WO2007145200A1 - 超音波探傷方法、溶接鋼管の製造方法及び超音波探傷装置 - Google Patents

超音波探傷方法、溶接鋼管の製造方法及び超音波探傷装置 Download PDF

Info

Publication number
WO2007145200A1
WO2007145200A1 PCT/JP2007/061792 JP2007061792W WO2007145200A1 WO 2007145200 A1 WO2007145200 A1 WO 2007145200A1 JP 2007061792 W JP2007061792 W JP 2007061792W WO 2007145200 A1 WO2007145200 A1 WO 2007145200A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
probe
welded steel
flaw detection
weld bead
Prior art date
Application number
PCT/JP2007/061792
Other languages
English (en)
French (fr)
Inventor
Masaki Yamano
Hiroyuki Okubo
Takumi Horikiri
Makoto Nagase
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to JP2008521208A priority Critical patent/JP4816731B2/ja
Priority to EP07745079.9A priority patent/EP2031385B1/en
Priority to CN2007800219676A priority patent/CN101467035B/zh
Publication of WO2007145200A1 publication Critical patent/WO2007145200A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2487Directing probes, e.g. angle probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0422Shear waves, transverse waves, horizontally polarised waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/056Angular incidence, angular propagation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • G01N2291/2675Seam, butt welding

