WO2008007646A1 - Dispositif de disque optique - Google Patents

Dispositif de disque optique Download PDF

Info

Publication number
WO2008007646A1
WO2008007646A1 PCT/JP2007/063685 JP2007063685W WO2008007646A1 WO 2008007646 A1 WO2008007646 A1 WO 2008007646A1 JP 2007063685 W JP2007063685 W JP 2007063685W WO 2008007646 A1 WO2008007646 A1 WO 2008007646A1
Authority
WO
WIPO (PCT)
Prior art keywords
tracking
optical disc
signal
differential
setting unit
Prior art date
Application number
PCT/JP2007/063685
Other languages
English (en)
French (fr)
Inventor
Katsuya Watanabe
Akira Yoshikawa
Eiji Ueda
Hiroshige Ishibashi
Yuuichi Kuze
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to EP07790506A priority Critical patent/EP2040258B1/en
Priority to JP2008524790A priority patent/JP4918548B2/ja
Priority to US12/301,832 priority patent/US7969844B2/en
Priority to DE602007009235T priority patent/DE602007009235D1/de
Publication of WO2008007646A1 publication Critical patent/WO2008007646A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/0037Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs
    • G11B7/00375Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs arrangements for detection of physical defects, e.g. of recording layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0948Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for detection and avoidance or compensation of imperfections on the carrier, e.g. dust, scratches, dropouts

