WO2017119359A1 - 超音波検査方法 - Google Patents

超音波検査方法 Download PDF

Info

Publication number
WO2017119359A1
WO2017119359A1 PCT/JP2016/088864 JP2016088864W WO2017119359A1 WO 2017119359 A1 WO2017119359 A1 WO 2017119359A1 JP 2016088864 W JP2016088864 W JP 2016088864W WO 2017119359 A1 WO2017119359 A1 WO 2017119359A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
inspected
inspection
wave
signal
Prior art date
Application number
PCT/JP2016/088864
Other languages
English (en)
French (fr)
Inventor
晃寛 奈良
Original Assignee
ヤマハファインテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハファインテック株式会社 filed Critical ヤマハファインテック株式会社
Priority to JP2017560123A priority Critical patent/JP6542394B2/ja
Priority to CN201680076989.1A priority patent/CN108474770A/zh
Publication of WO2017119359A1 publication Critical patent/WO2017119359A1/ja
Priority to US16/016,846 priority patent/US20180321193A1/en
Priority to US17/073,597 priority patent/US11415554B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/32Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • G01N29/343Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/48Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/015Attenuation, scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0425Parallel to the surface, e.g. creep waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects

Definitions

  • the present invention relates to a method for ultrasonic inspection of the inside of a cylindrical inspection object.
  • This application claims priority based on Japanese Patent Application No. 2016-750 for which it applied to Japan on January 5, 2016, and uses the content here.
  • a guided wave (a transverse wave or a plate wave propagating in an object having a boundary surface such as a tube or a plate) It is necessary to adjust so that the ultrasonic wave is incident at an excitation angle of 5 and the ultrasonic wave passing through the inspected body is received at the same angle in the reverse direction on the receiving side.
  • a transmission ultrasonic probe and a reception ultrasonic probe are spaced apart on the circumference of a tube to be inspected, and the outer peripheral surface of the tube to be inspected at an incident angle of the transmission ultrasonic probe.
  • the ultrasonic pulse output from the transmitting ultrasonic probe is inspected.
  • the ultrasonic wave propagates in the guide wave propagation mode through the tube and the ultrasonic pulse comes into contact with the defect, it is possible to detect a defect echo that propagates in the guide wave propagation mode in the opposite direction to the ultrasonic pulse generated from the defect.
  • a tubular ultrasonic flaw detection method for setting a posture with respect to the outer peripheral surface of a reception ultrasonic probe is disclosed.
  • the present invention has been made in view of such circumstances, and does not require a troublesome positioning operation of an incident angle with respect to a cylindrical object to be inspected. It is an object of the present invention to provide an ultrasonic inspection method capable of easily inspecting a case where a body is made of a laminated material or a case where an object to be inspected whose diameter changes in the middle of the length direction.
  • an ultrasonic transmission element and an ultrasonic reception element are arranged symmetrically with respect to a straight line in a diameter direction perpendicular to the cylindrical axis of the inspection object through a cylindrical inspection object, Ultrasound is transmitted from the ultrasonic transmission element at a plurality of different positions in the diameter direction, and the ultrasonic wave transmitted from the ultrasonic transmission element and transmitted through the inspection object is transmitted through the inspection object.
  • the inspection object is inspected based on an ultrasonic reception signal received by the ultrasonic receiving element and received by the ultrasonic receiving element.
  • the ultrasonic wave receiving element so as to face the ultrasonic wave transmitting element that enters the ultrasonic wave at an angle that excites the guide wave into the inspected body, The propagating ultrasonic wave can be received.
  • the ultrasonic transmitting element and the ultrasonic receiving element may be moved in the diameter direction of the object to be inspected while facing each other through the object to be inspected.
  • the transmission direction of the ultrasonic wave from the ultrasonic transmission element changes so that the incident angle with respect to the surface of the object to be inspected gradually changes. Therefore, when the angle becomes an angle that excites the guide wave, the ultrasonic wave from the ultrasonic transmission element enters the inspected body and is converted into the guide wave, and propagates in the circumferential direction in the inspected body.
  • the ultrasonic receiving element since the ultrasonic receiving element is moved in a state of facing the ultrasonic transmitting element, the ultrasonic receiving element is arranged at a position always facing the ultrasonic transmitting element via the object to be inspected, and is incident from the object to be inspected.
  • the signal can be received at an opposite angle having the same size as the angle, and the inside of the object to be inspected can be inspected by the received ultrasonic signal.
  • the ultrasonic transmitting element and the ultrasonic receiving element are simply moved to face each other, the sound velocity data in the material constituting the object to be inspected is unknown, or the dissimilar material Even when it is made of a laminated material, the positioning operation of the incident angle with respect to the object to be inspected is unnecessary, and the inspection can be surely performed.
  • the ultrasonic transmitting element and the ultrasonic receiving element are always held in an opposed posture and scan the object to be inspected, even if the diameter of the object to be inspected changes midway Can be inspected.
  • a plurality of ultrasonic transmission elements and a plurality of ultrasonic reception elements are arranged in a direction parallel to a direction orthogonal to the cylindrical axis direction of a cylindrical inspection object.
  • the ultrasonic transmitting element is arranged so as to be opposed to each other, ultrasonic waves are transmitted from the ultrasonic transmitting element to the inspected object, and the inspected object is inspected based on the received ultrasonic signal received by the ultrasonic receiving element. Good.
  • this ultrasonic inspection method instead of moving the ultrasonic transmitting element and the ultrasonic receiving element, a plurality of sets are arranged in an array parallel to the diameter direction of the object to be inspected, and simultaneously from all the ultrasonic transmitting elements, or
  • ultrasonic waves are transmitted in order, and ultrasonic waves propagated through the body to be inspected are received by any one of the ultrasonic wave receiving elements. That is, among the ultrasonic transmission elements arranged in an array, ultrasonic waves from the ultrasonic transmission element whose transmission direction is at an angle for exciting a guide wave with respect to the inspection object enter the inspection object and guide it.
  • the ultrasonic wave receiving element that propagates as a wave and opposes the ultrasonic wave transmitting element is propagated through the inspected body because the receiving direction with respect to the inspected object is set to the opposite angle of the incident angle. Can be received.
  • an ultrasonic transmission element that transmits an ultrasonic wave toward a cylindrical inspection object in a direction parallel to a direction orthogonal to the axial direction of the inspection object; Either one of the ultrasonic wave transmitting element and the ultrasonic wave receiving element that is disposed on the opposite side of the object to be inspected and capable of receiving the ultrasonic wave transmitted from the ultrasonic wave transmitting element is connected to the ultrasonic wave transmitting element.
  • a plurality of the test objects are arranged in parallel in the diameter direction of the test object orthogonal to the transmission direction, and ultrasonic waves are transmitted from the ultrasonic transmission element while the other is moved along the diameter direction, and received by the ultrasonic reception element.
  • the inspected object may be inspected based on the received ultrasonic signal.
  • Ultrasonography can be performed.
  • the ultrasonic inspection method of the present invention it is provided between the ultrasonic transmission element and the ultrasonic reception element before the arrival time of the ultrasonic wave to the ultrasonic reception element when there is no object to be inspected.
  • the received ultrasonic signal that falls within the time window range may be analyzed as the first ultrasonic signal, and the object to be inspected may be inspected based on the detection result of the first ultrasonic signal.
  • the first ultrasonic wave that has reached the ultrasonic wave receiving element before the ultrasonic wave propagated through the outside of the object to be inspected is received by the ultrasonic wave receiving element. It may be determined whether an ultrasonic signal has been detected, and the object to be inspected may be inspected based on the detection result of the first ultrasonic signal.
  • an ultrasonic wave that reaches the ultrasonic receiving element from the ultrasonic transmitting element through the outside of the inspection object between the ultrasonic transmitting element and the ultrasonic receiving element.
  • a shield may be provided so as to block
  • the troublesome positioning operation of the incident angle with respect to the cylindrical object to be inspected is unnecessary, and the sound velocity data in the material of the object to be inspected is unknown or the object to be inspected is from the laminated material In this case, it is possible to easily inspect the case of the inspected object whose diameter changes in the middle of the length direction.
  • FIG. 1 It is sectional drawing which shows the ultrasonic inspection method of 1st Embodiment of this invention.
  • the ultrasonic inspection method shown in FIG. 1 it is sectional drawing which shows the state which transmits / receives an ultrasonic wave with the angle which excites a guide wave.
  • It is a wave form diagram showing a signal received in an ultrasonic inspection method of a 1st embodiment, and is a graph which shows the 1st method of setting up a time window for detecting an ultrasonic signal by a transmitted wave which propagates a test subject. It is.
  • FIG. 4 is a waveform diagram showing a case where in the ultrasonic inspection method of the first embodiment, only ultrasonic waves due to diffracted waves passing through the outside of the inspection object are received without receiving ultrasonic waves due to transmitted waves propagating through the inspection object; is there.
  • the ultrasonic inspection method of 1st Embodiment it is a wave form diagram which shows the case where only the ultrasonic wave by the transmitted wave which propagated the to-be-inspected body was received.
  • It is a block diagram which shows the ultrasonic inspection apparatus used for the ultrasonic inspection method of 1st Embodiment of this invention. It is sectional drawing which shows the modification which provided the shielding body outside the to-be-inspected object with respect to the ultrasonic inspection method of 1st Embodiment.
  • FIG. 16 is a cross-sectional view illustrating a state in which ultrasonic waves are transmitted and received at an angle for exciting a guide wave in the ultrasonic inspection method illustrated in FIG. 15.
  • the ultrasonic inspection apparatus 1 includes a pulsar receiver unit 2, an exploration unit 3, and the like. , And a signal processing unit 4.
  • the pulsar receiver unit 2 receives signals from a signal generator 5 that generates an ultrasonic drive signal, a signal transmission unit 7 that transmits the generated ultrasonic drive signal to the ultrasonic transmission element 6, and an ultrasonic reception element 8.
  • the search unit 3 transmits an ultrasonic wave transmitting element 6 that transmits an ultrasonic wave toward the inspection object 11 by the ultrasonic wave drive signal transmitted from the signal transmission unit 7 and an ultrasonic wave that propagates through the inspection object 11 and transmits the ultrasonic wave. It has an ultrasonic receiving element 8 that receives and sends it to the signal receiving unit 9 as a received voltage signal.
  • the ultrasonic transmission element 6 and the ultrasonic reception element 8 are preferably point focus type probes for focusing an ultrasonic beam, and have an ultrasonic vibration element (not shown) made of a piezoelectric element inside.
  • the ultrasonic transmission element 6 transmits an ultrasonic wave from the vibration element according to the input voltage signal, and the ultrasonic reception element 8 converts the received ultrasonic wave into a voltage signal by a vibrator and outputs the voltage signal.
  • the ultrasonic transmission element 6 and the ultrasonic reception element 8 are held in a state facing the Z-axis direction by a frame member (not shown).
  • the inspected object 11 includes the ultrasonic transmitting element 6 and the ultrasonic receiving element 8 such that the cylindrical axis extending in the Y-axis direction is orthogonal to the opposing direction (Z-axis direction) of the ultrasonic transmitting element 6 and the ultrasonic receiving element 8. It is arranged between. Further, the device under test 11 is arranged so that the diameter of the cylindrical cross section perpendicular to the cylindrical axis is in the X-axis direction perpendicular to the Y-axis and Z-axis.
  • the transducers provided at the tips of the ultrasonic transmission element 6 and the ultrasonic reception element 8 are arranged in a state facing the object to be inspected 11. Further, the ultrasonic transmission element 6 and the ultrasonic reception element 8 are symmetrical with respect to a straight line passing through a diameter extending in the X-axis direction of the device under test 11 in the ZX plane.
  • the ultrasonic transmitting element 6 and the ultrasonic receiving element 8 with respect to the inspected object 11 are arranged in the X direction parallel to the diameter direction of the inspected object 11, the Y direction parallel to the cylindrical axis direction of the inspected object 11, and the inspected.
  • the object to be inspected 11 is ultrasonically inspected while being moved in the Z direction that is spaced apart from and close to the body 11. That is, as shown also in FIG. 1, the device under test 11 is horizontally arranged so that its cylindrical axis is in the Y-axis direction. The diameter of the cylindrical cross section of the inspection object 11 and a straight line parallel to the diameter are in the X-axis direction. The vertical direction perpendicular to the X axis and the Y axis is the Z axis direction.
  • the ultrasonic transmission element 6 and the ultrasonic reception element 8 are individually moved so as to be separated from each other in the opposing direction (Z-axis direction), but are integrated in the X-axis direction and the Y-axis direction. Moved.
  • the movement in the X-axis direction and the Y-axis direction may be performed by relatively moving the object to be inspected 11, the ultrasonic transmission element 6 and the ultrasonic receiving element 8, so that the object to be inspected 11 is moved in the X-axis direction. Further, it may be moved in the Y-axis direction.
  • the signal processing unit 4 determines whether or not there is a defect in the inspection object 11 based on a condition setting unit 31 that sets a condition for generating an ultrasonic drive signal in the signal generator 5 and a received voltage signal from the signal receiving unit 9.
  • Defect determining unit 32 for determining, display unit 33 for displaying a received voltage signal, etc., scan control unit 34 for controlling the scanning operation of ultrasonic transmitting element 6 and ultrasonic receiving element 8, these condition setting unit 31, defect A determination unit 32, a display unit 33, and an operation unit 35 for inputting various control values to the scan control unit 34 are provided.
  • the signal processing unit 4 can be configured by a personal computer or the like, and is provided with a touch panel type operation unit 35 on the screen of a display unit (monitor) 33, and various conditions described later from the operation unit 35 and positions relative to the scan control unit 34. Control values such as information can be set.
  • the operation unit 35 may use a keyboard or the like.
