WO2007148578A1 - ハイパーブランチポリマーおよびその製造方法 - Google Patents

ハイパーブランチポリマーおよびその製造方法 Download PDF

Info

Publication number
WO2007148578A1
WO2007148578A1 PCT/JP2007/061904 JP2007061904W WO2007148578A1 WO 2007148578 A1 WO2007148578 A1 WO 2007148578A1 JP 2007061904 W JP2007061904 W JP 2007061904W WO 2007148578 A1 WO2007148578 A1 WO 2007148578A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
hyperbranched polymer
represented
group
chemical
Prior art date
Application number
PCT/JP2007/061904
Other languages
English (en)
French (fr)
Inventor
Koji Ishizu
Masaaki Ozawa
Hiroki Takemoto
Original Assignee
Tokyo Institute Of Technology
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute Of Technology, Nissan Chemical Industries, Ltd. filed Critical Tokyo Institute Of Technology
Priority to US12/308,567 priority Critical patent/US20100240792A1/en
Priority to JP2008522408A priority patent/JP5495561B2/ja
Priority to EP07745171A priority patent/EP2036929A4/en
Publication of WO2007148578A1 publication Critical patent/WO2007148578A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/005Hyperbranched macromolecules
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]

Definitions

  • the present invention relates to a novel hyperbranched polymer and a method for producing the same. That is, the present invention relates to a hyperbranched polymer having a hydroxyl group, an epoxy group, or a carboxynole group in the molecular chain of a repeating unit. These are paints, inks, adhesives
  • Resin fillers various molding materials, nanometer size porous forming agents, chemical mechanical polishing agents, functional materials, nanocapsules, photonic crystals, resist materials, optical materials, electronic materials, information recording It is suitably used as a material, printing material, battery material, medical material, magnetic material and the like.
  • Hyperbranched polymers are classified as dendritic (dendritic) polymers together with dendrimers. While conventional polymers generally have a string-like shape, these dendritic polymers have a unique structure because they actively introduce branching. Therefore, nanometer-order size, surface that can hold many functional groups, low viscosity compared to linear polymers, little intermolecular entanglement and fine particle behavior, non-amorphous solvent Since it has various properties such as solubility control, applications using these properties are expected.
  • the number of terminal groups is the most prominent feature of dendritic polymers, and as the molecular weight increases, the number of branches increases, so the absolute number of terminal groups increases with higher molecular weight dendritic polymers.
  • dendritic polymers with a large number of terminal groups greatly affect the intermolecular interaction depending on the type of terminal group, so the glass transition temperature, solubility, thin film formation, etc. change greatly. It has characteristics that are not present.
  • the advantage of hyperbranched polymers over dendrimers is their ease of synthesis, which is particularly advantageous in industrial production.
  • dendrimers are synthesized by repeated protection and deprotection, whereas hyperbranched polymers are synthesized by one-step polymerization of so-called AB-type monomers with a total of 3 or more of two kinds of substituents in one molecule. It is.
  • a hyperbranched polymer is synthesized by living radical polymerization of a compound having a photopolymerization initiating ability and having a vinyl group.
  • a method of synthesizing a hyperbranched polymer by photopolymerization of a styrene compound having a dithio rubamate group see Non-Patent Documents 1, 2, and 3
  • a photo of a (meth) acryl compound having a dithio rubamate group is known.
  • hyperbranched polymers do not have reactive functional groups in their structure, there are restrictions on multifaceted application development. Also, a method of synthesizing a hyperbranched polymer in which an acid anhydride is introduced into the main chain and has a dithiocarbamate group at the molecular end by photopolymerization in the presence of a styrene compound having a dithiocarbamate group and maleic anhydride. (See Non-Patent Document 7).
  • This hyperbranched polymer has an acid anhydride that is very unstable with respect to moisture in its structure, so it is less stable with respect to moisture. Therefore, a hyperbranched polymer having a reactive functional group and stable to moisture has been desired.
  • Non-special noon literature l Koji Ishizu, Akihide Mori, Macromol.Rapid Commun .21, 665-668 (2000)
  • Patent Document 2 Koji Ishizu, Akihide Mori, Polymer International 50, 9 06-910 (2001)
  • Patent Document 3 Koji Ishizu, Yoshihiro Ohta, Susumu Kawauchi, Macromolecules Vol.35, No.9, 3781— 3784 (2002)
  • Non-Patent Document 4 Koji Ishizu, Takeshi Shibuya, Akihide Mori, Polymer International 51, 424-428 (2002)
  • Non-Patent Document 5 Koji Ishizu, Takeshi Shibuya, Susumu Kawauchi, Macromolecules Vol.36, No.10, 3505-3510 (2002)
  • Non-Patent Document 6 Koji Ishizu, Takeshi Shibuya, Jaebum Park, Satoshi
  • Non-Patent Document 7 Koji Ishizu, Akihide Mori, Takeshi Shibuya, Polymer Vol. 42, 7911-7914 (2001)
  • the present invention has been made under the technical background described in the above document, and provides a novel hyperbranched polymer having a functional group in the molecular chain of a repeating unit and a method for producing the same. It is intended for multifaceted application development.
  • the present invention provides, as a first aspect, a structural unit represented by the following formula (1) as a polymerization initiation site, a repeating unit having a linear structure represented by the following formula (2) and the following formula (3):
  • a hyperbranched polymer having a branched structure repeating unit represented by formula (2), and the total number of the linear structure repeating units represented by formula (2) is an integer of 1 to 100,000.
  • a hyperbranched polymer in which the total number of repeating units of the branched structure represented by is an integer of 2 to 100,000.
  • R represents a hydrogen atom or a methyl group
  • R represents a hydrogen atom, carbon
  • may contain an ether bond or an ester bond
  • X, X and X are each a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or
  • the hyperbranched polymer according to the first aspect having a dithio-rubamate group at the molecular end.
  • the ratio of the total number of repeating units of the linear structure represented by the formula (2) contained in the polymer to the total number of repeating units of the branched structure represented by the formula (3) is described.
  • the amount of the repeating unit of the linear structure represented by the formula (2) is 1 mol% to 90 mol%
  • the amount of the repeating unit of the branched structure represented by the formula (3) is 99 mol% to 10 mol%.
  • the A force is expressed by the following formula (6):
  • the hyperbranched polymer according to the first aspect which is a structure examined in (1).
  • n represents an integer of 2 to 10.
  • the hyperbranched polymer according to the first aspect which has a structure represented by:
  • the hyperbranched polymer according to the first aspect wherein the weight average molecular weight measured in terms of polystyrene by gel permeation chromatography is 500 to 5,000,000.
  • the present invention comprises living radical polymerization by coexisting a dithiorubamate compound represented by the following formula (8) and a (meth) acrylate compound represented by the following formula (9):
  • a dithiorubamate compound represented by the following formula (8) and a (meth) acrylate compound represented by the following formula (9):
  • the method for producing a hyperbranched polymer according to the first aspect is a dithiorubamate compound represented by the following formula (8) and a (meth) acrylate compound represented by the following formula (9): The method for producing a hyperbranched polymer according to the first aspect.
  • R are alkyl groups having 1 to 5 carbon atoms and hydrides having 1 to 5 carbon atoms, respectively.
  • the living radioactivity compound is dissolved in a solvent by dissolving the dithiorubamate compound represented by the above formula (8) and the (meth) ataretoy compound represented by the above formula (9) in a solvent.
  • the method for producing a hyperbranched polymer according to the seventh aspect comprising polymerizing a polymer.
  • the dithio force rubamate compound force represented by the above formula (8) is N, N-jetyldithiocarbamylmethylstyrene or N, N-jetyldithiocarbaminoreethyl methacrylate.
  • the (meth) acrylate compound represented by the formula (9) is 2-hydroxyethyl methacrylate, glycidyl methacrylate or methacrylic acid, or the hyperth described in the seventh aspect or the eighth aspect. Branch polymer production method.
  • the eleventh aspect is the dithio force rubamate compound force N, N-jetyldithiocarbamylmethylstyrene or N, N-jetyldithiocarbaminoreethyl methacrylate which is represented by the formula (8).
  • the hyperbranched polymer according to the seventh aspect or the eighth aspect, wherein the (meth) ataretoy compound represented by the formula (9) is 2-hydroxyethyl methacrylate, glycidyl methacrylate or methacrylic acid Manufacturing method.
  • the hyperbranched polymer of the present invention has a hydroxyl group, an epoxy group, or a carboxyl group functional group in the molecular chain of the repeating unit, so that the characteristics such as the degree of crosslinking can be controlled by the mixing ratio of the crosslinking agent, etc. Excellent freedom of sex.
  • the production method of the present invention can easily and efficiently obtain a hyperbranched polymer having a functional group in the molecular chain of the repeating unit without terminal modification.
  • the hyperbranched polymer of the present invention is represented by the linear repeating unit represented by the formula (2) and the formula (3), with the structural formula represented by the formula (1) described above as a polymerization initiation site.
  • the total number of repeating units of the linear structure represented by the formula (2) is an integer of 1 to 100,000
  • the total number of repeating units of the branched structure represented by the formula (3) is 2 to 100,000. It is a hyperbranched polymer that is an integer.
  • R in the formula (1) represents a hydrogen atom or a methyl group.
  • R in the formula (2) is a hydrogen atom, a straight chain or branched chain having 1 to 20 carbon atoms.
  • a in Formula (1) and Formula (3) represents a structure represented by Formula (4) or Formula (5).
  • A is a carbon that may contain an ether bond or an ester bond.
  • X and X are each a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or
  • Examples include branched hydroxylalkyl groups such as 2-hydroxypropyl group.
  • alkyl group containing an epoxy group examples include glycidyl, glycidyl methyl, 2-glycidinoleethyl, 3-glycidylpropyl, 4-glycidylbutyl, 3,4-epoxybutinole, 4,5_epoxypentyl Nore, alkyl groups containing linear epoxy groups such as 5, 6_epoxyhexenole, ⁇ -methyldaricidyl, ⁇ -ethylidaridyl, ⁇ propylglycidyl, 2 glycidylpropyl, 2 glycidylbutyl, 3 glycidylbutyl , 2-Methyl-3 glycidylpropyl, 3-Methyl-2 glycidylpropyl, 3-Methanole 3, 4-Epoxybutyl, 3-Ethyl-3, 4-Epoxybutyl, 4-Methyl Examples thereof include alkyl groups containing branched epoxy groups
  • alkylene group of A examples include methylene, ethylene, normal propylene, normal
  • Examples include straight-chain alkylene such as malbutylene and normal hexylene, and branched alkylene such as isopropylene, isobutylene and 2-methylpropylene.
  • Examples of the cyclic alkylene include alicyclic chemical aliphatic groups having a cyclic structure of 3 to 30 carbon atoms, such as monocyclic chemical formula, polycyclic chemical formula, and bridged cyclic chemical formula. Specifically, it is possible to enumerate groups having a monocyclo, bicyclo, tricyclo, tetracyclo, or pentacyclo structure having 4 or more carbon atoms.
  • alkyl groups of 1 to 20 carbon atoms for X, X, X and X include
  • alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, isopropoxy group, cyclohexyloxy group, and normal pentyloxy group.
  • X, X, X and X are hydrogen atoms or carbon atoms 1
  • a in the formula (1) is preferably a structure represented by the formula (6) or the formula (7).
  • m represents an integer of 2 to 10, and m is preferably 2 or 3.
  • the hyperbranched polymer of the present invention is represented by the linear repeating unit represented by the formula (2) and the formula (3) at the polymerization initiation site of the structural formula represented by the following formula (1). It has a structure in which the repeating units of the branched structure are randomly copolymerized.
  • R and A have the same meanings as defined in the above formula (1), and D represents dithio rubamate.
  • the hyperbranched polymer in which the branched structure represented by the formula (3) is linked to the polymerization initiation site of the structural formula represented by the formula (1) of the present invention includes any of these structures.
  • a state in which the repeating units are connected will be described.
  • a molecular chain having at least one repeating unit of a linear structure represented by the formula (2) has an intermolecular chain having at least one repeating unit of each branched structure represented by the formula (3), or a formula ( It binds between the molecular chain represented by 3) and the molecular chain end D. Further, it may be bonded between the polymerization initiation site of the structural formula represented by formula (1) and the repeating unit of the branched structure represented by formula (3).
  • the hyperbranched polymer of the present invention has a linear chain represented by the formula (2) at the starting point of the structural formula represented by the formula (1).
  • a molecular chain having one or more repeating units of the structure, or a molecular chain having one or more repeating units of the branched structure represented by the formula (3) is bonded, and further represented by the formula (2).
  • a molecular chain having at least one repeating unit having a linear structure and a molecular chain having at least one repeating unit having a branched structure represented by the formula (3) are combined to form a random copolymer structure.