Definitions

  • the present invention relates to an optical disc apparatus, and more particularly to an optical disc apparatus capable of realizing an appropriate reproducing operation even for an optical disc having a structure in which a track is likely to be removed due to bubbles.
  • Data recorded on an optical disc is reproduced by irradiating a rotating optical disc with a relatively weak light beam of a constant light quantity and detecting reflected light modulated by the optical disc.
  • a read-only optical disc information by pits is recorded in a spiral shape in advance at the manufacturing stage of the optical disc.
  • a recording material film capable of optically recording and reproducing data Z is formed on the surface of a substrate on which tracks having spiral lands or groups are formed by a method such as vapor deposition. It is deposited.
  • the optical disc is irradiated with a light beam whose amount of light is modulated according to the data to be recorded, thereby changing the characteristics of the recording material film locally.
  • the depth of the pits, the depth of the track, and the thickness of the recording material film are smaller than the thickness of the optical disk substrate.
  • the portion of the optical disc where data is recorded constitutes a two-dimensional surface and may be referred to as a “recording surface” or an “information surface”.
  • a recording surface or an “information surface”.
  • An optical disc has at least one such information layer. Note that one information layer may actually include a plurality of layers such as a phase change material layer and a reflective layer.
  • the light beam When reproducing data recorded on an optical disc or recording data on a recordable optical disc, the light beam must always be in a predetermined aggregate state on the target track in the information layer. is there.
  • focus control and “tracking control” are required.
  • “Focus control” means that the position of the focal point of the light beam is always the information layer. It is to control the position of the objective lens in the normal direction of the information layer (hereinafter sometimes referred to as “the depth direction of the substrate”) so as to be positioned above.
  • the tracking control is to control the position of the objective lens in the radial direction of the optical disc (hereinafter referred to as “disc radial direction”) so that the spot of the light beam is located on a predetermined track.
  • a focus shift or a track shift is detected based on light reflected from the optical disc, and the position of the light beam spot is adjusted so as to reduce the shift. It is necessary to.
  • the magnitudes of focus deviation and track deviation are indicated by “focus error (FE) signal” and “tracking error (TE) signal” generated based on the reflected light of the optical disc force, respectively.
  • the hold of the tracking control signal is released promptly after the light beam passes through the differential. For this reason, the tracking control signal is held only while the amount of reflected light falls below the level (detection reference level) set in advance by the differential.
  • Patent Document 1 and Patent Document 2 disclose an optical disk device that detects a deviation of an optical disk and avoids an off-track.
  • Patent Document 1 Japanese Patent No. 2912251
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-162834
  • optical discs such as DVD (Digital Versatile Disc) -ROM, DVD-RAM, DVD-RW, DVD-R, DVD + RW, DVD + R have been put to practical use as high-density and large-capacity optical discs. It was. CD (Compact Disc) is still popular.
  • the spot diameter of the light beam focused on the data surface of the optical disc is preferable to reduce the spot diameter of the light beam focused on the data surface of the optical disc. Since the light beam spot diameter is inversely proportional to the numerical aperture (NA) of the objective lens used to collect the light beams, the spot diameter of the light beam can be reduced by increasing the numerical aperture NA of the objective lens. Is possible.
  • NA numerical aperture
  • next-generation optical discs such as Blu-ray Discs (BD) and HD-DVDs with higher density than the above-mentioned optical discs are being promoted.
  • the objective lens NA is set to a higher value than DVD, and the information layer surface is covered with a thin light transmission layer (thickness: about 100 ⁇ m).
  • an optical disc on which data is recorded at a high density such as a BD
  • a new problem that is not a problem in a conventional optical disc is occurring.
  • air may be mixed between the light transmission layer and the substrate body to form bubbles.
  • bubbles When such bubbles are present, the light transmission layer is curved and the flatness is locally lost.
  • FIGS. 7 (a) and 7 (b) are diagrams showing the convex shape of the disk surface (the surface of the light transmission layer) actually measured using a BD in which bubbles are formed.
  • a typical bubble size (diameter) is about 500 m to 1000 m.
  • the light transmission layer is thin (thickness: about 100 m), so that the surface of the light transmission layer is locally expanded as shown in FIG. The top is on.
  • the reflected light hardly returns.
  • an abnormality occurs in the transmission of the light beam.
  • the NA of the objective lens used for BD recording and playback focuses on the information layer at a shallow position from the high disc surface, the spherical aberration changes greatly even with slight distortion of the light transmission layer, and the reflected light The strength tends to fluctuate.
  • FIG. 8 (a) is a diagram showing irregularities on the disk surface due to bubbles
  • FIG. 8 (b) is a waveform diagram of TE signals and drive signals measured when the light beam crosses the bubbles.
  • the TE signal amplitude is at zero level.
  • the disc radial position of the objective lens in the optical pickup is adjusted so as to eliminate the positional deviation (off-track) of the light beam with respect to the center line of the track.
  • the position of the objective lens in the disk radial direction is adjusted by the action of the lens actuator in the optical pickup, and the “drive signal” shown in FIG. 8 (b) indicates the waveform of the drive current supplied to the lens actuator. ! /
  • a waveform showing a pseudo off-track appears in the TE signal.
  • Such a waveform will be referred to as a “pseudo off-track component” of the TE signal because the light beam appears on the center line of the track due to bubbles.
  • tracking control is performed in response to the pseudo off-track component, so that there is a problem in that the light beam spot also loses the target track force.
  • a DVD is manufactured by bonding two substrates (each having a thickness of approximately 600 m), so that bubbles are not easily formed between the two substrates. Even if bubbles are formed between the substrates, the surface of the optical disk is not swelled by the bubbles because one of the substrates functioning as the light transmission layer is as thick as 600 m. Furthermore, since the sensitivity of spherical aberration, which is lower in NA than BD, is about 1Z10 in DVD compared to BD, TE signals and light intensity signals are hardly affected by bubbles.
  • bubbles are a problem in conventional optical discs, and unlike a diffet such as dust or scratches, the amount of reflected light gradually decreases, and the amount of decrease itself is relatively small. Therefore, in order to avoid the off-track due to bubbles, it is necessary to hold the tracking control signal by determining that the light beam is traversing the bubbles even when the amount of reflected light is slightly reduced.
  • the fingerprint may adhere to the surface of the optical disc over a wide range.
  • the amount of reflected light also decreases due to the crest.
  • the decrease in the amount of reflected light due to fingerprints is close to the case of bubbles that are smaller than when there are scratches or dust on the disk surface. For this reason, if a bubble is detected based on a decrease in the amount of reflected light and an attempt is made to hold the tracking control signal, tracking control will be held for the fingerprint as well.
  • the conventional technique cannot distinguish between bubbles and fingerprints based on a decrease in the amount of reflected light, and thus there is a problem in that it is not possible to appropriately prevent the off-track due to the optical disc differential. .
  • This problem is particularly noticeable in BDs that cover the surface of the information layer with a light-transmitting layer that is thinner than that of DVDs, and it is strongly desired to solve them for the spread of BDs.
  • the present invention has been made to solve the above problems, and its main purpose is to provide an optical disc apparatus that operates properly even when bubbles or fingerprints are present on the optical disc. .
  • An optical disc apparatus of the present invention includes at least one objective lens that focuses a light beam on an information layer of an optical disc, and a photodetector that generates a received light signal based on reflected light from the optical disc.
  • a tracking actuator that drives the objective lens in a radial direction of the optical disc, a tracking error detection unit that generates a tracking error signal based on the received light signal, and the tracking character based on the tracking error signal.
  • a tracking control unit for driving a cut-out motor to follow the track on the disk with the light beam, and detecting a portion where the reflected light intensity of the optical disk is reduced as a differential.
  • a differential detection unit that outputs a signal, and the occurrence of untracking by the differential
  • a tracking condition setting unit for setting a tracking condition that affects ease
  • the tracking condition setting unit is a first type of multiple types of data formed on the optical disc and having a relatively small size.
  • the first differential When the tracking condition is first set in a condition where it is relatively difficult for the track to be out of track, and the tracking abnormality occurs during playback, the tracking condition setting unit Change the tracking condition to a condition that is unlikely to occur.
  • the size of the first differential is smaller than the diameter of the light spot formed on the surface of the optical disc by the light beam.
  • the size is larger than the diameter of the light spot! /.
  • the first differential is a fingerprint dot formed on a surface of the optical disc
  • the second differential is a bubble formed inside the optical disc
  • the tracking condition setting unit generates a hold signal for holding the tracking error signal at a value immediately before the difference based on the difference detection signal.
  • the tracking condition setting unit generates the hold signal so that a hold time defined by the hold signal is longer than that before the tracking error occurs when tracking error occurs in the first tracking condition. Change the setting of the part.
  • the tracking condition setting unit includes a gain setting unit that controls a gain of tracking control, and the tracking condition setting unit has a tracking abnormality.
  • the gain value is reduced.
  • the tracking condition setting unit includes a rotation speed setting unit that controls the rotation speed of the optical disc, and the tracking condition setting unit rotates the rotation when a tracking abnormality occurs. Increase speed.
  • a retry determination unit that determines whether or not to perform retry playback when a track shift or playback error of a predetermined value or more occurs during playback.
  • the follow-up condition setting unit when a track shift or playback error of a predetermined value or more occurs during playback, the follow-up condition setting unit performs the first step before the actual track out occurs.
  • the tracking condition setting unit when the off-track occurs, the differential When the power is not generated, the tracking condition setting unit does not change the setting of the tracking condition even during retry playback.
  • the apparatus further includes a fingerprint detecting means for detecting whether or not the differential is a fingerprint power, and when the track is out of track due to the differential, the differential is a fingerprint.
  • the follow-up condition setting unit performs retry playback without changing the follow-up condition setting.
  • Another optical disc apparatus of the present invention is an optical disc apparatus capable of reproducing a plurality of types of optical disc force data including a first optical disc according to the BD standard and a second optical disc according to the HD-DV D standard. And receiving light based on at least one objective lens for focusing the light beam on the information layer of the optical disc selected from the plurality of types of optical discs and loaded in the optical disc apparatus, and the reflected light from the optical disc.
  • a photodetector that generates a signal, a tracking character that drives the objective lens in a radial direction of the optical disc, a tracking error detector that generates a tracking error signal based on the received light signal, and The tracking actuator is driven based on a tracking error signal, and the optical beam is tracked on the disk.
  • a differential detection unit for detecting a portion where the reflected light intensity of the optical disk is reduced as a differential, and outputting a differential detection signal, and tracking out of tracking by the differential
  • a tracking condition setting unit that sets a tracking condition that affects the likelihood of occurrence, and the tracking condition setting unit sets the tracking condition according to whether the loaded optical disk is the first optical disk or the second optical disk. change.
  • the follow-up condition setting unit performs a retry operation when a tracking error occurs due to the differential, and when the loaded optical disk is the first optical disk, Change the follow-up condition, but do not change the follow-up condition if the loaded optical disc is the second optical disc.
  • the tracking condition setting unit when the first optical disc is loaded, is a plurality of types of shifts formed on the optical disc and having a relatively small size. Out of multiple types of differentials, including the first differential and the second differential with a relatively large size, the track deviation due to the first differential is relative. If the tracking condition occurs first during playback and the tracking condition occurs, the tracking condition setting unit follows the condition that the second shift is relatively less likely to occur. Change the condition.
  • the first differential is a fingerprint dot formed on the surface of the optical disc
  • the second differential is a bubble formed inside the optical disc
  • the follow condition setting unit when the second optical disk is loaded, is a plurality of types of shift data formed on the optical disk and having a size.
  • the multiple types of differentials including the first differential with a relatively small size and the second differential with a relatively large size, the following condition is first set in a condition where the track deviation due to the first differential is relatively unlikely to occur. If a tracking error occurs during playback, the tracking condition setting unit performs a retry operation without changing the tracking condition.
  • An integrated circuit device is an integrated circuit device used in an optical disk device including an optical pickup and a tracking control unit, and is based on a received light signal obtained from the optical pickup. It has a fingerprint detector that detects the presence or absence of!
  • the fingerprint detection unit includes a timer that measures a predetermined period, and a differential detection that is generated based on a light reception signal that also obtains the optical pickup force within the predetermined period.
  • a counter that counts the number of pulses included in the signal, and detects the presence or absence of a fingerprint based on the number of pulses counted within the predetermined time.
  • the predetermined period is adjusted according to the reproduction speed of the optical disc.
  • An integrated circuit device of the present invention is an integrated circuit device used for an optical disk device including an optical pickup and a tracking control unit,
  • the optical pickup force The portion where the reflected light intensity of the optical disk is reduced based on the obtained light reception signal is detected as the differential, and the differential detection unit that outputs the differential detection signal, and the influence of tracking out by the differential are likely to occur.
  • a tracking condition setting unit for setting, and the tracking condition setting unit is a plurality of types of differentials formed on the optical disc and relatively large in size with a first differential having a relatively small size.
  • the tracking condition setting unit generates a hold signal for holding the tracking error signal at a value immediately before the difference based on the difference detection signal.
  • the tracking condition setting unit generates the hold signal so that a hold time defined by the hold signal is longer than that before the tracking error occurs when tracking error occurs in the first tracking condition. Change the setting of the part.
  • the tracking condition setting unit includes a gain setting unit that controls a gain of tracking control. Reduce the value of.
  • the follow-up condition setting unit includes a rotation speed setting unit that controls the rotation speed of the optical disc, and the follow-up condition setting unit is configured to perform the rotation described above when an off-track occurs. Increase speed.
  • the optical disc apparatus of the present invention is first operated at a setting that allows proper reproduction even when a relatively small first defect (for example, a fingerprint) is present on the surface of the optical disc.
  • a relatively small first defect for example, a fingerprint
  • second diffet for example, air bubbles
  • tracking abnormalities such as off-track are intentionally generated. If the track is lost due to differential during playback of the optical disc, the initial setting is changed, and this time the playback is performed under conditions where it is difficult for the track to be out of track with respect to a relatively large second differential (for example, bubbles). Perform a retry.
  • FIG. 1 is a diagram showing a functional block configuration of an optical disc apparatus according to the present invention.
  • FIG. 2A is a diagram illustrating an example of a hardware configuration that implements the functional blocks of FIG.
  • FIG. 2B is a diagram showing a configuration example of the follow-up condition setting unit 400 in FIG. 2A.
  • FIG. 2C is a diagram showing a configuration example of a fingerprint detection unit 500.
  • FIG. 3 (a) Force and (k) are waveform diagrams of various signals generated when the light beam spot crosses a fingerprint or a bubble in the first embodiment.
  • FIG. 4A is a flowchart of a reproduction procedure in Embodiment 1 of the present invention.
  • FIG. 4B is a flowchart of another playback procedure in the first embodiment.
  • FIG. 5A is a flowchart of a reproduction procedure according to Embodiment 2 of the present invention.
  • FIG. 5B is a flowchart of another playback procedure in the second embodiment.
  • FIG. 6 is a flowchart of another playback procedure in the second embodiment.
  • FIG. 7 (a) is a diagram showing the undulation of the BD surface due to bubbles, and (b) is a diagram showing the surface.
  • FIG. 8 (a) is a diagram showing the undulation of the BD surface due to bubbles, and (b) is a waveform diagram of TE signals and drive signals obtained in a region where bubbles exist.
  • FIG. 9 (a) is a micrograph of a fingerprint attached to the surface of a BD disc, and (b) is a waveform diagram of a TE signal obtained in a region where bubbles are present.
  • FIG. 10 (a) is a schematic plan view of a fingerprint attached to the surface of a BD disc.
  • (B) is a waveform diagram of a TE signal obtained in an area where bubbles are present.
  • (C) is a waveform diagram showing the amount of reflected light, and
  • (d) is a waveform diagram of a hold signal.
  • FIG. 11 (a) is a waveform diagram showing the TE signal during the first playback with the tracking servo gain set to a relatively high value, and (b) is the relative tracking servo gain.
  • FIG. 10 is a waveform diagram showing a TE signal during the second and subsequent playbacks set to a low value.
  • FIG. 13 shows a functional block configuration in an optical disk device according to Embodiment 3 of the present invention.
  • FIG. 9 is a photomicrograph of the surface of a BD disc with fingerprints attached.
  • Figure 9 (b) is a waveform diagram showing the TE signal in the area where the fingerprint exists.
  • Fig. 9 (a) many white dots (dots) are observed. Since these dots constitute a fingerprint, they will be referred to as “fingerprint dots” hereinafter.
  • the average size of fingerprint dots 12 is 65 to 75 ⁇ m.
  • FIG. 10 (a) is a plan view showing a schematic arrangement of the fingerprint dots 12, and Figs. 10 (b), (c), and (d) show that the light beam is the fingerprint dot 12 respectively.
  • FIG. 6 is a waveform diagram showing a “TE signal”, a “reflected light amount”, and a “hold signal” obtained when crossing a line.
  • the actual fingerprint dot is a randomly located force as shown in Fig. 9 (a).
  • the size and spacing of each fingerprint dot does not vary greatly, so it is shown in Fig. 10 (a). It is possible to proceed with the analysis based on the model.
  • BD a short-wavelength light beam of about 405 nm is sufficiently narrowed by a high NA objective lens, so that the detection resolution on the disk surface is significantly improved compared to DVD.
  • the effective beam spot size (effective cross-sectional area) in the information layer in the case of DV is about 4 to 5 times the size of the optical beam spot 10 shown in Fig. 10 (a), and about twice the diameter. (About: L m). Therefore, even if the NA of the DVD is 0.6, the light transmission layer (substrate) has a thickness of 0.6 mm, which is 6 times thicker than that of the BD, so the spot diameter on the surface has increased to 0.5 mm or more. Is done.
  • the pitch between fingerprint dots is about 0.2 mm to 0.3 mm. Therefore, in DVD, a plurality of fingerprint dots 12 are included in one beam spot, and the reflected light amount is reduced. Based on this, it is not possible to detect individual fingerprint dots 12. Therefore, fingerprints cannot be detected with DVD spot size.
  • the diameter of the light beam spot 10 in the information layer is about 0.4 m or less, and the light transmission layer (cover layer) The thickness is extremely small at 0.1 mm. For this reason, the spot diameter on the disc surface is only about 0.15 mm.
  • the size of the pattern dot 12 is about the pitch. Therefore, if a fingerprint is attached to the surface of a BD disc having a high resolution, the amount of reflected light fluctuates at a high frequency corresponding to each fingerprint dot 12 as shown in FIG. 10 (c).
  • FIG. 12 (a) and FIG. 12 (b) are schematic cross-sectional views showing a state where an optical beam is condensed on the information layer of BD and the information layer of DVD, respectively.
  • the objective lens for BD NA: 0.85)
  • the objective lens for DVD NA: 0.6
  • a lens actuator not shown.
  • the light beam (wavelength: about 405 nm) emitted from the BD light source cover is condensed on the BD information layer by the BD objective lens.
  • the light beam (wavelength: about 650 nm) emitted from the DVD light source is condensed on the DVD information layer by the DVD objective lens.
  • the size of the light beam spot formed on the surface of the BD disc has such a size that reflected light can be detected between the fingerprint dots (FIG. 12 (a)). ).
  • the size of the light beam spot formed on the surface of the DV D disk is sufficiently larger than the average distance between fingerprint dots, so that it is impossible to detect reflected light between fingerprint dots (Fig. 12 (b)). ).
  • the light beam spot 10 for BD replaces the individual fingerprint dots 12 as shown in FIG. It becomes possible to generate a hold signal at the timing of crossing. In this way, by detecting individual fingerprint dots 12 and holding the TE signal only for the time when the amount of reflected light is reduced, even if a large number of fingerprints are attached to the BD surface over a wide area, it is possible to suppress track detachment. It becomes possible.
  • the above-mentioned bubbles are present in the BD in addition to the fingerprint, it is extremely difficult to identify the fingerprint dot 12 and the bubble nucleus in real time based on the decrease in the amount of reflected light. Difficult. For example, it is determined that the “bubble nucleus” has been detected when the amount of reflected light is reduced, and the TE signal is held for a predetermined and sufficient time required for the light beam to pass through the bubble nucleus. In such a case, the decrease in the amount of reflected light may be caused by “fingerprint dots” rather than by “bubble nuclei”. Fingerprints are often spread over a much wider area than bubbles, and are distributed at a high density.
  • the TE signal is held for a predetermined time when a decrease in the amount of reflected light is detected, the TE signal is continuously held in a wide area where the fingerprint dot 12 exists, and the hold time exceeds 4 milliseconds. It becomes a thing. Since such a long hold time does not follow the track, there is a high probability that the track will be off. In other words, if the hold time is set to be long in order to deal with bubbles, when the difference is not a bubble but a fingerprint dot, the individual hold periods shown in Fig. TE signal cannot be obtained over a wide range.
  • the TE signal hold time when a differential is detected is a value suitable for only fingerprint dots and bubbles. Will be set to. However, if the hold time is set to a value suitable for a fingerprint dot, it will be easy for the track to fall off due to the presence of bubbles. However, if the hold time is set to a value suitable for the bubble, the fingerprint will be off track. It tends to occur.
  • the amount of reflected light is reduced. It is not enough to hold the TE signal only for a while. The decrease in the amount of reflected light is mainly caused by bubble nuclei. Around the bubble nuclei, there is a region where the TE signal is distorted. For this reason, it is necessary to hold the TE signal only during a period in which a predetermined time is added to the time for reducing the amount of reflected light. Since this predetermined time is sufficiently longer than the time when the light beam spot crosses between the fingerprint dots, the TE signal is held between the fingerprint dots, and an appropriate TE signal cannot be obtained from the fingerprint dots.
  • the area where fingerprint dots are distributed is wider than bubbles, when the hold time elapses and the TE signal is released, the light beam spot is still crossing the fingerprint dots, so the TE signal Will be held. In this way, in the setting to hold TE signals suitable for bubbles, TE signals cannot be obtained between fingerprint dots due to the presence of fingerprints, and TE signals are held in a wide area where fingerprints exist. As a result, the track is likely to be off.
  • a bubble may be easily formed or may be difficult to form depending on the type of BD manufacturing process.
  • a BD having a light-transmitting layer formed by spin coating tends to contain many bubbles, but a BD having a light-transmitting layer (protective sheet) attached by a bonding method tends to have few bubbles.
  • the presence or absence of bubbles varies greatly depending on the BD manufacturing method and materials, but the size of the fingerprint dot 12 in a human fingerprint is roughly determined.
  • a bare disk that is not used in a cartridge is very likely to have fingerprints on the disk surface.
  • the optical disc apparatus when the optical disc apparatus is operated with an initial setting capable of appropriately performing reproduction even when a fingerprint is present on the surface of the BD, if bubbles are present, Tracking errors such as off track are intentionally generated. If a tracking error occurs due to air bubbles during BD recording 'playback, the initial setting is changed, and this time the playback retry operation is executed under conditions that allow tracking to be properly executed for the BD containing air bubbles. To do.
  • Such a setting change can be made by the action of the “following condition setting unit” provided in the optical disc apparatus according to the present invention.
  • the follow-up condition setting section sets follow-up conditions that affect the likelihood of tracking failure due to differentials, and can change this setting. wear.
  • the follow-up condition setting unit sets the follow-up condition to a condition in which track off due to a fingerprint is relatively unlikely to occur during the first reproduction after activation. Then, if the track is lost during the first playback and the retry playback is performed for the second and subsequent times, the follow-up condition is changed to a condition where it is relatively difficult for the track to be released due to bubbles.
  • the initial setting performed by the tracking condition setting unit is a setting that is strong against fingerprints. For example, the TE signal hold time is shortened (including the case where the hold time is zero), and tracking control based on the TE signal is performed between fingerprint dots. Is possible. For this reason, even if the fingerprint exists in a wide area on the surface of the disk, information regarding the tracking error can be appropriately obtained from the area located between the fingerprint dots, and an operation that hardly causes the off-track can be realized.
  • the tracking condition suitable for the bubble when changing the setting of the tracking condition suitable for the bubble from the setting suitable for the fingerprint, at least one of the following parameters (tracking condition) is changed.
  • the optical disc device has fingerprint detection means for determining whether the cause of the diffetat (decrease in the amount of reflected light) is a fingerprint or not, when the track is off during the first playback after startup, the cause is the fingerprint. If this is determined, the servo gain for tracking control and the rotation speed of the optical disc are changed during the second and subsequent retry playbacks, thereby suppressing the off-track (due to bubbles) during the retry playback. .
  • track off refers not only to the case where a beam spot follows and a “track jump” that moves on a different track from the track in which the tracking error occurs. It also includes the case where it becomes larger than the set allowable range.
  • the effect of the present invention is small compared to the size of the optical beam spot on the surface of the optical disc (typically fingerprint dots), and large compared to the size described above.
  • This is effective when differentials (typically bubbles) can be formed on an optical disc.
  • Diffetats are not necessarily limited to fingerprints and bubbles, and the effects of the present invention can also be achieved when two types of differentials having similar properties can be formed.
  • an optical disc capable of forming fingerprints or bubbles is included in the plurality of types of optical discs.
  • the present invention also has an effect.
  • the reduction in the amount of reflected light may also occur due to a differential other than fingerprint dots and bubbles.
  • the amount of reflected light also decreases when dust or scratches such as dust are present on the surface of the optical disk.
  • the degree of decrease in the amount of reflected light due to dust and scratches is significantly greater than that of fingerprints and bubbles.
  • dust and scratches can be detected based on the amount of decrease in the amount of reflected light.
  • Such a diffout that causes a significant decrease in the amount of reflected light is referred to herein as a “third defetato”.
  • the third differential is present on the surface of the optical disk, the amount of reflected light is larger than when the first or second differential is present. Drops. Therefore, the third differential can be detected separately from the first or second differential.
  • the operation when the third differential is detected is the same as the operation in a known optical disc device.
  • the optical disc apparatus 100 of the present embodiment includes a focus error detection unit 106, a focus control unit 107, a tracking error detection unit 108, and a tracking control unit 109.
  • a detection unit 106, a focus control unit 107, a tracking error detection unit 108, a tracking control unit 109, and the like are provided.
  • the focus error detection unit 106 When data is reproduced or recorded on the optical disc 102, the focus error detection unit 106 generates an FE signal based on the signal output from the optical pickup 104. Similarly, the tracking error detection unit 108 generates a TE signal.
  • the focus control unit 107 drives the driving unit 105 by performing PWM modulation or current amplification after performing gain compensation and phase compensation on the FE signal.
  • the tracking control unit 109 drives the driving unit 105 by performing gain modulation or phase compensation on the TE signal and then performing PWM modulation or current amplification.
  • the drive unit 105 drives an objective lens (not shown) in the optical pickup 104 in a direction perpendicular to the disk surface and a disk radial direction, Realizes focus control and tracking control.
  • the signal recorded on the optical disc 102 is read by the optical pickup 104 and input to the high-pass filter (HPF) 120 and the low-pass filter (LPF) 123 via the RF signal power calculating unit 113. .
  • the RF addition signal transmitted through the HPF 120 is sent to the reproduction unit 122 via the equalizer unit 121. It is done.
  • the playback unit 122 performs processing such as binarization, PLL, error correction, and demodulation, and the playback signal after processing is output to a host computer (not shown) via a predetermined interface (not shown).
  • the RF addition signal that has passed through LPF 123 is input to differential detection section 124.
  • the differential detection unit 124 can generate and output a differential detection signal having a waveform in accordance with the presence or absence of a fingerprint or a bubble present on the optical disc 102. Specifically, the differential detection unit 124 determines that the light beam has passed some differential on the optical disc 102 when the output of the LPF 123 has dropped below the reference level. When the light beam passes through some diffraction on the optical disk 102, the amount of light reflected from the optical disk decreases, so that it becomes possible to detect “difference” based on the decrease in the output of the LPF 123.
  • the output of the differential detection unit 124 is input to the follow-up condition setting unit 400 in the controller 101.
  • the follow-up condition setting unit 400 includes a hold signal generation unit 410, a gain setting unit 420, and a rotation speed setting unit 430.
  • the hold signal generation unit 410 sends a hold signal to the switches 128a and 128b and controls the switches 128a and 128b, so that the terminals A to C, the terminals B to C, and the terminals D to E are controlled.
  • the connection / disconnection state of can be switched. More specifically, when the hold signal is low, terminals A and C are connected, terminals B and C are not connected, and terminals D and E are connected. On the other hand, when the hold signal is high, terminals A and C are not connected, terminals B and C are connected, and terminals D and E are not connected.
  • the hold signal is set to low, the terminals A and C are connected, and the terminals B and C are not connected.
  • the tracking control unit 109 is given to the driving unit 105 via the gain adjustment unit 129, the tracking control is executed so as to reduce the tracking error.
  • the initial setting is performed so that the hold signal remains low even if the differential is detected.
  • the light beam is applied to individual fingerprint dots (first The time required to cross (difference 1) is short, and the spot size of the light beam is not much different from the average pitch of the fingerprint dots, so even if the TE signal is not held, an appropriate TE signal can be obtained between fingerprint dots. it can.
  • the hold signal is set to High for a predetermined period in response to the detection of the differential, so that the terminal for the period. Change between A and C, disconnected between terminals B and C, and disconnected between terminals D and E. As a result, the tracking control can be held while the light beam passes through the bubble, and the off-track due to the bubble can be prevented.
  • the gain setting unit 420 can send a gain switching signal to the gain adjustment unit 129 to change the servo gain of the tracking control.
  • a follow-up condition suitable for bubbles it is possible to reduce the gain and reduce the transient response due to the bubbles, and to realize a setting that does not easily cause off-track due to the presence of bubbles.
  • the rotational speed setting unit 430 can change the rotational speed of the optical disk 102 by sending a rotational speed switching signal to the disk motor 200.
  • the tracking condition suitable for bubbles is selected, by increasing the rotation speed of the optical disk 102, the time for the light beam to pass through the bubbles can be shortened, and a setting in which the off-track is hardly caused by the presence of bubbles can be realized.
  • the controller 101 has an error detection unit 310 that receives the output of the reproduction unit 122 and a retry determination unit 320.
  • the error detection unit 310 detects a “reproduction error” and reports it to a host computer (not shown) when the quality of the reproduction signal is poor and error correction is impossible or the PLL or servo is disconnected.
  • the retry determination unit 320 determines whether or not to perform retry reproduction based on a request from a host computer (not shown) and the state of the optical disk device.
  • a retry command is input to the follow-up condition setting unit 400.
  • Execution of retry playback is determined, and the differential detection signal is sent to the tracking condition setting unit 400. If it is input to, the follow-up condition at the time of retry playback is changed. Specifically, at least one set value set by each of the hold signal generation unit 410, the gain setting unit 420, and the rotation speed setting unit 430 in the tracking condition setting unit 400 is changed for retry playback. To do.
  • the optical pickup 104 in FIG. 1 includes the light source 204, the coupling lens 205, the deflection beam splitter 206, the objective lens 203, the condenser lens 207, and the photodetector 208 shown in FIG. 2A.
  • the light source 204 is preferably a semiconductor laser, and emits a light beam having a wavelength of 415 nm or less in this embodiment.
  • the light beam emitted from the light source 204 is linearly polarized light, and the polarization direction can be arbitrarily adjusted by rotating the direction of the light source 204 with respect to the optical axis of the emitted light beam.