  • [Ultrasonic inspection method] A method for performing an ultrasonic inspection of the cylindrical inspection object 11 using the ultrasonic inspection apparatus 1 configured as described above will be described. The outline of the inspection method will be described with reference to the flowchart of FIG. 3.
  • the initial position for starting the scanning of one line is the position on the line AA in FIG. 1, and as indicated by the left arrow in FIG. .
  • burst or pulse type ultrasonic waves are transmitted from the ultrasonic transmission element 6 (S2).
  • the received ultrasonic wave is distinguished from a diffracted wave that travels around the inspection object 11 and propagates directly through the medium (air) and a transmitted wave that passes through the inspection object 11. Then, the intensity of the transmitted wave is analyzed (S4), and the intensity at the current scan position is recorded in the defect determination unit 32 (S5). A specific method for distinguishing between the diffracted wave and the transmitted wave will be described later.
  • the ultrasonic transmission element 6 and the ultrasonic reception element 8 are arranged in the diameter direction (X-axis direction) of the cylinder of the inspection object 11.
  • S6 a predetermined scan pitch
  • S7 there are two locations where an ultrasonic signal exceeding a predetermined intensity is detected in the scanning of one line. It is determined whether or not a place exists (S8).
  • the ultrasonic wave transmitted from the ultrasonic wave transmitting element 6 reaches the inspected object 11 at an angle other than the angle for exciting the guide wave, the ultrasonic wave propagates in the inspected object 11 along the cylindrical circumferential direction. Since the intensity of the ultrasonic wave to be reduced becomes very small, it may be considered that the ultrasonic wave receiving element 8 does not receive the ultrasonic signal propagating through the inspected object 11.
  • the ultrasonic transmitting element 6 and the ultrasonic receiving element 8 are moved from the position indicated by AA in FIG. 1 in the diameter direction (X-axis direction) of the inspection object 11 orthogonal to the facing direction. However, ultrasonic waves are transmitted from the ultrasonic transmission element 6 as indicated by arrows. By this movement, the angle of the transmission direction of the ultrasonic waves transmitted from the ultrasonic transmission element 6 and reaching the inspection object 11 gradually changes with respect to the surface of the inspection object 11. When the angle of the transmission direction of the ultrasonic wave transmitted from the ultrasonic transmission element 6 with respect to the inspection object 11 becomes an angle that excites a guide wave in the inspection object 11, the ultrasonic wave that has entered the inspection object 11 is generated.
  • the critical angle with a refraction angle exceeding 90 ° is about 3.3 ° in consideration of incidence from air. Therefore, by scanning beyond the position where the incident angle is about 3.3 °, it is possible to cover the entire angular range in which the inside of the inspection object 11 may be converted into a guide wave and propagated.
  • the ultrasonic reception element 8 is held in a posture facing the ultrasonic transmission element 6. Move in sync. Therefore, the receiving direction of the ultrasonic receiving element 8 is opposed to the inspected object 11 in a posture where the angle is opposite to that of the ultrasonic transmitting element 6. For this reason, it is possible to receive the ultrasonic wave output from the surface of the inspection object 11 after the guide wave propagated in the inspection object 11 undergoes mode conversion.
  • FIG. 2 schematically shows this state.
  • the ultrasonic wave from the ultrasonic transmission element 6 is incident on the inspection object 11 at an angle ⁇ that excites the guide wave, passes through the inspection object 11, and is circumferentially transmitted. And is received by the ultrasonic wave receiving element 8 at the opposite angle ⁇ of the same size.
  • the ultrasonic wave incident at the incident angle ⁇ is received by the ultrasonic wave receiving element 8 facing the opposite side after propagating the object to be inspected approximately half a circle.
  • the ultrasonic wave from the ultrasonic transmission element 6 is incident on the inspection object 11 at an angle ⁇ that excites the guide wave, passes through the inspection object 11 and propagates in the circumferential direction.
  • a position to be received by the ultrasonic receiving element 8 at the same angle ⁇ (the same size and the opposite direction) is generated. Therefore, the ultrasonic wave propagating through the inspected object 11 is scanned at the two left and right positions (positions shown in FIG. 2) by scanning the inspected object 11 in the diameter direction by the ultrasonic transmitting element 6 and the ultrasonic receiving element 8. Can be received.
  • the ultrasonic wave received by the ultrasonic wave receiving element 8 is not only the ultrasonic wave propagating in the inspection object 11 but also the ultrasonic wave directly reached through the medium (air) outside the inspection object 11. Sound waves are also included.
  • the former is a transmitted wave
  • the latter is a diffracted wave.
  • the speed of sound of the ultrasonic wave (transmitted wave) propagating in the inspection object 11 is much higher than that of the ultrasonic wave (diffracted wave) propagating in the air via the outside of the inspection object 11. Very fast. Therefore, the ultrasonic wave (transmitted wave) propagating through the inspected object 11 reaches the ultrasonic receiving element 8 first, and the ultrasonic wave (diffracted wave) propagating in the air reaches thereafter.
  • these received ultrasonic signals are graphed as time waveforms, they are as shown in FIG. In FIG. 4, the horizontal axis represents time, and the vertical axis represents signal strength (amplitude).
  • the first ultrasonic signal U is generated by the transmitted wave that has propagated through the inspected object 11, and then the second ultrasonic signal S by the diffracted wave that has propagated in the air is generated. appear. Therefore, by distinguishing these signals U and S in terms of time, when the first ultrasonic signal U is detected, it can be identified that it is an ultrasonic signal obtained by propagating through the inspected object 11. .
  • the intensity (amplitude) of the first ultrasonic signal U decreases, it can be determined that a defect exists in the inspection object 11.
  • the intensity (amplitude) of the first ultrasonic signal U generated before the second ultrasonic signal S is equal to or greater than a predetermined value. When it is less than the predetermined value, it is determined that the inspection object 11 has a defect.
  • a method for distinguishing between the ultrasonic signal S and the ultrasonic signal U will be specifically described. Since the transmission timing of the burst or pulse type ultrasonic wave is 0 ⁇ sec, and there is no object to be inspected 11 between the ultrasonic wave transmitting element 6 and the ultrasonic wave receiving element 8, the ultrasonic wave propagation is transmitted using air as a medium, for example.
  • C (distance mm between ultrasonic transmitting element and ultrasonic receiving element) / (sound velocity of air m / s) ⁇ 1000 ⁇ sec. Therefore, as shown in FIG.
  • a time that is d ⁇ sec earlier than C is set to B ⁇ sec, a time earlier than f ⁇ sec is set to A ⁇ sec, and a time window in the range of A ⁇ sec to B ⁇ sec is set.
  • U be the ultrasound signal that falls within the time window from A to B.
  • the signal S and the ultrasonic signal U can be distinguished.
  • FIG. 5 there is also a method of setting a time window of width f after a delay time d from 0 ⁇ sec so that the time window comes before time C.
  • the intensity (amplitude) of the ultrasonic wave (transmitted wave) propagating through the inspected object 11 is smaller than the ultrasonic wave (diffracted wave) propagating through the air. Therefore, the threshold for the intensity of the ultrasonic signal is determined to be normal with respect to the first ultrasonic signal U for the first threshold ⁇ , and the second threshold for the second ultrasonic signal S is greater than the first threshold ⁇ . Set two of ⁇ .
  • the ultrasonic signal received by the ultrasonic receiving element 8 is equal to or higher than the first threshold value ⁇ , it is determined whether or not it is equal to or higher than the second threshold value ⁇ .
  • the ultrasonic signal is determined to be the second ultrasonic signal S described above.
  • the second ultrasonic signal S it is determined whether or not the first ultrasonic signal U having an intensity smaller than the second ultrasonic signal S is received. That is, as shown in FIG. 6, an ultrasonic signal that is less than the second threshold ⁇ and greater than or equal to the first threshold ⁇ is detected a predetermined time (for example, 5 ⁇ s) before detecting the second ultrasound signal S that is greater than or equal to the second threshold ⁇ .
  • a predetermined time for example, 5 ⁇ s
  • the ultrasonic wave transmitting element 6 and the ultrasonic wave receiving element 8 are scanned in the diameter direction of the object to be inspected 11, whereby ultrasonic waves of the guide wave are detected in the object under inspection 11 at two locations.
  • the object 11 is normal, two types of ultrasonic signals U and S can be detected as shown in FIG.
  • the transmission angle of the ultrasonic wave to the inspection object 11 is not an angle for exciting the guide wave, so that it is detected as the first ultrasonic signal U propagating in the inspection object 11. Not.
  • the waveform of only the second ultrasonic signal S as shown in FIG. 7 is obtained.
  • the first ultrasonic signal U when the first ultrasonic signal U is detected at a first threshold value or more, it is determined that the inspection object 11 is normal. Otherwise, the inspection object 11 is defective.
  • the transmission / reception directions of the ultrasonic transmission element 6 and the ultrasonic reception element 8 are not arranged at an angle for exciting the guide wave in the inspection object 11.
  • the ultrasonic wave transmitted from the ultrasonic transmission element 6 is guided to the inspection object 11.
  • the ultrasonic wave can be propagated in the inspected object 11 in the circumferential direction at a position that reaches at an angle that excites.
  • the ultrasonic receiving element 8 is arranged at a position that always faces the ultrasonic transmitting element 6 with the object to be inspected 11 interposed therebetween, and the ultrasonic wave from the object to be inspected 11 has the same angle (the size is the same as the incident angle).
  • the inside of the inspection object 11 can be inspected by the received ultrasonic signal. Even if the diameter of the inspected object 11 changes, the ultrasonic inspection can be performed without changing the setting.
  • the incident angle with respect to the object to be inspected 11 can be determined. Positioning work can be made unnecessary.
  • the ultrasonic transmission element 6 and the ultrasonic reception element 8 are always held in an opposed posture to scan the inspection object 11, even if the diameter of the inspection object 11 changes midway, the incident angle It is possible to inspect by injecting ultrasonic waves into the inspection object 11 without calculating.
  • a point focus type probe is used as the ultrasonic transmission element 6 and the ultrasonic reception element 8, an ultrasonic wave focused at a predetermined angle is transmitted to the inspected object 11. Conversion can be ensured, and even when the object to be inspected is a tapered cylinder, it can be inspected reliably.
  • ultrasonic waves propagating through the inspected object propagate through the inspected object a plurality of times.
  • the ultrasonic reception element 8 receives ultrasonic waves every time it circulates in the inspection object 11. Since the ultrasonic signal that has circulated above is difficult to be distinguished from the ultrasonic signal (second ultrasonic signal S) received through the outside of the object 11 to be inspected, in the above-described inspection, The presence / absence of a defect is determined by an ultrasonic signal that is first detected after propagating through the inspection object 11.
  • the ultrasonic wave received by the ultrasonic wave receiving element 8 is not only the ultrasonic wave (transmitted wave) propagating in the inspection object 11 but also in the air via the outside of the inspection object 11. Also included are ultrasonic waves (diffracted waves) that have propagated through.
  • the shield 41 for example, acrylic resin or aluminum can be used.
  • the second ultrasonic signal S (see FIG. 4) described above is not received, and only the first ultrasonic signal U can be detected effectively, Accurate ultrasonic inspection can be performed.
  • the second ultrasonic signal S described above is not received, and therefore an ultrasonic signal that propagates around the inspection object 11 more than once as shown in FIG. It can be received and analyzed.
  • the ultrasonic wave propagating in the inspected object 11 propagates substantially half of the circumference of the inspected object 11 and is received by the ultrasonic receiving element 8.
  • the ultrasonic receiving element 8 By receiving and analyzing also, it is possible to carry out a more accurate inspection.
  • inspection is performed by transmitting / receiving only one of them without transmitting / receiving ultrasonic signals at two left and right positions. In other words, only the half of the inspected object 11 in the diameter direction (right half or left half) may be scanned.
  • the ultrasonic inspection described above is a method of inspecting a specific transverse position of the inspection object 11 by scanning in the diameter direction.
  • the processing from S1 to S10 may be repeated to the end of the axis while moving at a predetermined pitch in the axial direction (Y direction) of the cylinder of the inspection object 11.
  • “OK” or “NG” is displayed on the display unit 33 for each scan of one line, but in addition to or instead of this, the total length of the inspected object 11 is displayed.
  • the display unit 33 may display “OK” or “NG”.
  • “NG” is displayed on the display unit 33.
  • the display unit 33 does not display “OK”, and the processing after S11 is performed to display the inspected object 11.
  • the display unit 33 After moving the ultrasonic transmission element 6 and the ultrasonic reception element 8 in the axial direction of the axis and inspecting to the end of the axis (when the determination result of S8 is YES in all the scans for each line), the display unit 33 “OK” may be displayed. In FIG. 11, even after “NG” is displayed on the display unit 33 in S ⁇ b> 10, the inspection object 11 is moved and inspected in the axial direction, but is displayed in S ⁇ b> 10 according to the inspection result of the first one-line scan. If “NG” is displayed in the section 33, the subsequent inspection may be terminated.
  • the ultrasonic transmission element 6 that becomes an incident angle at which the transmitted ultrasonic wave is converted into a guide wave is a positional relationship in which the transmission direction is slightly inclined with respect to the surface of the inspection object 11,
  • the ultrasonic wave is incident on the inside. Does not convert to a guide wave. For this reason, the ultrasonic inspection of this part cannot be implemented.
  • the object 11 to be inspected is rotated by, for example, 90 ° about the cylindrical axis O and scanned again in the diametrical direction. Ultrasonography while doing.
  • the line scan is repeated twice at different angles (S13). If it is determined that the test object 11 is not repeated twice, the inspection object 11 is rotated, for example, 90 ° around the cylindrical axis (S14), and then the inspection from S1 is performed again, and the angle is changed twice in S13. If it is determined, “OK” is displayed on the display unit 33. Thereafter, the ultrasonic transmission element 6 and the ultrasonic reception element 8 are moved at a predetermined feed pitch in the cylindrical axis direction of the inspection object 11 (S11), and the processes from S1 are repeated.
  • the entire circumference of the inspection object 11 can be inspected by rotating the inspection object 11 about the axis and scanning in two different diameter directions with respect to the inspection object 11 to perform ultrasonic inspection. it can. Then, after performing ultrasonic inspection at a specific position in the length direction of the inspection object 11, after moving the ultrasonic transmission element 6 and the ultrasonic reception element 8 in the length direction (Y direction) of the inspection object 11, In the same manner as above, scanning is performed in the diameter direction of the inspection object 11. By repeating this operation while moving the ultrasonic transmitting element 6 and the ultrasonic receiving element 8 little by little in the length direction (Y direction) of the inspection object 11, an ultrasonic inspection is performed over the entire length of the inspection object 11. Can do. In FIG.
  • the inspected object 11 is inspected by moving in the axial direction, but is displayed in S ⁇ b> 10 according to the inspection result of the first one-line scan. If “NG” is displayed in the section 33, the subsequent inspection may be terminated.
  • FIG. 13 shows a fourth embodiment in which the scanning method of the ultrasonic transmitting element 6 and the ultrasonic receiving element 8 is different in the ultrasonic inspection method of the present invention.
  • a set of ultrasonic transmission elements 6 and ultrasonic reception elements 8 are used, and these ultrasonic transmission elements 6 and ultrasonic reception elements 8 are made to face each other. It was moved in the state.
  • a plurality of sets of ultrasonic transmission elements 6 and ultrasonic reception elements 8 are used, and these are arranged and used in an array.
  • a plurality of sets of ultrasonic transmission elements 6 and ultrasonic reception elements 8 are arranged in the diameter direction (X-axis direction) of the object 11 to be inspected, and each set of ultrasonic transmission elements 6 and ultrasonic reception elements 8 includes These are arranged apart from each other on the Z axis via the device under test 11 and are opposed to each other in the Z axis direction.
  • the transmission direction becomes an angle at which the guide wave is excited with respect to the inspection object 11 (see angle ⁇ in FIG. 2).
  • the ultrasonic wave from the sound wave transmitting element 6 is incident on the inspection object 11 and propagates in the inspection object 11 in the circumferential direction as a guide wave.
  • the ultrasonic receiving element 8 facing the ultrasonic transmitting element 6 is also set to the same angle as the incident angle and in the opposite direction, the ultrasonic wave propagated in the inspection object 11 is received. can do.
  • the ultrasonic wave transmitted from the ultrasonic transmission element 6 and propagated through the inspected object 11 is received by the ultrasonic reception element 8.
  • a plurality of ultrasonic transmission elements 6 and ultrasonic reception elements 8 are arranged in an array in the diameter direction (X direction) of the object 11 to be inspected, and the ultrasonic transmission element 6 and the ultrasonic reception are arranged on the other side.
  • One of the other elements 8 may be arranged, and ultrasonic inspection may be performed while moving in the diameter direction (X direction) of the inspection object 11.
  • the ultrasonic receiving elements 8 are arranged in an array in the diameter direction (X-axis direction) of the object to be inspected 11, and the ultrasonic transmission element 6 is moved in the diameter direction (X-axis direction) indicated by an arrow. The method of inspecting by transmitting ultrasonic waves is shown.
  • the ultrasonic transmission element 6 when the ultrasonic transmission element 6 is arranged at a position where ultrasonic waves are transmitted at an angle (see angle ⁇ in FIG. 2) that excites a guide wave with respect to the object to be inspected 11, Among the sound wave receiving elements 8, the ultrasonic wave receiving element 8 (the ultrasonic wave receiving element having the opposite relationship shown by BB in FIG. 14) having a positional relationship opposite to the position of the ultrasonic transmitting element 6 is used in the inspected object 11. Can be received.
  • one ultrasonic transmission element 6 is moved in the diameter direction of the inspection object 11 and a plurality of ultrasonic reception elements 8 are arranged in the diameter direction of the inspection object 11.
  • the ultrasonic transmitting elements 6 may be arranged side by side in the diameter direction of the object to be inspected 11 and the ultrasonic wave may be received while moving the single ultrasonic receiving element 8 in the diameter direction of the object to be inspected 11.
  • the ultrasonic transmission element 6 and the ultrasonic reception element 8 in the third embodiment are moved 90 around the cylindrical axis of the inspected object 11.
  • a set of the second ultrasonic transmission element 61 and the second ultrasonic reception element 81 is provided at the rotated position.
  • An ultrasonic wave is transmitted from the ultrasonic wave transmitting element 61 while scanning the ultrasonic wave transmitting element 61 and the second ultrasonic wave receiving element 81 in the direction of the arrow, and an ultrasonic inspection is performed by the ultrasonic wave transmitting element 6 and the ultrasonic wave receiving element 8.
  • An ultrasonic inspection can be performed also about the part which could not be performed.
  • the ultrasonic wave from the second ultrasonic transmission element 61 is incident on the inspection object 11 at an angle ⁇ that excites the guide wave, passes through the inspection object 11, and enters the circumferential direction. Are transmitted at the opposite angle ⁇ of the same size and received by the second ultrasonic receiving element 81.
  • the ultrasonic wave incident at the incident angle ⁇ from the second ultrasonic transmission element 61 is received after being propagated by the second ultrasonic reception element 81 opposed to the opposite side through the object to be inspected approximately half a circle.
  • the ultrasonic wave propagation part includes a part where the ultrasonic wave from the ultrasonic transmission element 6 is incident at an angle of 90 °, an ultrasonic inspection is performed by the ultrasonic transmission element 6 and the ultrasonic reception element 8.
  • the ultrasonic inspection can be performed also on the portion that cannot be performed.
  • the second ultrasonic transmitting element 61 and the second ultrasonic transmitting element 6 and the ultrasonic receiving element 8 are rotated to 90 ° around the cylindrical axis of the device under test 11.
  • a set of ultrasonic receiving elements 81 is provided.
  • the arrangement positions of the ultrasonic transmission element 6 and the ultrasonic reception element 8 and the second ultrasonic transmission element 61 and the second ultrasonic reception element 81 are 90 ° about the cylindrical axis of the device under test 11. It is not limited to the position rotated by the angle of. This angle may be an arbitrary angle such as 30 ° or 45 °.
  • two sets of ultrasonic transmission elements and ultrasonic reception elements are provided. However, the number of sets is not limited to two, and more sets may be provided.
  • FIG. 17 An ultrasonic inspection apparatus used in the ultrasonic inspection method of the sixth embodiment will be described with reference to FIG. 17, the same components as those of the ultrasonic inspection apparatus shown in FIG. 9 are denoted by the same reference numerals, and description thereof is omitted.
  • the set of the second ultrasonic transmission element 61 and the second ultrasonic reception element 81 includes the ultrasonic transmission element 6 and the ultrasonic reception element 8 that are connected to the cylindrical axis of the device under test 11. It is provided at a position rotated 90 ° around the center.
  • the second ultrasonic transmission element 61 and the second ultrasonic reception element 81 can be driven in the Z-axis direction by the scan control unit 34. Similar to the ultrasonic transmission element 6, the second ultrasonic transmission element 61 is connected to the signal transmission unit 7.
  • the second ultrasonic transmission element 61 transmits an ultrasonic wave toward the inspected object 11 by the ultrasonic drive signal transmitted from the signal transmission unit 7.
  • the second ultrasonic receiving element 81 is connected to the signal receiving unit 9. Similar to the ultrasonic receiving element 8, the second ultrasonic receiving element 81 receives the ultrasonic wave that has propagated through and passed through the device under test 11 and sends it as a received voltage signal to the signal receiving unit 9. Other operations are the same as those of the ultrasonic inspection apparatus shown in FIG.
  • the ultrasonic wave is propagated in the air from the ultrasonic transmission element 61 via the outside of the inspected object 11 as in the ultrasonic inspection method shown in FIG. It is desirable not to receive ultrasonic waves (diffracted waves) by the ultrasonic wave receiving element 81. Therefore, as shown in FIG. 18, in addition to the shielding body 41, the inspected object 11 passes through the outside of the inspected object 11 and blocks the ultrasonic signal that reaches the ultrasonic receiving element 81 from the ultrasonic transmitting element 61. Ultrasonic inspection is performed by placing the shield 42 on the outer peripheral surface of the substrate. In the example shown in FIG.
  • the block-shaped shield 42 extending in the direction orthogonal to the opposing direction of the ultrasonic transmission element 61 and the ultrasonic reception element 81 is shielded in a state in which the block-shaped shield 42 is in contact with the outer peripheral surface of the inspection object 11. It is arranged at a position rotated by 90 ° from the body 41.
  • the shield 42 for example, acrylic resin or aluminum can be used in the same manner as the shield 41.
  • the ultrasonic receiving element 81 does not receive the second ultrasonic signal S (see FIG. 4) described above, and only the first ultrasonic signal U is effective. Can be detected and an accurate ultrasonic examination can be performed.
  • ⁇ Seventh embodiment> With reference to FIG. 19, the ultrasonic inspection method of 7th Embodiment of this invention is demonstrated.
  • a plurality of sets of ultrasonic transmitting elements 6 and ultrasonic receiving elements 8 are used, and these are arranged in an array.
  • a plurality of second ultrasonic transmission elements 61 and second ultrasonic reception elements 81 are also used and arranged in an array. That is, in addition to the configuration of the fourth embodiment, a plurality of sets of ultrasonic transmission elements 61 and ultrasonic reception elements 81 are arranged in the diameter direction in the Z-axis direction of the device under test 11 and each set of ultrasonic transmission elements.
  • a plurality of sets of ultrasonic transmission elements 61 and ultrasonic reception elements 81 are connected to a plurality of sets of ultrasonic transmission elements 6 and ultrasonic reception elements 8 on the cylindrical axis of the object to be inspected 11. It is arranged at a position rotated 90 ° around the center.
  • a plurality of sets of second ultrasonic waves are arranged at positions obtained by rotating a plurality of sets of ultrasonic transmitting elements 6 and ultrasonic receiving elements 8 by 90 ° about the cylindrical axis of the inspected object 11.
  • a transmitting element 61 and a second ultrasonic receiving element 81 are provided.
  • the arrangement positions of the plurality of sets of the ultrasonic transmission elements 6 and the ultrasonic reception elements 8 and the plurality of sets of the second ultrasonic transmission elements 61 and the second ultrasonic reception elements 81 are arranged in the cylinder of the inspected object 11. It is not limited to a position rotated by an angle of 90 ° around the axis. This angle may be an arbitrary angle such as 30 ° or 45 °.
  • two sets of a plurality of sets of ultrasonic transmission elements and ultrasonic reception elements are provided, but the number is not limited to two sets, and more sets may be provided.
  • the ultrasonic inspection method of 8th Embodiment of this invention is demonstrated.
  • the ultrasonic receiving elements 8 are arranged in an array in the diameter direction (X-axis direction) of the device under test 11, and the ultrasonic transmitting elements 6 are indicated by arrows. Inspection is performed by transmitting ultrasonic waves while moving in the indicated diameter direction (X-axis direction).
  • a plurality of ultrasonic receiving elements 81 are arranged in an array in the diameter direction of the inspected body 11 in the Z-axis direction, and the ultrasonic transmitting element 61 is arranged.
  • the ultrasonic transmission element 61 and the plurality of ultrasonic reception elements 81 are connected to the ultrasonic transmission element 6 and the plurality of ultrasonic reception elements 8 on the cylindrical axis of the object to be inspected 11. It is arranged at a position rotated 90 ° around the center.
  • the ultrasonic transmission element 61 when the ultrasonic transmission element 61 is arranged at a position where ultrasonic waves are transmitted at an angle (see angle ⁇ in FIG. 2) that excites a guide wave with respect to the inspection object 11, Among the sound wave receiving elements 81, the ultrasonic wave receiving element 81 (the ultrasonic wave receiving element having a facing relationship indicated by CC in FIG. 20) having a positional relationship facing the position of the ultrasonic transmitting element 61 is inside the inspected object 11. Can be received.
  • one ultrasonic transmitting element 61 is moved in the diameter direction in the Z-axis direction of the device under test 11, and a plurality of ultrasonic receiving elements 8 are moved in the Z-axis direction of the device under test 11. Arranged side by side. However, conversely, a plurality of ultrasonic transmission elements 61 are arranged side by side in the diameter direction of the inspected object 11 in the Z-axis direction, and one ultrasonic receiving element 81 is arranged in the diameter direction of the inspected object 11 in the Z-axis direction. It may be a method of receiving ultrasonic waves while moving to.
  • one ultrasonic transmission element 61 is positioned at a position where one ultrasonic transmission element 6 and a plurality of ultrasonic reception elements 8 are rotated by 90 ° about the cylindrical axis of the inspected object 11.
  • a set of a plurality of ultrasonic receiving elements 81 is also provided.
  • the arrangement position of the set of one ultrasonic transmitting element 6 and the plurality of ultrasonic receiving elements 8 and the set of one ultrasonic transmitting element 61 and the plurality of ultrasonic receiving elements 81 is the cylinder of the inspected object 11. It is not limited to a position rotated by an angle of 90 ° around the axis. This angle may be an arbitrary angle such as 30 ° or 45 °.
  • two sets of ultrasonic transmission elements and ultrasonic reception elements are provided. However, the number of sets is not limited to two, and more sets may be provided.
  • the first ultrasonic signal U and the second ultrasonic signal S are distinguished by focusing on the intensity (amplitude) of the received ultrasonic signal.
  • the first ultrasonic signal is focused on the frequency characteristic.
  • U and the second ultrasonic signal S may be distinguished.
  • the frequency analysis may be performed to select a specific frequency out of the two peaks, or the diffracted wave may have a very strong intensity, so that the peak having the lower intensity may be selected.
  • the ultrasonic transmitting element and / or the ultrasonic receiving element has been described as moving in the X direction and the Y direction. However, the object to be inspected may be moved in the X direction and the Y direction.
  • the to-be-inspected object 11 showed the example which is cylindrical shape.
  • the cross section orthogonal to the cylindrical axis may be elliptical.
  • the ultrasonic transmission element 6 or the ultrasonic reception element 8 is scanned, the ultrasonic transmission element 6 or the ultrasonic reception is parallel to the major axis or minor axis of the elliptical shape.
  • the element 8 may be scanned.
  • the cross section of the object to be inspected is elliptical and a plurality of ultrasonic transmission elements 6 or ultrasonic receiving elements 8 are arranged side by side, the cross section of the object to be inspected is parallel to the long or short axis of the elliptical shape.
  • a plurality of ultrasonic transmission elements 6 or ultrasonic reception elements 8 may be provided. Therefore, in this specification, the term “cylindrical shape” includes not only a cylindrical tube but also an elliptical tube.
  • the present invention can be applied to the internal inspection of a cylindrical inspection object by ultrasonic waves, eliminates the troublesome positioning operation of the incident angle with respect to the cylindrical inspection object, and the sound velocity data in the material of the inspection object is unknown. Even when the test object is made of a laminated material, it is possible to easily inspect the test object for defects.

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本発明の超音波検査方法は、円筒形状の被検査体を介して、前記被検査体の円筒軸に直交する直径方向の直線に関して対称に超音波送信素子と超音波受信素子とを配置し、前記直径方向における異なる複数の位置において前記超音波送信素子から超音波を発信し、前記超音波発信素子から発信され前記被検査体の内部を伝搬して前記被検査体を透過した超音波を前記超音波受信素子によって受信し、前記超音波受信素子で受信した超音波の受信信号に基づき前記被検査体を検査する。

Description

超音波検査方法
 本発明は、円筒形状の被検査体の内部を超音波検査する方法に関する。
 本願は、2016年1月5日に日本に出願された特願2016-750号に基づき優先権を主張し、その内容をここに援用する。
 管や筒体などの円筒形状の被検査体の内部を超音波検査する場合、被検査体に対してガイド波(管や板のように境界面を有する物体中を伝搬する横波又は板波)の励起角度で超音波を入射し、被検査体内を経由した超音波を受信側では逆向きの同じ角度で受けるように調整する必要がある。
 例えば、特許文献1には、送信超音波探触子と受信超音波探触子とを被検査管の周上に離間配置し、送信超音波探触子の入射角の被検査管の外周面の法線に対する傾き方向と、受信超音波探触子の外周面の法線に対する傾き方向とを互いに逆方向に設定することによって、送信超音波探触子から出力された超音波パルスが被検査管でガイド波の伝搬モードで伝搬し、この超音波パルスが欠陥に当接したときに、この欠陥から生じる超音波パルスに対して逆方向にガイド波の伝搬モードで伝搬する欠陥エコーを検出できるように受信超音波探触子の外周面に対する姿勢を設定する管体超音波探傷方法が開示されている。
特開2010-25817号公報
 しかしながら、特許文献1記載の超音波探傷方法では、被検査体に対する超音波探触子の位置を、超音波の入射角が特定の角度(ガイド波を励起する角度)となるように設定する必要があるため、被検査体の外径が変わると、その外径に合せて調整する必要がある。この場合、被検査体の材料内の音速が予めわかっている場合には、適切な入射角を計算することが可能であるが、被検査体が積層材からなる場合や、音速データが不明な材料からなる場合は、適切な入射角を計算することが困難である。さらに、被検査体の外形が長さ方向の途中で変化してテーパ管状となるような場合にも、入射角の調整が困難となる。
 本発明は、このような事情に鑑みてなされたもので、円筒形状の被検査体に対する入射角の面倒な位置決め作業を不要とし、被検査体の材料内の音速データが不明な場合や被検査体が積層材からなる場合、あるいは径が長さ方向の途中で変化する被検査体の場合をも容易に検査することができる超音波検査方法を提供することを目的とする。
 本発明の超音波検査方法は、円筒形状の被検査体を介して、前記被検査体の円筒軸に直交する直径方向の直線に関して対称に超音波送信素子と超音波受信素子とを配置し、前記直径方向における異なる複数の位置において前記超音波送信素子から超音波を発信し、前記超音波発信素子から発信され前記被検査体の内部を伝搬して前記被検査体を透過した超音波を前記超音波受信素子によって受信し、前記超音波受信素子で受信した超音波の受信信号に基づき前記被検査体を検査する。
 前述したように被検査体内に対してガイド波を励起する角度で超音波を入射することにより、被検査体内を超音波が伝搬し、被検査体内から入射角と同じ大きさの逆向きの角度でモード変換して出てくる。したがって、被検査体内にガイド波を励起する角度で超音波を入射する超音波送信素子に対して、超音波受信素子を被検査体を介して対向した状態に配置することにより、被検査体内を伝搬してきた超音波を受信することができる。
 本発明の超音波検査方法においては、超音波送信素子と超音波受信素子とを被検査体を介して対向させた状態で被検査体の直径方向に移動させてもよい。この方法によれば、超音波送信素子の位置の変化に伴って、超音波送信素子からの超音波の送信方向は、被検査体の表面に対する入射角度が徐々に変化するように推移する。したがって、その角度がガイド波を励起する角度になると、超音波送信素子からの超音波が被検査体内に入射してガイド波に変換され、被検査体内を周方向に伝搬する。このとき、超音波受信素子は、超音波送信素子と対向した状態で移動しているので、被検査体を介して超音波送信素子と常に対向する位置に配置されており、被検査体から入射角と同じ大きさの逆向きの角度で受信することができ、その受信した超音波信号により被検査体内部を検査することができる。
 この超音波検査方法であれば、超音波送信素子と超音波受信素子とを対向させて移動するだけであるので、被検査体を構成する材料内の音速データが不明な場合や、異種材料の積層材からなる場合であっても、被検査体に対する入射角度の位置決め作業が不要で、確実に検査することができる。また、超音波送信素子と超音波受信素子とが常に対向した姿勢に保持されて被検査体をスキャンするので、被検査体の径が途中で変化する場合であっても被検査体内に超音波を入射して検査することができる。
 また、本発明の超音波検査方法においては、円筒形状の被検査体の円筒軸方向に直交する方向と平行な方向に複数の超音波送信素子と複数の超音波受信素子とを前記被検査体を介して対向するように配置し、前記超音波送信素子から被検査体に超音波を送信し、前記超音波受信素子により受信した超音波の受信信号に基づき被検査体を検査することとしてもよい。
 この超音波検査方法は、超音波送信素子と超音波受信素子とを移動させる代わりに、被検査体の直径方向に平行なアレイ状に複数組並べておき、すべての超音波送信素子から同時に、あるいは順番に超音波を送信して、被検査体内を伝搬した超音波を超音波受信素子のうちのいずれかで受信する方法である。つまり、アレイ状に並べられた超音波送信素子のうち、送信方向が被検査体に対してガイド波を励起する角度となった超音波送信素子からの超音波が被検査体内に入射してガイド波として伝搬し、その超音波送信素子と対向する超音波受信素子は、被検査体に対する受信方向が入射角度と同じ大きさの逆向きの角度に設定されていることから、被検査体内を伝搬した超音波を受信することができる。
 また、本発明の超音波検査方法においては、円筒形状の被検査体に向けてこの被検査体の軸方向に直交する方向と平行な方向に超音波を送信する超音波送信素子と、該超音波送信素子に対して前記被検査体を介して反対側に配置され、前記超音波送信素子から送信される超音波を受信可能な超音波受信素子とのいずれか一方を前記超音波送信素子の送信方向と直交する前記被検査体の直径方向に平行に複数並べるとともに、他方を前記直径方向に沿って移動しながら、前記超音波送信素子から超音波を送信し、前記超音波受信素子により受信した超音波の受信信号に基づき被検査体を検査することとしてもよい。
 超音波送信素子と超音波受信素子とのいずれか一方を被検査体の直径方向にアレイ状に並べ、他方を被検査体の直径方向に移動しながら超音波検査する方法であり、アレイ状に並べられた超音波送信素子または超音波受信素子のいずれかと、移動している超音波送信素子または超音波受信素子とが、被検査体内にガイド波を励起する角度で対向したときに被検査体内の超音波検査を実施することができる。
 本発明の超音波検査方法においては、前記超音波送信素子と前記超音波受信素子との間に、前記被検査体がない場合の前記超音波受信素子への超音波の到達時刻より前に設けた時間窓の範囲に収まる超音波の受信信号を第1超音波信号として解析し、この第1超音波信号の検知結果に基づき被検査体を検査するようにしてもよい。
 本発明の超音波検査方法において、前記被検査体の外側を経由して伝搬した超音波を前記超音波受信素子で受信するよりも先に、前記超音波受信素子に到達した超音波による第1超音波信号を検知したか否かを判定し、この第1超音波信号の検知結果に基づき被検査体を検査するようにしてもよい。
 本発明の超音波検査方法において、前記超音波送信素子と前記超音波受信素子との間に、前記被検査体の外側を通って前記超音波送信素子から前記超音波受信素子に到達する超音波を遮断するように遮蔽体を設けてもよい。
 本発明の超音波検査方法によれば、円筒形状の被検査体に対する入射角の面倒な位置決め作業を不要とし、被検査体の材料内の音速データが不明な場合や被検査体が積層材からなる場合、径が長さ方向の途中で変化する被検査体の場合をも容易に検査することができる。
本発明の第1実施形態の超音波検査方法を示す断面図である。 図1に示された超音波検査方法において、ガイド波を励起する角度で超音波を送受信する状態を示す断面図である。 本発明の第1実施形態の超音波検査方法を示すフローチャートである。 第1実施形態の超音波検査方法において受信される信号を示す波形図であり、被検査体を伝搬する透過波による超音波信号を検出するための時間窓を設定する第1の方法を示すグラフである。 第1実施形態の超音波検査方法において受信される信号を示す波形図であり、被検査体を伝搬する透過波による超音波信号を検出するための時間窓を設定する第2の方法を示すグラフである。 第1実施形態の超音波検査方法において受信される信号を示す波形図であり、被検査体を伝搬する透過波による超音波信号を検出するための時間窓を設定する第3の方法を示すグラフである。 第1実施形態の超音波検査方法において、被検査体内を伝搬する透過波による超音波を受信せず、被検査体の外側を経由した回折波による超音波のみを受信した場合を示す波形図である。 第1実施形態の超音波検査方法において、被検査体内を伝搬した透過波による超音波のみを受信した場合を示す波形図である。 本発明の第1実施形態の超音波検査方法に用いられる超音波検査装置を示すブロック図である。 第1実施形態の超音波検査方法に対して、被検査体の外側に遮蔽体を設けた変形例を示す断面図である。 本発明の第2実施形態の超音波検査方法を示すフローチャートである。 本発明の第3実施形態の超音波検査方法を示すフローチャートである。 本発明の第4実施形態の超音波検査方法を示す断面図である。 本発明の第5実施形態の超音波検査方法を示す断面図である。 本発明の第6実施形態の超音波検査方法を示す断面図である。 図15に示された超音波検査方法において、ガイド波を励起する角度で超音波を送受信する状態を示す断面図である。 本発明の第6実施形態の超音波検査方法に用いられる超音波検査装置を示すブロック図である。 第6実施形態の超音波検査方法に対して、被検査体の外側に遮蔽体を設けた変形例を示す断面図である。 本発明の第7実施形態の超音波検査方法を示す断面図である。 本発明の第8実施形態の超音波検査方法を示す断面図である。
 以下、本発明の実施形態について図面を参照しながら説明する。
<第1実施形態>
[超音波検査装置]
 まず、本発明の第1実施形態の超音波検査方法に用いられる超音波検査装置について説明すると、この超音波検査装置1は、図9に示すように、パルサーレシーバー部2と、探査部3と、信号処理部4とから構成されている。
 パルサーレシーバー部2は、超音波駆動信号を発生する信号発生器5と、発生した超音波駆動信号を超音波送信素子6に送信する信号送信部7と、超音波受信素子8からの信号を受信する信号受信部9と、受信した信号を増幅する受信信号増幅部10とを有している。
 探査部3は、信号送信部7から送信された超音波駆動信号により被検査体11に向けて超音波を送信する超音波送信素子6と、被検査体11を伝搬して透過した超音波を受信して受信電圧信号として信号受信部9に送る超音波受信素子8とを有している。これら超音波送信素子6と超音波受信素子8とは、超音波ビームを点集束させるポイントフォーカスタイプの探触子が好ましく、内部に圧電素子からなる超音波振動素子(図示略)を有しており、超音波送信素子6では、入力される電圧信号に応じて振動素子から超音波を送信し、超音波受信素子8では、受信した超音波を振動子により電圧信号に変換して出力する。
 超音波送信素子6および超音波受信素子8は、図示略のフレーム部材によりZ軸方向に対向した状態に保持される。被検査体11は、Y軸方向に延びる円筒軸が超音波送信素子6および超音波受信素子8の対向方向(Z軸方向)に直交するように超音波送信素子6と超音波受信素子8との間に配置される。さらに、被検査体11は、円筒軸に直交する円筒形状の断面の直径がY軸およびZ軸に直交するX軸方向となるように配置される。したがって、超音波送信素子6および超音波受信素子8の先端に設けられている振動子は被検査体11に向けた状態に配置される。さらに、超音波送信素子6および超音波受信素子8は、Z-X平面において、被検査体11のX軸方向に延びる直径を通る直線に関して対称な位置となる。
 被検査体11に対して超音波送信素子6および超音波受信素子8を、被検査体11の直径方向と平行なX方向、被検査体11の円筒軸方向と平行なY方向、及び被検査体11に対して離間接近するZ方向にそれぞれ移動させながら、被検査体11を超音波検査する。
 すなわち、図1にも示すように、被検査体11は、その円筒軸がY軸方向となるように水平に配置される。被検査体11の円筒形断面の直径および直径と平行な直線はX軸方向となる。これらX軸およびY軸に直交する上下方向はZ軸方向となる。
 超音波送信素子6および超音波受信素子8は、その対向方向(Z軸方向)には相互に離間接近するように個別に移動させられるが、X軸方向及びY軸方向には一体となって移動させられる。なお、このX軸方向及びY軸方向の移動は、被検査体11と超音波送信素子6および超音波受信素子8とを相対的に移動させればよいので、被検査体11をX軸方向及びY軸方向に移動させてもよい。
 信号処理部4は、信号発生器5における超音波駆動信号発生のための条件を設定する条件設定部31と、信号受信部9からの受信電圧信号に基づき被検査体11内の欠陥の有無を判定する欠陥判定部32と、受信電圧信号等を表示する表示部33と、超音波送信素子6および超音波受信素子8のスキャン操作を制御するスキャン制御部34と、これら条件設定部31、欠陥判定部32、表示部33、およびスキャン制御部34に各種制御値を入力する操作部35とを備えている。
 この信号処理部4はパソコン等により構成することができ、表示部(モニタ)33の画面上にタッチパネル式の操作部35を設け、その操作部35から後述する各種条件やスキャン制御部34に対する位置情報等の制御値を設定することができる。もちろん、操作部35は、キーボード等を用いてもよい。
[超音波検査方法]
 このように構成した超音波検査装置1により円筒形状の被検査体11の超音波検査を実施する方法について説明する。
 検査方法の概略について図3のフローチャートに従って説明すると、被検査体11を介して超音波送信素子6と超音波受信素子8とを対向させた状態で、1ラインのスキャンを開始するための初期位置に配置する(S1)。1ラインのスキャンを開始する初期位置は図1のA-A線上の位置であり、この図1の左方向矢印で示すように被検査体11の直径方向に沿う移動を1ラインのスキャンとする。
 次に、超音波送信素子6からバースト又はパルス型超音波を発信する(S2)。超音波受信素子8においては、受信される超音波について、被検査体11を回り込んで媒質(空気)を直接伝搬する回折波と、被検査体11内を透過してくる透過波とを区別し(S3)、透過波について強度を解析して(S4)、現在のスキャン位置における強度を欠陥判定部32に記録する(S5)。回折波と透過波とを区別する具体的方法は後述する。
 そして、超音波送信素子6および超音波受信素子8を対向させた姿勢を維持しながら、これら超音波送信素子6および超音波受信素子8を被検査体11の円筒の直径方向(X軸方向)に所定のスキャンピッチで移動する(S6)。これを1ラインのスキャンが終了するまで繰り返し、1ラインのスキャンが終了したと判断されたら(S7)、その1ラインのスキャンのなかで、所定の強度を超える超音波信号を検知した箇所が2か所存在するか否かを判定する(S8)。所定の強度を超える超音波信号を検知した箇所が2か所存在すると認められた場合(S8の判断がYESである場合)は、表示部33に「OK」を表示し(S9)、2か所存在するとは認められなかった場合(S8の判断がNOである場合)は、表示部33に「NG」を表示して(S10)、処理を終了する。
 次に、この検査方法について、超音波の伝搬形態、及び受信される超音波の区別方法等も含めて詳細に説明する。
 超音波送信素子6と超音波受信素子8とが、被検査体11を介して被検査体11の円筒軸に直交する被検査体11のX軸方向の直径を通る直線に関して対称に対向した位置(図1にA-Aで示す1ラインスキャンの初期位置)に配置される。超音波送信素子6と超音波受信素子8とは、対向した状態に保持され、超音波送信素子6は被検査体11に対してバースト又はパルス型超音波を送信する。この超音波送信素子6から送信された超音波は、被検査体11内にガイド波を励起する角度以外の角度で到達した場合は、被検査体11内を円筒状の周方向に沿って伝搬する超音波の強度が非常に小さくなるので、被検査体11内を伝播する超音波信号としては超音波受信素子8で受信されないとみなしてよい。
 図1のA-Aで示す位置から超音波送信素子6および超音波受信素子8を対向させた状態のまま、その対向方向に直交する被検査体11の直径方向(X軸方向)に移動しながら、超音波送信素子6から矢印で示すように超音波を送信する。この移動により、超音波送信素子6から送信され被検査体11に到達する超音波は、被検査体11の表面に対する送信方向の角度が徐々に変化する。超音波送信素子6から送信された超音波の、被検査体11に対する送信方向の角度が、被検査体11内にガイド波を励起する角度になると、被検査体11内に入射した超音波がガイド波に変換され、被検査体11を透過して周方向に伝搬する。例えば、被検査体11が鉄製の円筒体である場合、屈折角が90°を超える臨界角は、空気からの入射を考えると、約3.3°となる。そこで、入射角が約3.3°となる位置を超えてスキャンすることで、被検査体11内をガイド波に変換されて伝搬する可能性のある角度範囲をすべてカバーすることができる。
 このようにして超音波送信素子6から送信した超音波が被検査体11内にガイド波として透過して伝搬するとき、超音波受信素子8は、超音波送信素子6と対向した姿勢に保持されて同期して移動する。したがって、超音波受信素子8の受信方向が被検査体11に対して超音波送信素子6と同じ大きさの逆向きの角度となる姿勢で対向していることになる。このため、被検査体11内を伝搬したガイド波がモード変換して被検査体11の表面から出力される超音波を受信することができる。
 図2がこの状態を模式化して示しており、超音波送信素子6からの超音波が被検査体11にガイド波を励起する角度θで入射し、被検査体11内を透過して周方向に伝搬して、同じ大きさの逆向きの角度θで超音波受信素子8に受信される。前述した鉄製の被検査体の場合、その入射角θで入射した超音波は、反対側に対向する超音波受信素子8には、被検査体11をほぼ半周分伝搬した後に受信される。
 超音波送信素子6および超音波受信素子8により被検査体11を直径方向にスキャンしていくと、図2に示すように、被検査体11の表面に直角に超音波が到達する位置を中心に、左右反対側でも同じように、超音波送信素子6からの超音波が被検査体11にガイド波を励起する角度θで入射し、被検査体11内を透過して周方向に伝搬して、同じ角度θ(大きさ同じで逆向きの角度)で超音波受信素子8に受信される位置が生じる。
 したがって、超音波送信素子6および超音波受信素子8により被検査体11を直径方向にスキャンすることで、被検査体11内を伝搬した超音波を左右2か所(図2で示す位置)で受信することができる。
 ところで、超音波受信素子8によって受信される超音波は、被検査体11内を伝搬してきた超音波だけでなく、被検査体11の外側の媒質(空気)中を経由して直接到達した超音波も含まれる。前者は透過波であり、後者は回折波である。
 これら超音波のうち、被検査体11内を伝搬する超音波(透過波)の音速は、被検査体11の外側を経由して空中を伝搬してくる超音波(回折波)に比べて格段に速い。したがって、超音波受信素子8には被検査体11内を伝搬してきた超音波(透過波)が先に到達し、空中を伝搬してきた超音波(回折波)がその後に到達する。
 これら受信した超音波の信号を時間波形として図形化すると図4に示すようになる。この図4は、横軸が時間で、縦軸が信号の強度(振幅)を示す。超音波受信素子8には、先に、被検査体11内を伝搬してきた透過波による第1超音波信号Uが発生し、その後、空中を伝搬してきた回折波による第2超音波信号Sが発生する。そこで、これらの信号U,Sを時間的に区別することにより、第1超音波信号Uを検知したときに、被検査体11内を伝搬して得られた超音波信号であることが識別できる。この第1超音波信号Uの強度(振幅)が低下した場合には被検査体11内に欠陥が存在していると判断できる。
 つまり、第2超音波信号Sの前に生じる第1超音波信号Uの強度(振幅)が所定値以上であるか否かを判定し、所定値以上である場合に被検査体11が正常で、所定値未満である場合に被検査体11に欠陥が存在すると判定する。
 この超音波信号Sと超音波信号Uとを区別する方法について具体的に述べる。
 バーストまたはパルス型超音波の送信タイミングを0μsecとして、超音波送信素子6および超音波受信素子8の間に被検査体11がない場合の超音波伝搬は、例えば空気を媒質として伝わってくるため、C=(超音波送信素子および超音波受信素子間距離mm)/(空気の音速m/s)×1000μsecの時刻で受信される。そこで図4に示すように、Cよりもdμsec早い時刻をBμsec、それよりfμsec早い時刻をAμsecとし、AμsecからBμsecの範囲の時間窓を設定する。このAからBまでの時間窓に収まる超音波信号をUとする。例えばC=125μsecの場合、A=100μsec,B=124μsec(d=1μsec,f=24μsec)のように時間窓を設定し、この時間窓に入る信号を超音波信号Uとすることで、超音波信号Sと超音波信号Uを区別することが出来る。
 図5に示すように時間窓がCよりも前の時刻に来るように、0μsecからの遅延時間dの後に幅fの時間窓を設定する方法もある。
 超音波振動Sと超音波信号Uとの区別方法について、図6を参照してさらに他の方法を以下に具体的に述べる。
 被検査体11内を伝搬してきた超音波(透過波)の強度(振幅)は、空中を伝搬してきた超音波(回折波)よりも小さい。そこで、超音波信号の強度についての閾値を第1超音波信号Uに対して、正常とする判定用に第1閾値α、第2超音波信号Sに対して第1閾値αより大きい第2閾値βの二つを設定しておく。超音波受信素子8で受信した超音波信号の強度が第1閾値α以上であった場合には、第2閾値β以上であるか否かを判定する。その超音波信号の強度が第2閾値β以上であると判定された場合に、その超音波信号を前述した第2超音波信号Sであると判定する。
 そして、この第2超音波信号Sの前に、第2超音波信号Sより小さい強度の第1超音波信号Uを受信したか否かを判定する。つまり、図6に示すように、第2閾値β以上の第2超音波信号Sを検知するよりも所定時間(例えば5μs)前に第2閾値β未満で第1閾値α以上の超音波信号を検知していたときに、これを第1超音波信号Uであると判定し、この第1超音波信号Uが検知された場合に被検査体11が正常であると判定する。第2超音波信号Sの前に第1閾値α以上の第1超音波信号Uが検知されなかった場合には、被検査体11に欠陥があるか、あるいは被検査体11を検査できていないと判定する。
 図1及び図2に示すように、被検査体11の直径方向に超音波送信素子6および超音波受信素子8をスキャンすることにより、2か所で被検査体11内をガイド波の超音波が伝搬し、被検査体11が正常な場合は図4に示すように二種類の超音波信号U,Sを検出することができる。一方、その2か所以外の位置では、被検査体11への超音波の送信角度がガイド波を励起する角度ではないため、被検査体11内を伝搬する第1超音波信号Uとしては検知されない。この場合、被検査体11の外側を経由して受信される回折波による第2超音波信号Sのみが検知されるので、図7に示すような第2超音波信号Sのみの波形となる。また、図2に示す2か所の位置においても、被検査体11内に欠陥がある場合には、第1閾値以上の第1超音波信号Uとしては検知されずに、第1閾値未満の超音波信号となる。
 前述の検査方法では、この第1超音波信号Uが第1閾値以上で検知されたときに、被検査体11が正常であると判定し、そうでない場合は、被検査体11に欠陥があるか、あるいは超音波送信素子6および超音波受信素子8の送受信方向が被検査体11内にガイド波を励起する角度で配置されていないと判定する。
 以上説明した超音波検査方法においては、超音波送信素子6を円筒状被検査体11の直径方向に移動するので、超音波送信素子6から送信した超音波が被検査体11に対してガイド波を励起する角度で到達する位置で、超音波を被検査体11内に周方向に伝搬させることができる。このとき、超音波受信素子8は、被検査体11を挟んで超音波送信素子6と常に対向する位置に配置されており、被検査体11から超音波を入射角と同じ角度(大きさが同じで向きが逆の角度)で受信することができ、その受信した超音波信号により被検査体11内部を検査することができる。被検査体11の直径が変わっても、設定の変更をせずに超音波検査することができる。
 したがって、この超音波検査方法であれば、被検査体11を構成する材料内の音速データが不明な場合や、異種材料の積層材からなる場合であっても、被検査体11に対する入射角度の位置決め作業を不要とすることができる。また、超音波送信素子6および超音波受信素子8が常に対向した姿勢に保持されて被検査体11をスキャンするので、被検査体11の直径が途中で変化する場合であっても、入射角度の計算をすることなく被検査体11内に超音波を入射して検査することができる。
 特に、超音波送信素子6および超音波受信素子8としてポイントフォーカス型の探触子を用いていることにより、被検査体11に所定の角度でフォーカスする超音波を送信するので、ガイド波への変換を確実にし、被検査体がテーパ状の筒体である場合も確実に検査することができる。
 なお、被検査体内を伝搬する超音波(透過波)は、被検査体内を複数周伝搬する。そして、超音波送信素子6および超音波受信素子8が図2に示す配置のときに、超音波受信素子8には、被検査体11内を周回するごとに超音波が受信されるが、一周以上周回してでてきた超音波信号は、被検査体11の外側を通って受信した超音波信号(第2超音波信号S)と混在して識別し難いため、前述の検査においては、被検査体11内を伝搬して最初に検知される超音波信号によって欠陥の有無を判定する。
 ところで、前述したように、超音波受信素子8によって受信される超音波は、被検査体11内を伝搬してきた超音波(透過波)だけでなく、被検査体11の外側を経由して空中を伝搬してきた超音波(回折波)も含まれる。前述の実施形態では、受信される超音波信号の時間的なずれを利用して被検査体11内を伝搬した超音波(第1超音波信号U)であるか否かを判定したが、欠陥が存在する場合に受信される超音波信号の強度が低下するため、被検査体11内を伝搬した超音波信号のみによって検査することも可能である。その場合は、受信した超音波信号が前述した第1閾値αより大きい場合は正常で、第1閾値αより小さい場合には欠陥が存在していると判定する。
 ただし、この検査方法を実施する場合は、被検査体11の外部を経由して空中を伝搬してくる超音波(回折波)を超音波受信素子8で受信しないようにする必要がある。
 そこで、図10に示すように、被検査体11の外側を通って超音波送信素子6から超音波受信素子8に到達する超音波信号を遮断するように被検査体11の外周面上に遮蔽体41を配置して超音波検査を行う。図10に示す例では、超音波送信素子6と超音波受信素子8との対向方向に対して直交する方向に延びるブロック状の遮蔽体41を被検査体11の外周面に接した状態に配置している。遮蔽体41としては、例えばアクリル樹脂やアルミニウムを用いることができる。
 この遮蔽体41を設けた状態で超音波検査することにより、前述した第2超音波信号S(図4参照)が受信されなくなり、第1超音波信号Uのみを有効に検出することができ、正確な超音波検査を実施することができる。
 この遮蔽体41を用いて超音波検査する場合、前述した第2超音波信号Sを受信しないので、図8に示すように被検査体11内を1周以上周回して伝搬する超音波信号も受信して解析対象とすることが可能である。前述したように被検査体11内を伝搬する超音波は被検査体11のほぼ半周分を伝搬して超音波受信素子8に受信されるが、ほぼ1周半、2周半伝搬する超音波も受信して解析することにより、より精度の高い検査を実施することができる。なお、被検査体11内を1周以上周回する超音波を受信して検査する場合、左右2か所で超音波信号を送受信しなくとも、そのいずれか一方のみで送受信することで検査してもよく、被検査体11の直径方向の半分(右半分又は左半分)のみスキャンすればよい。
<第2実施形態>
 以上の超音波検査は、被検査体11の特定の横断位置を直径方向にスキャンして検査する方法であったが、被検査体11の全長にわたって超音波検査する場合は、図11に示すフローチャートにしたがって処理する。この図11のフローチャートにおいて、図3のフローチャートと同じ処理の部分には同一符号を付して説明を簡略化する(以下、後述する図12のフローチャートにおいても同様とする)。
 被検査体11の全長を超音波検査する場合、S1からS10までの処理を被検査体11の円筒の軸方向(Y方向)に所定ピッチで移動しながら軸の終端まで繰り返せばよい。
 すなわち、S1からS10までの処理の後、その1ラインのスキャンが被検査体11の軸終端であるか否かが判断され(S11)、軸終端であると判断されなかった場合は、被検査体11の軸方向に所定の送りピッチで超音波送信素子6および超音波受信素子8を移動し(S12)、S1からの処理を繰り返す。
 この図11のフローチャートでは、1ラインのスキャンごとに表示部33に「OK」又は「NG」の表示をするようにしたが、これに加えて、又はこれに代えて、被検査体11の全長にわたって検査した後に、表示部33に「OK」又は「NG」の表示をするようにしてもよい。あるいは、S8の1ラインのスキャンで所定の強度を超える箇所が2か所存在していたと判断されなかった(S8の判断がNOである)場合には、表示部33に「NG」を表示するが、2か所存在していたと判断された(S8の判断がYESである)場合には、表示部33に「OK」と表示することなく、S11以降の処理をして、被検査体11の軸方向に超音波送信素子6および超音波受信素子8を移動し、軸終端まで検査した後(1ラインごとのスキャンのすべてでS8の判断結果がYESである場合)に、表示部33に「OK」と表示するようにしてもよい。
 また、図11では、S10において表示部33に「NG」と表示した後でも、被検査体11を軸方向に移動して検査しているが、最初の1ラインスキャンの検査結果によりS10で表示部33に「NG」と表示されたら、その後の検査を終了してもよい。
<第3実施形態>
 ところで、これまで述べてきたように、1ラインごとのスキャンで、所定の強度を超える超音波信号を2か所で検知したか否かを判断することで、被検査体11の円周方向の大部分を超音波検査することができる。しかしながら、送信した超音波がガイド波に変換される入射角となる超音波送信素子6の配置は、被検査体11の表面に対して送信方向がわずかに斜めになる位置関係であるので、被検査体11に90°の角度(つまり、超音波送信素子6が被検査体11の直径方向の延長上に配置される角度)で超音波が入射する位置の付近では超音波が内部に入射してガイド波に変換しない。このため、この部分の超音波検査を実施することができない。
 そこで、前述のようにして被検査体11に対して一の直径方向にスキャンしながら超音波検査した後、被検査体11を円筒軸中心Oに例えば90°回転して、再度直径方向にスキャンしながら超音波検査する。
 図12のフローチャートで説明すると、S8で所定の強度を超える箇所が2か所存在したと判定された場合に、角度を変えてラインスキャンを2回繰り返したか否かが判定され(S13)、2回繰り返していないと判定された場合は、被検査体11を円筒軸心回りに例えば90°回転した(S14)後、再度S1からの検査を実施し、S13で角度を変えて2回繰り返したと判定された場合に、表示部33に「OK」と表示する。以降は、被検査体11の円筒軸方向に所定の送りピッチで超音波送信素子6および超音波受信素子8を移動し(S11)、S1からの処理を繰り返す。
 このように、被検査体11を軸中心に回転させて、被検査体11に対する異なる二方向の直径方向でスキャンして超音波検査することにより、被検査体11の全周を検査することができる。
 そして、被検査体11の特定の長さ方向位置で超音波検査した後、超音波送信素子6および超音波受信素子8を被検査体11の長さ方向(Y方向)に移動した後、前述と同様にして被検査体11の直径方向にスキャンする。この操作を、超音波送信素子6および超音波受信素子8を被検査体11の長さ方向(Y方向)に少しずつ移動しながら繰り返すことにより、被検査体11の全長にわたって超音波検査することができる。
 なお、図12では、S10において表示部33に「NG」と表示した後でも、被検査体11を軸方向に移動して検査しているが、最初の1ラインスキャンの検査結果によりS10で表示部33に「NG」と表示されたら、その後の検査を終了してもよい。
<第4実施形態>
 図13は、本発明の超音波検査方法において、超音波送信素子6および超音波受信素子8のスキャン方法の異なる第4実施形態を示している。第1実施形態から第3実施形態の超音波検査方法では、一組の超音波送信素子6と超音波受信素子8とを用いて、これら超音波送信素子6および超音波受信素子8を対向させた状態で移動させた。第4実施形態では、超音波送信素子6と超音波受信素子8とを複数組用いて、これらをアレイ状に並べて使用する。
 すなわち、複数組の超音波送信素子6と超音波受信素子8とが被検査体11の直径方向(X軸方向)に並べられるとともに、各組の超音波送信素子6および超音波受信素子8は、被検査体11を介してZ軸上に離れて配置され、Z軸方向に対向している。この状態で、各超音波送信素子6から被検査体11に超音波を送信すると、送信方向が被検査体11に対してガイド波を励起する角度(図2の角度θ参照)となった超音波送信素子6からの超音波が被検査体11内に入射され、ガイド波として被検査体11内を周方向に伝搬する。このとき、その超音波送信素子6と対向する超音波受信素子8も、入射角度と同じ大きさで逆向きの角度に設定されていることから、被検査体11内を伝搬した超音波を受信することができる。図13に示す例では、B-Bで示す位置において、超音波送信素子6から送信され被検査体11内を伝搬した超音波が超音波受信素子8に受信される。
<第5実施形態>
 また、超音波送信素子6と超音波受信素子8とのいずれか一方を被検査体11の直径方向(X方向)にアレイ状に並べて複数配置し、他方に超音波送信素子6と超音波受信素子8とのいずれか他方を1個配置して、被検査体11の直径方向(X方向)に移動しながら超音波検査する方法としてもよい。
 図14には、超音波受信素子8を被検査体11の直径方向(X軸方向)にアレイ状に並べて配置し、超音波送信素子6を矢印で示す直径方向(X軸方向)に移動しながら超音波を送信して検査する方法を示している。この検査方法では、超音波送信素子6が被検査体11に対してガイド波を励起する角度(図2の角度θ参照)で超音波を送信する位置に配置されたときに、アレイ状の超音波受信素子8のうち、超音波送信素子6の位置と対向する位置関係にある超音波受信素子8(図14のB-Bで示す対向関係にある超音波受信素子)によって被検査体11内を伝搬してきた超音波を受信することができる。
 図14では、1個の超音波送信素子6を被検査体11の直径方向に移動し、複数個の超音波受信素子8を被検査体11の直径方向に並べて配置したが、逆に、複数個の超音波送信素子6を被検査体11の直径方向に並べて配置し、1個の超音波受信素子8を被検査体11の直径方向に移動しながら超音波を受信する方法としてもよい。
<第6実施形態>
 次に、図15から図17を参照して、本発明の第6実施形態について説明する。上述した第3実施形態においては、被検査体11に90°の角度で超音波送信素子6からの超音波が入射する部分についても超音波検査を行うために、被検査体11を円筒軸中心に90°回転させて再度直径方向にスキャンして超音波検査を行うようにしている。
 これに対して、第6実施形態においては、図15および図16に示すように、第3実施形態における超音波送信素子6および超音波受信素子8を被検査体11の円筒軸を中心に90°回転させた位置に、第2の超音波送信素子61および第2の超音波受信素子81の組を設けている。超音波送信素子6および超音波受信素子8による被検査体11の図15の左方向(X軸方向)のスキャンが完了すると、被検査体11を円筒軸周りに回転させることなく、第2の超音波送信素子61および第2の超音波受信素子81を矢印方向にスキャンさせながら超音波送信素子61から超音波を送信して、超音波送信素子6および超音波受信素子8によって超音波検査を行うことができなかった部分についても超音波検査を行うことができる。
 すなわち、図16に示すように、第2の超音波送信素子61からの超音波が被検査体11にガイド波を励起する角度θで入射し、被検査体11内を透過して円周方向に伝搬して、同じ大きさの逆向きの角度θで出射して第2の超音波受信素子81に受信される。第2の超音波送信素子61から入射角θで入射した超音波は、反対側に対向する第2の超音波受信素子81に、被検査体11をほぼ半周分伝搬した後に受信される。この超音波の伝搬箇所には、超音波送信素子6からの超音波が90°の角度で入射する部分も含まれるので、超音波送信素子6および超音波受信素子8によって超音波検査を行うことができなかった部分についても超音波検査を行うことができる。
 なお、第6実施形態においては、超音波送信素子6および超音波受信素子8を被検査体11の円筒軸を中心に90°回転させた位置に、第2の超音波送信素子61および第2の超音波受信素子81の組を設けている。しかしながら、超音波送信素子6および超音波受信素子8と、第2の超音波送信素子61および第2の超音波受信素子81との配置位置は、被検査体11の円筒軸を中心として90°の角度だけ回転させた位置に限定されない。この角度は、30°、45°等の任意の角度でも良い。また、本実施形態においては、超音波送信素子および超音波受信素子を2組設けているが、2組に限らず、より多くの組を設けてもよい。
 この第6実施形態の超音波検査方法に用いられる超音波検査装置について図17を参照して説明する。図17において、図9に示された超音波検査装置と同一の構成については同一の参照番号を付し、それらの説明は省略する。
 図17を参照すると、上述したとおり、第2の超音波送信素子61および第2の超音波受信素子81の組は、超音波送信素子6および超音波受信素子8を被検査体11の円筒軸を中心に90°回転させた位置に設けられている。第2の超音波送信素子61および第2の超音波受信素子81は、スキャン制御部34によってZ軸方向に駆動できるようになっている。第2の超音波送信素子61は、超音波送信素子6と同様に、信号送信部7に接続される。第2の超音波送信素子61は、信号送信部7から送信された超音波駆動信号により、被検査体11に向けて超音波を送信する。第2の超音波受信素子81は、超音波受信素子8と同様に、信号受信部9に接続される。第2の超音波受信素子81は、超音波受信素子8と同様に、被検査体11を伝搬して透過した超音波を受信して受信電圧信号として信号受信部9に送る。その他の動作は、図9に示された超音波検査装置と同様である。
 この第6実施形態の検査方法を実施する場合は、図10に示された超音波検査方法と同様に、超音波送信素子61から被検査体11の外部を経由して空中を伝搬してくる超音波(回折波)を超音波受信素子81で受信しないようにすることが望ましい。
 そこで、図18に示すように、遮蔽体41に加え、被検査体11の外側を通って超音波送信素子61から超音波受信素子81に到達する超音波信号を遮断するように被検査体11の外周面上に遮蔽体42を配置して超音波検査を行う。図18に示す例では、超音波送信素子61と超音波受信素子81との対向方向に対して直交する方向に延びるブロック状の遮蔽体42を被検査体11の外周面に接した状態に遮蔽体41から90°回転させた位置に配置している。遮蔽体42としては、遮蔽体41と同様に例えばアクリル樹脂やアルミニウムを用いることができる。
 この遮蔽体42を設けた状態で超音波検査することにより、超音波受信素子81において前述した第2超音波信号S(図4参照)が受信されなくなり、第1超音波信号Uのみを有効に検出することができ、正確な超音波検査を実施することができる。
<第7実施形態>
 図19を参照して、本発明の第7実施形態の超音波検査方法を説明する。上述した第4実施形態においては、図13に示すように、超音波送信素子6と超音波受信素子8とを複数組用いて、これらをアレイ状に並べて使用する。第7実施形態においては、第4実施形態の構成に加えて、第2の超音波送信素子61および第2の超音波受信素子81も複数組用いて、これらをアレイ状に並べて使用する。
 すなわち、第4実施形態の構成に加え、複数組の超音波送信素子61と超音波受信素子81とが被検査体11のZ軸方向の直径方向に並べられるとともに、各組の超音波送信素子61および超音波受信素子81は、被検査体11を介してX軸上に離れて配置され、X軸方向に対向している。すなわち、第7実施形態においては、複数組の超音波送信素子61と超音波受信素子81とが、複数組の超音波送信素子6と超音波受信素子8とを被検査体11の円筒軸を中心に90°回転させた位置に配置されている。
 この状態で、各超音波送信素子61から被検査体11に超音波を送信すると、送信方向が被検査体11に対してガイド波を励起する角度(図16の角度θ参照)となった超音波送信素子61からの超音波が被検査体11内に入射され、ガイド波として被検査体11内を周方向に伝搬する。このとき、その超音波送信素子61と対向する超音波受信素子81も、入射角度と同じ大きさで逆向きの角度に設定されていることから、被検査体11内を伝搬して出射した超音波を受信することができる。図19に示す例では、C-Cで示す位置において、超音波送信素子61から送信され被検査体11内を伝搬した超音波が超音波受信素子81に受信される。
 なお、第7実施形態においては、複数組の超音波送信素子6および超音波受信素子8を被検査体11の円筒軸を中心に90°回転させた位置に、複数組の第2の超音波送信素子61および第2の超音波受信素子81を設けている。しかしながら、複数組の超音波送信素子6および超音波受信素子8と、複数組の第2の超音波送信素子61および第2の超音波受信素子81との配置位置は、被検査体11の円筒軸を中心として90°の角度だけ回転させた位置に限定されない。この角度は、30°、45°等の任意の角度でも良い。また、本実施形態においては、複数組の超音波送信素子および超音波受信素子を2組設けているが、2組に限らず、より多くの組を設けてもよい。
<第8実施形態>
 図20を参照して、本発明の第8実施形態の超音波検査方法を説明する。上述した第5実施形態においては、図14に示すように、超音波受信素子8を被検査体11の直径方向(X軸方向)にアレイ状に並べて配置し、超音波送信素子6を矢印で示す直径方向(X軸方向)に移動しながら超音波を送信して検査する。第8実施形態においては、第5実施形態の構成に加えて、複数の超音波受信素子81を被検査体11のZ軸方向の直径方向にアレイ状に並べて配置し、超音波送信素子61を矢印で示すZ軸方向に移動しながら超音波を送信して検査する。すなわち、第8実施形態においては、超音波送信素子61と複数個の超音波受信素子81とが、超音波送信素子6と複数個の超音波受信素子8とを被検査体11の円筒軸を中心に90°回転させた位置に配置されている。
 この検査方法では、超音波送信素子61が被検査体11に対してガイド波を励起する角度(図2の角度θ参照)で超音波を送信する位置に配置されたときに、アレイ状の超音波受信素子81のうち、超音波送信素子61の位置と対向する位置関係にある超音波受信素子81(図20のC-Cで示す対向関係にある超音波受信素子)によって被検査体11内を伝搬してきた超音波を受信することができる。
 第8実施形態においては、1個の超音波送信素子61を被検査体11のZ軸方向の直径方向に移動し、複数個の超音波受信素子8を被検査体11のZ軸方向の直径方向に並べて配置した。しかしながら、逆に、複数個の超音波送信素子61を被検査体11のZ軸方向の直径方向に並べて配置し、1個の超音波受信素子81を被検査体11のZ軸方向の直径方向に移動しながら超音波を受信する方法としてもよい。
 なお、第8実施形態においては、1つの超音波送信素子6および複数の超音波受信素子8を被検査体11の円筒軸を中心に90°回転させた位置に、1つの超音波送信素子61および複数の超音波受信素子81の組を設けている。しかしながら、1つの超音波送信素子6および複数の超音波受信素子8の組と、1つの超音波送信素子61および複数の超音波受信素子81の組との配置位置は、被検査体11の円筒軸を中心として90°の角度だけ回転させた位置に限定されない。この角度は、30°、45°等の任意の角度でも良い。また、本実施形態においては、超音波送信素子および超音波受信素子を2組設けているが、2組に限らず、より多くの組を設けてもよい。
 なお、本発明は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、前記実施形態では、受信した超音波信号の強度(振幅)に着目して第1超音波信号Uと第2超音波信号Sを区別したが、周波数特性に着目して第1超音波信号Uと第2超音波信号Sを区別してもよい。この場合、周波数解析して二つのピークのうち特定の周波数の方を選択する、あるいは、回折波は強度が非常に強いので強度の弱いほうのピークを選択するようにしてもよい。
 また、前記実施形態では、超音波送信素子および/または超音波受信素子をX方向及びY方向に移動するように説明したが、被検査体をX方向及びY方向に移動してもよい。
 さらに、上述した実施形態において、被検査体11は、円筒形状である例を示した。しかしながら、被検査体の形状は、筒状であれば、筒状軸と直交する断面が楕円形状でもよい。
 被検査体の断面が楕円形状であって超音波送信素子6または超音波受信素子8をスキャンさせる場合には、その楕円形状の長軸または短軸と平行に超音波送信素子6または超音波受信素子8をスキャンさせればよい。また、被検査体の断面が楕円形状であって複数の超音波送信素子6または超音波受信素子8を並設する場合には、被検査体の断面の楕円形状の長軸または短軸と平行に複数の超音波送信素子6または超音波受信素子8を設ければよい。したがって、本明細書において、「円筒形状」という文言には、円筒形の筒だけでなく、楕円形の筒も含まれる。
 本発明は、超音波による円筒形状の被検査体の内部検査に適用でき、円筒形状の被検査体に対する入射角の面倒な位置決め作業を不要とし、被検査体の材料内の音速データが不明な場合や被検査体が積層材からなる場合等でも被検査体の欠陥等を容易に検査することができる。
 1 超音波検査装置
 2 パルサーレシーバー部
 3 探査部
 4 信号処理部
 5 信号発生器
 6 超音波送信素子(検査波送信機)
 7 信号送信部
 8 超音波受信素子
 9 信号受信部
10 受信信号増幅部
11 被検査体
21 スキャン機構部
22 ステージ
23 X方向駆動部
24 Y方向駆動部
25,26 Z方向駆動部
31 条件設定部
32 欠陥判定部
33 表示部
34 スキャン制御部
35 操作部
41 遮蔽体

Claims (8)

  1.  円筒形状の被検査体を介して、前記被検査体の円筒軸に直交する直径方向の直線に関して対称に超音波送信素子と超音波受信素子とを配置し、
     前記直径方向における異なる複数の位置において前記超音波送信素子から超音波を発信し、
     前記超音波発信素子から発信され前記被検査体の内部を伝搬して前記被検査体を透過した超音波を前記超音波受信素子によって受信し、
     前記超音波受信素子で受信した超音波の受信信号に基づき前記被検査体を検査する超音波検査方法。
  2.  前記超音波送信素子と前記超音波受信素子とを前記直径方向の直線に関して対称に保持した状態で前記超音波送信素子と前記超音波受信素子とを前記直径方向に平行に移動させ、
     前記直径方向における異なる複数の位置において前記超音波送信素子から超音波を発信する工程は、前記超音波送信素子と前記超音波受信素子とを移動させながら前記超音波送信素子から前記超音波を送信することによって行われる請求項1に記載の超音波検査方法。
  3.  前記超音波送信素子と前記超音波受信素子とを前記直径方向に平行に複数組配置し、
     前記直径方向における異なる複数の位置において前記超音波送信素子から超音波を発信する工程は、複数の前記超音波送信素子から前記被検査体に順次前記超音波を送信することによって行われる請求項1に記載の超音波検査方法。
  4.  前記超音波受信素子を前記直径方向に平行に複数並べて配置するとともに、前記超音波送信素子を前記直径方向に沿って移動させ、
     前記直径方向における異なる複数の位置において前記超音波送信素子から超音波を発信する工程は、前記超音波送信素子を移動させながら前記超音波送信素子から前記超音波を送信することによって行われる請求項1に記載の超音波検査方法。
  5.  前記超音波送信素子と前記超音波受信素子との間に前記被検査体がない場合の前記超音波受信素子への前記超音波の到達時刻より前に設けた時間窓の範囲に収まる超音波の受信信号を第1超音波信号として解析し、前記第1超音波信号の検知結果に基づき前記被検査体を検査する請求項1から4のいずれか一項に記載の超音波検査方法。
  6.  前記被検査体の外部の空間を経由して伝搬した超音波を前記超音波受信素子で受信するよりも先に、前記超音波受信素子に到達した超音波による第1超音波信号を検知したか否かを判定し、該第1超音波信号の検知結果に基づき被検査体を検査する請求項1から4のいずれか一項に記載の超音波検査方法。
  7.  前記超音波送信素子と前記超音波受信素子との間に、前記被検査体の外部の空間を通って前記超音波送信素子から前記超音波受信素子に到達する超音波を遮断するように遮蔽体を設けた請求項1から4のいずれか一項に記載の超音波検査方法。
  8.  前記被検査体の円筒軸に関して前記超音波送信素子と前記超音波受信素子を予め定められた角度だけ回転させた位置に各々さらなる超音波送信素子とさらなる超音波受信素子とを配置し、
      前記被検査体の直径方向における異なる複数の位置において前記さらなる超音波送信素子から超音波を発信し、
     前記さらなる超音波発信素子から発信され前記被検査体の内部を伝搬して前記被検査体を透過した超音波を前記さらなる超音波受信素子によって受信し、
     前記さらなる超音波受信素子で受信した超音波の受信信号に基づき前記被検査体を検査する請求項1に記載の超音波検査方法。
PCT/JP2016/088864 2016-01-05 2016-12-27 超音波検査方法 WO2017119359A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017560123A JP6542394B2 (ja) 2016-01-05 2016-12-27 超音波検査方法
CN201680076989.1A CN108474770A (zh) 2016-01-05 2016-12-27 超声波检查方法
US16/016,846 US20180321193A1 (en) 2016-01-05 2018-06-25 Ultrasonic inspection method
US17/073,597 US11415554B2 (en) 2016-01-05 2020-10-19 Ultrasonic inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-000750 2016-01-05
JP2016000750 2016-01-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/016,846 Continuation US20180321193A1 (en) 2016-01-05 2018-06-25 Ultrasonic inspection method