  • one bond of the repeating unit of the above formula (2) is bonded to each of the three bonds of the formula (3), and the other bond is bonded to the bond of another formula (3). Then, they are linked in a hyperbranched polymer form in a horizontal or horizontal manner.
  • the total number of repeating units of the linear structure represented by the formula (2) in the entire structure is 1 to 100,000, and the total number of repeating units of the branched structure represented by the formula (3) is 2 to 100, 000.
  • the hyperbranched polymer of the present invention has a ratio of the total number of repeating units of a linear structure represented by the formula (2) and the total number of repeating units of a branched structure represented by the formula (3) contained in the polymer.
  • the amount of the repeating unit having the linear structure represented by the formula (2) is 1 mol% to 90 mol%
  • the formula (3 The amount of the repeating unit of the branched structure represented by) is 99 mol% to 10 mol%, and the repeating unit of the straight chain structure and the repeating unit of the branched structure have a random copolymer structure.
  • each repeating unit structure forms a block polymer part.
  • the amount of the repeating unit of the linear structure represented by the formula (2) is 1 mol% to 70 mol%, and the formula (3) The The amount of the branched structure repeating unit is 99 mol% to 30 mol%.
  • the hyperbranched polymer of the present invention has a weight average molecular weight Mw measured in terms of polystyrene by gel permeation chromatography of 500 to 5,000,000, preferably
  • the degree of dispersion Mw (weight average molecular weight) ⁇ (number average molecular weight) is 1.0 to 10.
  • the hyperbranched polymer of the present invention coexists with the dithiocarbamate compound represented by the above formula (8) and the (meth) ataretoy compound represented by the formula (9), and performs living radical polymerization. Can be manufactured.
  • R and A are as defined above in formula (1), formula (2) and formula (3)
  • R and R are each an alkyl group having 1 to 5 carbon atoms, carbon atoms
  • R and R are bonded to each other and form a ring with the nitrogen atom bonded to it.
  • alkyl group having 1 to 5 carbon atoms include a methylol group, an ethyl group, an isopropyl group, a t-butyl group, a cyclopentyl group, and a normal pentyl group.
  • hydroxyalkyl group having 1 to 5 carbon atoms include a hydroxymethino group, a hydroxyethyl group, a hydroxypropyl group, and the like.
  • arylalkyl group having 7 to 12 carbon atoms include benzyl group and phenethyl group.
  • R and R are bonded to each other and together with the nitrogen atom bonded to them.
  • the ring include a ring containing 4 to 6 methylene groups.
  • the ring include a ring containing an oxygen atom or a sulfur atom and 4 to 6 methylene groups. R and R are bonded together and formed together with the nitrogen atom bonded to it
  • a ring examples include a piperidine ring, a pyrrolidine ring, a monoleolin ring, a thiomorpholine ring, and a homopiperidine ring.
  • the compound represented by the formula (8) can be easily obtained by a nucleophilic substitution reaction between the compound represented by the following formula (18) and the compound represented by the formula (19).
  • Y represents a leaving group.
  • the leaving group include a fluoro group, a black mouth group, a promo group, an iodine group, a mesinole group, and a tosyl group.
  • M represents lithium, sodium or potassium.
  • This nucleophilic substitution reaction is usually preferably carried out in an organic solvent capable of dissolving both of the above two types of compounds.
  • the compound represented by the formula (8) can be obtained with high purity by a liquid separation treatment with a water / non-aqueous organic solvent or a recrystallization treatment.
  • the compound represented by the formula (8) is produced with reference to the methods described in Macromol. Rapid Commun. 21, 665-668 (2000) and Polymer International 51, 424-428 (2002). That power S.
  • R represents a hydrogen atom or a methyl group, and R is a hydrogen atom, having 1 carbon atom.
  • 20 represents a linear or branched hydroxyalkyl group, or an alkyl group containing 2 to 20 carbon atoms or a linear or branched epoxy.
  • the (meth) ataretoy compound represented by the formula (9) include (meth) acrylic acid, (meth) hydroxymethyl acrylate, (meth) acrylic acid 2-hydroxyethyl, (Meth) acrylolic acid 3-hydroxypropyl, (meth) acrylic acid 4-hydroxybutyl, (meth) acrylic acid 2 _ hydroxypropinole, (meth) acrylic acid glycidyl, (meth) acrylic acid _ / 3-methyldaricidyl, ( (Meth) acrylic acid- ⁇ -ethyldaricidyl, (meth) acrylic acid- ⁇ -propyldaricidyl, (meth) acrylic acid _ 3, 4_epoxybutyl, (meth) acrylic acid-3_methyl _ 3, 4_epoxybutyl, (Meth) acrylic acid-3_ethyl-3, 4_epoxybutyl, (meth) acrylic acid 4_methyl 1-4,5_epoxypentyl, (meth) acrylic acid _5-
  • the (meth) acrylate compound refers to both an ata relay toy compound and a meta taro relay compound.
  • (meth) atalinoleic acid hydroxymethyl is composed of hydroxymethyl acrylate and hydroxymethyl methacrylate.
  • the dithiopower rubamate compound represented by the formula (8) and the (meth) acrylate copolymer represented by the formula (9) are allowed to coexist and living radical polymerization is performed, thereby A hyperbranched polymer having the structure of the invention and a hyperbranched polymer having a dithiopower rubamate group as a molecular end can be obtained.
  • Living radical polymerization can be carried out by known polymerization methods such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization. Particularly preferred is solution polymerization.
  • the polymerization reaction can be carried out at an arbitrary concentration in a solvent capable of dissolving the compound represented by formula (8) and the compound represented by formula (9).
  • Compound represented by formula (8) The compound represented by the formula (9) is present in an amount of 0.01 to 9 molar equivalents, preferably 0.05 to 7 monoequivalents, more preferably 0.1 to 5 molar equivalents. is there.
  • the concentration of the compound represented by the formula (8) and the compound represented by the formula (9) in the solution is arbitrary, but the compound represented by the formula (8) and the formula (9
  • the total amount of the compound represented by) is 1% by mass to 80% by mass with respect to the total mass (the total mass of the compound represented by formula (8), the compound represented by formula (9) and the solvent).
  • % Preferably 2% to 70% by weight, more preferably 5% to 60% by weight.
  • the solvent used for solution polymerization is preferably a solvent capable of dissolving the compound represented by formula (8) and the compound represented by formula (9).
  • aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene
  • ether compounds such as tetrahydrofuran and jetyl ether
  • acetone methyl ethyl ketone
  • methyl isobutyl ketone methyl isobutyl ketone
  • cyclohexane examples thereof include aliphatic hydrocarbons such as nonoremanole heptane, nonoremanolehexane, and cyclohexane.
  • These solvents may be used alone or in combination of two or more.
  • Liping radical polymerization in the presence of the compound represented by formula (8) and the compound represented by formula (9) is carried out by heating or irradiation with light such as ultraviolet rays in a solvent containing these compounds. be able to. In particular, it is preferable to perform the irradiation with light such as ultraviolet rays.
  • Light irradiation can be performed by irradiating from inside or outside the reaction system using an ultraviolet irradiation lamp such as a low pressure mercury lamp, a high pressure mercury lamp, an ultra high pressure mercury lamp, or a xenon lamp.
  • the polymerization temperature is not particularly limited.
  • the temperature is 0 ° C to 200 ° C, preferably 5 ° C to 150 ° C, more preferably 10 ° C to 100 ° C.
  • the polymerization time is 0.1 hour to 100 hours, preferably 0.5 hour to 50 hours, more preferably 1 hour to 30 hours.
  • the monomer the compound represented by the formula (8) and the formula (9) The conversion of the compound is increased.
  • the polymerization temperature is 15 ° C to 60 ° C, and the polymerization time is 1 hour and 10 hours.
  • the molecular weight, molecular weight distribution, and degree of branching can be adjusted within a range without impairing the structure of the hyperbranched polymer.
  • chain transfer agents such as mercaptans and sulfides and sulfide compounds such as tetraethylthiuram disulfide can be used.
  • antioxidants such as hindered phenols, UV absorbers such as benzotriazoles, 4_tert-butylcatechol, hydroquinone, nitrophenol, nitrocresol, picric acid, phenothiazine, dithiobenzoyl disulfide Polymerization inhibitors such as id can be used.
  • the hyperbranched polymer of the present invention obtained by living radical polymerization as described above can be separated from the solvent by distilling off the solvent in the reaction solution or by solid-liquid separation. Further, the hyperbranched polymer of the present invention can be precipitated by adding the reaction solution to a poor solvent such as heptane, methanol or hexane, and recovered as a powder.
  • a poor solvent such as heptane, methanol or hexane
  • the hyperbranched polymer of the present invention is dissolved in a solvent that can be dissolved, for example, tetrahydrofuran, cyclohexanone, etc., and a crosslinking agent is mixed, heated, or irradiated to carry out a crosslinking reaction to be cured. You can also.
  • crosslinking agent capable of crosslinking with a functional group in the structure of the hyperbranched polymer
  • a crosslinking compound having at least two crosslinking forming substituents is preferable. Can be used.
  • the hyperbranched polymer of the present invention having a hydroxy group or a carboxynole group introduced therein is cured by a crosslinking reaction
  • “Raihexamethoxymethychinolinoremelamine” “Saimenole 300, Saimenole 301 or Saimenole 303” ( Mitsui Cytec Co., Ltd.), methylbutyl mixed etherified methylol melamine “Cymel 238, Cymel 23 2 or Cymenole 266” (Mitsui Cytec Co., Ltd.), n_Butyl ether ⁇ methylol melamine “Super Becamine L—164” (Dainippon Ink Chemical Industry Co., Ltd.), Tetramethoxyglycoluril “POWDERLINK 1174” (American American) Cyanamitd products) can be used.
  • an acid compound such as p-toluenesulfonic acid can be used in combination.
  • the hyperbranched polymer of the present invention in which a carboxynole group is introduced can also be used as a cross-linking agent.
  • Commercially available diaryl iodide salts, triarylsulfonium salts, diarylphosphonium salts and the like can be used as curing catalysts.
  • crosslinking agent it is not limited to these illustrations.
  • the target product was recrystallized from the toluene phase in a freezer at 20 ° C below zero.
  • the recrystallized product was filtered and dried under vacuum to obtain 206 g of the desired product as white powder (yield 97%). Purity (relative area percentage) by liquid chromatography was 100%. The melting point was 56 ° C.
  • a 300 mL glass reaction flask was charged with 80 g of N, N-jetyldithiocarbamylmethylstyrene, 2-hydroxyethyl methacrylate [manufactured by Junsei Chemical Co., Ltd.] 40 g, and 80 g of tetrahydrofuran. After preparing a yellow transparent solution, the reaction system was purged with nitrogen. A 100W high-pressure mercury lamp (Sen Special Light Source Co., Ltd., HL-100) is turned on from the middle of this solution, and the photopolymerization reaction by internal irradiation is performed at a temperature of 30 ⁇ 5 under stirring. C went for 4 hours.
  • the polymer obtained had a weight average molecular weight Mw of 41,000 and a dispersity Mw / Mn of 5.87, as measured by polystyrene in gel permeation chromatography.
  • the obtained hyperbranched polymer is represented by the following formula (22) and a linear repeating unit represented by the formula (21) with the structural formula represented by the following formula (20) as a polymerization initiation site. It is a hyperbranched polymer having a repeating unit of a branched structure.
  • a solution was prepared by dissolving the hyperbranched polymer lg obtained in Example 1 in 9 g of cyclohexanone.
  • This solution was filtered using a polytetrafluoroethylene microfilter with a pore size of 0.2 / m, and then applied to a glass substrate for 5 seconds at 300 i "pm and then for 20 seconds at 2500 mm, by spin coating. Thereafter, the film was heated on a hot plate for 10 minutes at a temperature of 200 ° C. to obtain a thin film-like formed body having a thickness of 271 nm, and the surface state of this thin-film formed body was observed by AFM measurement. It was observed that the thin film-like formed body had a uniform surface state with a surface roughness of 0.25 nm. It was dissolved in Tetramer's good solvents tetrahydrofuran and N-methyl-2-pyrrolidone.
  • hyperbranched polymer lg obtained in Example 1 hexamethoxymethylol melamine Cymel 303 [manufactured by Mitsui Cytec Co., Ltd.] 0.3 g, p-toluenesulfonic acid [manufactured by Tokyo Chemical Industry Co., Ltd.] A solution was prepared by dissolving 0.03 g in 9 g of cyclohexanone.
  • This solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 zm, and then applied on a glass substrate by spin coating for 5 seconds at 300 rpm and then 20 seconds at 2500 i "pm.
  • the film was heated on a hot plate for 10 minutes at a temperature of 200 ° C. to obtain a thin film-like formed body having a thickness of 31 Inm, and the surface state of the thin-film formed body was observed by AFM measurement. It was observed that the shaped product had a uniform surface state with a surface roughness of 0.25 nm, and the thin film-like product was tetrahydrofuran and N-methyl _ 2_, which are good solvents for the obtained hyperbranched polymer. It was clearly cross-linked because it did not dissolve in pyrrolidone.
  • a 50 mL glass reaction flask was charged with 20 g of N, N jetyldithiocarbamylmethylstyrene, glycidyl methacrylate [Aldrich] 10 ⁇ 7 g, and 20 ⁇ 5 g of tetrahydrofuran, and stirred to obtain a pale yellow transparent solution.
  • the reaction system was purged with nitrogen.
  • a 100 W high-pressure mercury lamp manufactured by Sen Special Light Source Co., Ltd., HL 100
