JP2017203704A - 配管検査装置 - Google Patents

配管検査装置 Download PDF

Info

Publication number
JP2017203704A
JP2017203704A JP2016095912A JP2016095912A JP2017203704A JP 2017203704 A JP2017203704 A JP 2017203704A JP 2016095912 A JP2016095912 A JP 2016095912A JP 2016095912 A JP2016095912 A JP 2016095912A JP 2017203704 A JP2017203704 A JP 2017203704A
Authority
JP
Japan
Prior art keywords
pipe
ultrasonic
probe
inspection
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016095912A
Other languages
English (en)
Other versions
JP6758083B2 (ja
Inventor
将裕 三木
Masahiro Miki
将裕 三木
佑己 大島
Yuki Oshima
佑己 大島
河野 尚幸
Naoyuki Kono
尚幸 河野
敏三 木村
Toshizo Kimura
敏三 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016095912A priority Critical patent/JP6758083B2/ja
Priority to US15/484,324 priority patent/US10444198B2/en
Priority to EP17166434.5A priority patent/EP3244202B1/en
Publication of JP2017203704A publication Critical patent/JP2017203704A/ja
Application granted granted Critical
Publication of JP6758083B2 publication Critical patent/JP6758083B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/223Supports, positioning or alignment in fixed situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/221Arrangements for directing or focusing the acoustical waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】配管の損傷の有無を適切に検査する配管検査装置を提供する。【解決手段】超音波発信プローブ11は、自身から配管Gに向けて発信された超音波が、配管Gの肉厚部Giを伝播して、少なくとも配管Gの外周面で反射し、さらに、配管Gの検査部位Qに向かうように配置され、検査部位Qを含むとともに配管Gの中心軸に垂直なxz平面を基準として、超音波受信プローブ21は、超音波発信プローブ11に対して対称に配置される。【選択図】図4

Description

本発明は、配管の損傷の有無を検査する配管検査装置に関する。
発電プラントや化学プラントに設けられる配管の損傷(例えば、配管の内周面の割れ)に関する検査として、放射線検査や超音波検査が行われている。これら2つの検査方法のうち、放射線検査については、放射線源の設置や検査部位の周囲の遮蔽といった作業を要し、さらに、検査中に人の立入りが制限されるという制約がある。したがって、配管の損傷の有無の検査として、超音波検査が行われることが望ましい。このような超音波検査に関して、例えば、特許文献1には、1つのプローブによって超音波の発信・受信を行い、超音波の反射波に基づいて、配管における損傷の有無を検査することが記載されている。
特開2014−81376号公報
ところで、発電プラントや化学プラントでは、比較的長い配管を設けるために、複数本の配管を溶接することが多い。この場合において、配管同士の溶接箇所は、配管の外周面から径方向外側に盛り上がっている(いわゆる「溶接余盛」が存在する)。例えば、特許文献1に記載の技術において、前記した溶接余盛にプローブを配置すると、プローブが不安定になるため、場合によっては、配管の損傷の有無を適切に検査できない可能性がある。
そこで、本発明は、配管の損傷の有無を適切に検査する配管検査装置を提供することを課題とする。
前記課題を解決するために、本発明に係る配管検査装置は、自身から配管に向けて発信された超音波が、配管の肉厚部を伝播して、少なくとも配管の外周面で反射し、さらに、配管の検査部位に向かうように超音波発信プローブが配置され、検査部位を含むとともに配管の中心軸に垂直な平面を基準として、超音波受信プローブが、超音波発信プローブに対して対称に配置されることを特徴とする。
また、本発明に係る配管検査装置は、自身から配管に向けて発信された超音波が、配管の肉厚部を伝播して、少なくとも配管の外周面で反射し、さらに、配管の検査部位に向かうように超音波発信プローブが配置され、検査部位を含むとともに配管の中心軸を含む平面を基準として、超音波受信プローブが、超音波発信プローブに対して対称に配置されることを特徴とする。
本発明によれば、配管の損傷の有無を適切に検査する配管検査装置を提供できる。
本発明の第1実施形態に係る配管検査装置の説明図である。 本発明の第1実施形態に係る配管検査装置の構成図である。 本発明の第1実施形態に係る配管検査装置の図1におけるII−II線矢視断面図である。 本発明の第1実施形態に係る配管検査装置において、配管、超音波発信プローブ、超音波受信プローブ等をx軸の負側から視た説明図である。 本発明の第1実施形態に係る配管検査装置が備える探傷器制御装置が実行する処理のフローチャートである。 本発明の第2実施形態に係る配管検査装置の超音波発信プローブ及び超音波受信プローブを含む平断面図である。 本発明の第2実施形態に係る配管検査装置において、配管、超音波発信プローブ、超音波受信プローブ等をx軸の負側から視た説明図である。 本発明の第3実施形態に係る配管検査装置において、yz平面の一方側に超音波発信プローブ及び超音波受信プローブを配置した場合の平断面図である。 本発明の第3実施形態に係る配管検査装置において、yz平面の他方側に超音波発信プローブ及び超音波受信プローブを配置した場合の平断面図である。 本発明の第4実施形態に係る配管検査装置の超音波発信プローブ及び超音波受信プローブを含む平断面図である。 本発明の第4実施形態に係る配管検査装置において、配管、超音波発信プローブ、超音波受信プローブ等をx軸の負側から視た説明図である。 本発明の第4実施形態に係る配管検査装置が備える探傷器制御装置が実行する処理のフローチャートである。 本発明の変形例に係る配管検査装置が備える超音波発信プローブの縦断面図である。 本発明の別の変形例に係る配管検査装置において、超音波発信プローブから発信される超音波の経路を示す平断面図である。
≪第1実施形態≫
<配管検査装置の構成>
図1は、第1実施形態に係る配管検査装置100の説明図である。
配管検査装置100の説明に先立って、まず、水壁Wについて簡単に説明する。
水壁Wは、火力発電所(図示せず)が備えるボイラ火炉(図示せず)の内外を仕切る壁である。水壁Wは、冷却水が通流する複数の配管Gと、隣り合う配管G,Gの隙間に設けられ、配管G,Gに溶接される複数の膜板Pと、を備えている。
円筒状を呈する配管Gは、母管Ga,Gbと、母管Ga,Gb同士の溶接箇所である周方向溶接部Gcと、を備えている。周方向溶接部Gcは、母管Ga,Gbの外周面から径方向外側に盛り上がっており、母管Ga,Gbに比べて、割れ等の損傷が発生することが多い。第1実施形態では、一例として、配管Gの中心軸と略平行な「軸方向割れ」(損傷)が、周方向溶接部Gcの内周面に存在するか否かを検査する場合について説明する。また、配管Gの構成材料が存在する円筒状の部分(つまり、配管Gそのもの)を「肉厚部Gi」(図3参照)ともいう。
配管検査装置100は、配管Gにおける損傷の有無を検査する装置である。図1に示すように、配管検査装置100は、超音波発信プローブ11と、ウェッジ12(発信側ウェッジ)と、超音波受信プローブ21と、ウェッジ22(受信側ウェッジ)と、保持部41と、超音波探傷器50と、探傷器制御装置60(配管検査部)と、を備えている。
超音波発信プローブ11は、配管Gに向けて超音波を発信するものであり、ウェッジ12を介して配管Gに配置されている。
図2は、配管検査装置100の構成図である。なお、図2では、ウェッジ12,22(図1参照)の図示を省略している。
図2に示す超音波発信プローブ11は、複数の振動子11aと、音響整合層11bと、を備える超音波アレイプローブである。複数の振動子11aは、一列に配列された圧電素子であり、配線mを介して発信用探傷回路51に接続されている。そして、発信用探傷回路51から配線mを介してパルス電圧が印加されることで、それぞれの振動子11aが振動するようになっている。
音響整合層11bは、振動子11aの振動によって発生する超音波を、配管G(図1参照)に効率良く入射させるための樹脂製の層であり、振動子11aの外側(配管G側)に配置されている。
なお、超音波発信プローブ11の構成は、図2に示すものに限定されない。例えば、超音波を集束させるための音響レンズ(図示せず)を、音響整合層11bの外側に設けてもよい。また、振動子11aの余分な振動を抑えるためのバッキング材(図示せず)を、振動子11aの内側に設けてもよい。
超音波受信プローブ21は、超音波発信プローブ11から発信された超音波を受信可能に構成され、ウェッジ22(図1参照)を介して配管Gに配置されている。この超音波受信プローブ21は、複数の振動子21aと、音響整合層21bと、を備える超音波アレイプローブである。なお、超音波受信プローブ21の構成は、超音波発信プローブ11と同様であるから、説明を省略する。
図2に示すように、反射源からの超音波(振動)が、各振動子21aにおいて電気信号(反射信号)に変換され、この電気信号が配線nを介して受信用探傷回路52に出力されるようになっている。前記した反射源とは、例えば、配管G(図1参照)の内周面における軸方向割れである。
超音波探傷器50は、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成される。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。図2に示すように、超音波探傷器50は、発信用探傷回路51と、受信用探傷回路52と、を備えている。
発信用探傷回路51は、入力側が配線rを介して発信用制御回路61に接続され、出力側が配線mを介して各振動子11aに接続されている。発信用探傷回路51は、発信用制御回路61からの制御信号に基づいて、超音波発信プローブ11の各振動子11aに所定のタイミングでパルス電圧を印加する。
受信用探傷回路52は、入力側が配線nを介して超音波受信プローブ21の各振動子21aに接続され、出力側が配線sを介して受信用制御回路62に接続されている。受信用探傷回路52は、超音波受信プローブ21の各振動子21aからの電気信号を取り込み、この電気信号を所定のデータとして受信用制御回路62に出力する。
探傷器制御装置60は、図示はしないが、CPU、ROM、RAM、各種インタフェース等の電子回路を含んで構成され、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。図2に示すように、探傷器制御装置60は、発信用探傷回路51に接続される発信用制御回路61と、受信用探傷回路52に接続される受信用制御回路62と、を備えている。
発信用制御回路61は、各振動子11aを所定のタイミングで振動させるための制御信号を発信用探傷回路51に出力する。図2に示す例では、発信用制御回路61は、一列に配列された各振動子11aにおいて、中央付近の振動子11aとの距離が長いものほど、早いタイミングで振動させている。これによって、各振動子11aの振動に伴って発生する超音波(球面波)が焦点に向けて集束する。この焦点が、配管Gにおける所定の検査部位Q(図3参照)に位置するように、各振動子11aにおける振動のタイミングが制御される。これによって、配管Gの損傷を高感度で検出できる。なお、前記した「検査部位Q」とは、配管Gにおいて、損傷の有無の検査対象となる部位である。
図2に示す受信用制御回路62は、超音波受信プローブ21の受信結果に基づいて、配管Gにおける損傷の有無を検査する機能を有している。また、受信用制御回路62は、配管Gにおける検査部位Qの状態を画像データとして表示装置(図示せず)に出力する機能も有している。
図3は、第1実施形態に係る配管検査装置100の図1におけるII−II線矢視断面図である。なお、図3に示す「内側」とは、水壁W(図1参照)よりもボイラ火炉側(図示せず)であり、「外側」とは、ボイラ火炉の反対側である。
また、図3に示すように、配管Gの中心軸をy軸とし、膜板Pの壁面に垂直であるとともにy軸と交わる直線をz軸とし、y軸・z軸に垂直な直線をx軸とする。なお、図3に示す太線矢印は、超音波(指向性の高い超音波ビーム)が配管Gの肉厚部Giを伝搬する経路を示している。
水壁Wの内側(図1の紙面奥側)では、この水壁Wの付近に他の配管(図示せず)が設置されていることが多く、また、ボイラ火炉(図示せず)を停止させた状態でも灰が付着している。したがって、検査員が、水壁Wの内側で配管Gの検査を行うことは困難である。そこで、第1実施形態では、超音波発信プローブ11や超音波受信プローブ21を水壁Wの外側(図1の紙面手前側、図3に示すz軸の正側)に配置して、配管Gの検査を行うようにしている。
図3に示すウェッジ12は、超音波発信プローブ11と配管Gとの間に介在する部材であり、金具やネジ等で超音波発信プローブ11に固定されている。そして、超音波発信プローブ11の各振動子11a(図2参照)からの超音波が、ウェッジ12を介して配管Gに入射するようになっている。ウェッジ12は、エポキシ樹脂やポリスチレン樹脂等で構成され、超音波発信プローブ11の設置角度を安定させるとともに、超音波の伝達効率を高める機能を有している。なお、ウェッジ12において配管Gの外周面に接触する面は、配管Gの外周面の曲率に合わせて(つまり、ウェッジ12と配管Gとの間に隙間ができないように)形成されている。
図4は、配管G、超音波発信プローブ11、超音波受信プローブ21等をx軸の負側から視た説明図である。なお、図4では、膜板P(図3参照)の図示を省略している。
図4に示すウェッジ22は、超音波受信プローブ21と配管Gとの間に介在する部材であり、金具やネジ等で超音波受信プローブ21に固定されている。そして、超音波がウェッジ22を介して超音波受信プローブ21の各振動子21a(図2参照)に入射するようになっている。
保持部41は、一方のウェッジ12と他方のウェッジ22との間の距離(=2L)を保持する部材であり、図4に示す例では、棒状を呈している。保持部41は、その一端がウェッジ12に固定され、他端がウェッジ22に固定されている。
なお、検査員が配管Gの損傷の有無を検査する際には、水、油、グリセリンペースト等の接触媒質が、ウェッジ12,22の配管G側の面に塗布される。そして、検査員が、保持部41等を手で持って支えながら超音波検査を行う。
<超音波発信プローブ・超音波受信プローブの配置>
以下では、配管Gのボイラ火炉側(内側)の内周面(図3では、特にz軸上の位置)を「検査部位Q」とし、この「検査部位Q」に軸方向割れがあるか否かを検査する場合について説明する。なお、図3、図4に示す例では、配管Gの内周面において、z軸上に軸方向割れV1が存在している。
図3に示すように、超音波発信プローブ11は、自身から配管Gに向けて発信された超音波が、配管Gの肉厚部Giを伝播して、配管Gの外周面で1回反射し、さらに、配管Gの検査部位Qに向かうように配置される。
図3に示す角度αは、z軸を基準(0°)とする周方向において、超音波が配管Gの外周面で反射する位置を示している。そして、検査部位Qに軸方向割れV1が存在する場合において、配管Gの外周面で反射した超音波が、軸方向割れV1に向けて平面視で略垂直に入射するように角度αが設定されている。言い換えると、配管Gの中心軸(y軸)を含む平面(図3では、yz平面)と略平行な軸方向割れV1が、配管Gの内周面に存在しているという想定のもとで、角度αが設定されている。
なお、角度αは、35°以上かつ55°以下であることが好ましい。角度αが、前記した範囲内であれば、軸方向割れV1に対して平面視で略垂直に超音波が入射するからである。これによって、超音波が他の方向から軸方向割れV1に入射する場合と比較して、軸方向割れV1における超音波の反射強度を高めることができる。
図3に示す角度βは、z軸を基準(0°)とする周方向において、ウェッジ12,22の設置位置を示す角度である。kの角度βは、配管Gの外周面において、前記した角度αの位置で超音波が反射するように設定される。なお、検査部位Qを含むとともに配管Gの中心軸(y軸)を含むyz平面を基準として、配管Gの周方向で90°以上かつ135°以下の位置に、さらに好ましくは105°以上かつ135°以下の位置にウェッジ12,22を配置することが好ましい。これによって、配管Gの外周面で反射した超音波が、平面視で軸方向割れV1に略垂直に入射し、また、軸方向割れV1で反射した超音波がウェッジ22を介して超音波受信プローブ21に向かうからである。
図3に示す屈折角θは、ウェッジ12と配管Gとの界面における超音波の屈折角である。なお、屈折角θは、35°以上かつ45°以下であることが好ましい。これによって、配管Gの外周面で反射した超音波が、平面視で軸方向割れV1に略垂直に入射するからである。
図4に示す角度γは、配管Gの中心軸(y軸)に垂直な平面と、超音波発信プローブ11から発信される超音波の経路と、がなす角である。角度γは、配管Gの内径・外径、周方向溶接部Gcの厚さ、膜板P(図3参照)における超音波の干渉等を考慮して、適宜設定される。この角度γは、20°以上かつ70°以下であることが好ましい。これによって、配管Gの外周面で反射した超音波が、側面視において検査部位Qに向かうからである。なお、ウェッジ12,22は、自身が配管Gに押し当てられた状態で、前記した角度θ,α,β,γが保たれるように構成されている。
図4に示すように、配管Gの軸方向(y軸方向)において、検査部位Qを含む周方向溶接部Gcの一方側に超音波発信プローブ11が配置され、他方側に超音波受信プローブ21が配置される。より詳しく説明すると、検査部位Qを含むとともに配管Gの中心軸(y軸)に垂直なxz平面を基準として、超音波受信プローブ21は、超音波発信プローブ11に対して対称に配置される。
したがって、前記した角度θ,α,β,γは、超音波の発信側と受信側で略同一の値になる。その結果、超音波発信プローブ11から軸方向割れV1に向かう超音波の経路と、軸方向割れV1で反射して超音波受信プローブ21に向かう超音波の経路と、は平面視で重なって見える(図3参照)。つまり、xz平面を基準として、超音波受信プローブ21が超音波発信プローブ11に対して対称に配置されることで、前記した各経路もxz平面を基準として対称になる(図4参照)。
なお、図4に示す保持部41は、一方のウェッジ12と他方のウェッジ22との間の距離(=2L)を調整可能に構成されていることが好ましい。例えば、保持部41は、互いに係合する2本のレール(図示せず)と、レールの全長を保持するためのネジ(図示せず)と、を備える構成であってもよい。このような構成において、一方のレールにはウェッジ12が固定され、他方のレールにはウェッジ22が固定される。このように保持部41の長さを調整可能にすることで、内径が異なる別の配管(図示せず)でも、図3、図4に示す構成で超音波検査を行うことができる。
