WO2018151121A1 - 通信装置および通信方法 - Google Patents

通信装置および通信方法 Download PDF

Info

Publication number
WO2018151121A1
WO2018151121A1 PCT/JP2018/004957 JP2018004957W WO2018151121A1 WO 2018151121 A1 WO2018151121 A1 WO 2018151121A1 JP 2018004957 W JP2018004957 W JP 2018004957W WO 2018151121 A1 WO2018151121 A1 WO 2018151121A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
transmission
throughput
transmission pattern
packet
Prior art date
Application number
PCT/JP2018/004957
Other languages
English (en)
French (fr)
Inventor
康則 二木
俊治 伊東
学 有川
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US16/483,083 priority Critical patent/US11277758B2/en
Priority to JP2018568544A priority patent/JP7063276B2/ja
Publication of WO2018151121A1 publication Critical patent/WO2018151121A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0888Throughput
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level

Definitions

  • the present invention relates to a communication device and a communication method, and more particularly, to a communication device and a communication method using a transmission path in which fading occurs.
  • space optical communications FSO
  • FSO space optical communications
  • FIG. 11 schematically shows the relationship between fading and communication packet reachability.
  • the communication packet 1 transmitted within a fade time in which communication quality deteriorates due to fading cannot reach the receiving side.
  • the communication packet 2 transmitted outside the fade time can reach the receiving side.
  • the base station described in Patent Document 1 includes a measurement unit and a control unit.
  • the measurement unit determines the reception quality of a predetermined number of data received from the mobile station per predetermined time interval using a predetermined threshold.
  • the control unit outputs first notification information that causes the mobile station to transmit the same data per predetermined time interval.
  • the control unit outputs second notification information that causes the mobile station to transmit a plurality of different data per predetermined time interval.
  • the base station described in Patent Document 1 improves the transmission performance by reducing the number of times of transmission of the same packet when the reception quality is good and increasing the number of times of transmission of the same packet when the reception quality is poor. I am going to do that.
  • the transmission apparatus can change the transmission time interval between the initial transmission and retransmission of data in the frame format of wireless communication using the time diversity method and transmit the data. It is said.
  • the receiving apparatus is configured to be able to change the reception frame format in response to the change of the frame format on the transmitting apparatus side.
  • the transmission device is configured to set an optimal data transmission time interval based on information about the surrounding environment and to transmit the setting information to the reception device.
  • the wireless communication system described in Patent Document 2 uses the same packet based on ambient environment information typified by a wave period at sea in order to cope with fading fluctuation at the time of sea propagation in radio communication using radio waves.
  • the retransmission time interval is determined.
  • the base station described in Patent Document 1 is configured to determine the number of times of transmission of the same packet according to the reception quality. Further, the wireless communication system described in Patent Document 2 is configured to determine the transmission interval of the same packet based on ambient environment information such as a wave period at sea.
  • Such a repeated transmission technique can avoid degradation of communication quality due to fading.
  • it is difficult to obtain an optimum throughput performance because suppression of a decrease in throughput due to retransmission of the same communication packet is not considered.
  • the related communication apparatus has a problem that it is difficult to obtain a sufficient throughput performance while avoiding deterioration of communication quality due to fading.
  • An object of the present invention is a communication apparatus and a communication apparatus that solve the problem that it is difficult to obtain sufficient throughput performance while avoiding deterioration of communication quality due to fading in the related communication apparatus, which is the problem described above It is to provide a communication method.
  • the communication apparatus calculates a fade avoidance rate for each transmission pattern, which is a probability that the communication packet is out of the fade interval, from the time change of the communication quality information and the transmission pattern when the communication packet is repeatedly transmitted.
  • the communication method of the present invention calculates, for each transmission pattern, a fade avoidance rate, which is a probability that the communication packet is out of the fade interval, from the change in the communication quality information over time and the transmission pattern when the communication packet is repeatedly transmitted. From the transmission pattern and the fade avoidance rate, the throughput of the communication packet is calculated for each transmission pattern, and the optimal transmission pattern that maximizes the throughput is determined from the transmission patterns.
  • a fade avoidance rate which is a probability that the communication packet is out of the fade interval
  • the communication apparatus and the communication method of the present invention it is possible to avoid deterioration of communication quality due to fading and obtain sufficient throughput performance.
  • FIG. 1 is a block diagram showing a configuration of a communication apparatus 100 according to the first embodiment of the present invention.
  • the communication apparatus 100 includes a fade avoidance rate calculation unit (fade avoidance rate calculation unit) 110, a throughput calculation unit (throughput calculation unit) 120, and a transmission pattern determination unit (transmission pattern determination unit) 130.
  • a fade avoidance rate calculation unit (fade avoidance rate calculation unit) 110
  • a throughput calculation unit throughput calculation unit
  • transmission pattern determination unit transmission pattern determination unit 130.
  • the fade avoidance rate calculation unit 110 calculates, for each transmission pattern, a fade avoidance rate, which is a probability that the communication packet is out of the fade interval, from the time change of the communication quality information and the transmission pattern when the communication packet is repeatedly transmitted. To do.
  • Throughput calculator 120 calculates the throughput of the communication packet for each transmission pattern from the transmission pattern and the fade avoidance rate.
  • the transmission pattern determination part 130 determines the optimal transmission pattern from which a throughput becomes the maximum among transmission patterns.
  • the time change of the communication quality information includes, for example, a time change of the S / N (signal / noise) ratio of the signal and a time change of the signal strength.
  • a fade avoidance rate which is a probability that a communication packet is out of a fade interval
  • a transmission pattern when a communication packet is repeatedly transmitted. Calculate every time. From this fade avoidance rate and the transmission pattern, the throughput of the communication packet is calculated for each transmission pattern. Then, the optimum transmission pattern that maximizes the throughput is determined from the transmission patterns.
  • the communication device 100 and the communication method according to the present embodiment calculate the throughput of the communication packet for each transmission pattern from the transmission pattern and the fade avoidance rate, and among the transmission patterns, the optimum transmission pattern that maximizes the throughput. Is determined. Therefore, according to the communication apparatus 100 and the communication method of the present embodiment, it is possible to avoid deterioration in communication quality due to fading and obtain sufficient throughput performance.
  • FIG. 2 is a block diagram showing the configuration of the communication apparatus 200 according to the second embodiment of the present invention.
  • the communication apparatus 200 includes a fade avoidance rate calculation unit 210, a normalized throughput calculation unit 220 as a throughput calculation unit, and a repeated transmission frequency / interval determination unit 230 as a transmission pattern determination unit.
  • the communication apparatus 200 of the present embodiment is configured to further include a repeated transmission count / interval selection section (repetitive transmission count / interval selection means) 240 and a transmission pattern generation section (transmission pattern generation means) 250.
  • FIG. 2 shows a configuration including a storage unit (storage unit) 260 and a transmission / reception unit (transmission / reception unit) 270.
  • the communication apparatus 200 refers to a temporal change (history) of communication quality such as light intensity and SNR (Signal-to-Noise Ratio), and the number of times of repeated transmission (number of retransmissions) that maximizes the normalized throughput. And determine the transmission interval. And it was set as the structure which transmits / receives a packet with the frequency
  • a temporal change (history) of communication quality such as light intensity and SNR (Signal-to-Noise Ratio)
  • number of times of repeated transmission number of retransmissions
  • the storage unit 260 stores temporal changes (history) of communication quality information. That is, the memory
  • the repetitive transmission count / interval selection unit 240 selects a combination of the repetitive transmission count and the repetitive transmission interval of the communication packet. That is, the repetition transmission number / interval selection unit 240 extracts the repetition transmission number candidate i and the transmission interval candidate m from the combination of the repetition transmission number and the transmission interval of the communication packet. There are many combinations of the number of repeated transmissions and the transmission interval. However, if throughput is calculated for all combinations of the number of repeated transmissions and transmission intervals, the amount of calculation becomes enormous. Therefore, it is preferable that the repetition transmission frequency / interval selection unit 240 outputs, for example, a transmission interval candidate m obtained by thinning out the transmission interval.
  • the repeated transmission frequency / interval selection unit 240 outputs the repeated transmission frequency candidate i to the transmission pattern generation unit 250, the normalized throughput calculation unit 220, and the repeated transmission frequency / interval determination unit 230. Further, the repeated transmission frequency / interval selection unit 240 outputs the transmission interval candidate m to the transmission pattern generation unit 250 and the repeated transmission frequency / interval determination unit 230.
  • the transmission pattern generation unit 250 generates a transmission pattern based on the combination selected by the repeated transmission frequency / interval selection unit 240. Specifically, the transmission pattern generation unit 250 inputs the repetition transmission number candidate i and the transmission interval candidate m from the repetition transmission number / interval selection unit 240 and transmits the transmission pattern according to the repetition transmission number candidate i and the transmission interval candidate m. Is generated. A specific example of the transmission pattern corresponding to the repeated transmission number candidate i and the transmission interval candidate m will be described later with reference to FIG. The transmission pattern generation unit 250 outputs the generated transmission pattern to the fade avoidance rate calculation unit 210.
  • the fade avoidance rate calculation unit 210 calculates a fade avoidance rate for each combination selected by the repeated transmission count / interval selection unit 240 from the time change of the communication quality information and the transmission pattern when the communication packet is repeatedly transmitted. . Specifically, the fade avoidance rate calculation unit 210 inputs a history (time change) of communication quality information from the storage unit 260 and inputs a transmission pattern from the transmission pattern generation unit 250.
  • the fade avoidance rate calculation unit 210 calculates a fade avoidance rate, which is a probability that the same communication packet is outside the fade interval, for each transmission pattern determined by the above combination.
  • the fade avoidance rate can be calculated as follows, for example. First, the communication quality information is binarized according to a threshold value, and converted into an information series composed of “0” indicating a non-conductive state or “1” indicating a conductive state. A transmission pattern in which the same packet appears is represented by “0” or “1”. When the result obtained by multiplying the binarized communication quality information and the transmission pattern in the calculation section of the fade avoidance rate is “0”, it is determined that it is within the fade section, and when it is not “0”, it is determined that it is outside the fade section. By repeating the above calculation by sliding the transmission pattern in the time direction, a probabilistic fade avoidance rate can be obtained.
  • the fade avoidance rate calculation unit 210 outputs the calculated fade avoidance rate to the normalized throughput calculation unit 220.
  • the normalized throughput calculator 220 calculates the throughput of the communication packet for each transmission pattern determined by the above combination from the number of repeated transmissions and the fade avoidance rate. That is, the normalized throughput calculation unit 220 receives the fade avoidance rate from the fade avoidance rate calculation unit 210 and the repeat transmission number candidate i from the repeat transmission number / interval selection unit 240. Then, the normalized throughput calculation unit 220 calculates the normalized throughput for each combination of the repeated transmission number candidate i and the transmission interval candidate m based on the repeated transmission number candidate i and the fade avoidance rate. Assuming that the fade avoidance rate is r (i, m), normalized throughput T (i, m) in the repeated transmission number candidate i and the transmission interval candidate m is expressed by the following equation (1), for example.
  • the normalized throughput calculation unit 220 outputs the calculated normalized throughput to the repeated transmission count / interval determination unit 230.
  • the repetitive transmission frequency / interval determining unit 230 determines an optimal transmission pattern by an optimal combination that maximizes the throughput among the above combinations for determining a transmission pattern. Specifically, the repetition transmission number / interval determination unit 230 receives the normalized throughput T from the normalized throughput calculation unit 220 and receives the repetition transmission number candidate i and the transmission interval candidate m from the repetition transmission number / interval selection unit 240. input. Then, the repeated transmission number / interval determining unit 230 selects the repeated transmission number i ′ and the transmission interval m ′ at which the normalized throughput T is maximized, and outputs it to the transmission / reception unit 270.
  • the transmission / reception unit 270 transmits / receives communication packets based on the optimum transmission pattern. Specifically, the transmission / reception unit 270 receives the repetition transmission number i ′ and the transmission interval m ′ as the optimum transmission pattern from the repetition transmission number / interval determination unit 230, and based on the repetition transmission number i ′ and the transmission interval m ′. Communication packets are sent and received.
  • FIG. 3 shows a specific example of a transmission pattern generated by the transmission pattern generation unit 250 according to the repeated transmission number candidate i and the transmission interval candidate m.
  • the repeated transmission frequency / interval determining unit 230 determines a combination of the transmission frequency candidate i and the transmission interval candidate m that maximizes the throughput.
  • FIG. 4 broken circles indicate optimal combination candidates, and oblique broken lines indicate contour lines where the fade avoidance rate is the same value.
  • the fade avoidance rate increases as the repeat transmission number candidate i and the interval candidate m increase, and the fade avoidance rate decreases as the repeat transmission number candidate i and the interval candidate m decrease.
  • the peak rate that is the maximum value of the transmission speed decreases as the number of repeated transmission candidates i increases.
  • the repetitive transmission count / interval determining unit 230 determines a combination of the transmission avoidance rate and the transmission count i ′ and the transmission interval m ′ that maximizes the throughput (normalized throughput) in consideration of the peak rate depending on the repetitive transmission count candidate i. It is determined and output to the transmission / reception unit 270.
  • the line continuity rate indicates a ratio between a time outside the fade time and good communication quality and a time within the fade time and poor communication quality on the communication path.
  • the time change of the line connection rate may be included in the time change (history) of the communication quality information acquired by the communication apparatus 200.
  • FIG. 5A shows an example of fading when the line continuity is high.
  • the line continuity rate is high, for example, the number of repeated transmissions is set to 1 and the transmission interval is determined to be a value equal to or longer than the fade time.
  • FIG. 5B shows an example of fading when the line continuity is low.
  • the line connection rate is low, in order to increase the appearance probability of a packet transmitted outside the fade time, for example, the number of repeated transmissions is set to a plurality of times, and the transmission interval is determined to be a value equal to or less than the fade time.
  • the communication apparatus 200 calculates the fade avoidance rate and the throughput by referring to the history within the most recent predetermined time out of the binarized communication quality information, and the number of repeated transmissions.
  • the transmission interval is determined and reflected in the transmission / reception process. Therefore, the history of the latest communication quality information can be referred to and reflected in the determination of the number of repeated transmissions and the transmission interval. Therefore, according to the communication apparatus 200 of the present embodiment, it is possible to make the operation of determining the number of repeated transmissions and the transmission interval follow the fading characteristics.
  • the communication quality information such as the light intensity and SNR measured on the reception side can be fed back to the transmission side.
  • the transmission side repeatedly determines the number of transmissions and the transmission interval according to the feedback communication quality information. The determined number of repeated transmissions and transmission interval can be shared between the transmission side and the reception side for transmission / reception.
  • the communication device 200 of the present embodiment is configured to control the number of repeated transmissions and the transmission interval in order to maximize the throughput. Furthermore, by using together with packet arrival confirmation type retransmission control in a higher layer, it is possible to ensure the reachability of packets.
  • FIG. 6 is a flowchart for explaining the communication method according to the present embodiment.
  • the time change (history) of communication quality information is stored (step S11). Further, the repetition transmission number candidate i and the transmission interval candidate m are extracted from the combination of the number of repetition transmissions and the transmission interval of the communication packet (step S12). Then, a transmission pattern is generated based on the extracted repetition transmission number candidate i and transmission interval candidate m (step S13).
  • a fade avoidance rate is calculated for each combination from the history of the communication quality information and the transmission pattern determined by the combination of the repetition transmission number candidate i and the interval candidate m (step S14). Then, the normalized throughput is calculated for each combination of the repeated transmission number candidate i and the transmission interval candidate m from the fade avoidance rate and the repeated transmission number i (step S15).
  • step S16 it is determined whether or not the calculation of normalized throughput has been completed for all combinations of the repeated transmission number candidate i and the transmission interval candidate m (step S16).
  • step S16 / NO the combination of the transmission number candidate i and the interval candidate m is changed (step S12), and the changed repeated transmission number candidate and transmission interval candidate are changed.
  • a transmission pattern is generated based on (step S13).
  • step S16 When calculation of normalized throughput is completed for all combinations (step S16 / YES), among the combinations of the transmission number candidate i and the transmission interval candidate m, the optimum combination (transmission number i ′ and transmission) that maximizes the normalized throughput.
  • the interval m ′) is determined (step S17). Then, packet transmission / reception is performed according to the optimum transmission pattern based on the optimum combination determined here (step S18).
  • the communication device 200 and the communication method of the present embodiment it is possible to determine the optimum combination of the number of repeated transmissions and the transmission interval according to the fading state of the transmission path, thereby obtaining high throughput performance. . That is, according to the communication apparatus 200 and the communication method of the present embodiment, it is possible to avoid deterioration of communication quality due to fading and obtain sufficient throughput performance.
  • FIG. 7 shows a configuration of a communication apparatus 300 according to the third embodiment of the present invention.
  • the communication apparatus 300 according to the present embodiment is configured to repeatedly determine the number of transmissions and the transmission interval in consideration of performing coherent combining control on the receiving side for a plurality of identical packets in addition to the fading state of the transmission path.
  • the communication apparatus 300 includes a fade avoidance rate calculation unit 210, a normalized throughput calculation unit 320, a repeated transmission count / interval determination unit 230, a repeated transmission count / interval selection unit 240, and a transmission pattern generation unit 250.
  • FIG. 7 shows a configuration including the storage unit 260 and the transmission / reception unit 270. The configuration so far is the same as the configuration of the communication apparatus 200 according to the second embodiment.
  • the communication apparatus 300 further includes a post-combination packet error rate acquisition unit (post-combination packet error rate acquisition unit) 311.
  • the post-combination packet error rate acquisition unit 311 obtains the packet error rate after coherently combining the communication packets repeatedly transmitted based on the time change of the communication quality information and the number of repeated transmissions.
  • the normalized throughput calculation unit 320 as the throughput calculation means calculates the throughput of the communication packet for each combination from the number of repeated transmissions, the fade avoidance rate, and the packet error rate.
  • the communication apparatus 300 may further include an average communication quality calculation unit (average communication quality calculation means) 312.
  • the average communication quality calculation unit 312 calculates the average communication quality information by averaging the communication quality information within a predetermined time.
  • the post-combination packet error rate acquisition unit 311 can obtain the packet error rate based on the average communication quality information and the number of repeated transmissions.
  • the communication apparatus 300 according to the present embodiment illustrated in FIG. 7 will be described in more detail. Note that a detailed description of the same configuration as that of the communication device 200 according to the second embodiment is omitted.
  • the average communication quality calculation unit 312 inputs the time change (history) of the communication quality information from the storage unit 260, and calculates an average value within a predetermined time period of the communication quality information. Then, average communication quality calculation section 312 outputs the calculated average value of communication quality to post-combination packet error rate acquisition section 311.
  • the average value of communication quality includes an S / N ratio, an average value of signal strength, and the like.
  • the post-combination packet error rate acquisition unit 311 inputs an average value of communication quality from the average communication quality calculation unit 312. Further, the repetition transmission number candidate i is input from the repetition transmission number / interval selection unit 240. Then, the post-combination packet error rate acquisition unit 240 calculates the packet error rate after coherently synthesizing the same packet based on the average value of communication quality and the repetition transmission number candidate i.
  • the packet error rate is a ratio of “the number of packets successfully received” and “the total number of transmitted packets”.
  • the relationship between the average value ⁇ of communication quality and the packet error rate can be calculated in advance through experiments or simulations, and stored in a table or the like.
  • the post-combination packet error rate acquisition unit 240 can acquire the packet error rate by referring to this table.
  • the packet error rate after coherent combining may be acquired by correcting the communication quality and the packet error rate characteristic held in advance according to the communication quality gain by coherent combining. Further, the post-combination packet error rate acquisition unit 311 directly inputs the communication quality information history from the storage unit 260 without going through the average communication quality calculation unit 312, and calculates the packet error rate after coherent synthesis. Also good.
  • the post-combination packet error rate acquisition unit 311 outputs the packet error rate after the coherent combination to the normalized throughput calculation unit 320.
  • the normalized throughput calculation unit 320 inputs the fade avoidance rate from the fade avoidance rate calculation unit 210 and inputs the repeat transmission number candidate i from the repeat transmission frequency / interval selection unit 240. Further, the normalized throughput calculation unit 320 inputs the packet error rate after coherent combining from the combined packet error rate acquisition unit 311. Then, the normalized throughput calculation unit 320 calculates the normalized throughput based on the fade avoidance rate r, the repeated transmission number candidate i, and the combined packet error rate.
  • the normalized throughput T (i, m) is expressed by the following equation (2), for example. Is done.
  • the normalized throughput calculator 320 outputs the calculated normalized throughput to the repeated transmission count / interval determiner 230.
  • the repeated transmission frequency / interval determining unit 230 determines a combination of the transmission frequency candidate i and the transmission interval candidate m that maximizes the throughput.
  • the repetition transmission number / interval determining unit 230 has a maximum number of transmissions i ′ and a transmission interval m in consideration of the fade avoidance ratio r, the peak rate depending on the repetition transmission number candidate i, and the communication quality gain by coherent combining. 'Determine. Then, the repetitive transmission number / interval determining unit 230 outputs the transmission number i ′ and the transmission interval m ′ determined here to the transmitting / receiving unit 270.
  • FIG. 9 is a flowchart for explaining the communication method according to the present embodiment.
  • a time change (history) of communication quality information is stored (step S21). Then, an average value within a predetermined time immediately before the communication quality information is calculated (step S22).
  • the repetition transmission number candidate i and the transmission interval candidate m are extracted from the combination of the repetition transmission number and the transmission interval of the communication packet (step S23). Then, a transmission pattern is generated based on the extracted repetition transmission number candidate i and transmission interval candidate m (step S24). Subsequently, a fade avoidance rate is calculated for each combination from the history of communication quality information and the transmission pattern determined by the combination of the repetition transmission number candidate i and the transmission interval candidate m (step S25).
  • the packet error rate after coherent combining is calculated based on the repeated transmission number candidate i and the average communication quality (step S26), and the packet error rate e (i, ⁇ ) after the coherent combining and the fade avoidance rate
  • a normalized throughput is calculated for each combination of the repetition transmission number candidate i and the transmission interval candidate m from r (i, m) and the repetition transmission number candidate i (step S27).
  • step S28 it is determined whether or not the calculation of normalized throughput has been completed for all combinations of the repeated transmission number candidate i and the transmission interval candidate m (step S28).
  • step S28 / NO the combination of the transmission frequency candidate i and the transmission interval candidate m is changed (step S23). Then, a transmission pattern is generated based on the changed number of repeated transmission candidates and the transmission interval candidate (step S24).
  • step S28 When the calculation of normalized throughput is completed for all combinations (step S28 / YES), among the combinations of the transmission number candidate i and the transmission interval candidate m, the optimum combination (the number of transmissions i ′ and transmission) that maximizes the normalized throughput.
  • the interval m ′) is determined (step S29). Then, packet transmission / reception is performed according to the optimum transmission pattern based on the optimum combination determined here (step S30).
  • the optimum combination of the number of repeated transmissions and the transmission interval can be determined according to the fading state of the transmission path, thereby obtaining high throughput performance. . That is, according to the communication apparatus 200 and the communication method of the present embodiment, it is possible to avoid deterioration of communication quality due to fading and obtain sufficient throughput performance.
  • the optimum combination of the number of repeated transmissions and the transmission interval is determined in consideration of the packet error rate after coherent combining in addition to the fading state of the transmission path. Yes. Therefore, the throughput performance can be further improved.
  • FIG. 10 shows a configuration of a communication apparatus 400 according to the fourth embodiment of the present invention.
  • the communication device 400 according to the present embodiment is configured to vary the fade avoidance rate calculation time and the communication quality information average time according to the fading speed fluctuation time.
  • the communication apparatus 400 has a configuration further including a fading speed fluctuation time calculation unit (fading speed fluctuation time calculation means) 410 in addition to the configuration of the communication apparatus according to each of the embodiments described above.
  • FIG. 10 shows a configuration when a fading speed variation time calculation unit 410 is added to the configuration of the communication apparatus 300 according to the third embodiment.
  • Other configurations are the same as the configurations and operations of the communication device according to each of the above-described embodiments, and thus description thereof is omitted.
  • the fading speed fluctuation time calculation unit 410 calculates a fading speed fluctuation time that is a time during which the fluctuation of the fading speed can be considered constant based on the time change of the communication quality information.
  • fading speed fluctuation time calculation section 410 refers to the time change (history) of time-series communication quality information output from storage section 260 and calculates a time during which the fading speed fluctuation can be considered constant. .
  • the fade avoidance rate calculation unit 210 calculates a fade avoidance rate based on the fading speed fluctuation time. That is, when the fluctuation time of the fading speed is long, the fade avoidance rate calculation unit 210 increases the calculation time of the fade avoidance rate. On the other hand, when the fluctuation time of the fading speed is short, the fade avoidance rate calculation unit 210 shortens the calculation time of the fade avoidance rate.
  • the average communication quality calculation unit 312 calculates average communication quality information based on the fading speed fluctuation time. That is, average communication quality calculation section 312 lengthens the average time of communication quality information when the fading speed fluctuation time is long. On the other hand, when the fluctuation time of the fading speed is short, the average communication quality calculation unit 312 shortens the average time of the communication quality information.
  • the optimum combination of the number of repeated transmissions and the transmission interval can be determined according to the fading state of the transmission path, thereby obtaining high throughput performance. That is, according to the communication apparatus 400 of the present embodiment, it is possible to avoid deterioration of communication quality due to fading and obtain sufficient throughput performance.
  • the communication apparatus 400 it is possible to execute calculation of the fade avoidance rate and the average communication quality information according to the fluctuation time of the fading speed. Therefore, when determining the number of repeated transmissions and the transmission interval, the accuracy of following the fading of the transmission path is improved. As a result, the throughput performance can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

