WO2010101252A1 - ハイパーブランチポリマーの製造方法 - Google Patents

ハイパーブランチポリマーの製造方法 Download PDF

Info

Publication number
WO2010101252A1
WO2010101252A1 PCT/JP2010/053677 JP2010053677W WO2010101252A1 WO 2010101252 A1 WO2010101252 A1 WO 2010101252A1 JP 2010053677 W JP2010053677 W JP 2010053677W WO 2010101252 A1 WO2010101252 A1 WO 2010101252A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
carbon atoms
represented
hyperbranched polymer
Prior art date
Application number
PCT/JP2010/053677
Other languages
English (en)
French (fr)
Inventor
章博 田中
圭介 小島
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2011502826A priority Critical patent/JP5534244B2/ja
Publication of WO2010101252A1 publication Critical patent/WO2010101252A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • C08F291/14Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00 on to sulfur-containing macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • C08F290/044Polymers of aromatic monomers as defined in group C08F12/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]

Definitions

  • the present invention relates to a method for producing a hyperbranched polymer, and more specifically, a hyperbranched polymer having a dithiocarbamate group and a monomer having a polymerizable unsaturated bond such as a styryl group (vinylphenyl group) and / or an acrylic group.
  • the present invention relates to a method for producing a hyperbranched polymer obtained by polymerization by heating in the presence of a disulfide compound.
  • the present invention heats a hyperbranched polymer having a dithiocarbamate group and a monomer having a polymerizable unsaturated bond such as a styryl group (vinylphenyl group) and / or an acrylic group, preferably in the presence of a disulfide compound. And a product obtained thereby.
  • the hyperbranched polymer is a paint, ink, adhesive, resin filler, various molding materials, nanometer-size porous forming agent, chemical mechanical abrasive, functional material support material, nanocapsule, photonic crystal, resist material , Optical materials, electronic materials, information recording materials, printing materials, battery materials, medical materials, magnetic materials, and the like.
  • Hyperbranched polymers are classified as dendritic (dendritic) polymers together with dendrimers.
  • dendritic polymers generally have a string-like shape, whereas these dendritic polymers actively introduce branching, so they have a unique structure and are on the order of nanometers. Point that can form a surface that holds many functional groups, point that viscosity can be reduced compared to linear polymer, point that there is little entanglement between molecules and fine particle behavior, and it becomes amorphous and dissolves in solvent Applications that utilize various characteristics are expected in terms of controllability.
  • a method for producing a hyperbranched polymer a method by photopolymerization of a compound having a dithiocarbamate group having a photopolymerization initiating ability and having a styryl group (vinylphenyl group) and / or an acryl group is known.
  • a hyperbranched polymer synthesis method by photopolymerization of a styrene compound having a dithiocarbamate group see Non-Patent Documents 1, 2, and 3
  • a hyperbranch having a dithiocarbamate group by photopolymerization of an acrylic compound having a dithiocarbamate group A polymer synthesis method (see Non-Patent Documents 4, 5, and 6), photopolymerization in the presence of maleic anhydride and a styrene compound having a dithiocarbamate group, to the molecular terminal where an acid anhydride is introduced into the main chain.
  • a light source such as a high-pressure mercury lamp is used, so that expensive dedicated reaction equipment is required.
  • photopolymerization has a problem that a large amount of gel is generated in the vicinity of the high-pressure mercury lamp. For this reason, it is possible to polymerize only at a conversion rate of about 50%, and since a large amount of monomer remains, it is necessary to repeat reprecipitation purification, and only about 40% of the hyperbranched polymer can be taken out. In addition, a complicated operation of removing the gelled product is also required.
  • polymerization is carried out by heating monomers having a styryl group (vinylphenyl group) and / or an acrylic group.
  • a free radical source such as a compound having a dithiocarbamate group and AIBN (azobisisobutyronitrile)
  • monomers having a styryl group vinylphenyl group
  • acrylic group a styryl group
  • Patent Documents 1, 2, 3, and 4 There is known a method (see Patent Documents 1, 2, 3, and 4). In this method, polymerization proceeds at a double bond site of a styryl group (vinylphenyl group) and an acrylic group, and a linear polymer is obtained.
  • 4-vinylbenzyl N, N-diethyldithiocarbamate which is a compound in which a dithiocarbamate group and a styryl group (vinylphenyl group) coexist in the molecule, was polymerized by heating in the presence of AIBN as described above.
  • An example (see Non-Patent Document 9) is known. In this method, polymerization proceeds at a double bond site of a styryl group (vinylphenyl group), and a linear polymer is obtained.
  • 4-vinylbenzyl N, N-diethyldithiocarbamate is heated at 30 ° C. in the absence of AIBN (see Non-Patent Document 9), but the reaction hardly proceeds at all (yield 0). .8%).
  • a hyperbranched polymer having a dithiocarbamate group in the molecule and a compound containing a polymerizable unsaturated bond such as a styryl group (vinylphenyl group) and / or an acryl group are heated to graft polymerize.
  • a styryl group vinylphenyl group
  • the present invention has been made in view of such circumstances, and is excellent in economy and operability, and stably produces a novel hyperbranched polymer having various functional groups in a polymer chain at a high yield.
  • An object is to provide a method for producing a hyperbranched polymer.
  • the present inventor has found that a hyperbranched polymer having a dithiocarbamate group in the molecule, and a polymerizable unsaturated such as a styryl group (vinylphenyl group) and / or an acryl group. It has been found that a novel hyperbranched polymer having various functional groups in the polymer chain can be obtained in high yield by heating a compound containing a bond, and the present invention has been completed.
  • the hyperbranched polymers having a dithiocarbamate group in the molecule, the compound having a polymerizable unsaturated bond, and a disulfide compound, the hyperbranched polymers having a dithiocarbamate group
  • the present inventors have found that a hyperbranched polymer with suppressed coupling can be obtained.
  • the present invention provides a hyperbranched polymer represented by the formula (1) having at least one structure represented by the formula (2) and an unsaturated double represented by the formula (3).
  • R 1 and R 4 each represent a hydrogen atom or a methyl group.
  • R 2 and R 3 each independently represent an alkyl group having 1 to 5 carbon atoms or a hydroxyalkyl group having 1 to 5 carbon atoms. Or an arylalkyl group having 7 to 12 carbon atoms, and R 2 and R 3 may be bonded to each other to form a ring together with the nitrogen atom, and
  • a 1 is a group represented by formula (5) or formula (6).
  • a 3 represents a phenyl group which may be substituted, a naphthyl group which may be substituted, a 5- to 6-membered heteroaromatic ring which may be substituted, or a substituted group.
  • a 4 represents a hydrogen atom, and A 3 and A 4 together represent a cyclic acid anhydride or A cyclic imide may be formed, and k, m, and n are each independently the number of repeating unit structures. And represents an integer of 2 to 1,000,000.
  • a 2 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond.
  • X 1 , X 2 , X 3 and X 4 are Each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a halogen atom, a nitro group, a hydroxy group, an amino group, a carboxyl group or a cyano group.
  • a 1 represents a group represented by the formula (8).
  • the method for producing a hyperbranched polymer further comprising adding a disulfide compound represented by the formula (9) to the polymerization system.
  • the hyperbranched polymer represented by the formula (1) according to the first aspect having at least one structure represented by the formula (2) according to the first aspect, and the first aspect A polymerization method comprising polymerizing a compound having an unsaturated double bond represented by formula (3) by heating at 50 to 250 ° C. in the absence of a radical initiator.
  • the polymerization method according to the fourth aspect wherein a disulfide compound represented by the formula (9) according to the third aspect is further added to the polymerization system.
  • a hyperbranched polymer having a dithiocarbamate group and a compound containing a polymerizable unsaturated bond such as a styryl group (vinylphenyl group) and / or an acrylic group are heated.
  • a hyperbranched polymer can be stably obtained at a high yield. Therefore, the light source (high-pressure mercury lamp) required for the photopolymerization conventionally used as a hyperbranch production method is unnecessary, which is economically advantageous.
  • the polymerization conversion rate can be improved to about 90%, and the yield is about twice that of photopolymerization. Furthermore, since it is not necessary to remove the gelled product, the process can be simplified. Furthermore, in the production method of the hyperbranched polymer of the present invention, the polymerization rate is about twice that in the case of photopolymerization. Therefore, considering that the yield is about twice that of the photoreaction, the production efficiency is about 4 times. Can also be improved.
  • the hyperbranched polymer production method of the present invention is suitable for mass production because unlike the photopolymerization production method, the same hyperbranched polymer can be produced without affecting the quality even if scaled up.
  • the hyperbranched polymer of the present invention has various functional groups such as a hydroxy group, an epoxy group, a pyridyl group, or a carboxyl group in the polymer chain, characteristics such as the degree of crosslinking can be controlled by the mixing ratio of a crosslinking agent. Excellent in reactivity freedom.
  • hyperbranched polymers having various functional groups in the polymer chain can be easily and efficiently obtained without terminal modification.
  • the hyperbranched polymer production method of the present invention having the above-described features is an extremely useful method as a practical and industrial production method.
  • the disulfide compound represented by the formula (9) can be further added to the polymerization system.
  • the disulfide compound is used, the molecular weight and the degree of branching of the hyperbranched polymer can be controlled, and the molecular weight and the degree of branching of the hyperbranched polymer obtained by photopolymerization can be made the same.
  • the disulfide compound is known to have an action of lowering the molecular weight of the polymer to be produced.
  • the disulfide compound also has an effect of suppressing coupling between hyperbranched polymers. Have.
  • n- means normal
  • t- means tertiary
  • o- means ortho
  • p- means para
  • the method for producing a hyperbranched polymer according to the present invention contains a hyperbranched polymer having a dithiocarbamate group in the molecule and a compound having an unsaturated double bond such as a styryl group (vinylphenyl group) and / or an acrylic group. This is a production method in which a hyperbranched polymer is obtained by graft polymerization of a compound with heating.
  • the dithiocarbamate group represented by the said Formula (1) which has at least 1 structure represented by the said Formula (2) is preferable.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 and R 3 each independently represent an alkyl group having 1 to 5 carbon atoms, a hydroxyalkyl group having 1 to 5 carbon atoms, or Represents an arylalkyl group having 7 to 12 carbon atoms.
  • R 2 and R 3 may be bonded to each other to form a ring together with the nitrogen atom.
  • the alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, an isopropyl group, a t-butyl group, a cyclopentyl group, and an n-pentyl group.
  • Examples of the hydroxyalkyl group having 1 to 5 carbon atoms include a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group.
  • Examples of the arylalkyl group having 7 to 12 carbon atoms include a benzyl group and a phenethyl group.
  • Examples of the ring formed by combining R 2 and R 3 together with the nitrogen atom include 4- to 8-membered rings.
  • Examples of the ring include a ring containing 4 to 6 methylene groups.
  • Examples of the ring include a ring containing an oxygen atom or a sulfur atom and 4 to 6 methylene groups.
  • ring formed by combining R 2 and R 3 together with the nitrogen atom examples include a piperidine ring, a pyrrolidine ring, a morpholine ring, a thiomorpholine ring, and a homopiperidine ring.
  • a 1 represents a structure represented by Formula (5) or Formula (6).
  • a 2 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond
  • X 1 , X 2 , X 3 and X 4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a halogen atom, a nitro group, a hydroxy group, an amino group, or a carboxyl group. Represents a group or a cyano group.
  • alkylene group A 2 examples include linear alkylene such as methylene, ethylene, n-propylene, n-butylene and n-hexylene, and branched alkylene such as isopropylene, isobutylene and 2-methylpropylene.
  • cyclic alkylene examples include alicyclic aliphatic groups having 3 to 30 carbon atoms, such as monocyclic, polycyclic, and bridged cyclic structures. Specific examples include groups having a monocyclo, bicyclo, tricyclo, tetracyclo, or pentacyclo structure having 4 or more carbon atoms. For example, structural examples (a) to (s) of the alicyclic portion of the alicyclic aliphatic group are shown below.
  • Examples of the alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an isopropyl group, an n-pentyl group, and a cyclohexyl group.
  • Examples of the alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, isopropoxy group, n-pentyloxy group and cyclohexyloxy group.
  • the halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • X 1 , X 2 , X 3 and X 4 are preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • a 1 in the compound represented by formula (1) it is preferably a structure represented by the formula (8).
  • n is the number of repeating unit structures and represents an integer of 2 to 1,000,000.
  • the hyperbranched polymer represented by the formula (1) there are a case where the repeating unit structure is single and a case where there are two or more types, and any of them may be used.
  • the repeating unit structure is of two types, that is, a copolymer
  • the copolymer may be a random copolymer, an alternating copolymer, a block copolymer, or a graft copolymer.
  • the hyperbranched polymer represented by the formula (1) has a weight average molecular weight Mw measured in terms of polystyrene by gel permeation chromatography of 500 to 5,000,000, or 1,000 to 1,000,000. Yes, or 2,000 to 500,000, or 3,000 to 100,000. Further, the dispersity (Mw (weight average molecular weight) / Mn (number average molecular weight)) is 1.0 to 11.0, or 1.0 to 7.0, or 1.1 to 6.0. Or 1.2 to 5.0.
  • a compound containing polymerizable unsaturated bonds such as a styryl group (vinylphenyl group) and / or an acryl group
  • it contains the polymerizable unsaturated bond represented by said Formula (3). Is used.
  • R 4 represents a hydrogen atom or a methyl group
  • a 3 represents an optionally substituted phenyl group, an optionally substituted naphthyl group, an optionally substituted 5- to 6-membered ring.
  • a 4 represents a hydrogen atom
  • a 3 and A 4 Together may form a cyclic acid anhydride or cyclic imide.
  • 5- to 6-membered heteroaromatic rings examples include pyrrole ring, pyrazole ring, imidazole ring, triazole ring, tetrazole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, furan ring, thiophene ring, oxazole ring And a thiazole ring.
  • Examples of the 5- to 6-membered alicyclic amino group include pyrrolidin-1-yl group, pyrazolidin-1-yl group, imidazolidin-1-yl group, piperidin-1-yl group, morpholino group, thiomorpholino group, and And 2-oxopyrrolidin-1-yl group.
  • each group independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a haloalkyl group having 1 to 20 carbon atoms, or 1 to 1 carbon atoms.