  • the photopolymerization reaction by external irradiation is carried out at a temperature of 20 ⁇ 5 ° C under stirring. Went for hours.
  • the obtained hyperbranched polymer is represented by a linear repeating unit represented by the formula (23) and a formula (22) with the structural formula represented by the following formula (20) as a polymerization initiation site. It is a hyperbranched polymer having a repeating unit of a branched structure.
  • the measurement results of C-NMR of the obtained polymer are shown in FIG.
  • the chemical shift is derived from the average of the integrated values of the peaks derived from 1 95ppm, 42ppm and 12ppm N, N-Jetyldithiocarbaminoremethylstyrene, and the chemical shift is derived from 176ppm and 65ppm glycidyl methacrylate. From the average value of the integral values of the peaks, the ratio of the total amount of the repeating unit of the linear structure represented by the above formula (23) to the total amount of the repeating unit of the branched structure represented by the formula (22) is 1.0. It was 1.0.
  • a solution was prepared by dissolving the hyperbranched polymer lg obtained in Example 2 in 9 g of cyclohexanone.
  • This solution was filtered using a polytetrafluoroethylene microfilter with a pore size of 0.2 / m, and then applied to a glass substrate for 5 seconds at 300 i "pm and then for 20 seconds at 2500 mm, by spin coating. Thereafter, the film was heated on a hot plate at a temperature of 150 ° C. for 20 minutes to obtain a thin film-like formed body having a film thickness of 343 nm, and the surface state of this thin film-like formed body was observed by AFM measurement.
  • the thin film-like formed body had a uniform surface state with a surface roughness of 0.32 nm, and this thin film-like formed body was tetrahydrofuran and N-methyl _ 2 which are good solvents for the obtained hyperbranched polymer.
  • _ Dissolved in pyrrolidone.
  • This solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 / im, and then applied on a glass substrate by a spin coating method at 300 rpm for 5 seconds and further at 2500 rpm for 20 seconds.
  • a 300 mL glass reaction flask was charged with 90 g of N, N-jetyldithiocarbamylmethylstyrene, 28.8 g of methacrylic acid [manufactured by Tokyo Chemical Industry], and 79 g of tetrahydrofuran, and stirred to prepare a pale yellow transparent solution.
  • the reaction system was purged with nitrogen.
  • a 100 W high-pressure mercury lamp (manufactured by Sen Special Light Source Co., Ltd., HL-100) was turned on from the middle of this solution, and a photopolymerization reaction by internal irradiation was performed for 5 hours at 30 ⁇ 5 ° C under stirring.
  • this reaction solution After diluting with 200 g of tetrahydrofuran, the mixture was added to 2.5 L of hexane and the polymer was reprecipitated in a slurry state. This slurry was filtered, and the obtained polymer was redissolved in 200 g of tetrahydrofuran, and then this solution was added to 2.5 L of hexane to reprecipitate the polymer in a slurry state. This slurry was filtered and dried under vacuum to obtain 12. lg of the desired product as a pale yellow powder.
  • the weight average molecular weight Mw of the obtained polymer measured by gel permeation chromatography in terms of polystyrene was 33,000, and the degree of dispersion Mw / Mn was 6.60.
  • the obtained hyperbranched polymer is represented by the linear repeating unit represented by the formula (24) and the formula (22) with the structural formula represented by the following formula (20) as a polymerization initiation site. It is a hyperbranched polymer having a repeating unit of a branched structure.
  • a solution was prepared by dissolving the hyperbranched polymer lg obtained in Example 3 in 9 g of cyclohexanone. After this solution was filtered using a micro filter made of polytetrafluoroethylene having a pore size of 0.2 zm, this solution was spin-coated on a glass substrate at 300 i "pm for 5 seconds and 2500 i" pm for 20 seconds. It was applied by the method. Then, it was heated on a hot plate at a temperature of 200 ° C. for 10 minutes to obtain a thin film-like formed body having a thickness of 276 nm. The surface state of this thin-film shaped body was observed by AFM measurement.
  • the thin film-like formed body had a uniform surface state with a surface roughness of 0.37 nm.
  • This thin film-like formed body was dissolved in tetrahydrofuran and N-methyl-2-pyrrolidone, which are good solvents for the hyperbranched polymer.
  • a solution dissolved in 9 g of hexanone was prepared. This solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 / im, and then applied to a glass substrate at 300 i "pm for 5 seconds and further 250 (kpm for 20 seconds, by spin coating). Thereafter, the film was heated on a hot plate at a temperature of 200 ° C.
  • a 1 L reaction flask was charged with 40 g of N, N-jetyldithiocarbamylethyl methacrylate, 20 g of 2-hydroxyethyl methacrylate (manufactured by Junsei Chemical Co., Ltd.), and 400 g of tetrahydrofuran and stirred. After preparing a light yellow transparent solution, the reaction system was purged with nitrogen. A 100W high-pressure mercury lamp (manufactured by Sen Special Light Source Co., Ltd., HL-100) is turned on from the middle of this solution, and the photopolymerization reaction by internal irradiation is carried out for 6 hours at 30 ⁇ 5 ° C under stirring. It was.
  • this reaction solution was added to 3000 g of hexane to reprecipitate the polymer in a slurry state.
  • This slurry was filtered, and the resulting polymer was redissolved in 170 g of tetrahydrofuran, and then this solution was added to 1500 g of hexane to reprecipitate the polymer in a slurry state.
  • This slurry was filtered and vacuum-dried to obtain 27.3 g of the desired product as a pale yellow powder.
  • the weight average molecular weight of the obtained polymer measured by gel permeation chromatography in terms of polystyrene was Mw 24,000, and the degree of dispersion was Mw / Mnf 4.06.
  • the obtained hyperbranched polymer is represented by the following formula (26) and a linear repeating unit represented by the formula (21) with the structural formula represented by the following formula (25) as a polymerization initiation site. It is a hyperbranched polymer having a repeating unit of a branched structure.
  • the measurement result of 13 C-NMR of the obtained polymer is shown in FIG.
  • the average value of the integrated values of peaks derived from 1 94 ppm, 50 ppm, and 13 ppm N, N-Jetyldithiocarbamylethyl methacrylate and the chemicanole shift as 67 ppm and 6 Oppm From the average integrated value of the peaks derived from the acid 2-hydroxyethyl, the total amount of the repeating unit of the linear structure represented by the above formula (21) and the branched structure represented by the formula (26) The ratio of the total amount of repeat units was 1.0 to 0.8.
  • a solution was prepared by dissolving the hyperbranched polymer lg obtained in Example 4 in 9 g of cyclohexanone.
  • This solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 zm, and then applied to a glass substrate by spin coating for 5 seconds at 300 i "pm and then for 20 seconds at 2500 mm. Then 10 on a hot plate at a temperature of 120 ° C. Heated for a minute to obtain a thin film-like formed body having a thickness of 151 nm.
  • the surface state of this thin film-like formed body was observed by AFM measurement. It was observed that the thin film-like formed body had a uniform surface state with a surface roughness of 0.26 nm.
  • This thin film-like formed body was dissolved in tetrahydrofuran and N-methyl_2_pyrrolidone, which are good solvents for the hyperbranched polymer.
  • a 1 L reaction flask was charged with 40 g of N, N-deethyldithiocarbamylethyl methacrylate, 21/8 g of glycidyl methacrylate [Aldrich], and 413 g of tetrahydrofuran, and stirred to prepare a pale yellow transparent solution. Then, the reaction system was purged with nitrogen. A 100 W high-pressure mercury lamp (Sen Special Light Source Co., Ltd., HL-100) was turned on from the middle of this solution, and a photopolymerization reaction by internal irradiation was carried out at a temperature of 30 ⁇ 5 ° C for 5 hours under stirring.
  • this reaction solution was added to 3000 g of hexane to reprecipitate the polymer in a slurry state.
  • This slurry was filtered, and the resulting polymer was redissolved in 170 g of tetrahydrofuran, and this solution was added to 1500 g of hexane to reprecipitate the polymer in a slurry state.
  • This slurry was filtered and vacuum-dried to obtain 22.6 g of the desired product as a pale yellow powder.
  • the weight average molecular weight Mw measured by gel permeation chromatography in terms of polystyrene of the obtained polymer was 20,000, and the degree of dispersion MwZMn was 3.36.
  • the obtained hyperbranched polymer is represented by the following formula (26): a linear repeating unit represented by the formula (23) with the structural formula represented by the following formula (25) as a polymerization initiation site. It is a hyperbranched polymer having a repeating unit of a branched structure.
  • the measurement result of 13 C-NMR of the obtained polymer is shown in FIG.
  • the chemical shift is 1 94 ppm, 63 ppm, and 13 ppm
  • the chemicanol shift is 66 ppm and 5 Oppm methacrylic acid.
  • a solution was prepared by dissolving the hyperbranched polymer lg obtained in Example 5 in 9 g of cyclohexanone. This solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 / m. This solution was applied on a glass substrate by spin coating for 5 seconds at 300 rpm and then 20 seconds at 25 OOrpm. Thereafter, the film was heated on a hot plate at 120 ° C. for 10 minutes to obtain a thin film-like formed body having a thickness of 178 nm. The surface state of this thin-film shaped body was observed by AFM measurement. It was observed that the obtained thin film-like formed body had a uniform surface state with a surface roughness of 0.29 nm. This thin film-like formed body was dissolved in tetrahydrofuran and N-methyl_2-pyrrolidone, which are good solvents for the hyperbranched polymer.
  • This solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 / im, and then applied on a glass substrate by a spin coating method at 300 rpm for 5 seconds and further at 2500 rpm for 20 seconds.
  • a 300 mL glass reaction flask was charged with 20 g of N, N-jetyldithiocarbamylethyl methacrylate, 6.6 g of methacrylic acid [manufactured by Tokyo Chemical Industry], and 150.3 g of tetrahydrofuran, and stirred to light yellow and transparent.
  • the inside of the reaction system was purged with nitrogen.
  • turn on a 100W high-pressure mercury lamp [Sen Special Light Source Co., Ltd., HL-100]
  • the photopolymerization reaction by internal irradiation was carried out for 6 hours at 30 ⁇ 5 ° C under stirring.
  • reaction solution was added to 2.5 L of hexane to reprecipitate the polymer in a slurry state.
  • the slurry was filtered and the resulting polymer was redissolved in 100 g of tetrahydrofuran, and the solution was added to 2.5 L of hexane to reprecipitate the polymer in a slurry state.
  • This slurry was filtered and vacuum-dried to obtain 13.7 g of the desired product as a pale yellow powder.
  • the weight average molecular weight Mw of the obtained polymer measured by gel permeation chromatography in terms of polystyrene was 24,000, and the dispersity MwZMn was 4.64.
  • the obtained hyperbranched polymer is represented by the linear repeating unit represented by the formula (24) and the formula (26) with the structural formula represented by the following formula (25) as a polymerization initiation site. It is a hyperbranched polymer having a repeating unit of a branched structure.
  • the measurement results of C-NMR of the obtained polymer are shown in FIG.
  • the chemical shift is derived from the average value of the integrated values of the peaks derived from 193 ppm and l lppm N, N-Jetyldithiocarbamylethyl methacrylate, and the chemical shift is derived from 178 ppm darisidinole methacrylate.
  • the ratio of the total amount of the repeating unit of the linear structure represented by the above formula (24) to the total amount of the repeating unit of the branched structure represented by the formula (26) is 1 0 vs 1.1.
  • a solution was prepared by dissolving the hyperbranched polymer lg obtained in Example 6 in 9 g of cyclohexanone. This solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 zm, and then applied to a glass substrate by spin coating for 5 seconds at 300 i "pm and then for 20 seconds at 2500 mm. Thereafter, the film was heated on a hot plate for 10 minutes at a temperature of 120 ° C. to obtain a thin film-like formed body having a film thickness of 135 nm, and the surface state of this thin film-like formed body was observed by AFM measurement.
  • the thin compact was observed to have a uniform surface state with a surface roughness of 0.29 nm, which was compared to tetrahydrofuran and N-methyl _ 2_pyrrolidone, which are good solvents for the hyperbranched polymer. Dissolved.
  • a solution dissolved in 9 g of cyclohexanone was prepared. This solution was filtered using a micro filter made of polytetrafluoroethylene having a pore size of 0.2 / im, and then applied on a glass substrate by 300 i "pm for 5 seconds and further by 2500 rpm for 20 seconds by spin coating.
  • the hyperbranched polymer of the present invention has a hydroxyl group, an epoxy group, or a carboxyl group functional group in the molecular chain of the repeating unit, characteristics such as the degree of crosslinking are controlled by the mixing ratio of the crosslinking agent. It has excellent reactivity flexibility. Therefore, it can be used for various applications, such as paint materials, adhesive materials, resin fillers, various molding materials, nanometer-size porous forming agents, resist materials, electronic materials, printing materials, batteries. It can be used as a material and a medical material.
  • FIG. 1 is a 13 C-NMR spectrum of the hyperbranched polymer obtained in Example 1.
  • FIG. 2 is a 13 C-NMR spectrum of the hyperbranched polymer obtained in Example 2.
  • FIG. 3 is a 13 C-NMR spectrum of the hyperbranched polymer obtained in Example 3.
  • FIG. 4 is a 13 C-NMR spectrum of the hyperbranched polymer obtained in Example 4.
  • FIG. 5 is a 13 C-NMR spectrum of the hyperbranched polymer obtained in Example 5.
  • FIG. 6 is a 13 C-NMR spectrum of the hyperbranched polymer obtained in Example 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

【課題】繰り返し単位の分子鎖中に官能基を有する新規なハイパーブランチポリマーおよびその製造方法を提供すること。 【解決手段】(メタ)アクリレート化合物から得られる繰り返し単位を直鎖構造とし、ビニル基構造を有するジチオカルバメート化合物から得られる繰り返し単位を枝分かれ構造として有するハイパーブランチポリマーで、該ハイパーブランチポリマーはビニル基構造を有するジチオカルバメート化合物と(メタ)アクリレート化合物とを共存させ、リビングラジカル重合することよって得ることができる。

Description

明 細 書
ハイパーブランチポリマーおよびその製造方法
技術分野
[0001] 本発明は、新規なハイパーブランチポリマーおよびその製造方法に関する。すなわ ち、本発明は、繰り返し単位の分子鎖にヒドロキシル基、エポキシ基、またはカルボキ シノレ基を有するハイパーブランチポリマーに関する。これらは、塗料、インキ、接着剤
、樹脂フィラー、各種成形材料、ナノメートノレサイズの多孔形成剤、化学的機械的研 磨剤、機能物質の担時材料、ナノカプセル、フォトニック結晶、レジスト材料、光学材 料、電子材料、情報記録材料、印刷材料、電池材料、医用材料、磁性材料などとし て好適に利用される。
背景技術
[0002] ハイパーブランチポリマーはデンドリマーと共にデンドリティック (樹枝状)ポリマーと して分類されている。従来の高分子は一般的に紐状の形状であるのに対し、これらの デンドリティックポリマーは積極的に枝分かれを導入しているのでその特異な構造を 有している。従って、ナノメートルオーダーのサイズ、多くの官能基を保持することが できる表面、線状ポリマーに比べて低粘度化できる、分子間の絡み合いが少なく微 粒子的挙動を示す、非晶性になり溶媒溶解性を制御できる、など様々な特性を有し ているのでこれらの特性を利用した応用が期待されている。
特に末端基数の多さはデンドリティックポリマーの最も顕著な特徴であり、分子量が 増加すれば枝分かれの数も増えるので、末端基の絶対数は高分子量のデンドリティ ックポリマーほど多くなる。このような末端基数の多いデンドリティックポリマーは、末端 基の種類によって分子間相互作用が大きく左右されるので、ガラス転移温度や溶解 性、薄膜形成性などが大きく変化し、一般の線状高分子にはない特徴を有する。 ハイパーブランチポリマーのデンドリマーに対する利点としては、その合成の簡便さ が挙げられ、特に工業的生産においては有利である。一般にデンドリマーが保護— 脱保護を繰り返し合成されるのに対し、ハイパーブランチポリマーは 1分子中に 2種 類の置換基を合計 3個以上もつ、いわゆる AB型モノマーの 1段階重合により合成さ れる。
これまで光重合開始能を持ち、かつビニル基を有する化合物をリビングラジカル重 合することによって、ハイパーブランチポリマーが合成されることが知られている。例 えば、ジチォ力ルバメート基を有するスチレンィ匕合物の光重合によるハイパーブラン チポリマーの合成法 (非特許文献 1、 2、 3参照。)や、ジチォ力ルバメート基を有する( メタ)アクリル化合物の光重合によるジチォ力ルバメート基を有するハイパーブランチ ポリマーの合成法 (非特許文献 4、 5、 6参照。)が知られている。これらのハイパーブ ランチポリマーは構造中に反応性の官能基を有していないため、多面的な用途展開 に制約がある。また、ジチォ力ルバメート基を有するスチレン化合物と無水マレイン酸 とを共存させ光重合することにより、主鎖内に酸無水物が導入され、分子末端にジチ ォカルバメート基を有するハイパーブランチポリマーの合成法(非特許文献 7参照。 ) が知られている。このハイパーブランチポリマーは、水分に対して非常に不安定な酸 無水物を構造中に有しているため、水分に対して安定性が低い。そのため、反応性 の官能基を有し、かつ水分に対しても安定なハイパーブランチポリマーが望まれてい た。
非特午文献 l:Koji Ishizu, Akihide Mori, Macromol. Rapid Commun . 21, 665-668(2000)
特許文献 2:Koji Ishizu, Akihide Mori, Polymer International 50, 9 06-910(2001)
特許文献 3:Koji Ishizu, Yoshihiro Ohta, Susumu Kawauchi, Macr omolecules Vol.35, No.9, 3781— 3784(2002)
非特許文献 4:Koji Ishizu, Takeshi Shibuya, Akihide Mori, Polymer International 51, 424-428(2002)
非特許文献 5:Koji Ishizu, Takeshi Shibuya, Susumu Kawauchi, Ma cromolecules Vol.36, No.10, 3505-3510(2002)
非特許文献 6:Koji Ishizu, Takeshi Shibuya, Jaebum Park, Satoshi
Uchida, Polymer International 53, 259-265(2004)
非特許文献 7:Koji Ishizu, Akihide Mori, Takeshi Shibuya, Polymer Vol. 42, 7911 - 7914 (2001)
発明の開示
発明が解決しょうとする課題
[0003] 本発明は、上記文献に示される技術背景の下なされたものであって、繰り返し単位 の分子鎖中に官能基を有する新規なハイパーブランチポリマーおよびその製造方法 を提供するもので、かつ、多面的な用途展開を期するものである。
課題を解決するための手段
[0004] 本発明は、上記の課題を解決するために鋭意検討した結果、下記の観点に記載の 発明に到達したものである。
本発明は、第 1観点として、下記の式(1)で表される構造式を重合開始部位として、 下記の式(2)で表される直鎖構造の繰り返し単位と下記の式(3)で表される枝分か れ構造の繰り返し単位を有するハイパーブランチポリマーで、かつ式(2)で表される 直鎖構造の繰り返し単位の総数が 1ないし 100, 000の整数で、式(3)で表される枝 分かれ構造の繰り返し単位の総数が 2ないし 100, 000の整数であるハイパーブラン チポリマー。
[化 1]
Figure imgf000004_0001
Figure imgf000005_0001
(式(1)ないし式 (3)中、 Rは水素原子またはメチル基を表し、 Rは水素原子、炭素
1 2
原子数 1ないし 20の直鎖状もしくは枝分かれ状のヒドロキシアルキル基、または炭素 原子数 3ないし 20の直鎖状もしくは枝分かれ状のエポキシ基を含むアルキル基を表 し、また、 Aは下記の式 (4)または式(5)で表される構造を表す。)
1
[化 4]
Figure imgf000005_0002
[化 5] ο
II ,c
— C— Ο— Α2— (5)
(式 (4)および式(5)中、 Αはエーテル結合またはエステル結合を含んでいてもよい
2
炭素原子数 1ないし 20の直鎖状、枝分かれ状または環状のアルキレン基を表し、 X
1
、 X、 Xおよび Xは、それぞれ、水素原子、炭素原子数 1ないし 20のアルキル基、ま
2 3 4
たは炭素原子数 1なレヽし 20のアルコキシ基を表す。 )
第 2観点として、分子末端にジチォ力ルバメート基を有する、第 1観点に記載のハイ パーブランチポリマー。
第 3観点として、ポリマー中に含まれる前記式(2)で表される直鎖構造の繰り返し単 位の総数と前記式(3)で表される枝分かれ構造の繰り返し単位の総数との割合につ いて、式(2)で表される繰り返し単位と式(3)で表される繰り返し単位との合計量中、 式(2)で表される直鎖構造の繰り返し単位の量が 1モル%ないし 90モル%であり、式 (3)で表される枝分かれ構造の繰り返し単位の量が 99モル%ないし 10モル%である 、第 1観点に記載のハイパーブランチポリマー。
第 4観点として、前記 A力 下記の式 (6):
1
[化 6]
Figure imgf000006_0001
で査される構造である、第 1観点に記載のハイパーブランチポリマー。
第 5観点として、前記 A 、下記の式(7):
1
[化 7]
0
— C-0— (CH2)m ~~ (7)
(式中、 mは 2ないし 10の整数を表す。)
で表される構造である、第 1観点に記載のハイパーブランチポリマー。
第 6観点として、ゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重 量平均分子量が、 500ないし 5, 000, 000である、第 1観点に記載のハイパーブラン チポリマー。
第 7観点として、下記の式(8)で表されるジチォ力ルバメートィ匕合物と下記の式(9) で表される(メタ)アタリレート化合物とを共存させ、リビングラジカル重合することから なる、第 1観点に記載のハイパーブランチポリマーの製造方法。
[化 8]
(8)
Figure imgf000006_0002
(式中、 Rおよび Aは前記式(1)ないし式(3)における定義と同意義であり、 Rおよ
1 1 3 び Rは、それぞれ、炭素原子数 1ないし 5のアルキル基、炭素原子数 1ないし 5のヒド
4
ロキシアルキル基、または炭素原子数 7ないし 12のァリールアルキル基を表し、また 、 Rと Rは互いに結合して、それらと結合する窒素原子と共に環を形成していてもよ
3 4
い。)
[化 9]
Figure imgf000007_0001
(式中、 Rおよび Rは前記における定義と同意義である。 )
1 2
第 8観点として、前記式 (8)で表されるジチォ力ルバメートィ匕合物と前記式(9)で表 される(メタ)アタリレートイ匕合物を溶媒に溶解し、紫外線照射によってリビングラジカ ル重合することからなる、第 7観点に記載のハイパーブランチポリマーの製造方法。 第 9観点として、前記式 (8)で表されるジチォ力ルバメートィ匕合物力 N, N—ジェ チルジチォカルバミルメチルスチレンまたは N, N—ジェチルジチォカルバミノレエチ ノレメタタリレートである、第 7観点または第 8観点に記載のハイパーブランチポリマー の製造方法。
第 10観点として、前記式(9)で表される (メタ)アタリレート化合物が、メタクリル酸 2 ーヒドロキシェチル、メタクリル酸グリシジルまたはメタクリル酸である、第 7観点または 第 8観点に記載のハイパーブランチポリマーの製造方法。
第 11観点として、前記式 (8)で表されるジチォ力ルバメートィ匕合物力 N, N—ジェ チルジチォカルバミルメチルスチレンまたは N, N—ジェチルジチォカルバミノレエチ ノレメタタリレートであり、前記式(9)で表される(メタ)アタリレートイ匕合物がメタクリル酸 2 —ヒドロキシェチル、メタクリル酸グリシジルまたはメタクリル酸である、第 7観点または 第 8観点に記載のハイパーブランチポリマーの製造方法。
発明の効果
本発明のハイパーブランチポリマーは、繰り返し単位の分子鎖中にヒドロキシノレ基、 エポキシ基、またはカルボキシノレ基の官能基を有するので架橋剤などの混合割合に よって架橋度などの特性を制御でき、反応性の自由度に優れている。また、本発明 の製造方法により、末端変成することなく繰り返し単位の分子鎖中に官能基を有する ハイパーブランチポリマーを簡便に、効率よく得ること力 Sできる。 発明を実施するための最良の形態
本発明のハイパーブランチポリマーは、前記した式(1)で表される構造式を重合開 始部位とし、式(2)で表される直鎖構造の繰り返し単位と式(3)で表される枝分かれ 構造の繰り返し単位を有するハイパーブランチポリマーである。
また、式(2)で表される直鎖構造の繰り返し単位の総数が 1ないし 100, 000の整 数で、式(3)で表される枝分かれ構造の繰り返し単位の総数が 2ないし 100, 000の 整数であるハイパーブランチポリマーである。
式(1)中の Rは、水素原子またはメチル基を表す。
1
式(2)中の Rは、水素原子、炭素原子数 1ないし 20の直鎖状もしくは枝分かれ状の
2
ヒドロキシアルキル基、または炭素原子数 3ないし 20の直鎖状もしくは枝分かれ状の エポキシを含むアルキル基を表す。
また、式(1)および式(3)中の Aは、式 (4)または式(5)で表される構造を表す。式
1
(4)および式(5)中、 Aはエーテル結合またはエステル結合を含んでいてもよい炭
2
素原子数 1ないし 20の直鎖状、枝分かれ状または環状のアルキレン基を表し、 X 、 X
1
、 Xおよび Xは、それぞれ、水素原子、炭素原子数 1ないし 20のアルキル基、また
2 3 4
は炭素原子数 1なレ、し 20のアルコキシ基を表す。
まず、 Rのヒドロキシアルキル基の具体例としては、ヒドロキシメチノレ、 2—ヒドロキシ
2
ェチル、 3—ヒドロキシプロピル、 4—ヒドロキシブチル基などの直鎖状ヒドロキシアル キノレ基、 2—ヒドロキシプロピル、 2—ヒドロキシブチル、 3—ヒドロキシブチル、 2 メチ ル一 3—ヒドロキシプロピル、 3 _メチル _ 2—ヒドロキシプロピル基などの枝分かれ状 ヒドロキシルアルキル基が挙げられる。
また、エポキシ基を含むアルキル基の具体例としては、グリシジル、グリシジルメチ ル、 2—グリシジノレエチル、 3—グリシジルプロピル、 4—グリシジルブチル、 3, 4—ェ ポキシブチノレ、 4, 5 _エポキシペンチノレ、 5, 6 _エポキシへキシノレなどの直鎖状の エポキシ基を含むアルキル基、 βーメチルダリシジル、 β ーェチルダリシジル、 β プロピルグリシジル、 2 グリシジルプロピル、 2 グリシジルブチル、 3 グリシジルブ チル、 2—メチルー 3 グリシジルプロピル、 3—メチルー 2 グリシジルプロピル、 3— メチノレー 3, 4—エポキシブチル、 3—ェチルー 3, 4—エポキシブチル、 4ーメチルー 4, 5—エポキシペンチル、 5—メチノレー 5, 6—エポキシへキシルなどの枝分かれ状 のエポキシ基を含むアルキル基が挙げられる。
Aのアルキレン基の具体例としては、メチレン、エチレン、ノルマルプロピレン、ノル
2
マルブチレン、ノルマルへキシレンなどの直鎖状アルキレン、イソプロピレン、イソブチ レン、 2 _メチルプロピレンなどの枝分かれ状アルキレンが挙げられる。また環状アル キレンとしては、炭素原子数 3ないし 30の単環化学式、多環化学式、架橋環化学式 の環状構造の脂環化学式脂肪族基が挙げられる。具体的には、炭素原子数 4以上 のモノシクロ、ビシクロ、トリシクロ、テトラシクロ、ペンタシクロ構造などを有する基を挙 げ'ること力 Sできる。
例えば、脂環化学式脂肪族基のうち、脂環化学式部分の構造例 (a)ないし (s)を下 記に示す。
[化 10]
Figure imgf000010_0001
Figure imgf000010_0002
X、 X、 Xおよび Xの炭素原子数 1ないし 20のアルキル基の具体例としては、メチ
1 2 3 4
ル基、ェチル基、イソプロピル基、シクロへキシル基、ノルマルペンチル基などが挙げ られる。また、炭素原子数 1ないし 20のアルコキシ基の具体例としては、メトキシ基、 エトキシ基、イソプロポキシ基、シクロへキシルォキシ基、ノルマルペンチルォキシ基 などが挙げられる。特に X、 X、 Xおよび Xとしては、水素原子または炭素原子数 1
2 3 なレ、し 20のアルキル基が好ましレ、。