Definitions

  • Ultrasonic flaw detection method welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
  • the present invention relates to an ultrasonic flaw detection method, a welded steel pipe manufacturing method, and an ultrasonic flaw detection apparatus. More specifically, the present invention relates to an ultrasonic flaw detection method for flaw detection in a weld bead of a welded steel pipe and its vicinity, and the manufacture of a welded steel pipe. The present invention relates to a method and an ultrasonic flaw detection apparatus.
  • FIG. 1 shows the arrangement of probes for flaw detection in a general K-foam arrangement that is not vertically oriented (a flaw formed along the longitudinal direction of the weld bead).
  • the probe 3 is arranged at a center 2C force 0.5 skip distance of the weld bead 2, and inspects a portion of the weld bead 2 near the inner surface of the welded steel pipe 1.
  • the probe 4 is arranged at a 1.0 skip distance from the center 2C, and inspects a portion of the weld bead near the outer surface of the welded steel pipe 1.
  • the transverse ultrasonic beams U3 and U4 transmitted and received by each of the probes 3 and 4 propagate in the welded steel pipe 1 while spreading at directivity angles ⁇ 3 and ⁇ 4 determined by the flaw detection frequency and the vibrator diameter.
  • the ultrasonic beams U3 and U4 can cover the entire weld bead 2 by setting the refraction angles ⁇ 3 and ⁇ 4 of the probes 3 and 4 to appropriate values.
  • the refraction angle ⁇ is larger, the occurrence of the undetected region 400 can be suppressed and the entire inside of the weld bead 2 can be covered.
  • a probe having a nominal refraction angle of 55 to 70 degrees is usually used for flaw detection in a longitudinal flaw in a welded steel pipe with a thickness of 40 mm or less.
  • a flaw that becomes a problem in a welded steel pipe has been a surface flaw generated in a weld bead, such as the vertical flaw described above.
  • inner toe cracks cracks that occur at the toe of the weld bead on the inner surface of the welded steel pipe
  • An object of the present invention is to provide an ultrasonic flaw detection method capable of improving the detection ability of an inner surface toe end crack generated at the toe end of a weld bead on the inner surface of a welded steel pipe.
  • the ultrasonic flaw detection method flaws a welded steel pipe having a weld bead formed in the pipe axis direction by the oblique flaw detection method.
  • the ultrasonic flaw detection method of the present invention includes a step of preparing a first probe that outputs a first transverse wave ultrasonic beam having a refraction angle of 40 degrees or more and less than 55 degrees, and a first probe in a welded steel pipe.
  • the direction of propagation of the transverse ultrasonic beam is substantially perpendicular to the longitudinal direction of the weld bead, and the stop with the shorter distance from the first probe at both ends of the weld bead on the inner surface of the welded steel pipe
  • the method includes a step of outputting a transverse ultrasonic beam and flaw-detecting the welded steel pipe, and a step of determining the presence or absence of a crack at the inner toe based on the flaw detection result.
  • a crack at the inner toe portion extends at an angle of 35 to 50 degrees on the opposite side to the weld bead with respect to the radial direction of the toe portion of the weld bead on the inner surface of the welded steel pipe. Therefore, the refraction angle of the transverse ultrasonic beam output from the first probe and incident on the weld toe near the first probe among the toes on the inner surface of the welded steel pipe is set to 40. By setting the angle to be greater than or equal to 55 degrees and less than 55 degrees, the ultrasonic beam is incident substantially perpendicularly to the inner toe crack and a strong reflected echo can be obtained. Therefore, the detection capability with respect to the inner surface toe portion crack is improved.
  • the first probe is arranged at a 0.5 skip distance from a toe portion having a shorter distance to the first probe.
  • the ultrasonic flaw detection method of the present invention further includes a first artificial hole having substantially the same transverse shape as a welded steel pipe to be inspected and formed at a toe end of a weld bead on the inner surface.
  • the sample welded steel pipe is flawed with the first probe placed and the first The first time when the probe detects the echo of the first artificial hole and the second time when the echo of the second artificial hole is detected.
  • a monitoring gate is set with the third time that is a predetermined time difference from the first time as the gate start point and the second time as the gate end point.
  • the judgment process is to monitor the echo intensity in the monitoring gate among the echoes received by the first probe during the inspection of the welded steel pipe to be inspected, and the echo intensity in the monitoring gate is determined. When the value exceeds the threshold, it is determined that a crack at the inner toe has been detected.
  • a noise echo is generated due to the shape of the weld bead (hereinafter, this noise echo is referred to as a bead-shaped noise echo).
  • this noise echo is referred to as a bead-shaped noise echo.
  • over-detection As an echo of a crack.
  • the bead-shaped noise echo is generated by reflection from the inner surface of the welded steel pipe to the other toe of the weld bead center force. . Therefore, a monitoring gate may be provided in a range excluding these reflection echoes on the inner surface.
  • sample welded steel pipes are prepared in which artificial holes are created in advance at the toe position and the weld bead center position, respectively, and the sample welded steel pipe is flawed before flaw detection is performed on the welded steel pipe to be inspected.
  • the position of the toe (first time) and the center of the weld bead (second time) are obtained.
  • the monitoring gate is set with the determined weld bead center position as the gate end point. Since the bead-shaped noise echo occurs after the center of the weld bead, over-detection of the bead-shaped noise echo can be prevented by setting the monitoring gate.
  • the gate start point a position obtained by subtracting a predetermined margin (predetermined time) from the position of the toe part to be flaw-detected, the echo of the inner toe part crack is surely included in the monitoring gate. Can do. For this reason, the detection capability of the inner toe crack can be improved by setting the monitoring gate.
  • the ultrasonic flaw detection method of the present invention further includes a second probe that outputs a second transverse wave ultrasonic beam having a refraction angle of 55 degrees to 70 degrees, and the second transverse wave ultrasonic wave.
  • FIG. 1 A schematic diagram showing the K foam arrangement of a probe in conventional ultrasonic inspection of welded steel pipes.
  • FIG. 2A is a schematic diagram for explaining the relationship between the refraction angle of a transverse ultrasonic beam and the flaw detection area in ultrasonic flaw detection.
  • FIG. 2B is another schematic diagram for explaining the relationship between the refraction angle of the transverse ultrasonic beam and the flaw detection area in ultrasonic flaw detection, which is different from FIG. 2A.
  • FIG. 3 is a schematic diagram showing cracks at the toe portion on the inner surface.
  • FIG. 4A is a diagram for explaining a problem in the case where flaws are detected at the inner toe cracks with a conventional probe.
  • FIG. 4B is another diagram for explaining the problem in the case of flaw detection of the inner-side toe end cracking with the conventional probe, which is different from FIG. 4A.
  • FIG. 4C is another diagram for explaining a problem that is different from FIGS. 4A and 4B in the case where flaws are detected at the inner toe end cracks with a conventional probe.
  • FIG. 5 is a graph showing the relationship between the refraction angle and the echo intensity of the crack at the toe at the inner surface.
  • FIG. 6 is a diagram showing the focusing effect on the focusing coefficient of the probe.
  • FIG. 7 is a top view of an ultrasonic flaw detector used in the ultrasonic flaw detection method according to the present embodiment.
  • FIG. 8 is a sectional view taken along line VIII-VIII in FIG.
  • FIG. 9 is a schematic diagram for explaining the operation of the bead detector in FIG. 7.
  • FIG. 10 is a diagram showing a weld bead shape detected by the bead detector in FIG. 7.
  • FIG. 11 is a diagram for explaining the cause of occurrence of bead shape noise.
  • FIG. 12 is a flowchart showing a process of acquiring monitoring gate data for setting a monitoring gate in the present embodiment.
  • FIG. 13 is a cross sectional view of the sample welded steel pipe used in step S 1 in FIG.
  • FIG. 14 is a diagram showing a data structure of a gate table in which data is registered in steps S 2 and 3 in FIG.
  • FIG. 15 is a diagram showing the echo signal obtained in step S2 by the A scope method.
  • FIG. 16 is a flowchart showing the steps of the ultrasonic flaw detection method according to the present embodiment.
  • FIG. 17 is a top view of an ultrasonic flaw detector used in a second embodiment.
  • FIG. 18 is a diagram showing a configuration of an array probe and a control device used in the third embodiment.
  • a transverse ultrasonic beam having a refraction angle of 40 degrees or more and less than 55 degrees is propagated toward the toe end of the weld bead on the inner surface of the welded steel pipe.
  • the reason for setting the refraction angle to 40 degrees or more and less than 55 degrees is as follows.
  • the present inventors first investigated the form of a plurality of internal toe cracks.
  • the internal toe crack 5 that occurs in the UOE steel pipe with high strength and small diameter and thick wall is 35-50 on the opposite side of the weld bead 2 with respect to the radial direction RD of the UOE steel pipe.
  • the toe part 2 R force was extended inside the base metal.
  • the crack depth was as short as about 1 mm at the toe 2R surface force.
  • cracks inclined 35 to 50 degrees with respect to the radial direction are difficult to detect with a conventional probe having a refraction angle of 55 to 70 degrees for flaw detection in the longitudinal direction.
  • an ultrasonic flaw detection test using a transverse wave ultrasonic beam with various refracting angles for 35 to 50 degrees internal toe cracks (crack numbers 1 to 3) actually occurring in UOE steel pipes. was implemented.
  • a probe that outputs a transverse ultrasonic beam was placed at a 0.5-skip distance from the position where the inner-end toe crack occurred (that is, the toe-end on the inner surface of the UOE steel pipe).
  • an artificial hole (Drilled Hole) with a diameter of 1.6 mm along the radial direction is created in the center of the weld bead, and an ultrasonic flaw detection test is performed on the created artificial hole using ultrasonic beams with various refraction angles.
  • the probe was placed at a 0.5 skip distance from the center of the welding beam. After the test, the echo intensity of the inner toe crack at each refraction angle was compared.
  • Figure 5 shows the survey results.
  • the vertical axis in Fig. 5 is the echo height ratio (hereinafter referred to as the relative flaw echo height) of the inner edge toe cracks with crack numbers 1 to 3 for the artificial hole, and the horizontal axis is the refraction angle at the time of flaw detection ( Degree).
  • Smaller than the relative flaw echo height force ⁇ indicates that it is harder to detect than a typical vertical flaw.
  • an ultrasonic beam with a refraction angle of 55 to 70 degrees used for flaw detection in the longitudinal direction of UOE steel pipes has a relative flaw echo height of about 1 time or less, while it is refracted. For ultrasonic beams with an angle between 40 degrees and less than 55 degrees, the relative flaw echo height was more than doubled. By setting the refraction angle to 40 degrees or more and less than 55 degrees
  • the inner toe crack is detected using the probe that outputs a transverse wave ultrasonic beam having a refraction angle of 40 degrees or more and less than 55 degrees.
  • the ability to detect cracks at the inner toe can be improved.
  • X on the horizontal axis (xZfop) in Fig. 6 is the beam path length.
  • PZPO in Fig. 6 Po is the average sound pressure closest to the probe, and P is the sound pressure on the sound axis (beam center axis). The higher the PZPo, the higher the focusing effect.
  • the shorter the refraction angle of the ultrasonic beam the larger the near field limit distance. Therefore, the smaller the refraction angle, the higher the focusing effect can be obtained.
  • the bending angle is set to 40 degrees or more and less than 55 degrees, the refraction angle becomes smaller than the conventional refraction angle (55 to 70 degrees), so that a higher focusing effect than the conventional one can be obtained. As a result, it is possible to obtain a high echo intensity even with respect to the inner toe crack, which is a smaller crack than the conventional longitudinal flaw.
  • Table 1 shows the focusing coefficient when the inner surface of a 30 mm thick UOE steel pipe and the inner surface of a 15 mm thick UOE steel pipe are detected at various angles of refraction.
  • the flaw detection frequency was 4 MHz and the focal length in steel was assumed to be equal to the beam path.
  • path length in the table is the distance of the toe end force on the inner surface of the UOE steel pipe to be detected
  • 0.5 skip is the 0.5 skip distance.
  • the “reduction ratio” is obtained by the following equation (2).
  • 0 is the refraction angle (degree) of the transverse ultrasonic beam
  • is the incident angle (degree) of the transverse ultrasonic beam.
  • the 0.5 skip distance has a higher focusing effect than the 1.5 skip distance. Therefore, when detecting cracks on the inner toe end by an ultrasonic flaw detection test, it is preferable to place the probe at a position corresponding to a 0.5 skip distance from the toe end of the weld bead on the inner surface of the UOE steel pipe.
  • the ultrasonic flaw detector 10 is a conventional oblique probe for detecting a longitudinal flaw (hereinafter also referred to as an L-direction flaw). Elements 31 to 34 and conventional oblique probes 35 and 36 for detecting transverse flaws (hereinafter also referred to as T-direction flaws).
  • the ultrasonic flaw detector 10 is further provided with bevel probes 37 and 38 for detecting cracks at the inner end.
  • the welded steel pipe 1 to be inspected is placed on a V-shaped conveying roller 70, and is subjected to ultrasonic flaw detection while being conveyed in the tube axis direction during the ultrasonic flaw detection test.
  • the welded steel pipe 1 may be installed on a V-shaped gantry instead of the force conveying roller 70 arranged on the V-shaped conveying roller 70.
  • the ultrasonic flaw detector 10 further includes a manipulator 50, a bead detector 17, and a control device 16.
  • the manipulator 50 is a device for bringing the oblique angle probes 31 to 38 into contact with the outer surface of the welded steel pipe 1, and includes a lifting frame 11, a rail 12, an arm 13, and a probe holder 14. .
  • the elevating frame 11 and the arm 13 move the oblique angle probes 37 and 38 to predetermined arrangement positions.
  • the elevating frame 11 has a bead detector 17 attached to the center of the lower surface and rails 12 attached to both ends of the lower surface.
  • the lifting frame 11 is raised or lowered by hydraulic pressure or electric power to bring the probes 37 and 38 into contact with the outer surface of the welded steel pipe 1.
  • the elevating frame 11 can be further rotated within a predetermined range in the circumferential direction of the welded steel pipe 1.
  • the lifting frame 11 rotates so that the bead detector 17 is positioned directly above the weld bead 2.
  • the lifting frame 11 rotates so that the bead detector 17 is positioned directly above the weld bead 2.
  • the lifting frame 11 rotates clockwise, and the bead detector 17 stops at a position directly above the weld bead 2.
  • the ultrasonic flaw detector 10 can keep the relative positions of the oblique angle probes 37 and 38 with respect to the weld bead 2 constant.
  • the arm 13 includes a horizontal arm member 131 and a vertical arm member 132.
  • the horizontal arm member 131 is moved in the horizontal direction along the rail 12 by electric drive.
  • the vertical arm member 1 32 has a probe holder 14 at the lower end.
  • the vertical arm member 132 moves in the vertical direction.
  • each of the force probes 31 to 34 shown for the arm 13 that holds the oblique angle probes 37 and 38 is also held by a similar arm (not shown), and the oblique angle is set by the arm. The distance between the probe 31 to 34 and the weld bead 2 is adjusted. Similarly, the probes 35 and 36 are not shown!
  • the bead detector 17 detects the center position of the weld bead 2 of the welded steel pipe 1 during the ultrasonic test.
  • the ultrasonic flaw detector 10 causes the manipulator 50 to follow the weld bead 2 based on the detection result of the bead detector 17.
  • the bead detector 17 includes a laser light source 171 and a CCD camera 172.
  • the laser light source 171 irradiates the welding bead 2 with laser light
  • the CCD camera 172 images a portion of the welding bead 2 irradiated with the laser light.
  • the ultrasonic flaw detector 10 acquires an image showing the cross-sectional shape of the outer surface of the welded steel pipe 1 as shown in FIG.
  • the control device 16 calculates the center position of the weld bead 2 based on the acquired image.
  • the ultrasonic flaw detector 10 moves the manipulator 50 based on the center position calculated by the controller 16.
  • the control device 16 determines the arrangement positions of the oblique angle probes 31 to 38, and moves the probes to the determined arrangement positions by the lifting frame 11 and the arm 13 or the like.
  • the control device 16 further controls each of the oblique angle probes 31 to 38.
  • the configuration of the control device 16 for controlling the bevel probes 37 and 38 among the bevel probes 31 to 38 will be described.
  • control device 16 includes a pulser 18, an amplifier 19, and a flaw evaluator 20.
  • the pulser 18 applies spike-like pulses to the bevel probes 37 and 38.
  • the oblique angle probes 37 and 38 receive pulses from the pulser 18 and propagate a transverse wave ultrasonic beam from the internal piezoelectric vibrator into the steel pipe.
  • the transverse wave ultrasonic beam (echo) reflected by the inner toe crack is received by the oblique probes 37 and 38 and converted into an electrical signal (hereinafter referred to as an echo signal).
  • the echo signal is output from the angle probes 37 and 38 to the amplifier 19.
  • the amplifier 19 amplifies the echo signal.
  • the amplifier 19 includes a preamplifier 191, a filter 192, and a main amplifier 193.
  • the preamplifier 191 amplifies the received echo signal.
  • the filter 192 also removes noise from the echo signal force amplified by the preamplifier 191.
  • the main amplifier 193 amplifies the echo signal that has passed through the filter 192.
  • the echo signal amplified by the amplifier 19 is input to the flaw evaluator 20.
  • the flaw evaluator 20 includes a node disk drive (HDD) 201 in which monitoring gate data is registered, a monitoring gate setting unit 202, a flaw evaluation unit 203, and an event generation unit 204.
  • the monitoring gate setting unit 202 sets a monitoring gate for the echo signal based on the monitoring gate data read from the HDD 201. The method of setting the monitoring gate will be described later.
  • the evaluation unit 203 determines that an internal toe crack is inherent at the ultrasonic flaw detection position. .
  • the event generation unit 204 notifies the operator when the evaluation unit 203 detects a crack at the inner toe portion, or instructs marking to a marking device (not shown).
  • the oblique angle probes 37 and 38 are arranged to face each other on the same line orthogonal to the weld bead 2.
  • the oblique angle probes 37 and 38 output a transverse ultrasonic beam having a refraction angle of 40 degrees or more and less than 55 degrees, and detect cracks at the inner toe by oblique angle flaw detection.
  • the bevel probes 31 and 32 are arranged opposite to each other on the same line perpendicular to the weld bead 2, and the bevel probes 33 and 34 are located on the same line perpendicular to the weld bead 2. They are placed facing each other.
  • the oblique angle probes 31 to 34 output an ultrasonic beam having a refraction angle of 55 to 70 degrees.
  • the oblique angle probes 31 and 32 detect L-direction flaws existing in the vicinity of the inner surface of the welded steel pipe 1.
  • the bevel probes 33 and 34 are welded steel pipes. Detect scratches.
  • the oblique angle probes 35 and 36 are arranged opposite to each other on the weld bead 2. Bevel probes 35 and 36 detect T-direction flaws.
  • the oblique angle probes 37 and 38 inspect the weld toes 2L and 2R on the inner surface of the welded steel pipe 1 and the vicinity thereof, but cannot inspect other areas. In other words, there is a possibility that the L direction flaws on the inner and outer surfaces of the welded steel pipe 1 cannot be detected with only the oblique probes 37 and 38.
  • By arranging the oblique angle probes 31 to 34 it is possible to detect the entire inside of the weld bead 2 and to detect flaws in the L direction.
  • Each oblique angle probe 31 to 34, 37 and 38 includes a wedge and a piezoelectric vibrator disposed on the wedge.
  • the piezoelectric vibrator may be a ceramic piezoelectric vibrator such as a lead niobate-based ceramic, a lead titanate-based ceramic, or a lithium niobate-based ceramic, or a PZT-epoxy composite vibrator.
  • the piezoelectric vibrator is a PZT-epoxy composite vibrator. This is because the PZT-epoxy composite vibrator has a higher damping performance than the ceramic piezoelectric vibration ratio, so that the proximity echo can be easily separated and the flaw echo and the bead-shaped noise echo can be easily distinguished.
  • Each of the oblique angle probes 31 to 34, 37 and 38 is disposed on the outer surface of the welded steel pipe 1 through water which is a liquid contact medium, and a transverse wave ultrasonic beam enters the welded steel pipe 1 inside. .
  • the oblique angle probes 35 and 36 have piezoelectric vibrators but do not have wedges. Probes 35 and 36 are placed on the weld bead 2. The surface shape of the weld bead 2 is less smooth than the outer shape of the base metal. Therefore, the oblique angle probe having the wedge cannot stably enter the transverse wave ultrasonic beam into the weld bead 2. The oblique angle probes 35 and 36 do not have a wedge, and the piezoelectric transducer force transverse wave ultrasonic beam is output through the liquid contact medium water, so a stable transverse wave ultrasonic beam is incident on the weld bead 2. it can.
  • the ultrasonic beam propagates while spreading at a predetermined directivity angle. Therefore, as shown in FIG. 11, when the weld toe 2L of the weld bead 2 is inspected with the bevel probe 38, the weld bead center position 2C of the weld bead 2 on the inner surface of the welded steel pipe 1 is connected to the weld stop. Inside between end 2R An ultrasonic beam may be propagated on the surface 200 and reflected by the inner surface 200. This reflected echo is detected as a bead-shaped noise echo.
  • a monitoring gate is set by the following method for echo signals obtained by ultrasonic flaw detection to prevent overdetection of bead-shaped noise echoes.
  • a sample welded steel pipe 100 having the same outer diameter, the same thickness, and the same steel type as the welded steel pipe 1 to be inspected is prepared (Sl).
  • the weld bead 2 of the sample welded steel pipe 100 three artificial flaws 11 to 13 are processed in advance. Artificial flaws II and 13 are machined to a position where internal toe cracks can occur.
  • the artificial flaw II is caulked with an inclination of 35 to 50 degrees on the opposite side of the weld bead 2 with respect to the radial direction, with the toe 2R force also directed toward the inside of the base metal.
  • the artificial flaw 13 is machined by tilting 35 to 50 degrees on the opposite side of the weld bead 2 with respect to the radial direction, with the toe portion 2L force also directed toward the inside of the base material.
  • the artificial flaw 12 is processed along the center position 2C radius direction of the weld bead 2.
  • the toe ends 2R and 2L of the sample welded steel pipe 100 are inspected by the probes 37 and 38.
  • the bevel probe 37 is arranged at a 0.5 skip distance from the toe 2R, which has the shorter distance to the bevel probe 37, of both toe ends 2R and 2L on the inner surface of the sample welded steel pipe 100.
  • echoes of artificial flaws II and 12 are detected by the bevel probe 37 (S2).
  • the control device 16 registers the arrangement position of the probe 37 in the gate table shown in FIG.
  • the gate table is stored in the HDD 201 and is created for each bevel probe. With the above method, the position of the probe 37 during the ultrasonic test is determined. The ultrasonic flaw detector 10 finely adjusts the arrangement position of the bevel probe 38 in the same manner as the bevel probe 37, and the control apparatus 16 determines the position of the adjusted probe 38 as a probe. Register in the gate table for 38.
  • the flaw evaluator 20 After adjusting the arrangement position, the flaw evaluator 20 performs artificial flaws II and I received by the bevel probe 37. 2 echo signal is detected. At this time, the monitoring gate setting unit 202 in the flaw evaluator 20 does not operate, and the echo signal output from the amplifier 19 is input to the evaluation unit 203.
  • Figure 15 shows the echo signal input to the evaluation unit 203 using the A scope method.
  • the evaluation unit 203 detects the time when the oblique probe 37 detects the artificial flaw II after the transverse wave ultrasonic beam is incident on the sample welded steel pipe 100, in other words, the pulser. After time tO when 18 outputs a pulse, the time tl when echo intensity EI 1 exceeding the threshold value is first detected (hereinafter referred to as toe crack detection time tl) is acquired. Further, the evaluation unit 203 detects the second echo intensity EI2 at which the oblique probe 37 detects the artificial flaw 12, in other words, the second echo intensity EI2 at which the oblique probe 37 exceeds the threshold after time t0.
  • the acquired toe crack detection time tl and noise echo detection time t2 are the gate for the bevel angle probe 37 corresponding to the outer diameter (mm), wall thickness (mm), and steel type of the sample welded steel pipe 100. It is registered in the table (S3). Similarly, for the probe 38, the toe crack detection time and noise echo detection time are measured and registered in the gate table for the probe 38 (S3). With the above operation, the monitoring gate data (tl and t2) are registered in the gate table. After registration, ultrasonic testing of sample welded steel pipe 100 is completed.
  • the ultrasonic flaw detection apparatus 10 sets a monitoring gate using the monitoring gate data.
  • the monitoring gate setting unit 202 in the flaw evaluator 20 first refers to the gate table in the HDD 201 and corresponds to the outer diameter, thickness, and steel type of the welded steel pipe 1 to be inspected. Get toe crack detection time tl and noise echo detection time t2. After the acquisition, the monitoring gate setting unit 202 calculates a gate start point ts, which is the start point of the monitoring gate, using Equation (3).
  • At is a value (usually a time corresponding to ⁇ 2 mm) set in advance based on the tracking error of the manipulator 50 with respect to the weld bead 2 during the ultrasonic flaw detection test.
  • the machine 50 follows the weld bead 2 while rotating based on the information of the bead detector 17, it takes some time to follow, so only a predetermined margin (usually about ⁇ 2mm) is required. The force directly above the weld bead may shift. Therefore, based on the predetermined margin
  • the predetermined time At is set in advance and stored in the HDD 201. As described above, the gate start point ts is set.
  • the monitoring gate setting unit 202 determines the gate end point te, which is the end point of the monitoring gate.
  • the monitoring gate setting unit 202 sets the noise echo detection time t2 as the gate end point te. Since the bead shape noise echo depends on the shape of the weld bead 2, it is difficult to specify the position where it occurs. However, it is possible to specify a range in which no bead-shaped noise echo occurs.
  • the transverse wave ultrasonic beam output from the bevel probe 38 is incident on the inner surface of the welded steel pipe 1 substantially perpendicularly, the reflected echo is received by the bevel probe 38. Is done.
  • the shape of the weld bead 2 is a convex shape with the center position 2C as a vertex. Therefore, the transverse wave ultrasonic beam from the oblique probe 38 is incident almost vertically on any part of the inner surface 200 and can be received by the oblique probe 38 as a reflected echo.
  • the transverse wave ultrasonic beam is not perpendicularly incident on the inner surface 300 between the toe 2L force and the weld bead center position 2C, at least the inner surface 300 does not generate a bead-shaped echo. Therefore, if the center position 2C (time t2) of the weld bead 2 specified by the human defect 12 is set as the gate end point te, the bead shape noise is generated after the gate end point te. Can be prevented.
  • the monitoring gate setting unit 202 sets the range from the gate start point ts to the gate end point te set by the above-described method to the monitoring gate TG (Time Gate) during the ultrasonic flaw detection test. As a result, it is possible to prevent over-detection of the bead-shaped noise echo and to improve the accuracy of detecting the inner-end toe crack.
  • an open pipe is formed by bending a steel sheet by a known bending method such as C press, U press, O press or roll forming.
  • the formed open pipe seam is welded into a welded steel pipe by a well-known welding method.
  • the entire length of the welded steel pipe is expanded in order to improve the dimensional accuracy of the inner surface of the welded steel pipe.
  • the expanded welded steel pipe contains internal toe cracks due to the expansion. Therefore, ultrasonic flaw detection according to the present embodiment is performed on the welded steel pipe after pipe expansion. The ultrasonic flaw detection method according to the present invention will be described below.
  • an ultrasonic flaw detector 10 equipped with bevel probes 37 and 38 is prepared, and a welded steel pipe 1 to be inspected is transported by a conveying roller 70 of the ultrasonic flaw detector 10. Place on top (Sl l). Subsequently, the oblique angle probes 37 and 38 are arranged on the outer surface of the welded steel pipe (S12). At this time, the ultrasonic flaw detector 10 is registered in a record of the same size (outer diameter, wall thickness) and steel type as the welded steel pipe to be inspected with reference to the gate tables of the bevel probes 37 and 38 in the HDD 201. Read the arranged position data.
  • the probes 37 and 38 are brought into contact with the arrangement positions read by driving the manipulator 50.
  • the propagation direction of the transverse ultrasonic beam in the welded steel pipe 1 is substantially orthogonal to the longitudinal direction of the weld bead 2, and the oblique angle of the two toe ends 2L and 2R of the weld bead 2 on the inner surface of the welded steel pipe 1
  • the oblique angle probe 37 is arranged so that a transverse wave ultrasonic wave of 40 degrees or more and less than 55 degrees propagates to the toe 2R having the shorter distance to the probe 37.
  • the oblique angle probe 38 is arranged so that a transverse ultrasonic beam of 40 degrees or more and less than 55 degrees propagates to the toe portion 2L.
  • the other oblique angle probes 31 to 36 are also arranged on the outer surface of the welded steel pipe 1.
  • the evaluation unit 203 sets a monitoring gate (S13).
  • the evaluation unit 203 refers to the gate table for the bevel probe 37 and detects the toe crack detection registered in the record of the same size (outer diameter, wall thickness) and steel grade as the welded steel pipe 1 to be inspected. Read time tl and noise echo detection time t2.
  • the evaluation unit 203 calculates the gate start point ts based on Equation (3), and sets the range from the gate start point ts to the gate end point te (that is, the noise echo detection time t2) as the monitoring gate TG.
  • a monitoring gate TG is set for the bevel probe 38.
  • the ultrasonic flaw detector 10 After setting the monitoring gate TG, the ultrasonic flaw detector 10 performs an ultrasonic flaw test (S14). The ultrasonic flaw detection test is performed based on the bevel flaw detection method. During the ultrasonic testing, the welded steel pipe 1 is transported in the pipe axis direction. The ultrasonic flaw detector 10 investigates the presence of cracks at the inner toe while causing the bead detector 17 to cause the manipulator 50 to follow the weld bead 2 of the welded steel pipe 1. The flaw evaluator 20 determines whether there is a crack at the inner toe.
  • the evaluation unit 203 in the defect evaluator 20 determines whether or not the echo intensity of the echo signal received by the oblique angle probe 37 exceeds a predetermined threshold value in the monitoring gate TG. To do. As a result of the determination, if the echo intensity in the monitoring gate TG is less than the threshold value, the evaluation unit 203 determines that there is no internal toe crack. On the other hand, when the echo intensity in the monitoring gate TG reaches a threshold value and exceeds the value, the evaluation unit 203 determines that an internal toe crack is inherent at the flaw detection position.
  • the event generation unit 204 outputs a warning sound or instructs the marking device (not shown) installed in the ultrasonic flaw detector 10 to mark the location where the inner toe crack is detected. .
  • the flaw evaluator 20 makes the same determination on the echo signal received by the bevel probe 38.
  • step S14 the other oblique angle probes 31 to 36 also enter the transverse ultrasonic beam, and detect flaws in the L direction and the T direction on the inner and outer surfaces. Therefore, the ultrasonic flaw detector 10 can ultrasonically detect the entire weld bead 2.
  • the angle probe 37 and 38 capable of receiving a transverse wave ultrasonic beam having a refraction angle of 40 degrees or more and less than 55 degrees are provided, and the weld toe is provided from these angle probes 37 and 38.
  • Incidence of transverse wave ultrasonic waves toward 2L and 2R improves the ability to detect internal toe cracks.
  • it is possible to prevent over-detection of the bead-shaped noise echo by determining the presence or absence of cracks on the inner surface toe using the monitoring gate TG that has determined the gate start point ts and gate end point te by the method described above.
  • the oblique angle probes 31-36 can detect flaws in the L direction and in the T direction, which are conventional flaw detection targets.
  • the size and steel type of the welded steel pipe are registered in the gate table, but only the size may be registered. That is, the ultrasonic flaw detector 10 may read monitoring data according to the size of the welded steel pipe and set the monitoring gate. Further, the cross-sectional shape (outer diameter, wall thickness, etc.) of the sample welded steel pipe 100 may not be exactly the same as the size of the welded steel pipe 1 to be inspected. Even using gate table data based on a sample welded steel pipe 100 with an outer diameter and wall thickness error of about ⁇ 10%, the welded steel pipe 1 to be inspected can be inspected by the method described above, and the inner toe cracks Can be detected.
  • the position where the oblique angle probes 37 and 38 are disposed is the toe portion 2R, 2L force 0.5 skip distance force 1.5. Can do.
  • the bevel angle probes 37 and 38 are preferably arranged at the 0.5 skip distance because a higher focusing effect can be obtained by arranging at the 0.5 skip distance. Note that it is not necessary to place the oblique angle probes 37 and 38 exactly at the position corresponding to the 0.5 skip distance. Play to some extent.
  • the bevel probes 37 and 38 are arranged on the same straight line perpendicular to the weld bead 2, as shown in Fig. 17, the bevel probes 37 and 38 are the same. Instead of being arranged on a straight line, they may be arranged so as to be shifted from each other in the direction of the weld bead 2. In this case, it is possible to suppress the ultrasonic beams transmitted from the oblique angle probes 37 and 38 from interfering with each other.
  • the oblique probe is used, but instead of the oblique probes 37 and 38, an array probe that can change the refraction angle during the flaw detection test is used. It may be used to detect internal toe cracks.
  • the ultrasonic flaw detector according to the present embodiment includes an array probe 40 instead of the probe 37. Further, instead of the probe 38, an array probe similar to the array probe 40 is provided.
  • the array probe 40 includes a wedge 41 having a fan-shaped block in cross section, and a plurality of ultrasonic transducers Chl to Ch32 arranged on the convex curved surface of the wedge 41 along the circumferential direction of the fan shape.
  • the pulser PLn outputs a pulse to excite the corresponding oscillator Chn.
  • pulser PL1 outputs a pulse to vibrator Chi
  • pulser PL2 outputs a pulse to vibrator Ch2.
  • the refraction angle control unit 60 selects a pulser PL corresponding to a predetermined number of transducers Ch arranged in succession.
  • k is a count value, and the refraction angle control unit 60 increments or decrements.
  • the refraction angle control unit 60 determines the delay times of the transmission delay elements TDk to TDk + 15. This determines the timing at which each of the transducers Chk to Chk + 15 outputs an ultrasonic wave. Determined.
  • the refraction angle control unit 60 adjusts the timing of ultrasonic output of each transducer Chk to Chk + 15 so that the array probe 40 can change the refraction angle during the ultrasonic flaw detection test. Therefore, during the ultrasonic flaw detection test, it is possible to detect the toe of the inner surface of the weld bead 2 while changing the refraction angle of the ultrasonic beam output from the array probe 40 within a range of 40 degrees or more and less than 55 degrees. In this way, detecting flaws while changing the refraction angle of the array probe between 40 degrees and less than 55 degrees can improve the ability to detect internal toe cracks that vary in inclination angle from 35 degrees to 50 degrees.
  • the refraction angle control unit 60 adjusts the timing of ultrasonic output of each transducer Chk to Chk + 15 so that the array probe 40 can change the refraction angle during the ultrasonic flaw detection test. Therefore, during the ultrasonic flaw detection test, it is possible to detect the toe of the inner surface of the wel
  • the transducers Chk to Chk + 15 output ultrasonic waves, and an ultrasonic beam is output from the array probe 40 to the inner surface toe. At this time, each transducer Chk to Chk + 15 receives the returned echo and converts it into an electrical signal.
  • the receivers REk to REk + 15 receive the signals output from the corresponding transducers Chk to Chk + 15.
  • the reception delay elements RDk to RDk + 15 receive signals from the corresponding receivers REk to REk + 15 and delay the same time as the delay time of the transmission delay elements TDk to TDk + 15.
  • the signals output from the delay elements RDk to RDk + 15 are added by the adder 160.
  • the signal added by the adder 160 becomes an accurate flaw detection result.
  • the signal output from the adder 160 is amplified by the main amplifier 193 and output to the flaw evaluator 20.
  • the evaluation method of the flaw evaluator 20 is the same as that in the first embodiment.
  • the array probe attached in place of the probe 38 performs the same operation.
  • an ultrasonic test is performed using the array probe 40 while swinging the bending angle of the ultrasonic beam within a range of 40 degrees to less than 55 degrees. The Therefore, it is possible to further improve the detectability of the inner surface toe portion crack.
  • an array probe that can electrically change the refraction angle of an ultrasonic beam, such as a linear array probe, is used. Conduct an ultrasonic test while oscillating the ultrasonic beam in the range of bending angles of 40 degrees or more and less than 55 degrees.
  • the present invention is widely applicable to flaw detection of welded steel pipes, and is particularly high strength, small diameter thick wall welded steel pipes, more specifically, having a tensile strength of 600 MPa or more and an outer diameter of 500 mn! Can be used for flaw detection of UOE steel pipes with up to 100 Omm and wall thickness of about 15mm to 40mm.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 本発明による超音波探傷方法では、溶接鋼管内での横波超音波ビームの伝搬方向が溶接ビードの長手方向と略直交し、かつ、溶接鋼管内面における溶接ビードの両止端部のうち斜角探触子との間の距離が短い方の止端部に40度以上55度未満の屈折角となる横波超音波ビームが伝搬するように、斜角探触子を溶接鋼管の外面上に配置する。配置後、斜角探触子により溶接鋼管を探傷し、探傷結果に基づいて、止端部から母材内部に向かって延在し、かつ、溶接鋼管の径方向に対して溶接ビードと反対側に傾斜した内面止端部割れの有無を判断する。そのため、溶接鋼管内面における溶接ビードの止端部に発生する内面止端部割れの検出能を向上できる。

Description

明 細 書
超音波探傷方法、溶接鋼管の製造方法及び超音波探傷装置
技術分野
[0001] 本発明は、超音波探傷方法、溶接鋼管の製造方法及び超音波探傷装置に関し、 さらに詳しくは、溶接鋼管の溶接ビード及びその近傍を探傷するための超音波探傷 方法、溶接鋼管の製造方法及び超音波探傷装置に関する。
背景技術
[0002] UOE鋼管に代表される溶接鋼管では、割れや溶け込み不良といった面状きずが 溶接ビード内に発生する場合がある。このような溶接ビード内の面状きずを検査する ため、超音波探傷試験が実施されている。
[0003] 溶接鋼管の超音波探傷試験は、溶接ビード内部全体を超音波ビームがカバーす るように、複数の探触子を配置して行われる。一般的な Kフォーム配置における縦方 向きず (溶接ビードの長手方向に沿って形成されたきず)探傷用の探触子の配置は 図 1のようになる。
[0004] 探触子 3は溶接ビード 2の中央 2C力 0. 5スキップ距離に配置され、溶接ビード 2 のうち溶接鋼管 1の内面近傍部分を探傷する。探触子 4は中央 2Cから 1. 0スキップ 距離に配置され、溶接ビードのうち溶接鋼管 1の外面近傍部分を探傷する。探触子 3 及び 4の各々で送受信される横波超音波ビーム U3及び U4は、探傷周波数や振動 子径等により決まる指向角 δ 3及び δ 4で広がりながら溶接鋼管 1内を伝搬する。そ のため、探触子 3及び 4の屈折角 Θ 3及び Θ 4を適切な値に設定することにより、超音 波ビーム U3及び U4が溶接ビード 2全体をカバーすることができる。図 2Αに示すよう に、一般的に探触子 3及び 4の屈折角 Θが小さいほど、溶接ビード 2の中心部分を探 傷しにくぐ溶接ビード 2内に未探傷領域 400が発生する。図 2Βに示すように、屈折 角 Θが大きいほど、未探傷領域 400の発生を抑制でき、溶接ビード 2内全体をカバ 一できる。溶接ビード 2全体をカバーするため、通常、板厚 40mm以下の溶接鋼管に おける縦方向きずの探傷には 55〜70度の公称屈折角を有する探触子が用いられる [0005] 従来、溶接鋼管で問題となるきずは、上述した縦方向きずのように溶接ビード内に 発生する面状きずであった。し力しながら、最近の UOE鋼管の高強度化に伴い、溶 接鋼管内面における溶接ビードの止端部に発生する割れ (以下、内面止端部割れと いう)が新たに問題となっている。
[0006] UOE鋼管における内面止端部割れは、以下の工程で発生する。すなわち、溶接 時に HAZ (溶接熱影響部)が軟化して部分的に母材よりも強度が低下する。溶接後 の拡管により、軟化された HAZに応力が集中した場合、内面止端部割れが発生する 。母材が高強度であるほど、 HAZは軟化しやすぐまた、 UOE鋼管が小径、厚肉で あるほど、拡管時に応力集中が生じやすい。したがって、高強度で小径厚肉の UOE 鋼管、特に、 600MPa以上の引張強度を有し、外径力 OOmn!〜 1000mm、肉厚 が 15mn!〜 40mm程度の UOE鋼管では、内面止端部割れが発生しやすい。このよ うな内面止端部割れは、従来の縦方向きずを検知するための探触子を用いた探傷 では検知しにくい。超音波探傷領域をさらに広げるために、探触子を 1. 0〜1. 5スキ ップ距離に配置して探傷しても、内面止端部割れは検知されにくい。
[0007] なお、関連する特許文献として、特開 2002— 71648号公報及び特開 2003— 26 2621号公報が挙げられる。また、関連する非特許文献として、溶接鋼管の超音波探 傷法 (鉄鋼協会品質管理部会 (NDI部門)編、 1999年 2月 22日発行、第 60頁〜第 62頁が挙げられる。
発明の開示
[0008] 本発明の目的は、溶接鋼管内面における溶接ビードの止端部に発生する内面止 端部割れの検出能を向上できる超音波探傷方法を提供することである。
[0009] 本発明による超音波探傷方法は、管軸方向に形成された溶接ビードを有する溶接 鋼管を斜角探傷法により探傷する。本発明の超音波探傷方法は、 40度以上 55度未 満の屈折角となる第 1の横波超音波ビームを出力する第 1の探触子を準備する工程 と、溶接鋼管内での第 1の横波超音波ビームの伝搬方向が溶接ビードの長手方向と 略直交し、かつ、溶接鋼管内面における溶接ビードの両止端部のうち第 1の探触子と の間の距離が短い方の止端部に第 1の横波超音波ビームが伝搬するように、第 1の 探触子を溶接鋼管の外面上に配置する工程と、配置された第 1の探触子力 第 1の 横波超音波ビームを出力し、溶接鋼管を探傷する工程と、探傷結果に基づいて、内 面止端部割れの有無を判断する工程とを備える。
[0010] 内面止端部割れは、溶接鋼管内面における溶接ビードの止端部力 径方向に対し て溶接ビードと反対側に 35〜50度傾斜して延在する。したがって、第 1の探触子か ら出力され、溶接鋼管内面の止端部のうち第 1の探触子と近い方の溶接止端部に入 射される横波超音波ビームの屈折角を 40度以上 55度未満とすることにより、超音波 ビームが内面止端部割れに略垂直に入射され、強い反射エコーを得ることができる。 そのため、内面止端部割れに対する検出能が向上する。
[0011] 好ましくは、配置する工程では、第 1の探触子との間の距離が短い方の止端部から 0. 5スキップ距離に第 1の探触子を配置する。
[0012] 溶接鋼管内面の止端部を超音波探傷する場合、第 1の探触子の配置位置は、 0.
5 X (2n- l) (nは自然数)スキップ距離となる力 これらのスキップ距離のうち、 0. 5 スキップ距離にすれば、ビーム路程が最も短くなり、集束効果が最も高くなる。そのた め、従来の面状きずよりも微小な割れである内面止端部割れに対しても高いエコー 強度を得ることができる。
[0013] 好ましくは、本発明の超音波探傷方法はさらに、検査対象となる溶接鋼管と略同じ 横断形状を有し、かつ、内面における溶接ビードの止端部に形成された第 1の人工 孔と、内面の溶接ビード中央力 径方向に沿って形成された第 2の人工孔とを有する サンプル溶接鋼管を準備する工程と、サンプル溶接鋼管内での第 1の横波超音波ビ ームの伝搬方向が溶接ビードの長手方向と略直交し、かつ、サンプル溶接鋼管内面 における溶接ビードの両止端部のうち第 1の探触子との間の距離が短い方の止端部 に形成された第 1の人工孔に第 1の横波超音波ビームが入射されるように、第 1の探 触子をサンプル溶接鋼管の外面上に配置する工程と、検査対象となる溶接鋼管を探 傷する前に、配置された第 1の探触子でサンプル溶接鋼管を探傷し、第 1の探触子 が第 1の横波超音波ビームを出力して力 第 1の人工孔のエコーを検知したときの第 1の時刻と、第 2の人工孔のエコーを検知したときの第 2の時刻とを求める工程と、検 查対象となる溶接鋼管を探傷するとき、第 1の時刻から所定時間差分した第 3の時刻 をゲート始点とし、第 2の時刻をゲート終点とする監視ゲートを設定する工程とを備え る。判断する工程は、検査対象の溶接鋼管を探傷中に第 1の探触子が受信したェコ 一のうち、監視ゲート内のエコーの強度を監視し、監視ゲート内のエコーの強度が所 定のしき 、値を超えたとき、内面止端部割れを検知したと判断する。
[0014] 溶接鋼管内面の止端部を超音波探傷する場合、溶接ビードの形状に起因するノィ ズエコー(以下、このノイズエコーをビード形状ノイズエコーという)が発生し、このノィ ズエコーを内面止端部割れのエコーとして過検出する可能性が生じる。溶接鋼管内 面の止端部の一方を超音波探傷するとき、ビード形状ノイズエコーは、溶接鋼管内 面のうち、溶接ビード中央力 他方の止端部までの内面で反射することにより発生す る。したがって、これらの内面の反射エコーを除く範囲に監視ゲートを設ければよい。 本発明では、探傷の対象となる止端部位置と溶接ビード中央位置とにそれぞれ予め 人工孔を作成したサンプル溶接鋼管を準備し、検査対象となる溶接鋼管を探傷する 前にサンプル溶接鋼管を探傷し、止端部の位置 (第 1の時刻)と溶接ビード中央の位 置 (第 2の時刻)とを求めておく。そして、求めた溶接ビード中央位置をゲート終点とし て監視ゲートを設定する。ビード形状ノイズエコーは溶接ビード中央以降に発生する ため、監視ゲートの設定によりビード形状ノイズエコーの過検出を防止できる。
[0015] また、探傷する止端部の位置から所定のマージン (所定時刻)を差分した位置をゲ ート始点とすることにより、監視ゲート内に内面止端部割れのエコーを確実に含める ことができる。そのため、このような監視ゲートの設定により、内面止端部割れの検出 能を向上できる。
[0016] 好ましくは、本発明の超音波探傷方法はさらに、 55度〜 70度の屈折角となる第 2 の横波超音波ビームを出力する第 2の探触子を、第 2の横波超音波ビームの伝搬方 向が溶接ビードの長手方向と略直交するように溶接鋼管の外面上に配置する工程と 、第 2の探触子力 第 2の横波超音波ビームを溶接鋼管内に入射して溶接ビードを 探傷する工程と、第 2の探触子の探傷結果に基づいて、溶接ビード内に長手方向に 沿って形成される縦方向きずの有無を判断する工程とを備える。
[0017] この場合、内面止端部割れの検出だけでなぐ溶接ビード内に内在する縦方向き ずも検出できる。
図面の簡単な説明 [図 1]従来の溶接鋼管の超音波探傷における、探触子の Kフォーム配置を示す模式 図である。
[図 2A]超音波探傷における横波超音波ビームの屈折角と探傷領域との関係を説明 するための模式図である。
[図 2B]図 2Aと異なる、超音波探傷における横波超音波ビームの屈折角と探傷領域 との関係を説明するための他の模式図である。
[図 3]内面止端部割れを示す模式図である。
[図 4A]従来の探触子で内面止端部割れを探傷する場合の問題点を説明するための 図である。
[図 4B]図 4Aと異なる、従来の探触子で内面止端部割れを探傷する場合の問題点を 説明するための他の図である。
[図 4C]図 4A及び図 4Bと異なる、従来の探触子で内面止端部割れを探傷する場合 の問題点を説明するための他の図である。
[図 5]屈折角と内面止端部割れのエコー強度との関係を示す図である。
[図 6]探触子の集束係数に対する集束効果を示す図である。
[図 7]本実施の形態による超音波探傷方法で用いられる超音波探傷装置の上面図 である。
[図 8]図 7中の線分 VIII— VIIIの断面図である。
[図 9]図 7中のビード検出器の動作を説明するための模式図である。
[図 10]図 7中のビード検出器により検出された溶接ビード形状を示す図である。
[図 11]ビード形状ノイズの発生原因について説明するための図である。
[図 12]本実施の形態における監視ゲートを設定するための監視ゲートデータを取得 する工程を示すフロー図である。
[図 13]図 12中のステップ S 1で使用されるサンプル溶接鋼管の横断面図である。
[図 14]図 12中のステップ S 2及び 3でデータが登録されるゲートテーブルのデータ構 造を示す図である。
[図 15]ステップ S2で得られたエコー信号を Aスコープ法で示す図である。
[図 16]本実施の形態による超音波探傷方法の工程を示すフロー図である。 [図 17]第 2の実施の形態で使用する超音波探傷装置の上面図である。
[図 18]第 3の実施の形態で使用するアレイ探触子及び制御装置の構成を示す図で ある。
発明を実施するための最良の形態
[0019] 以下、本発明の実施の形態を図面を参照して詳しく説明する。図中同一又は相当 部分には同一符号を付してその説明を援用する。
[0020] 本発明による超音波探傷方法では、溶接鋼管内面における溶接ビードの止端部に 向けて 40度以上 55度未満の屈折角となる横波超音波ビームを伝搬する。屈折角を 40度以上 55度未満とした理由は、次のとおりである。
[0021] 本発明者らはまず、複数の内面止端部割れの形態を調査した。その結果、図 3に 示すように、高強度かつ小径厚肉の UOE鋼管で発生する内面止端部割れ 5は、 U OE鋼管の径方向 RDに対して溶接ビード 2と反対側に 35〜50度傾斜して、止端部 2 R力 母材内部に延在していた。また、割れの深さは止端部 2R表面力 約 lmm程 度と短力つた。このように径方向に対して 35〜50度傾斜した割れは、縦方向きずを 探傷するための従来の屈折角 55度〜 70度の探触子では検出されにくい。図 4Aに 示すように、従来の探触子の代表である公称屈折角 70度の探触子 6が径方向 RDに 沿った従来の割れ 5 (縦方向きずに相当)を探傷する場合、探触子 6から UOE鋼管 1 内に入射された横波超音波ビーム U6は、反射源である割れ 5で 1回反射した後、探 触子 6に受信される。したがって、探触子 6は割れ 5を検知できる。同様に、図 4Bに示 すように、探触子 6が、径方向 RDに対して溶接ビード 2と反対側に 20度傾斜した割 れ 5を探傷する場合、横波超音波ビーム U6は、割れ 5及び UOE鋼管 1の内面 ISで それぞれ反射した後、探触子 6に受信される。したがって、探触子 6は割れ 5を検知 できる。
[0022] し力しながら、図 4Cに示すように、探触子 6が、 35〜50度の傾斜角を有する内面 止端部割れ 5を探傷する場合、反射源である内面止端部割れ 5で反射された横波超 音波ビーム U6は、探触子 6に到達する手前の外面 OSで再度反射する。そのため、 探触子 6は超音波 U6を受信できない。したがって、従来の探触子 6は内面止端部割 れ 5を検知するのが困難である。 [0023] 本発明者は、このような内面止端部割れを検知できる条件を調査するために、種々 の屈折角の横波超音波ビームを止端部に入射させて内面止端部割れを探傷した。 具体的には、 UOE鋼管に実際に発生した 35度〜 50度の内面止端部割れ (割れ番 号 1〜3)に対し、種々の屈折角の横波超音波ビームを用いて超音波探傷試験を実 施した。このとき、横波超音波ビームを出力する探触子を内面止端部割れの発生位 置 (つまり、 UOE鋼管内面の止端部)から 0. 5スキップ距離に配置した。また、溶接 ビード中央に、径方向に沿って直径 1. 6mmの人工孔(Drilled Hole)を作成し、作成 された人工孔に対し、種々の屈折角の超音波ビームを用いて超音波探傷試験を実 施した。このとき、探触子を溶接ビーム中央から 0. 5スキップ距離に配置した。試験 後、各屈折角における内面止端部割れのエコー強度を比較した。
[0024] 図 5に調査結果を示す。図 5中の縦軸は、人工孔に対する割れ番号 1〜3の内面止 端部割れのエコー高さ比(以下、相対きずエコー高さという)であり、横軸は、探傷時 の屈折角(度)である。相対きずエコー高さ力^よりも小さい場合、一般的な縦方向き ずよりも検知しにくいことを示す。図 5を参照して、 UOE鋼管の縦方向きずの探傷に 用いられる屈折角 55〜70度の超音波ビームでは、相対きずエコー高さが 1倍程度 又はそれ以下であつたのに対し、屈折角が 40度以上 55度未満の超音波ビームでは 、相対きずエコー高さが 2倍以上となった。屈折角を 40度以上 55度未満とすることで
、横波超音波ビームが内面止端部割れにほぼ垂直に入射され、その結果、より強い 反射エコーが得られたものと考えられる。
[0025] 以上より、本発明による超音波探傷方法では、 40度以上 55度未満の屈折角となる 横波超音波ビームを出力する探触子を用いて内面止端部割れを検知する。これによ り、内面止端部割れの検知能を向上できる。
[0026] また、横波超音波ビームの屈折角を 40度以上 55度未満とすることにより、従来より も高い集束効果を得ることができる。そのため、内面止端部割れのような微小な割れ に対しても高 、エコー強度を得ることができ、内面止端部割れを容易に検知できる。 以下、この点について詳述する。
[0027] 図 6に示すように、以下の式(1)で示される集束係 ¾Jが大きいほど、集束効果が高 ぐ強いエコー強度となる。 [0028] 集束係 ¾J =近距離音場限界距離 XoZ鋼中焦点距離 fop (1)
[0029] 図 6中の横軸(xZfop)における Xはビーム路程である。また、図 6中の縦軸 PZPO のうち、 Poは探触子直近の平均音圧であり、 Pは音軸 (ビーム中心軸)上での音圧で ある。 PZPoが高いほど、集束効果が高いことを示す。
[0030] 超音波探傷にお!、て、超音波ビームの屈折角が小さ!、ほど、近距離音場限界距離 は大きくなる。そのため、屈折角が小さいほど、高い集束効果を得ることができる。屈 折角を 40度以上 55度未満とすれば、従来の屈折角(55〜70度)よりも屈折角が小 さくなるため、従来よりも高い集束効果を得ることができる。その結果、従来の縦方向 きずよりも微小な割れである内面止端部割れに対しても高いエコー強度を得ることが できる。
[0031] 表 1は肉厚 30mmの UOE鋼管の内面、及び肉厚 15mmの UOE鋼管の内面を、 種々の屈折角で探傷したときの集束係数を示す。なお、探傷周波数は 4MHzとし、 鋼中焦点距離はビーム路程と等しいと仮定した。
[表 1]
Figure imgf000010_0001
[0032] 表 1を参照して、表中の「路程」は、探傷される UOE鋼管内面の止端部力 の距離 であり、「0. 5skip」とは 0. 5スキップ距離である。また、「縮小率」とは以下の式(2)で 求められる。
[0033] 縮/ J、率 = cos 0 Zcos a (2)
[0034] ここで、 0は横波超音波ビームの屈折角(度)であり、 αは横波超音波ビームの入 射角(度)である。屈折角が小さいほど、縮小率が大きくなる。これにより見かけの振 動子高さが大きくなり、上述のとおり、近距離音場限界距離が大きくなる。
[0035] 表 1を参照して、肉厚 30mmの UOE鋼管及び肉厚 15mmの UOE鋼管のいずれ においても、本発明の範囲内である屈折角 45度で最も集束効果が高ぐ本発明の範 囲外である屈折角 60度及び 70度では 、ずれも集束効果が低力つた。
[0036] さらに、屈折角 45度における路程を考慮した場合、 0. 5スキップ距離の方が 1. 5ス キップ距離よりも集束効果が高い。したがって、超音波探傷試験により内面止端部割 れを検知する場合、 UOE鋼管内面の溶接ビードの止端部から 0. 5スキップ距離に 相当する位置に探触子を配置するのが好ましい。
[0037] [超音波探傷装置の構成]
[0038] 次に、本発明による超音波探傷方法に用いられる超音波探傷装置について説明 する。図 7及び図 8を参照して、本発明の実施の形態による超音波探傷装置 10は、 縦方向きず(Longitudinal Flaw:以下、 L方向きずともいう)を検知するための従来の 斜角探触子 31〜34、及び、横方向きず(Transverse Flaw:以下、 T方向きずともいう )を検知するための従来の斜角探触子 35及び 36を備える。超音波探傷装置 10はさ らに、内面止端部割れを検知するため斜角探触子 37及び 38を備える。
[0039] 検査対象となる溶接鋼管 1は、 V字型の搬送ローラ 70上に置かれ、超音波探傷試 験時、管軸方向に搬送されながら超音波探傷される。図 8では、溶接鋼管 1を V字型 の搬送ローラ 70上に配置した力 搬送ローラ 70の代わりに V字型の架台上に設置し てもよい。
[0040] 超音波探傷装置 10はさらに、マニピュレータ 50と、ビード検出器 17と、制御装置 1 6とを備える。マニピュレータ 50は、各斜角探触子 31〜38を溶接鋼管 1の外面上に 接触させるための装置であり、昇降フレーム 11と、レール 12と、アーム 13と、探触子 ホルダ 14とを備える。
[0041] 昇降フレーム 11及びアーム 13は、斜角探触子 37及び 38を所定の配置位置に移 動する。昇降フレーム 11は、その下面中央部にビード検出器 17が取り付けられ、下 面両端部にレール 12が取り付けられる。昇降フレーム 11は、油圧又は電動により昇 降し、探触子 37及び 38を溶接鋼管 1の外面に接触させる。
[0042] 昇降フレーム 11はさらに、溶接鋼管 1の周方向に所定範囲内で回動できる。超音 波探傷試験中、昇降フレーム 11は、ビード検出器 17が溶接ビード 2の真上に位置す るように回動する。たとえば、溶接鋼管 1が図 8の状態力も時計回りに回転し、溶接ビ ード 2がビード検出器 17の真下力も右側にずれた場合、昇降フレーム 11も時計回り に回動し、ビード検出器 17が溶接ビード 2の真上となる位置で停止する。このように、 昇降フレーム 11が溶接ビード 2に追従するため、超音波探傷装置 10は、溶接ビード 2に対する斜角探触子 37及び 38の相対位置を一定に保つことができる。
[0043] アーム 13は、水平アーム部材 131と垂直アーム部材 132とで構成される。水平ァー ム部材 131は電動によりレール 12に沿って水平方向に移動する。垂直アーム部材 1 32は下端に探触子ホルダ 14を有する。垂直アーム部材 132は垂直方向に移動する 。アーム 13により、溶接鋼管 1内面の止端部 2Rから斜角探触子 37までの距離 (路程 )、止端部 2Lから斜角探触子 38までの距離 (路程)を 0. 5スキップ距離又は 1. 5スキ ップ距離に調整できる。
[0044] 図 8では斜角探触子 37及び 38を把持するアーム 13について示した力 探触子 31 〜34の各々も同様のアーム(図示せず)でそれぞれ把持され、そのアームにより斜角 探触子 31〜34と溶接ビード 2との距離が調整される。同様に、探触子 35及び 36も 図示しな!、アームに把持される。
[0045] ビード検出器 17は、超音波試験中に溶接鋼管 1の溶接ビード 2の中央位置を検知 する。超音波探傷装置 10は、ビード検出器 17の検知結果に基づいて、マ-ピュレー タ 50を溶接ビード 2に追従させる。図 9に示すように、ビード検出器 17は、レーザ光 源 171と、 CCDカメラ 172とを備える。レーザ光源 171が溶接ビード 2にレーザ光を 照射し、 CCDカメラ 172は、溶接ビード 2のうち、レーザ光に照射された部分を撮影 する。これにより、超音波探傷装置 10は、図 10に示すような溶接鋼管 1の外面の横 断形状を示す画像を取得する。制御装置 16は、取得された画像に基づいて、溶接 ビード 2の中央位置を算出する。超音波探傷装置 10は、制御装置 16により算出され た中央位置に基づいて、マニピュレータ 50を移動させる。
[0046] 制御装置 16は、斜角探触子 31〜38の配置位置を決定し、昇降フレーム 11及びァ ーム 13等により、決定した配置位置に各探触子を移動する。制御装置 16はさらに、 各斜角探触子 31〜38を制御する。以下、斜角探触子 31〜38のうち、斜角探触子 3 7及び 38を制御するための制御装置 16の構成を説明する。
[0047] 図 7を参照して、制御装置 16は、パルサ 18と、増幅器 19と、きず評価器 20とを備 える。パルサ 18は、スパイク状のパルスを斜角探触子 37及び 38に印加する。斜角探 触子 37及び 38は、パルサ 18からパルスを受け、内部の圧電振動子から横波超音波 ビームを鋼管中に伝搬させる。内面止端部割れで反射された横波超音波ビーム (ェ コー)は、斜角探触子 37及び 38に受信され、電気信号 (以下、エコー信号という)に 変換される。エコー信号は斜角探触子 37及び 38から増幅器 19に出力される。
[0048] 増幅器 19は、エコー信号を増幅する。増幅器 19は、プリアンプ 191と、フィルタ 19 2と、メインアンプ 193とを備える。プリアンプ 191は、受信されたエコー信号を増幅す る。フィルタ 192は、プリアンプ 191により増幅されたエコー信号力もノイズを除去する 。メインアンプ 193は、フィルタ 192を通過したエコー信号を増幅する。増幅器 19で 増幅されたエコー信号は、きず評価器 20に入力される。
[0049] きず評価器 20は、監視ゲートデータが登録されたノヽードディスクドライブ (HDD) 2 01と、監視ゲート設定部 202と、きず評価部 203と、イベント発生部 204とを備える。 監視ゲート設定部 202は、 HDD201から読み出された監視ゲートデータに基づいて 、エコー信号に対して監視ゲートを設定する。監視ゲートの設定方法については後 述する。評価部 203は、超音波探傷試験中、設定された監視ゲート内のエコー信号 が所定のしきい値を越えたとき、超音波探傷した位置に内面止端部割れが内在して いると判断する。イベント発生部 204は、評価部 203が内面止端部割れを検知したと き、オペレータに通知したり、図示しないマーキング装置にマーキングを指示したりす る。
[0050] [探触子]
[0051] 斜角探触子 37及び 38は、溶接ビード 2と直交する同一線上に互いに対向して配 置される。斜角探触子 37及び 38は、 40度以上 55度未満の屈折角となる横波超音 波ビームを出力し、斜角探傷法により内面止端部割れを検知する。
[0052] 同様に、斜角探触子 31及び 32は溶接ビード 2と直交する同一線上に互いに対向 して配置され、斜角探触子 33及び 34は、溶接ビード 2と直交する同一線上に互いに 対向して配置される。斜角探触子 31〜34は、 55度〜 70度の屈折角となる超音波ビ ームを出力する。斜角探触子 31及び 32は、溶接鋼管 1内面近傍に内在する L方向 きずを検知する。斜角探触子 33及び 34は、溶接鋼管 1外面近傍に内在する L方向 きずを検知する。斜角探触子 35及び 36は、溶接ビード 2上で互いに対向して配置さ れる。斜角探触子 35及び 36は、 T方向きずを検知する。
[0053] 斜角探触子 37及び 38は溶接鋼管 1内面の溶接止端部 2L及び 2R及びそれらの近 傍を探傷するが、それ以外の領域を探傷できない。つまり、斜角探触子 37及び 38だ けでは、溶接鋼管 1内外面の L方向きずを検知できない可能性が生じる。斜角探触 子 31〜34を配置することにより、溶接ビード 2内部全体を探傷でき、 L方向きずを検 知することが可能となる。
[0054] 各斜角探触子 31〜34、 37及び 38は、くさびと、くさび上に配設された圧電振動子 とを備える。圧電振動子は、ニオブ酸鉛系磁器、チタン酸鉛系磁器、ニオブ酸リチウ ム系磁器等のセラミック系圧電振動子であってもよいし、 PZT—エポキシコンポジット 振動子でもよい。好ましくは、圧電振動子は、 PZT—エポキシコンポジット振動子とす る。 PZT—エポキシコンポジット振動子はセラミック系圧電振動比と比較してダンピン グ性能が高いため、近接エコーの分離が容易であり、きずエコーとビード形状ノイズ エコーとを識別しやす 、ためである。
[0055] 斜角探触子 31〜34、 37及び 38の各々は、液状接触媒体である水を介して溶接 鋼管 1の外面上に配置され、溶接鋼管 1内部に横波超音波ビームを入射する。
[0056] 斜角探触子 35及び 36は圧電振動子を有するが、くさびを有さない。探触子 35及 び 36は溶接ビード 2上に配置される。溶接ビード 2の表面形状は、母材の外面形状 よりもなめらかでない。そのため、くさびを備えた斜角探触子は横波超音波ビームを 溶接ビード 2内に安定して入射できない。斜角探触子 35及び 36はくさびを有さず、 液状接触媒体である水を介して圧電振動子力 横波超音波ビームを出力するため、 安定した横波超音波ビームを溶接ビード 2内に入射できる。
[0057] [監視ゲート設定方法]
[0058] 次に、溶接鋼管 1内面における溶接ビードの両止端部を探触子 37及び 38で探傷 して得られたエコー信号に対する監視ゲートの設定方法について説明する。
[0059] 超音波ビームは所定の指向角で広がりながら伝搬する。そのため、図 11に示すよう に、溶接ビード 2の溶接止端部 2Lを斜角探触子 38で探傷する場合、溶接鋼管 1内 面における溶接ビード 2のうち、溶接ビード中央位置 2Cと溶接止端部 2Rとの間の内 面 200上に超音波ビームが伝搬され、内面 200で反射する場合がある。この反射ェ コ一がビード形状ノイズエコーとして検出される。 40度以上 55度未満の屈折角を有 する斜角探触子 37及び 38を用いた場合、ビード形状ノイズエコーの強度が大きくな るため、ビード形状ノイズエコーが内面止端部割れのエコーと誤認され過検出される 可能性がある。
[0060] そこで、本発明では、超音波探傷により得られたエコー信号に対して、次に示す方 法により監視ゲートを設定し、ビード形状ノイズエコーの過検出を防止する。図 12及 び図 13を参照して、まず、検査対象となる溶接鋼管 1と同じ外径、同じ肉厚、同じ鋼 種を有するサンプル溶接鋼管 100を準備する(Sl)。サンプル溶接鋼管 100の溶接 ビード 2には、 3つの人工きず 11〜13が予め加工されている。人工きず II及び 13は、 内面止端部割れが発生し得る位置に加工されている。具体的には、人工きず IIは、 止端部 2R力も母材内部に向力つて、径方向に対して溶接ビード 2と反対側に 35〜5 0度傾斜してカ卩ェされている。人工きず 13は、止端部 2L力も母材内部に向力つて、 径方向に対して溶接ビード 2と反対側に 35〜50度傾斜して加工されている。人工き ず 12は、溶接ビード 2の中央位置 2C力 径方向に沿って加工されて 、る。
[0061] 続いて、サンプル溶接鋼管 100の止端部 2R及び 2Lを探触子 37及び 38で探傷す る。まず、サンプル溶接鋼管 100内面における両止端部 2R及び 2Lのうち、斜角探 触子 37との距離が短い方の止端部 2Rから 0. 5スキップ距離に斜角探触子 37を配 置する。次に、斜角探触子 37で人工きず II及び 12のエコーを検知する(S2)。このと き、人工きず II及び 12のエコー強度が最大になるように、探触子 37の配置位置を微 調整する。調整後、制御装置 16は、探触子 37の配置位置を、サンプル溶接鋼管の 外径 (mm)、肉厚 (mm)、鋼種と対応付けて図 14に示すゲートテーブルに登録する 。ゲートテーブルは、 HDD201に格納されており、斜角探触子ごとに作成される。以 上の方法により、超音波試験時の探触子 37の配置位置が決定される。超音波探傷 装置 10は、斜角探触子 38についても斜角探触子 37と同様に配置位置を微調整し、 制御装置 16は、調整後の探触子 38の配置位置を探触子 38用のゲートテーブルに 登録する。
[0062] 配置位置を調整後、きず評価器 20は、斜角探触子 37が受信した人工きず II及び I 2のエコー信号を検知する。このとき、きず評価器 20内の監視ゲート設定部 202は動 作せず、増幅器 19から出力されたエコー信号は、評価部 203に入力される。評価部 203に入力されたエコー信号を Aスコープ法で示した図を図 15に示す。
[0063] 図 15を参照して、評価部 203は、斜角探触子 37が横波超音波ビームをサンプル 溶接鋼管 100に入射した後人工きず IIを検知したときの時刻、換言すれば、パルサ 18がパルスを出力した時刻 tO後、しき ヽ値を越えるエコー強度 EI 1を最初に検知し た時刻 tl (以下、止端部割れ検知時刻 tlという)を取得する。評価部 203はさらに、 斜角探触子 37が人工きず 12を検知した時刻、換言すれば、斜角探触子 37が時刻 t 0以降にしきい値を越える 2つ目のエコー強度 EI2を検知した時刻 t2 (以下、ノイズェ コー検知時刻 t2という)を取得する。取得された止端部割れ検知時刻 tl及びノイズェ コー検知時刻 t2は、サンプル溶接鋼管 100の外径 (mm)、肉厚 (mm)、及び鋼種と 対応付けて斜角探触子 37用のゲートテーブルに登録される(S3)。探触子 38につい ても同様に、止端部割れ検知時間及びノイズエコー検知時間を測定し、探触子 38用 のゲートテーブルに登録する(S3)。以上の動作により、監視ゲートデータ (tl及び t2 )がゲートテーブルに登録される。登録後、サンプル溶接鋼管 100の超音波探傷を 終了する。
[0064] 超音波探傷装置 10は、検査対象となる溶接鋼管 1に対して超音波探傷試験を実 施するとき、監視ゲートデータを用いて監視ゲートを設定する。図 15を参照して、き ず評価器 20内の監視ゲート設定部 202はまず、 HDD201内のゲートテーブルを参 照し、検査対象となる溶接鋼管 1の外径、肉厚及び鋼種に対応する止端部割れ検知 時刻 tl及びノイズエコー検知時刻 t2を取得する。取得後、監視ゲート設定部 202は 、監視ゲートの始点となるゲート始点 tsを式 (3)により算出する。
[0065] ゲート始点 ts=tl— AtZ2 (3)
[0066] ここで、 Atは、超音波探傷試験中、マニピュレータ 50の溶接ビード 2に対する追従 誤差に基づ 、て予め設定された値 (通常 ± 2mmに相当する時間)である。マ-ピュ レータ 50は、ビード検出器 17の情報に基づいて回動しながら溶接ビード 2に追従す るものの、追従するまでに若干の時間を要するため、所定のマージン (通常 ± 2mm 程度)だけ溶接ビード直上力 ずれる場合がある。したがって所定のマージンに基づ いて所定時間 Atを予め設定し、 HDD201に記憶しておく。以上に方法により、ゲー ト始点 tsが設定される。
[0067] 続 、て、監視ゲート設定部 202は、監視ゲートの終点であるゲート終点 teを決定す る。監視ゲート設定部 202は、ノイズエコー検知時刻 t2をゲート終点 teとする。ビード 形状ノイズエコーは溶接ビード 2の形状に依存するため、その発生位置を特定するの は困難である。し力しながら、ビード形状ノイズエコーが発生しない範囲を特定するこ とは可能である。
[0068] 図 11を参照して、斜角探触子 38から出力された横波超音波ビームが溶接鋼管 1の 内面にほぼ垂直に入射したとき、その反射エコーは斜角探触子 38に受信される。溶 接ビード 2の形状は中央位置 2Cを頂点とした凸形状である。そのため、内面 200の いずれかの部分で斜角探触子 38からの横波超音波ビームがほぼ垂直に入射され、 反射エコーとして斜角探触子 38に受信され得る。し力しながら、横波超音波ビームは 止端部 2L力も溶接ビード中央位置 2Cまでの間の内面 300に垂直に入射されること がないため、少なくとも内面 300ではビード形状エコーが発生しない。したがって、人 ェきず 12により特定される溶接ビード 2の中央位置 2C (時刻 t2)をゲート終点 teとす れば、ビード形状ノイズはゲート終点 te以降に発生するため、ビード形状ノイズを過 検出するのを防止できる。
[0069] 監視ゲート設定部 202は、超音波探傷試験時、上述の方法で設定されたゲート始 点 tsからゲート終点 teまでの範囲を監視ゲート TG (Time Gate)に設定する。これによ り、ビード形状ノイズエコーを過検出するのを防止でき、内面止端部割れの検知精度 を向上できる。
[0070] [溶接鋼管の製造方法]
[0071] 以上の構成を有する超音波探傷装置 10を用いた超音波探傷方法について説明 する前に、まず、検査対象となる溶接鋼管の製造方法について説明する。
[0072] 初めに、 Cプレス、 Uプレス、 Oプレス又はロール成形等の周知の曲げ加工方法に より鋼板を曲げ加工してオープンパイプを形成する。次に、形成されたオープンパイ プの継ぎ目を周知の溶接方法により溶接して溶接鋼管にする。溶接後、溶接鋼管の 内面の寸法精度を向上させるために、溶接鋼管全長を拡管する。 [0073] 拡管された溶接鋼管には、拡管に起因した内面止端部割れが内在している場合が ある。そこで、拡管後の溶接鋼管を検査対象として、本実施の形態による超音波探傷 を実施する。以下、本発明による超音波探傷方法について説明する。
[0074] [超音波探傷方法]
[0075] 図 16を参照して、まず、斜角探触子 37及び 38を搭載した超音波探傷装置 10を準 備し、検査対象となる溶接鋼管 1を超音波探傷装置 10の搬送ローラ 70上に配置す る(Sl l)。続いて、斜角探触子 37及び 38を溶接鋼管の外面に配置する(S12)。こ のとき、超音波探傷装置 10は、 HDD201内の斜角探触子 37及び 38のゲートテー ブルを参照して、検査対象溶接鋼管と同じサイズ (外径、肉厚)及び鋼種のレコード に登録された配置位置データを読み出す。そして、マニピュレータ 50を動力して読 み出された配置位置に探触子 37及び 38を接触させる。これにより、溶接鋼管 1内で の横波超音波ビームの伝搬方向が溶接ビード 2の長手方向と略直交し、かつ、溶接 鋼管 1内面における溶接ビード 2の両止端部 2L及び 2Rのうち斜角探触子 37との間 の距離が短い方の止端部 2Rに 40度以上 55度未満の横波超音波ビームが伝搬す るように、斜角探触子 37が配置される。同様に、止端部 2Lに 40度以上 55度未満の 横波超音波ビームが伝搬するように、斜角探触子 38が配置される。なお、他の斜角 探触子 31〜 36も溶接鋼管 1の外面上に配置される。
[0076] 次に、評価部 203は、監視ゲートを設定する(S13)。評価部 203は、斜角探触子 3 7用のゲートテーブルを参照し、検査対象の溶接鋼管 1と同じサイズ (外径、肉厚)及 び鋼種のレコードに登録された止端部割れ検知時刻 tl及びノイズエコー検知時刻 t 2を読み出す。次に、評価部 203は、式(3)に基づいてゲート始点 tsを算出し、ゲート 始点 tsからゲート終点 te (つまりノイズエコー検知時刻 t2)までの範囲を監視ゲート T Gとする。斜角探触子 38についても同様に、監視ゲート TGを設定する。
[0077] 監視ゲート TGを設定後、超音波探傷装置 10は超音波探傷試験を実施する(S14 )。超音波探傷試験は斜角探傷法に基づいて実施される。超音波探傷試験を実施 中、溶接鋼管 1は管軸方向に搬送される。超音波探傷装置 10は、ビード検出器 17 によりマニピュレータ 50を溶接鋼管 1の溶接ビード 2に追従させながら、内面止端部 割れの有無を調査する。内面止端部割れの有無はきず評価器 20により判断される。 [0078] きず評価器 20内の評価部 203は、斜角探触子 37により受信されたエコー信号の エコー強度が、監視ゲート TG内で所定のしきい値を越えたカゝ否かを判断する。判断 の結果、監視ゲート TG内のエコー強度がしきい値未満である場合、評価部 203は内 面止端部割れが内在していないと判断する。一方、監視ゲート TG内のエコー強度が しき 、値を越えたとき、評価部 203は探傷した位置で内面止端部割れが内在して 、 ると判断する。このとき、イベント発生部 204は警告音を出力したり、超音波探傷装置 10内に装備されたマーキング装置(図示せず)に内面止端部割れが検知された箇所 にマーキングをするよう指示する。きず評価器 20は、斜角探触子 38により受信された エコー信号についても同様の判断を行う。
[0079] ステップ S14において、他の斜角探触子 31〜36も横波超音波ビームを入射し、内 外面の L方向きずと T方向きずとを探傷する。したがって、超音波探傷装置 10は、溶 接ビード 2全体を超音波探傷することができる。
[0080] 以上のとおり、 40度以上 55度未満の屈折角の横波超音波ビームを入射できる斜 角探触子 37及び 38を備え、これらの斜角探触子 37及び 38から溶接止端部 2L及び 2Rに向けて横波超音波ビームを入射することで、内面止端部割れの検出能が向上 する。さらに、上述の方法でゲート始点 ts及びゲート終点 teを決定した監視ゲート TG を用いて内面止端部割れの有無を判断することで、ビード形状ノイズエコーを過検出 するのを防止できる。また、斜角探触子 31〜36により従来の探傷対象である L方向 きず及び T方向きずも探傷できる。
[0081] なお、本実施の形態では、ゲートテーブルに溶接鋼管のサイズ及び鋼種を登録し たが、サイズのみ登録してもよい。つまり、超音波探傷装置 10は、溶接鋼管のサイズ に応じて監視データを読み出し、監視ゲートを設定してもよい。また、サンプル溶接 鋼管 100の横断形状 (外径、肉厚等)を検査対象となる溶接鋼管 1のサイズと厳密に 同一にしなくてもよい。外径及び肉厚の誤差が ± 10%程度あるサンプル溶接鋼管 1 00に基づくゲートテーブルデータを用いても、上述の方法により検査対象となる溶接 鋼管 1を探傷可能であり、内面止端部割れを検知できる。
[0082] また、斜角探触子 37、 38の配置位置を止端部 2R、 2L力 0. 5スキップ距離とした 力 1. 5スキップ距離に配置しても本発明の効果をある程度得ることができる。ただし 、0. 5スキップ距離に配置した方がより高い集束効果を得られるため、好ましくは 0. 5 スキップ距離に斜角探触子 37及び 38を配置する。なお、斜角探触子 37及び 38を 0 . 5スキップ距離に相当する位置に厳密に配置する必要はなぐ 0. 5スキップ距離か ら若干ずれた位置に配置されても、本発明の効果をある程度奏する。
[0083] [第 2の実施の形態]
[0084] 第 1の実施の形態では、溶接ビード 2に直交する同一直線上に斜角探触子 37及び 38を配置した力 図 17に示すように、斜角探触子 37及び 38を同一直線上に配置す るのではなぐ互いに溶接ビード 2の方向にずらして配置してもよい。この場合、斜角 探触子 37及び 38から送信された超音波ビームが互いに干渉するのを抑制できる。
[0085] [第 3の実施の形態]
[0086] 第 1及び第 2の実施の形態では、斜角探触子を用いたが、斜角探触子 37及び 38 に代えて、探傷試験中に屈折角を変更できるアレイ探触子を用いて内面止端部割れ を検知してもよい。
[0087] 図 18を参照して、本実施の形態による超音波探傷装置は、探触子 37の代わりにァ レイ探触子 40を備える。また、探触子 38の代わりに、アレイ探触子 40と同様のアレイ 探触子を備える。
[0088] アレイ探触子 40は、横断面が扇形のブロックであるくさび 41と、くさび 41の凸曲面 上に扇形の周方向に沿って配列された複数の超音波振動子 Chl〜Ch32とを備え る。振動子 Chn (n= l〜32)には、ノルサ PLn (n= 1〜32)と、送信用遅延素子 TD n (n= 1〜32)とが接続される。パルサ PLnは対応する振動子 Chnを励振させるため のパルスを出力する。たとえば、パルサ PL1は振動子 Chiにパルスを出力し、パル サ PL2は振動子 Ch2にパルスを出力する。
[0089] 屈折角制御部 60は、連続して配列された所定数の振動子 Chに対応するパルサ P Lを選択する。本実施例では、 Chk〜Chk+ 15 (k= l〜17)に対応するパルサ PLk 〜PLk+ 15 (k= l〜17)を選択すると仮定する。ここで、 kはカウント値であり、屈折 角制御部 60がインクリメント又はデクリメントする。パルサ PLk〜PLk+ 15を選択後、 屈折角制御部 60は、送信用遅延素子 TDk〜TDk+ 15の各々の遅延時間を決定 する。これにより、振動子 Chk〜Chk+ 15の各々が超音波を出力するタイミングが決 定される。
[0090] 屈折角制御部 60が各振動子 Chk〜Chk+ 15の超音波出力のタイミングを調整す ることにより、アレイ探触子 40は超音波探傷試験中に屈折角を変化できる。そのため 、超音波探傷試験中、アレイ探触子 40が出力する超音波ビームの屈折角を 40度以 上 55度未満の範囲で可変させながら、溶接ビード 2内面の止端部を探傷できる。こ のように、アレイ探触子の屈折角を 40度以上 55度未満で変化させながら探傷すれ ば、傾斜角が 35度〜 50度までばらつきのある内面止端部割れの検出能を向上でき る。
[0091] 振動子 Chk〜Chk+ 15が超音波を出力し、アレイ探触子 40から超音波ビームが 内面止端部に出力される。このとき、各振動子 Chk〜Chk+ 15は戻ってきたエコー を受け、電気信号に変換する。レシーバ REk〜REk+ 15は対応する振動子 Chk〜 Chk+ 15から出力された信号を受ける。受信用遅延素子 RDk〜RDk+ 15は対応 するレシーバ REk〜REk+ 15から信号を受け、送信用遅延素子 TDk〜TDk+ 15 の遅延時間と同じ時間遅延する。遅延素子 RDk〜RDk+ 15から出力された信号は 加算器 160で加算される。パルス出力時の遅延時間とエコー受信時の遅延時間とを 同じにすることで、加算器 160で加算された信号は正確な探傷結果となる。加算器 1 60から出力された信号はメインアンプ 193で増幅され、きず評価器 20に出力される。 きず評価器 20の評価方法は第 1の実施の形態と同じである。なお、探触子 38の代わ りに取り付けられるアレイ探触子も同様の動作を行う。
[0092] 以上のように、第 3の実施の形態では、アレイ探触子 40を用いて超音波ビームの屈 折角を 40度以上 55度未満の範囲で揺動させながら超音波試験が実施される。その ため、内面止端部割れの検出能をより向上することができる。
[0093] なお、複数の振動子を並設したフェーズドアレイ探触子に代えて、リニアアレイ探触 子のように、電気的に超音波ビームの屈折角を変更できるアレイ探触子を用いて、屈 折角 40度以上 55度未満の範囲で超音波ビームを揺動させながら超音波試験を実 施してちょい。
[0094] 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施す るための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることな ぐその趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施するこ とが可能である。
産業上の利用の可能性
本発明は、溶接鋼管の探傷に広く適用可能であり、特に、高強度で小径厚肉の溶 接鋼管、より具体的には、 600MPa以上の引張強度を有し、外径が 500mn!〜 100 Omm、肉厚が 15mm〜40mm程度の UOE鋼管の探傷に適用できる。

Claims

請求の範囲
[1] 管軸方向に形成された溶接ビードを有する溶接鋼管を斜角探傷法により探傷する 超音波探傷方法であって、
40度以上 55度未満の屈折角となる第 1の横波超音波ビームを出力する第 1の探 触子を準備する工程と、
前記溶接鋼管内での前記第 1の横波超音波ビームの伝搬方向が前記溶接ビード の長手方向と略直交し、かつ、前記溶接鋼管内面における溶接ビードの両止端部の うち前記第 1の探触子との間の距離が短い方の止端部に前記第 1の横波超音波ビー ムが伝搬するように、前記第 1の探触子を前記溶接鋼管の外面上に配置する工程と 前記配置された第 1の探触子から前記第 1の横波超音波ビームを出力し、前記溶 接鋼管を探傷する工程と、
探傷結果に基づ ヽて、内面止端部割れの有無を判断する工程とを備えることを特 徴とする超音波探傷方法。
[2] 請求項 1に記載の超音波探傷方法であって、
前記配置する工程では、前記第 1の探触子との間の距離が短い方の止端部力 0 . 5スキップ距離に前記第 1の探触子を配置することを特徴とする超音波探傷方法。
[3] 請求項 1に記載の超音波探傷方法であってさらに、
検査対象となる前記溶接鋼管と略同じ横断形状を有し、かつ、内面における溶接ビ ードに形成された第 1の人工孔と、内面における溶接ビード中央に形成された第 2の 人工孔とを有するサンプル溶接鋼管を準備する工程と、
前記サンプル溶接鋼管内での前記第 1の横波超音波ビームの伝搬方向が前記溶 接ビードの長手方向と略直交し、かつ、前記サンプル溶接鋼管内面における溶接ビ 一ドの両止端部のうち前記第 1の探触子との間の距離が短い方の止端部に形成され た第 1の人工孔に前記第 1の横波超音波ビームが入射されるように、前記第 1の探触 子を前記サンプル溶接鋼管の外面上に配置する工程と、
前記検査対象となる溶接鋼管を探傷する前に、前記配置された第 1の探触子で前 記サンプル溶接鋼管を探傷し、前記第 1の探触子が前記第 1の横波超音波ビームを 出力して力 前記第 1の人工孔のエコーを検知したときの第 1の時刻と、前記第 2の 人工孔のエコーを検知したときの第 2の時刻とを求める工程と、
前記検査対象となる溶接鋼管を探傷するとき、前記第 1の時刻から所定時間差分し た第 3の時刻をゲート始点とし、前記第 2の時刻をゲート終点とする監視ゲートを設定 する工程とを備え、
前記判断する工程は、前記検査対象の溶接鋼管を探傷中に前記第 1の探触子が 受信したエコーのうち、前記監視ゲート内のエコーの強度が所定のしきい値を超えた とき、前記内面止端部割れを検知したと判断することを特徴とする超音波探傷方法。
[4] 請求項 1〜3のいずれか 1項に記載の超音波探傷方法であってさらに、
55度〜 70度の屈折角となる第 2の横波超音波ビームを出力する第 2の探触子を、 前記第 2の横波超音波ビームの伝搬方向が前記溶接ビードの長手方向と略直交す るように前記溶接鋼管の外面上に配置する工程と、
前記第 2の探触子から前記第 2の横波超音波ビームを前記溶接鋼管内に入射して 前記溶接ビードを探傷する工程と、
前記第 2の探触子の探傷結果に基づいて、前記溶接ビードの長手方向に沿って形 成される縦方向きずの有無を判断する工程とを備えることを特徴とする超音波探傷 方法。
[5] 鋼板を曲げカ卩ェしてオープンパイプに成形する工程と、
前記オープンパイプの継ぎ目を溶接し、管軸方向に形成された溶接ビードを有す る溶接鋼管とする工程と、
前記溶接鋼管の全長を拡管する工程と、
前記拡管された溶接鋼管を斜角探傷法により探傷する超音波探傷工程とを備え、 前記超音波探傷工程は、
40度以上 55度未満の屈折角となる第 1の横波超音波ビームを出力する第 1の探 触子を準備する工程と、
前記溶接鋼管内での前記第 1の横波超音波ビームの伝搬方向が前記溶接ビード の長手方向と略直交し、かつ、前記溶接鋼管内面における溶接ビードの両止端部の うち前記第 1の探触子との間の距離が短い方の止端部に前記第 1の横波超音波ビー ムが伝搬するように、前記第 1の探触子を前記溶接鋼管の外面上に配置する工程と 前記配置された第 1の探触子から前記第 1の横波超音波ビームを出力し、前記溶 接鋼管を探傷する工程と、
探傷結果に基づ ヽて、内面止端部割れの有無を判断する工程とを含むことを特徴 とする溶接鋼管の製造方法。
管軸方向に形成された溶接ビードを有する溶接鋼管を斜角探傷法により探傷する ための超音波探傷装置であって、
40度以上 55度未満の屈折角となる第 1の横波超音波ビームを出力する第 1の探 触子と、
前記探触子を把持し、前記溶接鋼管内での前記第 1の横波超音波ビームの伝搬 方向が前記溶接ビードの長手方向と略直交し、かつ、前記溶接鋼管内面における溶 接ビードの両止端部のうち前記第 1の探触子との間の距離が短い方の止端部に前記 第 1の横波超音波ビームが伝搬するように、前記第 1の探触子を前記溶接鋼管の外 面上に配置可能なマニピュレータと、
前記第 1の探触子による超音波探傷結果に基づいて、内面止端部割れの有無を 判断するきず評価手段とを備えることを特徴とする超音波探傷装置。
PCT/JP2007/061792 2006-06-13 2007-06-12 超音波探傷方法、溶接鋼管の製造方法及び超音波探傷装置 WO2007145200A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008521208A JP4816731B2 (ja) 2006-06-13 2007-06-12 超音波探傷方法、溶接鋼管の製造方法及び超音波探傷装置
EP07745079.9A EP2031385B1 (en) 2006-06-13 2007-06-12 Ultrasonic flaw detecting method, manufacturing method for welded steel pipe, and ultrasonic flaw detecting apparatus
CN2007800219676A CN101467035B (zh) 2006-06-13 2007-06-12 超声波探伤方法、焊接钢管的制造方法及超声波探伤装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-163098 2006-06-13
JP2006163098 2006-06-13

Publications (1)

Publication Number Publication Date
WO2007145200A1 true WO2007145200A1 (ja) 2007-12-21

Family

ID=38831715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061792 WO2007145200A1 (ja) 2006-06-13 2007-06-12 超音波探傷方法、溶接鋼管の製造方法及び超音波探傷装置

Country Status (4)

Country Link
EP (1) EP2031385B1 (ja)
JP (1) JP4816731B2 (ja)
CN (2) CN101467035B (ja)
WO (1) WO2007145200A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294163A (ja) * 2008-06-09 2009-12-17 Toho Gas Co Ltd 粒界面亀裂検出方法及び粒界面亀裂検出装置
JP2013134118A (ja) * 2011-12-26 2013-07-08 Mitsubishi Heavy Ind Ltd 配管溶接部の超音波探傷装置
CN103293220A (zh) * 2012-02-27 2013-09-11 秦召明 超声波无损探伤系统
JP2016074004A (ja) * 2014-10-07 2016-05-12 Jfeスチール株式会社 電縫溶接部の中温域のクリープ特性に優れた高強度電縫鋼管の製造方法
JP2016191572A (ja) * 2015-03-31 2016-11-10 日立造船株式会社 超音波検査装置
JP2017161513A (ja) * 2016-03-04 2017-09-14 Jfeスチール株式会社 超音波探傷装置及び超音波探傷方法
JP2017203704A (ja) * 2016-05-12 2017-11-16 株式会社日立製作所 配管検査装置
CN108845029A (zh) * 2018-04-26 2018-11-20 隆华科技集团(洛阳)股份有限公司 一种用于复合型冷却器的d型管箱的无损检测方法
WO2019117120A1 (ja) * 2017-12-12 2019-06-20 日本製鉄株式会社 欠陥検出装置、欠陥検出方法及びプログラム
CN110987975A (zh) * 2019-12-22 2020-04-10 王震 一种防辐射弯管探伤辅助装置
CN111255982A (zh) * 2020-03-17 2020-06-09 安徽誉特双节能技术有限公司 一种用于汽轮机的转子检测装置
CN112305073A (zh) * 2020-10-26 2021-02-02 西安热工研究院有限公司 一种锅炉受热面管滑动副焊趾裂纹的超声检测方法
CN113984810A (zh) * 2021-10-29 2022-01-28 北京星航机电装备有限公司 一种探头支撑块和厚大铸件内部缺陷定位方法
CN115436479A (zh) * 2022-09-29 2022-12-06 汕头问源科技有限公司 一种焊管串列式超声相控阵检测方法及装置
JP7410723B2 (ja) 2017-06-23 2024-01-10 ヴァルレック チューブ フランス 複雑な形状を有する管状製品の欠陥を検出するための自動非破壊検査装置および方法
CN118032936A (zh) * 2024-04-12 2024-05-14 临沂红阳管业有限公司 基于pe保温管加工的内外缺陷检测系统