  • the coupling lens 205 converts the light beam emitted from the light source 204 into parallel light and makes it incident on the polarization beam splitter 206.
  • the deflecting beam splitter 206 reflects linearly polarized light polarized in a specific direction, but transmits linearly polarized light polarized in a direction perpendicular to the specific direction.
  • the polarization beam splitter 206 of the present embodiment is configured so that the light beam converted into parallel light by the coupling lens 205 is reflected toward the objective lens 203.
  • the objective lens 203 focuses the light beam reflected by the deflection beam splitter 206 and forms a light beam spot on the information layer of the optical disc 102.
  • the light beam reflected by the optical disk 102 is converted into a parallel light beam by the objective lens 203, and then enters the deflection beam splitter 206. Since the light beam at this time is rotated by 90 ° from the polarization direction of the light beam when entering the optical disk 102, the light beam passes through the deflecting beam splitter 206 and passes through the condenser lens 207 as it is. detection It will enter the vessel 208.
  • the photodetector 208 receives the light that has passed through the condenser lens 207, and converts the light into an electric signal (current signal).
  • the illustrated photodetector 208 has areas A, B, C, and D that are divided into four on the light receiving surface, and outputs an electrical signal corresponding to the light received in each of the areas A to D. To help.
  • the preamplifiers 209a, 209b, 209c, and 209d convert the current signal output from the photodetector 208 force into a voltage signal.
  • the calorie calculation circuits 144 and 146 add the voltage signals output from the preamplifiers 209a, 209b, 209c, and 209d for each diagonal position of the photodetector 208.
  • the summing circuit 144 outputs a signal A + D corresponding to the sum of the output of the region A and the output of the region D
  • the summing circuit 146 is the sum of the output of the region B and the output of the region C.
  • the corresponding signal B + C is output. It is possible to generate other signals by changing the method of addition.
  • the differential amplifier 158 inputs the signals from the adder circuits 144 and 146 and outputs the FE signal.
  • the FE signal is a signal for controlling the light beam to be in a predetermined focused state on the information layer of the optical disc 102.
  • the detection method of the FE signal is not particularly limited, and the astigmatism method may be used, the knife edge method may be used, or the SSD (spot 'sized' detection) method may be used. May have been.
  • the circuit configuration will be changed appropriately according to the detection method.
  • the gain switching circuit 164 adjusts the FE signal to a predetermined amplitude.
  • the AD converter 168 converts the FE signal output from the gain switching circuit 164 into a digital signal.
  • the comparators 152 and 154 binarize the signals from the adder circuits 144 and 146, respectively.
  • the phase comparator 156 performs phase comparison of the signals from the comparators 152 and 154.
  • the differential amplifier 160 receives the signal from the phase comparator 156 and outputs a TE signal.
  • the TE signal is a signal for controlling the light beam to scan correctly on the track of the optical disk 102.
  • the TE signal detection method is not particularly limited, and a phase difference method may be used, a push-pull method may be used, or a three-beam method may be used.
  • the circuit configuration is appropriately changed according to the detection method.
  • the gain switching circuit 166 adjusts the TE signal to a predetermined amplitude.
  • AD (analog 'digital') transformation 170 is gain The TE signal output from the switching circuit 166 is converted into a digital signal.
  • the FE signal and TE signal generated by the circuit described above are input to a processor (DSP: digital signal processor) 111 corresponding to the controller 101 in FIG.
  • the processor 111 includes a focus control unit 107, a tracking control unit 109, a HOLD filter 112, a reproduction unit 122, a differential detection unit 124, switches 128a and 128b, a gain adjustment unit 129, a control unit 300, and A tracking condition setting unit 400 is provided.
  • the control unit 300 includes an error detection unit 310 and a retry determination unit 320.
  • control signal FEPWM for focus control and the control signal TEPWM for tracking control output from the processor 111 are sent to the drive circuit 148 and the drive circuit 150, respectively.
  • the drive circuit 148 drives the focus actuator 201 in response to the control signal FEPWM.
  • the focus actuator 201 moves the objective lens 203 in a direction substantially perpendicular to the information layer of the optical disc 102.
  • the drive circuit 150 drives the tracking actuator 202 according to the control signal TEPWM output from the processor 111.
  • the tracking actuator 202 moves the objective lens 203 in a direction substantially parallel to the information layer of the optical disc 102.
  • Photodetector 208, preamplifiers 209a to 209d, calo arithmetic circuits 144 and 146, comparators 152 and 154, phase comparator 156, differential amplifier 160, gain switching circuit 166, and AD converter ⁇ 170, processor 111, drive circuit 150, and tracking actuator 202 constitute a tracking control device that performs tracking control.
  • the focus actuator 201 constitutes a focus control device that performs focus control.
  • the photo detector 208, the preamplifiers 209a to 209b, the calorie calculation circuits 144 and 146, and the differential amplifier 158 in FIG. 2A correspond to the focus error detection unit 106 in FIG.
  • the ordinary actuator 201 corresponds to the driving unit 105 in FIG.
  • the total light quantity sum signal (A + B + C + D) of the areas A, B, C, and D of the photo detector 208 is the adder circuit 1 It is generated by adding the output of 44 (A + D) and the output of the adding circuit 146 (B + C) by the RF adder 113.
  • the total light quantity sum signal (A + B + C + D) is input to LPF123 as an RF addition signal.
  • the RF addition signal from which the high-frequency component has been removed by LPF 123 is input to differential detection section 124 in processor 111.
  • the differential detection unit 124 compares the amplitude level of the total light amount sum signal with a preset reference level, and performs binarization shaping. For example, when the amplitude level of the total light intensity signal is lower than the reference level, it is “High”, and when the amplitude level of the total light intensity signal is above the reference level, it is “Low”. . Since the amplitude level of the total light sum signal decreases when the light beam crosses the fingerprint dot 12 or bubble, if the reference level is set to an appropriate size, the fingerprint dot 12 or bubble can be detected. I can do it.
  • the differential detection signal output from the differential detection unit 124 is input to the follow-up condition setting unit 400 in the processor 111.
  • the tracking condition setting unit 400 includes a waveform shaping unit 126 and a waveform shaping setting unit 127 that function as the hold signal generation unit 410 in FIG.
  • the waveform shaping setting unit 127 generates an xHOLD signal and inputs it to the waveform shaping unit 126 to define the waveform of the hold signal.
  • the waveform shaping setting unit 127 generates a LEVEL signal and inputs it to the differential detection unit 124.
  • Waveform shaping section 126 generates and outputs a tracking control hold signal based on the differential detection signal. Hold signal power generated by waveform shaper 126 from ow to Hi When rising to gh, the tracking control signal TEPWM is held at a constant level only during the High period. When the hold signal falls from high to low, the hold is stopped and normal tracking control is resumed. This point will be explained in more detail below.
  • the hold signal controls the switches 128a and 128b, and when the hold signal is High, the HOLD filter 112 holds the TE signal.
  • the hold signal is low (invalid)
  • switch 128a connects terminal A and terminal C, so normal tracking control is performed.
  • the switch 128b connects the terminal E and the terminal D
  • the output (TE signal) of the tracking error detection unit 108 shown in FIG. 1 is input to the HOLD filter 112 via the switch 128b.
  • the HOLD filter 112 is usually limited by the rotation frequency band of the optical disc, and extracts error components due to rotation such as eccentricity.
  • the optical disc apparatus of the present embodiment has a configuration in which the switches 128 a and 128 b and the HOLD filter 112 are connected to the tracking error detection unit 108 to hold TE output from the tracking error detection unit 108.
  • the present invention is not limited to such a case.
  • the switches 128a and 128b and the HOLD filter 112 may be arranged between the gain adjustment unit 129 and the drive circuit 105. In this case, by appropriately adjusting the characteristics of the HOLD filter 112, a configuration for holding the drive signal applied to the tracking actuator 202 shown in FIG. 2A can be adopted, and the same effect can be realized.
  • “holding the tracking error signal” means not only the case of holding the tracking error signal itself but also the tracking error signal among other signals that change depending on the tracking error signal.
  • the case where the signal for controlling the driving of the actuator 202 is held is broadly included.
  • the LPF1 23 output includes a signal indicating a fingerprint dot or a bubble! /, But the hold signal remains low. Initial settings are made so that That is, even if there are fingerprints or bubbles on the optical disc 102, the tracking control signal will be used when the light beam first traverses these differentials. The TEPWM is not held. As a result, if an abnormality such as tracking is lost, the hold signal is set to High in accordance with the output of the differential detection unit 124 at the next retry reproduction.
  • the waveform shaping unit 126 can generate the above-described hold signal by performing various waveform shapings on the output of the shift detection unit 124 based on the setting value of the waveform shaping setting unit 127.
  • the waveform shaping unit 126 may generate hold signals having various waveforms with different diff detection detection signal strengths. It becomes possible.
  • whether or not the force for holding the tracking control for the same differential is determined at the first reproduction and the second reproduction. It becomes possible to quickly change between subsequent retry playbacks.
  • FIG. 3A shows the waveform of the output (RF addition signal) of the RF adding unit 113 when the light beam spot 10 passes through the fingerprint dot 12.
  • Fig. 3 (b) shows the output of LPF123
  • Fig. 3 (c) shows the signal that has been binary-shaped by the differential detection unit 124 (difference detection signal)
  • Fig. 3 (d) shows the output from the waveform shaping unit 126. Show each waveform of the hold signal.
  • FIG. 3 (e) shows the waveform of the output (RF addition signal) of the adder 113 when the light beam spot 10 passes through the bubble 14 and its nucleus 14a.
  • Fig. 3 (f) shows the output of the low-pass filter (LPF) 123
  • Fig. 3 (g) shows a signal that has been binary-shaped by the differential detection unit 124 (difference detection signal)
  • Fig. 3 (h) shows the waveform shaping. Each waveform of the hold signal output from section 126 is shown.
  • Fig. 3 (i) shows the TE signal when the light beam spot 10 passes through the fingerprint
  • Fig. 3 (j) shows the TE signal in the initial setting
  • Fig. 3 (k) is suitable for bubbles. This shows the TE signal after changing to another setting.
  • the diameter of the BD light beam spot 10 is about 1Z4 to 1Z5 that is the diameter of the DVD light beam spot. As mentioned above, this size depends on the size of the fingerprint dot 12 and the dot spacing. close. For this reason, when the light beam spot 10 crosses the fingerprint, as shown in FIG. A change occurs in the amplitude of the RF addition signal of the incident light. The amplitude reduction of the RF addition output occurs because the amount of reflected light decreases when the light beam spot 10 crosses the individual fingerprint dots 12 constituting the fingerprint. If the diameter of the light beam spot 10 is as large as that of a DVD, a plurality of fingerprint dots 12 are always included in one light beam spot 10, so individual fingerprint dots as shown in FIG. It is not possible to detect a decrease in the amplitude of the RF addition signal corresponding to 21.
  • FIG. 3 (b) shows the LPF output after the signal of FIG. 3 (a) has passed through the LPF 123.
  • This differential detection signal is input from the differential detection unit 124 to the waveform shaping unit 126.
  • the waveform shaping unit 126 in the present embodiment shapes the waveform of the shift detection signal in Fig. 3 (c) to generate the hold signal shown in Fig. 3 (d). That is, the waveform is shaped so that the pulse width (corresponding to the hold time) of the defect detection signal becomes zero by the xHOLD signal sent from the waveform shaping setting unit 127 to the waveform shaping unit 126.
  • a hold signal having a waveform obtained by removing the noise signal corresponding to the fingerprint dot 12 from the differential detection signal generated when the light beam spot 10 crosses the fingerprint in this way is generated.
  • a normal tracking error signal is generated as shown in Fig. 3 (i), and tracking control based on this is continued.
  • a differential detection signal having a waveform corresponding to the size of the bubble 14 is obtained as shown in Fig. 3 (g). be able to.
  • the hold signal shown in FIG. 3 (h) is generated. This hold signal is a light beam spot 1
  • the hold signal shown in Fig. 3 (h) is sent from the waveform shaping setting unit 127 to the waveform shaping unit 126 X
  • the xHOLD signal is used to change the waveform shaping method, thereby generating a hold signal in response to differential detection.
  • step S1 the playback operation of BD is started in step S1. Since this is the first playback, a setting is made so that a hold signal is not generated even if a differential consisting of a fingerprint or bubbles is detected (step S2). Specifically, the xHOLD signal is input to the waveform shaping unit 126 from the waveform shaping setting unit 127 shown in FIG. 2B, and the hold time is set to zero. As a result, even if a defect detection signal as shown in FIG. 3 (c) or FIG. 3 (g) is input from the differential detection unit 124 to the waveform shaping unit 126, the output of the waveform shaping unit 127 is as shown in FIG. As shown in d), it is always zero. In such a setting, even if a fingerprint or a bubble is detected, the tracking control is not held, and the optical disc is reproduced in a state.
  • the tracking servo gain in this embodiment can be set in three stages (HZMZL), and is set to an intermediate gain (M) in step S3.
  • the servo gain can be set to any value by gain switching 166 shown in Fig. 2B.
  • the beam spot diameter on the disk surface is sufficiently small with respect to the fingerprint dots, so the time during which the light beam spot passes through each fingerprint dot is very short, and the fluctuation frequency of the reflected light amount is high. For this reason, the gain is adjusted so as to follow the eccentricity and vibration of the optical disk.
  • the servo gain of the adjustment unit 129 is set to the initial value, the tracking servo control does not respond to high-frequency changes in the amount of reflected light and is not affected by the fingerprint even when the light beam spot crosses the fingerprint.
  • the optical disc 102 is rotated at a predetermined speed by the disc motor 200 to form a light beam spot on the information layer of the optical disc 102.
  • Focus control and tracking control are executed so that the light beam spot follows a desired track on the information layer of the optical disk 102 rotating at a predetermined speed by the disk motor 200.
  • step S4 one track is played back, and it is determined in step S5 whether or not a playback error has occurred. If a playback error occurs, it is determined in step S6 whether or not the playback is the second playback power.
  • the playback is not the second time, that is, when an error occurs during the first playback, the setting is changed before the second playback (retry), so the waveform shaping setting is changed at step S8. To do. That is, the setting of the waveform shaping unit 126 is adjusted so as to hold the tracking control for a sufficiently long period in response to the detection of the differential.
  • an xHOLD signal is sent from the waveform shaping setting unit 127 to the waveform shaping unit 126, and a hold signal that is High for a predetermined period from the detection of the differential is generated as shown in FIG. 3 (h).
  • This predetermined time corresponds to a time (for example, 100 IX seconds to 300 ⁇ sec) corresponding to a time when the light beam spot crosses a bubble having an average size (size: about 0.5 mm to about L mm).
  • the ⁇ ⁇ signal has a pseudo off-track component due to bubbles as shown in Fig. 3 (j).
  • the signal input to the drive circuit 150 in FIG. 2A ignores the pseudo off-track component as shown in FIG. 3 (k). Will be. For this reason, the track deviation when the light beam passes through the bubble is reduced, and normal reproduction is possible.
  • the first playback playback strong against fingerprints is performed, and if tracking abnormalities such as track jumping still occur, it is assumed that there are bubbles on the optical disc, and the second playback ( In the “Retry”, the setting is suitable for bubbles.
  • Such a retry can be performed with a sufficient time margin when the reproduction rate of the optical disc is lower than the transfer rate.
  • the transfer rate is 72 Mbps and the playback rate is 50 Mbps or less.
  • the BD-RZRE disc plays back BS digital broadcast content recorded at a rate of about 24 Mbps at a rate of 36 Mbps or higher. For this reason, with these optical discs, there is virtually no loss of time that causes user dissatisfaction even if retry is performed when bubbles are present as the differential of the optical disc.
  • step S5 in Fig. 4A If it is determined in step S5 in Fig. 4A that no playback error has occurred, playback continues as it is. If it is determined in step S6 that the playback is twice, the process proceeds to step S9 to display a playback error and stop the playback operation.
  • the retry control corresponding to the bubble is made possible by changing the tracking control hold time between the first playback and the retry playback, but the hold time is set.
  • the “LEVEL” shown in Fig. 3 (b) and Fig. 3 (f) up and down without changing the value retry regeneration suitable for bubbles may be realized.
  • the “LE VELJ signal input from the waveform shaping setting unit 127 to the differential detection unit 124 is a signal that defines the reference level for binarization performed by the defect detection circuit 124.
  • the binarization reference level is changed by the “LEVEL” signal, it is possible to adjust the time width of the signal output from the differential detection unit 124 or to remove noise pulses of a predetermined time width or less.
  • set a binary reference level to ignore the drop in the amount of reflected light due to fingerprints and bubbles, and at the second and subsequent retry playbacks, increase the reference level.
  • the waveform of the hold signal that is output in response to a decrease in the amount of reflected light can be adjusted by at least one of the xHOLD signal and the LEVEL signal, so tracking control is held when a defect is detected. Whether or not the power to play, the first playback and the second It is possible to change between subsequent retry reproductions.
  • initial setting is performed so that tracking can be performed stably even if a fingerprint exists. That is, the servo gain is set to a normal magnitude that follows the eccentricity and vibration of the optical disk. With such servo gain, when the light beam spot crosses the bubble, the optical transmission layer of the optical disk is bent around the core of the bubble, and as such, it responds to the pseudo off-track component of the TE signal. Will end up. In order to prevent such a response, in the above example, the tracking control is held in a state before the pseudo off-track component appears. However, even if the servo gain of the tracking control is reduced, the pseudo off-track component is In response to.
  • the tracking condition setting unit 400 switches the setting related to the tracking control hold. Also change the servo gain size.
  • the servo gain for tracking control is set to a size that does not respond to fingerprint dots and can follow vibration and optical disc surface wobbling.
  • FIG. 4B shows a flow of the present embodiment.
  • the difference from the flow in Fig. 4A is that if a playback error occurs during the first playback (when "No" is determined in step S6), the process proceeds to step S7, and the servo gain for tracking control is set to the initial setting value "M ”To“ L ”.
  • the other procedures are the same as those in the first embodiment described with reference to FIG. 4A, and therefore the description thereof will not be repeated.
  • the tracking servo can respond to the pseudo off-track component due to the bubbles even if there are bubbles on the optical disc. Instead, the light beam can be scanned near the approximate center of the track.
  • Fig. 11 (a) shows the waveform of the TE signal when the gain of the tracking servo is relatively high
  • Fig. 11 (b) shows the waveform of the TE signal when the gain is relatively low.
  • the time for the light beam spot to cross the bubble is shortened as the rotation speed of the optical disk increases. For example, when the optical disc is rotating at a linear speed 1.5 times the standard speed, the time that the light beam crosses the bubble (passing time) is shortened to 2Z3 compared to when it rotates at the standard speed. . If the transit time is shortened in this way, even if a pseudo off-track component due to bubbles appears in the TE signal, it cannot respond and the probability of off-track occurrence can be reduced.
  • a pulsed differential detection signal can be generated. It can.
  • the number of pulses of the differential detection signal (number of fingerprint dots detected) is counted, and the force at which a predetermined number of pulses (for example, a predetermined value between 10 to 40) or more are detected within a certain period (for example, 3 to 10 milliseconds). It is possible to detect the presence or absence of a “fingerprint” depending on whether or not.
  • the cause of the off-track is assumed to be in the bubble, and the pseudo off-trait appearing in the TE signal is detected. Change the servo filter settings, etc., so that they don't respond to the noise component.
  • the optical disc apparatus of the present embodiment Since the basic configuration is the same as that of the optical disk device of Embodiment 1, the optical disk device of this embodiment will be described with reference to FIGS. 2A and 2B.
  • the size of the light beam spot on the BD is small, and it is possible to distinguish between the fingerprint dot and the inter-dot region when passing through a fingerprint.
  • a decrease in the amount of reflected light in a short time is detected a plurality of times within a certain period, it can be determined that the decrease in the amount of reflected light is due to fingerprint dots.
  • the waveform shaping setting unit 127 shown in FIG. 2B outputs a 0-level hold signal in response to detection of a fingerprint dot. That is, tracking control is not held even when a fingerprint dot is detected.
  • the gain of the tracking servo can be set in three stages (HZMZL) and is initially set to an intermediate gain (M). In this state, even if there are fingerprint dots, tracking is possible without any problems.
  • the presence or absence of a fingerprint is detected as follows.
  • the differential detection unit 124 when an RF addition signal as shown in FIG. 3 (b) is obtained due to the fingerprint, the differential detection unit 124 generates the differential detection signal shown in FIG. 3 (c). .
  • This differential detection signal is different from the differential detection signal when bubbles are present in that it includes a plurality of pulses corresponding to a large number of fingerprint dots. Therefore, for example, in the case of BD standard speed playback, the number of pulses within a predetermined period (for example, 5 milliseconds) measured by a timer is counted, and the number exceeds the preset standard (for example, 20). When the number of pulses is less than the reference, it can be determined that the fingerprint is not present. Such a reference is preferably changed according to the reproduction speed.
  • FIG. 2C is a block diagram showing a configuration of tracking condition setting section 400 including fingerprint detection section 500.
  • the same components as those shown in FIG. 2B will not be described repeatedly, and the configuration and operation of the fingerprint detection unit 500 will be described in detail.
  • the differential detection signal generated by the differential detection unit 124 is input to a timer 530 included in the fingerprint detection unit 500.
  • the timer 530 measures the time width of the pulsed differential detection signal and inputs the result to the counter buffer 520.
  • the output of the counter buffer 520 is input to the comparator 510, and a signal indicating the comparison result by the comparator 510 is input to the waveform shaping setting unit 127, the gain setting unit 420, and the rotation speed setting unit 430.
  • a fingerprint detection unit 500 it is possible to detect a fingerprint by counting the number of pulses corresponding to successive fingerprint dots.
  • the size of a human finger The size of the fingerprint dots is almost the same, although there are some individual differences. Therefore, the time for the light beam to pass through the fingerprint and the time to cross the fingerprint dot is determined depending on the scanning speed (linear velocity) of the light beam moving on the optical disk. If the diameter of each fingerprint dot is 65 ⁇ m and the pitch of the array is 100 ⁇ m, if the size of the area where the fingerprint is attached (scanning direction size) is 2 cm, for example, the light beam will adhere to the fingerprint While crossing the area, the maximum number of 120 corresponding fingerprint dots will be counted.
  • the time required for the light beam to cross the fingerprint attachment area is 4 milliseconds. Therefore, it is possible to determine whether or not the fingerprint is strong in an interval of about 4 milliseconds.
  • the maximum number of pulses detected due to fingerprint dots is 120.
  • a general diffet other than fingerprints is either 1 bubble or dust in the above section. Only a few of them are generated. Therefore, for example, if 10 or more pulses are detected continuously in a 4 millisecond interval, it can be determined that the light beam travels across the fingerprint attachment region.
  • a value different depending on the reproduction speed of the optical disc is stored in the timer 530 as the time width of the measurement section and the pulse by the fingerprint dot, and the reproduction speed is set.
  • Different measurement intervals and pulse reference values are set accordingly. For example, if the playback speed is 5 mZ seconds, set the measurement period to 4 milliseconds and set the pulse reference value to 10, but if the playback speed is 10 mZ seconds, set the measurement period to 2 Set to milliseconds and keep 10 pulse reference values.
  • the differential detection signal pulse is not counted during a certain period of time (for example, 10 milliseconds), the timer 520 is reset, and when a fingerprint dot is detected, the timer 520 counts. You may want to start.
  • comparator 510 compares the count value in counter notch 520 with the reference value, and fingerprint detection unit 500 determines whether or not the differential is a fingerprint according to the result. This determination result is also input to the gain setting unit 420 and the rotation speed setting unit 430 in the same processor 111.
  • a fingerprint detection unit 500 it is possible to detect whether or not the differential is a fingerprint when the light beam passes through the fingerprint at the time of the first reproduction. Sometimes when the fingerprint is not detected, the follow-up condition can be changed appropriately so that it is suitable for bubbles during the second retry playback. The follow-up condition can be changed as described in the first embodiment.
  • the present embodiment it is possible to reliably change the setting of the follow-up condition, which has been performed by estimation in the optical disc apparatus of the first embodiment, based on the actual situation. Therefore, if a fingerprint is detected even if the track is off, the retry setting can be kept valid for the fingerprint, so an optical disc device with excellent reproduction characteristics can be realized. .
  • step S21 a playback operation of the BD is started in step S21.
  • the waveform shaping setting unit 127 shown in FIG. 2C sets the waveform shaping so that the hold time is zero (step S22), and the tracking servo gain is set to the initial value (M) (step S23). ).
  • step S24 one track is reproduced, and in step S25, it is determined whether or not a reproduction error has occurred.
  • step S26 it is determined in step S26 whether or not a plurality of pulses are continuously included in the differential detection signal within a predetermined time. If a plurality of pulses as shown in Fig. 3 (c) are detected, it is determined that there is a fingerprint on the optical disc, and the process proceeds to step S27 without changing the initial setting. Judge whether the number has reached n. If it is determined that the number of reproductions has reached the predetermined value n, the process proceeds to step S28, where a reproduction error is displayed and the reproduction operation is stopped. At this time, a warning message such as “Please wipe the fingerprint from the optical disk” may be displayed on the display screen of the optical disk device.
  • step S27 if the number of reproductions is less than the predetermined value n, the process proceeds to step S24. , Retry playback.
  • the tracking control hold time and servo gain are maintained at the initial settings, and retry playback is executed under conditions suitable for fingerprints. In other words, it is assumed that the cause of the track detachment is the impact applied to the external force device other than the bubbles, and the retry is simply executed.
  • step S26 If it is determined in stop S26 that the differential detection signal does not contain a large number of pulses, it is estimated that a reproduction error has occurred due to bubbles in the optical disc. In this case, proceed to step S29 and reduce the tracking servo gain to the initial setting value M force.
  • step S30 the hold time for tracking control is set to a value corresponding to bubbles by changing the waveform shaping setting. The hold time at this time can also be set to a time (for example, 100 ⁇ s to 300 ⁇ s) longer than the time for which the light beam spot crosses the bubbles of average size.
  • the process proceeds to step S24, and retry reproduction is executed.
  • step S25 If it is determined in step S25 that no playback error has occurred, playback is continued as it is.
  • the tracking shaping hold time is adjusted to the size corresponding to the bubble by changing the waveform shaping setting in step S30, but this setting change may be omitted. .
  • this setting change may be omitted.
  • the servo gain of tracking control is sufficiently reduced, even if a pseudo off-track component due to bubbles appears in the ⁇ signal, it can be ignored without responding to that component.
  • the servo gain for tracking control is reduced to change the setting for retry playback to one that is suitable for bubbles, but instead of changing the servo gain value,
  • the rotational speed (playback speed) of the optical disk may be increased.
  • the rotation speed of the optical disk is increased without reducing the servo gain during retry reproduction.
  • FIG. 6 is a flowchart showing the operation procedure of the present embodiment.
  • Figure 5 ⁇ The difference from the order is that, if a fingerprint is not detected in step S26, the process proceeds to step S40 and the rotational speed of the disk motor 200 (FIG. 2C) is increased.
  • the time for which the light beam spot crosses the bubble is shortened as the rotational speed of the optical disk increases. If the transit time is shortened in this way, even if a pseudo off-track component due to bubbles appears in the TE signal, the response cannot be made and the probability of occurrence of off-track can be reduced.
  • the difference such as a scratch formed on the disk surface is easily discriminated from a fingerprint or a bubble because the amount of reflected light is greatly reduced. Therefore, the tracking control can be set to be held when a differential such as a scratch is detected from the initial setting stage.
  • the present invention provides a plurality of types of optical disc power including a first optical disc according to the BD standard (hereinafter simply referred to as “BD”) and a second optical disc according to the HD DVD standard (hereinafter simply referred to as “HD-DVD”).
  • BD first optical disc according to the BD standard
  • HD-DVD high-density DVD standard
  • the present invention can also be applied to an optical disc apparatus capable of reproducing data.
  • FIG. 13 is a diagram schematically showing the configuration thereof.
  • the optical disk device shown in FIG. 13 basically has the same configuration as the optical disk device shown in FIG. The difference is that the optical disc apparatus of the present embodiment includes a disc discriminating unit 330 and the optical pickup 104 includes a plurality of objective lenses including a BD objective lens and an HD-DVD objective lens. .
  • the description of components and operations common to the embodiment shown in FIG. 1 will not be repeated here.
  • HD Player data recorded on a DVD or record data on an HD—DVD
  • the size of the light beam spot formed on the surface of the optical disk is larger than that of a BD and smaller than that of a DVD.
  • the wavelength of the light beam used in HD DVD is 405 nm (blue-violet semiconductor laser), but the numerical aperture NA of the HD DVD objective lens is 0.65.
  • the effective beam spot size (effective cross-sectional area) in the HD—DVD information layer is approximately 1.7 times the size of the optical beam spot 10 shown in Fig. 10 (a), and approximately 1 in diameter. It is about 3 times (about 0.5 / zm).
  • the thickness of the HD-DVD light transmission layer is 0.6 mm, which is equal to the thickness of the DVD light transmission layer, which is six times larger than the thickness of the BD light transmission layer. For this reason, the spot diameter on the disc surface of HD-DVD is about 0.5 mm or more, which is the same as or slightly larger than the spot diameter on the DVD disc surface.
  • HD-DVD since the pitch between fingerprint dots is usually about 0.2 mm to 0.3 mm, HD-DVD also contains multiple fingerprint dots 12 within one beam spot. Become. For this reason, it is not possible to detect individual fingerprint dots 12 based on the amount of reflected light, as is the case with currently popular DVDs (see Fig. 12). In other words, the fingerprint formed on the surface of the HD-DVD cannot be correctly detected by the optical beam applied to the HD-DVD.
  • HD—DVD like DVD, is manufactured by laminating two substrates (each substrate is approximately 600 m thick). Air bubbles are difficult to form. Even if bubbles are formed between the substrates, the surface of the disk does not rise due to the bubbles because one substrate serving as the light transmission layer is as thick as 600 m. Furthermore, in HD DVD, the wavelength of the light beam used is equal to the wavelength of the light beam used in BD. The aperture ratio NA is approximately equal to the aperture ratio NA of DVD, so the sensitivity of spherical aberration is about 1Z6 compared to BD. And low. From the above, in HD-DVD, TE signal and light intensity signal are hardly adversely affected by bubbles.
  • the disc discriminating unit 330 determines that the BD is loaded in the drive. In this case, at the time of the first reproduction, the follow-up condition is set to a condition in which the off-track due to the fingerprint is relatively difficult to occur. This setting is performed by the follow-up condition setting unit 400.
  • the disc discrimination unit is The discriminating method for disc discriminating by various methods is not limited to a specific one. In the example shown in FIG. 13, the function of the disc discriminating unit 330 is realized by the controller 101, and information specifying the type of the optical disc is obtained from the output of the reproducing unit 122. The disc discriminating unit 330 may discriminate the type of the optical disc based on the waveform of another signal that can also obtain optical disc power such as a focus error signal.
  • the optical pickup 104 when recording or reproducing data on a BD, the optical pickup 104 focuses the light beam on the information layer of the optical disc 102 via the BD objective lens (NA: 0.85). Then, in the case where the off-track occurs at the time of the first reproduction and the second and subsequent re-plays are performed, the follow-up condition setting unit 400 changes the follow-up condition to a condition where the off-track due to bubbles is relatively difficult to occur.
  • the initial setting performed by the tracking condition setting unit is a setting that is robust to fingerprints. For example, the TE signal hold time is shortened (including when the hold time is zero), and tracking control based on the TE signal is performed between fingerprint dots. Is possible. For this reason, even if the fingerprint exists in a wide area on the surface of the disk, information regarding the tracking error can be appropriately obtained from the area located between the fingerprint dots, and an operation that hardly causes the off-track can be realized.
  • the follow-up condition setting unit 400 plays the first time after startup. In some cases, follow-up conditions are set so that fingerprints are less likely to be tracked off.
  • the follow-up condition setting unit 400 in the present embodiment stores not only the follow-up conditions for BD but also the follow-up conditions for HD-DVD in advance. In addition, as will be described later, the contents of the follow-up conditions that are initially set at startup differ between BD and HD-DVD.
  • the optical pickup 104 When recording or reproducing data on an HD—DVD, the optical pickup 104 focuses the light beam on the information layer of the optical disc 102 via an HD—DVD objective lens (NA: 0.65).
  • the optical pickup 104 includes separate objective lenses for BD and HD-DVD, but the optical pickup in the present invention is not limited to this.
  • a single objective lens may be used for both BD and HD—DVD.
  • the optical disc apparatus of the present invention may have a configuration capable of recording / reproducing data on an optical disc (DVD or CD) other than BD and HD-DVD.
  • the optical disc apparatus of the present invention can be suitably used for a next-generation optical disc such as a BD because it can perform an appropriate reproducing operation even on an optical disc in which bubbles can be formed in the manufacturing stage.

Landscapes

  • Optical Recording Or Reproduction (AREA)

Description

明 細 書
光ディスク装置
技術分野
[0001] 本発明は光ディスク装置に関し、特に、気泡によってトラック外れが生じやすい構造 の光ディスクに対しても適切な再生動作を実現できる光ディスク装置に関している。 背景技術
[0002] 光ディスクに記録されているデータは、比較的弱い一定の光量の光ビームを回転 する光ディスクに照射し、光ディスクによって変調された反射光を検出することによつ て再生される。
[0003] 再生専用の光ディスクには、光ディスクの製造段階でピットによる情報が予めスパイ ラル状に記録されている。これに対して、書き換え可能な光ディスクでは、スパイラル 状のランドまたはグループを有するトラックが形成された基材表面に、光学的にデー タの記録 Z再生が可能な記録材料膜が蒸着等の方法によって堆積されて 、る。書き 換え可能な光ディスクにデータを記録する場合は、記録すべきデータに応じて光量 を変調した光ビームを光ディスクに照射し、それによつて記録材料膜の特性を局所的 に変化させることによってデータの書き込みを行う。
[0004] なお、ピットの深さ、トラックの深さ、および記録材料膜の厚さは、光ディスク基材の 厚さに比べて小さい。このため、光ディスクにおいてデータが記録されている部分は 、 2次元的な面を構成しており、「記録面」または「情報面」と称される場合がある。本 明細書では、このような面が深さ方向にも物理的な大きさを有していることを考慮し、 「記録面 (情報面)」の語句を用いる代わりに、「情報層」の語句を用いることとする。光 ディスクは、このような情報層を少なくとも 1つ有している。なお、 1つの情報層が、現 実には、相変化材料層や反射層などの複数の層を含んで 、てもよ 、。
[0005] 光ディスクに記録されて!ヽるデータを再生するとき、または、記録可能な光ディスク にデータを記録するとき、光ビームが情報層における目標トラック上で常に所定の集 束状態となる必要がある。このためには、「フォーカス制御」および「トラッキング制御」 が必要となる。「フォーカス制御」は、光ビームの焦点 (集束点)の位置が常に情報層 上に位置するように対物レンズの位置を情報層の法線方向(以下、「基板の深さ方向 」と称する場合がある。)に制御することである。一方、トラッキング制御とは、光ビーム のスポットが所定のトラック上に位置するように対物レンズの位置を光ディスクの半径 方向(以下、「ディスク径方向」と称する。)に制御することである。
[0006] 上述したフォーカス制御およびトラッキング制御を行うためには、光ディスクから反 射される光に基づいて、フォーカスずれやトラックずれを検知し、そのずれを縮小する ように光ビームスポットの位置を調整することが必要である。フォーカスずれおよびトラ ックずれの大きさは、それぞれ、光ディスク力 の反射光に基づいて生成される「フォ 一カス誤差 (FE)信号」および「トラッキング誤差 (TE)信号」によって示される。
[0007] しかし、光ディスクの表面にダストや傷などの欠陥(ディフエタト)があると、光ビーム がディフ タトを横切るときに反射光量が著しく低下するため、適正な大きさの TE信 号を生成することができず、そのままではトラッキングに異常が生じるため、トラック飛 びなどのトラック外れが発生してしまうという問題があった。従来、このようなトラック外 れを防止するため、反射光量の低下などによってディフエタトの存在を検知したときは 、トラッキング制御信号をディフエタト直前のレベルに一時的にホールドすることが行 われている。トラッキング制御信号が一定のレベルにホールドされている間は、 TE信 号に異常な変化が現れたとしても、トラッキング制御には反映されないため、ディフエ タトによるトラック外れを抑帘 Uすることができる。
[0008] トラッキング制御信号のホールドは、光ビームがディフエタトを通過した後、速やかに 解除されることが好ましい。このため、反射光量がディフエタトによって予め設定され たレベル (検知基準レベル)よりも低下して 、る間だけ、トラッキング制御信号がホー ルドされることになる。
[0009] 光ディスクのディフエタトを検知して、トラック外れを回避する光ディスク装置は、例え ば特許文献 1および特許文献 2に開示されている。
特許文献 1 :特許第 2912251号公報
特許文献 2 :特開 2003— 162834号公報
発明の開示
発明が解決しょうとする課題 [0010] 従来、高密度 ·大容量の光ディスクとして、 DVD (Digital Versatile Disc) -ROM, DVD-RAM, DVD— RW、 DVD-R, DVD+RW, DVD+R等の光ディスクが 実用化されてきた。また、 CD (Compact Disc)は今も普及している。
[0011] 光ディスクの記録密度を高めるためには、光ディスクのデータ面上に集束された光 ビームのスポット径を小さくすることが好ましい。光ビームスポット径は、光ビームを集 束するために用いられる対物レンズの開口数 (NA)に反比例するため、対物レンズ の開口数 NAを高くすることにより、光ビームのスポット径を縮小することが可能である 。現在は、上述の光ディスクよりも更に高密度化 '大容量ィ匕されたブルーレイディスク (Blu-ray Disc; BD)や HD— DVDなどの次世代光ディスクの開発 ·実用化が進めら れつつある。 BDでは、対物レンズ NAを DVDに比べて高い値に設定するとともに、 情報層の表面を薄 ヽ光透過層(厚さ: 100 μ m程度)で覆う構成を採用して ヽる。
[0012] BDのように高密度でデータが記録される光ディスクでは、従来の光ディスクでは問 題にならな力つた新しい課題が発生しつつある。例えば、 BDを作製する際、光透過 層を BDの基板上に形成するときに、光透過層と基板本体との間に空気が混入し、気 泡が形成されることがある。このような気泡が存在すると、光透過層は湾曲し、平坦性 が局所的に失われる。
[0013] 図 7 (a)および (b)は、気泡が形成された BDを用いて実際に測定されたディスク表 面 (光透過層の表面)の凸部形状を示す図である。典型的な気泡の大きさ(直径)は 、 500 m〜 1000 m程度である。 BDの情報層と光透過層との間に気泡が形成さ れると、光透過層が薄い(厚さ:約 100 m)ため、図 7に示すように光透過層の表面 が局所的に盛り上がつている。気泡の中心部 (核の部分)では、反射光が殆ど戻って こないが、気泡の周囲において盛り上がった部分でも、光ビームの透過に異常が生 じる。 BDの記録.再生に用いられる対物レンズの NAは高ぐディスク表面から浅い 位置の情報層に焦点を結ぶため、光透過層の僅かな歪みに対しても、球面収差が 大きく変化し、反射光強度が変動しやすい。
[0014] 図 8 (a)は、気泡によるディスク表面の凹凸を示す図であり、図 8 (b)は、光ビームが 気泡を横切るときに測定される TE信号および駆動信号の波形図である。光ビームが トラックの中心線上を追従しているとき、 TE信号の振幅はゼロレベルにある力 光ビ ームがトラックの中心線力 ディスク径方向にシフトすると、 TE信号にはゼロではない 振幅成分が現れる。このとき、トラックの中心線に対する光ビームの位置ズレ (オフトラ ック)を解消するように、光ピックアップ内の対物レンズのディスク径方向位置が調整 される。対物レンズのディスク径方向位置は、光ピックアップ内のレンズァクチユエ一 タの働きによって調整され、図 8 (b)に示す「駆動信号」は、レンズァクチユエ一タに供 給される駆動電流の波形を示して!/、る。
[0015] 図 8に示すように、 BDの気泡を光ビームが通過するとき、擬似的にオフトラックを示 す波形が TE信号に現れる。このような波形は、光ビームがトラックの中心線上にあつ ても気泡に起因して出現するため、 TE信号の「擬似オフトラック成分」と称することに する。このような擬似オフトラック成分が TE信号に現れると、擬似オフトラック成分に 応答してトラッキング制御が行われるため、光ビームスポットが目的トラック力も外れて しまうという問題がある。
[0016] なお、 DVDは、 2枚の基材(各々の厚さは約 600 m)を貼り合わせることによって 製造されるため、 2枚の基材間には気泡が形成されにくい。また、仮に基材間に気泡 が形成されたとしても、光透過層として機能する一方の基材が 600 mと厚いため、 光ディスクの表面が気泡によって盛り上がることはない。更に、 DVDでは、 BDに比 ベて NAが低ぐ球面収差の感度が BDの場合に比べて約 1Z10と低いため、 TE信 号や光量信号は気泡によって殆ど影響されない。
[0017] このような気泡を検知することにより、未然に擬似オフトラック成分によるトラック外れ を防止することが求められるが、前述した特許文献 1、特許文献 2に記載されている 技術を BDに適用すると、正常に動作しない場合がある。以下、この問題を説明する
[0018] まず、気泡は、従来の光ディスクで問題になって 、たダストや傷などのディフエタトと は異なり、反射光量の低下が緩やかに進行し、また低下量そのものも相対的に小さ い。このため、気泡によるトラック外れを回避するには、反射光量が僅かに低下したと きだけでも、気泡を光ビームが横切っていると判断し、トラッキング制御信号をホール ドする必要がある。
[0019] し力しながら、光ディスクの表面には、指紋が広範囲に付着していることがあり、指 紋によっても反射光量が低下する。指紋による反射光量の低下は、ディスク表面に傷 やダストが存在する場合に比べて小さぐ気泡による場合に近い。このため、反射光 量の低下に基づいて気泡を検知し、トラッキング制御信号をホールドしょうとすると、 指紋に対してもトラッキング制御をホールドしてしまうことになる。
[0020] 上述のように、指紋は、気泡や光ディスク表面の傷に比べて広い範囲に存在してい ることが多ぐ上記方法によると、トラッキング制御信号をホールドする時間が長くなり すぎ、却ってトラック外れが生じやすくなつてしまう。
[0021] このように従来の技術では、反射光量の低下に基づいて気泡と指紋とを判別するこ とができないため、光ディスクのディフエタトによるトラック外れを適切に防止することが できないという問題があった。特に、この問題は、 DVDに比べて薄い光透過層で情 報層の表面を覆う BDにおいて顕著であり、 BDの普及のために解決することが強く望 まれている。
[0022] 本発明は、上記問題を解決するためになされたものであり、その主たる目的は、光 ディスクに気泡や指紋が存在する場合でも適切に動作する光ディスク装置を提供す ることにめる。
課題を解決するための手段
[0023] 本発明の光ディスク装置は、光ディスクの情報層に対して光ビームを集束させる少 なくとも 1つの対物レンズと、前記光ディスクからの反射光に基づいて受光信号を生 成する光検出器と、前記対物レンズを前記光ディスクの半径方向に駆動するトラツキ ングァクチユエータと、前記受光信号に基づいてトラッキング誤差信号を生成するトラ ッキング誤差検出部と、前記トラッキング誤差信号に基づいて前記トラッキングァクチ ユエータを駆動し、前記光ビームに前記ディスク上のトラックを追従させるトラッキング 制御部と、前記受光信号に基づ!、て前記光ディスクの反射光強度が低下した部分を ディフエタトとして検出し、ディフエタト検出信号を出力するディフエタト検出部と、前記 ディフエタトによるトラッキング外れの生じやすさに影響する追従条件を設定する追従 条件設定部とを備え、前記追従条件設定部は、前記光ディスクに形成される複数種 類のディフ タトであって大きさが相対的に小さな第 1のディフ タトと大きさが相対的 に大きい第 2のディフエタトを含む複数種類のディフエタトのうち、前記第 1のディフエ タトによるトラック外れが相対的に生じにくい条件に追従条件を最初に設定し、再生 時においてトラッキング異常が生じた場合、前記追従条件設定部は、前記第 2のディ フエタトによるトラック外れが相対的に生じにくい条件に追従条件を変更する。
[0024] 好ま 、実施形態にぉ 、て、前記第 1のディフエタトのサイズは、前記光ビームによ つて前記光ディスクの表面に形成される光スポットの直径よりも小さぐ前記第 2のディ フエタトのサイズは、前記光スポットの直径よりも大き!/、。
[0025] 好ましい実施形態において、前記第 1のディフエタトは前記光ディスクの表面に形 成される指紋ドットであり、前記第 2のディフエタトは、前記光ディスクの内部に形成さ れる気泡である。
[0026] 好ま 、実施形態にお!、て、前記追従条件設定部は、前記トラッキング誤差信号を ディフエタト直前における値にホールドするためのホールド信号を前記ディフエクト検 出信号に基づいて生成するホールド信号生成部を備え、前記追従条件設定部は、 最初の追従条件でトラッキング外れが生じた場合、前記ホールド信号が規定するホ 一ルド時間を、前記トラック外れが生じる前より長くするように前記ホールド信号生成 部の設定を変更する。
[0027] 好ま 、実施形態にぉ 、て、前記追従条件設定部はトラッキング制御のゲインを制 御するゲイン設定部を備え、前記追従条件設定部は、トラッキング異常が生じた場合
、前記ゲインの値を小さくする。
[0028] 好ま 、実施形態にお!、て、前記追従条件設定部は光ディスクの回転速度を制御 する回転速度設定部を備え、前記追従条件設定部は、トラッキング異常が生じた場 合、前記回転速度を高くする。
[0029] 好ましい実施形態において、再生時に所定値以上のトラックずれまたは再生エラー が発生した場合にリトライ再生を行うか否かを決定するリトライ決定部を備える。
[0030] 好ましい実施形態において、再生時に所定値以上のトラックずれまたは再生エラー が発生した場合、前記追従条件設定部は、現実にトラック外れが生じる前に、前記第
2のディフエタトによるトラック外れが相対的に生じにくい条件に追従条件を変更する
[0031] 好ま 、実施形態にぉ 、て、前記トラック外れが生じた場合にぉ 、て、前記ディフエ タト検出信号が生成されていな力つたとき、前記追従条件設定部は、リトライ再生時 にお 、ても追従条件の設定を変更しな 、。
[0032] 好ま 、実施形態にぉ 、て、前記ディフエタトが指紋力否かを検知する指紋検出手 段を更に備え、前記ディフクトに起因してトラック外れが発生した場合において、前記 ディフ タトが指紋であると判定されたとき、前記追従条件設定部は、追従条件の設 定を変更することなぐリトライ再生を行う。
[0033] 本発明の他の光ディスク装置は、 BD規格による第 1の光ディスクおよび HD— DV D規格による第 2の光ディスクを含む複数の種類の光ディスク力 データを再生する ことが可能な光ディスク装置であって、前記複数種類の光ディスクから選択され、前 記光ディスク装置に装填された光ディスクの情報層に対して光ビームを集束させる少 なくとも 1つの対物レンズと、前記光ディスクからの反射光に基づいて受光信号を生 成する光検出器と、前記対物レンズを前記光ディスクの半径方向に駆動するトラツキ ングァクチユエータと、前記受光信号に基づいてトラッキング誤差信号を生成するトラ ッキング誤差検出部と、前記トラッキング誤差信号に基づいて前記トラッキングァクチ ユエータを駆動し、前記光ビームに前記ディスク上のトラックを追従させるトラッキング 制御部と、前記受光信号に基づ!、て前記光ディスクの反射光強度が低下した部分を ディフエタトとして検出し、ディフエタト検出信号を出力するディフエタト検出部と、前記 ディフエタトによるトラツッキング外れの生じやすさに影響する追従条件を設定する追 従条件設定部とを備え、前記追従条件設定部は、装填された光ディスクが前記第 1 の光ディスクか前記第 2の光ディスクかに応じて追従条件を変更する。
[0034] 好ま ヽ実施形態にお!ヽて、前記追従条件設定部は、前記ディフエタトによるトラッ キング外れが生じてリトライ動作を実行するとき、装填された光ディスクが前記第 1の 光ディスクの場合には追従条件を変更するが、装填された光ディスクが前記第 2の光 ディスクの場合には追従条件を変更しな 、。
[0035] 好ましい実施形態において、前記第 1の光ディスクが装填されている場合、前記追 従条件設定部は、前記光ディスクに形成される複数種類のディフ タトであって大き さが相対的に小さな第 1のディフエタトと大きさが相対的に大きい第 2のディフエタトを 含む複数種類のディフエタトのうち、前記第 1のディフエタトによるトラック外れが相対 的に生じにくい条件に追従条件を最初に設定し、再生時においてトラッキング異常が 生じた場合、前記追従条件設定部は、前記第 2のディフ タトによるトラック外れが相 対的に生じにくい条件に追従条件を変更する。
[0036] 好ましい実施形態において、前記第 1のディフエタトは前記光ディスクの表面に形 成される指紋ドットであり、前記第 2のディフエタトは、前記光ディスクの内部に形成さ れる気泡である。
[0037] 好ま ヽ実施形態にお!ヽて、前記第 2の光ディスクが装填されて ヽる場合、前記追 従条件設定部は、前記光ディスクに形成される複数種類のディフ タトであって大き さが相対的に小さな第 1のディフエタトと大きさが相対的に大きい第 2のディフエタトを 含む複数種類のディフエタトのうち、前記第 1のディフエタトによるトラック外れが相対 的に生じにくい条件に追従条件を最初に設定し、再生時においてトラッキング異常が 生じた場合、前記追従条件設定部は、追従条件を変更することなくリトライ動作を行う
[0038] 本発明の集積回路装置は、光ピックアップとトラッキング制御部とを備える光デイス ク装置に使用される集積回路装置であって、前記光ピックアップから得られる受光信 号に基づ ヽて指紋の有無を検知する指紋検出部を備えて!/、る。
[0039] 好ましい実施形態において、前記指紋検出部は、所定期間を計測するタイマーと、 前記所定期間内にお 、て、前記光ピックアップ力も得られる受光信号に基づ 、て生 成されたディフエタト検出信号に含まれるパルスの数をカウントするカウンタとを備え、 前記所定時間内における前記パルスのカウント数に基づいて、指紋の有無を検知す る。
[0040] 好ま 、実施形態にぉ 、て、前記所定期間は光ディスクの再生速度に応じて調整 される。
[0041] 本発明の集積回路装置は、光ピックアップとトラッキング制御部とを備える光デイス ク装置に使用される集積回路装置であって、
前記光ピックアップ力 得られる受光信号に基づいて光ディスクの反射光強度が低 下した部分をディフエタトとして検出し、ディフエタト検出信号を出力するディフエクト検 出部と、前記ディフエタトによるトラッキング外れの生じやすさに影響する追従条件を 設定する追従条件設定部とを備え、前記追従条件設定部は、前記光ディスクに形成 される複数種類のディフエタトであって大きさが相対的に小さな第 1のディフエタトと大 きさが相対的に大きい第 2のディフエタトを含む複数種類のディフエタトのうち、前記 第 1のディフエタトによるトラック外れが相対的に生じにくい条件に追従条件を最初に 設定し、再生時においてトラック外れが生じた場合、前記追従条件設定部は、前記 第 2のディフエタトによるトラック外れが相対的に生じにくい条件に追従条件を変更す る。
[0042] 好ま 、実施形態にお!、て、前記追従条件設定部は、前記トラッキング誤差信号を ディフエタト直前における値にホールドするためのホールド信号を前記ディフエクト検 出信号に基づいて生成するホールド信号生成部を備え、前記追従条件設定部は、 最初の追従条件でトラッキング外れが生じた場合、前記ホールド信号が規定するホ 一ルド時間を、前記トラック外れが生じる前より長くするように前記ホールド信号生成 部の設定を変更する。
[0043] 好ま ヽ実施形態にお!ヽて、前記追従条件設定部はトラッキング制御のゲインを制 御するゲイン設定部を備え、前記追従条件設定部は、トラック外れが生じた場合、前 記ゲインの値を小さくする。
[0044] 好ま ヽ実施形態にお!ヽて、前記追従条件設定部は光ディスクの回転速度を制御 する回転速度設定部を備え、前記追従条件設定部は、トラック外れが生じた場合、前 記回転速度を高くする。
発明の効果
[0045] 本発明の光ディスク装置は、最初、光ディスクの表面に相対的に小さな第 1のディフ ェクト (例えば指紋)が存在していても適切に再生を実行できる設定で動作させ、もし も相対的に大きな第 2のディフエタト(例えば気泡)が存在しているときは、あえてトラッ ク外れなどのトラッキング異常が生じるようにしている。そして、光ディスクの再生中に 、ディフエタトによるトラック外れが生じたときは、初期設定を変更し、今度は相対的に 大きな第 2のディフエタト (例えば気泡)に対してトラック外れが生じにくい条件で再生 のリトライを実行する。
図面の簡単な説明 [図 1]本発明による光ディスク装置の機能ブロックの構成を示す図である。
[図 2A]図 1の機能ブロックを実現するハードウェア構成例を示す図である。
[図 2B]図 2Aにおける追従条件設定部 400の構成例を示す図である。
[図 2C]指紋検出部 500の構成例を示す図である。
[図 3] (a)力も (k)は、実施形態 1にお 、て光ビームスポットが指紋または気泡を横切 るときに生成される各種信号の波形図である。
[図 4A]本発明の実施形態 1における再生手順のフローチャートである。
[図 4B]実施形態 1における他の再生手順のフローチャートである。
[図 5A]本発明の実施形態 2における再生手順のフローチャートである。
[図 5B]実施形態 2における他の再生手順のフローチャートである。
[図 6]実施形態 2における他の再生手順のフローチャートである。
[図 7] (a)は、気泡による BD表面の起伏を示す図であり、 (b)は、その表面を示す図 である。
[図 8] (a)は、気泡による BD表面の起伏を示す図であり、 (b)は、気泡が存在する領 域で得られる TE信号および駆動信号の波形図である。
[図 9] (a)は、 BDのディスク表面に付着した指紋の顕微鏡写真であり、 (b)は、気泡が 存在する領域で得られる TE信号の波形図である。
[図 10] (a)は、 BDのディスク表面に付着した指紋の模式的平面図であり、 (b)は、気 泡が存在する領域で得られる TE信号の波形図であり、(c)は、反射光量を示す波形 図、(d)は、ホールド信号の波形図である。
[図 11] (a)は、トラッキングサーボのゲインを相対的に高い値に設定した第 1回目再生 のときの TE信号を示す波形図であり、(b)は、トラッキングサーボのゲインを相対的に 低い値に設定した第 2回目以降の再生のときの TE信号を示す波形図である。
[図 12] (a)は、光ビーム(波長:約 405nm)が NA=0. 85の対物レンズを介して BD の情報層に集光している様子を示す断面図であり、(b)は、光ビーム (波長:約 650η m)が NA=0. 6の対物レンズを介して DVDの情報層に集光している様子を示す断 面図である。
[図 13]本発明による光ディスク装置の実施形態 3における機能ブロックの構成を示す 図である。
符号の説明
100 光ディスク装置
101 コントローラ
102 光ディスク
104 光ピックアップ
105 駆動部
106 フォーカス誤差検出部
107 フォーカス制御部
108 トラッキング誤差検出部
109 トラッキング制御部
111 プロセッサ(DSP)
112 HOLDフイノレタ
113 RF加算回路
123 LPF
124 ディフエタト検出部
126 波形整形部
127 整形設定部
129 ゲイン調整部
300 制御部
310 エラー検出部
320 リトライ決定部
400 追従条件設定部
410 ホールド信号生成部
420 ゲイン設定部
430 回転速度設定部
500 指紋検出部
発明を実施するための最良の形態 [0048] 以下、本発明による光ディスク装置の実施形態を説明する前に、 BDのディスク表 面に形成された指紋、および光ディスクの光透過層下に形成された気泡にっ ヽて更 に詳細に説明する。
[0049] まず、図 9および図 10を参照する。図 9 (a)は、指紋が付着した BDのディスク表面 の顕微鏡写真である。図 9(b)は、それぞれ、指紋が存在する領域での TE信号を示 す波形図である。図 9 (a)には、多数の白い点(ドット)が観察される。これらのドットが 指紋を構成しているため、以下、「指紋ドット」と称することにする。指紋ドット 12の平 均サイズは 65〜75 μ mである。
[0050] 図 10 (a)は、指紋ドット 12の模式的な配列を示す平面図であり、図 10 (b)、 (c)、お よび (d)は、それぞれ、光ビームが指紋ドット 12を横切るときに得られる「TE信号」、「 反射光量」、および「ホールド信号」を示す波形図である。
[0051] 実際の指紋ドットは、図 9 (a)に示されるようにランダムに位置している力 各指紋ド ットの大きさや間隔は、大きくばらついていないため、図 10 (a)に示すモデルに基づ V、て分析を進めることが可能である。
[0052] BDでは、約 405nmの短波長光ビームが高 NA対物レンズによって充分に細く絞ら れるため、ディスク表面における検出分解能が DVDに比べ格段に向上している。 D VDの場合における情報層における有効なビームスポットのサイズ (有効断面積)は、 図 10 (a)に示される光ビームスポット 10のサイズの約 4〜5倍で、直径にすると約 2倍 程度(約: L m)である。よって DVDは、 NAが 0. 6であっても光透過層(基板)の厚さ が 0. 6mmと BDに比べ 6倍も厚いため、その表面におけるスポット径は、 0. 5mm以 上に拡大される。
[0053] 通常、指紋のドット間のピッチは 0. 2mm〜0. 3mmぐらいであり、このため、 DVD では、 1つのビームスポット内に複数の指紋ドット 12が含まれることになり、反射光量 に基づいて個々の指紋ドット 12を検知することはできない。よって DVDのスポットサ ィズでは指紋を検出できな 、。
[0054] これに対して、 BDでは、図 10 (a)に示されるように情報層での光ビームスポット 10 の直径が約 0. 4 m以下であり、また、光透過層(カバー層)の厚さが 0. 1mmと極 めて小さい。このため、ディスク表面におけるスポット径も僅か約 0. 15mmであり、指 紋ドット 12のピッチ程度の大きさである。従って、分解能が高ぐ BDのディスク表面に 指紋が付着していると、図 10 (c)に示すように、個々の指紋ドット 12に対応して反射 光量が高い周波数で変動することになる。この結果、 BD用の光ビームスポット 10が B Dのディスク表面にぉ ヽて指紋の形成された領域を走査するとき、指紋ドット 12の間 の領域 (反射光量が低下して 、な 、領域)からは、指紋ドット 12に影響されな 、正常 な TE信号を得ることができる。
[0055] 図 12 (a)および図 12 (b)は、それぞれ、 BDの情報層および DVDの情報層に光ビ ームが集光している様子を示す模式断面図である。図示されている例では、 BD用の 対物レンズ (NA: 0. 85)と DVD用の対物レンズ (NA: 0. 6)がー体的にレンズァク チユエータ(不図示)によって支持されている。このような光ディスク装置では、装填さ れた光ディスクが BDの場合は、 BD用の光源カゝら発せられた光ビーム(波長:約 405 nm)が BD用対物レンズによって BDの情報層に集光され、装填された光ディスクが DVDの場合は、 DVD用の光源から発せられた光ビーム(波長:約 650nm)が DVD 用対物レンズによって DVDの情報層に集光される。
[0056] 上述したように、 BDのディスク表面に形成される光ビームスポットのサイズは指紋ド ット間から反射光を検出することが可能な大きさを有している(図 12 (a) )。一方、 DV Dのディスク表面に形成される光ビームスポットのサイズは指紋ドット間の平均距離よ りも充分に大きいため、指紋ドット間力もの反射光を検出することができない(図 12 (b ) )。
[0057] 上述のように、反射光量の低下に基づいて個々の指紋ドット 12を検知すれば、図 1 0 (d)に示すように、 BD用の光ビームスポット 10が個々の指紋ドット 12を横切るタイミ ングでホールド信号を生成することが可能になる。このように個々の指紋ドット 12を検 知して反射光量が低下した時間だけ TE信号をホールドすれば、 BD表面の広 、範 囲に多数の指紋が付着していても、トラック外れを抑制することが可能になる。
[0058] し力しながら、指紋にカ卩えて前述した気泡が BDに存在して 、ると、反射光量の低 下に基づいて指紋ドット 12と気泡の核とをリアルタイムで識別することは極めて難しい 。例えば、反射光量の低下が生じたときに「気泡の核」を検知したと判断し、光ビーム が気泡の核を通過するために要する必要充分な所定時間だけ TE信号をホールドす るように設定すると、反射光量の低下は「気泡の核」によるものではなぐ実は「指紋ド ット」によるものであったという場合が生じ得る。指紋は、気泡に比べて遥かに広い範 囲に広がっていることが多ぐまた高密度で分布している。このため、反射光量低下を 検出した場合に所定時間だけ TE信号をホールドする設定では、指紋ドット 12が存在 する広 、領域で TE信号が継続的にホールドされ、ホールド時間は 4ミリ秒を超える長 いものとなる。そのように長いホールド時間中はトラックに追従しないため、高い確率 でトラック外れが生じてしまうことになる。すなわち、気泡に対応するためにホールド時 間を長めに設定すると、ディフエタトが気泡ではなく指紋ドットであった場合に、図 10 ( d)に示す個々のホールド期間が連続し、多数の指紋ドットが存在する広い範囲で T E信号を得ることができなくなる。
[0059] 一方、反射光量の低下が生じたときに「指紋ドット」を検知したと判断し、光ビームが 指紋ドットを通過するために必要な充分に短 、時間だけ TE信号をホールドするよう に設定すると、反射光量の低下は「指紋ドット」によるものではなぐ実は「気泡」による ものであったという場合が生じ得る。この場合、個々のホールド時間は気泡通過時間 に比べて極めて短いため、短いホールド時間の経過後、 TE信号には気泡による擬 似オフトラック成分が現れ、トラック外れが生じることになる。すなわち、指紋に適したト ラッキング制御を行う設定では、気泡によるトラック外れを阻止することできない。気泡 によるトラック外れを防止するには、光ビームが気泡を通過するために必要充分な時 間だけ、 TE信号をホールドする必要がある。
[0060] 前述したように、指紋ドットと気泡の核とをリアルタイムで識別することは難しいため、 ディフエタトが検出されたときの TE信号のホールド時間を指紋ドットおよび気泡の一 方のみに適した値に設定することになる。しかし、ホールド時間を指紋ドットに適した 値に設定した場合は、気泡の存在によってトラック外れが発生しやすくなるが、ホー ルド時間を気泡に適した値に設定した場合には、指紋によってトラック外れが発生し やすくなつてしまう。
[0061] 以下、気泡によってトラック外れが発生しにくい条件にした場合、指紋の存在によつ てトラック外れが発生しやすくなる理由を説明する。
[0062] 気泡によってトラック外れが発生しにくくするためには、反射光量が低下している時 間だけ TE信号をホールドするだけでは不充分である。反射光量の低下は主として気 泡の核によって生じる力 気泡の核の周囲には TE信号に歪みを発生される領域が 存在している。このため、反射光量低下の時間に対して所定の時間を付加した期間 だけ、 TE信号をホールドする必要がある。この所定の時間は、指紋ドット間を光ビー ムスポットが横切る時間に比べて充分に長いため、指紋ドット間も TE信号がホールド され、指紋ドットから適正な TE信号を得ることはできくなくなる。また、指紋ドットが分 布する領域は、気泡よりも広いため、ホールド時間が経過して TE信号のホールドが 解除されたとき、光ビームスポットは未だ指紋ドットを横切りつつあるため、直ぐまた T E信号のホールドが開始されてしまう。このように、気泡に適した TE信号のホールドを 行う設定では、指紋の存在により、指紋ドット間から TE信号を得ることができず、また 、指紋が存在する広い領域で TE信号がホールドされる結果、トラック外れが発生し やすくなる。
[0063] なお、気泡は、指紋とは異なり、 BDの製造工程の種類により、形成されやすい場合 と、形成されにくい場合がある。スピンコート法によって光透過層が形成された BDは 、気泡を多く含む傾向にあるが、貼り合わせ法によって光透過層(保護シート)が貼り 付けられた BDには気泡が少ない傾向にある。このように、気泡の有無は BDの製造 方法や材料によっても大きくばらつくが、人の指紋における指紋ドット 12の大きさは 大凡決まっている。また、カートリッジ内に収められた状態で使用されないベアデイス クでは、ディスク表面に指紋の付く可能性が極めて高い。
[0064] 以上のことから、本発明では、まず、 BD表面に指紋が存在していても適切に再生 を実行できる初期設定で光ディスク装置を動作させ、もしも気泡が存在して ヽるときは 、あえてトラック外れなどのトラッキング異常が生じるようにしている。そして、 BDの記 録'再生中に、気泡によるトラッキング異常が生じたときは、初期設定を変更し、今度 は気泡を含む BDに対してトラッキングを適切に実行できる条件で再生のリトライ動作 を実行する。
[0065] このような設定の変更は、本発明による光ディスク装置が備える「追従条件設定部」 の働きによって行うことができる。追従条件設定部は、ディフエタトによるトラッキング 外れの生じやすさに影響する追従条件を設定し、また、この設定を変更することがで きる。
[0066] 本発明の好ましい実施形態では、この追従条件設定部が、起動後 1回目の再生時 においては、指紋によるトラック外れが相対的に生じにくい条件に追従条件を設定す る。そして、 1回目の再生時においてトラック外れが生じて 2回目以降のリトライ再生を 行う場合は、気泡によるトラック外れが相対的に生じにくい条件に追従条件を変更す る。
[0067] 追従条件設定部によって行う初期設定は、指紋に強い設定であり、例えば TE信号 のホールド時間を短くし (ホールド時間ゼロの場合を含む)、指紋ドットの間で TE信号 に基づくトラッキング制御を可能にしている。このため、指紋がディスク表面の広い範 囲に存在していても、指紋ドットの間に位置する領域からトラッキング誤差に関する情 報を適切に得ることができ、トラック外れが生じにくい動作を実現できる。
[0068] このような初期設定では、気泡が存在していた場合、 TE信号中に生じる擬似オフト ラック成分により、トラック外れが発生しやすいが、本発明の第 1の態様では、そのよう なトラック外れの発生を許容する。すなわち、トラック外れが生じた場合は、その原因 となる光ディスクのディフエタトを「指紋」ではなく「気泡」であると推定した上で、初期 設定を「指紋」に適したものから「気泡」に適したものに変更する。
[0069] 本発明では、指紋に適した設定から気泡に適した追従条件の設定変更を行う場合 、下記のパラメータ (追従条件)の少なくとも 1つを変更する。
(1)トラッキング制御のホールド時間
(2)トラッキング制御のサーボゲイン
(3)光ディスクの回転速度(単位時間あたりの回転数)
[0070] 例えば上記(1)の追従条件の設定変更を行う場合、起動後 1回目の再生時におい てトラック外れが生じたとき、 2回目以降のリトライ再生時においては、気泡に対してト ラッキング制御部からの信号をホールドする。すなわち、 1回目の再生時においては 、指紋または気泡により反射光量が低下しても、トラッキング制御のホールドは行わず 、指紋ドットのようにビームスポット径よりも小さなディフエタト(第 1のディフエタト)に対 してトラッキング制御を適切に実行する。その結果、トラック外れなどのトラッキング異 常が生じた場合は、その後の再生時においては、ディフエタト (反射光量低下)を検 知すると、トラッキング制御のホールドを行う。このときのホールド時間を、気泡に対応 する充分な長さ(光ビームが気泡を横切る時間以上の長さ)に設定し、気泡のように ビームスポット径よりも大きなディフエタト (第 2のディフエタト)に起因して擬似オフトラ ック成分が発生しても、トラック外れなどのトラッキング異常が生じないようにする。
[0071] 一方、ディフエタト (反射光量低下)の原因が指紋か否かを判別する指紋検出手段 を光ディスク装置が備える場合、起動後 1回目の再生時においてトラック外れが生じ たとき、その原因が指紋にあると判定した場合は、 2回目以降のリトライ再生時におい て、トラッキング制御のサーボゲインや光ディスクの回転速度を変更し、それによつて リトライ再生時における (気泡に起因する)トラック外れを抑制する。
[0072] なお、本明細書における「トラック外れ」とは、ビームスポットが追従して 、るトラックと は異なるトラック上に移動する「トラック飛び」が生じた場合のみならず、トラッキング誤 差が予め設定された許容範囲を超えて大きくなつた場合をも含むものとする。
[0073] 上記の説明からわ力るように、本発明の効果は、光ディスクの表面における光ビー ムスポットのサイズに比べて小さなディフエタト (典型的には指紋ドット)、および上記 サイズに比べて大きなディフエタト (典型的には気泡)が光ディスク上に形成され得る 場合に効果を奏する。ディフエタトは、指紋や気泡に必ずしも限定されず、同様の性 質を有する 2種類のディフエタトが形成され得る場合にも本発明の効果を奏すること が可能である。
[0074] なお、多様な規格に基づく複数の種類の光ディスクが 1つの光ディスク装置に任意 に装填され得る場合、複数種類の光ディスクの中に、指紋や気泡が形成され得る光 ディスクが含まれる場合にも本発明は効果を奏する。
[0075] 一般に、反射光量低下は、指紋ドットや気泡以外のディフエタトによっても生じる場 合がある。例えば、埃などのダストや傷が光ディスクの表面に存在している場合も、反 射光量は低下する。ただし、ダストや傷による反射光量の低下の程度は、指紋や気 泡に比べて格段に大きい。このため、反射光量の低下量に基づいて、ダストや傷を 検知することができる。このような反射光量の大幅な低下を引き起こすディフ タトは、 本明細書では「第 3のディフエタト」と称する。光ディスクの表面に第 3のディフエタトが 存在すると、第 1または第 2のディフエタトが存在する場合に比べて、反射光量は大き く低下する。このため、第 3のディフエタトは、第 1または第 2のディフエタトから区別し て検知することができる。第 3のディフエタトを検知した場合の動作は、公知の光ディ スク装置における動作と同様である。
[0076] 以下、図面を参照しながら、本発明による光ディスク装置の実施形態を説明する。
[0077] (実施形態 1)
まず、図 1を参照して、本発明による光ディスク装置の第 1の実施形態の機能ブロッ クの構成を説明する。
[0078] 本実施形態の光ディスク装置 100は、図 1に示されるように、フォーカス誤差検出部 106、フォーカス制御部 107、トラッキング誤差検出部 108、およびトラッキング制御 部 109を備えている。
[0079] 図 1の光ディスク装置 100は、光ディスク 102の情報層に対して光ビームを集束させ る光ピックアップ 104、光ビームを光ディスク 102の半径方向に移動させることのでき る駆動部 105、フォーカス誤差検出部 106、フォーカス制御部 107、トラッキング誤差 検出部 108、およびトラッキング制御部 109などを備えている。
[0080] 光ディスク 102に対してデータの再生または記録を行うとき、フォーカス誤差検出部 106は、光ピックアップ 104から出力される信号に基づいて FE信号を生成する。同 様に、トラッキング誤差検出部 108は、 TE信号を生成する。
[0081] フォーカス制御部 107は、 FE信号に対してゲイン補償および位相補償を行った後 、更に PWM変調または電流増幅を行うことにより、駆動部 105を駆動する。トラツキン グ制御部 109は、 TE信号に対してゲイン補償や位相補償を行った後、 PWM変調ま たは電流増幅を行うことにより、駆動部 105を駆動する。
[0082] 駆動部 105は、フォーカス制御部 107およびトラッキング制御部 109の出力に基づ き、光ピックアップ 104内の対物レンズ (不図示)をディスク表面に垂直な方向および ディスク半径方向に駆動し、フォーカス制御およびトラッキング制御を実現する。
[0083] 光ディスク 102上に記録されている信号は、光ピックアップ 104によって読み出され 、 RF信号力卩算部 113を介して、ハイパスフィルタ(HPF) 120およびローパスフィルタ (LPF) 123に入力される。
[0084] HPF120を透過した RF加算信号は、イコライザ部 121を介して、再生部 122に送 られる。再生部 122では、 2値化、 PLL、エラー訂正、復調などの処理が行われ、処 理後の再生信号は、所定のインターフェース(不図示)を経由してホストコンピュータ( 不図示)へ出力される。
[0085] 一方、 LPF123を透過した RF加算信号は、ディフエタト検出部 124に入力される。
ディフエタト検出部 124は、 LPF123の出力に基づいて、光ディスク 102に存在する 指紋や気泡などの有無に応じた波形を有するディフエタト検出信号を生成し、出力す ることができる。具体的には、ディフエタト検出部 124は、 LPF123の出力が基準レべ ルよりも低下したとき、光ビームが光ディスク 102上の何らかのディフエタトを通過して いると判定する。光ビームが光ディスク 102上の何らかのディフエタトを通過していると き、光ディスクからの反射光量が低下するため、 LPF123の出力の低下に基づいて「 ディフエタト」を検出することが可能になる。
[0086] ディフエタト検出部 124の出力は、コントローラ 101内の追従条件設定部 400に入 力される。追従条件設定部 400は、ホールド信号生成部 410、ゲイン設定部 420、お よび回転速度設定部 430を備えて 、る。
[0087] ホールド信号生成部 410は、ホールド信号をスィッチ 128a、 128bに送出し、スイツ チ 128a、 128bを制御することにより、端子 A— C間、端子 B— C間、および端子 D— E間の接続/非接続状態を切り換えることができる。より詳細には、ホールド信号が L owのとき、端子 A— C間は接続状態、端子 B— C間は非接続状態、端子 D— E間は 接続状態にある。これに対して、ホールド信号が Highのとき、端子 A— C間は非接続 状態、端子 B— C間は接続状態、端子 D— E間は非接続状態にある。
[0088] 通常のトラッキング制御を行うとき、ホールド信号は Lowとし、端子 A— C間を接続 状態、端子 B—C間を非接続状態にする。このとき、トラッキング制御部 109の出力は 、ゲイン調整部 129を介して駆動部 105に与えられるため、トラッキング誤差を小さく するようにトラッキング制御が実行されることになる。
[0089] 本実施形態では、ディフエタトが検出されても、ホールド信号は Lowのままとなるよう に初期設定が行われる。この設定は、指紋に適した追従条件を実現する。すなわち 、指紋ドットによる反射光量低下が生じても、トラッキング制御がホールドされない追 従条件 (ホールド時間 =0)が初期的に設定される。光ビームが個々の指紋ドット (第 1のディフエタト)を横切る時間は短ぐまた、光ビームのスポットサイズが指紋ドットの 平均ピッチと比べて大差ないため、 TE信号をホールドしない設定でも、指紋ドット間 で適正な TE信号を得ることができる。
[0090] 一方、指紋に適した追従条件を変更して、気泡に適した追従条件を選択する場合 、ディフエタト検出に応答して所定期間だけホールド信号を Highとすることにより、そ の期間、端子 A— C間を非接続状態、端子 B— C間を接続状態、端子 D— E間を非 接続状態に変化させる。これにより、光ビームが気泡を通過する間、トラッキング制御 をホールドし、気泡〖こよるトラック外れを防止することができる。
[0091] ゲイン設定部 420は、ゲイン切換信号をゲイン調整部 129に送出し、トラッキング制 御のサーボゲインを変化させることができる。気泡に適した追従条件を選択する場合 、ゲインを低下させて気泡による過渡応答を小さくし、気泡の存在によってトラック外 れが生じにくい設定を実現することができる。
[0092] 回転速度設定部 430は、ディスクモータ 200に回転数切換信号を送出し、光デイス ク 102の回転速度を変化させることができる。気泡に適した追従条件を選択する場合 、光ディスク 102の回転速度を高めることにより、光ビームが気泡を通過する時間を 短縮し、気泡の存在によってトラック外れが生じにくい設定を実現することができる。
[0093] なお、リトライの実行を決定した場合において、追従条件設定部 400にディフエタト 検出信号が入力されない場合は、リトライ再生時における追従条件を変更しないよう にすることが好ましい。
[0094] コントローラ 101は、追従条件設定部 400とは別に、再生部 122の出力を受けるェ ラー検出部 310と、リトライ決定部 320とを有している。エラー検出部 310は、再生信 号の品質が悪ぐエラー訂正不能であったり、 PLLやサーボが外れたりした場合に「 再生エラー」を検出し、ホストコンピュータ (不図示)に通知する。このとき、リトライ決定 部 320は、ホストコンピュータ (不図示)からの要求と光ディスク装置の状態に基づい て、リトライ再生を実行するか否かを決定する。リトライ決定部 320によってリトライ再 生を実行することが決定された場合、リトライの指令が追従条件設定部 400へ入力さ れる。
[0095] リトライ再生の実行が決定され、かつ、ディフエタト検出信号が追従条件設定部 400 に入力された場合は、リトライ再生時の追従条件を変更する。具体的には、追従条件 設定部 400内にあるホールド信号生成部 410、ゲイン設定部 420、および回転速度 設定部 430の各々によって設定されている少なくとも 1つの設定値をリトライ再生のた めに変更する。
[0096] 次に、図 2Aを参照しながら、図 1における各機能ブロックを実現するハードウェア構 成の例を説明する。
[0097] 図 1における光ピックアップ 104は、図 2Aに示す光源 204、カップリングレンズ 205 、偏向ビームスプリッタ 206、対物レンズ 203、集光レンズ 207、光検出器 208を備え ている。
[0098] 光源 204は、好適には半導体レーザであり、本実施形態では波長 415nm以下の 光ビームを放射する。光源 204から放射された光ビームは直線偏光であり、その偏光 方向は、放射される光ビームの光軸に関して光源 204の向きを回転させることにより 任意に調整することができる。カップリングレンズ 205は、光源 204から放射された光 ビームを平行光に変換し、偏光ビームスプリッタ 206に入射させる。偏向ビームスプリ ッタ 206は、特定方向に偏光した直線偏光は反射するが、その特定方向に対して垂 直な方向に偏光した直線偏光は透過する特性を有して ヽる。本実施形態の偏光ビ 一ムスプリッタ 206は、カップリングレンズ 205で平行光に変換された光ビームは対物 レンズ 203に向けて反射するよう構成されている。対物レンズ 203は、偏向ビームス プリッタ 206で反射された光ビームを集束し、光ディスク 102の情報層上に光ビーム スポットを形成する。
[0099] ディスクモータ 200によって所定速度で回転している光ディスク 102の情報層上に おいて所望のトラックを光ビームスポットが追従するためには、光ディスク 102で反射 された光ビームに基づ 、て、トラッキングずれおよびフォーカスずれを示す TE信号お よび FE信号を検出する必要がある。
[0100] 光ディスク 102で反射された光ビームは、対物レンズ 203で平行な光ビームに変換 された後、偏向ビームスプリッタ 206に入射する。このときの光ビームは、その偏光方 向が光ディスク 102に入射するときの光ビームの偏光方向から 90° 回転したものに なるため、偏向ビームスプリッタ 206を透過し、そのまま集光レンズ 207を経て光検出 器 208に入射することになる。
[0101] 光検出器 208は、集光レンズ 207を通過してきた光を受け、その光を電気信号 (電 流信号)に変換する。図示されている光検出器 208は、受光面上で 4分割された領 域 A、 B、 C、 Dを有しており、領域 A〜Dの各々力 受けた光に応じた電気信号を出 力する。
[0102] プリアンプ 209a、 209b, 209c, 209dは、光検出器 208力ら出力された電流信号 を電圧信号に変換する。カロ算回路 144, 146は、プリアンプ 209a、 209b, 209c, 2 09dから出力された電圧信号を、光検出器 208の対角位置ごとに加算する。加算回 路 144は、領域 Aの出力と領域 Dの出力とを合計した大きさに相当する信号 A+ Dを 出力し、加算回路 146は、領域 Bの出力と領域 Cの出力とを合計した大きさに相当す る信号 B + Cを出力する。加算の仕方を変更することにより、他の信号を生成すること も可能である。
[0103] 差動増幅器 158は、加算回路 144, 146からの信号を入力して FE信号を出力する 。 FE信号は、光ビームが光ディスク 102の情報層上で所定の集束状態になるように 制御するための信号である。 FE信号の検出法は特に限定されず、非点収差法を用 いたものでもよいし、ナイフエッジ法を用いたものであってもよいし、 SSD (スポット'サ ィズド 'ディテクシヨン)法を用いたものであってもよい。検出法に応じて回路構成を適 宜変更することになる。ゲイン切換回路 164は、 FE信号を所定の振幅に調整する。 AD変 168は、ゲイン切換回路 164から出力される FE信号をデジタル信号に変 換する。
[0104] 一方、コンパレータ 152, 154は、それぞれ、加算回路 144, 146からの信号を 2値 化する。位相比較器 156は、コンパレータ 152, 154からの信号の位相比較を行う。 差動増幅器 160は、位相比較器 156からの信号を入力して TE信号を出力する。 TE 信号は、光ビームが光ディスク 102のトラック上を正しく走査するように制御するため の信号である。 TE信号の検出法は特に限定されず、位相差法を用いたものでもよい し、プッシュプル法を用いたものであってもよいし、 3ビーム法を用いたものであっても よい。検出法に応じて回路構成を適宜変更することになる。ゲイン切換回路 166は、 TE信号を所定の振幅に調整する。 AD (アナログ 'ディジタル)変翻 170は、ゲイン 切換回路 166から出力された TE信号をデジタル信号に変換する。
[0105] 上述した回路により生成された FE信号および TE信号は、図 1のコントローラ 101に 相当するプロセッサ(DSP :デジタル ·シグナル ·プロセッサ) 111に入力される。プロ セッサ 111は、図 2Aに示すように、フォーカス制御部 107、トラッキング制御部 109、 HOLDフィルタ 112、再生部 122、ディフエタト検出部 124、スィッチ 128a、 128b, ゲイン調整部 129、制御部 300、および追従条件設定部 400を備えている。制御部 3 00は、エラー検出部 310およびリトライ決定部 320を含んでいる。
[0106] プロセッサ 111の動作は、後に詳しく説明する。
[0107] プロセッサ 111から出力されるフォーカス制御のための制御信号 FEPWMおよびト ラッキング制御のための制御信号 TEPWMは、それぞれ、駆動回路 148および駆動 回路 150に送られる。
[0108] 駆動回路 148は、制御信号 FEPWMに応じてフォーカスァクチユエータ 201を駆 動する。フォーカスァクチユエータ 201は、対物レンズ 203を光ディスク 102の情報層 と略垂直な方向に移動させる。駆動回路 150は、プロセッサ 111から出力される制御 信号 TEPWMに応じてトラッキングァクチユエータ 202を駆動する。トラッキングァク チユエータ 202は、対物レンズ 203を光ディスク 102の情報層と略平行な方向に移動 させる。
[0109] 光検出器 208と、プリアンプ 209a〜209dと、カロ算回路 144, 146と、コンノ レータ 152, 154と、位相比較器 156と、差動増幅器 160と、ゲイン切換回路 166と、 AD変 ^^170と、プロセッサ 111と、駆動回路 150と、トラッキングァクチユエータ 202とは 、トラッキング制御を行うトラッキング制御装置を構成する。一方、光検出器 208と、プ リアンプ 209a〜209dと、加算回路 144, 146と、差動増幅器 158と、ゲイン切換回 路 164と、 AD変^^ 168と、プロセッサ 111と、駆動回路 148と、フォーカスァクチュ エータ 201とは、フォーカス制御を行うフォーカス制御装置を構成する。
[0110] 図 2Aの光検出器 208と、プリアンプ 209a〜209bと、カロ算回路 144, 146と、差動 増幅器 158とは、図 1のフォーカス誤差検出部 106に対応し、駆動回路 148およびフ オーカスァクチユエータ 201は、図 1の駆動部 105に対応する。
[0111] 光検出器 208の領域 A, B, C, Dの全光量和信号 (A+B + C + D)は、加算回路 1 44の出力(A+D)と加算回路 146の出力(B+C)とを、 RF加算部 113で加算するこ とによって生成される。全光量和信号 (A+B + C + D)は、 RF加算信号として LPF1 23に入力される。
[0112] LPF123で高周波成分が除去された RF加算信号は、プロセッサ 111内のディフエ タト検出部 124に入力される。ディフエタト検出部 124は、全光量和信号の振幅レべ ルと予め設定された基準レベルとを比較し、 2値化整形を行う。例えば、全光量和信 号の振幅レベルが基準レベルよりも低下したときは「High」、全光量和信号の振幅レ ベルが基準レベル以上のときは「Low」となるようにニ値ィ匕される。全光量和信号の 振幅レベルは、光ビームが指紋のドット 12や気泡を横切るときに低下するため、基準 レベルを適切な大きさに設定しておけば、指紋のドット 12や気泡を検知することがで きる。ディフエタト検出部 124から出力されたディフエタト検出信号は、プロセッサ 111 内の追従条件設定部 400に入力される。
[0113] 以下、図 2Bを参照しながら、プロセッサ 111の構成および動作をより詳しく説明す る。
[0114] 前述したように、本発明では、指紋に適した設定力 気泡に適した追従条件の設定 変更を行う場合、(1)トラッキング制御のホールド時間、(2)トラッキング制御のサーボ ゲイン、および Zまたは(3)光ディスクの回転速度(単位時間あたりの回転数)の設定 を変更する。このような設定およびその変更は、図 2Bに示す構成を有する追従条件 設定部 400の働きによって実現される。
[0115] 以下、追従条件設定部 400によりトラッキング制御のホールド時間を変更する場合 を最初に説明する。
[0116] 追従条件設定部 400は、図 2Bに示すように、図 1のホールド信号生成部 410として 機能する波形整形部 126と波形整形設定部 127とを有して ヽる。波形整形設定部 1 27は、ホールド信号の波形を規定するため、 xHOLD信号を生成し、波形整形部 12 6に入力する。また、波形整形設定部 127は LEVEL信号を生成し、ディフエク検出 部 124に入力する。
[0117] 波形整形部 126は、ディフエタト検出信号に基づいて、トラッキング制御のホールド 信号を生成し、出力する。波形整形部 126で生成されるホールド信号力 owから Hi ghに立ち上がると、 Highの期間だけ、トラッキング制御用の制御信号 TEPWMがー 定レベルにホールドされる。ホールド信号が Highから Lowに立ち下がると、ホールド が停止され、通常のトラッキング制御が再開される。以下、この点をより詳しく説明す る。
[0118] 本実施形態では、ホールド信号がスィッチ 128a、 128bを制御し、ホールド信号が Highのとき、 HOLDフィルタ 112が TE信号をホールドする。ホールド信号が Low( 無効)のとき、スィッチ 128aが端子 Aと端子 Cとを接続するため、通常のトラッキング 制御が実行される。このとき、スィッチ 128bが端子 Eと端子 Dとを接続しているため、 図 1に示すトラッキング誤差検出部 108の出力 (TE信号)が、スィッチ 128bを介して HOLDフィルタ 112に入力されている。 HOLDフィルタ 112は、通常、光ディスクの 回転周波数の帯域で制限され、偏心などの回転による誤差成分を抽出する。こうして 、ホールド信号が Highのときには、 TE信号が所定レベルに維持され、トラッキング制 御のホールド処理が実現される。
[0119] なお、本実施形態の光ディスク装置は、トラッキング誤差検出部 108にスィッチ 128 a、 128bおよび HOLDフィルタ 112を接続し、トラッキング誤差検出部 108から出力 される TEをホールドする構成を備えているが、本発明は、このような場合に限定され ない。例えば、ゲイン調整部 129と駆動回路 105との間にスィッチ 128a、 128bおよ び HOLDフィルタ 112を配置してもよい。この場合、 HOLDフィルタ 112の特性を適 切に調節することにより、図 2Aに示すトラッキングァクチユエータ 202に与える駆動信 号をホールドする構成を採用し、同等の効果を実現することができる。従って、本明 細書にぉ 、て「トラッキング誤差信号をホールドする」とは、トラッキング誤差信号その ものをホールドする場合のみならず、トラッキング誤差信号に依存して変化する他の 信号のうち、トラッキングァクチユエータ 202の駆動を制御する信号をホールドする場 合を広く含むものとする。
[0120] 本実施形態の光ディスク装置によれば、追従条件設定部 400の働きにより、 LPF1 23の出力に指紋ドットや気泡を示す信号が含まれて!/、ても、ホールド信号が Lowの ままとなるように初期設定が行われる。すなわち、光ディスク 102に指紋や気泡が存 在しても、光ビームが最初にそれらのディフエタトを横切るときは、トラッキング制御信 号 TEPWMはホールドされない。その結果、トラッキングが外れるなどの異常が発生 した場合は、次にリトライ再生を行うとき、ホールド信号がディフエタト検出部 124の出 力に応じて Highとなるようにする。
[0121] 波形整形部 126は、ディフ タト検出部 124の出力に対して、波形整形設定部 127 の設定値に基づく種々の波形整形を行うことにより、上述のホールド信号を生成する ことができる。波形整形設定部 127から波形整形部 126に送る設定値を xHOLD信 号により変更すると、波形整形部 126は、同一波形のディフ タト検出信号力 異な る種々の波形を有するホールド信号を生成することが可能になる。本実施形態では、 このようなディフエタト検出部 124、波形整形部 126、および波形整形設定部 127の 働きにより、同じディフエタトに対してトラッキング制御をホールドする力否かを 1回目 の再生時と 2回目以降のリトライ再生時との間で速やかに変更することが可能になる。
[0122] 次に、図 3を参照しながら、本実施形態の光ディスク装置で光ビームが BDの指紋ま たは気泡を通過したときに生成される各種信号の波形を説明する。
[0123] 図 3 (a)は、光ビームスポット 10が指紋ドット 12を通過するときの RF加算部 113の 出力(RF加算信号)の波形を示している。図 3 (b)は LPF123の出力、図 3 (c)はディ フエタト検出部 124によって 2値ィ匕整形された信号 (ディフエタト検出信号)、図 3 (d) は波形整形部 126から出力されるホールド信号の各波形を示して 、る。
[0124] 一方、図 3 (e)は、光ビームスポット 10が気泡 14およびその核 14aを通過するときの 加算部 113の出力(RF加算信号)の波形を示している。図 3 (f)は、ローパスフィルタ (LPF) 123の出力、図 3 (g)はディフエタト検出部 124によって 2値ィ匕整形された信号 (ディフエタト検出信号)、図 3 (h)は、波形整形部 126から出力されるホールド信号の 各波形を示している。
[0125] また、図 3 (i)は、光ビームスポット 10が指紋を通過するときの TE信号、図 3 (j)は、 初期設定的における TE信号、図 3 (k)は、気泡に適した設定に変更した後の TE信 号を示している。
[0126] BDの光ビームスポット 10の直径は、 DVDの光ビームスポットの直径の約 1Z4〜1 Z5の大きさであり、前述したように、この大きさは指紋ドット 12のサイズやドット間隔 に近い。このため、光ビームスポット 10が指紋を横切るとき、図 3 (a)に示すように、反 射光の RF加算信号の振幅に変化が生じる。 RF加算出力の振幅低下は、指紋を構 成する個々の指紋ドット 12を光ビームスポット 10が横切るときに反射光量が低下する ために発生する。なお、光ビームスポット 10の直径が DVDのように大きいと、 1つの 光ビームスポット 10の中に複数の指紋ドット 12が常に含まれるため、図 3 (a)に示さ れるような個々の指紋ドット 21に対応した RF加算信号の振幅低下を検出することは できない。
[0127] 図 3 (b)は、図 3 (a)の信号が LPF123を通過した後の LPF出力を示している。「LE VEL」信号によって規定される「基準検出レベル」と LPF出力とを比較して 2値ィ匕す れば、図 3 (c)に示すように、指紋ドット 12に応じた波形を有するディフエタト検出信 号を得ることができる。このディフエタト検出信号は、ディフエタト検出部 124から波形 整形部 126に入力される。
[0128] 本実施形態における波形整形部 126は、図 3 (c)のディフ タト検出信号の波形を 整形して、図 3 (d)に示すホールド信号を生成する。すなわち、波形整形設定部 127 から波形整形部 126に送る xHOLD信号により、ディフエクト検出信号のパルス幅 (ホ 一ルド時間に対応)がゼロとなるように波形整形を行って 、る。
[0129] 本実施形態では、このように光ビームスポット 10が指紋を横切るときに生成されるデ イフェタト検出信号から、指紋ドット 12に対応するノ ルス信号を除去した波形のホー ルド信号が生成される。このことは、波形整形部 126が指紋ドット 12を無視することを 意味しており、指紋ドット 12に対しては、トラッキング制御のホールドを実行しない。そ の結果、図 3 (i)に示すように、通常のトラッキング誤差信号が生成され、これに基づく トラッキング制御が継続される。
[0130] 一方、気泡 14は指紋ドット 12に比べて大きいため、図 3 (e)に示すように、気泡 14 の核 14aを中心として RF加算信号の振幅が相対的に長い期間にわたり深く低下す る。このような RF加算信号力LPF123を通過すると、図 3 (f)に示す LPF出力が得ら れる。
[0131] 図 3 (f)の LPF信号をディフエタト検出部 124で 2値ィ匕すれば、図 3 (g)に示すように 、気泡 14の大きさに応じた波形を有するディフエタト検出信号を得ることができる。こ のようなディフエクト検出信号を波形整形部 126に入力し、所定の波形処理を施すと 、図 3 (h)に示すホールド信号が生成される。このホールド信号は、光ビームスポット 1
0が気泡 14を横切る時間よりも長い期間、 Highを保っており、この Highの期間がトラ ッキング制御のホールド時間を規定する。
[0132] 図 3 (h)に示すホールド信号は、波形整形設定部 127から波形整形部 126に送る X
HOLD信号により、ホールド時間を例えば 100 秒〜 300 秒に設定することにより 得られる。この xHOLD信号がホールド時間をゼロに設定するものであれば、ディフ ヱタト検出信号が図 3 (g)に示される波形を有していても、ホールド信号は図 3 (d)に 示すようにパルス信号を含まな 、ものとなる。
[0133] 上記の説明から明らかなように、本実施形態では、 xHOLD信号により、波形整形 の仕方を変更し、それによつてディフエタト検出に応答してホールド信号を生成したり
、生成しな力つたりする切り替えを行うことが可能になる。
[0134] 次に、図 4Aに示すフローチャートを参照して、本実施形態における再生時の処理 を説明する。
[0135] まず、 BDを本実施形態の光ディスク装置にロードした後、ステップ S1において、 B Dの再生動作を開始する。このときは、再生 1回目であるので、指紋または気泡から なるディフエタトを検知してもホールド信号を生成しない設定を行う(ステップ S 2)。具 体的には、図 2Bに示す波形整形設定部 127から波形整形部 126に xHOLD信号を 入力し、ホールド時間をゼロとする。その結果、図 3 (c)または図 3 (g)に示すようなデ イフェクト検出信号がディフエタト検出部 124から波形整形部 126に入力されても、波 形整形部 127の出力は、図 3 (d)に示すように常にゼロとなる。このような設定では、 指紋または気泡を検知しても、トラッキング制御はホールドされな 、状態で光ディスク の再生を行うことになる。
[0136] 本実施形態におけるトラッキングサーボのゲインは、 3段階 (HZMZL)に設定可 能であり、ステップ S3においては、中間のゲイン(M)に設定する。サーボゲインは、 図 2Bに示すゲイン切り換え 166により、任意の値に設定することが可能である。
[0137] BDの場合、指紋のドットに対してディスク表面上のビームスポット径が十分に小さ いため、各指紋ドットを光ビームスポットが通過する時間は非常に短ぐ反射光量の 変動周波数は高い。このため、光ディスクの偏心や振動に追従させるように、ゲイン 調整部 129のサーボゲインを初期値に設定した場合、光ビームスポットが指紋を横 切るときでも、トラッキングサーボ制御は反射光量の高周波の変化に応答せず、指紋 による影響を受けない。
[0138] このような初期設定の状態では、指紋が存在しても、図 3 (i)に示すように正常な TE 信号が得られ、問題なくトラックを追従できる。しかし、光ディスクに気泡が存在し、そ の気泡を光ビームスポットが横切るときは、気泡によって TE信号に生じる擬似オフト ラック成分のため、トラックずれが大きくなり、再生エラーが発生する可能性がある。
[0139] 次に、ディスクモータ 200により光ディスク 102を所定速度で回転させ、光ディスク 1 02の情報層上に光ビームスポットを形成する。ディスクモータ 200によって所定速度 で回転している光ディスク 102の情報層上において所望のトラックを光ビームスポット が追従するように、フォーカス制御およびトラッキング制御が実行される。
[0140] ステップ S4において、 1トラックの再生を行い、ステップ S5で再生エラーが発生した か否かを判断する。再生エラーが発生したときは、ステップ S6において、その再生が 2回目の再生力否かを判定する。再生 2回目ではないとき、すなわち、 1回目の再生 でエラーが生じた場合は、 2回目の再生 (リトライ)を行う前に設定の変更を実行する ため、ステップ S8で、波形整形の設定を変更する。すなわち、ディフエタトの検出に 応答して充分に長い期間、トラッキング制御をホールドするように波形整形部 126の 設定を調整する。具体的には、波形整形設定部 127から xHOLD信号を波形整形 部 126に送り、図 3 (h)に示すように、ディフエタト検出から所定期間だ Highとなるホ 一ルド信号を生成するようにする。この所定時間は、光ビームスポットが平均的な大き さの気泡(大きさ: 0. 5mm〜: Lmm程度)を横切る時間に相当する時間(例えば 100 IX秒〜 300 μ秒)に相当する。
[0141] 上記の条件のもとでリトライを行うとき、 ΤΕ信号には図 3 (j)に示すように気泡に起因 する擬似オフトラック成分が発生するため、それに追従すると、トラック飛びが発生し てしまうが、リトライ時にはディフエタト検出信号に応じてトラッキング制御のホールドが 行われるため、図 2Aの駆動回路 150に入力される信号は、図 3 (k)に示すように擬 似オフトラック成分が無視されたものとなる。このため、光ビームが気泡を通過すると きのトラックずれは小さくなり、正常な再生が可能になる。 [0142] このように、 1回目の再生では、指紋に強い再生を実行し、それでもトラック飛びなど のトラッキング異常が発生した場合には、光ディスクに気泡が存在すると推定し、 2回 目の再生 (リトライ)では、気泡に適した設定にする。
[0143] このようなリトライは、光ディスクの再生レートが転送レートに比べて低い場合に、時 間的余裕を持って行うことができる。なお、 BD— ROMビデオディスクでは、転送レー トは 72Mbpsであり、再生レートは 50Mbps以下である。また、 BD— RZREディスク では、 24Mbps程度のレートで記録された BSデジタル放送コンテンツを 36Mbps以 上のレートで再生する。このため、これらの光ディスクでは、光ディスクのディフエタトと して気泡が存在する場合にリトライを行うことを前提としても、ユーザの不満を招くよう な時間的なロスは実質的に生じな 、。
[0144] なお、図 4Aのステップ S5で再生エラーが発生していないと判定されたときは、その まま、再生を継続する。また、ステップ S6で再生 2回と判定されたときは、ステップ S9 に進み、再生エラーの表示を行うとともに、再生動作を停止する。
[0145] 上記の実施形態では、トラッキング制御のホールド時間を 1回目の再生時とリトライ 再生時との間で変更することより、気泡に対応したリトライ再生を可能にしているが、 ホールド時間の設定は変更せずに、図 3 (b)および図 3 (f)に示す「LEVEL」を上下 させることにより、気泡に適したリトライ再生を実現しても良 、。
[0146] 前述したように、波形整形設定部 127からディフエタト検出部 124に入力される「LE VELJ信号は、ディフ クト検出回路 124で行う 2値化の基準レベルを規定する信号 である。この「LEVEL」信号によって 2値化の基準レベルを変化させると、ディフエタト 検出部 124から出力される信号の時間幅を調整したり、所定時間幅以下のノイズパ ルスを除去することが可能である。また、 1回目の再生時には、指紋や気泡による反 射光量の低下は無視するように 2値ィ匕の基準レベルを設定しておき、 2回目以降のリ トライ再生時には、その基準レベルを高めることにより、指紋や気泡に応じた波形の ディフエタト検出信号を生成させることが可能である。
[0147] このように、 xHOLD信号および LEVEL信号の少なくとも一方により、反射光量の 低下に応じて出力されるホールド信号の波形を調整することができるため、ディフヱク トを検知したときにトラッキング制御をホールドする力否かを、 1回目の再生時と 2回目 以降のリトライ再生時との間で変更することが可能である。
[0148] なお、ディフエタト検出部 124、波形整形部 126、および波形整形設定部 127の働 きによれば、指紋ドットか気泡かを識別することは理論的には可能であるが、この識 別をリアルタイムで正確に実行することは現実には難しい。このため、本実施形態で は、初期設定では指紋や気泡が検出されたとしてもトラッキング制御のホールドは実 行しないようにしている。
[0149] ただし、トラック外れが発生した後、その原因が指紋に起因して生じたのか否かをデ イフェタト検出信号に基づいて判定することは可能であり、この判定結果を用いてリト ライ再生時の設定変更の内容を決定することができる。このような光ディスク装置は、 実施形態 2において説明する。
[0150] [ゲイン、回転速度]
本実施形態の光ディスク装置では、指紋が存在してもトラッキングを安定して行える ような初期設定を行っている。すなわち、サーボゲインを光ディスクの偏心や振動に 追従させる通常の大きさに設定している。このようなサーボゲインでは、光ビームスポ ットが気泡を横切るときは、光ディスクの光透過層が気泡の核の部分を中心に湾曲し ているため、そのままでは TE信号の擬似オフトラック成分に応答してしまうことになる 。このような応答を防止するため、上述の例では、擬似オフトラック成分が出現する前 の状態にトラッキング制御をホールドして 、るが、トラッキング制御のサーボゲインを 小さくしても、擬似オフトラック成分に応答しに《することが可能である。
[0151] 本実施形態では、 1回目の再生動作時にトラック外れが生じ、それによつて気泡の 存在を検知した場合は、追従条件設定部 400の働きにより、トラッキング制御のホー ルドに関する設定を切り換えるとともに、サーボゲインの大きさをも変更する。すなわ ち、 1回目の再生では、指紋ドットには応答せず、振動や光ディスクの面ふれに対す る追従が可能な大きさにトラッキング制御のサーボゲインを設定しておく。そして、 1 回目の再生でトラック外れが生じ、リトライ(2回目以降の再生)を行うときは、図 2Bに 示すゲイン設定部 420がゲイン調整部 129にゲイン変更のための指令 (Gain)を送 ることにより、トラッキングサーボのゲインを低減し、気泡による擬似オフトラック成分に 対して過渡的に応答しな 、ようにする。 [0152] 図 4Bは、本実施形態のフローを示している。図 4Aのフローと異なる点は、 1回目の 再生時に再生エラーが発生したとき (ステップ S6において「No」と判定されたとき)、 ステップ S7に進み、トラッキング制御のサーボゲインを初期設定値「M」から「L」に低 下させている点にある。その他の手順は、図 4Aを参照して説明した実施形態 1にお ける手順と同一であるので、その説明は重複して行わないこととする。
[0153] 本実施形態のように、リトライ動作時にサーボゲインが充分に低い値に設定されて いれば、光ディスクに気泡が存在していても、トラッキングサーボは気泡による擬似ォ フトラック成分に応答せず、光ビームはトラックの略中心付近を走査することが可能に なる。図 11 (a)は、トラッキングサーボのゲインが相対的に高いときの TE信号の波形 を示し、図 11 (b)は、ゲインが相対的に低いときの TE信号の波形を示している。図 1 1からわかるように、ゲインを低下させることにより、同じ気泡を追加するときに発生す る擬似オフトラック成分の振幅が小さくなつて 、る。
[0154] なお、リトライ再生時に回転設定部 430により、光ディスク回転速度を高めても同様 の効果を得ることができる。光ビームスポットが気泡を横切る時間は、光ディスクの回 転速度が高いほど、短縮される。例えば標準倍速の 1. 5倍の線速度で光ディスクが 回転しているとき、光ビームが気泡を横切る時間(通過時間)は、標準速度で回転し ている場合に比べて、 2Z3に短縮される。このように通過時間が短縮されると、気泡 による擬似オフトラック成分が TE信号に現れても、応答できず、トラック外れの生じる 確率を低減できる。
[0155] (実施形態 2)
前述したように、指紋ドット間の領域力 得られるトラッキング信号は有効であるため 、図 3に示すように、個々の指紋ドット 12を検知するたびに、パルス状のディフエタト 検出信号を生成することができる。ディフエタト検出信号のパルス数 (指紋ドット検出 数)をカウントし、一定期間(例えば 3〜10ミリ秒)内に所定数 (例えば 10〜40個の間 の所定値)以上のパルスが検出された力否かに応じて、「指紋」の有無を検出するこ とが可能である。
[0156] 1回目の再生時にトラック外れが生じたとき、上記方法により「指紋」が検出されなか つたときは、トラック外れの原因が気泡にあると推定し、 TE信号に現れる擬似オフトラ ック成分には応答しな 、ようにサーボのフィルタ設定等を切り換えるようにしてもょ 、。
[0157] 以下、本実施形態の光ディスク装置を説明する。基本的な構成は実施形態 1の光 ディスク装置と同じであるため、図 2Aおよび図 2Bを参照して本実施形態の光デイス ク装置を説明する。
[0158] 前述の実施形態では、光ビームスポットがディフエタトを通過した際に大きなトラック ずれが生じ、リトライ動作が必要になった場合に、そのディフエタトは気泡であると推 定し、リトライ動作を行うに際して気泡に対して最適な設定に切り換えている。言い換 えると、大きなトラックずれが生じる力否かにより、気泡の有無を検知している。これに 対し、本実施形態では、大きなトラックずれが生じる力否かによって気泡を検出する のではなぐ指紋ドットを積極的に検知し、指紋ドットが検出されない場合に、ディフエ タトが気泡であると判定する。
[0159] 前述したように、 BD上の光ビームスポットのサイズは小さぐ指紋を通過するとき指 紋ドットとドット間領域との判別が可能である。言い換えると、一定期間内に短時間の 反射光量低下を連続して複数回検出したときは、その反射光量の低下が指紋ドット に起因するものであると判定することが可能である。
[0160] 本実施形態でも、初期設定では、図 2Bに示す波形整形設定部 127が指紋ドットの 検出に応答して 0レベルのホールド信号を出力する。すなわち、指紋ドットが検出さ れたときでも、トラッキング制御はホールドされない。また、本実施形態でも、トラツキン ダサーボのゲインは、 3段階 (HZMZL)に設定可能であり、初期的には、中間のゲ イン (M)に設定される。この状態では、指紋ドットが存在しても、問題なくトラッキング が可能である。
[0161] 上記の初期設定のもとで動作している場合、光ディスクに指紋はあるが、気泡が存 在しないときでも、振動衝撃やトラックの部分的なうねり等のため、偶然にトラック飛び が発生する場合がある。このような場合、気泡が存在すると誤判定してしまい、その結 果、ホールド時間を延長するように設定の切り替えが行われると、指紋のせいでトラッ ク飛びの発生率が増加してしまうことになる。このため、本実施形態では、 1回目の再 生時にトラック飛びが発生しても、直ちに「気泡」によって生じたとは決定せず、ディフ クト検出信号の波形から指紋が存在するか否かを判定する。そして、指紋が存在す る場合は、リトライ時に設定を「気泡」に適したものに変更せず、最初の設定のまま、リ トライ動作を実行する。
[0162] 本実施形態では、指紋の有無を以下のようにして検知する。
[0163] すなわち、指紋に起因して図 3 (b)に示すような RF加算信号が得られた場合、ディ フエタト検出部 124からは、図 3 (c)に示すディフエタト検出信号が生成される。このデ イフェタト検出信号には、多数の指紋ドットに対応する複数のパルスが含まれている 点で、気泡が存在する場合のディフエタト検出信号とは異なっている。従って、例え ば BDの標準速再生の場合、タイマーによって計測される所定期間(例えば 5ミリ秒) 内のパルス数をカウントし、その数が予め設定しておいた基準 (例えば 20個)を超え るときは、指紋が存在すると判定し、パルスの数が基準以下のときは、指紋が存在し ていないと判定することができる。このような基準は、再生倍速に応じて変更すること が好ましい。
[0164] また、タイマーによって個々のパルスの時間幅を計測することにより、その時間幅に 基づいて、ディフエタトが気泡か否力判定することもできる。指紋ドットの場合のパルス 幅に比べて気泡のパルス幅が充分に大きいためである。
[0165] このような方式によれば、トラック外れが発生したとき、光ディスクに指紋が存在して いるのに、気泡に適した設定に変更してしまうという事態を避けることができ、設定変 更により、却ってトラック外れの頻度を高くしてしまうという問題を解決できる。
[0166] 図 2Cは、指紋検出部 500を含む追従条件設定部 400の構成を示すブロック図で ある。図 2Bに示す構成要素と同一の構成要素については、重複した説明は行わず 、指紋検出部 500の構成および動作を詳しく説明することにする。
[0167] ディフエタト検出部 124で生成されたディフエタト検出信号は、指紋検出部 500が有 するタイマー 530へ入力される。タイマー 530はパルス状のディフエタト検出信号の 時間幅を計測し、その結果をカウンタバッファ 520に入力する。カウンタバッファ 520 の出力は、比較器 510に入力され、比較器 510による比較結果を示す信号は、波形 整形設定部 127、ゲイン設定部 420、および回転速度設定部 430に入力される。
[0168] このような指紋検出部 500によれば、連続する指紋ドットに対応するパルス数をカウ ントすることにより指紋を検出することが可能になる。前述したように、人間の指の大き さに著しい差異はなぐまた、指紋ドットの大きさも、多少の個人差があるものの、ほぼ 同じである。従って、光ビームが指紋を通過する時間や、指紋ドットを横切る時間は、 光ディスク上を移動する光ビームの走査速度 (線速度)に依存して決まる。個々の指 紋ドットの直径が 65 μ m、配列のピッチが 100 μ mとすると、指紋が付着している領 域のサイズ (走査方向サイズ)が例えば 2cmであるとすると、光ビームが指紋付着領 域を横切る間に最大 120個の指紋ドットに対応するノ ルスがカウントされることになる 。線速度 5mZ秒で BDを再生している場合、光ビームが上記の指紋付着領域を横 切るために要する時間は、 4ミリ秒となる。従って、指紋力否かの判定は、 4ミリ秒程度 の区間で可能である。この区間において、指紋ドットに起因して検出されるパルスの 数は最大 120個であるが、指紋以外の一般的なディフエタトは、気泡にしても塵にし ても、上記の区間内で 1つまたは数個のノ ルスしか生成しない。従って、例えば 4ミリ 秒の区間で 10個以上のノ ルスが連続して検出されたならば、光ビームが指紋付着 領域を横切って ヽると判定できる。
[0169] 好ま 、実施形態にぉ 、ては、計測区間および指紋ドットによるパルスの時間幅と して、光ディスクの再生速度に応じて異なる値をタイマー 530内に記憶しておき、再 生速度に応じて異なる計測区間およびパルス基準値を設定する。例えば、線速度 5 mZ秒の再生速度の場合、計測期間を 4ミリ秒に設定し、パルス基準値を 10個に設 定するが、線速度 10mZ秒の再生速度の場合は、計測期間を 2ミリ秒に設定し、パ ルス基準値を 10個のまま維持する。また、一定の時間(例えば 10ミリ秒)が経過する 間にディフエタト検出信号のパルスがカウントされな力つたときは、タイマー 520をリセ ットし、指紋ドットが検出された時にタイマー 520による計数を開始するようにしてもよ い。
[0170] これにより、比較器 510がカウンタノ ッファ 520における計数値と基準値とを比較し 、その結果に応じて、ディフエタトを指紋か否かを指紋検出部 500が判定する。この 判定結果は、同じプロセッサ 111内のゲイン設定部 420と回転速度設定部 430にも 入力される。
[0171] このような指紋検出部 500によれば、 1回目の再生時において光ビームが指紋を通 過するときにディフエタトが指紋であるか否かを検知できるため、トラック外れが生じた ときに指紋が検出されな力つた場合は、 2回目リトライ再生時に、気泡に適するように 追従条件を適切に変更することができる。追従条件の変更は、実施形態 1について 説明した通りに行うことができる。
[0172] なお、本実施形態では、初期の追従条件のもとで再生エラーが発生した場合にお いて、指紋や気泡が検出されな力つたならば、外部からの振動や衝撃などの別な要 因で再生エラーをおこした可能性が高いので、 2回目の設定は変更せず、指紋に最 適な設定のままリトライを実施する。
[0173] このように本実施形態によれば、実施形態 1の光ディスク装置では推定で行ってい た追従条件の設定変更を、より実際の状況に基づいて確実に行うことができる。従つ て、トラック外れが発生しても、指紋が検出された場合は、リトライ時の設定を指紋に 対して有効な状態に維持することできるので、再生特性に優れた光ディスク装置が実 現できる。
[0174] 次に、図 5Aに示すフローチャートを参照して、本実施形態における再生時の処理 を説明する。
[0175] まず、 BDを本実施形態の光ディスク装置にロードした後、ステップ S21において、 BDの再生動作を開始する。このとき、図 2Cに示す波形整形設定部 127がホールド 時間をゼロとするように波形整形の設定を行 ヽ (ステップ S22)、トラッキングのサーボ ゲインを初期値 (M)に設定する (ステップ S 23)。
[0176] 次に、ステップ S24において 1トラックの再生を行い、ステップ S25で再生エラーが 発生した力否かを判断する。再生エラーが発生したときは、ステップ S26において、 一定時間内のディフエタト検出信号に複数のパルスが連続して含まれていたか否か を判定する。図 3 (c)に示すような複数のパルスが検出された場合は、光ディスクに指 紋が存在していると判定し、初期設定を変更することなぐステップ S27に進み、再生 の回数が所定値 nに達しているカゝ否かを判定する。再生回数が所定値 nに達してい ると判定された場合は、ステップ S28に進み、再生エラーの表示を行うとともに、再生 動作を停止する。このとき、光ディスク装置の表示画面に「光ディスクから指紋をふき 取ってくださ 、」などの警告メッセージを表示しても良 、。
[0177] ステップ S27において、再生の回数が所定値 n未満の場合は、ステップ S 24に進み 、再生のリトライを行う。この場合、トラッキング制御のホールド時間やサーボゲインを 初期設定のまま維持し、指紋に適した条件でリトライ再生を実行する。すなわち、トラ ック外れの原因は、気泡ではなぐ外部力 装置に加えられた衝撃などにあると推定 し、単純にリトライを実行する。
[0178] なお、ストップ S26において、ディフエタト検出信号に多数のパルスが含まれていな いことがわ力つた場合は、光ディスクに指紋はなぐ気泡による再生エラーが発生した と推定する。この場合は、ステップ S 29に進み、トラッキングのサーボゲインを初期設 定値 M力も Lに低下させる。また、ステップ S30においては、波形整形の設定を変更 することにより、トラッキング制御のホールド時間を気泡に対応した値にする。このとき のホールド時間も、光ビームスポットが平均的な大きさの気泡を横切る時間よりも長!、 時間(例えば 100 μ秒〜 300 μ秒)に設定することができる。このように、指紋が検出 されなかった場合は、気泡に適した設定への変更を行った後、ステップ S24に進み、 リトライ再生を実行する。
[0179] なお、ステップ S25において再生エラーが発生していないと判定されたときは、その まま、再生を継続する。
[0180] 上記のフローでは、ステップ S30で波形整形の設定変更を行うことにより、トラツキン グ制御のホールド時間を気泡に対応する大きさに調整しているが、この設定変更は 省略してもよい。すなわち、図 5Βのフローチャートに示すように、サーボゲインを低下 させるだけでも、気泡による擬似オフトラック成分に応答しないようにすることが可能 である。前述したように、トラッキング制御のサーボゲインを充分に低下させると、気泡 による擬似オフトラック成分が ΤΕ信号に現れても、その成分に応答することなく無視 することが可能である。
[0181] 図 5Βに示す例では、リトライ再生時の設定を気泡に適したものに変更するため、ト ラッキング制御のサーボゲインを低下させて 、るが、サーボゲインの値を変更する代 わりに、光ディスクの回転速度 (再生速度)を上昇させても良い。本実施形態の光ディ スク装置では、リトライ再生時にサーボゲインを低減することなぐ光ディスクの回転数 を増加させる。
[0182] 図 6は、本実施形態の動作手順を示すフローチャートである。図 5Βに示す動作手 順との違いは、ステップ S26において指紋が検出されな力つた場合に、ステップ S40 に進み、ディスクモータ 200 (図 2C)の回転速度を高める点にある。
[0183] 前述したように、光ビームスポットが気泡を横切る時間は、光ディスクの回転速度が 高いほど、短縮される。このように通過時間が短縮されると、気泡による擬似オフトラッ ク成分が TE信号に現れても、応答できず、トラック外れの生じる確率を低減できる。
[0184] 再生 1回目でエラーが発生した場合、リトライ再生のために目標トラックへの位置決 め動作を行うことが必要になる力 本実施形態のように光ディスクの回転速度を高め ることにより、リトライ時間を短縮できるという効果も得られる。
[0185] 上記の各実施形態を組み合わせて本発明を実施することも可能であり、本発明は データの再生動作時のみならず記録動作時にも適用され得る。
[0186] なお、ディスク表面に形成された傷などのディフエタト(第 3のディフエタト)は、反射 光量が大きく落ちるため、指紋や気泡との判別が容易である。従って、初期設定の段 階から、傷などのディフエタトを検出した場合は、トラッキング制御をホールドするよう に設定することができる。
[0187] (実施形態 3)
本発明は、 BD規格による第 1の光ディスク(以下、単に「BD」と称する)および HD DVD規格による第 2の光ディスク(以下、単に「HD— DVD」と称する)を含む複数 の種類の光ディスク力 データを再生することが可能な光ディスク装置にも適用でき る。
[0188] 以下、図 13を参照しながら、本発明による光ディスク装置の第 3の実施形態を説明 する。本実施形態の光ディスク装置は、 BDおよび HD— DVDの両方に対応すること ができるドライブであり、図 13は、その構成を模式的に示す図である。図 13に示す光 ディスク装置は、基本的には図 1に示す光ディスク装置と同様の構成を有している。 異なる点は、本実施形態の光ディスク装置がディスク判別部 330を備えて 、る点と光 ピックアップ 104が BD用対物レンズおよび HD— DVD用対物レンズを含む複数の 対物レンズを備えている点にある。図 1に示す実施形態と共通する構成要素および その動作にっ 、ては、ここでは説明を繰り返さな 、。
[0189] HD— DVDに記録されているデータを再生したり、 HD— DVDにデータを記録す る場合、光ディスクの表面に形成される光ビームスポットのサイズは、 BDに比べて大 きぐ DVDよりも小さい。
[0190] HD— DVDで使用する光ビームの波長は 405nm (青紫色半導体レーザ)であるが 、 HD— DVD用対物レンズの開口数 NAは 0. 65である。 HD— DVDの情報層にお ける有効なビームスポットのサイズ (有効断面積)は、図 10 (a)に示される光ビームス ポット 10のサイズの約 1. 7倍であり、直径にすると約 1. 3倍程度(約 0. 5 /z m)である 。さらに、 HD— DVDの光透過層の厚さは、 DVDの光透過層の厚さに等しぐ 0. 6 mmであり、 BDの光透過層の厚さに比べて 6倍も厚い。このため、 HD— DVDのディ スク表面におけるスポット径は、約 0. 5mm以上となり、 DVDのディスク表面における スポット径と同等または若干拡大して 、る。
[0191] 前述したように、通常、指紋のドット間のピッチは 0. 2mm〜0. 3mmぐらいであるた め、 HD— DVDでも 1つのビームスポット内に複数の指紋ドット 12が含まれることにな る。そのため、現在普及している DVDと同様、反射光量に基づいて個々の指紋ドット 12を検知することはできない(図 12参照)。すなわち、 HD— DVDに照射される光ビ ームにより、 HD— DVDの表面に形成された指紋を正しく検出することはできない。
[0192] HD— DVDは、 DVDと同様に、 2枚の基材(各々の基材の厚さは約 600 m)を貼 り合わせることによって製造されるため、 2枚の基材間には気泡が形成されにくい。ま た、仮に基材間に気泡が形成されたとしても、光透過層として機能する一方の基材が 600 mと厚いため、ディスク表面が気泡によって盛り上がることはない。更に、 HD DVDでは、使用する光ビームの波長が BDで使用する光ビームの波長に等しぐ 開口率 NAは DVDの開口率 NAに略等しいため、球面収差の感度が BDに比べて 約 1Z6と低い。以上のことから、 HD— DVDでは、気泡によって TE信号や光量信号 が悪影響を受けることはほとんどな 、。
[0193] 従って、 HD— DVDおよび BDの両方について、データの記録または再生を可能と する本実施形態の光ディスク装置 (ユニバーサルドライブ)では、ディスク判別部 330 によって BDがドライブに装填されたと判定された場合、その最初の再生時において は、指紋によるトラック外れが相対的に生じにくい条件に追従条件を設定する。この 設定は、追従条件設定部 400が行う。なお、本実施形態におけるディスク判別部は、 種々の方法でディスク判別を行えばよぐ判別の方式は特定のものに限定されない。 図 13に示す例では、ディスク判別部 330の機能は、コントローラ 101によって実現さ れており、再生部 122の出力から光ディスクの種類を特定する情報を取得して 、る。 ディスク判別部 330は、フォーカス誤差信号などの光ディスク力も得られる他の信号 の波形に基づ 、て光ディスクの種類を判別してもよ 、。
[0194] 本実施形態では、 BDに対するデータの記録または再生を行う場合、光ピックアツ プ 104が BD用対物レンズ(NA: 0. 85)を介して光ビームを光ディスク 102の情報層 に集束する。そして、 1回目の再生時においてトラック外れが生じて 2回目以降のリト ライ再生を行う場合、追従条件設定部 400は、気泡によるトラック外れが相対的に生 じにくい条件に追従条件を変更する。これらの動作については、他の実施形態につ いて説明したとおりである。
[0195] 追従条件設定部によって行う初期設定は、指紋に強い設定であり、例えば TE信号 のホールド時間を短くし (ホールド時間ゼロの場合を含む)、指紋ドットの間で TE信号 に基づくトラッキング制御を可能にしている。このため、指紋がディスク表面の広い範 囲に存在していても、指紋ドットの間に位置する領域からトラッキング誤差に関する情 報を適切に得ることができ、トラック外れが生じにくい動作を実現できる。
[0196] このような初期設定では、気泡が存在していた場合、 TE信号中に生じる擬似オフト ラック成分により、トラック外れが発生しやすいが、本発明の第 1の態様では、そのよう なトラック外れの発生を許容する。すなわち、トラック外れが生じた場合は、その原因 となる光ディスクのディフエタトを「指紋」ではなく「気泡」であると推定した上で、初期 設定を「指紋」に適したものから「気泡」に適したものに変更する。
[0197] 一方、ディスク判別部 330によって HD— DVDが装填されたと判別された場合、 H D— DVDは DVDと同様に気泡の影響がないので、追従条件設定部 400は、起動 後 1回目の再生時においては、指紋によるトラック外れが相対的に生じにくい条件に 追従条件を設定する。本実施形態における追従条件設定部 400は、 BDのための追 従条件のみならず、 HD— DVDのための追従条件も前もって記憶している。また、後 述するように、起動時に最初に設定される追従条件の内容は、 BDと HD— DVDとの 間で異なっている。 [0198] HD— DVDに対するデータの記録または再生を行う場合、光ピックアップ 104は H D— DVD用対物レンズ (NA: 0. 65)を介して光ビームを光ディスク 102の情報層に 集束する。 HD— DVDが装填されているときは、トラック外れが発生して 2回目以降 のリトライ再生を行う場合でも、追従条件は変更せず、指紋によるトラック外れが相対 的に生じにくい条件でリトライを繰り返す。前述したように、 HD— DVDでは、気泡に よるトラック外れを考慮する必要がな 、からである。
[0199] なお、 HD— DVDの場合、指紋によるトラック外れが相対的に生じにくい条件は、 B Dの場合における指紋によるトラック外れが相対的に生じにくい条件とは異なってい る。これは、 HD— DVDと BDとの間で、光ディスクの情報層上におけるトラックピッチ やビームスポットサイズが異なっているため、指紋によってトラック外れが相対的に生 じにくい条件も異なっているからである。具体的には、 HD— DVDが装填された場合 、 BDが装填されている場合に比べて、トラッキングサーボのゲイン交点周波数を低く したり、あるいは、 1kHz付近のゲインを低減することが有効である。
[0200] 本実施形態では、光ピックアップ 104が BD用および HD— DVD用の別々の対物 レンズを備えているが、本発明における光ピックアップは、このようなものに限定され ない。小型化のため、単一の対物レンズが BDおよび HD— DVDの両方に用いられ ても良い。
[0201] また、本発明の光ディスク装置は、 BDおよび HD— DVD以外の光ディスク(DVD や CD)に対してもデータの記録 ·再生を実行し得る構成を備えて 、ても良 、。
産業上の利用可能性
[0202] 本発明の光ディスク装置は製造段階で気泡が形成され得る光ディスクに対しても適 切な再生動作が実行できるため、 BDなどの次世代光ディスクに好適に用いられる。

Claims

請求の範囲
[1] 光ディスクの情報層に対して光ビームを集束させる少なくとも 1つの対物レンズと、 前記光ディスクからの反射光に基づいて受光信号を生成する光検出器と、 前記対物レンズを前記光ディスクの半径方向に駆動するトラッキングァクチユエータ と、
前記受光信号に基づいてトラッキング誤差信号を生成するトラッキング誤差検出部 と、
前記トラッキング誤差信号に基づ 、て前記トラッキングァクチユエータを駆動し、前 記光ビームに前記ディスク上のトラックを追従させるトラッキング制御部と、
前記受光信号に基づいて前記光ディスクの反射光強度が低下した部分をディフ タトとして検出し、ディフエタト検出信号を出力するディフエタト検出部と、
前記ディフエタトによるトラッキング外れの生じやすさに影響する追従条件を設定す る追従条件設定部と、
を備え、
前記追従条件設定部は、前記光ディスクに形成される複数種類のディフ タトであ つて大きさが相対的に小さな第 1のディフ タトと大きさが相対的に大きい第 2のディ フエタトを含む複数種類のディフエタトのうち、前記第 1のディフエタトによるトラック外 れが相対的に生じにくい条件に追従条件を最初に設定し、
再生時においてトラッキング異常が生じた場合、前記追従条件設定部は、前記第 2 のディフ タトによるトラック外れが相対的に生じにくい条件に追従条件を変更する、 光ディスク装置。
[2] 前記第 1のディフエタトのサイズは、前記光ビームによって前記光ディスクの表面に 形成される光スポットの直径よりも小さぐ前記第 2のディフエタトのサイズは、前記光 スポットの直径よりも大き 、、請求項 1に記載の光ディスク装置。
[3] 前記第 1のディフエタトは前記光ディスクの表面に形成される指紋ドットであり、前記 第 2のディフエタトは、前記光ディスクの内部に形成される気泡である、請求項 2に記 載の光ディスク装置。
[4] 前記追従条件設定部は、前記トラッキング誤差信号をディフ 外直前における値 にホールドするためのホールド信号を前記ディフエタト検出信号に基づいて生成する ホールド信号生成部を備え、
前記追従条件設定部は、最初の追従条件でトラッキング外れが生じた場合、前記 ホールド信号が規定するホールド時間を、前記トラック外れが生じる前より長くするよ うに前記ホールド信号生成部の設定を変更する請求項 1に記載の光ディスク装置。
[5] 前記追従条件設定部はトラッキング制御のゲインを制御するゲイン設定部を備え、 前記追従条件設定部は、トラッキング異常が生じた場合、前記ゲインの値を小さく する、請求項 1に記載の光ディスク装置。
[6] 前記追従条件設定部は光ディスクの回転速度を制御する回転速度設定部を備え、 前記追従条件設定部は、トラッキング異常が生じた場合、前記回転速度を高くする 、請求項 1に記載の光ディスク装置。
[7] 再生時に所定値以上のトラックずれまたは再生エラーが発生した場合にリトライ再 生を行うか否かを決定するリトライ決定部を備える、請求項 1に記載の光ディスク装置
[8] 再生時に所定値以上のトラックずれまたは再生エラーが発生した場合、前記追従 条件設定部は、現実にトラック外れが生じる前に、前記第 2のディフエタトによるトラッ ク外れが相対的に生じにくい条件に追従条件を変更する、請求項 1に記載の光ディ スク装置。
[9] 前記トラック外れが生じた場合において、前記ディフエタト検出信号が生成されてい な力つたとき、前記追従条件設定部は、リトライ再生時においても追従条件の設定を 変更しない、請求項 1に記載の光ディスク装置。
[10] 前記ディフエタトが指紋力否かを検知する指紋検出手段を更に備え、
前記ディフクトに起因してトラック外れが発生した場合において、前記ディフエタトが 指紋であると判定されたとき、前記追従条件設定部は、追従条件の設定を変更する ことなぐリトライ再生を行う請求項 1に記載の光ディスク装置。
[11] BD規格による第 1の光ディスクおよび HD— DVD規格による第 2の光ディスクを含 む複数の種類の光ディスク力 データを再生することが可能な光ディスク装置であつ て、 前記複数種類の光ディスクから選択され、前記光ディスク装置に装填された光ディ スクの情報層に対して光ビームを集束させる少なくとも 1つの対物レンズと、
前記光ディスクからの反射光に基づいて受光信号を生成する光検出器と、 前記対物レンズを前記光ディスクの半径方向に駆動するトラッキングァクチユエータ と、
前記受光信号に基づいてトラッキング誤差信号を生成するトラッキング誤差検出部 と、
前記トラッキング誤差信号に基づ 、て前記トラッキングァクチユエータを駆動し、前 記光ビームに前記ディスク上のトラックを追従させるトラッキング制御部と、
前記受光信号に基づいて前記光ディスクの反射光強度が低下した部分をディフ タトとして検出し、ディフエタト検出信号を出力するディフエタト検出部と、
前記ディフエタトによるトラツッキング外れの生じやすさに影響する追従条件を設定 する追従条件設定部と、
を備え、
前記追従条件設定部は、装填された光ディスクが前記第 1の光ディスクか前記第 2 の光ディスクかに応じて追従条件を変更する、光ディスク装置。
[12] 前記追従条件設定部は、前記ディフエタトによるトラッキング外れが生じてリトライ動 作を実行するとき、装填された光ディスクが前記第 1の光ディスクの場合には追従条 件を変更するが、装填された光ディスクが前記第 2の光ディスクの場合には追従条件 を変更しな 、、請求項 11に記載の光ディスク装置。
[13] 前記第 1の光ディスクが装填されている場合、前記追従条件設定部は、前記光ディ スクに形成される複数種類のディフエタトであって大きさが相対的に小さな第 1のディ フエタトと大きさが相対的に大きい第 2のディフエタトを含む複数種類のディフエタトの うち、前記第 1のディフエタトによるトラック外れが相対的に生じにくい条件に追従条件 を最初に設定し、
再生時においてトラッキング異常が生じた場合、前記追従条件設定部は、前記第 2 のディフ タトによるトラック外れが相対的に生じにくい条件に追従条件を変更する、 請求項 11に記載の光ディスク装置。
[14] 前記第 1のディフエタトは前記光ディスクの表面に形成される指紋ドットであり、前記 第 2のディフエタトは、前記光ディスクの内部に形成される気泡である、請求項 13に 記載の光ディスク装置。
[15] 前記第 2の光ディスクが装填されて ヽる場合、前記追従条件設定部は、前記光ディ スクに形成される複数種類のディフエタトであって大きさが相対的に小さな第 1のディ フエタトと大きさが相対的に大きい第 2のディフエタトを含む複数種類のディフエタトの うち、前記第 1のディフエタトによるトラック外れが相対的に生じにくい条件に追従条件 を最初に設定し、
再生時においてトラッキング異常が生じた場合、前記追従条件設定部は、追従条 件を変更することなくリトライ動作を行う請求項 12に記載の光ディスク装置。
[16] 光ピックアップとトラッキング制御部とを備える光ディスク装置に使用される集積回路 装置であって、
前記光ピックアップ力 得られる受光信号に基づいて指紋の有無を検知する指紋 検出部を備えている集積回路装置。
[17] 前記指紋検出部は、
所定期間を計測するタイマーと
前記所定期間内にお 、て、前記光ピックアップ力も得られる受光信号に基づ 、て 生成されたディフエタト検出信号に含まれるパルスの数をカウントするカウンタと、 を備え、
前記所定時間内における前記パルスのカウント数に基づいて、指紋の有無を検知 する、請求項 16に記載の集積回路装置。
[18] 前記所定期間は光ディスクの再生速度に応じて調整される請求項 17に記載の集 積回路装置。
[19] 光ピックアップとトラッキング制御部とを備える光ディスク装置に使用される集積回路 装置であって、
前記光ピックアップ力 得られる受光信号に基づいて光ディスクの反射光強度が低 下した部分をディフエタトとして検出し、ディフエタト検出信号を出力するディフエクト検 出部と、 前記ディフエタトによるトラッキング外れの生じやすさに影響する追従条件を設定す る追従条件設定部と、
を備え、
前記追従条件設定部は、前記光ディスクに形成される複数種類のディフ タトであ つて大きさが相対的に小さな第 1のディフ タトと大きさが相対的に大きい第 2のディ フエタトを含む複数種類のディフエタトのうち、前記第 1のディフエタトによるトラック外 れが相対的に生じにくい条件に追従条件を最初に設定し、
再生時においてトラック外れが生じた場合、前記追従条件設定部は、前記第 2のデ イフェタトによるトラック外れが相対的に生じにくい条件に追従条件を変更する、集積 回路装置。
[20] 前記追従条件設定部は、前記トラッキング誤差信号をディフ タト直前における値 にホールドするためのホールド信号を前記ディフエタト検出信号に基づいて生成する ホールド信号生成部を備え、
前記追従条件設定部は、最初の追従条件でトラッキング外れが生じた場合、前記 ホールド信号が規定するホールド時間を、前記トラック外れが生じる前より長くするよ うに前記ホールド信号生成部の設定を変更する請求項 18に記載の集積回路装置。
[21] 前記追従条件設定部はトラッキング制御のゲインを制御するゲイン設定部を備え、 前記追従条件設定部は、トラック外れが生じた場合、前記ゲインの値を小さくする、 請求項 19に記載の集積回路装置。
[22] 前記追従条件設定部は光ディスクの回転速度を制御する回転速度設定部を備え、 前記追従条件設定部は、トラック外れが生じた場合、前記回転速度を高くする、請 求項 19に記載の集積回路装置。
PCT/JP2007/063685 2006-07-10 2007-07-09 Dispositif de disque optique WO2008007646A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07790506A EP2040258B1 (en) 2006-07-10 2007-07-09 Optical disc device
JP2008524790A JP4918548B2 (ja) 2006-07-10 2007-07-09 光ディスク装置
US12/301,832 US7969844B2 (en) 2006-07-10 2007-07-09 Optical disc device
DE602007009235T DE602007009235D1 (de) 2006-07-10 2007-07-09 Optische datenträgervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006189441 2006-07-10
JP2006-189441 2006-07-10

Publications (1)

Publication Number Publication Date
WO2008007646A1 true WO2008007646A1 (fr) 2008-01-17

Family

ID=38923205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063685 WO2008007646A1 (fr) 2006-07-10 2007-07-09 Dispositif de disque optique

Country Status (5)

Country Link
US (1) US7969844B2 (ja)
EP (2) EP2211342B1 (ja)
JP (2) JP4918548B2 (ja)
DE (1) DE602007009235D1 (ja)
WO (1) WO2008007646A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8036078B2 (en) 2007-08-30 2011-10-11 Panasonic Corporation Optical disc apparatus and optical pickup
JP5427413B2 (ja) * 2006-11-24 2014-02-26 株式会社ソニー・コンピュータエンタテインメント 擬似汚れ付着パターン生成方法および光検査用ディスク
JP2016219093A (ja) * 2012-08-01 2016-12-22 オラクル・インターナショナル・コーポレイション 複数のヘッド光学テープドライブにおけるオフトラック書込防止およびデータリカバリのためのシステムおよび方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8233366B2 (en) 2008-06-02 2012-07-31 Apple Inc. Context-based error indication methods and apparatus
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2912251B2 (ja) 1996-08-29 1999-06-28 日本電気アイシーマイコンシステム株式会社 光学式ディスク再生装置
JP2003162834A (ja) 2001-11-27 2003-06-06 Hitachi Ltd 光ディスク装置
JP2005085406A (ja) * 2003-09-10 2005-03-31 Hitachi Ltd 光ディスク装置および光ディスク装置のディスク汚れ検出方法
JP2006155740A (ja) 2004-11-29 2006-06-15 Sony Corp 光ディスク装置及び光ディスクの欠陥処理方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT671742E (pt) * 1991-06-07 2000-04-28 Thomson Brandt Gmbh Sinalizacao do tipo de erro em suportes de informacao opticos
JP3451834B2 (ja) * 1996-04-23 2003-09-29 ソニー株式会社 欠陥検出回路及び再生装置
JP4523749B2 (ja) 2000-01-13 2010-08-11 パナソニック株式会社 光ディスク記録再生装置
JP4422855B2 (ja) 2000-03-16 2010-02-24 株式会社日立製作所 ウォブル信号再生回路
JP2002150576A (ja) * 2000-11-14 2002-05-24 Sony Corp 再生装置および方法、並びに記録媒体
JP2002334431A (ja) * 2001-03-09 2002-11-22 Sony Corp 光ディスク装置及び光ディスク装置の制御方法
JP3780866B2 (ja) 2001-04-19 2006-05-31 ヤマハ株式会社 光ディスク記録方法
KR20040022009A (ko) * 2002-09-06 2004-03-11 삼성전자주식회사 광디스크 기록 장치의 기록 제어 방법
JP4101088B2 (ja) * 2003-03-07 2008-06-11 パイオニア株式会社 情報記録装置、情報読取装置、情報記録方法、情報読取方法およびコンピュータプログラム
TWI299490B (en) * 2005-03-17 2008-08-01 Via Tech Inc Method and device for protecting a servo in reading signals on a defect disc
JP2007149193A (ja) * 2005-11-25 2007-06-14 Toshiba Corp ディフェクト信号生成回路
US7800992B2 (en) * 2007-04-23 2010-09-21 Mediatek Inc. Optical disc drive and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2912251B2 (ja) 1996-08-29 1999-06-28 日本電気アイシーマイコンシステム株式会社 光学式ディスク再生装置
JP2003162834A (ja) 2001-11-27 2003-06-06 Hitachi Ltd 光ディスク装置
JP2005085406A (ja) * 2003-09-10 2005-03-31 Hitachi Ltd 光ディスク装置および光ディスク装置のディスク汚れ検出方法
JP2006155740A (ja) 2004-11-29 2006-06-15 Sony Corp 光ディスク装置及び光ディスクの欠陥処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2040258A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5427413B2 (ja) * 2006-11-24 2014-02-26 株式会社ソニー・コンピュータエンタテインメント 擬似汚れ付着パターン生成方法および光検査用ディスク
US8036078B2 (en) 2007-08-30 2011-10-11 Panasonic Corporation Optical disc apparatus and optical pickup
JP2016219093A (ja) * 2012-08-01 2016-12-22 オラクル・インターナショナル・コーポレイション 複数のヘッド光学テープドライブにおけるオフトラック書込防止およびデータリカバリのためのシステムおよび方法

Also Published As

Publication number Publication date
EP2211342B1 (en) 2011-11-02
EP2211342A1 (en) 2010-07-28
JPWO2008007646A1 (ja) 2009-12-10
EP2040258A4 (en) 2009-08-05
DE602007009235D1 (de) 2010-10-28
US7969844B2 (en) 2011-06-28
EP2040258A1 (en) 2009-03-25
JP4918548B2 (ja) 2012-04-18
US20100232273A1 (en) 2010-09-16
JP2012048816A (ja) 2012-03-08
EP2040258B1 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4918548B2 (ja) 光ディスク装置
US6952387B2 (en) Optical disk playing apparatus and method for discriminating optical disk
JP2002008246A (ja) ディスク状記録媒体、ディスク記録及び/又は再生装置及び方法、並びにチルト検出方法
JP5406033B2 (ja) 光ディスク装置
JP3608737B2 (ja) ディスク再生装置及びディスク種類判別方法
WO2002059889A1 (fr) Dispositif et procede de mise en forme de spots lumineux, dispositif de captation de lumiere et appareil a disque optique
JP4042272B2 (ja) 記録媒体駆動装置及びチルト検出方法
JP4122658B2 (ja) 記録媒体駆動装置及びチルト検出方法
US8203915B2 (en) Optical disc reader
JP2003173549A (ja) 光ディスク装置及びフォーカスオフセット調整方法
CN100388368C (zh) 光盘设备
JP4396707B2 (ja) 光ディスク装置
JP2005092992A (ja) 光ディスク装置
JP4289234B2 (ja) 光ディスク装置
JP2003099964A (ja) 対物レンズ制御方法及び光ディスク装置
JP2001331953A (ja) 光ディスク装置
JP2010140576A (ja) 多層光ディスクおよび光ディスク装置
JP2011134407A (ja) 光ディスク装置及びディスク判別方法
WO2006088137A1 (ja) 記録媒体、再生装置及び方法、並びにコンピュータプログラム
JPH1097729A (ja) 光ディスク装置
JP2004006036A (ja) 光ディスク装置
JP2005310329A (ja) 光記録媒体、再生装置、トラッキングサーボ方法
JPH09147359A (ja) 光ディスクドライブ
JP2004310926A (ja) 光ディスク再生装置および光ディスク判別方法
JP2009037659A (ja) 光ディスク装置及び光ディスクの再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008524790

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007790506

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU