06-18 2019-07-23 Interdigital Ce Patent Holdings Packet retransmission method in a wireless transmitter

Also Published As

Publication number Publication date
EP2056528A4 (en) 2017-03-01
US20100037124A1 (en) 2010-02-11
JP5521098B2 (ja) 2014-06-11
JP5351313B2 (ja) 2013-11-27
JP2014161056A (ja) 2014-09-04
JP2013240112A (ja) 2013-11-28
EP2056528A1 (en) 2009-05-06
JP2012235506A (ja) 2012-11-29
US8255756B2 (en) 2012-08-28

Similar Documents

Publication Publication Date Title
WO2008012954A1 (fr) Appareil de communication sans fil, système lan sans fil, procédé de détection d&#39;interférence, et procédé d&#39;évitement d&#39;interférence
KR101443415B1 (ko) 무선 스테이션에서 간섭을 측정하기 위한 방법 및 장치
EP1959613B1 (en) Adaptive radio resource management for wireless local area networks
JP5044320B2 (ja) 無線通信装置及び無線lanシステム
JP5142669B2 (ja) 通信装置、ならびに障害原因を特定するための方法及びプログラム
JP5148756B2 (ja) 無線局
US8675547B2 (en) Wireless link monitoring and active troubleshooting
WO2004004194A2 (en) Link adaptation
WO2009116120A1 (ja) 無線端末装置および再送方法
WO2009113137A1 (ja) 無線通信装置
JP2011176693A (ja) 移動体無線通信装置、tcpフロー制御装置及びその方法
Valerio et al. Optimization of IEEE 802.11 parameters for wide area coverage
KR100736087B1 (ko) 플로우 컨트롤 장치 및 방법
KR20080098872A (ko) 다중 안테나 시스템의 스펙트럼 검출 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07706998

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007706998

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12375383

Country of ref document: US