JP2007046913A - 溶接構造体探傷試験方法、及び鋼溶接構造体探傷装置 - Google Patents
溶接構造体探傷試験方法、及び鋼溶接構造体探傷装置 Download PDFInfo
- Publication number
- JP2007046913A JP2007046913A JP2005228537A JP2005228537A JP2007046913A JP 2007046913 A JP2007046913 A JP 2007046913A JP 2005228537 A JP2005228537 A JP 2005228537A JP 2005228537 A JP2005228537 A JP 2005228537A JP 2007046913 A JP2007046913 A JP 2007046913A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- probe
- welded
- scope image
- flaw detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 51
- 229910000831 Steel Inorganic materials 0.000 title claims description 66
- 239000010959 steel Substances 0.000 title claims description 66
- 239000000523 sample Substances 0.000 claims description 96
- 238000010998 test method Methods 0.000 claims description 22
- 238000000034 method Methods 0.000 abstract description 9
- 238000007689 inspection Methods 0.000 abstract description 3
- 238000002592 echocardiography Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- 230000000875 corresponding Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 210000001503 Joints Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 230000001702 transmitter Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
- G01N29/0609—Display arrangements, e.g. colour displays
- G01N29/0645—Display representation or displayed parameters, e.g. A-, B- or C-Scan
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02854—Length, thickness
Abstract
【課題】 試験体4に存在する欠陥の向きが不明である場合にも、欠陥の形状を評価することができる超音波探傷試験技術を提供する。
【解決手段】 本発明による溶接構造体探傷試験方法は、検査対象の試験体4に第1超音波ビームを逐次に第1方向に入射するステップと、前記第1超音波ビームの試験体4からの反射波から、第1Bスコープ画像を得るステップと、前記第1超音波ビームと異なる位置から、前記第1超音波ビームと異なる第2方向に向けて試験体4に第2超音波ビームを逐次に入射するステップと、前記第2超音波ビームの試験体4からの反射波から、第2Bスコープ画像を得るステップと、前記第1Bスコープ画像と前記第2Bスコープ画像とに基づいて、試験体4に存在する欠陥の形状に関するデータである形状データを得るステップとを具備する。
【選択図】 図5A
【解決手段】 本発明による溶接構造体探傷試験方法は、検査対象の試験体4に第1超音波ビームを逐次に第1方向に入射するステップと、前記第1超音波ビームの試験体4からの反射波から、第1Bスコープ画像を得るステップと、前記第1超音波ビームと異なる位置から、前記第1超音波ビームと異なる第2方向に向けて試験体4に第2超音波ビームを逐次に入射するステップと、前記第2超音波ビームの試験体4からの反射波から、第2Bスコープ画像を得るステップと、前記第1Bスコープ画像と前記第2Bスコープ画像とに基づいて、試験体4に存在する欠陥の形状に関するデータである形状データを得るステップとを具備する。
【選択図】 図5A
Description
本発明は、溶接構造体探傷試験方法、及び溶接構造体探傷装置に関しており、特に、鋼材が溶接されて構成されている溶接構造体の溶接部に存在する欠陥を、超音波を用いて検査する技術に関する。
超音波探傷試験は、橋梁その他の鋼溶接構造体の溶接部に存在する欠陥(きず)を検出するために最も広く使用される技術の一つである。例えば、日本工業規格JIS−3060、JIS−3070(非特許文献1、2)には、パルス反射法によって溶接部の超音波探傷試験を行う技術が開示されている。JIS−3060、JIS−3070に規定された超音波探傷試験方法では、図1Aに示されているように、送受信兼用の探触子101が試験体102の上で2次元的に走査され、これにより、溶接部に存在する欠陥の検出、及びその位置の測定が行われる。送受信兼用の探触子101の代わりに、図1Bに示されているように、送信に使用される探触子103と受信に使用される探触子104とが別々に2次元的に走査されることもある。
JIS−3060、3070に規定されている探傷方法の一つの問題は、探触子が2次元的に走査されるため、試験時間が長いことである。この問題を解決するための一つの方法は、フェーズドアレイを使用する技術である(非特許文献3、4、特許文献1)。フェーズドアレイを使用すれば、2つの走査方向のうちの一方向の走査を電子的に行うことができる。これは、超音波探傷試験に必要な試験時間を短くするために有効である。
以上に述べられた公知の超音波探傷試験方法に共通する問題は、欠陥の向きや寸法を正確に測定することができないことである。例えば、JIS−3060に規定された探傷方法では、反射エコー高さにより、欠陥の指示長さ(欠陥の見かけの長さ)が判断される。しかしながら、欠陥の種類や向きが異なると、同一のビーム路程であっても反射エコー高さは相当に異なるため、反射エコー高さから得られる欠陥の指示長さは、欠陥の向きや寸法と同一ではない。
一方、フェーズドアレイを用いた超音波探傷試験方法では、図2に示されているように、欠陥の両端からのエコーを検出する端部エコー法により、欠陥高さを計測することが可能である。しかし、端部エコー法は、欠陥の向きが予め分かっている場合には精度は確保されているが、そうでない場合には精度は確保されていない。例えば、図2に図示されている突合せ継手のように、生じ得る欠陥201が縦方向(板の厚さ方向)であると判明している場合には、出力された高さが実際の欠陥の高さを表していると考えてよい。しかし、図3A、図3Bに図示されているような、開先が形成されていない鋼材が溶接されたT継手では、欠陥202の向きは様々な方向であり得る。このような場合、端部エコー法によって出力された高さは、実際の欠陥の高さに必ずしも一致しない。更に、超音波ビームの入射方向と欠陥の向きとが偶然に一致すると、欠陥の検出すらできない。
このような背景から、特に無開先溶接T継手のように、欠陥の向きが不明である場合にも、欠陥の形状、特に、欠陥の向きや寸法が評価できる超音波探傷試験技術の提供が望まれている。
JIS Z 3060 鋼溶接部の超音波探傷試験方法 平成14年4月30日、第1刷 財団法人 日本規格境界 JIS Z 3070 鋼溶接部の超音波自動探傷試験方法 平成10年6月30日、第1刷 財団法人 日本規格境界 川浪精一他、「フェーズドアレイ超音波探傷技術の開発」、三菱重工技報、2001年5月、vol.38、No.3、p.p.154−157 川浪精一他、「非破壊検査の信頼性向上を可能にしたフェーズドアレイUT技術」、三菱重工技報、2004年1月、vol.41、No.1、p.p.18−19 特開2001−50938号公報
JIS Z 3060 鋼溶接部の超音波探傷試験方法 平成14年4月30日、第1刷 財団法人 日本規格境界 JIS Z 3070 鋼溶接部の超音波自動探傷試験方法 平成10年6月30日、第1刷 財団法人 日本規格境界 川浪精一他、「フェーズドアレイ超音波探傷技術の開発」、三菱重工技報、2001年5月、vol.38、No.3、p.p.154−157 川浪精一他、「非破壊検査の信頼性向上を可能にしたフェーズドアレイUT技術」、三菱重工技報、2004年1月、vol.41、No.1、p.p.18−19
本発明の目的は、鋼溶接構造体に存在する欠陥の向きが不明である場合にも、欠陥の形状(特に、欠陥の向きや寸法)を評価することができる超音波探傷試験技術を提供することにある。
上記の目的を達成するために、本発明は、以下に述べられる手段を採用する。その手段を構成する技術的事項の記述には、[特許請求の範囲]の記載と[発明を実施するための最良の形態]の記載との対応関係を明らかにするために、[発明を実施するための最良の形態]で使用される番号・符号が付加されている。但し、付加された番号・符号は、[特許請求の範囲]に記載されている発明の技術的範囲を限定的に解釈するために用いてはならない。
一の観点において、本発明による溶接構造体探傷試験方法は、
検査対象の鋼溶接構造体(4)に第1超音波ビームを逐次に第1方向に入射するステップと、
前記第1超音波ビームの前記鋼溶接構造体(4)からの反射波から、第1Bスコープ画像を得るステップと、
前記第1超音波ビームと異なる位置から、前記第1超音波ビームと異なる第2方向に向けて前記鋼溶接構造体(4)に第2超音波ビームを逐次に入射するステップと、
前記第2超音波ビームの前記鋼溶接構造体(4)からの反射波から、第2Bスコープ画像を得るステップと、
前記第1Bスコープ画像と前記第2Bスコープ画像とに基づいて、前記鋼溶接構造体(4)に存在する欠陥の形状に関するデータである形状データを得るステップ
とを具備する。このような溶接構造体探傷試験方法では、欠陥の向きが不明である場合にも、複数のBスコープ画像から欠陥の形状(特に、欠陥の向きや寸法)を評価することができる。
検査対象の鋼溶接構造体(4)に第1超音波ビームを逐次に第1方向に入射するステップと、
前記第1超音波ビームの前記鋼溶接構造体(4)からの反射波から、第1Bスコープ画像を得るステップと、
前記第1超音波ビームと異なる位置から、前記第1超音波ビームと異なる第2方向に向けて前記鋼溶接構造体(4)に第2超音波ビームを逐次に入射するステップと、
前記第2超音波ビームの前記鋼溶接構造体(4)からの反射波から、第2Bスコープ画像を得るステップと、
前記第1Bスコープ画像と前記第2Bスコープ画像とに基づいて、前記鋼溶接構造体(4)に存在する欠陥の形状に関するデータである形状データを得るステップ
とを具備する。このような溶接構造体探傷試験方法では、欠陥の向きが不明である場合にも、複数のBスコープ画像から欠陥の形状(特に、欠陥の向きや寸法)を評価することができる。
欠陥の形状の特定に使用されるBスコープ画像は、3以上であることが可能である。好適な一実施形態では、当該溶接構造体探傷試験方法は、
前記第1超音波ビーム及び前記第2超音波ビームと異なる位置から異なる方向に向けて前記鋼溶接構造体(4)に第3超音波ビームを逐次に入射するステップと、
前記第3超音波ビームの前記鋼溶接構造体(4)からの反射波から、第3Bスコープ画像を得るステップ
とを更に具備し、前記形状データは、前記第1Bスコープ画像と、前記第2Bスコープ画像と、前記第3Bスコープ画像から算出される。3以上のBスコープ画像を使用することにより、欠陥の形状(特に、欠陥の向きや寸法)をより正確に評価することができる。
前記第1超音波ビーム及び前記第2超音波ビームと異なる位置から異なる方向に向けて前記鋼溶接構造体(4)に第3超音波ビームを逐次に入射するステップと、
前記第3超音波ビームの前記鋼溶接構造体(4)からの反射波から、第3Bスコープ画像を得るステップ
とを更に具備し、前記形状データは、前記第1Bスコープ画像と、前記第2Bスコープ画像と、前記第3Bスコープ画像から算出される。3以上のBスコープ画像を使用することにより、欠陥の形状(特に、欠陥の向きや寸法)をより正確に評価することができる。
好適には、前記第1超音波ビームは、複数の超音波振動子を含んで構成される第1プローブ(5)によって生成され、前記第2超音波ビームは、前記第1プローブ(5)とは別に用意された、複数の超音波振動子を含んで構成される第2プローブ(6)によって生成され、前記第3超音波ビームは、前記第1プローブ(5)及び前記第2プローブ(6)とは別に用意された、複数の超音波振動子を含んで構成される第3プローブ(7)によって生成される。第1〜第3超音波ビームを別々のプローブで生成することは、試験時間の短縮に有効である。
このような溶接構造体探傷試験方法は、前記鋼溶接構造体(4)が、互いに平行な表面と裏面とを有する第1鋼板(2)と、その端が前記第1鋼板(2)の前記裏面に、前記裏面に垂直に溶接された第2鋼板(3)とを含む場合に特に有効である。この場合、前記第1プローブ(5)は、前記第1鋼板(2)の前記表面から前記表面に垂直な第1方向に前記第1超音波ビームを入射し、前記第2プローブ(6)、及び前記第3プローブ(7)は、前記第1方向に対して斜めの方向に、それぞれ前記第2超音波ビーム及び第3超音波ビームを入射することが好ましい。
当該溶接構造体探傷試験方法は、前記第1乃至第3プローブ(5−7)を、前記第1鋼板(2)と前記第2鋼板(3)とが溶接される溶接線の方向に平行に走査するステップを更に具備することが好ましい。
他の観点において、本発明による超音波探傷装置は、複数の超音波振動子を含んで構成された第1プローブ(5)と、複数の超音波振動子を含んで構成された第2プローブ(6)と、前記第1プローブ(5)及び第2プローブ(6)に接続された演算装置(9)とを具備している。演算装置(9)は、検査対象の鋼溶接構造体(4)に第1超音波ビームを逐次に第1方向に入射するように前記第1プローブ(5)を動作させ、前記鋼溶接構造体(4)に前記第1方向と異なる第2方向に向けて第2超音波ビームを逐次に入射するように前記第2プローブ(6)を動作させ、前記第1超音波ビームの前記鋼溶接構造体(4)からの反射波から、第1Bスコープ画像を取得し、前記第2超音波ビームの前記鋼溶接構造体(4)からの反射波から、第2Bスコープ画像を取得し、且つ、前記第1Bスコープ画像と前記第2Bスコープ画像とに基づいて、前記鋼溶接構造体(4)に存在する欠陥の形状に関するデータである形状データを算出する。
当該超音波探傷装置は、複数の超音波振動子を含んで構成された第3プローブ(7)を更に具備することが好ましい。この場合、前記演算装置(9)は、前記鋼溶接構造体(4)に前記第1方向及び前記第2方向と異なる第3方向に向けて第3超音波ビームを逐次に入射するように前記第3プローブ(7)を動作させ、前記第3超音波ビームの前記鋼溶接構造体(4)からの反射波から第3Bスコープ画像を取得し、且つ、前記形状データを、前記第1Bスコープ画像と前記第2Bスコープ画像とに加えて前記第3Bスコープ画像に基づいて算出する。
当該超音波探傷装置は、前記第1乃至第3プローブ(5−7)を走査する走査装置(8)を更に具備することが好ましい。走査装置(8)は、前記第2プローブ(6)及び前記第3プローブ(7)を、前記走査装置(8)が前記第1乃至第3プローブ(7)を走査する探傷方向と垂直な方向に移動可能に保持することが好ましい。また、走査装置(8)は、前記第2プローブ(6)及び前記第3プローブ(7)を、それらの位置が前記第1プローブ(5)の位置から前記探傷方向にずれているように保持するように構成されていることが好ましい。
本発明により、鋼溶接構造体(4)に存在する欠陥の向きが不明である場合にも、欠陥の形状(特に、欠陥の向きや寸法)を評価することができる超音波探傷試験技術が提供される。
図4は、本発明の一実施形態に係る自動超音波探傷装置1の構成を示している。本実施形態の自動超音波探傷装置1は、第1鋼板2の裏面に第2鋼板3が突き合わされて溶接されたT型溶接継手が形成された試験体4の探傷試験を行うためのものである。以下、本明細書の説明において、第2鋼板3の表面に垂直な方向にx軸、第1鋼板2の表面に垂直な方向にy軸、試験体4の溶接線の方向(即ち、探傷方向)にz軸を有する直交座標系が使用される。第1鋼板2の表面はxz平面に平行であり、第2鋼板3の表面は、yz平面に平行である。
自動超音波探傷装置1は、3つのプローブ5〜7と、プローブ5〜7を溶接線にそった方向(探傷方向)に走査する走査装置8と、演算装置9とを備えている。
プローブ(探触子)5〜7のそれぞれは、複数の超音波振動子で構成されている。即ち、プローブ5〜7のそれぞれは、単独で、Aスコープ画像のみならず、Bスコープ画像を取得可能に構成されている。これらのプローブ5〜7は、それぞれがフェーズドアレイとして機能することが可能である。
プローブ5〜7のうち中央に位置するプローブ5は、直接に第1鋼板2の表面に接触され、第1鋼板2の表面に垂直な方向(y軸方向)に超音波ビームを入射するために使用される。このため、プローブ5は、以下、垂直プローブ5と呼ばれることがある。
一方、プローブ6、7は、第1鋼板2の表面に対して斜めの方向に超音波ビームを入射するために使用される。このため、プローブ6、7は、以下、斜角プローブ6、7と呼ばれることがある。斜角プローブ6、7の表面には、楔形のスペーサ13、14がそれぞれ接合されており、斜角プローブ6、7は、楔形のスペーサ13、14によって第1鋼板2の表面に対して斜めに支持されている。斜角プローブ6、7が発生した超音波ビームは、それぞれ楔形のスペーサ13、14を介して第1鋼板2に入射され、その超音波ビームの反射波は、第1鋼板2から楔形のスペーサ13、14を介して斜角プローブ6、7に入射される。
走査装置8は、レール11とプローブ保持機構12とを備えている。レール11は、z軸方向(即ち、試験体4の溶接線の方向)に延設されている。プローブ保持機構12は、プローブ5〜7を保持している。プローブ保持機構12は、垂直プローブ5を固定的に、斜角プローブ6、7(及びスペーサ13、14)をx軸方向に移動可能に保持している。斜角プローブ6、7がx軸方向に移動可能であることは、斜角プローブ6、7を第2鋼板3の厚さに応じて適切に位置させることを可能にする。好適には、斜角プローブ6、7(及びスペーサ13、14)の位置は、垂直プローブ5に対して対称なるように調整される。図5Bに示されているように、斜角プローブ6、7は、そのz軸方向の位置が垂直プローブ5のz軸方向の位置とずれているように配置されている。これは、斜角プローブ6、7のx軸方向の位置の調節幅を増大させる点で好適である。
プローブ保持機構12は、レール11の上に探傷方向に移動可能に載置されている。プローブ5〜7のz軸方向への走査は、プローブ保持機構12がレール11の上を移動することによって行われる。プローブ5〜7のz軸方向の位置は、レール11に設けられたエンコーダ(図示されない)によって検出可能である。
演算装置9は、垂直プローブ5、及び斜角プローブ6、7を制御すると共に、試験体4の探傷を行うための演算を行う。具体的には、演算装置9は、垂直プローブ5、及び斜角プローブ6、7に電気信号を供給し、垂直プローブ5、及び斜角プローブ6、7に超音波ビームを発生させる。更に、演算装置9は、垂直プローブ5、及び斜角プローブ6、7から送られてくる反射波の電気信号から、試験体4に存在する欠陥を検出する。
本実施形態の自動超音波探傷装置1は、垂直プローブ5、及び斜角プローブ6、7によって3つのBスコープ画像(断面表示画像)を取得し、その3つのBスコープ画像から欠陥の形状(特に、欠陥の向きや寸法)を特定するように構成されている。本実施形態の自動超音波探傷装置1では、異なる方向からの探傷によって得られた複数のBスコープ画像を利用することにより、欠陥の向きが不明であっても欠陥の寸法を特定できる。
以下、試験体4の(xy平面に平行な)ある断面(以下、「対象断面」という。)の欠陥の形状を測定するための本実施形態の自動超音波探傷装置1の動作を詳細に説明する。
斜角プローブ6、7が第2鋼板3の厚さにあわせてx軸方向に位置合わせされた後、斜角プローブ6、7が対象断面に位置整合するように、プローブ保持機構12が位置合わせされる。
続いて、図5Aに示されているように、斜角プローブ6、7を用いて探傷が行われる。斜角プローブ6、7は、演算装置9による制御の下、試験体4にy軸方向に対して斜めに超音波ビームを入射し、更に、夫々に帰ってくる反射波を電気信号に変換して演算装置9に送る。干渉を防ぐために、斜角プローブ6、7による超音波ビームの入射は同時には行われない。斜角プローブ6、7は、超音波ビームの入射を別々の時刻に行う。