  • Examples thereof include 20 hydroxyalkyl groups, alkoxyalkyl groups having 1 to 20 carbon atoms, halogen atoms, nitro groups, hydroxy groups, amino groups, acetoxy groups, carboxyl groups, sulfonic acid groups, phosphoric acid groups, and cyano groups. .
  • skeletons such as perylene, pyrene, anthracene, naphthalene, coumarin, oxazine, rhodamine, fluorescein, benzofurazan, quinacdrine, stilbene, luminol, phenothiazine, quinoline, thiazole, dicyanovinyl group, tricyanovinyl group, perfluoro
  • R 5 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a haloalkyl group having 1 to 20 carbon atoms, a hydroxyalkyl group having 1 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms. Represents an epoxyalkyl group.
  • Examples of the alkyl group having 1 to 20 carbon atoms in the substituent of the amino group or the alkyl group having 1 to 20 carbon atoms in R 5 include a methyl group, an ethyl group, an isopropyl group, a t-butyl group, and a cyclopentyl group.
  • alkoxy group having 1 to 20 carbon atoms examples include methoxy group, ethoxy group, isopropoxy group, n-pentyloxy group and cyclohexyloxy group.
  • haloalkyl group having 1 to 20 carbon atoms include fluoromethyl group, fluoroethyl group, fluoropropyl group, fluorobutyl group, chloromethyl group, chloroethyl group, chloropropyl group, chlorobutyl group, bromomethyl group, bromoethyl group, bromopropyl group Group, bromobutyl group, iodomethyl group, iodoethyl group, iodopropyl group, iodobutyl group and the like.
  • Examples of the hydroxyalkyl group having 1 to 20 carbon atoms include a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group.
  • Examples of the alkoxyalkyl group having 1 to 20 carbon atoms include a methoxymethyl group, a methoxyethyl group, a methoxyethoxymethyl group, and a methoxyethoxyethoxymethyl group.
  • the halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • Examples of the epoxyalkyl group having 1 to 20 carbon atoms include glycidyl group, glycidylmethyl group, 2-glycidylethyl group, 3-glycidylpropyl group, 4-glycidylbutyl group, 3,4-epoxybutyl group, 4,5- Alkyl groups including linear epoxy groups such as epoxypentyl group, 5,6-epoxyhexyl group, ⁇ -methylglycidyl group, ⁇ -ethylglycidyl group, ⁇ -propylglycidyl group, 2-glycidylpropyl group, 2- Glycidylbutyl group, 3-glycidylbutyl group, 2-methyl-3-glycidylpropyl group, 3-methyl-2-glycidylpropyl group, 3-methyl-3,4-epoxybutyl group, 3-ethyl-3,4- Branching of epoxybutyl group, 4-methyl-4,5-epoxypentyl group
  • examples of the cyclic acid anhydride or cyclic imide that A 3 and A 4 may form together include maleic anhydride and maleimide.
  • Specific examples of the compound having an unsaturated bond represented by the formula (3) include styrene, methylstyrene, ethylstyrene, aminomethylstyrene, aminoethylstyrene, carbazolylmethylstyrene, methoxystyrene, ethoxystyrene, and fluoromethyl.
  • Styrene fluoroethyl styrene, chloromethyl styrene, chloroethyl styrene, bromomethyl styrene, bromoethyl styrene, iodomethyl styrene, iodoethyl styrene, hydroxymethyl styrene, hydroxyethyl styrene, methoxyethoxyethoxymethyl styrene, trimethoxy (vinylphenethyl) silane , Fluorostyrene, chlorostyrene, bromostyrene, iodostyrene, nitrostyrene, hydroxystyrene, aminostyrene, acetoxystyrene, vinyl Benzoic acid, vinylbenzenesulfonic acid, vinylbenzenephosphonic acid, styrene phosphoric acid, cyanosty
  • a disulfide compound represented by the formula (9) can be further added to the polymerization system.
  • R 6 and R 7 each independently represents an alkyl group having 1 to 5 carbon atoms, a hydroxyalkyl group having 1 to 5 carbon atoms, or an arylalkyl group having 7 to 12 carbon atoms.
  • R 6 and R 7 may be bonded to each other to form a ring together with the nitrogen atom.
  • Examples of the alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, an isopropyl group, a t-butyl group, a cyclopentyl group, and an n-pentyl group.
  • Examples of the hydroxyalkyl group having 1 to 5 carbon atoms include a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group.
  • Examples of the arylalkyl group having 7 to 12 carbon atoms include a benzyl group and a phenethyl group.
  • Examples of the ring formed by combining R 6 and R 7 together with the nitrogen atom include 4- to 8-membered rings.
  • Examples of the ring include a ring containing 4 to 6 methylene groups.
  • Examples of the ring include a ring containing an oxygen atom or a sulfur atom and 4 to 6 methylene groups.
  • Specific examples of the ring formed by combining R 6 and R 7 together with the nitrogen atom include a piperidine ring, a pyrrolidine ring, a morpholine ring, a thiomorpholine ring, and a homopiperidine ring.
  • Specific examples of the compound represented by the formula (9) include tetramethyl thiuram disulfide, tetraethyl thiuram disulfide, tetrabutyl thiuram disulfide, dipentamethylene thiuram disulfide and the like.
  • a core-shell hyperbranched polymer in which a hyperbranched polymer having a dithiocarbamate group in the molecule is used as a core and a compound having a polymerizable unsaturated double bond is linearly graft polymerized.
  • the polymer is represented by the formula (4).
  • a hyperbranched polymer is obtained.
  • k and m are the number of repeating unit structures and represent an integer of 2 to 1,000,000.
  • the reaction conditions of the method for producing a hyperbranched polymer of the present invention will be described.
  • the production method of the hyperbranched polymer of the present invention can be carried out by a known polymerization method such as bulk polymerization, solution polymerization, suspension polymerization or emulsion polymerization. Of these, solution polymerization is preferred.
  • hyperbranched polymers having different molecular weights are obtained depending on the reaction conditions.
  • reaction conditions in solution polymerization will be described.
  • the molar ratio of the hyperbranched polymer represented by the formula (1) and the compound having an unsaturated double bond represented by the formula (3) is appropriately selected according to the amount of graft chains to be introduced.
  • the ratio of the number of moles of polymerizable unsaturated bonds / the number of moles of dithiocarbamate groups of the hyperbranched polymer represented by the formula (1) (molar ratio) is 1/100 to 10,000 / 1, or 1/1 Thru 10,000 / 1.
  • reaction solvent various solvents conventionally used in organic synthesis can be used as long as they do not adversely affect the reaction.
  • the hyperbranched polymer represented by the formula (1) and the formula (3) If it is a solvent which can melt
  • Specific examples include aprotic polar organic solvents (N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, tetramethylurea, sulfolane, N-methyl-2-pyrrolidone, 1,3 dimethylimidazolide.
  • ethers diisopropyl ether, t-butyl methyl ether, tetrahydrofuran, dioxane, etc.
  • aliphatic hydrocarbons hexane, cyclohexane, n-octane, n-decane, decalin, petroleum ether, etc.
  • aromatic carbonization Hydrogen benzene, chlorobenzene, o-dichlorobenzene, nitrobenzene, toluene, xylene, mesitylene, tetralin, etc.
  • halogenated hydrocarbons chloroform, dichloromethane, 1,2-dichloroethane, carbon tetrachloride, etc.
  • ketones acetone
  • Methyl Yl ketone Methyl Yl ketone, methyl butyl ketone, methyl isobutyl ketone, cyclohexanone, etc.
  • aromatic hydrocarbons aromatic hydrocarbons, aprotic polar organic solvents, and ketones are considered in consideration of the solubility, safety, cost, and ease of isolation and purification of substrates and additives as raw materials.
  • Alkoxyalkanes are preferred. Specific examples include xylene, cyclohexanone, and N-methyl-2-pyrrolidone.
  • the total mass concentration (hereinafter also referred to as polymerization concentration) of the compound having an unsaturated double bond represented by 3) is arbitrary, for example, 1 to 99 mass%, or 10 to 95 mass%, Or 30 to 90 mass%.
  • the polymerization temperature is usually 50 to 250 ° C., preferably 80 to 200 ° C., more preferably 100 to 150 ° C.
  • Polymerization time is, for example, 0.1 to 100 hours, 0.5 to 30 hours, or 1 to 15 hours.
  • the conversion of the compound represented by the formula (3) to grafting increases with the lapse of polymerization time.
  • the polymerization can be usually performed under an atmosphere of an inert gas such as nitrogen or argon, under normal pressure or under pressure.
  • an inert gas such as nitrogen or argon
  • the hyperbranched polymer thus obtained has a weight average molecular weight Mw (also referred to as a relative molecular weight) measured in terms of polystyrene by gel permeation chromatography, for example, 20,000 to 200,000, or 20,000 to 150,000.
  • Mw weight average molecular weight measured in terms of polystyrene by gel permeation chromatography
  • the obtained hyperbranched polymer can be separated from the solvent by distilling off the solvent or solid-liquid separation from the reaction solution.
  • the hyperbranched polymer can be precipitated by adding the reaction solution into a poor solvent and recovered as a powder.
  • the addition amount of the disulfide compound represented by the formula (9) with respect to the mass of the hyperbranched polymer represented by the formula (1) is arbitrary, for example, 0.1 to 20% by mass, or 1 Thru
  • the present invention also provides a polymerization method in which a hyperbranched polymer having a dithiocarbamate group and a compound having a polymerizable unsaturated double bond such as a styryl group (vinylphenyl group) and / or an acrylic group are polymerized by heating. Also provide. Although it does not specifically limit as a hyperbranched polymer which has a dithiocarbamate group, Preferably, the dithiocarbamate compound represented by the said Formula (1) is used. Although it does not specifically limit as a compound which has an unsaturated double bond, Preferably, the compound which has an unsaturated double bond represented by the said Formula (3) is used.
  • the disulfide compound represented by the formula (9) can be further added to the polymerization system.
  • the reaction conditions of the polymerization method of this invention it is the same as the reaction conditions of the manufacturing method of the said hyperbranched polymer.
  • reaction crude powder was redissolved in toluene, separated in a toluene / water system, and then recrystallized from the toluene layer in a ⁇ 20 ° C. freezer.
  • the recrystallized product was filtered and vacuum-dried to obtain 206 g of the desired product as white powder (yield 97%).
  • the purity (area percentage value) by liquid chromatography was 100%. Melting point 56 ° C.
  • the reaction flask was placed in an oil bath and heated until the temperature in the flask reached 140 ° C., and the time when the temperature reached 140 ⁇ 5 ° C. was defined as the polymerization start time. After 3 hours, the reaction flask was taken out of the oil bath, cooled to room temperature, and 20 g of xylene was added. This reaction solution was subjected to reprecipitation purification using 300 g of methanol, and filtered under reduced pressure to obtain a white solid. The obtained solid was redissolved in 20 g of xylene, purified by reprecipitation using 600 g of methanol, filtered under reduced pressure, and dried under vacuum to obtain 3.6 g of the desired white powder.
  • the weight average molecular weight Mw measured by gel permeation chromatography (hereinafter abbreviated as GPC) in terms of polystyrene was 21,000, and the degree of dispersion Mw / Mn was 2.4.
  • Example 1 Synthesis of Hyperbranched Polymer (HPS-PCMS) Using HPS and CMS> A 200 mL reaction flask was charged with 2.67 g of HPS synthesized in Reference Example 2, 15.26 g of CMS, 0.027 g of DCDC, and 12.0 g of xylene, and dissolved completely by stirring. The air in the system was replaced with nitrogen while stirring. The reaction flask was placed in an oil bath and heated until the temperature in the flask reached 120 ° C., and the time when the temperature reached 120 ⁇ 5 ° C. was defined as the polymerization start time. After 7 hours, the reaction flask was removed from the oil bath, cooled to room temperature, and 10 g of xylene was added.
  • HPS-PCMS Hyperbranched Polymer
  • This reaction solution was purified by reprecipitation using 500 mL of methanol, and filtered under reduced pressure to obtain a white solid.
  • the obtained solid was redissolved in 10 g of tetrahydrofuran (hereinafter abbreviated as THF), purified by reprecipitation using 500 mL of methanol, filtered under reduced pressure, and dried under vacuum to obtain the desired white powder (HPS-PCMS).
  • THF tetrahydrofuran
  • HPS-PCMS tetrahydrofuran
  • the weight average molecular weight Mw (also referred to as relative molecular weight Mw) measured in terms of polystyrene by GPC was 33,000, and the degree of dispersion Mw / Mn was 3.1.
  • Example 2 to 3 The same HPS-PCMS was obtained as in Example 1, except that the amount of CMS charged was changed to the amount shown in Table 1.
  • Table 1 shows the weight average molecular weight Mw and the degree of dispersion Mw / Mn of the obtained HPS-PCMS.
  • Examples 4 to 8 ⁇ Polymerization concentration effect> A 100 mL reaction flask was subjected to the same operation as in Example 1 except that 1.34 g of HPS synthesized in Reference Example 2, 7.63 g of CMS, 0.013 g of DCDC, and xylene in amounts shown in Table 2 were charged. -PCMS was obtained. The “polymerization concentration” in the table was calculated by (HPS mass + CMS mass) ⁇ (HPS mass + CMS mass + xylene mass) ⁇ 100). Table 2 shows the weight average molecular weight Mw and dispersity Mw / Mn of the obtained HPS-PCMS.
  • Example 9 to 12 Polymerization temperature effect> The same HPS-PCMS was obtained as in Example 1, except that the polymerization temperature was changed from 120 ° C. to the temperature shown in Table 3.
  • Table 3 shows the weight average molecular weight Mw and dispersity Mw / Mn of the obtained HPS-PCMS.
  • Examples 13 to 14 ⁇ Polymerization solvent effect> The same operation was performed as in Example 1, except that the solvent was changed from xylene to the solvent shown in Table 4, and the target HPS-PCMS was obtained.
  • Table 4 shows the weight average molecular weight Mw and the degree of dispersion Mw / Mn of the obtained HPS-PCMS.
  • Example 15 ⁇ Synthesis of hyperbranched polymer HPS-PMMA using HPS and methyl methacrylate>
  • the air in the system was replaced with nitrogen while stirring.
  • the reaction flask was placed in an oil bath and heated until the temperature in the flask reached 120 ° C., and the time when the temperature reached 120 ⁇ 5 ° C.
  • Example 16 ⁇ MMA charged molar ratio effect>
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 25,000, and the degree of dispersion Mw / Mn was 3.9.
  • Example 17 Polymerization temperature effect> The same HPS-PMMA was obtained as in Example 15, except that the polymerization temperature was changed to 100 ° C.
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 18,000, and the degree of dispersion Mw / Mn was 3.3.
  • Example 18 ⁇ MMA charge molar ratio / polymerization temperature effect>
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 42,000, and the degree of dispersion Mw / Mn was 4.5.
  • Example 19 Synthesis of hyperbranched polymer (HPS-PGMA) using HPS and glycidyl methacrylate>
  • HPS-PGMA hyperbranched polymer
  • Reference Example 2 glycidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter abbreviated as GMA), 8.53 g, 0.89 g of DCDC, and 37.7 g of toluene.
  • GMA glycidyl methacrylate
  • DCDC Determination of DCDC
  • 37.7 g of toluene 37.7 g of toluene.
  • the air in the system was replaced with nitrogen while stirring.
  • the reaction flask was placed in an oil bath and heated until the temperature in the flask reached 100 ° C., and the time when the temperature reached 100 ⁇ 5 ° C. was set as the polymerization start time. After 7 hours, the reaction flask was removed from the oil bath and cooled to room temperature. This reaction solution was added to 300 mL of diisopropyl ether (hereinafter abbreviated as IPE) to reprecipitate the target product, followed by filtration under reduced pressure to obtain a white solid. The obtained solid was redissolved in 20 g of THF, reprecipitated and purified again using 500 mL of IPE, filtered under reduced pressure, and dried under vacuum to obtain the desired white powder (HPS-PGMA). The obtained HPS-PGMA had a weight average molecular weight Mw measured in terms of polystyrene by GPC of 84,000, and the degree of dispersion: Mw / Mn was 10.5.
  • IPE diisopropyl ether