関連する通信装置においては、フェージングによる通信品質の劣化を回避するとともに、十分なスループット性能を得ることが困難であるため、本発明の通信装置は、通信品質情報の時間変化と、通信パケットを繰り返して送信する際の送信パターンとから、通信パケットがフェード区間外になる確率であるフェード回避率を送信パターン毎に算出するフェード回避率計算手段と、送信パターンとフェード回避率から、通信パケットのスループットを送信パターン毎に算出するスループット計算手段と、送信パターンのうち、スループットが最大になる最適送信パターンを決定する送信パターン決定手段、とを有する。

Description

通信装置および通信方法
 本発明は、通信装置および通信方法に関し、特に、フェージングが発生する伝送路を用いる通信装置および通信方法に関する。
 人工衛星と地上間の通信に空間光通信(Free Space Optics:FSO)を適用することにより、人工衛星において観測した地上観測データ等の大量データを、高速に伝送することが期待されている。人工衛星と地上間の空間光通信においては、信号光が大気中を通過するため、大気の状態の変化により信号光の受信強度が変動するフェージングが発生する。フェージングが発生する伝送路を用いる場合、受信強度の減衰が大きいために通信品質が劣化するフェード時間内に通信パケットが送信されると、受信側において通信パケットを正しく復調することができない。
 図11に、フェージングと通信パケットの到達可否との関係を模式的に示す。同図に示すように、フェージングにより通信品質が劣化するフェード時間内に送信された通信パケット1は、受信側に到達することができない。一方、フェード時間外に送信された通信パケット2は、受信側に到達することが可能である。
 上述したような伝送路におけるフェージングへの対策として、同一のパケットを複数回にわたって送信する繰り返し送信技術が検討されている。
 このような繰り返し送信技術の例が特許文献1および2に記載されている。
 特許文献1に記載された基地局は、測定部と制御部を備える。測定部は、移動局から受信した、所定の時間間隔あたり所定数のデータの受信品質を所定の閾値を用いて判断する。制御部は、測定部で測定されたデータの受信品質が低いと判断された場合、移動局に対して所定の時間間隔あたり同一のデータを送信させる第1の通知情報を出力する。また、測定部で測定されたデータの受信品質が高いと判断された場合、制御部は、移動局に対して所定の時間間隔あたり異なる複数のデータを送信させる第2の通知情報を出力する。
 すなわち、特許文献1に記載された基地局は、受信品質が良好な場合には同一パケットの送信回数を減らし、受信品質が劣悪な場合は同一パケットの送信回数を増やすことにより伝送性能を改善することとしている。
 また、特許文献2に記載された無線通信システムにおいては、送信装置は、時間ダイバーシティ方式による無線通信のフレームフォーマットにおけるデータの初回伝送と再伝送の伝送時間間隔を変更して送信することができる構成としている。また、受信装置は、送信装置側のフレームフォーマットの変更に対応して受信のフレームフォーマットを変更することができる構成としている。そして、送信装置は、周囲環境の情報を元に最適なデータの伝送時間間隔を設定するとともに、設定情報を受信装置に伝達するように構成されている。
 すなわち、特許文献2に記載された無線通信システムは、電波を用いた無線通信における海上伝搬時のフェージング変動に対処するために、海上の波の周期に代表される周囲環境情報に基づいて同一パケットの再送時間間隔を決定する構成としている。
国際公開第2012/127591号 特開2002-246967号公報
 上述したように、特許文献1に記載された基地局は、受信品質に応じて同一パケットの送信回数を決定する構成としている。また、特許文献2に記載された無線通信システムは、海上の波の周期等の周囲環境情報に基づいて同一パケットの送信間隔を決定する構成としている。
 このような繰り返し送信技術により、フェージングによる通信品質の劣化を回避することが可能である。しかし、上述した関連する通信装置においては、同一の通信パケットを再送信することによるスループットの低下を抑制することは考慮されていないため、最適なスループット性能を得ることは困難である。
 このように、関連する通信装置においては、フェージングによる通信品質の劣化を回避するとともに、十分なスループット性能を得ることが困難である、という問題があった。
 本発明の目的は、上述した課題である、関連する通信装置においては、フェージングによる通信品質の劣化を回避するとともに、十分なスループット性能を得ることが困難である、という課題を解決する通信装置および通信方法を提供することにある。
 本発明の通信装置は、通信品質情報の時間変化と、通信パケットを繰り返して送信する際の送信パターンとから、通信パケットがフェード区間外になる確率であるフェード回避率を送信パターン毎に算出するフェード回避率計算手段と、送信パターンとフェード回避率から、通信パケットのスループットを送信パターン毎に算出するスループット計算手段と、送信パターンのうち、スループットが最大になる最適送信パターンを決定する送信パターン決定手段、とを有する。
 本発明の通信方法は、通信品質情報の時間変化と、通信パケットを繰り返して送信する際の送信パターンとから、通信パケットがフェード区間外になる確率であるフェード回避率を送信パターン毎に算出し、送信パターンとフェード回避率から、通信パケットのスループットを送信パターン毎に算出し、送信パターンのうち、スループットが最大になる最適送信パターンを決定する。
 本発明の通信装置および通信方法によれば、フェージングによる通信品質の劣化を回避するとともに、十分なスループット性能を得ることができる。
本発明の第1の実施形態に係る通信装置の構成を示すブロック図である。 本発明の第2の実施形態に係る通信装置の構成を示すブロック図である。 本発明の第2の実施形態に係る通信装置が備える送信パターン生成部が生成する送信パターンの具体例を示す図である。 本発明の第2の実施形態に係る通信装置が備える繰り返し送信回数・間隔決定部の動作を説明するための図である。 本発明の第2の実施形態に係る通信装置が備える繰り返し送信回数・間隔決定部の動作を説明するための図であって、回線導通率が高い場合を示す。 本発明の第2の実施形態に係る通信装置が備える繰り返し送信回数・間隔決定部の動作を説明するための図であって、回線導通率が低い場合を示す。 本発明の第2の実施形態に係る通信方法を説明するためのフローチャートである。 本発明の第3の実施形態に係る通信装置の構成を示すブロック図である。 本発明の第3の実施形態に係る通信装置が備える繰り返し送信回数・間隔決定部の動作を説明するための図である。 本発明の第3の実施形態に係る通信方法を説明するためのフローチャートである。 本発明の第4の実施形態に係る通信装置の構成を示すブロック図である。 フェージングと通信パケットの到達可否との関係を説明するための概略図である。
 以下に、図面を参照しながら、本発明の実施形態について説明する。
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係る通信装置100の構成を示すブロック図である。通信装置100は、フェード回避率計算部(フェード回避率計算手段)110、スループット計算部(スループット計算手段)120、および送信パターン決定部(送信パターン決定手段)130を有する。
 フェード回避率計算部110は、通信品質情報の時間変化と、通信パケットを繰り返して送信する際の送信パターンとから、通信パケットがフェード区間外になる確率であるフェード回避率を送信パターン毎に算出する。スループット計算部120は、送信パターンとフェード回避率から、通信パケットのスループットを送信パターン毎に算出する。そして、送信パターン決定部130は、送信パターンのうち、スループットが最大になる最適送信パターンを決定する。
 ここで、通信品質情報の時間変化には、例えば、信号のS/N(signal/noise)比の時間変化や信号強度の時間変化が含まれる。
 次に、本実施形態による通信方法について説明する。
 本実施形態の通信方法においては、まず、通信品質情報の時間変化と、通信パケットを繰り返して送信する際の送信パターンとから、通信パケットがフェード区間外になる確率であるフェード回避率を送信パターン毎に算出する。このフェード回避率と送信パターンとから、通信パケットのスループットを送信パターン毎に算出する。そして、送信パターンのうち、スループットが最大になる最適送信パターンを決定する。
 上述したように、本実施形態による通信装置100および通信方法は、送信パターンとフェード回避率から、送信パターン毎に通信パケットのスループットを算出し、送信パターンのうち、スループットが最大になる最適送信パターンを決定する構成としている。そのため、本実施形態の通信装置100および通信方法によれば、フェージングによる通信品質の劣化を回避するとともに、十分なスループット性能を得ることができる。
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図2は、本発明の第2の実施形態に係る通信装置200の構成を示すブロック図である。
 本実施形態による通信装置200は、フェード回避率計算部210、スループット計算手段としての正規化スループット計算部220、および送信パターン決定手段としての繰り返し送信回数・間隔決定部230を有する。本実施形態の通信装置200は、さらに、繰り返し送信回数・間隔選定部(繰り返し送信回数・間隔選定手段)240および送信パターン生成部(送信パターン生成手段)250を有する構成とした。なお、図2には、記憶部(記憶手段)260および送受信部(送受信手段)270も含めた構成を示す。
 本実施形態による通信装置200は、光強度やSNR(Signal-to-Noise Ratio)等の通信品質の時間変化(履歴)を参照して、正規化スループットが最大になる繰り返し送信回数(再送回数)および送信間隔を決定する。そして、このときの送信回数および送信間隔によりパケットの送受信を行う構成とした。
 本実施形態の通信装置200において、記憶部260は通信品質情報の時間変化(履歴)を記憶する。すなわち、記憶部260は、通信品質情報を入力し、所定時間分の通信品質情報を記憶する。そして、記憶部260は所定時間分の通信品質情報の履歴をフェード回避率計算部210に出力する。
 繰り返し送信回数・間隔選定部240は、通信パケットの繰り返し送信回数と繰り返し送信間隔の組合せを選定する。すなわち、繰り返し送信回数・間隔選定部240は、通信パケットの繰り返し送信回数および送信間隔の組合せの中から、繰り返し送信回数候補iおよび送信間隔候補mを抽出する。繰り返し送信回数および送信間隔の組合せは、多数存在する。しかし、全ての繰り返し送信回数および送信間隔の組合せについて、スループットの計算を行うと演算量が膨大になる。そのため、繰り返し送信回数・間隔選定部240は、例えば、送信間隔を間引いた送信間隔候補mを出力することが好ましい。