Publications (1)

Publication Number Publication Date
WO2017119359A1 true WO2017119359A1 (ja) 2017-07-13

Family

ID=59273636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088864 WO2017119359A1 (ja) 2016-01-05 2016-12-27 超音波検査方法

Country Status (4)

Country Link
US (2) US20180321193A1 (ja)
JP (2) JP6542394B2 (ja)
CN (2) CN112129833A (ja)
WO (1) WO2017119359A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019117206A (ja) * 2016-01-05 2019-07-18 ヤマハファインテック株式会社 超音波検査方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541032A (zh) * 2018-12-03 2019-03-29 国网上海市电力公司 一种片式元器件检测方法及系统

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885419A (en) * 1971-07-29 1975-05-27 Mannesmann Roehren Werke Ag Method and apparatus for ultrasonic testing of tubes and rods
US3981184A (en) * 1975-05-07 1976-09-21 Trw Inc. Ultrasonic diagnostic inspection systems
JPS6019438B2 (ja) * 1980-10-16 1985-05-16 株式会社神戸製鋼所 プレ−トフィン型熱交換器の欠陥検査方法
FR2588086B1 (fr) * 1985-09-30 1988-07-15 Novatome Procede et dispositif de detection par ultrasons de bulles de gaz dans un metal liquide
CA1280493C (en) * 1986-06-10 1991-02-19 Anthony R. Cusdin Radio direction-finding using time of arrival measurements
EP0378287B1 (de) * 1989-01-13 1996-06-19 MANNESMANN Aktiengesellschaft Verfahren zur Erfassung von Ungänzen an langgestreckten Werkstücken
CN1093805A (zh) * 1994-01-06 1994-10-19 山西省电力公司电力建设三公司 钢管砼强度和缺陷的超声检测法
AU3361095A (en) * 1994-08-05 1996-03-04 Acuson Corporation Method and apparatus for transmit beamformer system
JP2000241397A (ja) * 1999-02-24 2000-09-08 Nkk Corp 表面欠陥検出方法および装置
US6401538B1 (en) * 2000-09-06 2002-06-11 Halliburton Energy Services, Inc. Method and apparatus for acoustic fluid analysis
US6992771B2 (en) * 2001-11-28 2006-01-31 Battelle Memorial Institute Systems and techniques for detecting the presence of foreign material
US7395711B2 (en) * 2002-05-06 2008-07-08 Battelle Memorial Institute System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy
US20040123666A1 (en) * 2002-12-31 2004-07-01 Ao Xiaolei S. Ultrasonic damping material
US7240556B2 (en) * 2005-03-14 2007-07-10 The Boeing Company Angle beam shear wave through-transmission ultrasonic testing apparatus and method
US20060266119A1 (en) * 2005-05-23 2006-11-30 Applied Sonics, Incorporated Ultrasonic system for on-line monitoring of pressed materials
KR100814089B1 (ko) * 2005-06-13 2008-03-14 주식회사 인디시스템 탐촉자 병렬 연결 방식을 이용한 관 이음 융착부 검사장치및 그 방법
WO2007024000A1 (ja) * 2005-08-26 2007-03-01 Sumitomo Metal Industries, Ltd. 超音波探触子、超音波探傷装置、超音波探傷方法及び継目無管の製造方法
GB2431991A (en) * 2005-11-04 2007-05-09 Imp College Innovations Ltd Waveguide for ultrasonic non-destructive testing
JP4984519B2 (ja) * 2005-12-19 2012-07-25 Jfeスチール株式会社 超音波による金属材料の断面検査方法及び装置
CN101438150B (zh) * 2006-05-16 2012-06-27 康宁股份有限公司 用于陶瓷蜂窝式结构的超声测试方法和设备
NO327139B1 (no) * 2006-05-30 2009-05-04 Clampon As Fremgangsmate og system for bestemmelse av tap i materialtykkelse i en fast struktur
WO2007145200A1 (ja) * 2006-06-13 2007-12-21 Sumitomo Metal Industries, Ltd. 超音波探傷方法、溶接鋼管の製造方法及び超音波探傷装置
JP4866791B2 (ja) * 2007-05-29 2012-02-01 株式会社日立製作所 超音波探傷装置及び方法
JP2009036516A (ja) * 2007-07-31 2009-02-19 Hitachi-Ge Nuclear Energy Ltd ガイド波を用いた非破壊検査装置及び非破壊検査方法
DE102007056543A1 (de) * 2007-11-23 2009-05-28 Robert Bosch Gmbh Verfahren zur Untersuchung von Phasenzuständen
JP4602421B2 (ja) * 2008-01-16 2010-12-22 株式会社東芝 超音波探傷装置
WO2009122904A1 (ja) * 2008-03-31 2009-10-08 日本クラウトクレーマー株式会社 超音波探傷方法とその装置
JP5193720B2 (ja) * 2008-07-22 2013-05-08 九州電力株式会社 非接触空中超音波による管体超音波探傷装置及びその方法
EP2348313B1 (en) * 2008-11-19 2019-09-25 Nippon Steel Corporation Method and apparatus for ultrasonically detecting flaws of a welded portion
CN101424664B (zh) * 2008-12-05 2011-06-22 中国铁道科学研究院金属及化学研究所 钢轨踏面裂纹超声波检测装置及检测方法
US8548759B2 (en) * 2009-11-06 2013-10-01 University Of Virginia Patent Foundation Methods, apparatus, or systems for characterizing physical property in non-biomaterial or bio-material
US8402841B2 (en) * 2010-03-11 2013-03-26 Expro Meters, Inc. Apparatus and method for sensing fluid flow in a pipe with variable wall thickness
FR2967788B1 (fr) * 2010-11-23 2012-12-14 Commissariat Energie Atomique Systeme de detection et de localisation d’une perturbation d’un milieu, procede et programme d’ordinateur correspondants
JP2012127832A (ja) * 2010-12-16 2012-07-05 Hitachi Engineering & Services Co Ltd ガイド波を用いた非破壊検査方法および装置
JP5575634B2 (ja) * 2010-12-28 2014-08-20 日立Geニュークリア・エナジー株式会社 超音波表面探傷装置および超音波表面探傷法
JP2012141230A (ja) * 2011-01-04 2012-07-26 Hitachi Ltd 非破壊検査装置
JP5662873B2 (ja) * 2011-05-26 2015-02-04 日立Geニュークリア・エナジー株式会社 超音波探傷方法
WO2013023987A1 (en) * 2011-08-17 2013-02-21 Empa, Eidgenössische Materialprüfungs- Und Forschungsanstalt Air coupled ultrasonic contactless method for non-destructive determination of defects in laminated structures
JP5922558B2 (ja) * 2011-11-24 2016-05-24 三菱重工業株式会社 超音波厚さ測定方法及び装置
CN102721743A (zh) * 2012-06-26 2012-10-10 衡阳华菱钢管有限公司 超声波探伤厚壁钢管纵向内壁缺陷的方法
FR2993361B1 (fr) * 2012-07-10 2014-08-01 Snecma Procede de caracterisation d'un objet comprenant au moins localement un plan de symetrie
JP5377723B2 (ja) * 2012-08-20 2013-12-25 株式会社東芝 状態判定装置及び方法
JP2014137276A (ja) * 2013-01-16 2014-07-28 Yamaha Fine Technologies Co Ltd 超音波検査装置及び超音波検査方法
US9228888B2 (en) * 2013-01-23 2016-01-05 General Electric Company Sensor positioning with non-dispersive guided waves for pipeline corrosion monitoring
US9689671B2 (en) * 2013-01-30 2017-06-27 University Of Cincinnati Measuring wall thickness loss for a structure
WO2015059990A1 (ja) * 2013-10-23 2015-04-30 富士電機株式会社 流体計測装置
GB2521661A (en) * 2013-12-27 2015-07-01 Xsens As Apparatus and method for measuring flow
CN103822972B (zh) * 2014-02-18 2016-08-17 北京万东康源科技开发有限公司 一种超声波信号动态调整方法、装置及系统
CN204214815U (zh) * 2014-10-27 2015-03-18 浙江省特种设备检验研究院 一种压力管道超声内检测自动化装置
JP6542394B2 (ja) * 2016-01-05 2019-07-10 ヤマハファインテック株式会社 超音波検査方法
JP6758083B2 (ja) * 2016-05-12 2020-09-23 株式会社日立製作所 配管検査装置
JP6764886B2 (ja) * 2018-02-02 2020-10-07 日本電信電話株式会社 プローブ設置方法および送信プローブの駆動方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDEO NISHINO ET AL.: "Hi Sesshoku Kuchu Choonpa Sensor de Reiki shita Enshu Hoko Lamb- ha no Shukaiha no Kasaneawase ni yoru Tansho Hoho no Teian", HEISEI 20 NENDO SHUNKI TAIKAI KOEN GAIYOSHU, 20 May 2008 (2008-05-20) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019117206A (ja) * 2016-01-05 2019-07-18 ヤマハファインテック株式会社 超音波検査方法
US11415554B2 (en) 2016-01-05 2022-08-16 Yamaha Fine Technologies Co., Ltd. Ultrasonic inspection method

Also Published As

Publication number Publication date
US20210048412A1 (en) 2021-02-18
JP2019117206A (ja) 2019-07-18
JP6598045B2 (ja) 2019-10-30
US11415554B2 (en) 2022-08-16
JPWO2017119359A1 (ja) 2018-08-02
CN112129833A (zh) 2020-12-25
JP6542394B2 (ja) 2019-07-10
CN108474770A (zh) 2018-08-31
US20180321193A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP4544240B2 (ja) 管体の超音波探傷装置および超音波探傷方法
JP4910770B2 (ja) 管体の超音波探傷装置および超音波探傷方法
JP5590249B2 (ja) 欠陥検出装置、欠陥検出方法、プログラム及び記憶媒体
US8033172B2 (en) Hand-held flaw detector imaging apparatus
US20060219013A1 (en) Ultrasonic inspection method and ultrasonic inspection equipment
JP5003275B2 (ja) 管体の超音波探傷装置及び超音波探傷方法
JP2008209358A (ja) 管体の品質管理方法及び製造方法
JP2007046913A (ja) 溶接構造体探傷試験方法、及び鋼溶接構造体探傷装置
US20060254359A1 (en) Hand-held flaw detector imaging apparatus
US11415554B2 (en) Ultrasonic inspection method
JP5574731B2 (ja) 超音波探傷試験方法
US20140020467A1 (en) Non-destructive evaluation methods for machine-riveted bearings
JP5456259B2 (ja) 溶接検査方法および装置
WO2020250379A1 (ja) 超音波探傷方法、超音波探傷装置、鋼材の製造設備列、鋼材の製造方法、及び鋼材の品質保証方法
JP4633268B2 (ja) 超音波探傷装置
JP7180494B2 (ja) 超音波探傷装置および超音波探傷方法
JP2007178186A (ja) 超音波探傷方法及び装置
KR102116051B1 (ko) 배열형 초음파 센서를 이용한 펄스 에코형 비선형 검사 장치
JP4175762B2 (ja) 超音波探傷装置
JPH09229909A (ja) 移動被検体の検査方法および検査装置
JP7349390B2 (ja) 溶接部の超音波検査装置
JP2019211215A (ja) 超音波探傷方法、超音波探傷装置、鋼材の製造設備列、鋼材の製造方法、及び鋼材の品質保証方法
KR102106940B1 (ko) 배음 진동자를 이용한 초음파 비파괴 검사 장치
RU2395802C1 (ru) Способ ультразвукового контроля стыковых сварных швов
KR101561038B1 (ko) 곡률보정 TOFD(Time of Flight Diffraction)초음파 웨지를 이용한 원자로 하부관통관 초음파 검사법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560123

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883858

Country of ref document: EP

Kind code of ref document: A1