Abstract

 分子内にジチオカルバメート基を有するハイパーブランチポリマーと、スチリル基(ビニルフェニル基)及び/又はアクリル基等の重合性不飽和結合を含有する化合物を加熱して、ハイパーブランチポリマーを製造する方法、並びに、分子内にジチオカルバメート基を有するハイパーブランチポリマー、スチリル基(ビニルフェニル基)及び/またはアクリル基等の重合性不飽和結合を含有する化合物とジスルフィド化合物を加熱して、ハイパーブランチポリマーを製造する方法。

Description

ハイパーブランチポリマーの製造方法
 本発明は、ハイパーブランチポリマーの製造方法に関し、詳述すると、ジチオカルバメート基を有するハイパーブランチポリマーと、スチリル基(ビニルフェニル基)及び/又はアクリル基等の重合性不飽和結合を有するモノマーとを、好ましくはジスルフィド化合物の存在下で加熱することにより重合して得られるハイパーブランチポリマーの製造方法に関する。
 また、本発明は、ジチオカルバメート基を有するハイパーブランチポリマーと、スチリル基(ビニルフェニル基)及び/又はアクリル基等の重合性不飽和結合を有するモノマーとを、好ましくはジスルフィド化合物の存在下で加熱することにより重合させる重合方法、及びそれにより得られる生成物に関する。
 前記ハイパーブランチポリマーは、塗料、インキ、接着剤、樹脂フィラー、各種成形材料、ナノメートルサイズの多孔形成剤、化学的機械的研磨剤、機能物質の担持材料、ナノカプセル、フォトニック結晶、レジスト材料、光学材料、電子材料、情報記録材料、印刷材料、電池材料、医用材料、磁性材料などとして好適に利用される。
 ハイパーブランチポリマーは、デンドリマーと共にデンドリティック(樹枝状)ポリマーとして分類されている。従来の高分子が一般的に紐状の形状であるのに対し、これらのデンドリティックポリマーは、積極的に枝分かれを導入しているため、特異な構造を有する点、ナノメートルオーダーのサイズである点、多くの官能基を保持する表面を形成することができる点、線状ポリマーに比べて低粘度化できる点、分子間の絡み合いが少なく微粒子的挙動を示す点、非晶性になり溶媒溶解性を制御できる点などにおいて様々な特性を利用した応用が期待されている。
 ハイパーブランチポリマーの製造方法としては、光重合開始能を持つジチオカルバメート基を有し、かつスチリル基(ビニルフェニル基)及び/又はアクリル基を有する化合物の光重合による方法が知られている。
 例えば、ジチオカルバメート基を有するスチレン化合物の光重合によるハイパーブランチポリマーの合成法(非特許文献1、2、3参照)や、ジチオカルバメート基を有するアクリル化合物の光重合によるジチオカルバメート基を有するハイパーブランチポリマーの合成法(非特許文献4、5、6参照)、ジチオカルバメート基を有するスチレン化合物と無水マレイン酸共存下で光重合することによる、主鎖内に酸無水物が導入された分子末端にジチオカルバメート基を有するハイパーブランチポリマーの合成法(非特許文献7参照)、ジチオカルバメート基を有するポリマーから光重合を用いて、アクリル基を有するモノマーをグラフト重合させる合成法(非特許文献8参照)が知られている。
 このような光重合によるハイパーブランチポリマーの製造方法では、高圧水銀灯のような光源を用いるため、高価な専用の反応設備が必要となる。
 また、こうした光重合では、高圧水銀灯付近にゲル化物が大量に発生するという問題が生じる。この為、転化率50%程度しか重合させることができず、多量のモノマーが残存する為に繰り返し再沈殿精製を行う必要が生じ、ハイパーブランチポリマーは40%程度しか取り出すことができない。また、ゲル化物の除去という煩雑な操作も必要となる。
 さらに、反応のスケールアップにおいて、光反応の条件設定の難しさから、同一分子量、同一分岐度のポリマーを製造することが困難であるという問題も有している。
 このように、光重合によるハイパーブランチポリマーの製造方法は、工業的に実施困難であり、優れた工業的製造方法が望まれていた。
 ところで、ジチオカルバメート基を有する化合物及びAIBN(アゾビスイソブチロニトリル)のようなフリーラジカル源の存在下、スチリル基(ビニルフェニル基)及び/又はアクリル基を有するモノマー類を加熱することにより重合させる方法(特許文献1、2、3、4参照)が知られている。
 この方法では、スチリル基(ビニルフェニル基)、アクリル基の二重結合部位で重合が進行し、直鎖状のポリマーが得られている。
 また、分子内にジチオカルバメート基とスチリル基(ビニルフェニル基)が共存する化合物である4-ビニルベンジル N,N-ジエチルジチオカルバメートを、上記と同様AIBNの存在下、加熱することにより重合させた例(非特許文献9参照)が知られている。
 この方法では、スチリル基(ビニルフェニル基)の二重結合部位で重合が進行し、直鎖状のポリマーが得られている。
 さらに、4-ビニルベンジル N,N-ジエチルジチオカルバメートを、AIBNの非存在下、30℃で加熱させた例(非特許文献9参照)もあるが反応はほとんど全く進行していない(収率0.8%)。
 このように、分子内にジチオカルバメート基を有するハイパーブランチポリマーと、スチリル基(ビニルフェニル基)及び/又はアクリル基等の重合性不飽和結合を含有する化合物を加熱することによりグラフト重合させてハイパーブランチポリマーを得た報告例はない。
 本発明は、このような事情に鑑みてなされたものであり、経済性及び操作性に優れ、高分子鎖に種々の官能基を有する新規なハイパーブランチポリマーを、高収率で安定的に製造できるハイパーブランチポリマーの製造方法を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意検討を重ねた結果、分子内にジチオカルバメート基を有するハイパーブランチポリマーと、スチリル基(ビニルフェニル基)及び/又はアクリル基等の重合性不飽和結合を含有する化合物を加熱することにより、高分子鎖に種々の官能基を有する新規なハイパーブランチポリマーが高収率で得られることを見出し、本発明を完成した。
 さらに、前記分子内にジチオカルバメート基を有するハイパーブランチポリマーと、前記重合性不飽和結合を含有する化合物と、ジスルフィド化合物とを加熱し、重合させることにより、ジチオカルバメート基を有するハイパーブランチポリマー同士のカップリングを抑制したハイパーブランチポリマーを得ることができる事を見出し、本発明を完成した。
 すなわち、本発明は、第1観点として、式(2)で表される構造を少なくとも1つ有する式(1)で表されるハイパーブランチポリマーと、式(3)で表される不飽和二重結合を有する化合物とを、50乃至250℃で加熱することにより重合させることを特徴とする、式(4)で表されるハイパーブランチポリマーの製造方法。
Figure JPOXMLDOC01-appb-C000005
(式中、R1及びR4は水素原子又はメチル基を表す。R2及びR3は、それぞれ独立して、炭素原子数1乃至5のアルキル基、炭素原子数1乃至5のヒドロキシアルキル基又は炭素原子数7乃至12のアリールアルキル基を表し、また、R2とR3は互いに結合し、窒素原子と共に環を形成していてもよい。A1は式(5)又は式(6)で表される基を表す。A3は置換されていてもよいフェニル基、置換されていてもよいナフチル基、置換されていてもよい5乃至6員環のヘテロ芳香環、置換されていてもよい5乃至6員環の脂環式アミノ基又は式(7)で表される基を表す。A4は水素原子を表し、また、A3とA4が一緒になって環状酸無水物または環状イミドを形成してもよい。k、m及びnは、それぞれ独立して、繰り返し単位構造の数であって2乃至1,000,000の整数を表す。
Figure JPOXMLDOC01-appb-C000006
(式中A2はエーテル結合又はエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐状又は環状のアルキレン基を表す。X1、X2、X3及びX4は、それぞれ独立して、水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のアルコキシ基、ハロゲン原子、ニトロ基、ヒドロキシ基、アミノ基、カルボキシル基又はシアノ基を表す。R5は水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のハロアルキル基、炭素原子数1乃至20のヒドロキシアルキル基又は炭素原子数1乃至20のエポキシアルキル基を表す。))
 第2観点として、前記A1が式(8)で表される基を表す、第1観点に記載のハイパーブランチポリマーの製造方法。
Figure JPOXMLDOC01-appb-C000007
 第3観点として、前記重合の系に、さらに式(9)で表されるジスルフィド化合物を添加することを特徴とする、ハイパーブランチポリマーの製造方法。
Figure JPOXMLDOC01-appb-C000008
(式中、R6及びR7は、それぞれ独立して、炭素原子数1乃至5のアルキル基、炭素原子数1乃至5のヒドロキシアルキル基又は炭素原子数7乃至12のアリールアルキル基を表し、また、R6とR7は互いに結合し、窒素原子と共に環を形成していてもよい。)
 第4観点として、第1観点に記載の式(2)で表される構造を少なくとも1つ有する第1観点に記載の式(1)で表されるハイパーブランチポリマーと、第1観点に記載の式(3)で表される不飽和二重結合を有する化合物とを、ラジカル開始剤の非存在下、50乃至250℃で加熱することにより重合させることを特徴とする重合方法。
 第5観点として、前記重合の系に、さらに第3観点に記載の式(9)で表されるジスルフィド化合物を添加することを特徴とする、第4観点に記載の重合方法。
 第6観点として、第4観点又は第5観点に記載の重合方法に従い得られる生成物。
 本発明のハイパーブランチポリマーの製造方法によれば、ジチオカルバメート基を有するハイパーブランチポリマーと、スチリル基(ビニルフェニル基)及び/又はアクリル基等の重合性不飽和結合を含有する化合物とを加熱することにより、高収率で安定的にハイパーブランチポリマーを得ることができる。従って従来ハイパーブランチの製造方法として用いられた光重合で必要となる光源(高圧水銀灯)が不要となり、経済的に有利である。
 また、光重合による製造方法において問題となったゲル化物が発生しない為、重合転化率も90%程度まで向上させることができ、得量も光重合の約2倍となる。さらにゲル化物の除去も不要となるため、工程の簡略化を図ることができる。
 さらに本発明のハイパーブランチポリマーの製造方法では、重合速度が光重合の場合の約2倍となるため、得量が光反応の約2倍であることを考慮すると、生産効率を約4倍にも向上させることができる。
 また、本発明のハイパーブランチポリマーの製造方法では、光重合による製造方法と異なり、スケールアップしても品質に影響がなく同様のハイパーブランチポリマーを製造できることから、大量生産に向いている。
 また、本発明のハイパーブランチポリマーは、高分子鎖にヒドロキシ基、エポキシ基、ピリジル基又はカルボキシル基等の種々の官能基を有するため、架橋剤などの混合割合によって架橋度などの特性を制御でき、反応性の自由度に優れている。また、本発明の製造方法により、末端変成することなく高分子鎖に種々の官能基を有するハイパーブランチポリマーを、簡便に効率よく得ることができる。
 以上のような特徴を有する本発明のハイパーブランチポリマーの製造方法は、実用的、工業的製法として極めて有用な方法である。
 さらに、本発明のハイパーブランチポリマーの製造方法によれば、前記重合の系に、さらに前記式(9)で表されるジスルフィド化合物を添加することができる。
 該ジスルフィド化合物を用いると、ハイパーブランチポリマーの分子量及び分岐度を制御することが可能となり、光重合で得られるハイパーブランチポリマーの分子量及び分岐度と同様のものにすることが可能である。
 一般に、該ジスルフィド化合物は、生成するポリマーの分子量を低下させる作用を有することが知られているが、本発明のハイパーブランチポリマーの製造法においては、ハイパーブランチポリマー同士のカップリングを抑制する効果も有している。
 以下、本発明についてさらに詳しく説明する。なお、本明細書中において、「n-」はノルマルを、「t-」はターシャリーを、「o-」はオルトを、「p-」はパラを意味する。
 本発明に係るハイパーブランチポリマーの製造方法は、分子内にジチオカルバメート基を有するハイパーブランチポリマーと、スチリル基(ビニルフェニル基)及び/又はアクリル基等の不飽和二重結合を有する化合物を含有する化合物とを、加熱することによりグラフト重合させてハイパーブランチポリマーを得る製造方法である。
 分子内にジチオカルバメート基を有するハイパーブランチポリマーとしては、特に限定されないが、好ましくは、前記式(2)で表される構造を少なくとも1つ有する、前記式(1)で表されるジチオカルバメート基を有するハイパーブランチポリマーが用いられる。
 式(1)中、R1は水素原子又はメチル基を表し、R2及びR3は、それぞれ独立して、炭素原子数1乃至5のアルキル基、炭素原子数1乃至5のヒドロキシアルキル基又は炭素原子数7乃至12のアリールアルキル基を表す。また、R2とR3は互いに結合し、窒素原子と共に環を形成していてもよい。
 炭素原子数1乃至5のアルキル基としては、メチル基、エチル基、イソプロピル基、t-ブチル基、シクロペンチル基及びn-ペンチル基等が挙げられる。炭素原子数1乃至5のヒドロキシアルキル基としては、ヒドロキシメチル基、ヒドロキシエチル基及びヒドロキシプロピル基等が挙げられる。炭素原子数7乃至12のアリールアルキル基としては、ベンジル基及びフェネチル基等が挙げられる。
 R2とR3が互いに結合し窒素原子と共に形成する環としては、4乃至8員環が挙げられる。そして、環としてメチレン基を4乃至6個含む環が挙げられる。また、環としては酸素原子又は硫黄原子と、4乃至6個のメチレン基を含む環が挙げられる。R2とR3が互いに結合し窒素原子と共に形成する環の具体例としては、ピペリジン環、ピロリジン環、モルホリン環、チオモルホリン環及びホモピペリジン環等が挙げられる。
 また、式(1)中、A1は前記式(5)又は前記式(6)で表される構造を表す。
 式(5)及び式(6)中、A2はエーテル結合又はエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐状又は環状のアルキレン基を表し、X1、X2、X3及びX4は、それぞれ独立して、水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のアルコキシ基、ハロゲン原子、ニトロ基、ヒドロキシ基、アミノ基、カルボキシル基又はシアノ基を表す。
 アルキレン基A2の具体例としては、メチレン、エチレン、n-プロピレン、n-ブチレン、n-ヘキシレン等の直鎖状アルキレン、イソプロピレン、イソブチレン、2-メチルプロピレン等の分岐状アルキレンが挙げられる。
 また環状アルキレンとしては、炭素原子数3乃至30の単環式、多環式、架橋環式の環状構造の脂環式脂肪族基が挙げられる。具体的には、炭素原子数4以上のモノシクロ、ビシクロ、トリシクロ、テトラシクロ、ペンタシクロ構造等を有する基を挙げることができる。例えば、下記に脂環式脂肪族基のうち、脂環式部分の構造例(a)乃至(s)を示す。
Figure JPOXMLDOC01-appb-C000009
 炭素原子数1乃至20のアルキル基としては、メチル基、エチル基、イソプロピル基、n-ペンチル基及びシクロヘキシル基等が挙げられる。
 炭素原子数1乃至20のアルコキシ基としては、メトキシ基、エトキシ基、イソプロポキシ基、n-ペンチルオキシ基及びシクロヘキシルオキシ基等が挙げられる。
 ハロゲン原子としてはフッ素原子、塩素原子、臭素原子及びヨウ素原子である。
 X1、X2、X3及びX4としては、水素原子又は炭素原子数1乃至20のアルキル基が好ましい。
 また、式(1)で表される化合物におけるA1としては、前記式(8)で表される構造であることが好ましい。
 また、式(1)中、nは繰り返し単位構造の数であって、2乃至1,000,000の整数を表す。
 式(1)で表されるハイパーブランチポリマーとしては、その繰り返し単位構造が単一である場合と二種以上である場合とが考えられるが、その何れであってもよい。そして、例えば、繰り返し単位構造が二種、すなわちコポリマーである場合、当該コポリマーは、ランダムコポリマー、交互コポリマー、ブロックコポリマー、グラフトコポリマーの何れであってもよい。
 式(1)で表されるハイパーブランチポリマーは、ゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量Mwが500乃至5,000,000であり、又は1,000乃至1,000,000であり、又は2,000乃至500,000であり、又は3,000乃至100,000である。また、分散度(Mw(重量平均分子量)/Mn(数平均分子量))としては1.0乃至11.0であり、又は1.0乃至7.0であり、又は1.1乃至6.0であり、又は1.2乃至5.0である。
 スチリル基(ビニルフェニル基)及び/又はアクリル基等の重合性不飽和結合を含有する化合物としては、特に限定されないが、好ましくは、前記式(3)で表される重合性不飽和結合を含有する化合物が用いられる。
 式(3)中、R4は水素原子又はメチル基を表し、A3は置換されていてもよいフェニル基、置換されていてもよいナフチル基、置換されていてもよい5乃至6員環のヘテロ芳香環、置換されていてもよい5乃至6員環の脂環式アミノ基または前記式(7)で表される基を表し、A4は水素原子を表し、また、A3とA4が一緒になって環状酸無水物または環状イミドを形成してもよい。
 5乃至6員環のヘテロ芳香環としては、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、テトラゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、フラン環、チオフェン環、オキサゾール環及びチアゾール環等が挙げられる。
 5乃至6員環の脂環式アミノ基としては、ピロリジン-1-イル基、ピラゾリジン-1-イル基、イミダゾリジン-1-イル基、ピペリジン-1-イル基、モルホリノ基、チオモルホリノ基及び2-オキソピロリジン-1-イル基等が挙げられる。
 置換されていてもよいフェニル基、置換されていてもよいナフチル基、置換されていてもよい5乃至6員環のヘテロ芳香環及び置換されていてもよい5乃至6員環の脂環式アミノ基の置換基としては、それぞれ独立して、水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のアルコキシ基、炭素原子数1乃至20のハロアルキル基、炭素原子数1乃至20のヒドロキシアルキル基、炭素原子数1乃至20のアルコキシアルキル基、ハロゲン原子、ニトロ基、ヒドロキシ基、アミノ基、アセトキシ基、カルボキシル基、スルホン酸基、リン酸基、及びシアノ基等が挙げられる。
 あるいは該置換基として、ペリレン、ピレン、アントラセン、ナフタレン、クマリン、オキサジン、ローダミン、フルオレセイン、ベンゾフラザン、キナクドリン、スチルベン、ルミノール、フェノチアジン、キノリン、チアゾール等の骨格や、ジシアノビニル基、トリシアノビニル基、ペルフルオロアルキル基等の電子吸引性基、或いはチオエーテル等の電子供与性基が結合した骨格を含む置換基を挙げることができる。具体的には、p-ターフェニル、p-クォーターフェニル、ローダミン101、スルフォローダミン101、カルボスチリル124、Cresyl Violet、3,3’-ジエチルオキサジカルボシアニン(DODC)、クマリン102、クマリン120、クマリン151、クマリン152、クマリン2、クマリン314、クマリン314T、クマリン339、クマリン30、クマリン307、クマリン343、クマリン6、HIDC、DTPC、DOTC、HITC、DTTC、フルオレセイン、2,7-ジクロロフルオレセイン、Nile Blue A、ローダミン6G、ローダミン19、ローダミンB、スルフォローダミンB、オキサジン4、4-(ジシアノメチレン)-2-メチル-6-(p-(ジメチルアミノ)スチリル)-4H-ピラン(DCM)、パラニトロアニリン(p-NA)、4-ジメチルアミノ-4’-ニトロスチルベン(DANS)、2-メチル-4-ニトロアニリン(MMA)、2-メトキシ-5-ニトロフェノール(MNP)、4-[N-エチル-N-(ヒドロキシエチル)]アミノ-4’-ニトロアゾベンゼン(DR1)、4-(N,N-ビス(ヒドロキシエチル))アミノ-4’-ニトロアゾベンゼン(DR19)、4-[(4-アミノフェニル)アゾ]ニトロベンゼン(DO3)、3-メチル-4-ニトロピリジン-N-オキシド(POM)、2-シクロオクチルアミノ-5-ニトロピリジン(COANP)、4’-ニトロベンジリデン-3-アセチルアミノ-4-メトキシアニリン(MNBA)、3,5-ジメチル-1-(4-ニトロフェニル)ピラゾール(DMNP)、4-(イソポロパキシカルボニル)アミノニトロベンゼン(PCNB)、N-メトキシメチル-4-ニトロアニリン(MMNA)の他、2-(3-シアノ-4-(4-((4-(エチル(2-ヒドロキシエチル)アミノ)フェニル)ジアゼニル)スチリル)-5,5-ジメチルフラン-2(5H)-イリデン)マロノニトリル(AzTCF-OH)、2-(3-シアノ-4-(4-((4-(ビス(2-t-ブチルカルボニルオキシエチル)アミノ)フェニル)ジアゼニル)スチリル)-5,5-ジメチルフラン-2(5H)-イリデン)マロノニトリル(AzTCF)等の骨格を含む置換基が挙げられる。
 式(7)中、R5は水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のハロアルキル基、炭素原子数1乃至20のヒドロキシアルキル基又は炭素原子数1乃至20のエポキシアルキル基を表す。
 前記置換されていてもよいフェニル基、置換されていてもよいナフチル基、置換されていてもよい5乃至6員環のヘテロ芳香環及び置換されていてもよい5乃至6員環の脂環式アミノ基の置換基における炭素原子数1乃至20のアルキル基、又は、前記R5における炭素原子数1乃至20のアルキル基としては、メチル基、エチル基、イソプロピル基、t-ブチル基、シクロペンチル基、n-ペンチル基、ベンジル基、フェネチル基及びカルバゾリルメチル基及トリメトキシシリルエチル基等が挙げられる。炭素原子数1乃至20のアルコキシ基としては、メトキシ基、エトキシ基、イソプロポキシ基、n-ペンチルオキシ基及びシクロヘキシルオキシ基等が挙げられる。炭素原子数1乃至20のハロアルキル基としては、フルオロメチル基、フルオロエチル基、フルオロプロピル基、フルオロブチル基、クロロメチル基、クロロエチル基、クロロプロピル基、クロロブチル基、ブロモメチル基、ブロモエチル基、ブロモプロピル基、ブロモブチル基、ヨードメチル基、ヨードエチル基、ヨードプロピル基及びヨードブチル基等が挙げられる。炭素原子数1乃至20のヒドロキシアルキル基としては、ヒドロキシメチル基、ヒドロキシエチル基及びヒドロキシプロピル基等が挙げられる。炭素原子数1乃至20のアルコキシアルキル基としては、メトキシメチル基、メトキシエチル基、メトキシエトキシメチル基及びメトキシエトキシエトキシメチル基等が挙げられる。ハロゲン原子としてはフッ素原子、塩素原子、臭素原子及びヨウ素原子である。炭素原子数1乃至20のエポキシアルキル基としては、グリシジル基、グリシジルメチル基、2-グリシジルエチル基、3-グリシジルプロピル基、4-グリシジルブチル基、3,4-エポキシブチル基、4,5-エポキシペンチル基、5,6-エポキシヘキシル基等の直鎖状のエポキシ基を含むアルキル基、β-メチルグリシジル基、β-エチルグリシジル基、β-プロピルグリシジル基、2-グリシジルプロピル基、2-グリシジルブチル基、3-グリシジルブチル基、2-メチル-3-グリシジルプロピル基、3-メチル-2-グリシジルプロピル基、3-メチル-3,4-エポキシブチル基、3-エチル-3,4-エポキシブチル基、4-メチル-4,5-エポキシペンチル基、5-メチル-5,6-エポキシヘキシル基等の枝分かれ状のエポキシ基を含むアルキル基等が挙げられる。
 また、A3とA4が一緒になって形成してもよい環状酸無水物または環状イミドとしては、無水マレイン酸及びマレイミド等が挙げられる。
 式(3)で表される不飽和結合を有する化合物の具体例としては、スチレン、メチルスチレン、エチルスチレン、アミノメチルスチレン、アミノエチルスチレン、カルバゾリルメチルスチレン、メトキシスチレン、エトキシスチレン、フルオロメチルスチレン、フルオロエチルスチレン、クロロメチルスチレン、クロロエチルスチレン、ブロモメチルスチレン、ブロモエチルスチレン、ヨードメチルスチレン、ヨードエチルスチレン、ヒドロキシメチルスチレン、ヒドロキシエチルスチレン、メトキシエトキシエトキシメチルスチレン、トリメトキシ(ビニルフェネチル)シラン、フルオロスチレン、クロロスチレン、ブロモスチレン、ヨードスチレン、ニトロスチレン、ヒドロキシスチレン、アミノスチレン、アセトキシスチレン、ビニル安息香酸、ビニルベンゼンスルホン酸、ビニルベンゼンホスホン酸、スチレンリン酸、シアノスチレン、ビニルナフタレン、ビニルイミダゾール、ビニルピリジン、N-ビニルピロリドン、(メタ)アクリル酸、(メタ)アクリル酸エチル、(メタ)アクリル酸クロロエチル、(メタ)アクリル酸2,2,2-トリフルオロエチル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸β-メチルグリシジル、(メタ)アクリル酸β-エチルグリシジル、(メタ)アクリル酸β-プロピルグリシジル、(メタ)アクリル酸3,4-エポキシブチル、(メタ)アクリル酸3-メチル-3,4-エポキシブチル、(メタ)アクリル酸3-エチル-3,4-エポキシブチル、(メタ)アクリル酸4-メチル-4,5-エポキシペンチル及び(メタ)アクリル酸5-メチル-5,6-エポキシヘキシル等が挙げられる。なお、本発明では(メタ)アクリレート化合物とは、アクリレート化合物とメタクリレート化合物の両方をいう。例えば(メタ)アクリル酸は、アクリル酸とメタクリル酸をいう。
 また、本発明のハイパーブランチポリマーの製造方法では、前記重合の系に、さらに前記式(9)で表されるジスルフィド化合物を添加することができる。
 式(9)中、R6及びR7は、それぞれ独立して、炭素原子数1乃至5のアルキル基、炭素原子数1乃至5のヒドロキシアルキル基又は炭素原子数7乃至12のアリールアルキル基を表す。また、R6とR7は互いに結合し、窒素原子と共に環を形成していてもよい。
 炭素原子数1乃至5のアルキル基としては、メチル基、エチル基、イソプロピル基、t-ブチル基、シクロペンチル基及びn-ペンチル基等が挙げられる。炭素原子数1乃至5のヒドロキシアルキル基としては、ヒドロキシメチル基、ヒドロキシエチル基及びヒドロキシプロピル基等が挙げられる。炭素原子数7乃至12のアリールアルキル基としては、ベンジル基及びフェネチル基等が挙げられる。
 R6とR7が互いに結合し窒素原子と共に形成する環としては、4乃至8員環が挙げられる。そして、環としてメチレン基を4乃至6個含む環が挙げられる。また、環としては酸素原子又は硫黄原子と、4乃至6個のメチレン基を含む環が挙げられる。R6とR7が互いに結合し窒素原子と共に形成する環の具体例としては、ピペリジン環、ピロリジン環、モルホリン環、チオモルホリン環及びホモピペリジン環等が挙げられる。
 式(9)で表される化合物の具体例としては、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、ジペンタメチレンチウラムジスルフィド等が挙げられる。
 本発明の製造方法によれば、分子内にジチオカルバメート基を有するハイパーブランチポリマーをコアとして、重合性不飽和二重結合を有する化合物が直鎖状にグラフト重合した、コア-シェル型ハイパーブランチポリマーが得られる。例えば、前記式(1)で表されるハイパーブランチポリマーと、前記式(3)で表される不飽和二重結合を有する化合物とを重合した場合には、前記式(4)で表されるハイパーブランチポリマーが得られる。そして、前記重合の系において、さらに前記式(9)で表されるジスルフィド化合物を添加した場合には、前記式(4)で表されるハイパーブランチポリマーのジチオカルバメート基の一部又は全部が、前記ジスルフィド化合物由来のジチオカルバメート基に置換されたハイパーブランチポリマーが得られる。
 式(4)中、k及びmは繰り返し単位構造の数であって、2乃至1,000,000の整数を表す。
 本発明のハイパーブランチポリマーの製造法の反応条件を説明する。
 本発明のハイパーブランチポリマーの製造法は、塊状重合、溶液重合、懸濁重合、乳化重合などの公知の重合形式により行なうことができる。なかでも溶液重合が好ましい。
 本発明のハイパーブランチポリマーの製造法では、反応条件によって、分子量が異なったハイパーブランチポリマーが得られる。
 以下、溶液重合における反応条件を説明する。
 式(1)で表されるハイパーブランチポリマーと、式(3)で表される不飽和二重結合を有する化合物のモル比は導入したいグラフト鎖の量に応じて適宜選択されるが、例えば、重合性不飽和結合のモル数/式(1)で表されるハイパーブランチポリマーのジチオカルバメート基のモル数の比(モル比)が1/100乃至10,000/1であり、又は1/1乃至10,000/1である。
 反応溶媒としては、反応に悪影響を及ぼさないものであれば、従来、有機合成で使用されている各種溶媒を用いることができ、式(1)で表されるハイパーブランチポリマー、及び式(3)で表される不飽和二重結合を有する化合物、さらに式(9)で表されるジスルフィド化合物をいずれも溶解可能な溶媒であれば特に制限はない。
 具体例としては、非プロトン性極性有機溶媒類(N,N-ジメチルホルムアミド、ジメチルスルホキシド、N,N-ジメチルアセトアミド、テトラメチルウレア、スルホラン、N-メチル-2-ピロリドン、1,3ジメチルイミダゾリジノン等)、エーテル類(ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン等)、脂肪族炭化水素類(ヘキサン、シクロヘキサン、n-オクタン、n-デカン、デカリン、石油エーテル等)、芳香族炭化水素類(ベンゼン、クロロベンゼン、o-ジクロロベンゼン、ニトロベンゼン、トルエン、キシレン、メシチレン、テトラリン等)、ハロゲン化炭化水素類(クロロホルム、ジクロロメタン、1,2-ジクロロエタン、四塩化炭素等)、ケトン類(アセトン、メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、アルコキシアルカン類(1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジグライム等)、などが挙げられ、これらは単独で用いてもよく、2種以上混合して用いてもよい。
 これらの溶媒の中でも、原料となる基質及び添加物の溶解性、安全性、コスト、及び単離精製の容易性などを考慮すると、芳香族炭化水素類、非プロトン性極性有機溶媒類、ケトン類、アルコキシアルカン類が好適である。
 具体的には、キシレン、シクロヘキサノン、N-メチル-2-ピロリドンが挙げられる。
 式(1)で表されるハイパーブランチポリマー、式(3)で表される不飽和二重結合を有する化合物及び重合溶媒の合計質量に対する、式(1)で表されるハイパーブランチポリマー及び式(3)で表される不飽和二重結合を有する化合物の合計質量濃度(以下、重合濃度ともいう)は任意であるが、例えば1乃至99質量%であり、または10乃至95質量%であり、または30乃至90質量%である。
 重合温度は、通常、50乃至250℃であるが、80乃至200℃が好ましく、100乃至150℃がより好ましい。
 重合時間としては、例えば0.1乃至100時間であり、又は0.5乃至30時間であり、又は1乃至15時間である。通常、重合時間の経過と共に式(3)で表される化合物のグラフト化への転化率は増加する。
 なお、重合は、通常、窒素、アルゴン等の不活性ガスの雰囲気下、常圧又は加圧下において行うことができる。
 このようにして得られるハイパーブランチポリマーのゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量Mw(相対分子量ともいう)は、例えば、20,000乃至200,000であり、又は20,000乃至150,000である。
 得られるハイパーブランチポリマーは、反応溶液中から溶媒留去又は固液分離により溶媒と分離することができる。また、反応溶液を貧溶媒中へ加えることによりハイパーブランチポリマーを沈殿させ、粉末として回収することもできる。
 前記式(9)で表されるジスルフィド化合物の、前記式(1)で表されるハイパーブランチポリマーの質量に対する添加量は、任意であるが、例えば0.1乃至20質量%であり、又は1乃至10質量%、又は1乃至3質量%である。
 また、本発明は、ジチオカルバメート基を有するハイパーブランチポリマーと、スチリル基(ビニルフェニル基)及び/又はアクリル基等の重合性不飽和二重結合を有する化合物とを加熱することにより重合させる重合方法も提供する。
 ジチオカルバメート基を有するハイパーブランチポリマーとしては、特に限定されないが、好ましくは、前記式(1)で表されるジチオカルバメート化合物が用いられる。
 不飽和二重結合を有する化合物としては、特に限定されないが、好ましくは、前記式(3)で表される不飽和二重結合を有する化合物が用いられる。
 また、本発明の重合方法は、前記重合の系に、さらに前記式(9)で表されるジスルフィド化合物を添加することもできる。
 本発明の重合方法の反応条件については、前記ハイパーブランチポリマーの製造方法の反応条件と同一である。
 以下、本発明について実施例を挙げて詳述するが、本発明はこれらの実施例に何ら限定されるものではない。
 以下の実施例において、試料の物性測定には下記の装置を使用した。
[液体クロマトグラフィー]
 装置:Agilent製、1100Series
 カラム:Inertsil ODS-2
 カラム温度:40℃
 溶媒:アセトニトリル/水=60/40(体積比)
 検出器:UV-254nm、RI
[ゲル浸透クロマトグラフィー(GPC)]
 装置:東ソー(株)製、HLC-8220GPC
 カラム:Shodex KF-804L+KF-803L
 カラム温度:40℃
 溶媒:テトラヒドロフラン
 検出器:UV-254nm、RI
参考例1<N,N-ジエチルジチオカルバミルメチルスチレンS-DCの合成>
 2Lの反応フラスコに、クロロメチルスチレン[AGCセイミケミカル(株)製、CMS-14(商品名)、以下CMSと略する]120g、N,N-ジエチルジチオカルバミド酸ナトリウム3水和物[関東化学(株)製]181g及びアセトン1,400gを仕込み、撹拌下、40℃で1時間反応させた。反応後、析出した塩化ナトリウムを濾過して除き、その後エバポレーターで反応溶液からアセトンを留去させ、反応粗粉末を得た。この反応粗粉末をトルエンに再溶解させ、トルエン/水系で分液後、-20℃の冷凍庫内でトルエン層から目的物を再結晶させた。再結晶物を濾過、真空乾燥して、白色粉末の目的物206g(収率97%)を得た。液体クロマトグラフィーによる純度(面積百分率値)は100%であった。融点56℃。
参考例2<ジチオカルバメート基を分子末端に有するスチレン系ハイパーブランチポリマー(HPS)の合成>
 100mLの反応フラスコに、参考例1で合成したS-DC6.0g、二硫化テトラエチルチウラム[和光純薬工業(株)製、以下DCDCと略する]0.06g(S-DCの質量に対して1質量%)、及びキシレン4gを仕込み、撹拌して完全に溶解した。撹拌しながら系内の空気を窒素で置換した。反応フラスコをオイルバスに入れ、フラスコ内の温度が140℃になるまで加熱し、140±5℃に達した時点を重合開始時点とした。3時間後、反応フラスコをオイルバスから出し、室温まで冷却した後、キシレン20gを加えた。この反応液を300gのメタノールを用いて再沈精製を実施し、減圧濾過を行い、白色固体を得た。得られた固体をキシレン20gに再溶解し、メタノール600gを用いて再沈精製を行い、減圧濾過、真空乾燥して目的の白色粉末を3.6g得た。ゲル浸透クロマトグラフィー(以下GPCと略する)によるポリスチレン換算で測定される重量平均分子量Mwは21,000、分散度Mw/Mnは2.4であった。
実施例1<HPSとCMSを用いたハイパーブランチポリマー(HPS-PCMS)の合成>
 200mLの反応フラスコに、参考例2で合成したHPS2.67g、CMS15.26g、DCDC0.027g、及びキシレン12.0gを仕込み、撹拌して完全に溶解した。撹拌しながら系内の空気を窒素で置換した。反応フラスコをオイルバスに入れ、フラスコ内の温度が120℃になるまで加熱し、120±5℃に達した時点を重合開始時点とした。7時間後、反応フラスコをオイルバスから出し、室温まで冷却した後、キシレン10gを加えた。この反応液を500mLのメタノールを用いて再沈精製を実施し、減圧濾過を行い、白色固体を得た。得られた固体をテトラヒドロフラン(以下THFと略する)10gに再溶解し、メタノール500mLを用いて再沈精製を行い、減圧濾過、真空乾燥して目的の白色粉末(HPS-PCMS)を得た。GPCによるポリスチレン換算で測定される重量平均分子量Mw(相対分子量Mwともいう)は33,000、分散度Mw/Mnは3.1であった。
実施例2~3<CMS仕込みモル比効果>
 実施例1において、CMSの仕込み量を表1に示す量に変更した以外は同様の操作を行い、目的のHPS-PCMSを得た。得られたHPS-PCMSの重量平均分子量Mw及び分散度Mw/Mnを表1に示す。
Figure JPOXMLDOC01-appb-T000010
実施例4~8<重合濃度効果>
 100mLの反応フラスコに、参考例2で合成したHPS1.34g、CMS7.63g、DCDC0.013g、及び表2に示す量のキシレンを仕込んだ以外は実施例1と同様の操作を行い、目的のHPS-PCMSを得た。表中の「重合濃度」は、(HPS質量+CMS質量)÷(HPS質量+CMS質量+キシレン質量)×100)にて算出した。得られたHPS-PCMSの重量平均分子量Mw及び分散度Mw/Mnを表2に示す。
Figure JPOXMLDOC01-appb-T000011
実施例9~12<重合温度効果>
 実施例1において、重合温度を120℃から表3に示す温度に変更した以外は同様の操作を行い、目的のHPS-PCMSを得た。得られたHPS-PCMSの重量平均分子量Mw及び分散度Mw/Mnを表3に示す。
Figure JPOXMLDOC01-appb-T000012
実施例13~14<重合溶媒効果>
 実施例1において、溶媒をキシレンから表4に示す溶媒に変更した以外は同様の操作を行い、目的のHPS-PCMSを得た。得られたHPS-PCMSの重量平均分子量Mw及び分散度Mw/Mnを表4に示す。
Figure JPOXMLDOC01-appb-T000013
実施例15<HPSとメタクリル酸メチルを用いたハイパーブランチポリマーHPS-PMMAの合成>
 100mLの反応フラスコに、参考例2で合成したHPS2.65g、メタクリル酸メチル(以下MMAと略する)1.0g、DCDC0.27g、及びキシレン3.6gを仕込み、撹拌して完全に溶解した(MMAのモル数/HPSのジチオカルバメート基のモル数=1)。撹拌しながら系内の空気を窒素で置換した。反応フラスコをオイルバスに入れ、フラスコ内の温度が120℃になるまで加熱し、120±5℃に達した時点を重合開始時点とした。7時間後、反応フラスコをオイルバスから出し、室温まで冷却した後、キシレン10gを加えた。この反応液を500mLのメタノールを用いて再沈精製を実施し、減圧濾過を行い、白色固体を得た。得られた固体をTHF10gに再溶解し、メタノール500mLを用いて再沈精製を行い、減圧濾過、真空乾燥して目的の白色粉末(HPS-PMMA)を得た。GPCによるポリスチレン換算で測定される重量平均分子量Mwは19,000、分散度Mw/Mnは3.1であった。
実施例16<MMA仕込みモル比効果>
 実施例15において、MMAの仕込み量を10.1gに変更した以外は同様の操作を行い、目的のHPS-PMMAを得た(MMAのモル数/HPSのジチオカルバメート基のモル数=10)。GPCによるポリスチレン換算で測定される重量平均分子量Mwは25,000、分散度Mw/Mnは3.9であった。
実施例17<重合温度効果>
 実施例15において、重合温度を100℃に変更した以外は同様の操作を行い、目的のHPS-PMMAを得た。GPCによるポリスチレン換算で測定される重量平均分子量Mwは18,000、分散度Mw/Mnは3.3であった。
実施例18<MMA仕込みモル比/重合温度効果>
 実施例15において、MMAの仕込み量を10.1gに、重合温度を100℃に変更した以外は同様の操作を行い、目的のHPS-PMMAを得た(MMAのモル数/HPSのジチオカルバメート基のモル数=10)。GPCによるポリスチレン換算で測定される重量平均分子量Mwは42,000、分散度Mw/Mnは4.5であった。
実施例19<HPSとメタクリル酸グリシジルを用いたハイパーブランチポリマー(HPS-PGMA)の合成>
 100mLの反応フラスコに、参考例2で合成したHPS0.80g、メタクリル酸グリシジル[東京化成工業(株)製、以下GMAと略する]8.53g、DCDC0.89g、及びトルエン37.7gを仕込み、撹拌して完全に溶解した(GMAのモル数/HPSのジチオカルバメート基のモル数=20)。撹拌しながら系内の空気を窒素で置換した。反応フラスコをオイルバスに入れ、フラスコ内の温度が100℃になるまで加熱し、100±5℃に達した時点を重合開始時点とした。7時間後、反応フラスコをオイルバスから出し、室温まで冷却した。この反応液をジイソプロピルエーテル300mL(以下IPEと略す)に加えることで目的物を再沈殿させた後、減圧濾過を行い、白色固体を得た。得られた固体をTHF20gに再溶解させ、IPE500mLを用いて再度再沈精製を行い、減圧濾過、真空乾燥して目的の白色粉末(HPS-PGMA)を得た。
 得られたHPS-PGMAの、GPCによるポリスチレン換算で測定される重量平均分子量Mwは84,000、分散度:Mw/Mnは10.5であった。
特表2002-508409号公報 特表2002-500251号公報 特表2004-509181号公報 特開平5-188658号公報
Koji Ishizu,Akihide Mori,Macromol.Rapid Commun.21,665-668(2000) Koji Ishizu,Akihide Mori,Polymer International 50,906-910(2001) Koji Ishizu,Yoshihiro Ohta,Susumu Kawauchi,Macromolecules Vol.35,No.9,3781-3784(2002) Koji Ishizu,Takeshi Shibuya,Akihide Mori,Polymer International 51,424-428(2002) Koji Ishizu,Takeshi Shibuya,Susumu Kawauchi,Macromolecules Vol.36,No.10,3505-3510(2002) Koji Ishizu,Takeshi Shibuya,Jaebum Park,Satoshi Uchida,PolymerInternational 53,259-265(2004) Koji Ishizu,Akihide Mori,Takeshi Shibuya,Polymer Vol.42,7911-7914(2001) Koji Ishizu,Koichiro Ochi,Taiichi Furukawa,Journal of Applied Polymer Science,vol.100,3340-3345(2006) Takayuki Otsu,Keiji Yamashita,Kazuichi Tsuda,Macromolecules Vol.19,No.2,287-290(1986)