<探傷器制御装置の処理>
図5は、探傷器制御装置60が実行する処理のフローチャートである。
なお、図5の「START」時には、図3、図4に示すように、超音波発信プローブ11及び超音波受信プローブ21が配置されているものとする。そして、探傷器制御装置60(図2参照)の開始ボタン(図示せず)を検査員が押すことで、図5に示す一連の処理が開始される。
ステップS101において探傷器制御装置60は、発信用制御回路61(図2参照)によって、超音波発信プローブ11から超音波を発信する。超音波発信プローブ11から発信された超音波は、前記したように、超音波発信プローブ11とウェッジ12との界面で屈折した後、配管Gの外周面で反射して、検査部位Qに向かう。
仮に、検査部位Qに軸方向割れV1が存在する場合には、この軸方向割れV1において超音波が反射した後、さらに、配管Gの外周面で反射して、超音波受信プローブ21に向かう。
また、仮に、検査部位Qに軸方向割れV1が存在しない場合には、配管Gの外周面や内周面で超音波の反射が繰り返されて、超音波が減衰する。その結果、超音波受信プローブ21では超音波が受信されないか、又は、溶接の管内面である裏波に起因した微弱な超音波が受信される。
ステップS102において探傷器制御装置60は、所定の反射信号があるか否かを判定する。つまり、ステップS102において探傷器制御装置60は、超音波探傷器50(図2参照)からの反射信号の強度が所定閾値以上であるか否かを判定する。前記した「所定閾値」は、配管Gの内周面に軸方向割れV1が存在するか否かの判定基準となる閾値であり、予め設定されている。ステップS102において所定の反射信号がある場合(S102:Yes)、探傷器制御装置60の処理はステップS103に進む。
ステップS103において探傷器制御装置60は、配管Gに損傷ありと判定する。すなわち、探傷器制御装置60は、配管Gの内周面に軸方向割れV1(損傷)が存在すると判定する。この場合には、周方向溶接部Gcの補修や配管Gの交換が行われる。
一方、ステップS102において所定の反射信号がない場合(S102:No)、探傷器制御装置60の処理はステップS104に進む。
ステップS104において探傷器制御装置60は、配管Gに損傷なしと判定する。すなわち、探傷器制御装置60は、配管Gの内周面に軸方向割れV1(損傷)は存在しないと判定する。
ステップS103又はS104の処理を行った後、探傷器制御装置60は、処理を終了する(END)。探傷器制御装置60の判定結果や、超音波検査で得られた画像は、ディスプレイ等の表示装置(図示せず)に表示される。
なお、軸方向割れV1の周方向における位置は、事前には特定されないため、検査員は、超音波発信プローブ11及び超音波受信プローブ21を配管Gの周方向で走査し、反射信号の有無を確認する。前記したように、角度α,β,γ,θが維持されるようにウェッジ12,22が構成され、さらに、ウェッジ12,22間の距離が保持部41によって保持されている。したがって、検査員が、ウェッジ12,22を配管Gに押し当てつつ周方向に走査することで、配管Gの周方向の各部において、損傷の有無を高精度で検査できる。
ちなみに、配管Gの内周面において、ボイラ火炉(図示せず)の外側の軸方向割れについては、例えば、ボイラ火炉の外側に超音波発信プローブ11及び超音波受信プローブ21を配置し、超音波が検査部位にそのまま向かう(配管Gの外周面で反射しない)ようにウェッジ(図示せず)を構成すればよい。
<効果>
第1実施形態によれば、周方向溶接部Gcの軸方向の一方側に超音波発信プローブ11を配置し、他方側に超音波受信プローブ21を配置するようにしている。これによって、周方向溶接部Gcにウェッジ12,22を押し当てることなく、周方向溶接部Gcにおける軸方向割れV1の有無を検査できる。なお、不定形な周方向溶接部Gcの余盛上にウェッジを押し当てると、ウェッジと周方向溶接部Gcとの間に隙間ができるため、この隙間において超音波が減衰してしまう。例えば、前記した特許文献1に記載の従来技術において、周方向溶接部Gcの余盛上にプローブを配置すると、このプローブが不安定になり、また、ウェッジとプローブとの間の隙間に起因して超音波が減衰する可能性が高かった。これに対して第1実施形態では、グリセリン等の接触媒質を介してウェッジ12,22が配管Gに密着した状態で超音波検査が行われるため、超音波の減衰を抑制できる。
また、水壁W(図1参照)のような干渉物があり、さらに、ボイラ火炉側(内側)では超音波検査が行いにくい状況でも、ボイラ火炉と反対側(外側)において超音波検査を行うことができる。これによって、配管Gのボイラ火炉側の内周面に損傷があるか否かを適切かつ容易に検査できる。
また、前記した角度α,β,γ,θで超音波発信プローブ11が配置されるため、平面視において超音波が軸方向割れV1に略垂直に入射する(図3参照)。これによって、軸方向割れV1における超音波の反射強度が比較的大きな値になるため、軸方向割れV1を高感度で検出できる。
また、xz平面を基準として、超音波受信プローブ21が、超音波発信プローブ11に対して対称に配置される。これによって、軸方向割れV1で反射した超音波を、超音波受信プローブ21において高感度で受信できる。
さらに、第1実施形態では、超音波発信プローブ11及び超音波受信プローブ21として、超音波アレイプローブを用いている。これによって、振動子11a等を振動させるタイミングを電子的に制御することができ、超音波を任意の位置に集束させたり、また、任意の方向に超音波を伝播させたりすることができる。さらに、超音波を扇形にスキャンするセクタスキャン法を用いることで、周方向溶接部Gcに扁平等の変形が生じている場合でも、その変形の誤差を考慮して、超音波の焦点の位置等を調整できる。これによって、配管Gの軸方向割れV1を高精度に検出できる。
≪第2実施形態≫
第2実施形態は、配管Gの内周面における周方向の割れ(以下、「周方向割れV2」という:図6参照)の有無を検査するために、yz平面を基準として、超音波発信プローブ11と超音波受信プローブ31とを対称に配置する点が、第1実施形態とは異なっている。なお、その他については第1実施形態と同様である。したがって、第1実施形態と異なる部分について説明し、重複する部分については説明を省略する。
図6は、第2実施形態に係る配管検査装置100Aの超音波発信プローブ11及び超音波受信プローブ31を含む平断面図である。
図6に示す配管検査装置100Aは、超音波発信プローブ11と、超音波受信プローブ31と、ウェッジ12,32と、保持部42と、超音波探傷器50と、探傷器制御装置60と、を備えている。なお、超音波探傷器50及び探傷器制御装置60の構成は、第1実施形態(図2参照)で説明したものと同様である。
超音波発信プローブ11は、自身から配管Gに向けて発信された超音波が、配管Gの肉厚部Giを伝播して、配管Gの外周面で1回反射し、さらに、配管Gの検査部位Qに向かうように配置される。なお、検査部位Qに対する超音波発信プローブ11の設置角度(つまり、角度θ,α,β,γ)については、第1実施形態(図3、図4参照)で説明した超音波発信プローブ11の設置角度と同様である。したがって、超音波発信プローブ11から検査部位Qに向かう超音波の伝播経路も、第1実施形態(図3、図4参照)と同様になる。
また、検査部位Qを含むとともに配管Gの中心軸(y軸)を含むyz平面を基準として、超音波受信プローブ31は、超音波発信プローブ11に対して対称に配置される。超音波受信プローブ31の設置角度を示す角度α,β,θ、及び角度γ(図7参照)は、超音波発信プローブ11の設置角度を示す角度α,β,θ、及び角度γ(図7参照)と略同一である。
保持部42は、一方のウェッジ12と他方のウェッジ32との間の距離を保持する部材であり、図6に示す例では、平面視で円弧状を呈している。この保持部42は、一方のウェッジ12と他方のウェッジ32との間の距離を調整可能に構成されていることが好ましい。これによって、内径が異なる別の配管(図示せず)でも、図6、図7に示す構成で超音波検査を行うことができるからである。
図7は、配管G、超音波発信プローブ11、超音波受信プローブ31等をx軸の負側から視た説明図である。
図7に示すように、超音波発信プローブ11から周方向割れV2に向かう超音波の経路と、周方向割れV2で反射して超音波受信プローブ31に向かう超音波の経路と、は側面視で重なって見える。つまり、前記した各経路は、yz平面を基準として対称になっている。なお、超音波発信プローブ11とxz平面との距離(超音波受信プローブ31とxz平面との距離でもある)は、配管Gの内径・外径等に基づいて、適宜設定される。
探傷器制御装置60が実行する処理については、第1実施形態(図5参照)と同様であるから、説明を省略する。
<効果>
第2実施形態によれば、周方向溶接部Gcの軸方向一方側(上側)に超音波発信プローブ11及び超音波受信プローブ31が配置される。これによって、周方向溶接部Gcにウェッジ12,32を押し当てることなく、周方向溶接部Gcにおける周方向割れV2の有無を検査できる。
また、超音波発信プローブ11が、前記した角度α,β,γ,θで配置されるため、側面視において超音波が周方向割れV2に略垂直に入射する(図7参照)。これによって、周方向割れV2における超音波の反射強度が比較的大きくなるため、周方向割れV2を高感度で検出できる。
<第3実施形態>
第3実施形態は、超音波の送信から受信までの時間に基づいて、軸方向割れV3(図8参照)の周方向の位置を特定する点が、第1実施形態と異なっている。なお、超音波発信プローブ11や超音波受信プローブ21の配置については、第1実施形態(図3、図4参照)と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
図8は、第3実施形態に係る配管検査装置100Bにおいて、yz平面の一方側に超音波発信プローブ11及び超音波受信プローブ21を配置した場合の平断面図である。
なお、図8では、超音波受信プローブ21を図示していないが、超音波受信プローブ21は、超音波発信プローブ11の真下に位置している。また、図8に示す例では、z軸を基準として、周方向において角度εの位置に軸方向割れV3が存在している。
図8に示すように、検査部位Qを含むとともに配管Gの中心軸(y軸)を含むyz平面の一方側(紙面右側)に超音波発信プローブ11及び超音波受信プローブ21(図示せず)が配置された状態で、探傷器制御装置60は、軸方向割れV3の有無を検査する。そして、探傷器制御装置60は、超音波発信プローブ11が超音波を発信してから、超音波受信プローブ21が超音波を受信するまでの時間t1を計測する。
図9は、yz平面の他方側に超音波発信プローブ11及び超音波受信プローブ21を配置した場合の平断面図である。
図9に示すように、検査部位Qを含むとともに配管Gの中心軸(y軸)を含むyz平面の他方側(紙面左側)に超音波発信プローブ11及び超音波受信プローブ21(図示せず)が配置された状態で、探傷器制御装置60は、軸方向割れV3の有無を検査する。そして、探傷器制御装置60は、超音波発信プローブ11が超音波を発信してから、超音波受信プローブ21が超音波を受信するまでの時間t2を計測する。
図9に示す例では、軸方向割れV3の位置がyz平面の一方側(紙面右側)に寄っているため、前記した時間t1よりも、時間t2のほうが長くなる。時間t1に対する時間t2の比が大きいほど、周方向の角度εが大きくなる。探傷器制御装置60は、前記した時間t1と、時間t2と、の比に基づいて、配管Gの周方向における損傷の位置(つまり、角度ε)を特定する。
<効果>
第3実施形態によれば、前記した時間t1,t2の長さの比に基づいて、周方向における軸方向割れV3の位置(角度ε)を特定できる。このように軸方向割れV3の位置を特定することで、欠陥位置を正しく特定でき、誤判定を防止できる。
≪第4実施形態≫
第4実施形態は、yz平面を基準として超音波発信プローブ11に対称に配置される超音波受信プローブ31(図10参照)を第1実施形態の構成に追加し、配管Gの軸方向割れ・周方向割れの両方を検査する構成にしている。なお、その他の点(超音波発信プローブ11及び超音波受信プローブ21の配置等)については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
図10は、第4実施形態に係る配管検査装置100Cの超音波発信プローブ11及び超音波受信プローブ31を含む平断面図である。
なお、図10では、検査部位Qに存在する周方向割れV2を図示しているが、場合によっては、検査部位Qに軸方向割れが存在することもある。
図10に示す配管検査装置100Cは、超音波発信プローブ11と、ウェッジ12(発信側ウェッジ)と、超音波受信プローブ21(第1超音波受信プローブ:図11参照)と、ウェッジ22(第1受信側ウェッジ:図11参照)と、超音波受信プローブ31(第2超音波受信プローブ)と、ウェッジ32(第2受信側ウェッジ)と、を備えている。また、配管検査装置100Cは、前記した各構成の他に、保持部41(第1保持部)と、保持部42(第2保持部)と、超音波探傷器50と、探傷器制御装置60と、を備えている。なお、超音波探傷器50及び探傷器制御装置60の構成は、第1実施形態(図2参照)で説明したものと同様である。
超音波発信プローブ11は、自身から配管Gに向けて発信された超音波が、配管Gの肉厚部Giを伝播して、配管Gの外周面で1回反射し、さらに、配管Gの検査部位Qに向かうように、ウェッジ12を介して配管Gに配置される。
ウェッジ12は、超音波発信プローブ11と配管Gとの間に介在する部材であり、超音波発信プローブ11に固定されている。
超音波受信プローブ31は、配管Gの内周面における周方向割れを検出するためのものであり、ウェッジ32を介して配管Gに配置される。図10に示すように、検査部位Qを含むとともに配管Gの中心軸(y軸)を含むyz平面を基準として、超音波受信プローブ31は、超音波発信プローブ11に対して対称に配置される。
ウェッジ32は、超音波受信プローブ31と配管Gとの間に介在する部材であり、超音波受信プローブ31に固定されている。
保持部42は、ウェッジ12とウェッジ32との間の距離を保持する部材であり、平面視で円弧状を呈している。保持部42は、その一端がウェッジ12に固定され、他端がウェッジ32に固定されている。
図11は、配管G、超音波発信プローブ11、超音波受信プローブ21,31等をx軸の負側から視た説明図である。
超音波受信プローブ21は、配管Gの内周面における軸方向割れを検出するためのものであり、ウェッジ22を介して配管Gに配置される。図11に示すように、検査部位Qを含むとともに配管Gの中心軸(y軸)に垂直なxz平面を基準として、超音波受信プローブ21は、超音波発信プローブ11に対して対称に配置される。
ウェッジ22は、超音波受信プローブ21と配管Gとの間に介在する部材であり、超音波受信プローブ21に固定されている。
保持部41は、ウェッジ12とウェッジ22との間の距離を保持する部材であり、図11に示す例では、棒状を呈している。保持部41は、その一端がウェッジ12に固定され、他端がウェッジ22に固定されている。
なお、保持部41は、ウェッジ12とウェッジ22との間の距離を調整可能に構成されていることが好ましい。同様に、図10に示す保持部42は、ウェッジ12とウェッジ32との間の距離を調整可能に構成されていることが好ましい。これによって、内径・外径が異なる別の配管(図示せず)でも、図10、図11に示す構成で超音波検査を行うことができるからである。
<探傷器制御装置の処理>
図12は、探傷器制御装置60が実行する処理のフローチャートである。
ステップS201において探傷器制御装置60は、超音波発信プローブ11から超音波を発信する。
ステップS202において探傷器制御装置60は、軸方向割れ検出用の超音波受信プローブ21から所定の反射信号があるか否かを判定する。超音波受信プローブ21から所定の反射信号がある場合(S202:Yes)、探傷器制御装置60の処理はステップS203に進む。
ステップS203において探傷器制御装置60は、配管Gに損傷ありと判定する。すなわち、探傷器制御装置60は、配管Gの内周面に軸方向割れ(損傷)が存在すると判定する。
また、ステップS202において所定の反射信号がない場合(S202:No)、探傷器制御装置60の処理はステップS204に進む。
ステップS204において探傷器制御装置60は、周方向割れ検出用の超音波受信プローブ31から所定の反射信号があるか否かを判定する。超音波受信プローブ31から所定の反射信号がある場合(S204:Yes)、ステップS203において探傷器制御装置60は、配管Gに損傷ありと判定する。すなわち、探傷器制御装置60は、配管Gの内周面に周方向割れ(損傷)が存在すると判定する。
また、ステップS204において所定の反射信号がない場合(S204:No)、探傷器制御装置60の処理はステップS205に進む。
ステップS205において探傷器制御装置60は、配管Gに損傷なしと判定する。すなわち、探傷器制御装置60は、配管Gの内周面には、軸方向割れ(損傷)も周方向割れ(損傷)も存在しないと判定する。
ステップS203又はS205の処理を行った後、探傷器制御装置60は、一連の処理を終了する(END)。
<効果>
第4実施形態によれば、超音波発信プローブ11と超音波受信プローブ21とを用いて軸方向割れの有無を検査できるとともに、超音波発信プローブ11と超音波受信プローブ31とを用いて周方向割れの有無も検査できる。また、ウェッジ12,22間の距離が保持部41によって保持されるとともに、ウェッジ12,32間の距離が保持部42によって保持される。したがって、検査員は、保持部41,42等を持ちながら、超音波発信プローブ11や超音波受信プローブ21,31を軸方向・周方向に移動させればよいため、検査員の作業負担を軽減できる。
≪変形例≫
以上、本発明に係る配管検査装置100等について各実施形態により説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
例えば、第1実施形態では、超音波発信プローブ11とウェッジ12とが別体であり、また、超音波受信プローブ21とウェッジ22とが別体である構成について説明したが(図4参照)、以下で説明するように、これに限定されるものではない。
図13は、変形例に係る配管検査装置が備える超音波発信プローブ11Dの縦断面図である。
図13に示すように、超音波発信プローブ11Dが、ウェッジ部11dを備える構成にしてもよい。ウェッジ部11dは、振動子11aや音響整合層11bを収容するハウジング11cの開口に設置されている。また、図示はしないが、超音波受信プローブについても同様に、ウェッジ部を備える構成にしてもよい。また、図13に示す構成に、前記したバッキング材や音響レンズを追加してもよい。
また、各実施形態では、超音波が検査部位Qに到達するまでに、配管Gの外周面で超音波が1回反射する例について説明したが、以下で説明するように、超音波が配管Gの肉厚部Giを伝播して、少なくとも配管Gの外周面で反射する(つまり、配管Gの内周面で1回以上反射したり、また、配管Gの外周面で1回以上反射したりする)ように、超音波発信プローブ11等を配置してもよい。
図14は、別の変形例に係る配管検査装置100Eにおいて、超音波発信プローブ11から発信される超音波の経路を示す平断面図である。
例えば、第1実施形態において、配管Gの厚さが比較的薄い場合、配管Gの外周面で超音波を1回反射させても、適切な角度で検査部位Qに入射しないことがある。このような場合、ウェッジ12,22の設置位置を示す周方向の角度βを大きめに設定することが好ましい。つまり、配管Gの肉厚部Giで反射を繰り返した超音波が、前記した角度αの位置でさらに反射するようにすることが好ましい。これによって、軸方向割れV1に対して平面視で略垂直に超音波が入射するため、軸方向割れV1における超音波の反射強度を高めることができる。
図14に示す例では、ウェッジ12と配管Gとの界面で屈折した超音波は、配管Gの内周面、外周面、内周面、及び外周面を順次に反射して、検査部位Qに向かう。また、検査部位Qの軸方向割れV1で反射して超音波受信プローブ21に向かう超音波の経路は、平面視において図14に示す経路と略同一になる。なお、前記した内容は、第2、第3、及び第4実施形態にも適用できる。
また、第1実施形態では、配管検査装置100が保持部41(図4参照)を備える構成について説明したが、この保持部41を省略し、検査員がウェッジ12,22を手で持ちながら超音波検査を行うようにしてもよい。なお、第2、第3、第4実施形態についても同様である。
また、第1実施形態の構成(図3、図4参照)において、配管Gの軸方向割れの有無を検査した後、yz平面を基準として、超音波発信プローブ11と対称の位置に超音波受信プローブ21を移動させて(図6参照)、周方向割れの有無を検査してもよい。これによって、軸方向割れの有無だけでなく、周方向割れの有無も検査できる。なお、超音波受信プローブ21を移動させる代わりに、yz平面を基準として、超音波受信プローブ21と対称の位置に超音波発信プローブ11を移動させてもよい。
また、第2実施形態の構成(図6、図7参照)において、配管Gの周方向割れV2の有無を検査した後、xz平面を基準として、超音波発信プローブ11と対称の位置に超音波受信プローブ31を移動させて(図4参照)、軸方向割れの有無を検査してもよい。これによって、周方向割れの有無だけでなく、軸方向割れの有無も検査できる。なお、超音波受信プローブ31を移動させる代わりに、xz平面を基準として、超音波受信プローブ31と対称の位置に超音波発信プローブ11を移動させてもよい。
また、第4実施形態(図10、図11参照)では、配管検査装置100Cが、1つの超音波発信プローブ11と、2つの超音波受信プローブ21,22と、を備える構成について説明したが、これに限らない。例えば、2つの超音波発信プローブと、1つの超音波受信プローブと、を備える構成にしてもよい。このような構成において、検査部位Qを含むとともに配管Gの中心軸(y軸)に垂直なxz平面を基準として、一方の超音波発信プローブ11は、超音波受信プローブ21に対して対称に配置される。また、検査部位Qを含むとともに配管Gの中心軸(y軸)を含むyz平面を基準として、他方の超音波発信プローブ(図示せず)は、超音波受信プローブ21に対して対称に配置される。
また、yz平面を基準として、超音波受信プローブ21と対称の位置に設けられる別の超音波発信プローブ(図示せず)を第4実施形態の構成に追加してもよい。つまり、2つの超音波発信プローブと、2つの超音波受信プローブと、を備える構成にしてもよい。これによって、配管Gの中心軸の方向(y軸方向)において、2箇所で周方向割れの有無を検査できるため、超音波検査に伴う作業負担を軽減できる。
また、各実施形態では、周方向溶接部Gcの損傷の有無を検査する場合について説明したが、母管Ga,Gb(図1参照)についても同様の方法で検査できる。
また、各実施形態では、ボイラ火炉(図示せず)の内外を仕切る水壁W(図1参照)において、配管Gの損傷の有無を検査する場合について説明したが、これに限らない。すなわち、発電プラントや化学プラント等の設備に設けられている各種の配管の検査にも、各実施形態を適用できる。なお、発電プラント等では、機器(図示せず)の設置スペースを確保するために、多数の配管(図示せず)が壁際に設けられていることが多い。このように、配管と壁との隙間がほとんどない状況でも、各実施形態の方法を用いて、配管の損傷の有無を適切に検査できる。
また、各実施形態では、超音波発信プローブ11や超音波受信プローブ21として、超音波アレイプローブを用いる場合について説明したが、これに限らない。例えば、一振動子型超音波探触子等の他の種類のプローブを用いてもよい。
また、各実施形態は、適宜組み合わせることができる。例えば、第3実施形態と第4実施形態とを組み合わせ、配管Gにおける軸方向割れや周方向割れの有無を検査するとともに、軸方向割れの位置(角度ε:図8、図9参照)を特定するようにしてもよい。
また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
100,100A,100B,100C,100D,100E 配管検査装置
11,11D 超音波発信プローブ
11d ウェッジ部
12 ウェッジ(発信側ウェッジ)
21 超音波受信プローブ(第1超音波受信プローブ)
22 ウェッジ(受信側ウェッジ、第1受信側ウェッジ)
31 超音波受信プローブ(第2超音波受信プローブ)
32 ウェッジ(第2受信側ウェッジ)
41 保持部(第1保持部)
42 保持部(第2保持部)
50 超音波探傷器
60 探傷器制御装置(配管検査部)
G 配管
Gi 肉厚部
Q 検査部位

Claims (10)

  1. 配管に配置され、前記配管に向けて超音波を発信する超音波発信プローブと、
    前記配管に配置され、超音波を受信可能な超音波受信プローブと、
    前記超音波受信プローブの受信結果に基づいて、前記配管における損傷の有無を検査する配管検査部と、を備え、
    前記超音波発信プローブは、自身から前記配管に向けて発信された超音波が、前記配管の肉厚部を伝播して、少なくとも前記配管の外周面で反射し、さらに、前記配管の検査部位に向かうように配置され、
    前記検査部位を含むとともに前記配管の中心軸に垂直な平面を基準として、前記超音波受信プローブは、前記超音波発信プローブに対して対称に配置されること
    を特徴とする配管検査装置。
  2. 配管に配置され、前記配管に向けて超音波を発信する超音波発信プローブと、
    前記配管に配置され、超音波を受信可能な超音波受信プローブと、
    前記超音波受信プローブの受信結果に基づいて、前記配管における損傷の有無を検査する配管検査部と、を備え、
    前記超音波発信プローブは、自身から前記配管に向けて発信された超音波が、前記配管の肉厚部を伝播して、少なくとも前記配管の外周面で反射し、さらに、前記配管の検査部位に向かうように配置され、
    前記検査部位を含むとともに前記配管の中心軸を含む平面を基準として、前記超音波受信プローブは、前記超音波発信プローブに対して対称に配置されること
    を特徴とする配管検査装置。
  3. 前記超音波発信プローブと前記配管との間に介在する発信側ウェッジと、
    前記超音波受信プローブと前記配管との間に介在する受信側ウェッジと、
    前記発信側ウェッジと前記受信側ウェッジとの間の距離を保持する保持部と、を備えること
    を特徴とする請求項1又は請求項2に記載の配管検査装置。
  4. 前記保持部は、前記距離を調整可能に構成されていること
    を特徴とする請求項3に記載の配管検査装置。
  5. 前記検査部位を含むとともに前記配管の中心軸を含む平面を基準として、前記配管の周方向で90°以上かつ135°以下の位置に前記発信側ウェッジが配置されること
    を特徴とする請求項3に記載の配管検査装置。
  6. 前記配管検査部は、
    前記検査部位を含むとともに前記配管の中心軸を含む平面の一方側に前記超音波発信プローブ及び前記超音波受信プローブが配置された状態で、前記超音波発信プローブが超音波を発信してから、前記超音波受信プローブが超音波を受信するまでの時間と、
    前記検査部位を含むとともに前記配管の中心軸を含む平面の他方側に前記超音波発信プローブ及び前記超音波受信プローブが配置された状態で、前記超音波発信プローブが超音波を発信してから、前記超音波受信プローブが超音波を受信するまでの時間と、の比に基づいて、前記配管の周方向における前記損傷の位置を特定すること
    を特徴とする請求項1に記載の配管検査装置。
  7. 前記超音波発信プローブ及び前記超音波受信プローブは、それぞれ、超音波アレイプローブであること
    を特徴とする請求項1又は請求項2に記載の配管検査装置。
  8. 配管に配置され、前記配管に向けて超音波を発信する超音波発信プローブと、
    前記配管に配置され、超音波を受信可能な第1超音波受信プローブと、
    前記配管に配置され、超音波を受信可能な第2超音波受信プローブと、
    前記第1超音波受信プローブの受信結果、及び、前記第2超音波受信プローブの受信結果に基づいて、前記配管における損傷の有無を検査する配管検査部と、を備え、
    前記超音波発信プローブは、自身から前記配管に向けて発信された超音波が、前記配管の肉厚部を伝播して、少なくとも前記配管の外周面で反射し、さらに、前記配管の検査部位に向かうように配置され、
    前記検査部位を含むとともに前記配管の中心軸に垂直な平面を基準として、前記第1超音波受信プローブは、前記超音波発信プローブに対して対称に配置され、
    前記検査部位を含むとともに前記配管の中心軸を含む平面を基準として、前記第2超音波受信プローブは、前記超音波発信プローブに対して対称に配置されること
    を特徴とする配管検査装置。
  9. 前記超音波発信プローブと前記配管との間に介在する発信側ウェッジと、
    前記第1超音波受信プローブと前記配管との間に介在する第1受信側ウェッジと、
    前記第2超音波受信プローブと前記配管との間に介在する第2受信側ウェッジと、
    前記発信側ウェッジと前記第1受信側ウェッジとの間の距離を保持する第1保持部と、
    前記発信側ウェッジと前記第2受信側ウェッジとの間の距離を保持する第2保持部と、を備えること
    を特徴とする請求項8に記載の配管検査装置。
  10. 前記第1保持部は、前記発信側ウェッジと前記第1受信側ウェッジとの間の前記距離を調整可能に構成され、
    前記第2保持部は、前記発信側ウェッジと前記第2受信側ウェッジとの間の前記距離を調整可能に構成されていること
    を特徴とする請求項9に記載の配管検査装置。
JP2016095912A 2016-05-12 2016-05-12 配管検査装置 Active JP6758083B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016095912A JP6758083B2 (ja) 2016-05-12 2016-05-12 配管検査装置
US15/484,324 US10444198B2 (en) 2016-05-12 2017-04-11 Piping inspection apparatus
EP17166434.5A EP3244202B1 (en) 2016-05-12 2017-04-13 Piping inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016095912A JP6758083B2 (ja) 2016-05-12 2016-05-12 配管検査装置

Publications (2)

Publication Number Publication Date
JP2017203704A true JP2017203704A (ja) 2017-11-16
JP6758083B2 JP6758083B2 (ja) 2020-09-23

Family

ID=58547399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016095912A Active JP6758083B2 (ja) 2016-05-12 2016-05-12 配管検査装置

Country Status (3)

Country Link
US (1) US10444198B2 (ja)
EP (1) EP3244202B1 (ja)
JP (1) JP6758083B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108474770A (zh) * 2016-01-05 2018-08-31 雅马哈精密科技株式会社 超声波检查方法
GB201621684D0 (en) * 2016-12-20 2017-02-01 Gb Inspection Systems Ltd Ultrasonic probe
DE102017130976A1 (de) * 2017-12-21 2019-06-27 Endress+Hauser Flowtec Ag Clamp-On-Ultraschall-Durchflussmessgerät und Verfahren zum Justieren des Clamp-On-Ultraschall-Durchflussmessgeräts
US11327052B2 (en) * 2019-08-28 2022-05-10 The Boeing Company Ultrasonic inspection probe, system, and method
CN110907539B (zh) * 2019-11-12 2022-08-12 中国化学工程第六建设有限公司 管道无损探伤设备
CN111442749B (zh) * 2020-04-13 2022-05-03 石家庄钢铁有限责任公司 一种水浸超声波在线测弯方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04105060A (ja) * 1990-08-24 1992-04-07 Kansai Electric Power Co Inc:The 管構造物の超音波探傷装置
US5251487A (en) * 1989-03-29 1993-10-12 Martin Marietta Corporation Apparatus for acoustically coupling an ultrasonic transducer with a body
JPH0972887A (ja) * 1995-09-07 1997-03-18 Sakai Tekkosho:Kk 超音波表面sh波による管の探傷法
JPH10274642A (ja) * 1997-01-30 1998-10-13 Nippon Hihakai Kensa Kk 超音波センサ、探傷検査装置及び方法
JPH11108902A (ja) * 1997-09-30 1999-04-23 Mitsubishi Heavy Ind Ltd 二探触子による管の探傷方法
JP2002071648A (ja) * 2000-08-25 2002-03-12 Sumitomo Metal Ind Ltd 超音波探傷方法及び超音波探傷装置
JP2003262621A (ja) * 2002-03-07 2003-09-19 Sumitomo Metal Ind Ltd 超音波探傷方法
WO2007145200A1 (ja) * 2006-06-13 2007-12-21 Sumitomo Metal Industries, Ltd. 超音波探傷方法、溶接鋼管の製造方法及び超音波探傷装置
JP2009008422A (ja) * 2007-06-26 2009-01-15 Jfe Steel Kk 管体の診断方法及び管体の診断装置
US20160025684A1 (en) * 2013-03-21 2016-01-28 Vallourec Tubes France Device and method for nondestructive inspection of tubular products, especially on site

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3299696A (en) * 1961-11-09 1967-01-24 Iii Ben Wade Oakes Dickinson Apparatus for generating, directing and receiving ultrasonic wave trains
DE2751810A1 (de) 1977-11-19 1979-05-23 Ibema Gmbh & Co Kg Ultraschall-pruefvorrichtung zum zerstoerungsfreien pruefen von schweissnaehten
JPS63234157A (ja) * 1987-03-23 1988-09-29 Nippon Steel Corp 厚肉鋼管の超音波斜角探傷方法
JPS63302358A (ja) * 1987-06-03 1988-12-09 Hitachi Ltd 配管検査装置
AU2002255848A1 (en) * 2001-03-22 2002-10-08 The Regents Of The University Of California Guided acoustic wave inspection system
US7799139B2 (en) * 2007-03-28 2010-09-21 Intel Corporation Chemistry for removal of photo resist, organic sacrificial fill material and etch polymer
US7474092B1 (en) * 2007-07-16 2009-01-06 Southwest Research Institute Method and device for long-range guided-wave inspection of fire side of waterwall tubes in boilers
US8166823B2 (en) * 2009-09-29 2012-05-01 National Oilwell Varco, L.P. Membrane-coupled ultrasonic probe system for detecting flaws in a tubular
JP5567471B2 (ja) * 2010-12-28 2014-08-06 非破壊検査株式会社 超音波検査方法及び超音波検査装置
EP2597445A1 (en) * 2011-11-22 2013-05-29 Pii Limited Method for pipeline inspection
US9995716B2 (en) 2012-10-12 2018-06-12 General Electric Technology Gmbh Method for determining boiler tube cold side cracking and article for accomplishing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251487A (en) * 1989-03-29 1993-10-12 Martin Marietta Corporation Apparatus for acoustically coupling an ultrasonic transducer with a body
JPH04105060A (ja) * 1990-08-24 1992-04-07 Kansai Electric Power Co Inc:The 管構造物の超音波探傷装置
JPH0972887A (ja) * 1995-09-07 1997-03-18 Sakai Tekkosho:Kk 超音波表面sh波による管の探傷法
JPH10274642A (ja) * 1997-01-30 1998-10-13 Nippon Hihakai Kensa Kk 超音波センサ、探傷検査装置及び方法
JPH11108902A (ja) * 1997-09-30 1999-04-23 Mitsubishi Heavy Ind Ltd 二探触子による管の探傷方法
JP2002071648A (ja) * 2000-08-25 2002-03-12 Sumitomo Metal Ind Ltd 超音波探傷方法及び超音波探傷装置
JP2003262621A (ja) * 2002-03-07 2003-09-19 Sumitomo Metal Ind Ltd 超音波探傷方法
WO2007145200A1 (ja) * 2006-06-13 2007-12-21 Sumitomo Metal Industries, Ltd. 超音波探傷方法、溶接鋼管の製造方法及び超音波探傷装置
JP2009008422A (ja) * 2007-06-26 2009-01-15 Jfe Steel Kk 管体の診断方法及び管体の診断装置
US20160025684A1 (en) * 2013-03-21 2016-01-28 Vallourec Tubes France Device and method for nondestructive inspection of tubular products, especially on site

Also Published As

Publication number Publication date
US10444198B2 (en) 2019-10-15
EP3244202A1 (en) 2017-11-15
EP3244202B1 (en) 2022-06-22
US20170328869A1 (en) 2017-11-16
JP6758083B2 (ja) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6758083B2 (ja) 配管検査装置
Salzburger et al. EMAT pipe inspection with guided waves
KR101308071B1 (ko) 곡률 쐐기를 가지는 위상배열 초음파 탐촉자의 빔 집속점 보정 방법
JP2013140112A (ja) 超音波損傷検出装置及び超音波損傷検出方法
JP4589280B2 (ja) ガイド波を用いた配管検査方法及びその配管検査装置
CA2759472C (en) Apparatus and method for measuring material thickness
JP5574731B2 (ja) 超音波探傷試験方法
JP2009097942A (ja) 非接触式アレイ探触子とこれを用いた超音波探傷装置及び方法
KR20220034889A (ko) 초음파 검사 시스템 및 초음파 검사 방법
JP2018100852A (ja) 超音波検査装置および超音波検査方法および接合ブロック材の製造方法
JP6460136B2 (ja) 超音波探傷装置及び超音波探傷方法
JP2012068209A (ja) 超音波材料診断方法及び装置
WO2017138613A1 (ja) 超音波探傷装置、および、超音波探傷方法
JP2019078558A (ja) 対比試験片及び超音波フェーズドアレイ探傷試験方法
Swaminathan et al. Higher order mode cluster (HOMC) guided wave testing of corrosion under pipe supports (CUPS)
JP2006023215A (ja) 超音波検査方法及び超音波検査装置並びにその装置のガイド波トランスデューサ
Seo et al. Improvement of crack sizing performance by using nonlinear ultrasonic technique
Long et al. Further development of a conformable phased array device for inspection over irregular surfaces
Long et al. Phased array inspection of irregular surfaces
JP2010048817A (ja) ガイド波を用いた非破壊検査装置及び非破壊検査方法
JP2016042043A (ja) 外面腐食検査装置及び外面腐食検査方法
Aanes et al. Inline-inspection crack detection for gas pipelines using a novel technology
Mu et al. Long-range pipe imaging with a guided wave focal scan
Liao et al. Excitation of a fundamental shear horizontal wave using a line source
JP2019132748A (ja) 超音波プローブ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200721

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200901

R150 Certificate of patent or registration of utility model

Ref document number: 6758083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150