続いて、更に、垂直プローブ5が対象断面に位置整合するように、プローブ保持機構12が位置合わせされる。垂直プローブ5は、演算装置9による制御の下、試験体4にy軸方向に超音波ビームを入射する。垂直プローブ5に帰ってくる反射波は、垂直プローブ5によって電気信号に変換されて演算装置9に送られる。
斜角プローブ6、7が対象断面に位置整合されている状態で垂直プローブ5によって探傷が行われることも可能である。ただし、このときに得られる反射波の電気信号は、対象断面とは別の断面の欠陥の形状の特定に使用され、対象断面の欠陥の形状の特定には使用されない。
図6は、垂直プローブ5、及び斜角プローブ6、7による超音波ビームの発生、及び、反射波の処理を説明する図である。図6の最上段に示されているように、垂直プローブ5、及び斜角プローブ6、7のそれぞれは、超音波ビームの発生に関与する超音波振動子を変えながら複数回超音波ビームを入射する。例えば、第1ステップでは、左から1番目から6番目までの超音波振動子を用いて超音波ビームが発生され、第2ステップでは、左から2番目から7番目までの超音波振動子を用いて超音波ビームが発生される。同様に、第Nステップでは、左からN番目からN+5番目までの超音波振動子を用いて超音波ビームが発生される。プローブ5〜7をフェーズドアレイとして機能させることにより(即ち、超音波ビームの発生に関与する超音波振動子に供給する電気信号の位相を適切に調節することにより)、プローブの面に対して斜めに超音波ビームを発生することもできる。各超音波ビームに対応する反射波は、電気信号に変換されて演算装置9に送られる。演算装置9に送られた電気信号のそれぞれは、ビーム路程とエコー高さの関係を表すAスコープ波形を示している。
演算装置9は、垂直プローブ5、及び斜角プローブ6、7から送られてくる電気信号から、垂直プローブ5、及び斜角プローブ6、7のそれぞれに対応するBスコープ画像(断面表示画像)を生成する。詳細には、垂直プローブ5から送られる電気信号から第1のBスコープ画像が生成され、斜角プローブ6から送られる電気信号から第2のBスコープ画像が生成され、更に、斜角プローブ6から送られる電気信号から第3のBスコープ画像が生成される。
図6の下段には、Bスコープ画像の生成手順が図示されている。具体的には、得られたAスコープ波形を、超音波ビームの発生に関与する超音波振動子の位置に対応する位置に、且つ、超音波ビームの入射角に対応する方向に並べることにより、3次元グラフが得られる。この3次元グラフのエコー高さを階調(又は色彩)に対応させることにより、Bスコープ画像が生成される。
続いて、図7A〜図7Cに示されているように、得られた3つのBスコープ画像から欠陥の形状に関するデータである形状データが算出される。形状データは、例えば、欠陥の向きや寸法を含んでいる。
一の実施形態において、形状データの算出では、まず、Bスコープ画像が2値化されて2値化画像が生成される。この2値化画像から、欠陥の向きや寸法が算出される。より具体的には、垂直プローブ5によって得られたBスコープ画像から生成された2値化画像について、ビーム方向と垂直方向における欠陥の幅aが算出される。同様に、斜角プローブ6、7によって得られたBスコープ画像から生成された2値化画像のそれぞれについて、ビーム方向と垂直方向における欠陥の幅b、cが算出される。垂直プローブ5及び斜角プローブ6、7が生成する超音波ビームのビーム方向と、得られた欠陥の幅a、b、cから欠陥の形状が算出可能である。更に、3つの2値化画像を合成することにより、欠陥の形状を表す合成2値化画像が生成される。
例えば図7Aに示されているように、溶接欠陥が横向き(即ち、xy平面のx軸方向)に長い場合を考える。垂直プローブ5のBスコープ画像に写された欠陥の幅a、及び斜角プローブ6、7のBスコープ画像に写された欠陥の幅b、cから、溶接欠陥のx軸方向の幅Xとy軸方向の高さYが算出される。図7B、図7Cに示されているように、溶接欠陥が斜め向き(即ち、y軸に斜めの方向)に長い場合、溶接欠陥が縦向き(即ち、y軸方向)に長い場合も同様にして、溶接欠陥の寸法を算出可能である。
同様な手順による探傷を、垂直プローブ5、及び斜角プローブ6、7をz軸方向(溶接線の方向)に走査しながら繰り返すことにより、欠陥の3次元的形状を特定することも可能である。
以上に説明されているように、本実施形態に係る自動超音波探傷装置1は、複数のプローブによって複数のBスコープ画像を得ることにより、任意の欠陥の形状、特に欠陥の向きの及び寸法を検出可能である。
本実施形態では、垂直プローブ5、及び斜角プローブ6、7の3つのプローブが使用されているが、基本的には、(それぞれが超音波振動子のアレイで構成された)プローブの数は2つ以上であればよい。例えば、図8に示されているように、2つのプローブ21、22で、探傷が行われてもよい。この場合、欠陥の形状は、プローブ21、22のそれぞれから得られる2つのBスコープ画像から検出される。
ただし、本実施形態のように、3以上のプローブが用意され、欠陥の形状の特定に3以上のBスコープ画像が使用されることは、欠陥の形状をより正確に特定できる点で好適である。特に、試験体4がT継手である場合には、第1鋼板2の垂直方向に超音波ビームを入射して得られるBスコープ画像と、斜めの2方向に超音波ビームを入射して得られる2つのBスコープ画像を欠陥の形状の特定に使用することが好適である。第1鋼板2の垂直方向(y軸方向)に超音波ビームを入射することによって得られるBスコープ画像は、欠陥の形状の特定に最も有用な情報であり、このBスコープ画像に加えて補助的に斜めの2方向に超音波ビームを入射して得られる2つのBスコープ画像を用いることにより、欠陥の形状を正確に特定することができる。
また、本実施形態において、一のプローブの位置をx軸方向に移動させて複数の方向から超音波ビームを入射することによって、一のプローブしか用いずに上記と同様の超音波探傷試験を行うことも可能である。ただし、本実施形態のように、複数のプローブを使用することは、プローブの走査を1次元に限定することを可能にし、試験時間の短縮に有効である。
1:自動超音波探傷装置
2:第1鋼板
3:第2鋼板
4:試験体
5:プローブ(垂直プローブ)
6、7:プローブ(斜角プローブ)
9:演算装置
11:レール
12:プローブ保持機構
13、14:スペーサ
21、22:プローブ
101:探触子
102:試験体
103、104:探触子
2:第1鋼板
3:第2鋼板
4:試験体
5:プローブ(垂直プローブ)
6、7:プローブ(斜角プローブ)
9:演算装置
11:レール
12:プローブ保持機構
13、14:スペーサ
21、22:プローブ
101:探触子
102:試験体
103、104:探触子
Claims (10)
- 検査対象の鋼溶接構造体に第1超音波ビームを逐次に第1方向に入射するステップと、
前記第1超音波ビームの前記鋼溶接構造体からの反射波から、第1Bスコープ画像を得るステップと、
前記第1超音波ビームと異なる位置から、前記第1超音波ビームと異なる第2方向に向けて前記鋼溶接構造体に第2超音波ビームを逐次に入射するステップと、
前記第2超音波ビームの前記鋼溶接構造体からの反射波から、第2Bスコープ画像を得るステップと、
前記第1Bスコープ画像と前記第2Bスコープ画像とに基づいて、前記鋼溶接構造体に存在する欠陥の形状に関するデータである形状データを得るステップ
とを具備する
溶接構造体探傷試験方法。 - 請求項1に記載の溶接構造体探傷試験方法であって、
更に、
前記第1超音波ビーム及び前記第2超音波ビームと異なる位置から異なる方向に向けて前記鋼溶接構造体に第3超音波ビームを逐次に入射するステップと、
前記第3超音波ビームの前記鋼溶接構造体からの反射波から、第3Bスコープ画像を得るステップ
とを具備し、
前記形状データは、前記第1Bスコープ画像と、前記第2Bスコープ画像と、前記第3Bスコープ画像から算出される
溶接構造体探傷試験方法。 - 請求項2に記載の溶接構造体探傷試験方法であって、
前記第1超音波ビームは、複数の超音波振動子を含んで構成される第1プローブによって生成され、
前記第2超音波ビームは、前記第1プローブとは別に用意された、複数の超音波振動子を含んで構成される第2プローブによって生成され、
前記第3超音波ビームは、前記第1プローブ及び前記第2プローブとは別に用意された、複数の超音波振動子を含んで構成される第3プローブによって生成される
溶接構造体探傷試験方法。 - 請求項3に記載の溶接構造体探傷試験方法であって、
前記鋼溶接構造体は、互いに平行な表面と裏面とを有する第1鋼板と、その端が前記第1鋼板の前記裏面に、前記裏面に垂直に溶接された第2鋼板とを含み、
前記第1プローブは、前記第1鋼板の前記表面から前記表面に垂直な第1方向に前記第1超音波ビームを入射し、
前記第2プローブ、及び前記第3プローブは、前記第1方向に対して斜めの方向に、それぞれ前記第2超音波ビーム及び第3超音波ビームを入射する
溶接構造体探傷試験方法。 - 請求項4に記載の溶接構造体探傷試験方法であって、
前記第1乃至第3プローブを、前記第1鋼板と前記第2鋼板とが溶接される溶接線の方向に平行に走査するステップ
を更に具備する
溶接構造体探傷試験方法。 - 複数の超音波振動子を含んで構成された第1プローブと、
複数の超音波振動子を含んで構成された第2プローブと、
前記第1プローブ及び第2プローブに接続された演算装置
とを具備し、
前記演算装置は、
(a)検査対象の鋼溶接構造体に第1超音波ビームを逐次に第1方向に入射するように前記第1プローブを動作させ、
(b)前記鋼溶接構造体に前記第1方向と異なる第2方向に向けて第2超音波ビームを逐次に入射するように前記第2プローブを動作させ、
(c)前記第1超音波ビームの前記鋼溶接構造体からの反射波から、第1Bスコープ画像を取得し、
(d)前記第2超音波ビームの前記鋼溶接構造体からの反射波から、第2Bスコープ画像を取得し、且つ、
(e)前記第1Bスコープ画像と前記第2Bスコープ画像とに基づいて、前記鋼溶接構造体に存在する欠陥の形状に関するデータである形状データを算出する
超音波探傷装置。 - 請求項6に記載の超音波探傷装置であって、
複数の超音波振動子を含んで構成された第3プローブ
を更に具備し、
前記演算装置は、前記鋼溶接構造体に前記第1方向及び前記第2方向と異なる第3方向に向けて第3超音波ビームを逐次に入射するように前記第3プローブを動作させ、前記第3超音波ビームの前記鋼溶接構造体からの反射波から第3Bスコープ画像を取得し、且つ、前記形状データを、前記第1Bスコープ画像と前記第2Bスコープ画像とに加えて前記第3Bスコープ画像に基づいて算出する
超音波探傷装置。 - 請求項7に記載の超音波探傷装置であって、
前記第1乃至第3プローブを走査する走査装置を更に具備する
超音波探傷装置。 - 請求項8に記載の超音波探傷装置であって、
前記走査装置は、前記第2プローブと前記第3プローブとを、前記走査装置が前記第1乃至第3プローブを走査する探傷方向と垂直な方向に移動可能に保持する
超音波探傷装置。 - 請求項9に記載の超音波探傷装置であって、
前記走査装置は、前記第2プローブ及び前記第3プローブを、それらの位置が前記第1プローブの位置から前記探傷方向にずれているように保持するように構成された
超音波探傷装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005228537A JP2007046913A (ja) | 2005-08-05 | 2005-08-05 | 溶接構造体探傷試験方法、及び鋼溶接構造体探傷装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005228537A JP2007046913A (ja) | 2005-08-05 | 2005-08-05 | 溶接構造体探傷試験方法、及び鋼溶接構造体探傷装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007046913A true JP2007046913A (ja) | 2007-02-22 |
Family
ID=37849858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005228537A Withdrawn JP2007046913A (ja) | 2005-08-05 | 2005-08-05 | 溶接構造体探傷試験方法、及び鋼溶接構造体探傷装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007046913A (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008215936A (ja) * | 2007-03-01 | 2008-09-18 | Tokyo Electric Power Co Inc:The | ガスタービンの翼の超音波探傷方法 |
JP2009139225A (ja) * | 2007-12-06 | 2009-06-25 | Non-Destructive Inspection Co Ltd | 欠陥等端部の検出方法及び欠陥等端部の検出装置 |
JP2011043416A (ja) * | 2009-08-21 | 2011-03-03 | Toyota Central R&D Labs Inc | 超音波検査システム |
JP2012202963A (ja) * | 2011-03-28 | 2012-10-22 | Mitsubishi Heavy Ind Ltd | 超音波探傷装置 |
CN103808808A (zh) * | 2012-10-18 | 2014-05-21 | 奥林巴斯Ndt公司 | 利用抖动发脉冲的超声波检测仪器 |
JP2015010935A (ja) * | 2013-06-28 | 2015-01-19 | 株式会社神戸製鋼所 | 欠陥検出装置及び欠陥検出方法 |
CN104458910A (zh) * | 2014-12-16 | 2015-03-25 | 中国科学院工程热物理研究所 | 一种风力机叶片壳体与腹板粘接缺陷的无损检测方法 |
CN106501377A (zh) * | 2016-09-12 | 2017-03-15 | 中国航空工业集团公司北京航空材料研究院 | 一种采用超声相控阵检测r角结构缺陷尺寸的方法 |
CN108956776A (zh) * | 2018-06-22 | 2018-12-07 | 中铁大桥科学研究院有限公司 | U肋全熔透角焊缝缺陷的超声波相控阵检测方法及系统 |
KR101942792B1 (ko) | 2012-07-03 | 2019-01-28 | 제이에프이 스틸 가부시키가이샤 | 강재의 품질 평가 방법 및 품질 평가 장치 |
WO2020171169A1 (ja) * | 2019-02-21 | 2020-08-27 | 日本製鉄株式会社 | 車輪の製造方法、超音波探傷検査装置及び超音波探傷検査方法 |
-
2005
- 2005-08-05 JP JP2005228537A patent/JP2007046913A/ja not_active Withdrawn
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008215936A (ja) * | 2007-03-01 | 2008-09-18 | Tokyo Electric Power Co Inc:The | ガスタービンの翼の超音波探傷方法 |
JP2009139225A (ja) * | 2007-12-06 | 2009-06-25 | Non-Destructive Inspection Co Ltd | 欠陥等端部の検出方法及び欠陥等端部の検出装置 |
JP2011043416A (ja) * | 2009-08-21 | 2011-03-03 | Toyota Central R&D Labs Inc | 超音波検査システム |
JP2012202963A (ja) * | 2011-03-28 | 2012-10-22 | Mitsubishi Heavy Ind Ltd | 超音波探傷装置 |
KR101942792B1 (ko) | 2012-07-03 | 2019-01-28 | 제이에프이 스틸 가부시키가이샤 | 강재의 품질 평가 방법 및 품질 평가 장치 |
CN103808808A (zh) * | 2012-10-18 | 2014-05-21 | 奥林巴斯Ndt公司 | 利用抖动发脉冲的超声波检测仪器 |
JP2015010935A (ja) * | 2013-06-28 | 2015-01-19 | 株式会社神戸製鋼所 | 欠陥検出装置及び欠陥検出方法 |
CN104458910A (zh) * | 2014-12-16 | 2015-03-25 | 中国科学院工程热物理研究所 | 一种风力机叶片壳体与腹板粘接缺陷的无损检测方法 |
CN104458910B (zh) * | 2014-12-16 | 2017-02-08 | 中国科学院工程热物理研究所 | 一种风力机叶片壳体与腹板粘接缺陷的无损检测方法 |
CN106501377A (zh) * | 2016-09-12 | 2017-03-15 | 中国航空工业集团公司北京航空材料研究院 | 一种采用超声相控阵检测r角结构缺陷尺寸的方法 |
CN106501377B (zh) * | 2016-09-12 | 2019-06-04 | 中国航空工业集团公司北京航空材料研究院 | 一种采用超声相控阵检测r角结构缺陷尺寸的方法 |
CN108956776A (zh) * | 2018-06-22 | 2018-12-07 | 中铁大桥科学研究院有限公司 | U肋全熔透角焊缝缺陷的超声波相控阵检测方法及系统 |
WO2020171169A1 (ja) * | 2019-02-21 | 2020-08-27 | 日本製鉄株式会社 | 車輪の製造方法、超音波探傷検査装置及び超音波探傷検査方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007046913A (ja) | 溶接構造体探傷試験方法、及び鋼溶接構造体探傷装置 | |
EP0829714A1 (en) | Ultrasonic flaw detector and ultrasonic flaw-detecting method | |
US20060219013A1 (en) | Ultrasonic inspection method and ultrasonic inspection equipment | |
JP5800667B2 (ja) | 超音波検査方法,超音波探傷方法及び超音波検査装置 | |
US20060254359A1 (en) | Hand-held flaw detector imaging apparatus | |
JP2009540311A (ja) | アレイ探触子を備える超音波試験装置 | |
JP2014048169A (ja) | 超音波探傷法及び超音波探傷装置 | |
JP2007285813A (ja) | 超音波探傷装置および超音波探傷方法 | |
JP4838697B2 (ja) | 超音波探傷装置及び超音波探傷用ウェッジ | |
JP5574731B2 (ja) | 超音波探傷試験方法 | |
KR101921685B1 (ko) | 결함 검출 장치 및 이를 이용한 결함 검출 방법 | |
JP2007322350A (ja) | 超音波探傷装置及び方法 | |
JP2005274583A (ja) | 超音波探傷方法及びその装置 | |
JP4559931B2 (ja) | 超音波探傷方法 | |
JP2002062281A (ja) | 欠陥深さ測定方法および装置 | |
JP4564183B2 (ja) | 超音波探傷方法 | |
JP2011122827A (ja) | アレイ探触子の測定方法及びその測定装置 | |
JP5250248B2 (ja) | 欠陥等端部の検出方法及び欠陥等端部の検出装置 | |
JP3739368B2 (ja) | 超音波タンデムマルチアレイ探傷装置 | |
JP4527216B2 (ja) | 超音波探傷方法及び超音波探傷装置 | |
JP3765417B2 (ja) | 超音波探傷方法及びその装置 | |
JP2007178186A (ja) | 超音波探傷方法及び装置 | |
JP4175762B2 (ja) | 超音波探傷装置 | |
JP3754669B2 (ja) | 超音波探傷装置及び超音波探傷方法 | |
CA2725297A1 (en) | Improved non-destructive ultrasonic testing with coupling check |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080530 |
|
A761 | Written withdrawal of application |
Effective date: 20081128 Free format text: JAPANESE INTERMEDIATE CODE: A761 |