Claims (6)

  1. 式(2)で表される構造を少なくとも1つ有する式(1)で表されるハイパーブランチポリマーと、式(3)で表される不飽和二重結合を有する化合物とを、50乃至250℃で加熱することにより重合させることを特徴とする、式(4)で表されるハイパーブランチポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1及びR4は水素原子又はメチル基を表す。R2及びR3は、それぞれ独立して、炭素原子数1乃至5のアルキル基、炭素原子数1乃至5のヒドロキシアルキル基又は炭素原子数7乃至12のアリールアルキル基を表し、また、R2とR3は互いに結合し、窒素原子と共に環を形成していてもよい。A1は式(5)又は式(6)で表される基を表す。A3は置換されていてもよいフェニル基、置換されていてもよいナフチル基、置換されていてもよい5乃至6員環のヘテロ芳香環、置換されていてもよい5乃至6員環の脂環式アミノ基又は式(7)で表される基を表す。A4は水素原子を表し、また、A3とA4が一緒になって環状酸無水物または環状イミドを形成してもよい。k、m及びnは、それぞれ独立して、繰り返し単位構造の数であって2乃至1,000,000の整数を表す。
    Figure JPOXMLDOC01-appb-C000002
    (式中A2はエーテル結合又はエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、分岐状又は環状のアルキレン基を表す。X1、X2、X3及びX4は、それぞれ独立して、水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のアルコキシ基、ハロゲン原子、ニトロ基、ヒドロキシ基、アミノ基、カルボキシル基又はシアノ基を表す。R5は水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のハロアルキル基、炭素原子数1乃至20のヒドロキシアルキル基又は炭素原子数1乃至20のエポキシアルキル基を表す。))
  2. 前記A1が式(8)で表される基を表す、請求項1に記載のハイパーブランチポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000003
  3. 前記重合の系に、さらに式(9)で表されるジスルフィド化合物を添加することを特徴とする、ハイパーブランチポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式中、R6及びR7は、それぞれ独立して、炭素原子数1乃至5のアルキル基、炭素原子数1乃至5のヒドロキシアルキル基又は炭素原子数7乃至12のアリールアルキル基を表し、また、R6とR7は互いに結合し、窒素原子と共に環を形成していてもよい。)
  4. 請求項1に記載の式(2)で表される構造を少なくとも1つ有する請求項1に記載の式(1)で表されるハイパーブランチポリマーと、請求項1に記載の式(3)で表される不飽和二重結合を有する化合物とを、ラジカル開始剤の非存在下、50乃至250℃で加熱することにより重合させることを特徴とする重合方法。
  5. 前記重合の系に、さらに請求項3に記載の式(9)で表されるジスルフィド化合物を添加することを特徴とする、請求項4に記載の重合方法。
  6. 請求項4又は請求項5に記載の重合方法に従い得られる生成物。
PCT/JP2010/053677 2009-03-06 2010-03-05 ハイパーブランチポリマーの製造方法 WO2010101252A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011502826A JP5534244B2 (ja) 2009-03-06 2010-03-05 ハイパーブランチポリマーの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009054282 2009-03-06
JP2009-054282 2009-03-06