また、式(1)の Aとしては、式(6)または式(7)で表される構造であることが好ましい
1
。式(7)中、 mは 2ないし 10の整数を表し、さらに mとしては 2または 3が好ましい。 つぎに、本発明のハイパーブランチポリマーの連結状態を説明する。
本発明のハ ーブランチポリマーは、下記の式(1)で表される構造式の重合開始 点部位に、式(2)で表される直鎖構造の繰り返し単位と式(3)で表される枝分かれ構 造の繰り返し単位がランダム共重合した構造をとる。
[化 11]
Figure imgf000011_0001
[化 12]
Figure imgf000011_0002
[化 13]
Figure imgf000011_0003
まず、式(1)で表される構造式の重合開始部位に、式(3)で表される枝分かれ構造 の繰り返し単位が連結し、分子末端がジチォ力ルバメート基である構造を例示する。 式(3)で表される枝分かれ構造の繰り返し単位が 2の場合には、その構造として、 下記の式(10)と式(11)が考えられる。本発明の式(1)で表される構造式の重合開 始部位に、式(3)で表される枝分かれ構造が連結したハイパーブランチポリマーの枝 分かれ構造の繰り返し単位は、そのどちらの構造も含む。
[化 14]
Figure imgf000012_0001
(式中、 R、 Aは前記の式(1)における定義と同意義であり、 Dはジチォ力ルバメート
1 1
基を表す。 )
また、式(3)で表される枝分かれ構造の繰り返し単位の数が 3の場合には、式(10) および式(11)の末端のジチォ力ルバメート基の一つが式(12):
[化 15]
Figure imgf000012_0002
となり、その構造としては下記の式(13)なレ、し式(17)が考えられる。
[化 16]
Figure imgf000013_0001
本発明の式(1)で表される構造式の重合開始部位に、式(3)で表される枝分かれ 構造が連結したハイパーブランチポリマーは、これらのいずれの構造も含む。
すなわち、繰り返し単位構造が規則的に 3点で結合して枝分かれした構造になる場 合と、 2点で結合し、枝分かれせずに線状の構造になる場合があるが、そのいずれを も包含するので、式(3)で表される枝分かれ構造の繰り返し単位の数が 4やそれ以上 の場合には、さらに多数の構造が考えられる。
つぎに、前記の式(10)ないし式(17)で表される式に、式(2)で表される直鎖構造 の繰り返し単位が連結した状態を説明する。式(2)で表される直鎖構造の繰り返し単 位を一以上有した分子鎖が、式(3)で表される各枝分かれ構造の繰り返し単位を一 つ以上有する分子鎖間、あるいは式 (3)で表される分子鎖と分子鎖末端 Dの間に結 合する。また、式(1)で表される構造式の重合開始点部位と式 (3)で表される枝分か れ構造の繰り返し単位間に結合することもある。
これらの説明を一般の本発明のハイパーブランチポリマーに拡張すると、本発明の ハイパーブランチポリマーは、式(1)で表される構造式の開始点部位に、式(2)で表 される直鎖構造の繰り返し単位を一以上有した分子鎖、または式(3)で表される枝分 かれ構造の繰り返し単位を一以上有した分子鎖が結合し、さらに続いて式(2)で表さ れる直鎖構造の繰り返し単位を一以上有した分子鎖と式(3)で表される枝分かれ構 造の繰り返し単位を一以上有した分子鎖が結合し、ランダム共重合体の構造を形成 する。
すなわち、一般に式(3)の 3本の結合手に、それぞれ上記の式(2)の繰り返し単位 の一方の結合が結合すると共に、他方の結合手が別の式(3)の結合手に結合すると レ、う態様でハイパーブランチポリマー状に結合連鎖したものである。
そして構造全体における式(2)で表される直鎖構造の繰り返し単位の総数は 1ない し 100, 000であり、式(3)で表される枝分かれ構造の繰り返し単位の総数は 2ないし 100, 000である。
また、本発明のハイパーブランチポリマーは、ポリマー中に含まれる式(2)で表され る直鎖構造の繰り返し単位の総数と式(3)で表される枝分かれ構造の繰り返し単位 の総数の割合が、式(2)と式(3)で表される繰り返し単位の総合計量中、式(2)で表 される直鎖構造の繰り返し単位の量が 1モル%ないし 90モル%、そして式(3)で表さ れる枝分かれ構造の繰り返し単位の量が 99モル%ないし 10モル%であり、かつ、直 鎖構造の繰り返し単位と枝分かれ構造の繰り返し単位がランダム共重合体の構造を 有する。
なお、部分的にはそれぞれの繰り返し単位構造がブロック重合体部を形成してレ、て もよレ、。また、ノ、ィパーブランチポリマーとしての特性をより発現するには、式(2)で表 される直鎖構造の繰り返し単位の量が 1モル%ないし 70モル%、そして式(3)で表さ れる枝分かれ構造の繰り返し単位の量が 99モル%ないし 30モル%である。
本発明のハイパーブランチポリマーは、ゲル浸透クロマトグラフィーによるポリスチレ ン換算で測定される重量平均分子量 Mwが 500ないし 5, 000, 000であり、好ましく
¾1, 000なレヽし 1, 000, 000であり、 り女子まし < ίΐ1, 500なレ、し 500, 000である。 また、分散度 Mw (重量平均分子量) ΖΜη (数平均分子量)としては 1. 0ないし 10.
0であり、女子ましく ¾;1. 1なレヽし 9. 0であり、より女子ましく ίΐΐ . 2なレヽし 8. 0である。 つぎに本発明のハイパーブランチポリマーの製造方法について説明する。
本発明のハイパーブランチポリマーは、前記した式 (8)で表されるジチォカルバメ ート化合物と式(9)で表される (メタ)アタリレートイ匕合物とを共存させ、リビングラジカ ル重合することによって製造することができる。
まず、下記の式(8)で表される化合物について説明する。
[化 17]
Figure imgf000015_0001
式(8)中、 Rおよび Aは前述の式(1)、式(2)および式(3)における定義と同意義
1 1
である。 Rおよび Rは、それぞれ、炭素原子数 1ないし 5のアルキル基、炭素原子数
3 4
1ないし 5のヒドロキシアルキル基、または炭素原子数 7ないし 12のァリールアルキル 基を表す。また、 Rと Rは互いに結合して、それと結合する窒素原子と共に環を形成
3 4
していてもよい。
炭素原子数 1ないし 5のアルキル基の具体例としては、メチノレ基、ェチル基、イソプ 口ピル基、 t_ブチル基、シクロペンチル基、ノルマルペンチル基などが挙げられる。 炭素原子数 1ないし 5のヒドロキシアルキル基の具体例としては、ヒドロキシメチノレ基 、ヒドロキシェチル基、ヒドロキシプロピル基などが挙げられる。
炭素原子数 7ないし 12のァリールアルキル基の具体例としては、ベンジル基、フエ ネチル基などが挙げられる。
Rと Rが互いに結合して、それと結合する窒素原子と共に形成する環としては四な いし八員環が挙げられる。そして、環としてメチレン基を四ないし六個含む環が挙げ られる。また、環としては酸素原子または硫黄原子と、四ないし六個のメチレン基を含 む環が挙げられる。 Rと Rが互いに結合して、それと結合する窒素原子と共に形成
3 4
する環の具体例としては、ピぺリジン環、ピロリジン環、モノレホリン環、チオモルホリン 環、ホモピぺリジン環などが挙げられる。
式(8)で表される化 物は、下記の式(18)で表される化合物と式(19)で表される 化合物との求核置換反応により容易に得ることができる。
[化 18]
Figure imgf000016_0001
[化 19]
Figure imgf000016_0002
前記の式(18)中、 Yは脱離基を表す。脱離基としてはフルォロ基、クロ口基、プロ モ基、ョード基、メシノレ基、トシル基などが挙げられる。また、式(19)中、 Mはリチウム 、ナトリウムまたはカリウムを表す。
本求核置換反応は、通常上記の 2種類の化合物を両方溶解できる有機溶媒中で 行なうことが好ましい。反応後、水/非水系有機溶剤による分液処理や、再結晶処 理によって式 (8)で表される化合物を高純度で得ることができる。また、式 (8)で表さ れるィ匕合物は、 Macromol. Rapid Commun. 21 , 665— 668 (2000) および Polymer International 51 , 424— 428 (2002)に記載の方法を参照して 製造すること力 Sできる。
式(8)で表される化合物の具体例としては、 N, N—ジェチルジチォカルバミルメチ ルスチレン、 N, N—ジェチルジチォカルバミルェチルメタタリレートなどが挙げられる [0013] 式(9)で表される(メタ)アタリレートイ匕合物の具体例は下記の通りである。
[化 20]
Figure imgf000017_0001
式(9)中、 Rは水素原子またはメチル基を表し、 Rは水素原子、炭素原子数 1ない
1 2
し 20の直鎖状もしくは枝分かれ状のヒドロキシアルキル基、または炭素原子数 2ない し 20の直鎖状もしくは枝分かれ状のエポキシを含むアルキル基を表す。
式(9)で表される(メタ)アタリレートイ匕合物の具体例としては、(メタ)アクリル酸、(メ タ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸 2—ヒドロキシェチル、 (メタ)アタリノレ 酸 3—ヒドロキシプロピル、(メタ)アクリル酸 4—ヒドロキシブチル、(メタ)アクリル酸 2 _ ヒドロキシプロピノレ、(メタ)アクリル酸グリシジル、(メタ)アクリル酸 _ /3—メチルダリシ ジル、(メタ)アクリル酸— β—ェチルダリシジル、(メタ)アクリル酸— β—プロピルダリ シジル、(メタ)アクリル酸 _ 3, 4_エポキシブチル、 (メタ)アクリル酸— 3_メチル _ 3 , 4_エポキシブチル、(メタ)アクリル酸— 3 _ェチル—3, 4_エポキシブチル、(メタ )アクリル酸一 4_メチル一4, 5 _エポキシペンチル、(メタ)アクリル酸 _ 5—メチル一 5, 6—エポキシへキシノレなどが挙げられる。なお、本発明では (メタ)アタリレート化合 物とは、アタリレートイ匕合物とメタタリレートイ匕合物の両方をいう。例えば (メタ)アタリノレ 酸ヒドロキシメチルは、アクリル酸ヒドロキシメチルとメタクリル酸ヒドロキシメチルをレ、う
[0014] そして、式 (8)で表されるジチォ力ルバメートィ匕合物と式(9)で表される(メタ)アタリ レー Η匕合物とを共存させ、リビングラジカル重合することによって、本発明の構造を 有するハイパーブランチポリマーで、かつジチォ力ルバメート基を分子末端とするハ ィパーブランチポリマーを得ることができる。
リビングラジカル重合は、塊状重合、溶液重合、懸濁重合、乳化重合などの公知の 重合方法により行なうことができる。特に溶液重合が好ましい。
溶液重合の場合は、式(8)で表される化合物と式(9)で表される化合物とを溶解可 能な溶剤中で、任意の濃度で重合反応を行なうことができる。式 (8)で表される化合 物に対して、式(9)で表される化合物が 0. 01モル当量ないし 9モル当量、好ましくは 0. 05モル当量ないし 7モノレ当量、より好ましくは 0. 1モル当量ないし 5モル当量であ る。
また、溶液重合の場合、溶液中における式(8)で表される化合物と式(9)で表され る化合物の濃度は任意であるが、式 (8)で表される化合物と式(9)で表される化合物 の合計量は、総質量 (式(8)で表される化合物と式(9)で表される化合物と溶剤との 合計質量)に対して、 1質量%ないし 80質量%であり、好ましくは 2質量%ないし 70 質量%であり、より好ましくは 5質量%ないし 60質量%である。
なお、溶液重合に用いられる溶剤としては、式(8)で表される化合物と式(9)で表さ れる化合物を溶解可能な溶剤が好ましい。例えば、ベンゼン、トルエン、キシレン、ェ チルベンゼンなどの芳香族炭化水素類、テトラヒドロフラン、ジェチルエーテルなどの エーテル系化合物、アセトン、メチルェチルケトン、メチルイソブチルケトン、シクロへ
Figure imgf000018_0001
ノノレマノレヘプタン、ノノレマノレへキサン、シクロへキサ ンなどの脂肪族炭化水素類などが挙げられる。これらの溶剤は一種を用いてもよいし 、二種以上を混合して用いてもよい。
また、式(8)で表される化合物と式(9)で表される化合物との共存下におけるリピン グラジカル重合は、これらの化合物を含んだ溶剤中で、加熱または紫外線などの光 照射によって行なうことができる。特に紫外線などの光照射によって行なうことが好ま しい。光照射は、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンラン プなどの紫外線照射ランプを使用して、反応系の内部または外部から照射すること によって行なうことができる。
これらのリビングラジカル重合においては、重合開始前には反応系内の酸素を十 分に除去する必要があり、窒素、アルゴンなどの不活性気体で系内を置換するとよい 重合温度は特に制限されなレ、が、 0°Cないし 200°C、好ましくは 5°Cないし 150°C、 より好ましくは 10°Cないし 100°Cである。また、重合時間としては、 0. 1時間ないし 10 0時間、好ましくは 0. 5時間ないし 50時間、より好ましくは 1時間ないし 30時間である 。 通常、重合時間の経過と共にモノマー(式(8)で表される化合物と式(9)で表され る化合物)の転化率は増加する。好ましくは、重合温度は 15°Cないし 60°Cで、重合 時間は 1時間なレ、し 10時間である。
なお、リビングラジカル重合時には、ハイパーブランチポリマーとしての構造を損な わなレ、範囲で分子量や分子量分布や枝分かれ度の調整を行うことができる。分子量 や分子量分布を調整するために、メルカブタン類、サルファイド類などの連鎖移動剤 や、二硫化テトラエチルチウラムなどのスルフイド化合物を使用することができる。さら に所望により、ヒンダードフエノール類などの酸化防止剤、ベンゾトリアゾール類など の紫外線吸収剤、 4_tert—ブチルカテコール、ハイドロキノン、ニトロフエノール、二 トロクレゾール、ピクリン酸、フエノチアジン、ジチォベンゾィルジスルフイドなどの重合 禁止剤を使用できる。
上述のようなリビングラジカル重合によって得られた本発明のハイパーブランチポリ マーは、反応溶液中力 溶剤留去、または固液分離により溶剤と分離することができ る。また、反応溶液を貧溶媒中、例えばヘプタン、メタノーノレ、へキサンなどへ加える ことにより本発明のハイパーブランチポリマーを沈殿させ、粉末として回収することも できる。
さらに、本発明のハイパーブランチポリマーを溶解可能な溶媒、例えばテトラヒドロ フラン、シクロへキサノンなどに溶解させ、架橋剤を混合し、加熱、または放射線照射 することにより架橋反応を行うことで、硬化することもできる。
架橋反応により硬化させる場合は、ハイパーブランチポリマーの構造中の官能基と 架橋可能な架橋剤であれば特に制限は無いが、少なくとも二つ以上の架橋形成置 換基を有する架橋性化合物が好適に使用できる。
例えば、ヒドロキシ基またはカルボキシノレ基が導入された本発明のハイパーブラン チポリマーを架橋反応により硬化させる場合は、市販されてレ、るへキサメトキシメチ口 一ノレメラミンの「サイメノレ 300、サイメノレ 301もしくはサイメノレ 303」(三井サイテック社 製品)、メチルブチル混合エーテル化メチロールメラミンの「サイメル 238,サイメル 23 2もしくはサイメノレ 266」(三井サイテック社製品)、 n_ブチルエーテルィ匕メチロールメ ラミンの「スーパーべッカミン L— 164」(大日本インキ化学工業 (株)社製品)、テトラメ トキシグリコールゥリルの「パウダーリンク(POWDERLINK) 1174」(米国アメリカン' サイアナミツド社製品)などを使用することができる。
さらに、ヒドロキシル基またはカルボキシル基が導入されたハイパーブランチポリマ 一を上記架橋剤で硬化する場合には、 p—トルエンスルホン酸などの酸化合物を組 み合わせて使用することができる。
また、エポキシ基が導入された本発明のハイパーブランチポリマーを架橋反応によ り硬化させる場合は、市販されてレ、るクロチルテトラメチレンスルホニゥムへキサフノレ ォロアンチモネートなどの混合物であるアルキルスルホニゥム塩類の「アデカオプトン
CP— 66」(旭電化工業(株)製)、プレニルテトラメチレンスルホニゥムへキサフルォロ アンチモネートなどの混合物であるアルキルスルホニゥム塩類の「アデカオプトン CP - 77j (旭電化工業 (株)製)などを使用することができる。なお、カルボキシノレ基が導 入された本発明のハイパーブランチポリマーも架橋剤として使用することもできる。 また、放射線照射によって架橋する場合には、酸を発生する放射線カチオン硬化 触媒として市販されているジァリールョードニゥム塩類、トリアリールスルホニゥム塩類 、およびジァリールホスホニゥム塩類などが使用できる。
なお、架橋剤としてはこれらの例示物に限定されるものではない。
実施例
以下、本発明を実施例によりさらに説明するが、これらによって本発明が限定される ものではない。
以下の実施例において、試料の物性測定には下記の装置を使用した。
( 1 )液体クロマトグラフィー
装置: Agilent製 l lOOSeries
カラム: Inertsil ODS- 2
カラム温度: 40°C
溶媒:ァセトニトリル/水 = 60/40 (体積比)
検出器: RI
(2)ゲル浸透クロマトグラフィー
装置:東ソー株式会社製 HLC— 8220GPC
カラム: Shodex KF-805L + KF-804L カラム温度: 40°C
溶媒:テトラヒドロフラン
検出器: RI
(3)融点分析
装置:(株)リガク製 DSC8230
昇温速度: 2°C/分
窒素量: 60mlZ分
(4) 13C-NMR
装置:日本電子データム(株)製 JNM— ECA700
測定法:ゲートデカップリング法(N〇E消去) 13C-NMR
積算回数: 5000回
待ち時間: 10秒
溶媒: CDC1、 d -DMSO
内部標準:テトラメチルシラン
(5) AFM測定
装 li; :Veeco Instruments^ Dimension 3100
プローブ材質:単結晶シリコン
測定モード:タッピングモード
(6)膜厚測定
装置:株式会社小坂研究所製 高精度微細形状測定器 SUREFCORDER ET 4000A
参考例 1
< N、 N _ジェチルジチォカルバミルメチルスチレンの合成 >
2Lの反応フラスコに、クロロメチルスチレン [セイミケミカノレ(株)製、 CMS— 14 (商 品名)] 120g、 N、 N_ジェチルジチ才力ルバミド酸ナトリウム 3水和物 [関東化学 (株 )製 ] 181g、およびアセトン 1400gを仕込み、撹拌下で、温度 40°Cで 1時間反応させ た。反応後、析出した塩ィ匕ナトリウムを濾過して除き、その後エバポレーターで反応 溶液からアセトンを留去させて、反応粗粉末を得た。この反応粗粉末をトルエンに再 溶解させ、トルエン/水系で分液後、零下 20°Cの冷凍庫内でトルエン相から目的物 を再結晶させた。再結晶物を濾過し、真空乾燥して、白色粉末の目的物 206g (収率 97%)を得た。液体クロマトグラフィーによる純度(相対面積百分率)は 100%であつ た。融点は 56°Cであった。
実施例 1
<ジチォ力ルバメート基を分子末端に有するスチレン一メタクリル酸 2—ヒドロキシェ チノレ系ハイパーブランチポリマーの合成 >
300mLガラス製反応フラスコに、 N、 N—ジェチルジチォカルバミルメチルスチレン 80g、メタクリル酸 2—ヒドロキシェチル [純正化学 (株)製] 40g、およびテトラヒドロフ ラン 80gを仕込み、撹拌して淡黄色透明溶液を調製した後、反応系内を窒素置換し た。この溶液の真ん中から 100Wの高圧水銀灯 [セン特殊光源 (株)製、 HL—100] を点灯させ、内部照射による光重合反応を、撹拌下で、温度 30 ± 5。Cで 4時間行つ た。つぎにこの反応液にテトラヒドロフラン 200gをカ卩えて希釈後、ヘプタン 2. 5Lに添 加してポリマーを高粘度な塊状状態で再沈した後、上澄み液をデカンテーシヨンで 除いた。さらにこのポリマーをテトラヒドロフラン 120gに再溶解した後、この溶液をへ ブタン 2· 5Lに添加してポリマーをスラリー状態で再沈した。このスラリーを濾過し、得 られたポリマーをテトラヒドロフラン 60gに再溶解した後、ヘプタン 1Lに添カ卩してポリマ 一をスラリー状で再沈した。このスラリーを濾過し、真空乾燥して、うす黄色粉末の目 的物 14. 8gを得た。得られたポリマーのゲル浸透クロマトグラフィーによるポリスチレ ン換算で測定された重量平均分子量 Mwは 41, 000であり、分散度 Mw/Mnは 5. 87であった。
得られたハイパーブランチポリマーは、下記の式(20)で表される構造式を重合開 始部位とし、式(21)で表される直鎖構造の繰り返し単位と式(22)で表される枝分か れ構造の繰り返し単位を有するハイパーブランチポリマーである。
Figure imgf000022_0001
Figure imgf000023_0001
[化 23]
Figure imgf000023_0002
得られたポリマーの" C— NMRの測定結果を図 1に示した。ケミカルシフトとして、 1 95ppmおよび 12ppmの N、 N -ジェチルジチォカルバミルメチルスチレンに由来す るピークの積分値の平均値と、ケミカノレシフトとして、 177ppmおよび 60ppmのメタク リル酸 2—ヒドロキシに由来するピークの積分値の平均値から、上記の式(21)で表さ れる直鎖構造の繰り返し単位の総量と式(22)で表される枝分かれ構造の繰り返し単 位の総量の比は 1. 0対 1. 0であった。
つぎに、実施例 1で得られたハイパーブランチポリマー lgをシクロへキサノン 9gに 溶解した溶液を作製した。この溶液を孔径 0. 2 / mのポリテトラフルォロエチレン製ミ クロフィルターを用いて濾過した後に、ガラス基板上に 300i"pmで 5秒さらに 2500卬 mで 20秒、スピンコート法で塗布した。その後、ホットプレート上にて温度 200°Cで 10 分間加熱し、膜厚 271nmの薄膜状形成体を得た。この薄膜状形成体の表面状態を AFM測定にて観察した。得られた薄膜状形成体は、表面粗 0. 25nmの均一な表面 状態である様子が観察された。この薄膜状形成体は、得られたハイパーブランチポリ マーの良溶剤であるテトラヒドロフランおよび N メチルー 2—ピロリドンに対して、溶 解した。
[0020] さらに、実施例 1で得られたハイパーブランチポリマー lg、へキサメトキシメチロール メラミンのサイメル 303 [三井サイテック社製] 0. 3g、 p—トルエンスルホン酸 [東京化 成工業 (株)製] 0. 03gをシクロへキサノン 9gに溶解した溶液を作製した。
この溶液を孔径 0. 2 z mのポリテトラフルォロエチレン製ミクロフィルターを用いて濾 過した後に、ガラス基板上に 300rpmで 5秒さらに 2500i"pmで 20秒、スピンコート法 で塗布した。その後、ホットプレート上にて温度 200°Cで 10分間加熱し、膜厚 31 In mの薄膜状形成体を得た。この薄膜状形成体の表面状態を AFM測定にて観察した 。得られた薄膜状形成体は、表面粗 0. 25nmの均一な表面状態である様子が観察 された。また、薄膜状形成体は、得られたハイパーブランチポリマーの良溶剤である テトラヒドロフランおよび N—メチル _ 2_ピロリドンに対して、溶解しなかったことから 明らかに架橋形成している。
[0021] 実施例 2
<ジチォ力ルバメート基を分子末端に有するスチレンーメタクリル酸グリシジル系ハイ パーブランチポリマーの合成 >
50mLガラス製反応フラスコに、 N、 N ジェチルジチォカルバミルメチルスチレン 2 0g、メタクリル酸グリシジル [アルドリッチ社製] 10· 7g、およびテトラヒドロフラン 20· 5 gを仕込み、撹拌して淡黄色透明溶液を調製した後、反応系内を窒素置換した。この 溶液から 10± 3cm離れたところから 100Wの高圧水銀灯 [セン特殊光源 (株)製、 H L 100]を点灯させ、外部照射による光重合反応を、撹拌下で、温度 20 ± 5°Cで 7 時間行った。つぎにこの反応液にテトラヒドロフラン 60gをカ卩えて希釈後、メタノーノレ 1 . 5Lに添加してポリマーをスラリー状態で再沈した。このスラリーを濾過し、得られた ポリマーをテトラヒドロフラン 60gに再溶解した後、この溶液をメタノール 1. 5Lに添カロ してポリマーをスラリー状態で再沈した。このスラリーを濾過し、真空乾燥して、うす黄 色粉末の目的物 9. 9gを得た。ゲル浸透クロマトグラフィーによるポリスチレン換算で 測定された重量平均分子量 Mwは 31, 000であり、分散度 MwZMnは 4. 13であつ た。 得られたハイパーブランチポリマーは、下記の式(20)で表される構造式を重合開 始部位とし、式(23)で表される直鎖構造の繰り返し単位と式(22)で表される枝分か れ構造の繰り返し単位を有するハイパーブランチポリマーである。
[化 24]
Figure imgf000025_0001
[化 25]
Figure imgf000025_0002
[化 26]
Figure imgf000025_0003
得られたポリマーの C— NMRの測定結果を図 2に示した。ケミカルシフトとして、 1 95ppm、 42ppmおよび 12ppmの N、 N—ジェチルジチォカルバミノレメチルスチレン に由来するピークの積分値の平均値と、ケミカルシフトとして、 176ppmおよび 65pp mのメタクリル酸グリシジルに由来するピークの積分値の平均値から、上記の式(23) で表される直鎖構造の繰り返し単位の総量と式(22)で表される枝分かれ構造の繰り 返し単位の総量の比は 1. 0対 1. 0であった。 [0022] つぎに、実施例 2で得られたハイパーブランチポリマー lgをシクロへキサノン 9gに 溶解した溶液を作製した。この溶液を孔径 0. 2 / mのポリテトラフルォロエチレン製ミ クロフィルターを用いて濾過した後に、ガラス基板上に 300i"pmで 5秒さらに 2500卬 mで 20秒、スピンコート法で塗布した。その後、ホットプレート上にて温度 150°Cで 20 分間加熱し、膜厚 343nmの薄膜状形成体を得た。この薄膜状形成体の表面状態を AFM測定にて観察した。得られた薄膜状形成体は、表面粗 0. 32nmの均一な表面 状態である様子が観察された。この薄膜状形成体は、得られたハイパーブランチポリ マーの良溶剤であるテトラヒドロフランおよび N—メチル _ 2_ピロリドンに対して、溶 解した。
[0023] さらに、得られたハイパーブランチポリマー lg、クロチルテトラメチレンスルホニゥム へキサフルォロアンチモネートなどの混合物であるアルキルスルホニゥム塩類のアデ カオプトン CP— 66 [旭電化工業 (株)社製] 0. 5gをシクロへキサノン 9gに溶解した溶 液を作製した。この溶液を孔径 0. 2 /i mのポリテトラフルォロエチレン製ミクロフィルタ 一を用いて濾過した後に、ガラス基板上に 300rpmで 5秒さらに 2500rpmで 20秒、 スピンコート法で塗布した。その後、ホットプレート上にて温度 150°Cで 20分間加熱 し、膜厚 337nmの薄膜状形成体を得た。この薄膜状形成体の表面状態を AFM測 定にて観察した。得られた薄膜状形成体は、表面粗 0. 25nmの均一な表面状態で ある様子が観察された。また、薄膜状形成体は、得られたハイパーブランチポリマー の良溶剤であるテトラヒドロフランおよび N—メチルー 2—ピロリドンに対して、溶解し なかったことから明らかに架橋形成している。
[0024] 実施例 3
<ジチォ力ルバメート基を分子末端に有するスチレン一メタクリル酸系ハイパーブラ ンチポリマーの合成 >
300mLガラス製反応フラスコに、 N、 N—ジェチルジチォカルバミルメチルスチレン 90g、メタクリル酸 [東京化成製] 28. 8g、およびテトラヒドロフラン 79gを仕込み、撹 拌して淡黄色透明溶液を調製した後、反応系内を窒素置換した。この溶液の真ん中 から 100Wの高圧水銀灯 [セン特殊光源 (株)製、 HL— 100]を点灯させ、内部照射 による光重合反応を、撹拌下で、温度 30± 5°Cで 5時間行った。つぎにこの反応液 にテトラヒドロフラン 200gを加えて希釈後、へキサン 2. 5Lに添カ卩してポリマーをスラ リー状態で再沈した。このスラリーを濾過し、得られたポリマーをテトラヒドロフラン 200 gに再溶解した後、この溶液をへキサン 2. 5Lに添加してポリマーをスラリー状態で再 沈した。このスラリーを濾過し、真空乾燥して、うす黄色粉末の目的物 12. lgを得た。 得られたポリマーのゲル浸透クロマトグラフィーによるポリスチレン換算で測定された 重量平均分子量 Mwは 33, 000であり、分散度 Mw/Mnは 6. 60であった。
得られたハイパーブランチポリマーは、下記の式(20)で表される構造式を重合開 始部位とし、式(24)で表される直鎖構造の繰り返し単位と式(22)で表される枝分か れ構造の繰り返し単位を有するハイパーブランチポリマーである。
[化 27]
Η ( )
[化 28]
Figure imgf000027_0001
[化 29]
Figure imgf000027_0002
得られたポリマーの C— NMRの測定結果を図 3に示した。ケミカルシフトとして、 1 95ppmおよび 13ppmの N、 N—ジェチルジチォカルバミルメチルスチレンに由来す るピークの積分値の平均値と、ケミカルシフトとして、 184ppmのメタクリル酸に由来す るピークの積分値の平均値から、上記の式(24)で表される直鎖構造の繰り返し単位 の総量と式(22)で表される枝分かれ構造の繰り返し単位の総量の比は、 1. 0対 1. 0であった。
[0025] つぎに、実施例 3で得られたハイパーブランチポリマー lgをシクロへキサノン 9gに 溶解した溶液を作製した。この溶液を孔径 0. 2 z mのポリテトラフルォロエチレン製ミ クロフィルターを用いて濾過した後に、この溶液をガラス基板上に 300i"pmで 5秒さら に 2500i"pmで 20秒、スピンコート法で塗布した。その後、ホットプレート上にて温度 2 00°Cで 10分間加熱し、膜厚 276nmの薄膜状形成体を得た。この薄膜状形成体の 表面状態を AFM測定にて観察した。得られた薄膜状形成体は、表面粗 0. 37nmの 均一な表面状態である様子が観察された。この薄膜状形成体は、ハイパーブランチ ポリマーの良溶剤であるテトラヒドロフランおよび N—メチルー 2—ピロリドンに対して、 溶解した。
[0026] さらに、得られたハイパーブランチポリマー lg、へキサメトキシメチロールメラミンの サイメル 303 [三井サイテック社製] 0· 3g、 p—トルエンスルホン酸 [東京化成工業( 株)製] 0. 03gをシクロへキサノン 9gに溶解した溶液を作製した。この溶液を孔径 0. 2 /i mのポリテトラフルォロエチレン製ミクロフィルターを用いて濾過した後に、ガラス 基板上に 300i"pmで 5秒さらに 250(kpmで 20秒、スピンコート法で塗布した。その 後、ホットプレート上にて温度 200°Cで 10分間加熱し、膜厚 277nmの薄膜状形成体 を得た。この薄膜状形成体の表面状態を AFM測定にて観察した。得られた薄膜状 形成体は、表面粗 0. 3 lnmの均一な表面状態である様子が観察された。また、薄膜 状形成体は、得られたハイパーブランチポリマーの良溶剤であるテトラヒドロフランお よび N—メチル一2—ピロリドンに対して、溶解しなかったことから明らかに架橋形成し ている。
[0027] 参考例 2
< N、 N—ジェチルジチォカルバミルェチルメタタリレートの合成 > 2Lの反応フラスコに、クロ口ェチルメタタリレート [ランカスター社製] 100g、 N、 N— ジェチルジチ才力ルバミド酸ナトリウム 3水和物 [関東化学 (株)製] 178g、アセトン 11 00gを仕込み、撹拌下で、温度 40°Cで 14時間反応させた。反応後、析出した塩ィ匕 ナトリウムを濾過して除き、その後エバポレーターで反応溶液からアセトンを留去させ 、反応粗粉末を得た。この反応粗粉末を 1 , 2—ジクロロェタンに再溶解させ、 1 , 2- ジクロロェタン/水系で分液後、 1, 2—ジクロロェタン相から 1, 2—ジクロロェタンを 留去させて黄色液体の目的物 171g (収率 97%)を得た。液体クロマトグラフィーによ る純度(相対面積百分率)は 96%であった。
実施例 4
<ジチォ力ルバメート基を分子末端に有するアクリル一メタクリル酸 2—ヒドロキシェ チノレ系ハイパーブランチポリマーの合成 >
1Lの反応フラスコに、 N、 N—ジェチルジチォカルバミルェチルメタタリレート 40g、 メタクリル酸 2—ヒドロキシェチル [純正化学 (株)製] 20g、およびテトラヒドロフラン 40 0gを仕込み、撹拌して淡黄色透明溶液を調製した後、反応系内を窒素置換した。こ の溶液の真ん中から 100Wの高圧水銀灯 [セン特殊光源 (株)製、 HL— 100]を点 灯させ、内部照射による光重合反応を、撹拌下で、温度 30 ± 5°Cで 6時間行った。つ ぎにこの反応液をへキサン 3000gに添加してポリマーをスラリー状態で再沈した。こ のスラリーを濾過し、得られたポリマーをテトラヒドロフラン 170gに再溶解した後、この 溶液をへキサン 1500gに添加してポリマーをスラリー状態で再沈した。このスラリーを 濾過し、真空乾燥して、うす黄色粉末の目的物 27. 3gを得た。得られたポリマーのゲ ル浸透クロマトグラフィーによるポリスチレン換算で測定された重量平均分子量 Mw ίま 24, 000であり、分散度 Mw/Mnfま 4. 06であった。
得られたハイパーブランチポリマーは、下記の式(25)で表される構造式を重合開 始部位とし、式(21)で表される直鎖構造の繰り返し単位と式(26)で表される枝分か れ構造の繰り返し単位を有するハイパーブランチポリマーである。
[化 30]
Figure imgf000030_0001
[化 31]
Figure imgf000030_0002
[化 32]
Figure imgf000030_0003
得られたポリマーの13 C— NMRの測定結果を図 4に示した。ケミカルシフトとして、 1 94ppm、 50ppm、および 13ppmの N、 N—ジェチルジチォカルバミルェチルメタタリ レートに由来するピークの積分値の平均値と、ケミカノレシフトとして、 67ppmおよび 6 Oppmのメタクリル酸 2—ヒドロキシェチルに由来するピークの積分値の平均値から、 上記の式(21)で表される直鎖構造の繰り返し単位の総量と式(26)で表される枝分 かれ構造の繰り返し単位の総量の比は 1. 0対 0. 8であった。
つぎに、実施例 4で得られたハイパーブランチポリマー lgをシクロへキサノン 9gに 溶解した溶液を作製した。この溶液を孔径 0. 2 z mのポリテトラフルォロエチレン製ミ クロフィルターを用いて濾過した後に、ガラス基板上に 300i"pmで 5秒さらに 2500卬 mで 20秒、スピンコート法で塗布した。その後、ホットプレート上にて温度 120°Cで 10 分間加熱し、膜厚 151nmの薄膜状形成体を得た。この薄膜状形成体の表面状態を AFM測定にて観察した。得られた薄膜状形成体は、表面粗 0. 26nmの均一な表面 状態である様子が観察された。この薄膜状形成体は、ハイパーブランチポリマーの良 溶剤であるテトラヒドロフランおよび N—メチル _ 2_ピロリドンに対して、溶解した。
[0030] さらに、得られたハイパーブランチポリマー lg、へキサメトキシメチロールメラミンの サイメル 303 [三井サイテック社製] 0. 3g、 p—トルエンスルホン酸 [東京化成工業( 株)製] 0. 03gをシクロへキサノン 9gに溶解した溶液を作製した。この溶液を孔径 0. 2 z mのポリテトラフルォロエチレン製ミクロフィルターを用いて濾過した後に、ガラス 基板上に 300i"pmで 5秒さらに 2500i"pmで 20秒、スピンコート法で塗布した。その 後、ホットプレート上にて温度 120°Cで 10分間加熱し、膜厚 206nmの薄膜状形成体 を得た。この薄膜状形成体の表面状態を AFM測定にて観察した。得られた薄膜状 形成体は、表面粗 0. 26nmの均一な表面状態である様子が観察された。この薄膜 状形成体は、ハイパーブランチポリマーの良溶剤であるテトラヒドロフランおよび N— メチル 2—ピロリドンに対して、溶解しなかったことから明らかに架橋形成している。
[0031] 実施例 5
<ジチォ力ルバメート基を分子末端に有するアクリルーメタクリル酸グリシジル系ハイ パーブランチポリマーの合成 >
1Lの反応フラスコに、 N、 N ジェチルジチォカルバミルェチルメタタリレート 40g、 メタクリル酸グリシジル [アルドリッチ社製] 21 · 8g、およびテトラヒドロフラン 413gを仕 込み、撹拌して淡黄色透明溶液を調製した後、反応系内を窒素置換した。この溶液 の真ん中から 100Wの高圧水銀灯 [セン特殊光源 (株)製、 HL— 100]を点灯させ、 内部照射による光重合反応を、撹拌下で、温度 30± 5°Cで 5時間行った。つぎにこ の反応液をへキサン 3000gに添加してポリマーをスラリー状態で再沈した。このスラリ 一を濾過し、得られたポリマーをテトラヒドロフラン 170gに再溶解した後、この溶液を へキサン 1500gに添カ卩してポリマーをスラリー状態で再沈した。このスラリーを濾過し 、真空乾燥して、うす黄色粉末の目的物 22. 6gを得た。得られたポリマーのゲル浸 透クロマトグラフィーによるポリスチレン換算で測定された重量平均分子量 Mwは 20 , 000であり、分散度 MwZMnは 3. 36であった。 得られたハイパーブランチポリマーは、下記の式(25)で表される構造式を重合開 始部位とし、式(23)で表される直鎖構造の繰り返し単位と式(26)で表される枝分か れ構造の繰り返し単位を有するハイパーブランチポリマーである。
[化 33]
Figure imgf000032_0001
[化 34]
Figure imgf000032_0002
[化 35]
Figure imgf000032_0003
得られたポリマーの13 C— NMRの測定結果を図 5に示した。ケミカルシフトとして、 1 94ppm、 63ppm、および 13ppmの N、 N—ジェチルジチォカルバミノレエチルメタタリ レートに由来するピークの積分値の平均値と、ケミカノレシフトとして、 66ppmおよび 5 Oppmのメタクリル酸グリシジノレに由来するピークの積分値の平均値から、上記の式( 23)で表される直鎖構造の繰り返し単位の総量と式(26)で表される枝分かれ構造の 繰り返し単位の総量との比は、 1. 0対 1. 0であった。
[0032] つぎに、実施例 5で得られたハイパーブランチポリマー lgをシクロへキサノン 9gに 溶解した溶液を作製した。この溶液を孔径 0. 2 / mのポリテトラフルォロエチレン製ミ クロフィルターを用いて濾過した。この溶液をガラス基板上に 300rpmで 5秒さらに 25 OOrpmで 20秒、スピンコート法で塗布した。その後、ホットプレート上にて温度 120 °Cで 10分間加熱し、膜厚 178nmの薄膜状形成体を得た。この薄膜状形成体の表 面状態を AFM測定にて観察した。得られた薄膜状形成体は、表面粗 0. 29nmの均 一な表面状態である様子が観察された。この薄膜状形成体は、ハイパーブランチポリ マーの良溶剤であるテトラヒドロフランおよび N メチル _ 2 _ピロリドンに対して、溶 解した。
[0033] さらに、得られたハイパーブランチポリマー lg、クロチルテトラメチレンスルホニゥム へキサフルォロアンチモネートなどの混合物であるアルキルスルホニゥム塩類のアデ カオプトン CP— 66 [旭電化工業 (株)社製] 0· 5gをシクロへキサノン 9gに溶解した溶 液を作製した。この溶液を孔径 0. 2 /i mのポリテトラフルォロエチレン製ミクロフィルタ 一を用いて濾過した後に、ガラス基板上に 300rpmで 5秒さらに 2500rpmで 20秒、 スピンコート法で塗布した。その後、ホットプレート上にて温度 120°Cで 10分間加熱 し、膜厚 256nmの薄膜状形成体を得た。この薄膜状形成体の表面状態を AFM測 定にて観察した。得られた薄膜状形成体は、表面粗 0. 28nmの均一な表面状態で ある様子が観察された。この薄膜状形成体は、ハイパーブランチポリマーの良溶剤で あるテトラヒドロフランおよび N—メチル 2—ピロリドンに対して、溶解しな力 たこと 力 明らかに架橋形成している。
[0034] 実施例 6
<ジチォ力ルバメート基を分子末端に有するアクリル一メタクリル酸系ハイパーブラン チポリマーの合成 >
300mLガラス製反応フラスコに、 N、 N—ジェチルジチォカルバミルェチルメタタリ レート 20g、メタクリル酸 [東京化成製] 6. 6g、およびテトラヒドロフラン 150. 3gを仕 込み、撹拌して淡黄色透明溶液を調製した後、反応系内を窒素置換した。この溶液 の真ん中から 100Wの高圧水銀灯 [セン特殊光源 (株)製、 HL— 100]を点灯させ、 内部照射による光重合反応を、撹拌下で、温度 30± 5°Cで 6時間行った。つぎにこ の反応液をへキサン 2. 5Lに添カ卩してポリマーをスラリー状態で再沈した。このスラリ 一を濾過し、得られたポリマーをテトラヒドロフラン 100gに再溶解した後、この溶液を へキサン 2. 5Lに添カ卩してポリマーをスラリー状態で再沈した。このスラリーを濾過し、 真空乾燥して、うす黄色粉末の目的物 13. 7gを得た。得られたポリマーのゲル浸透 クロマトグラフィーによるポリスチレン換算で測定された重量平均分子量 Mwは 24, 0 00であり、分散度 MwZMnは 4. 64であった。
得られたハイパーブランチポリマーは、下記の式(25)で表される構造式を重合開 始部位とし、式(24)で表される直鎖構造の繰り返し単位と式(26)で表される枝分か れ構造の繰り返し単位を有するハイパーブランチポリマーである。
[化 36]
Figure imgf000034_0001
[化 37]
Figure imgf000034_0002
[化 38]
Figure imgf000035_0001
得られたポリマーの C— NMRの測定結果を図 6に示した。ケミカルシフトとして、 1 93ppmおよび l lppmの N、 N—ジェチルジチォカルバミルェチルメタタリレートに由 来するピークの積分値の平均値と、ケミカルシフトとして、 178ppmのメタクリル酸ダリ シジノレに由来するピークの積分値の平均値から、上記の式(24)で表される直鎖構 造の繰り返し単位の総量と式(26)で表される枝分かれ構造の繰り返し単位の総量と の比は 1. 0対 1. 1であった。
[0035] つぎに、実施例 6で得られたハイパーブランチポリマー lgをシクロへキサノン 9gに 溶解した溶液を作製した。この溶液を孔径 0. 2 z mのポリテトラフルォロエチレン製ミ クロフィルターを用いて濾過した後に、ガラス基板上に 300i"pmで 5秒さらに 2500卬 mで 20秒、スピンコート法で塗布した。その後、ホットプレート上にて温度 120°Cで 10 分間加熱し、膜厚 135nmの薄膜状形成体を得た。この薄膜状形成体の表面状態を AFM測定にて観察した。得られた薄膜状形成体は、表面粗 0. 29nmの均一な表面 状態である様子が観察された。この薄膜状形成体は、ハイパーブランチポリマーの良 溶剤であるテトラヒドロフランおよび N—メチル _ 2_ピロリドンに対して、溶解した。
[0036] さらに、得られたハイパーブランチポリマー lg、へキサメトキシメチロールメラミンの サイメル 303 [三井サイテック社製] 0. 3gおよび p—トルエンスルホン酸 [東京化成ェ 業 (株)製] 0. 03gをシクロへキサノン 9gに溶解した溶液を作製した。この溶液を孔径 0. 2 /i mのポリテトラフルォロエチレン製ミクロフィルターを用いて濾過した後に、ガラ ス基板上に 300i"pmで 5秒さらに 2500rpmで 20秒、スピンコート法で塗布した。その 後、ホットプレート上にて温度 120°Cで 10分間加熱し、膜厚 155nmの薄膜状形成体 を得た。この薄膜状形成体の表面状態を AFM測定にて観察した。得られた薄膜状 形成体は、表面粗 0. 28nmの均一な表面状態である様子が観察された。この薄膜 状形成体は、ノ、ィパーブランチポリマーの良溶剤であるテトラヒドロフラン、および N —メチル一 2—ピロリドンに対して、溶解しなかったことから明らかに架橋形成してい る。
産業上の利用可能性
[0037] 本発明のハイパーブランチポリマーは、繰り返し単位の分子鎖中にヒドロキシル基、 エポキシ基、またはカルボキシノレ基の官能基を有するので架橋剤などの混合割合に よって架橋の度合いなどの特性を制御することができ、反応性の自由度に優れてい る。従って、多面的な用途に使用することが可能であり、塗料材料、接着剤材料、榭 脂フイラ一、各種成形材料、ナノメートルサイズの多孔形成剤、レジスト材料、電子材 料、印刷材料、電池材料、及び医用材料等として利用することができる。
図面の簡単な説明
[0038] [図 1]図 1は、実施例 1で得たハイパーブランチポリマーの13 C— NMRスペクトルであ る。
[図 2]図 2は、実施例 2で得たハイパーブランチポリマーの13 C— NMRスペクトルであ る。
[図 3]図 3は、実施例 3で得たハイパーブランチポリマーの13 C— NMRスペクトルであ る。
[図 4]図 4は、実施例 4で得たハイパーブランチポリマーの13 C— NMRスペクトルであ る。
[図 5]図 5は、実施例 5で得たハイパーブランチポリマーの13 C— NMRスペクトルであ る。
[図 6]図 6は、実施例 6で得たハイパーブランチポリマーの13 C— NMRスペクトルであ る。

Claims

請求の範囲
下記の式(1)で表される構造式を重合開始部位として、下記の式 (2)で表される直 鎖構造の繰り返し単位と下記の式(3)で表される枝分かれ構造の繰り返し単位を有 し、
かつ式(2)で表される直鎖構造の繰り返し単位の総数が 1ないし 100, 000の整数で 、式(3)で示される枝分かれ構造の繰り返し単位の総数が 2ないし 100, 000の整数 であるハイパーブランチポリマー。
[化 1]
Figure imgf000037_0001
(式(1)ないし式(3)中、 Rは水素原子またはメチル基を表し、 Rは水素原子、炭素
1 2
原子数 1ないし 20の直鎖状もしくは枝分かれ状のヒドロキシアルキル基、または炭素 原子数 3ないし 20の直鎖状もしくは枝分かれ状のエポキシ基を含むアルキル基を表 し、また、 Aは下記の式 (4)または下記の式(5)で表される構造を表す。)
1
[化 4]
Figure imgf000038_0001
[化 5]
Figure imgf000038_0002
(式 (4)および式(5)中、 Aはエーテル結合またはエステル結合を含んでいてもよい
2
炭素原子数 1ないし 20の直鎖状、枝分かれ状または環状のアルキレン基を表し、 X
1
、 X、 Xおよび Xは、それぞれ、水素原子、炭素原子数 1ないし 20のアルキル基、ま
2 3 4
たは炭素原子数 1ないし 20のアルコキシ基を表す。 )
分子末端にジチォ力ルバメート基を有する、請求項 1に記載のハイパーブランチポ リマー。
ポリマー中に含まれる前記式(2)で表される直鎖構造の繰り返し単位の総数と前記 式(3)で表される枝分かれ構造の繰り返し単位の総数との割合について、式(2)で 表される繰り返し単位と式(3)で表される繰り返し単位との合計量中、式(2)で表され る直鎖構造の繰り返し単位の量が 1モル%ないし 90モル%であり、式(3)で表される 枝分かれ構造の繰り返し単位の量が 99モル%ないし 10モル%である、請求項 1に 記載のハイパーブランチポリマー。
前記 A力 S、式(6) :
1
[化 6]
Figure imgf000038_0003
で表される構造である、請求項 1に記載のハイパーブランチポリマー。
前記 A力 S、式(7) :
1
[化 7]
0
— C-0— (CH2)m ~ (7)
(式中、 mは 2ないし 10の整数を表す。)
で表される構造である、請求項 1に記載のハイパーブランチポリマー。
ゲル浸透クロマトグラフィによるポリスチレン換算で測定される重量平均分子量が
500なレ、し 5, 000, 000である、請求項 1に記載のハイパーブランチポリマー。
式 (8)
[化 8]
(8)
Figure imgf000039_0001
(式中、 Rおよび Aは前記式(1)ないし式(3)における定義と同意義であり、
1 1
Rおよび Rは、それぞれ、炭素原子数 1ないし 5のアルキル基、炭素原子数 1ないし
3 4
5のヒドロキシアルキノレ基、または炭素原子数 7ないし 12のァリールアルキル基を表し 、また、 Rと Rは互いに結合して、それらと結合する窒素原子と共に環を形成してい
3 4
てあよレヽ。 )
で表されるジチォ力ルバメートィ匕合物と式(9)
[化 9]
Figure imgf000039_0002
(式中、 Rおよび Rは前記式(1)ないし式(3)における定義と同意義である。)で表さ
1 2
れる(メタ)アタリレートイ匕合物とを共存させ、リビングラジカル重合することからなる、請 求項 1に記載のハイパーブランチポリマーの製造方法。 [8] 前記式(8)で表されるジチォ力ルバメートィ匕合物と前記式(9)で表される(メタ)ァク リレートイヒ合物を溶媒に溶解し、紫外線照射によってリビングラジカル重合することか らなる、請求項 7に記載のハイパーブランチポリマーの製造方法。
[9] 前記式(8)で表されるジチォ力ルバメート化合物力 N, N—ジェチルジチォカル バミルメチルスチレンまたは N, N—ジェチルジチォカルバミルェチルメタタリレートで ある、請求項 7または請求項 8に記載のハイパーブランチポリマーの製造方法。
[10] 前記式(9)で表される(メタ)アタリレートイ匕合物力 メタクリル酸 2—ヒドロキシェチル 、メタクリル酸グリシジルまたはメタクリル酸である、請求項 7または請求項 8に記載の ハイパーブランチポリマーの製造方法。
[11] 前記式(8)で表されるジチォ力ルバメート化合物力 N, N—ジェチルジチォカル バミルメチルスチレンまたは N, N—ジェチルジチォカルバミルェチルメタタリレートで あり、前記式(9)で表される(メタ)アタリレートイ匕合物がメタクリル酸 2 -ヒドロキシェチ ノレ、メタクリル酸グリシジルまたはメタクリル酸である、請求項 7または請求項 8に記載 のハイパーブランチポリマーの製造方法。
PCT/JP2007/061904 2006-06-19 2007-06-13 ハイパーブランチポリマーおよびその製造方法 WO2007148578A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/308,567 US20100240792A1 (en) 2006-06-19 2007-06-13 Hyperbranched Polymer and Method for Producing the Same
JP2008522408A JP5495561B2 (ja) 2006-06-19 2007-06-13 ハイパーブランチポリマーおよびその製造方法
EP07745171A EP2036929A4 (en) 2006-06-19 2007-06-13 HYBRID BRANCHED POLYMER AND METHOD OF MANUFACTURING THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-168721 2006-06-19
JP2006168721 2006-06-19

Publications (1)

Publication Number Publication Date
WO2007148578A1 true WO2007148578A1 (ja) 2007-12-27

Family

ID=38833320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061904 WO2007148578A1 (ja) 2006-06-19 2007-06-13 ハイパーブランチポリマーおよびその製造方法

Country Status (5)

Country Link
US (1) US20100240792A1 (ja)
EP (1) EP2036929A4 (ja)
JP (1) JP5495561B2 (ja)
TW (1) TW200817442A (ja)
WO (1) WO2007148578A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117772A1 (ja) * 2007-03-26 2008-10-02 Nissan Chemical Industries, Ltd. 光重合性高分子を含む硬化性材料および硬化物
JP2008266571A (ja) * 2007-01-05 2008-11-06 Kyushu Univ ビタミンb12修飾ハイパーブランチポリマーおよび脱ハロゲン化触媒
JP2009155624A (ja) * 2007-12-03 2009-07-16 Kyushu Univ 新規双性イオン型多分岐樹脂、並びに、蛋白質チップ表面調節剤
JP2009242787A (ja) * 2008-03-11 2009-10-22 Kyushu Univ ビタミンb12修飾コアシェル型ハイパーブランチポリマーおよび脱ハロゲン化触媒
WO2010087379A1 (ja) * 2009-01-27 2010-08-05 国立大学法人九州大学 チオエステル基含有ハイパーブランチポリマー
WO2010101254A1 (ja) * 2009-03-06 2010-09-10 日産化学工業株式会社 ハイパーブランチポリマーの製造方法
WO2010101252A1 (ja) * 2009-03-06 2010-09-10 日産化学工業株式会社 ハイパーブランチポリマーの製造方法
EP2202248A4 (en) * 2007-09-12 2010-11-03 Nissan Chemical Ind Ltd PROCESS FOR PREPARING HYPER BRANCHED POLYMER
JP2011219528A (ja) * 2010-04-05 2011-11-04 Sekisui Chem Co Ltd アクリル系重合体の製造方法
DE112011102260T5 (de) 2010-07-02 2013-08-08 Tokuyama Corp. Photohärtbare Zusammensetzung zum Prägedruck und Verfahren zum Bilden eines Musters mittels der Zusammensetzung
JP5435229B2 (ja) * 2007-09-03 2014-03-05 日産化学工業株式会社 ジチオカルバメート基を有する高分子化合物からなる金属微粒子分散剤

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201706613VA (en) * 2015-03-17 2017-09-28 Nipsea Tech Pte Ltd A polymer composition and coatings prepared from the same
JP7030721B2 (ja) * 2017-01-13 2022-03-07 マクセル株式会社 ハイパーブランチポリマー、金属回収剤、金属回収方法及び触媒活性妨害剤
CN110294816B (zh) * 2019-06-06 2021-07-16 东莞东阳光科研发有限公司 磁性纳米聚苯乙烯羧基微球及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256563A (ja) * 2003-02-24 2004-09-16 Shiseido Co Ltd スターポリマーの製造方法
WO2006093050A1 (ja) * 2005-03-03 2006-09-08 Tokyo Institute Of Technology ハイパーブランチポリマー及びその製造方法
WO2007049608A1 (ja) * 2005-10-25 2007-05-03 Kyusyu University 表面および/または界面が改質されたポリマー構造体、およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256563A (ja) * 2003-02-24 2004-09-16 Shiseido Co Ltd スターポリマーの製造方法
WO2006093050A1 (ja) * 2005-03-03 2006-09-08 Tokyo Institute Of Technology ハイパーブランチポリマー及びその製造方法
WO2007049608A1 (ja) * 2005-10-25 2007-05-03 Kyusyu University 表面および/または界面が改質されたポリマー構造体、およびその製造方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
KOJI ISHIZU ET AL., POLYMER INTERNATIONAL, vol. 53, 2004, pages 259 - 265
KOJI ISHIZU; AKIHIDE MORI, MACROMOL. RAPID COMMUN., vol. 21, 2000, pages 665 - 668
KOJI ISHIZU; AKIHIDE MORI; TAKESHI SHIBUYA, POLYMER, vol. 42, 2001, pages 7911 - 7914
KOJI ISHIZU; TAKESHI SHIBUYA; AKIHIDE MORI, POLYMER INTERNATIONAL, vol. 51, 2002, pages 424 - 428
KOJI ISHIZU; TAKESHI SHIBUYA; SUSUMU KAWAUCHI, MACROMOLECULES, vol. 36, no. 10, 2002, pages 3505 - 3510
KOJI ISHIZU; YOSHIHIRO OHTA; SUSUMU KAWAUCHI, MACROMOLECULES, vol. 35, no. 9, 2002, pages 3781 - 3784
KOJI LSHIZU; AKIHIDE MORI, POLYMER INTERNATIONAL, vol. 50, 2001, pages 906 - 910
MACROMOL. RAPID COMMUN., vol. 21, 2000, pages 665 - 668
POLYMER INTERNATIONAL, vol. 51, 2002, pages 424 - 428
See also references of EP2036929A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266571A (ja) * 2007-01-05 2008-11-06 Kyushu Univ ビタミンb12修飾ハイパーブランチポリマーおよび脱ハロゲン化触媒
WO2008117772A1 (ja) * 2007-03-26 2008-10-02 Nissan Chemical Industries, Ltd. 光重合性高分子を含む硬化性材料および硬化物
JP5435229B2 (ja) * 2007-09-03 2014-03-05 日産化学工業株式会社 ジチオカルバメート基を有する高分子化合物からなる金属微粒子分散剤
JP5408435B2 (ja) * 2007-09-12 2014-02-05 日産化学工業株式会社 ハイパーブランチポリマーの製造方法
EP2202248A4 (en) * 2007-09-12 2010-11-03 Nissan Chemical Ind Ltd PROCESS FOR PREPARING HYPER BRANCHED POLYMER
JP2009155624A (ja) * 2007-12-03 2009-07-16 Kyushu Univ 新規双性イオン型多分岐樹脂、並びに、蛋白質チップ表面調節剤
JP2009242787A (ja) * 2008-03-11 2009-10-22 Kyushu Univ ビタミンb12修飾コアシェル型ハイパーブランチポリマーおよび脱ハロゲン化触媒
WO2010087379A1 (ja) * 2009-01-27 2010-08-05 国立大学法人九州大学 チオエステル基含有ハイパーブランチポリマー
JP5553776B2 (ja) * 2009-01-27 2014-07-16 国立大学法人九州大学 チオエステル基含有ハイパーブランチポリマー
WO2010101252A1 (ja) * 2009-03-06 2010-09-10 日産化学工業株式会社 ハイパーブランチポリマーの製造方法
WO2010101254A1 (ja) * 2009-03-06 2010-09-10 日産化学工業株式会社 ハイパーブランチポリマーの製造方法
JP5594482B2 (ja) * 2009-03-06 2014-09-24 日産化学工業株式会社 ハイパーブランチポリマーの製造方法
JP2011219528A (ja) * 2010-04-05 2011-11-04 Sekisui Chem Co Ltd アクリル系重合体の製造方法
DE112011102260T5 (de) 2010-07-02 2013-08-08 Tokuyama Corp. Photohärtbare Zusammensetzung zum Prägedruck und Verfahren zum Bilden eines Musters mittels der Zusammensetzung
JP5755229B2 (ja) * 2010-07-02 2015-07-29 株式会社トクヤマ 光硬化性インプリント用組成物及び該組成物を用いたパターンの形成方法

Also Published As

Publication number Publication date
JP5495561B2 (ja) 2014-05-21
US20100240792A1 (en) 2010-09-23
EP2036929A4 (en) 2010-01-20
JPWO2007148578A1 (ja) 2009-11-19
EP2036929A1 (en) 2009-03-18
TW200817442A (en) 2008-04-16

Similar Documents

Publication Publication Date Title
WO2007148578A1 (ja) ハイパーブランチポリマーおよびその製造方法
JP5187825B2 (ja) ハイパーブランチポリマー及びその製造方法
JP5268644B2 (ja) ハイパーブランチポリマー及びその製造方法
TW552285B (en) Novel (co)polymers
Lessard et al. One-step poly (styrene-alt-maleic anhydride)-block-poly (styrene) copolymers with highly alternating styrene/maleic anhydride sequences are possible by nitroxide-mediated polymerization
Robinson et al. Synthesis of controlled-structure sulfate-based copolymers via atom transfer radical polymerisation and their use as crystal habit modifiers for BaSO 4
US7067586B2 (en) Methods of making ABA-type block copolymers having a random block of hydrophobic and hydrophilic monomers
Liu et al. Facile synthesis of ABCDE‐type H‐shaped quintopolymers by combination of ATRP, ROP, and click chemistry and their potential applications as drug carriers
Haldar et al. POSS tethered hybrid “inimer” derived hyperbranched and star-shaped polymers via SCVP-RAFT technique
EP3078684B1 (en) Block copolymer
JP5630957B2 (ja) ハイパーブランチポリマー及びその製造方法
Lee et al. Thiol-ene photopolymerization of well-defined hybrid graft polymers from a ladder-like polysilsesquioxane
Yin et al. Amphiphilic multicore‐shell particles based on polyphenylene dendrimers
EP2202248B1 (en) Method for producing hyperbranched polymer
US11155666B2 (en) Block copolymer
Williams et al. Polymers and copolymers containing covalently bonded polyhedral oligomeric silsesquioxanes moieties
JP4401433B1 (ja) 有機ポリマー多孔質体、及びその製造方法
JPH01254719A (ja) ポリシロキサン基含有重合体
CN114656591B (zh) 一种水溶性大分子光引发剂及其制备方法和用途
KR101408487B1 (ko) 스타 폴리머 및 그 제법
KR102071914B1 (ko) 블록 공중합체
JP2020204006A (ja) 複合体及びその製造方法、並びに硬化性樹脂組成物
JP5673910B2 (ja) 新規なテトラキスフェノール誘導体モノマー及びその製造方法並びにそれから得られる(共)重合体
JPH01245001A (ja) マクロモノマーおよびグラフトポリマーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745171

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522408

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12308567

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007745171

Country of ref document: EP