 繰り返し送信回数・間隔選定部240は繰り返し送信回数候補iを、送信パターン生成部250、正規化スループット計算部220、および繰り返し送信回数・間隔決定部230へ出力する。また、繰り返し送信回数・間隔選定部240は送信間隔候補mを、送信パターン生成部250および繰り返し送信回数・間隔決定部230へ出力する。
 送信パターン生成部250は、繰り返し送信回数・間隔選定部240が選定した組合せに基いて、送信パターンを生成する。具体的には、送信パターン生成部250は、繰り返し送信回数・間隔選定部240から繰り返し送信回数候補iおよび送信間隔候補mを入力し、繰り返し送信回数候補iおよび送信間隔候補mに応じた送信パターンを生成する。繰り返し送信回数候補iおよび送信間隔候補mに応じた送信パターンの具体例については、後段において図3を用いて説明する。送信パターン生成部250は、生成した送信パターンをフェード回避率計算部210に出力する。
 フェード回避率計算部210は、通信品質情報の時間変化と、通信パケットを繰り返して送信する際の送信パターンとから、繰り返し送信回数・間隔選定部240が選定した組合せ毎にフェード回避率を算出する。具体的には、フェード回避率計算部210は、記憶部260から通信品質情報の所定時間の履歴(時間変化)を入力し、送信パターン生成部250から送信パターンを入力する。
 ここで、フェード回避率計算部210は、同一の通信パケットがフェード区間外になる確率であるフェード回避率を、上記の組合せで決まる送信パターン毎に計算する。フェード回避率の算出は、例えば以下のようにして行うことができる。まず、通信品質情報をしきい値に従って2値化し、非導通状態を示す「0」または導通状態を示す「1」から構成される情報系列に変換する。また、同一パケットが出現する送信パターンを「0」または「1」で表す。フェード回避率の計算区間において2値化した通信品質情報と送信パターンを乗算した結果が、「0」となるときはフェード区間内、「0」とならないときはフェード区間外と判定する。上記の計算を、送信パターンを時間方向にスライディングさせて繰り返し行うことにより、確率的なフェード回避率を取得することができる。
 フェード回避率計算部210は、算出したフェード回避率を正規化スループット計算部220に出力する。
 正規化スループット計算部220は、繰り返し送信回数とフェード回避率とから、通信パケットのスループットを上記の組合せで決まる送信パターン毎に算出する。すなわち、正規化スループット計算部220は、フェード回避率計算部210からフェード回避率を入力し、繰り返し送信回数・間隔選定部240から繰り返し送信回数候補iを入力する。そして、正規化スループット計算部220は、繰り返し送信回数候補iおよびフェード回避率に基づいて、繰り返し送信回数候補iおよび送信間隔候補mの組合せ毎に正規化スループットを計算する。フェード回避率をr(i、m)とすると、繰り返し送信回数候補iおよび送信間隔候補mにおける正規化スループットT(i、m)は、例えば下記の式(1)により表される。
Figure JPOXMLDOC01-appb-I000001
 正規化スループット計算部220は、算出した正規化スループットを繰り返し送信回数・間隔決定部230に出力する。
 繰り返し送信回数・間隔決定部230は、送信パターンを決める上記の組合せのうち、スループットが最大になる最適組合せにより最適送信パターンを決定する。具体的には、繰り返し送信回数・間隔決定部230は、正規化スループット計算部220から正規化スループットTを入力し、繰り返し送信回数・間隔選定部240から繰り返し送信回数候補iおよび送信間隔候補mを入力する。そして、繰り返し送信回数・間隔決定部230は、正規化スループットTが最大になる繰り返し送信回数i’および送信間隔m’を選択し、送受信部270に出力する。
 送受信部270は、最適送信パターンに基いて通信パケットを送受信する。具体的には、送受信部270は、繰り返し送信回数・間隔決定部230から最適送信パターンとなる繰り返し送信回数i’および送信間隔m’を入力し、繰り返し送信回数i’および送信間隔m’に基いて通信パケットの送受信を行う。
 図3に、送信パターン生成部250が生成する、繰り返し送信回数候補iおよび送信間隔候補mに応じた送信パターンの具体例を示す。当初のパケット列(オリジナルパケット列)に対して繰り返し送信回数iを増加させると、同一パケットの出現回数が増大する。また、送信間隔mを増加させると、同一パケットが出現する間隔が増大することがわかる。
 次に、図4を用いて、繰り返し送信回数・間隔決定部230が、スループットが最大になる送信回数候補iおよび送信間隔候補mの組合せを決定する方法を説明する。
 図4中、破線丸印は最適な組合せ候補を、斜め破線はフェード回避率が同一の値となる等高線を示す。同図からわかるように、繰り返し送信回数候補iおよび間隔候補mが大きいほどフェード回避率は大きくなり、繰り返し送信回数候補iおよび間隔候補mが小さいほどフェード回避率は小さくなる。また、繰り返し送信回数候補iが大きくなるほど伝送速度の最大値であるピークレートは小さくなる。繰り返し送信回数・間隔決定部230は、フェード回避率と、繰り返し送信回数候補iに依存するピークレートを考慮したスループット(正規化スループット)が最大となる送信回数i’および送信間隔m’の組合せを決定し、送受信部270に出力する。
 次に、図5Aおよび図5Bを用いて、繰り返し送信回数・間隔決定部230の、回線導通率に応じた動作を説明する。ここで、回線導通率とは、通信路において、フェード時間外であって通信品質が良好な時間と、フェード時間内にあって通信品質が劣悪な時間との比率を示す。なお、回線導通率の時間変化を、通信装置200が取得する通信品質情報の時間変化(履歴)に含めることとしてもよい。
 図5Aに、回線導通率が高い場合におけるフェージングの例を示す。回線導通率が高い場合、例えば、繰り返し送信回数は1回とし、送信間隔はフェード時間以上の値と決定する。
 一方、図5Bには、回線導通率が低い場合におけるフェージングの例を示す。回線導通率が低い場合は、フェード時間外に送信されるパケットの出現確率を高めるために、例えば繰り返し送信回数は複数回とし、送信間隔はフェード時間以下の値と決定する。
 このような繰り返し送信回数・間隔決定部230の動作により、フェージングによる通信品質の劣化を回避するとともに、スループットを最大化することができる。
 ここで、フェージング特性は時間方向に相関を有する場合が多い。それに対して、本実施形態の通信装置200は上述したように、2値化した通信品質情報のうち、直近の所定時間内の履歴を参照してフェード回避率およびスループットを算出し、繰り返し送信回数および送信間隔を決定して送受信処理に反映させる構成としている。そのため、直近の通信品質情報の履歴を参照して繰り返し送信回数および送信間隔の決定に反映させることができる。したがって、本実施形態の通信装置200によれば、繰り返し送信回数および送信間隔を決定する動作をフェージング特性に追従させることが可能である。
 なお、繰り返し送信回数および送信間隔を決定する処理を送信側で行う場合、受信側で測定した光強度やSNR等の通信品質情報を送信側にフィードバックする構成とすることができる。送信側では、フィードバックされた通信品質情報に従って繰り返し送信回数および送信間隔の決定を行う。そして、決定した繰り返し送信回数および送信間隔を、送信側と受信側で共有して送受信を行う構成とすることができる。
 上述したように、本実施形態の通信装置200は、スループットを最大化するために繰り返し送信回数および送信間隔を制御する構成としている。さらに、高位レイヤにおけるパケット到達確認型の再送制御と併用することにより、パケットの到達性も担保することが可能である。
 次に、本実施形態による通信方法について説明する。図6は、本実施形態による通信方法を説明するためのフローチャートである。
 本実施形態による通信方法においては、まず、通信品質情報の時間変化(履歴)を記憶する(ステップS11)。また、通信パケットの繰り返し送信回数および送信間隔の組合せの中から、繰り返し送信回数候補iおよび送信間隔候補mを抽出する(ステップS12)。そして、抽出した繰り返し送信回数候補iおよび送信間隔候補mに基いて送信パターンを生成する(ステップS13)。
 続いて、通信品質情報の履歴と、繰り返し送信回数候補iおよび間隔候補mの組合せで決まる送信パターンとから、組合せ毎にフェード回避率を算出する(ステップS14)。そして、このフェード回避率と繰り返し送信回数iとから、繰り返し送信回数候補iおよび送信間隔候補mの組合せ毎に、正規化スループットを算出する(ステップS15)。
 この後に、繰り返し送信回数候補iおよび送信間隔候補mの全ての組合せについて正規化スループットの算出が完了したか否かを判定する(ステップS16)。全ての組合せについて正規化スループットの算出が完了してない場合(ステップS16/NO)、送信回数候補iおよび間隔候補mの組合せを変更し(ステップS12)、変更した繰り返し送信回数候補および送信間隔候補に基いて送信パターンを生成する(ステップS13)。
 全ての組合せについて正規化スループットの算出が完了した場合(ステップS16/YES)、送信回数候補iおよび送信間隔候補mの組合せのうち、正規化スループットが最大になる最適組合せ(送信回数i’および送信間隔m’)を決定する(ステップS17)。そして、ここで決定した最適組合せによる最適送信パターンに従ってパケットの送受信を行う(ステップS18)。
 以上により、本実施形態の通信方法による処理が完了する。
 以上説明したように、本実施形態の通信装置200および通信方法によれば、伝送路のフェージング状態に応じて最適な繰り返し送信回数および送信間隔の組合せを決定でき、これにより高いスループット性能が得られる。すなわち、本実施形態の通信装置200および通信方法によれば、フェージングによる通信品質の劣化を回避するとともに、十分なスループット性能を得ることができる。
 なお、非導通状態が支配的な伝送路においては、送信間隔を長くするよりも送信回数を増加させるほうが好ましい。一方、導通状態が支配的な伝送路においては、送信回数を増加させるよりも送信間隔を長くする方が好ましい。
 〔第3の実施形態〕
 次に、本発明の第3の実施形態について説明する。図7に、本発明の第3の実施形態に係る通信装置300の構成を示す。本実施形態による通信装置300は、伝送路のフェージング状態に加えて、複数の同一パケットについて受信側でコヒーレント合成制御を行うことを考慮して繰り返し送信回数および送信間隔を決定する構成とした。
 本実施形態による通信装置300は、フェード回避率計算部210、正規化スループット計算部320、繰り返し送信回数・間隔決定部230、繰り返し送信回数・間隔選定部240、および送信パターン生成部250を有する。なお、図7には、記憶部260および送受信部270も含めた構成を示す。ここまでの構成は第2の実施形態による通信装置200の構成と同様である。
 本実施形態による通信装置300は、さらに、合成後パケットエラー率取得部(合成後パケットエラー率取得手段)311を有する。ここで、合成後パケットエラー率取得部311は、通信品質情報の時間変化と繰り返し送信回数に基づいて繰り返し送信された通信パケットを、コヒーレント合成した後のパケットエラー率を求める。そして、スループット計算手段としての正規化スループット計算部320が、繰り返し送信回数と、フェード回避率と、パケットエラー率とから、通信パケットのスループットを組合せ毎に算出する構成とした。
 ここで、図7に示すように、本実施形態による通信装置300が、平均通信品質計算部(平均通信品質計算手段)312をさらに備えた構成としてもよい。平均通信品質計算部312は、通信品質情報を所定時間内において平均化して平均通信品質情報を算出する。この場合、合成後パケットエラー率取得部311は、この平均通信品質情報と、繰り返し送信回数に基づいて、パケットエラー率を求めることができる。
 以下では、図7に示した本実施形態による通信装置300について、さらに詳細に説明する。なお、第2の実施形態による通信装置200と同様の構成については、詳細な説明は省略する。
 平均通信品質計算部312は、記憶部260から通信品質情報の時間変化(履歴)を入力し、通信品質情報の直近の所定時間内の平均値を算出する。そして、平均通信品質計算部312は、算出した通信品質の平均値を合成後パケットエラー率取得部311に出力する。ここで、通信品質の平均値には、S/N比や信号強度の平均値などが含まれる。
 合成後パケットエラー率取得部311は、平均通信品質計算部312から通信品質の平均値を入力する。また、繰り返し送信回数・間隔選定部240から繰り返し送信回数候補iを入力する。そして、合成後パケットエラー率取得部240は、通信品質の平均値および繰り返し送信回数候補iに基いて、同一パケットをコヒーレント合成した後のパケットエラー率を計算する。
 ここで、パケットエラー率とは、「受信に成功したパケット数」と「送信パケットの総数」との比率をいう。このパケットエラー率は、例えば、通信品質の平均値λとパケットエラー率との関係を、あらかじめ実験またはシミュレーション等により算出しテーブル等に保持しておくことができる。そして、合成後パケットエラー率取得部240は、このテーブルを参照することによりパケットエラー率を取得することができる。
 なお、コヒーレント合成後のパケットエラー率を、コヒーレント合成による通信品質利得に従って予め保持された通信品質とパケットエラー率特性を補正することにより取得する構成としてもよい。また、合成後パケットエラー率取得部311は、平均通信品質計算部312を経由することなく、記憶部260から通信品質情報の履歴を直接入力し、コヒーレント合成後のパケットエラー率を計算することとしてもよい。
 合成後パケットエラー率取得部311は、コヒーレント合成後のパケットエラー率を正規化スループット計算部320に出力する。
 正規化スループット計算部320は、フェード回避率計算部210からフェード回避率を入力し、繰り返し送信回数・間隔選定部240から繰り返し送信回数候補iを入力する。さらに、正規化スループット計算部320は、合成後パケットエラー率取得部311からコヒーレント合成後のパケットエラー率を入力する。そして、正規化スループット計算部320は、フェード回避率r、繰り返し送信回数候補i、および合成後パケットエラー率に基づいて、正規化スループットを計算する。
 繰り返し送信回数候補iおよび通信品質の平均値λにおけるコヒーレント合成後のパケットエラー率をe(i、λ)とすると、正規化スループットT(i、m)は、例えば下記の式(2)により表される。
Figure JPOXMLDOC01-appb-I000002
 正規化スループット計算部320は、算出した正規化スループットを繰り返し送信回数・間隔決定部230に出力する。
 次に、図8を用いて、繰り返し送信回数・間隔決定部230が、スループットが最大になる送信回数候補iおよび送信間隔候補mの組合せを決定する方法を説明する。
 図8中、破線丸印は最適な組合せ候補を、斜め破線はフェード回避率が同一の値となる等高線を示す。同図からわかるように、繰り返し送信回数候補iが大きくなるほどコヒーレント合成による通信品質利得は大きくなるので、パケットエラー率は低減する。繰り返し送信回数・間隔決定部230は、フェード回避率rと、繰り返し送信回数候補iに依存するピークレートおよびコヒーレント合成による通信品質利得とを考慮したスループットが最大になる送信回数i’および送信間隔m’を決定する。そして、繰り返し送信回数・間隔決定部230は、ここで決定した送信回数i’および送信間隔m’を送受信部270に出力する。
 次に、本実施形態による通信方法について説明する。図9は、本実施形態による通信方法を説明するためのフローチャートである。
 本実施形態による通信方法においては、まず、通信品質情報の時間変化(履歴)を記憶する(ステップS21)。そして、通信品質情報の直近の所定時間内の平均値を算出する(ステップS22)。
 また、通信パケットの繰り返し送信回数および送信間隔の組合せの中から、繰り返し送信回数候補iおよび送信間隔候補mを抽出する(ステップS23)。そして、抽出した繰り返し送信回数候補iおよび送信間隔候補mに基いて送信パターンを生成する(ステップS24)。続いて、通信品質情報の履歴と、繰り返し送信回数候補iおよび送信間隔候補mの組合せで決まる送信パターンとから、組合せ毎にフェード回避率を算出する(ステップS25)。
 そして、繰り返し送信回数候補iおよび平均通信品質に基いて、コヒーレント合成後のパケットエラー率を算出する(ステップS26)そして、このコヒーレント合成後のパケットエラー率e(i、λ)と、フェード回避率r(i、m)、および繰り返し送信回数候補iとから、繰り返し送信回数候補iおよび送信間隔候補mの組合せ毎に、正規化スループットを算出する(ステップS27)。
 この後に、繰り返し送信回数候補iおよび送信間隔候補mの全ての組合せについて正規化スループットの算出が完了したか否かを判定する(ステップS28)。全ての組合せについて正規化スループットの算出が完了してない場合(ステップS28/NO)、送信回数候補iおよび送信間隔候補mの組合せを変更する(ステップS23)。そして、変更した繰り返し送信回数候補および送信間隔候補に基いて送信パターンを生成する(ステップS24)。
 全ての組合せについて正規化スループットの算出が完了した場合(ステップS28/YES)、送信回数候補iおよび送信間隔候補mの組合せのうち、正規化スループットが最大になる最適組合せ(送信回数i’および送信間隔m’)を決定する(ステップS29)。そして、ここで決定した最適組合せによる最適送信パターンに従ってパケットの送受信を行う(ステップS30)。
 以上により、本実施形態の通信方法による処理が完了する。
 以上説明したように、本実施形態の通信装置300および通信方法によれば、伝送路のフェージング状態に応じて最適な繰り返し送信回数および送信間隔の組合せを決定でき、これにより高いスループット性能が得られる。すなわち、本実施形態の通信装置200および通信方法によれば、フェージングによる通信品質の劣化を回避するとともに、十分なスループット性能を得ることができる。
 さらに、本実施形態の通信装置300および通信方法においては、伝送路のフェージング状態に加えてコヒーレント合成後のパケットエラー率をも考慮して最適な繰り返し送信回数および送信間隔の組合せを決定する構成としている。そのため、スループット性能をさらに改善することができる。
 〔第4の実施形態〕
 次に、本発明の第4の実施形態について説明する。図10に、本発明の第4の実施形態に係る通信装置400の構成を示す。本実施形態による通信装置400は、フェージング速度の変動時間に応じて、フェード回避率の計算時間および通信品質情報の平均時間を可変する構成とした。
 すなわち、本実施形態による通信装置400は、上述した各実施形態による通信装置の構成に加えて、フェージング速度変動時間計算部(フェージング速度変動時間計算手段)410をさらに備えた構成とした。図10には、第3の実施形態による通信装置300の構成にフェージング速度変動時間計算部410を加えた場合の構成を示す。その他の構成は、上述した各実施形態による通信装置の構成および動作と同様であるから、それらの説明は省略する。
 フェージング速度変動時間計算部410は、通信品質情報の時間変化に基いて、フェージング速度の変動が一定と見なせる時間であるフェージング速度変動時間を算出する。具体的には、フェージング速度変動時間計算部410は、記憶部260から出力される時系列の通信品質情報の時間変化(履歴)を参照して、フェージング速度の変動が一定と見なせる時間を算出する。
 このとき、フェード回避率計算部210は、フェージング速度変動時間に基づいてフェード回避率を算出する。すなわち、フェージング速度の変動時間が長い場合、フェード回避率計算部210は、フェード回避率の計算時間を長くする。一方、フェージング速度の変動時間が短い場合、フェード回避率計算部210は、フェード回避率の計算時間を短くする。
 また、図10に示したように平均通信品質計算部312を備えた構成の場合、平均通信品質計算部312は、フェージング速度変動時間に基づいて、平均通信品質情報を算出する。すなわち、平均通信品質計算部312は、フェージング速度の変動時間が長い場合、通信品質情報の平均時間を長くする。一方、フェージング速度の変動時間が短い場合、平均通信品質計算部312は、通信品質情報の平均時間を短くする。
 以上説明したように、本実施形態の通信装置400によれば、伝送路のフェージング状態に応じて最適な繰り返し送信回数および送信間隔の組合せを決定でき、これにより高いスループット性能が得られる。すなわち、本実施形態の通信装置400によれば、フェージングによる通信品質の劣化を回避するとともに、十分なスループット性能を得ることができる。
 さらに、本実施形態の通信装置400においては、フェージング速度の変動時間に応じて、フェード回避率および平均通信品質情報の計算を実行することが可能になる。これにより、繰り返し送信回数および送信間隔を決定する際に、伝送路のフェージングに追従する精度が向上する。その結果、スループット性能をさらに改善することができる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2017年2月17日に出願された日本出願特願2017-028058を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 100、200、300、400  通信装置
 110、210  フェード回避率計算部
 120  スループット計算部
 130  送信パターン決定部
 220、320  正規化スループット計算部
 230  繰り返し送信回数・間隔決定部
 240  繰り返し送信回数・間隔選定部
 250  送信パターン生成部
 260  記憶部
 270  送受信部
 311  合成後パケットエラー率取得部
 312  平均通信品質計算部
 410  フェージング速度変動時間計算部

Claims (10)

  1.  通信品質情報の時間変化と、通信パケットを繰り返して送信する際の送信パターンとから、前記通信パケットがフェード区間外になる確率であるフェード回避率を前記送信パターン毎に算出するフェード回避率計算手段と、
     前記送信パターンと前記フェード回避率から、前記通信パケットのスループットを前記送信パターン毎に算出するスループット計算手段と、
     前記送信パターンのうち、前記スループットが最大になる最適送信パターンを決定する送信パターン決定手段、とを有する
     通信装置。
  2.  請求項1に記載した通信装置において、
     前記通信パケットの繰り返し送信回数と繰り返し送信間隔の組合せを選定する繰り返し送信回数・間隔選定手段と、
     前記組合せに基いて、前記送信パターンを生成する送信パターン生成手段とを、さらに有し、
     前記フェード回避率計算手段は、前記組合せ毎に前記フェード回避率を算出し、
     前記スループット計算手段は、前記繰り返し送信回数と前記フェード回避率とから、前記通信パケットの前記スループットを前記組合せ毎に算出し、
     前記送信パターン決定手段は、前記組合せのうち、前記スループットが最大になる最適組合せにより前記最適送信パターンを決定する
     通信装置。
  3.  請求項2に記載した通信装置において、
     前記通信品質情報の時間変化と前記繰り返し送信回数に基づいて繰り返し送信された前記通信パケットを、コヒーレント合成した後のパケットエラー率を求める合成後パケットエラー率取得手段をさらに備え、
     前記スループット計算手段は、前記繰り返し送信回数と、前記フェード回避率と、前記パケットエラー率とから、前記通信パケットの前記スループットを前記組合せ毎に算出する
     通信装置。
  4.  請求項3に記載した通信装置において、
     前記通信品質情報を所定時間内において平均化して平均通信品質情報を算出する平均通信品質計算手段をさらに備え、
     前記合成後パケットエラー率取得手段は、前記平均通信品質情報と、前記繰り返し送信回数に基づいて、前記パケットエラー率を求める
     通信装置。
  5.  請求項4に記載した通信装置において、
     前記通信品質情報の時間変化に基いて、フェージング速度の変動が一定と見なせる時間であるフェージング速度変動時間を算出するフェージング速度変動時間計算手段をさらに備え、
     前記平均通信品質計算手段は、前記フェージング速度変動時間に基づいて、前記平均通信品質情報を算出する
     通信装置。
  6.  請求項1から5のいずれか一項に記載した通信装置において、
     前記通信品質情報の時間変化に基いて、フェージング速度の変動が一定と見なせる時間であるフェージング速度変動時間を算出するフェージング速度変動時間計算手段をさらに備え、
     前記フェード回避率計算手段は、前記フェージング速度変動時間に基づいて前記フェード回避率を算出する
     通信装置。
  7.  請求項1から6のいずれか一項に記載した通信装置において、
     前記通信品質情報の時間変化を記憶する記憶手段と、
     前記最適送信パターンに基いて、前記通信パケットを送受信する送受信手段とを、さらに有する
     通信装置。
  8.  通信品質情報の時間変化と、通信パケットを繰り返して送信する際の送信パターンとから、前記通信パケットがフェード区間外になる確率であるフェード回避率を前記送信パターン毎に算出し、
     前記送信パターンと前記フェード回避率から、前記通信パケットのスループットを前記送信パターン毎に算出し、
     前記送信パターンのうち、前記スループットが最大になる最適送信パターンを決定する
     通信方法。
  9.  請求項8に記載した通信方法において、
     前記通信パケットの繰り返し送信回数と繰り返し送信間隔の組合せを選定することと、
     前記組合せに基いて、前記送信パターンを生成することを、さらに有し、
     前記フェード回避率を算出することは、前記組合せ毎に前記フェード回避率を算出することを含み、
     前記スループットを算出することは、前記繰り返し送信回数と前記フェード回避率とから、前記通信パケットの前記スループットを前記組合せ毎に算出することを含み、
     前記最適送信パターンを決定することは、前記組合せのうち、前記スループットが最大になる最適組合せにより前記最適送信パターンを決定することを含む
     通信方法。
  10.  請求項9に記載した通信方法において、
     前記通信品質情報の時間変化と、前記繰り返し送信回数に基づいて、繰り返し送信された前記通信パケットをコヒーレント合成した後のパケットエラー率を求めことを、さらに有し、
     前記スループットを算出することは、前記繰り返し送信回数と、前記フェード回避率と、前記パケットエラー率とから、前記通信パケットの前記スループットを前記組合せ毎に算出することを含む
     通信方法。
PCT/JP2018/004957 2017-02-17 2018-02-14 通信装置および通信方法 WO2018151121A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/483,083 US11277758B2 (en) 2017-02-17 2018-02-14 Communication apparatus and communication method
JP2018568544A JP7063276B2 (ja) 2017-02-17 2018-02-14 通信装置および通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-028058 2017-02-17
JP2017028058 2017-02-17

Publications (1)

Publication Number Publication Date
WO2018151121A1 true WO2018151121A1 (ja) 2018-08-23

Family

ID=63170712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004957 WO2018151121A1 (ja) 2017-02-17 2018-02-14 通信装置および通信方法

Country Status (3)

Country Link
US (1) US11277758B2 (ja)
JP (1) JP7063276B2 (ja)
WO (1) WO2018151121A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4005129A4 (en) * 2019-07-26 2022-08-31 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR IMPROVING A HARQ PROCEDURE IN A NON-TERRESTRIAL NETWORK

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55143854A (en) * 1979-04-26 1980-11-10 Nippon Telegr & Teleph Corp <Ntt> Mobile radio space diversity system using optical fiber
JPH11261535A (ja) * 1998-03-12 1999-09-24 Seiko Epson Corp 時分割通信方式
JP2015130626A (ja) * 2014-01-08 2015-07-16 富士通株式会社 無線通信装置及び通信パラメータ決定方法
WO2016117199A1 (ja) * 2015-01-20 2016-07-28 ソニー株式会社 無線通信装置、情報処理方法およびプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088701B1 (en) * 2000-04-14 2006-08-08 Qualcomm, Inc. Method and apparatus for adaptive transmission control in a high data rate communication system
JP2002246967A (ja) 2001-02-19 2002-08-30 Toyo Commun Equip Co Ltd 無線通信システム
US7103350B2 (en) * 2001-11-16 2006-09-05 Nortel Networks Limited Scheduler with fairness control and quality of service support
EP2056528A4 (en) 2006-07-27 2017-03-01 Panasonic Corporation Wireless communication apparatus, wireless lan system, interference detecting method, and interference avoidance method
JP5142379B2 (ja) * 2008-03-19 2013-02-13 パナソニック株式会社 移動局装置及び基地局装置、並びに無線通信システムの通信制御方法
US9031032B2 (en) * 2009-10-05 2015-05-12 Futurewei Technologies, Inc. System and method for inter-cell interference coordination
EP2688336B1 (en) 2011-03-18 2017-11-29 Fujitsu Limited Retransmission using tti bundling
US9319898B2 (en) * 2012-08-29 2016-04-19 Samsung Electronics Co., Ltd. Wireless communication system with rate selection mechanism and method of operation thereof
US9021327B2 (en) 2013-02-19 2015-04-28 Harris Corporation Dynamic packet redundancy for a free space optical communication link

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55143854A (en) * 1979-04-26 1980-11-10 Nippon Telegr & Teleph Corp <Ntt> Mobile radio space diversity system using optical fiber
JPH11261535A (ja) * 1998-03-12 1999-09-24 Seiko Epson Corp 時分割通信方式
JP2015130626A (ja) * 2014-01-08 2015-07-16 富士通株式会社 無線通信装置及び通信パラメータ決定方法
WO2016117199A1 (ja) * 2015-01-20 2016-07-28 ソニー株式会社 無線通信装置、情報処理方法およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GIGGENBACH, D. ET AL.: "System aspects of optical LEO-to-ground links", ICSO 2016, 18 October 2016 (2016-10-18) - 21 October 2016 (2016-10-21), XP060093744 *

Also Published As

Publication number Publication date
JPWO2018151121A1 (ja) 2019-12-19
US11277758B2 (en) 2022-03-15
JP7063276B2 (ja) 2022-05-09
US20200015099A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
EP2658144B1 (en) Beamforming by sector sweeping
US8933840B2 (en) Control method of wireless communication system, wireless communication system, wireless communication apparatus, and adjustment method of array weight vector
US8126504B2 (en) Method of controlling wireless communication system and wireless communication system
US11895636B2 (en) Determination of beam configuration
JP2012514425A (ja) ビームフォーミング方法、システム及びコンピュータプログラム
EP2979410A1 (en) Channel estimation in wireless communications
US10720978B1 (en) Beam diversity interference mitigation
US8301100B2 (en) Directional pattern determining method capable of quickly selecting optimum directional pattern
WO2018151121A1 (ja) 通信装置および通信方法
EP3429256A1 (en) Apparatus and method for wireless communications, and parameter optimization apparatus and method
JP5670240B2 (ja) 通信装置及び通信方法
CN111869123A (zh) 用于高效波束管理的通信设备
US20040185782A1 (en) Technique for selecting a signal path in an antenna system
CN108306658B (zh) 用于确定发送方向以建立无线连接的方法和设备
JP4399672B2 (ja) 通信装置及び制御方法
JP2014090271A (ja) 通信システム、通信装置及びその制御方法、プログラム
US11973565B2 (en) Candidate beam selection for a terminal device
US20240283517A1 (en) Control method and communication control device
JP2005311717A (ja) 復号装置及び通信システムの受信機
CN115150737A (zh) 确定到达角的方法、设备和非易失性存储介质
JP2010141604A (ja) 無線機
JP2009219010A (ja) 基地局制御装置及び基地局制御方法
JP2014179776A (ja) 無線通信装置、制御方法及び制御プログラム
CN111357213B (zh) 无线网络中波束恢复的方法和设备
KR20160117013A (ko) 매시브 mimo 시스템에서 코드북 생성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568544

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754589

Country of ref document: EP

Kind code of ref document: A1