Publications (1)

Publication Number Publication Date
WO2010101252A1 true WO2010101252A1 (ja) 2010-09-10

Family

ID=42709805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053677 WO2010101252A1 (ja) 2009-03-06 2010-03-05 ハイパーブランチポリマーの製造方法

Country Status (2)

Country Link
JP (1) JP5534244B2 (ja)
WO (1) WO2010101252A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102344524A (zh) * 2011-07-12 2012-02-08 浙江大学 一种水溶性可点击反应的超支化聚合物
JP5594482B2 (ja) * 2009-03-06 2014-09-24 日産化学工業株式会社 ハイパーブランチポリマーの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017006823T5 (de) 2017-01-13 2019-10-02 Maxell Holdings, Ltd. Hyperverzweigtes Polymer, Metallrückgewinnungsmittel, Metallrückgewinnungsverfahren und Inhibitor der katalytischen Aktivität

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188658A (ja) * 1991-08-15 1993-07-30 Mitsubishi Paper Mills Ltd 静電写真用液体現像剤
JP2002500251A (ja) * 1997-12-31 2002-01-08 ロディア・シミ 制御されたラジカル重合によるジチオカーバメートからのブロックポリマーの合成方法
JP2002508409A (ja) * 1997-12-18 2002-03-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー リビング性を有する重合方法およびその方法で製造されるポリマー
JP2004509181A (ja) * 2000-09-18 2004-03-25 ロディア・シミ ジスルフィド化合物の存在下における制御されたラジカル重合によるブロックポリマーの合成方法
WO2006093050A1 (ja) * 2005-03-03 2006-09-08 Tokyo Institute Of Technology ハイパーブランチポリマー及びその製造方法
WO2007049608A1 (ja) * 2005-10-25 2007-05-03 Kyusyu University 表面および/または界面が改質されたポリマー構造体、およびその製造方法
WO2007148578A1 (ja) * 2006-06-19 2007-12-27 Tokyo Institute Of Technology ハイパーブランチポリマーおよびその製造方法
WO2008029688A1 (fr) * 2006-09-01 2008-03-13 Nissan Chemical Industries, Ltd. Polymère hyperbranché et son procédé de production
WO2008029806A1 (fr) * 2006-09-07 2008-03-13 Nissan Chemical Industries, Ltd. Polymère hyperramifié et son procédé de production
JP2008266571A (ja) * 2007-01-05 2008-11-06 Kyushu Univ ビタミンb12修飾ハイパーブランチポリマーおよび脱ハロゲン化触媒
WO2009035042A1 (ja) * 2007-09-12 2009-03-19 Nissan Chemical Industries, Ltd. ハイパーブランチポリマーの製造方法
JP2009242787A (ja) * 2008-03-11 2009-10-22 Kyushu Univ ビタミンb12修飾コアシェル型ハイパーブランチポリマーおよび脱ハロゲン化触媒

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188658A (ja) * 1991-08-15 1993-07-30 Mitsubishi Paper Mills Ltd 静電写真用液体現像剤
JP2002508409A (ja) * 1997-12-18 2002-03-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー リビング性を有する重合方法およびその方法で製造されるポリマー
JP2002500251A (ja) * 1997-12-31 2002-01-08 ロディア・シミ 制御されたラジカル重合によるジチオカーバメートからのブロックポリマーの合成方法
JP2004509181A (ja) * 2000-09-18 2004-03-25 ロディア・シミ ジスルフィド化合物の存在下における制御されたラジカル重合によるブロックポリマーの合成方法
WO2006093050A1 (ja) * 2005-03-03 2006-09-08 Tokyo Institute Of Technology ハイパーブランチポリマー及びその製造方法
WO2007049608A1 (ja) * 2005-10-25 2007-05-03 Kyusyu University 表面および/または界面が改質されたポリマー構造体、およびその製造方法
WO2007148578A1 (ja) * 2006-06-19 2007-12-27 Tokyo Institute Of Technology ハイパーブランチポリマーおよびその製造方法
WO2008029688A1 (fr) * 2006-09-01 2008-03-13 Nissan Chemical Industries, Ltd. Polymère hyperbranché et son procédé de production
WO2008029806A1 (fr) * 2006-09-07 2008-03-13 Nissan Chemical Industries, Ltd. Polymère hyperramifié et son procédé de production
JP2008266571A (ja) * 2007-01-05 2008-11-06 Kyushu Univ ビタミンb12修飾ハイパーブランチポリマーおよび脱ハロゲン化触媒
WO2009035042A1 (ja) * 2007-09-12 2009-03-19 Nissan Chemical Industries, Ltd. ハイパーブランチポリマーの製造方法
JP2009242787A (ja) * 2008-03-11 2009-10-22 Kyushu Univ ビタミンb12修飾コアシェル型ハイパーブランチポリマーおよび脱ハロゲン化触媒

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5594482B2 (ja) * 2009-03-06 2014-09-24 日産化学工業株式会社 ハイパーブランチポリマーの製造方法
CN102344524A (zh) * 2011-07-12 2012-02-08 浙江大学 一种水溶性可点击反应的超支化聚合物
CN102344524B (zh) * 2011-07-12 2013-04-03 浙江大学 一种水溶性可点击反应的超支化聚合物

Also Published As

Publication number Publication date
JPWO2010101252A1 (ja) 2012-09-10
JP5534244B2 (ja) 2014-06-25

Similar Documents

Publication Publication Date Title
US8338554B2 (en) Hyperbranched polymer and method for producing the same
EP1854814B1 (en) Hyper-branched polymer and process for production of the same
EP2065408B1 (en) Hyperbranched polymer and process for production thereof
He et al. Synthesis of block copolymers via the combination of RAFT and a macromolecular azo coupling reaction
KR101931725B1 (ko) 포토 스페이서용 경화성 수지 조성물, 칼럼 스페이서 및 액정 디스플레이
JP5534244B2 (ja) ハイパーブランチポリマーの製造方法
JP5594482B2 (ja) ハイパーブランチポリマーの製造方法
Tao et al. Synthesis and characterization of well-defined thermo-and light-responsive diblock copolymers by atom transfer radical polymerization and click chemistry
TWI469994B (zh) 超支鏈聚合物之製造方法
JP5671369B2 (ja) アルカリ現像性を有する硬化性樹脂組成物およびこの組成物から得られる硬化物
US20090234088A1 (en) Hyperbranched Polymer and Method for Producing the Same
WO2017199562A1 (ja) マクロモノマー共重合体およびその製造方法
JP2010155971A (ja) 高耐熱性アクリル系共重合体およびその製造方法
CN112334505B (zh) 分散剂组合物、着色组合物和彩色滤光片
JP6069645B2 (ja) チオカーボナートとスルフィド骨格をもつメタクリル酸エステルの櫛型共重合体およびその製造方法並びにそのuv硬化物
WO2019103102A1 (ja) ブロック共重合体組成物及びその製造方法
JP5590486B2 (ja) フマル酸エステル系ブロック重合体及びその製造方法
CN114656591B (zh) 一种水溶性大分子光引发剂及其制备方法和用途
JP2007297526A (ja) 重合体の製造方法
JP2013011695A (ja) フォトスペーサー用硬化性樹脂組成物および柱状スペーサー
JP2019189541A (ja) (メタ)アクリル酸エステル化合物、それを含む重合性組成物、及び(メタ)アクリル系重合体
Kotal et al. Free radical polymerization of alkyl methacrylates with N, N-dimethylanilinium p-toluenesulfonate at above ambient temperature: a quasi-living system
JP2015042704A (ja) ビニルエーテル基含有共重合体及び星型ポリマー並びにその製造方法
JP2017024994A (ja) モノヒドロキシ−2−ナフチル(メタ)アクリレート化合物、その製造方法及びその用途
JPH05178914A (ja) 高分子量スチレン系重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748845

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011502826

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748845

Country of ref document: EP

Kind code of ref document: A1