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8955384B2 (en) 2009-05-14 2015-02-17 Ge Sensing & Inspection Technologies Gmbh Test probe as well as family of test probes for the non-destructive testing of a workpiece by means of ultrasonic sound and testing device
EP2597445A1 (en) 2011-11-22 2013-05-29 Pii Limited Method for pipeline inspection
CN102818844B (zh) * 2012-07-25 2014-11-26 中国石油集团渤海石油装备制造有限公司 螺旋焊缝钢管管体缺陷的横波探测方法及其探伤装置
CN102980946B (zh) * 2012-11-27 2014-10-15 大连理工大学 一种参数可调式炉管蠕变损伤超声检测探头架
KR101438560B1 (ko) * 2012-11-30 2014-09-05 한전케이피에스 주식회사 노즐 가공, 검사, 및 용접 일체형 장치
CN103471487A (zh) * 2013-09-02 2013-12-25 江苏建筑职业技术学院 一种钢管相贯节点鞍点处裂纹扩展倾斜角度的测量方法
FR3011332B1 (fr) * 2013-09-30 2019-12-20 Areva Np Procede et dispositif de controle non destructif d'une soudure d'une piece de reacteur nucleaire
KR20150062916A (ko) * 2013-11-28 2015-06-08 엘에스전선 주식회사 케이블 접속재 검사 장치 및 케이블 접속재 검사 방법
WO2015080535A1 (ko) * 2013-11-28 2015-06-04 엘에스전선 주식회사 케이블 접속재 검사 장치 및 케이블 접속재 검사 방법
WO2016163034A1 (ja) * 2015-04-08 2016-10-13 東北特殊鋼株式会社 丸棒材の超音波探傷方法および超音波探傷装置
WO2017119359A1 (ja) * 2016-01-05 2017-07-13 ヤマハファインテック株式会社 超音波検査方法
US10571385B2 (en) 2017-11-22 2020-02-25 The Boeing Company Ultrasonic inspection of a structure with a ramp
CN107894460A (zh) * 2017-12-25 2018-04-10 常州常宝精特钢管有限公司 一种管体斜向伤探伤方法
CN108333254B (zh) * 2017-12-29 2020-07-17 上海天阳钢管有限公司 用于双金属无缝复合钢管结合层脱层缺陷检测的超声波探头系统
CN108445076A (zh) * 2017-12-29 2018-08-24 渤海造船厂集团有限公司 一种基于t形角焊缝横向裂纹超声波检测方法
JP7277286B2 (ja) * 2019-06-28 2023-05-18 三菱重工業株式会社 プラントの検査方法
CN113960164A (zh) * 2021-10-08 2022-01-21 上海豪米建设工程技术服务有限公司 一种钢管焊缝超声波无损检测装置及检测方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171663A (ja) * 1982-03-31 1983-10-08 Sumitomo Metal Ind Ltd 金属管の超音波探傷方法
JPS6264948A (ja) * 1985-09-17 1987-03-24 Nippon Steel Corp 溶接部の精密探傷方法
JPS63290957A (ja) * 1987-05-22 1988-11-28 Sumitomo Metal Ind Ltd ステンレス鋼の超音波探傷方法
JPH0253746B2 (ja) * 1984-10-04 1990-11-19 Mitsubishi Electric Corp
JPH04142456A (ja) * 1990-10-02 1992-05-15 Sumitomo Metal Ind Ltd 金属管の超音波探傷法
JP2002071648A (ja) 2000-08-25 2002-03-12 Sumitomo Metal Ind Ltd 超音波探傷方法及び超音波探傷装置
JP2003262621A (ja) 2002-03-07 2003-09-19 Sumitomo Metal Ind Ltd 超音波探傷方法
JP2003344366A (ja) * 2002-05-22 2003-12-03 Sumitomo Metal Ind Ltd 溶接鋼管溶接部の超音波探傷方法及び装置
JP2006047026A (ja) * 2004-08-03 2006-02-16 Sumitomo Metal Ind Ltd 超音波探傷方法及び超音波探傷装置
JP5084464B2 (ja) * 2007-05-23 2012-11-28 住友電気工業株式会社 光ファイバの切断装置及び光ファイバの切断方法
JP7069309B2 (ja) * 2018-06-07 2022-05-17 三菱電機株式会社 レーダ装置、レーダ装置の故障検出方法、及びレーダ装置の運用方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108686A (en) * 1978-02-14 1979-08-25 Kawasaki Steel Co Automatic ultrasonic flaw detector for welded part of straighttseamed largeediameter steel pipe
JPS62194454A (ja) * 1986-02-20 1987-08-26 Nippon Steel Corp 鋼管溶接部の欠陥検査方法
JPH0769309B2 (ja) * 1988-01-29 1995-07-26 三菱重工業株式会社 超音波探傷装置
DE69428963T2 (de) * 1993-06-07 2002-08-14 Nippon Kokan Kk Verfahren und vorrichtung zur verarbeitung von signalen für einen ultraschallinspektionsapparat
JPH07280776A (ja) * 1994-04-13 1995-10-27 Nippon Steel Corp 超音波探傷装置
US5804730A (en) * 1995-10-10 1998-09-08 Pfannenstiel; Richard A. Ultrasonic testing method
EP0829714A4 (en) * 1996-03-28 2007-06-27 Mitsubishi Electric Corp ULTRASONIC SOUND DETECTOR AND ULTRASONIC PROCEDURE FOR DETECTING ERRORS
JPH11183446A (ja) * 1997-12-25 1999-07-09 Nkk Corp 溶接部の超音波探傷方法および装置
FR2775787A1 (fr) * 1998-03-06 1999-09-10 Framatome Sa Procede et dispositif de controle non destructif par ultrasons d'une soudure de jonction entre deux pieces
CN2581993Y (zh) * 2002-11-28 2003-10-22 宝山钢铁股份有限公司 钢管超声波探伤注油式双向斜探头
CN2627507Y (zh) * 2003-08-09 2004-07-21 李振财 管材电磁超声探伤装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171663A (ja) * 1982-03-31 1983-10-08 Sumitomo Metal Ind Ltd 金属管の超音波探傷方法
JPH0253746B2 (ja) * 1984-10-04 1990-11-19 Mitsubishi Electric Corp
JPS6264948A (ja) * 1985-09-17 1987-03-24 Nippon Steel Corp 溶接部の精密探傷方法
JPS63290957A (ja) * 1987-05-22 1988-11-28 Sumitomo Metal Ind Ltd ステンレス鋼の超音波探傷方法
JPH04142456A (ja) * 1990-10-02 1992-05-15 Sumitomo Metal Ind Ltd 金属管の超音波探傷法
JP3729044B2 (ja) * 2000-08-25 2005-12-21 住友金属工業株式会社 超音波探傷方法及び超音波探傷装置
JP2002071648A (ja) 2000-08-25 2002-03-12 Sumitomo Metal Ind Ltd 超音波探傷方法及び超音波探傷装置
JP2003262621A (ja) 2002-03-07 2003-09-19 Sumitomo Metal Ind Ltd 超音波探傷方法
JP3744444B2 (ja) * 2002-03-07 2006-02-08 住友金属工業株式会社 超音波探傷方法
JP2003344366A (ja) * 2002-05-22 2003-12-03 Sumitomo Metal Ind Ltd 溶接鋼管溶接部の超音波探傷方法及び装置
JP2006047026A (ja) * 2004-08-03 2006-02-16 Sumitomo Metal Ind Ltd 超音波探傷方法及び超音波探傷装置
JP5084464B2 (ja) * 2007-05-23 2012-11-28 住友電気工業株式会社 光ファイバの切断装置及び光ファイバの切断方法
JP7069309B2 (ja) * 2018-06-07 2022-05-17 三菱電機株式会社 レーダ装置、レーダ装置の故障検出方法、及びレーダ装置の運用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"ULTRASONIC FLAW DETECTION METHOD FOR WELDED STEEL PIPES", 22 February 1999, IRON AND STEEL INSTITUTE OF JAPAN, pages: 60 - 62

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294163A (ja) * 2008-06-09 2009-12-17 Toho Gas Co Ltd 粒界面亀裂検出方法及び粒界面亀裂検出装置
JP2013134118A (ja) * 2011-12-26 2013-07-08 Mitsubishi Heavy Ind Ltd 配管溶接部の超音波探傷装置
CN103293220A (zh) * 2012-02-27 2013-09-11 秦召明 超声波无损探伤系统
JP2016074004A (ja) * 2014-10-07 2016-05-12 Jfeスチール株式会社 電縫溶接部の中温域のクリープ特性に優れた高強度電縫鋼管の製造方法
JP2016191572A (ja) * 2015-03-31 2016-11-10 日立造船株式会社 超音波検査装置
JP2017161513A (ja) * 2016-03-04 2017-09-14 Jfeスチール株式会社 超音波探傷装置及び超音波探傷方法
JP2017203704A (ja) * 2016-05-12 2017-11-16 株式会社日立製作所 配管検査装置
JP7410723B2 (ja) 2017-06-23 2024-01-10 ヴァルレック チューブ フランス 複雑な形状を有する管状製品の欠陥を検出するための自動非破壊検査装置および方法
WO2019117120A1 (ja) * 2017-12-12 2019-06-20 日本製鉄株式会社 欠陥検出装置、欠陥検出方法及びプログラム
JP6562192B1 (ja) * 2017-12-12 2019-08-21 日本製鉄株式会社 欠陥検出装置、欠陥検出方法及びプログラム
US11300546B2 (en) 2017-12-12 2022-04-12 Nippon Steel Corporation Defect detection device, defect detection method, and program
CN108845029A (zh) * 2018-04-26 2018-11-20 隆华科技集团(洛阳)股份有限公司 一种用于复合型冷却器的d型管箱的无损检测方法
CN108845029B (zh) * 2018-04-26 2023-10-31 隆华科技集团(洛阳)股份有限公司 一种用于复合型冷却器的d型管箱的无损检测方法
CN110987975A (zh) * 2019-12-22 2020-04-10 王震 一种防辐射弯管探伤辅助装置
CN111255982A (zh) * 2020-03-17 2020-06-09 安徽誉特双节能技术有限公司 一种用于汽轮机的转子检测装置
CN111255982B (zh) * 2020-03-17 2024-06-11 安徽誉特双节能技术有限公司 一种用于汽轮机的转子检测装置
CN112305073A (zh) * 2020-10-26 2021-02-02 西安热工研究院有限公司 一种锅炉受热面管滑动副焊趾裂纹的超声检测方法
CN112305073B (zh) * 2020-10-26 2024-01-19 西安热工研究院有限公司 一种锅炉受热面管滑动副焊趾裂纹的超声检测方法
CN113984810A (zh) * 2021-10-29 2022-01-28 北京星航机电装备有限公司 一种探头支撑块和厚大铸件内部缺陷定位方法
CN115436479A (zh) * 2022-09-29 2022-12-06 汕头问源科技有限公司 一种焊管串列式超声相控阵检测方法及装置
CN118032936A (zh) * 2024-04-12 2024-05-14 临沂红阳管业有限公司 基于pe保温管加工的内外缺陷检测系统

Also Published As

Publication number Publication date
CN101467035B (zh) 2012-10-31
JPWO2007145200A1 (ja) 2009-10-29
CN102650619A (zh) 2012-08-29
CN101467035A (zh) 2009-06-24
CN102650619B (zh) 2015-08-19
EP2031385B1 (en) 2015-11-18
EP2031385A1 (en) 2009-03-04
JP4816731B2 (ja) 2011-11-16
EP2031385A4 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP4816731B2 (ja) 超音波探傷方法、溶接鋼管の製造方法及び超音波探傷装置
JP4910770B2 (ja) 管体の超音波探傷装置および超音波探傷方法
WO2007058391A1 (ja) 管体の超音波探傷装置および超音波探傷方法
KR101163549B1 (ko) 위상배열 초음파 탐상용 기본 보정시험편
US8104347B2 (en) Ultrasonic inspection method and device for plastics walls
KR101641014B1 (ko) 결함 검출 장치, 결함 검출 방법 및 기억 매체
JP6274378B1 (ja) 超音波探傷装置、超音波探傷方法、溶接鋼管の製造方法、及び溶接鋼管の品質管理方法
KR101163554B1 (ko) 위상배열 초음파 탐상용 검증용 시험편
JP5003275B2 (ja) 管体の超音波探傷装置及び超音波探傷方法
JP5420525B2 (ja) 小径管の超音波探傷装置及び方法
JP4345734B2 (ja) 溶接鋼管溶接部の品質検査方法
JP2006047328A (ja) 超音波探傷方法
KR101163551B1 (ko) 위상배열 초음파 탐상용 감도보정 대비시험편
JP2013156166A (ja) 超音波探傷方法
JP6871534B2 (ja) 対比試験片及び超音波フェーズドアレイ探傷試験方法
CN105717197A (zh) 一种厚壁管环焊缝表层缺陷衍射时差超声检测方法
WO2018101860A1 (ru) Способ ультразвукового контроля алюминотермитного сварного соединения рельсов
JP3165888B2 (ja) 超音波探傷方法及び超音波探傷装置
JP3744444B2 (ja) 超音波探傷方法
JP2002022714A (ja) 溶接鋼管の超音波探傷装置
JP3791436B2 (ja) 超音波探傷方法
JP2003322643A (ja) 溶接鋼管溶接部の品質検査方法
JP2007263956A (ja) 超音波探傷方法および装置
JP3612849B2 (ja) Cスキャン超音波探傷方法および装置
KR101163552B1 (ko) 위상배열 초음파 탐상용 스텐레스강/듀플렉스강용 감도보정 대비시험편

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780021967.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745079

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008521208

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007745079

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE