JP7349390B2 - 溶接部の超音波検査装置 - Google Patents

溶接部の超音波検査装置 Download PDF

Info

Publication number
JP7349390B2
JP7349390B2 JP2020034954A JP2020034954A JP7349390B2 JP 7349390 B2 JP7349390 B2 JP 7349390B2 JP 2020034954 A JP2020034954 A JP 2020034954A JP 2020034954 A JP2020034954 A JP 2020034954A JP 7349390 B2 JP7349390 B2 JP 7349390B2
Authority
JP
Japan
Prior art keywords
flaw detection
notch
ultrasonic
control unit
detection image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020034954A
Other languages
English (en)
Other versions
JP2021139642A (ja
Inventor
博之 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2020034954A priority Critical patent/JP7349390B2/ja
Publication of JP2021139642A publication Critical patent/JP2021139642A/ja
Application granted granted Critical
Publication of JP7349390B2 publication Critical patent/JP7349390B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、超音波を用いて溶接部を検査する装置に関し、特に未溶着部の高さを測定する超音波検査装置に関する。
被検査体の内部欠陥を検出する非破壊検査法の1つとして、超音波探傷法が様々な産業分野で多く用いられている。超音波探傷法による欠陥検出は、超音波が欠陥で反射する現象を利用して行われる。超音波探傷法では、超音波を送信・受信する超音波探触子を被検査体の表面に配置し、超音波探触子から超音波パルスを送信し、その反射エコーを超音波探触子で受信し、受信した反射エコーを信号処理することで、被検査体の内部の欠陥の有無を判定する。
超音波検査装置は、溶接部を備える被検査体に対して超音波探傷を行うことがある。溶接には、母材を厚さ方向の全長にわたって溶け込ます施工(完全溶け込み)と、母材を厚さ方向の途中まで溶け込ます施工がある。後者の施工は、溶接時に火花が母材を突き抜けるのや溶金が垂れて部品が焼損するのを防ぐために実施され、溶接で接合された2つの母材間にノッチと呼ばれる未溶着部が残る。溶接部に応力が加わる構造体では、母材の厚さに対するノッチの高さ(母材の厚さ方向の長さ)の割合で静強度や疲労強度が変わってくるため、溶接施工後のノッチの高さを知りたいというニーズがある。
超音波を用いて溶接部を検査する技術は、例えば、特許文献1、2に記載のものが知られている。
特許文献1に記載の超音波検査方法では、予め作成した試験体のエコーの高さ(反射波の強さ)を抽出したマスターデータを作成し、実製品の溶接部のスリット部(ノッチ)のエコー高さを測定して、この測定値をマスターデータと照合して溶接状態の良否を判定する。
特許文献2に記載の欠陥高さ推定方法では、校正用試験体を用いて超音波探傷を行って感度校正レベルを予め設定しておき、被検査体に超音波を送信して面状欠陥の欠陥エコーを検出した後、校正用試験体の反射面積と、感度校正レベルと、面状欠陥の検出位置における超音波ビーム径とを係数にもつ算出式を用いて、検出された欠陥エコーから面状欠陥の欠陥高さを推定する。
特開2004-333387号公報 特開2010―43989号公報
特許文献1、2に記載の技術では、被検査体の溶接部を実際に検査する前に、予め用意した試験体に対して超音波探傷を行って事前にデータを取得する必要がある。このため、溶接部の検査に工数と時間がかかるともに、検査手順が複雑になる。
本発明の目的は、試験体を用いて事前にデータを取得せず、簡易な手順で被検査体の未溶着部(ノッチ)の高さを測定できる、溶接部の超音波検査装置を提供することである。
本発明による溶接部の超音波検査装置は、複数の超音波素子を備え、2つの母材が溶接で接合された溶接部を備える被検査体に対して電子走査により超音波探傷を行う超音波探触子と、制御部とを備える。前記被検査体は、前記母材の間の未溶着部であるノッチを有する。前記制御部は、前記超音波探触子が超音波探傷を行って得られた探傷画像を生成し、前記探傷画像に設定された第1の探索範囲の中に、前記ノッチの一端の位置を求め、前記制御部が前記探傷画像に設定した第2の探索範囲の中に、前記ノッチの他端の位置を求め、前記ノッチの前記一端の位置と前記他端の位置から、前記一端と前記他端の間の距離である前記ノッチの高さを求める。
本発明によると、試験体を用いて事前にデータを取得せず、簡易な手順で被検査体の未溶着部の高さを測定できる、溶接部の超音波検査装置を提供することができる。
本発明の実施例による超音波検査装置を用いて被検査体のノッチの高さを測定する手順を示す図である。 超音波検査装置に超音波探傷の条件を設定する画面の例を示す図である。 超音波検査装置に超音波探傷の条件を設定する画面の例を示す図である。 溶接部の開先の例を示す図である。 超音波探触子が設置された被検査体の例を示す図である 超音波検査装置が生成した超音波探傷画像の例である。 超音波探傷画像に第1の探索範囲を設定する画面の例を示す図である。 反射エコーの全てを含む第1のウインドウの例を示す図である。 図8Aの超音波探傷画像より低感度の探傷画像において、反射エコーの全てを含む第1のウインドウの例を示す図である。 図8Bの超音波探傷画像より低感度の探傷画像において、反射エコーの全てを含む第1のウインドウの例を示す図である。 図8Cの超音波探傷画像より低感度の探傷画像において、第1のウインドウの例を示す図である。 反射エコーの全てを含む第2のウインドウの例を示す図である。 図9Aの超音波探傷画像より低感度の探傷画像において、反射エコーの全てを含む第2のウインドウの例を示す図である。 図9Bの超音波探傷画像より低感度の探傷画像において、反射エコーの全てを含む第2のウインドウの例を示す図である。 図9Cの超音波探傷画像より低感度の探傷画像において、第2のウインドウの例を示す図である。 ノッチ高さの測定結果の表示画面の例を示す図である。 本発明の実施例による超音波検査装置の全体構成を示すブロック図である。 図1のステップ100における、超音波探傷の条件を設定する手順の例を示す図である。
本明細書では、溶接で接合された2つの母材の間の未溶着部を「ノッチ」と呼び、ノッチの、母材の厚さ方向(溶接の深さ方向)の長さを「ノッチの高さ」と呼ぶ。未溶着部とは、溶接部において、金属が溶けて接合していない、母材の間の部分のことである。
本発明による溶接部の超音波検査装置は、複数の超音波素子を備えるフェーズドアレイ型の超音波探触子を備え、超音波探傷によって被検査体のノッチの高さを測定することができる。ノッチの高さを求めることで、溶金の溶け込み状態を把握し、溶接部の溶接状態の良否を判定することができる。
本発明による超音波検査装置は、超音波探傷画像に探索範囲を設定し、この探索範囲の中にノッチの端部の位置を求めてノッチの高さを求める。超音波探傷の感度が低くなると、超音波探傷画像に見られる、ノッチの端部での反射エコーの大きさ(反射エコーの発生領域)が小さくなる。
本発明の好ましい実施形態では、超音波探傷の感度の低下により反射エコーの大きさが小さくなるのに合わせて、超音波探傷画像に設定する探索範囲を小さくしていき、ノッチの端部の位置を求める。超音波検査装置は、複数の感度で超音波探傷を行って複数の超音波探傷画像を生成し、探索範囲を設定する超音波探傷画像を、感度の高い超音波探傷で得られたものから感度の低い超音波探傷で得られたものに変えていき、これに合わせて超音波探傷画像に設定する探索範囲を段階的に小さくしていくのが好ましい。ノッチの端部の位置は、感度の低下と探索範囲の縮小という手順を繰り返すことで絞り込まれて求められる。
本発明による超音波検査装置は、被検査体の試験体が不要であり、試験体を用いて事前にデータを取得しないので、簡易な手順で被検査体のノッチの高さを測定できる。また、本発明による溶接部の超音波検査装置は、被検査体のノッチの高さを測定するのに、電子走査をし、機械走査をしないので、簡易な機構を備え、高速に走査することができるという効果も備える。
以下、本発明の実施例による溶接部の超音波検査装置を、図面を用いて説明する。
本発明の実施例1による溶接部の超音波検査装置を、図1から図12を用いて説明する。
図11は、本実施例による超音波検査装置の全体構成を示すブロック図である。本実施例による超音波検査装置は、被検査体200に超音波を入射する超音波探触子203と、送受信部600と、表示部500を備え、被検査体200の溶接部を検査する。
被検査体200は、2つの母材が溶接で接合された溶接部を備え、母材の間の未溶着部であるノッチを有する。溶接部には、開先が設けられている。
超音波探触子203は、超音波を発生するとともに、被検査体200から戻ってきた超音波を受信する複数個の超音波素子(圧電振動素子)を備える。すなわち、超音波探触子203は、複数の超音波素子を備えるフェーズドアレイ型の超音波センサであり、被検査体200に対して電子走査により超音波探傷を行うことができる。
超音波探触子203は、被検査体200の探傷面に設置された後、送受信部600から供給される駆動信号により超音波を発生し、発生した超音波を被検査体200に伝播させる。また、超音波探触子203は、被検査体200に伝播させた超音波により現れる反射波を検知して、この反射波の受信信号を送受信部600に出力する。
送受信部600は、パルサー603、レシーバー604、遅延時間制御部602、制御部601、及びデータ収集部605を備え、超音波探触子203により超音波の送信と受信を行う。
パルサー603は、駆動信号を超音波探触子203に供給する。レシーバー604は、超音波探触子203が送受信部600に出力した受信信号を入力する。遅延時間制御部602は、駆動信号を超音波探触子203の各超音波素子に供給するタイミングを制御し、複数の超音波素子が超音波を発生する時間差(遅延時間)を制御する。
制御部601は、超音波検査装置が被検査体200に超音波探傷を行えるように、パルサー603、レシーバー604、遅延時間制御部602、及びデータ収集部605を制御する。例えば、制御部601は、遅延時間制御部602とパルサー603が駆動信号を出力するタイミングと、レシーバー604が受信信号を入力するタイミングの双方を制御し、これによりフェーズドアレイ方式による超音波探触子203の動作が得られるようにする。
フェーズドアレイ方式による超音波探触子203の動作とは、超音波の焦点深さと入射角度を制御して超音波を送信し受信する動作のことである。この動作により、レシーバー604からデータ収集部605に受信信号が供給される。
データ収集部605は、レシーバー604から供給された受信信号を収集して処理し、制御部601に収集データとして出力する。
制御部601は、各超音波素子が得た受信信号の波形を遅延時間に応じて合成処理し、超音波の入射角度ごとの波形を画像処理して、表示部500に出力する。
表示部500は、受信信号と探傷画像を表示する。また、表示部500は、後述するように、超音波探傷の条件を設定する画面などの作業者が超音波検査装置に情報を入力するための画面や、超音波検査装置が作業者に必要な情報を出力するための画面などを表示する。
さらに、超音波検査装置は、マウスなどの、作業者が超音波検査装置に情報を入力するための入力装置を備えてもよい。
図1は、本実施例による超音波検査装置を用いて被検査体200のノッチの高さを測定する手順を示す図である。
ステップ100で、作業者は、超音波検査装置に超音波探傷の条件を設定する。作業者は、被検査体200(母材)についての情報(例えば、母材の材料や形状についての情報)や、被検査体200の溶接部の開先についての情報(例えば、開先の位置や形状についての情報)などを用いて、事前に超音波探傷の条件を決めておく。そして、作業者は、超音波探傷の条件を超音波検査装置に入力する。作業者は、被検査体200や開先についての情報なども超音波検査装置に入力することができる。
図12は、図1のステップ100における、超音波探傷の条件を設定する作業者の手順の例を示す図である。
ステップ701で、超音波探傷に使用する超音波探触子203を選択する。使用する超音波探触子203は、例えば、超音波探触子203の番号で選択する。
ステップ702で、被検査体200の材料定数(母材中での音速)を設定する。
ステップ703で、超音波探触子203において同時に励振する超音波素子の数(同時励振数)を設定する。
ステップ704で、探傷範囲、すなわち屈折角度の最大値と最小値を設定する。また、超音波探傷の細かさ、すなわち屈折角度のピッチを設定する。
ステップ705で、超音波の焦点深さ(焦点距離)を設定する。
ステップ706で、超音波の取り込み路程を設定する。
ステップ707で、超音波の強さに関係するパルス電圧を設定する。
ステップ708で、超音波の周波数に関係するパルス幅を設定する。
ステップ709で、超音波を何回発生させるかに関係するバースト回数を設定する。
ステップ710で、超音波の感度(ゲイン)のうち、ベースゲイン、プリアンプゲイン、及びデジタルゲインを設定する。
ステップ711で、超音波の感度(ゲイン)のうち、最大ゲイン、最小ゲイン、及びゲインピッチを設定する。最大ゲインと最小ゲインは、感度の可変範囲を定める値である。ゲインピッチは、最大ゲインと最小ゲインの間でのゲインの値の間隔を定める値である。ゲインピッチの値により、異なる感度で行う超音波探傷の数、すなわち複数の感度での超音波探傷で得られた超音波探傷画像の枚数が定まる。
また、作業者は、探傷結果の表示方法を設定することもできる。
以上の超音波探傷の条件は、図2と図3に示すような設定画面にて設定される。
図2と図3は、表示部500が表示する、超音波検査装置に超音波探傷の条件を設定する画面の例を示す図である。作業者は、表示部500に表示された「条件設定1」の画面(図2)と「条件設定2」の画面(図3)により、超音波探傷の条件を超音波検査装置に入力する。
作業者は、超音波探傷の条件として、例えば、使用する超音波探触子203について、周波数、超音波素子のサイズとピッチと数、屈折角度(探傷範囲)の最大値と最小値とピッチ、焦点距離、同時励振数、母材中での音速、及び超音波の取り込み路程などを設定する(図2)。音速は、ノッチの始端や終端の座標の算出に必要である。さらに、作業者は、超音波探傷の条件として、ベースゲイン、プリアンプゲイン、及びデジタルゲインというゲインについての項目(ゲイン1)と、最大ゲイン、最小ゲイン、及びゲインのピッチというゲインについての項目(ゲイン2)を設定する(図3)。超音波探傷の条件には、パルス電圧と、パルス幅と、バースト回数と、探傷結果の表示方法(表示モード)なども含まれ、作業者は、これらの条件も設定することができる(図3)。
本実施例による超音波検査装置は、複数の感度で超音波探傷を行い、それぞれの感度での超音波探傷で得られた超音波探傷画像を生成して、被検査体200のノッチの高さを測定する。作業者がゲイン2の項目(最大ゲイン、最小ゲイン、及びゲインのピッチ)を入力することで、本実施例による超音波検査装置は、複数の感度で超音波探傷を行うことができる。
ステップ101で、作業者は、超音波探触子203を被検査体200に設置する。
図4は、溶接部の開先の例を示す図である。図4には、溶接される2つの母材201a、201bに設けられたU形の開先202を示している。
図5は、超音波探触子203が設置された被検査体200の例を示す図である。被検査体200は、図4に示した2つの母材201a、201bが溶接されており、溶金204で2つの母材201a、201bが接合されている。溶金204の、母材201a、201bの表面から盛り上がった部分が余盛209である。溶接で接合された2つの母材201a、201bの間には、ノッチ206と呼ばれる未溶着部が存在する。
図5において、母材201a、201bの厚さ方向、すなわち開先202の溝の深さ方向を「高さ方向」と呼び、高さ方向の長さを「高さ」と呼ぶ。母材201a、201bの高さ方向に存在する2つの面のうち、余盛209が形成されていない方の面を底面210と呼ぶ。溶金204の高さ方向の端部のうち、余盛209が形成されていない方の端部を底部211と呼ぶ。
ノッチ206は、母材201aと母材201bの間を、母材201a、201bの底面210から溶金204の底部211に向かって、高さ方向に延伸する。ノッチ206の高さ方向の両端のうち、底面210に位置する一端をノッチ始端207と呼び、底部211に位置する他端をノッチ終端205と呼ぶ。
図5において、ノッチ始端207とノッチ終端205の間の距離が、求めたいノッチ206の高さ(ノッチ高さ208)である。
作業者は、ステップ100で設定した超音波探傷の条件と、開先202についての情報(例えば、開先の位置や形状についての情報)と、溶金204の形状を考慮し、ノッチ始端207とノッチ終端205が存在する領域が探傷されるように、超音波探触子203を被検査体200(母材201a、201b)に設置する。図5には、2本の点線212a、212bで、超音波探触子203の探傷範囲303を示している。
ステップ102で、超音波検査装置は、被検査体200に超音波探傷を行う。超音波探触子203は、ステップ100で設定した複数の感度で超音波探傷を行う。超音波検査装置の制御部601は、それぞれの感度での超音波探傷波形を収集する。
ステップ103で、超音波検査装置の制御部601は、ステップ102で収集した超音波探傷波形に基づき、複数の感度での超音波探傷で得られた複数の超音波探傷画像を生成する。これら複数の超音波探傷画像は、ステップ102で超音波探触子203が超音波探傷を行ったそれぞれの感度での超音波探傷画像である。超音波探傷画像では、ノッチ始端207とノッチ終端205のそれぞれで発生した反射エコーが得られる。
図6は、超音波検査装置が生成した超音波探傷画像の例である。図6の超音波探傷画像300には、ノッチ始端207(図5)で発生した反射エコー301と、ノッチ終端205で発生した反射エコー302を示している。超音波探触子203は、ノッチ始端207とノッチ終端205が含まれる探傷範囲303を探傷し、制御部601は、反射エコー301と反射エコー302が表示された超音波探傷画像300を生成する。
まず、超音波検査装置は、超音波探傷画像300の中でノッチ始端207の位置を求める。
ステップ104で、作業者は、開先202についての情報を基に、ノッチ始端207の概ねの位置を予め求めておく。作業者は、ノッチ始端207の概ねの位置を求めるのに、目視で得られた溶金204の形状も利用することができる。作業者は、求めたノッチ始端207の概ねの位置を超音波検査装置に入力することができる。
ステップ105で、ステップ103で生成した超音波探傷画像300のうちの1つの超音波探傷画像300に、第1の探索範囲が設定される。第1の探索範囲は、ノッチ始端207の概ねの位置を含む範囲であり、超音波探傷画像300中に、ノッチ始端207の概ねの位置を含むように第1のウインドウを設置することで設定される。この超音波探傷画像300は、ステップ103で生成した超音波探傷画像300のうち、最も感度の高い超音波探傷で得た画像であるのが好ましい。
図7は、超音波探傷画像300に第1の探索範囲を設定する画面の例を示す図である。この画面は、超音波検査装置の表示部500が表示する。第1の探索範囲は、ノッチ始端207の概ねの位置を含むように第1のウインドウ401が超音波探傷画像300中に設置されることで、設定される。なお、第1のウインドウ401は、反射エコー301の全てを含むように設置されなくてもよい。表示部500は、超音波探傷画像300に設定された第1の探索範囲(第1のウインドウ401)を、超音波探傷画像300に表示する。
第1のウインドウ401は、作業者が設置してもよく、超音波検査装置の制御部601が設置してもよい。作業者が第1のウインドウ401を設置する場合には、作業者は、例えば、マウスカーソル501を用いて第1のウインドウ401の位置や大きさを定める。制御部601が第1のウインドウ401を設置する場合には、制御部601は、第1のウインドウ401の位置や大きさを、作業者が入力したノッチ始端207の概ねの位置や作業者が予め設定した値に基づいて、自動的に定める。
設置された第1のウインドウ401の位置(座標)や大きさは、例えば、第1の探索範囲を設定する画面に表示された入出力領域502に表示してもよい。作業者が第1のウインドウ401を設置する場合には、作業者は、第1のウインドウ401の位置(座標)や大きさの数値を入出力領域502に入力してもよい。また、制御部601が第1のウインドウ401を設置する場合には、作業者は、入出力領域502に数値を入力することで、制御部601が設置した第1のウインドウ401の位置(座標)や大きさを変更してもよい。
ステップ106で、制御部601は、超音波探傷画像300中で、ノッチ始端207の位置を探索する。制御部601は、第1の探索範囲を移動させて、ノッチ始端207に起因する反射エコー301の全てを含むような第1の探索範囲の位置を求めることで、反射エコー301を探索して、ノッチ始端207の位置を探索する。すなわち、制御部601は、第1のウインドウ401を移動させて、反射エコー301の全てを含む第1のウインドウ401の位置を求める。具体的には、制御部601は、第1のウインドウ401内の輝度の総和が最大となるような第1のウインドウ401の位置を探索する。
図8Aは、反射エコー301の全てを含む第1のウインドウ401aの例を示す図である。図8Aには、第1のウインドウ401aの中心の座標402aを示している。
ステップ107で、制御部601は、第1のウインドウ401aの中心の座標402aを求める。制御部601は、この座標402aをノッチ始端207の暫定的な位置と決定する。すなわち、制御部601は、第1のウインドウ401aの中にノッチ始端207の位置を暫定的に求める。
ステップ108で、制御部601は、ノッチ始端207の位置を求める超音波探傷画像300を、より低感度の探傷画像300に変更する。より低感度の探傷画像300とは、ステップ103で生成した超音波探傷画像300のうち、ステップ107でノッチ始端207の暫定的な位置を求めた超音波探傷画像300を得たときの超音波探傷よりも感度の低い超音波探傷で得た画像のことである。
ステップ109で、制御部601は、第1の探索範囲(第1のウインドウ401a)の大きさを縮小する。第1の探索範囲の大きさを縮小する割合は、任意に定めることができる。縮小された第1の探索範囲(第1のウインドウ401a)の位置は、縮小する前の第1の探索範囲の内部に含まれるのが好ましい。
図8Bは、図8Aの超音波探傷画像300を得たときの超音波探傷よりも感度の低い超音波探傷で得た画像(より低感度の探傷画像300)において、反射エコー301の全てを含む第1のウインドウ401bの例を示す図である。図8Bに示す第1のウインドウ401bは、図8Aに示した第1のウインドウ401aよりも大きさが小さい。図8Bには、第1のウインドウ401bの中心の座標402bを示している。
図8Bに示す、より低感度の探傷画像300では、ノッチ始端207の反射エコー301の大きさは、図8Aに示した、より感度の高い超音波探傷で得た画像(より高感度の探傷画像300)におけるノッチ始端207の反射エコー301の大きさよりも小さい。そこで、制御部601は、ステップ109を実施し、第1の探索範囲の大きさを縮小する。
制御部601は、ステップ106からステップ109の手順を繰り返し、より低感度の探傷画像300を用いて、第1の探索範囲(第1のウインドウ401a、401b)の大きさを段階的に縮小していき、ノッチ始端207の暫定的な位置を繰り返し求めていく。
図8Cは、図8Bの超音波探傷画像300を得たときの超音波探傷よりも感度の低い超音波探傷で得た画像(より低感度の探傷画像300)において、反射エコー301の全てを含む第1のウインドウ401cの例を示す図である。図8Cに示す第1のウインドウ401cは、図8Bに示した第1のウインドウ401bよりも大きさが小さい。図8Cには、第1のウインドウ401cの中心の座標402cを示している。
ステップ110で、制御部601は、第1の探索範囲(第1のウインドウ401c)の中に、ノッチ始端207の位置を確定できたか否かを判定する。
図8Dは、図8Cの超音波探傷画像300を得たときの超音波探傷よりも感度の低い超音波探傷で得た画像(より低感度の探傷画像300)において、第1のウインドウ401dの例を示す図である。図8Dに示す第1のウインドウ401dは、図8Cに示した第1のウインドウ401cよりも大きさが小さい。
超音波探傷の感度を低くしていくと、図8Dに示すように、超音波探傷画像300に、ノッチ始端207に起因する反射エコー301が映らなくなる。制御部601は、ノッチ始端207に起因する反射エコー301が超音波探傷画像300からなくなったら、ノッチ始端207の位置を確定できたと判断する。そして、制御部601は、反射エコー301がなくなった超音波探傷画像300の1つ前の超音波探傷画像300で求めたノッチ始端207の暫定的な位置を、ノッチ始端207の位置として求める。
制御部601は、ノッチ始端207に起因する反射エコー301が超音波探傷画像300からなくなり、ノッチ始端207の位置が確定するまで、ステップ106からステップ109の手順を繰り返す。すなわち、制御部601は、反射エコー301の大きさが小さくなるのに合わせて、第1の探索範囲(第1のウインドウ401a、401b、401c)の大きさを縮小していき、ノッチ始端207の暫定的な位置を繰り返し求めることで、ノッチ始端207の位置を絞り込んでいって求める。
ステップ111で、制御部601は、求めたノッチ始端207の位置の座標を求める。制御部601は、超音波探傷画像300の中の任意の位置を原点とすることで、ノッチ始端207の位置の座標を特定する。
次に、超音波検査装置は、超音波探傷画像300の中でノッチ終端205の位置を求める。
ステップ112で、超音波検査装置の制御部601は、ステップ103で生成した超音波探傷画像300のうちの1つの超音波探傷画像300に、第2の探索範囲を設定する。第2の探索範囲は、ステップ110で求めたノッチ始端207の位置を含む範囲であり、超音波探傷画像300中に、確定したノッチ始端207の位置を含むように第2のウインドウを設置することで設定される。この超音波探傷画像300は、ステップ103で生成した超音波探傷画像300のうち、最も感度の高い超音波探傷で得た画像であるのが好ましい。
ステップ113で、制御部601は、開先202についての情報を基に、ノッチ始端207からのノッチ206の延伸方向を推定して求める。すなわち、制御部601は、ノッチ始端207からのノッチ終端205がある方向を推定する。
ステップ114で、制御部601は、超音波探傷画像300中で、ノッチ終端205の位置を探索する。制御部601は、第2の探索範囲(第2のウインドウ)を、ステップ112で超音波探傷画像300に設定した位置から、ステップ113で求めたノッチ206の延伸方向に移動させる。制御部601は、第2の探索範囲をこのように移動させていき、ノッチ終端205に起因する反射エコー302の全てを含むような第2の探索範囲の位置を求めることで、反射エコー302を探索して、ノッチ終端205の位置を探索する。すなわち、制御部601は、第2のウインドウを移動させて、反射エコー302の全てを含む第2のウインドウの位置を求める。具体的には、制御部601は、第2のウインドウ内の輝度の総和が最大となるような第2のウインドウの位置を探索する。
図9Aは、反射エコー302の全てを含む第2のウインドウ403aの例を示す図である。図9Aには、第2のウインドウ403aの中心の座標404aを示している。
ステップ115で、制御部601は、第2のウインドウ403aの中心の座標404aを求める。制御部601は、この座標404aをノッチ終端205の暫定的な位置と決定する。すなわち、制御部601は、第2のウインドウ403aの中にノッチ終端205の位置を暫定的に求める。
ステップ116で、制御部601は、ノッチ終端205の位置を求める超音波探傷画像300を、より低感度の探傷画像300に変更する。より低感度の探傷画像300とは、ステップ103で生成した超音波探傷画像300のうち、ステップ115でノッチ終端205の暫定的な位置を求めた超音波探傷画像300を得たときの超音波探傷よりも感度の低い超音波探傷で得た画像のことである。
ステップ117で、制御部601は、第2の探索範囲(第2のウインドウ403a)の大きさを縮小する。第2の探索範囲の大きさを縮小する割合は、任意に定めることができる。縮小された第2の探索範囲(第2のウインドウ403a)の位置は、縮小する前の第2の探索範囲の内部に含まれるのが好ましい。
図9Bは、図9Aの超音波探傷画像300を得たときの超音波探傷よりも感度の低い超音波探傷で得た画像(より低感度の探傷画像300)において、反射エコー302の全てを含む第2のウインドウ403bの例を示す図である。図9Bに示す第2のウインドウ403bは、図9Aに示した第2のウインドウ403aよりも大きさが小さい。図9Bには、第2のウインドウ403bの中心の座標404bを示している。
図9Bに示す、より低感度の探傷画像300では、ノッチ終端205の反射エコー302の大きさは、図9Aに示した、より感度の高い超音波探傷で得た画像(より高感度の探傷画像300)におけるノッチ終端205の反射エコー302の大きさよりも小さい。そこで、制御部601は、ステップ117を実施し、第2の探索範囲の大きさを縮小する。
制御部601は、ステップ114からステップ117の手順を繰り返し、より低感度の探傷画像300を用いて、第2の探索範囲(第2のウインドウ403a、403b)の大きさを段階的に縮小していき、ノッチ終端205の暫定的な位置を繰り返し求めていく。
図9Cは、図9Bの超音波探傷画像300を得たときの超音波探傷よりも感度の低い超音波探傷で得た画像(より低感度の探傷画像300)において、反射エコー302の全てを含む第2のウインドウ403cの例を示す図である。図9Cに示す第2のウインドウ403cは、図9Bに示した第2のウインドウ403bよりも大きさが小さい。図9Cには、第2のウインドウ403cの中心の座標404cを示している。
ステップ118で、制御部601は、第2の探索範囲(第2のウインドウ403c)の中に、ノッチ終端205の位置を確定できたか否かを判定する。
図9Dは、図9Cの超音波探傷画像300を得たときの超音波探傷よりも感度の低い超音波探傷で得た画像(より低感度の探傷画像300)において、第2のウインドウ403dの例を示す図である。図9Dに示す第2のウインドウ403dは、図9Cに示した第2のウインドウ403cよりも大きさが小さい。
超音波探傷の感度を低くしていくと、図9Dに示すように、超音波探傷画像300に、ノッチ終端205に起因する反射エコー302が映らなくなる。制御部601は、ノッチ終端205に起因する反射エコー302が超音波探傷画像300からなくなったら、ノッチ終端205の位置を確定できたと判断する。そして、制御部601は、反射エコー302がなくなった超音波探傷画像300の1つ前の超音波探傷画像300で求めたノッチ終端205の暫定的な位置を、ノッチ終端205の位置として求める。
制御部601は、ノッチ終端205に起因する反射エコー302が超音波探傷画像300からなくなり、ノッチ終端205の位置が確定するまで、ステップ114からステップ117の手順を繰り返す。すなわち、制御部601は、反射エコー302の大きさが小さくなるのに合わせて、第2の探索範囲(第2のウインドウ403a、403b、403c)の大きさを縮小していき、ノッチ終端205の暫定的な位置を繰り返し求めることで、ノッチ終端205の位置を絞り込んでいって求める。
ステップ119で、制御部601は、求めたノッチ終端205の位置の座標を求める。制御部601は、ノッチ始端207の位置の座標を特定したときに用いた原点を使って、ノッチ終端205の位置の座標を特定する。
ステップ120で、制御部601は、ノッチ始端207の位置とノッチ終端205の位置の間の距離を求めることで、ノッチ高さ208(図5)を求める。制御部601は、ステップ111で求めたノッチ始端207の位置の座標と、ステップ119で求めたノッチ終端205の位置の座標から、ノッチ高さ208を算出する。
図10は、超音波検査装置の表示部500が表示する、ノッチ高さ208の測定結果の表示画面の例を示す図である。表示部500は、超音波探傷画像300の上に、算出したノッチ高さ208と、求めたノッチ始端207の位置250と、求めたノッチ終端205の位置260を表示する。表示部500は、ノッチ高さ208と、ノッチ始端207の位置250の座標と、ノッチ終端205の位置260の座標を、測定結果の表示画面に数値で表示してもよい。
図1に示した手順では、ノッチ始端207の位置250をノッチ終端205の位置260よりも先に求める。この理由は、ノッチ終端205の位置260は、溶金204の形状(溶金204の底部211の位置)によって決まるので、どこにあるか推測するのが難しく、ノッチ終端205の概ねの位置を含むように第1の探索範囲(第1のウインドウ)を設定するのが困難だからである。このため、ノッチ始端207の位置250を求めてから、ノッチ終端205の位置260を求める。
なお、表示部500は、図8A~図8Dに示した第1のウインドウ401a~401dと第1のウインドウの中心の座標402a~402cと、図9A~図9Dに示した第2のウインドウ403a~403dと第2のウインドウの中心の座標404a~404cを表示してもよく、表示しなくてもよい。
なお、本発明は、上記の実施例に限定されるものではなく、様々な変形が可能である。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能である。また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、削除したり、他の構成を追加・置換したりすることが可能である。
201a、201b…母材、202…開先、203…超音波探触子、204…溶金、205…ノッチ終端、206…ノッチ、207…ノッチ始端、208…ノッチ高さ、209…余盛、200…被検査体、210…底面、211…底部、212a、212b…探傷範囲を示す点線、250…ノッチ始端の位置、260…ノッチ終端の位置、300…超音波探傷画像、301、302…反射エコー、303…探傷範囲、401、401a、401b、401c、401d…第1のウインドウ、402a、402b、402c…第1のウインドウの中心の座標、403a、403b、403c、403d…第2のウインドウ、404a、404b、404c…第2のウインドウの中心の座標、501…マウスカーソル、502…入出力領域、600…送受信部、601…制御部、602…遅延時間制御部、603…パルサー、604…レシーバー、605…データ収集部。

Claims (6)

  1. 複数の超音波素子を備え、2つの母材が溶接で接合された溶接部を備える被検査体に対して電子走査により超音波探傷を行う超音波探触子と、
    制御部と、
    を備え、
    前記被検査体は、前記母材の間の未溶着部であるノッチを有し、
    前記制御部は、
    前記超音波探触子が超音波探傷を行って得られた探傷画像を生成し、
    前記探傷画像に設定された第1の探索範囲の中に、前記ノッチの一端の位置を求め、
    前記制御部が前記探傷画像に設定した第2の探索範囲の中に、前記ノッチの他端の位置を求め、
    前記ノッチの前記一端の位置と前記他端の位置から、前記一端と前記他端の間の距離である前記ノッチの高さを求め、
    前記制御部が前記ノッチの高さを求める際に
    前記超音波探触子は、複数の感度で超音波探傷を行い、
    前記制御部は、
    複数の前記感度での超音波探傷で得られた複数の前記探傷画像を生成し、
    複数の前記探傷画像のうちの1つの前記探傷画像に設定された前記第1の探索範囲の中に、前記ノッチの前記一端の位置を暫定的に求め、
    より前記感度の低い超音波探傷で得られた前記探傷画像を用いて、前記第1の探索範囲の大きさを縮小していって、前記ノッチの前記一端の位置を繰り返し求めていくことで、前記ノッチの前記一端の位置を求め、
    複数の前記探傷画像のうちの1つの前記探傷画像に前記第2の探索範囲を設定し、前記第2の探索範囲の中に、前記ノッチの前記他端の位置を暫定的に求め、
    より前記感度の低い超音波探傷で得られた前記探傷画像を用いて、前記第2の探索範囲の大きさを縮小していって、前記ノッチの前記他端の位置を繰り返し求めていくことで、前記ノッチの前記他端の位置を求める、
    ことを特徴とする溶接部の超音波検査装置。
  2. 前記被検査体は、前記溶接部に開先が設けられており、
    前記制御部は、前記開先についての情報に基づいて、前記探傷画像に前記第1の探索範囲を設定する、
    請求項1に記載の溶接部の超音波検査装置。
  3. 前記制御部は、前記ノッチの前記一端の位置に基づいて、前記探傷画像に前記第2の探索範囲を設定する、
    請求項1に記載の溶接部の超音波検査装置。
  4. 前記被検査体は、前記溶接部に開先が設けられており、
    前記制御部は、前記探傷画像に設定した前記第2の探索範囲を、前記探傷画像に設定した位置から、前記開先についての情報から求めた前記ノッチの延伸方向に移動させていき、前記第2の探索範囲の中に前記ノッチの前記他端の位置を求める、
    請求項に記載の溶接部の超音波検査装置。
  5. 前記制御部が求めた前記ノッチの前記一端の位置と前記他端の位置を前記探傷画像に表示する表示部を備える、
    請求項1に記載の溶接部の超音波検査装置。
  6. 前記探傷画像に設定された前記第1の探索範囲を前記探傷画像に表示する表示部を備える、
    請求項1に記載の溶接部の超音波検査装置。
JP2020034954A 2020-03-02 2020-03-02 溶接部の超音波検査装置 Active JP7349390B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020034954A JP7349390B2 (ja) 2020-03-02 2020-03-02 溶接部の超音波検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020034954A JP7349390B2 (ja) 2020-03-02 2020-03-02 溶接部の超音波検査装置

Publications (2)

Publication Number Publication Date
JP2021139642A JP2021139642A (ja) 2021-09-16
JP7349390B2 true JP7349390B2 (ja) 2023-09-22

Family

ID=77668307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020034954A Active JP7349390B2 (ja) 2020-03-02 2020-03-02 溶接部の超音波検査装置

Country Status (1)

Country Link
JP (1) JP7349390B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009931A1 (en) 1987-06-08 1988-12-15 Hitachi Construction Machinery Co., Ltd. Method of measuring depth of surface opening defects of a solid material by using ultrasonic waves
JP2008232627A (ja) 2007-03-16 2008-10-02 Toshiba Corp 超音波探傷装置および超音波探傷方法
JP2009192236A (ja) 2008-02-12 2009-08-27 Kobe Steel Ltd 超音波探傷方法及び超音波探傷装置
JP2011047705A (ja) 2009-08-25 2011-03-10 Kobe Steel Ltd 超音波探傷方法
JP2019197007A (ja) 2018-05-10 2019-11-14 東京瓦斯株式会社 超音波探傷の判定装置、判定プログラム及び判定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009931A1 (en) 1987-06-08 1988-12-15 Hitachi Construction Machinery Co., Ltd. Method of measuring depth of surface opening defects of a solid material by using ultrasonic waves
JP2008232627A (ja) 2007-03-16 2008-10-02 Toshiba Corp 超音波探傷装置および超音波探傷方法
JP2009192236A (ja) 2008-02-12 2009-08-27 Kobe Steel Ltd 超音波探傷方法及び超音波探傷装置
JP2011047705A (ja) 2009-08-25 2011-03-10 Kobe Steel Ltd 超音波探傷方法
JP2019197007A (ja) 2018-05-10 2019-11-14 東京瓦斯株式会社 超音波探傷の判定装置、判定プログラム及び判定方法

Also Published As

Publication number Publication date
JP2021139642A (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
US7900516B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
RU2404427C2 (ru) Ультразвуковое дефектоскопическое устройство и программа ультразвуковой дефектоскопии
US7775415B2 (en) Method and apparatus for assessing the quality of spot welds
JP4884930B2 (ja) 超音波探傷装置及び方法
JP5800667B2 (ja) 超音波検査方法,超音波探傷方法及び超音波検査装置
JPH07167842A (ja) 超音波の屈折角の測定と制御を行うための方法および装置
JP5456259B2 (ja) 溶接検査方法および装置
JP3535417B2 (ja) 超音波による欠陥高さ測定装置及び欠陥高さ測定方法
JP7349390B2 (ja) 溶接部の超音波検査装置
JP6598045B2 (ja) 超音波検査方法
JP5738684B2 (ja) 超音波探傷試験体の表面形状同定処理を組み込んだ超音波探傷試験方法、超音波探傷試験装置及び超音波探傷試験プログラム
JP4564183B2 (ja) 超音波探傷方法
JP4371364B2 (ja) 厚肉構造物の自動超音波探傷装置および自動超音波探傷方法
JP4682921B2 (ja) 超音波探傷方法及び超音波探傷装置
JP2005274444A (ja) 超音波探傷画像処理装置及びその処理方法
RU2246724C1 (ru) Способ ультразвукового контроля качества материала
JP7453928B2 (ja) 溶接部の超音波検査装置
JP2009097876A (ja) 超音波探傷方法
RU2395802C1 (ru) Способ ультразвукового контроля стыковых сварных швов
JP2014070968A (ja) 超音波検査装置および超音波検査方法
Ganhao Sizing with time-of-flight diffraction
JP2022165550A (ja) 溶接部の超音波検査方法
JPH09229910A (ja) 超音波斜角探傷方法
JPS59109860A (ja) 超音波探傷装置
KR101561038B1 (ko) 곡률보정 TOFD(Time of Flight Diffraction)초음파 웨지를 이용한 원자로 하부관통관 초음파 검사법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230911

R150 Certificate of patent or registration of utility model

Ref document number: 7349390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150