WO2007142004A1 - 排水処理方法および排水処理装置 - Google Patents

排水処理方法および排水処理装置 Download PDF

Info

Publication number
WO2007142004A1
WO2007142004A1 PCT/JP2007/060125 JP2007060125W WO2007142004A1 WO 2007142004 A1 WO2007142004 A1 WO 2007142004A1 JP 2007060125 W JP2007060125 W JP 2007060125W WO 2007142004 A1 WO2007142004 A1 WO 2007142004A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
micro
treatment apparatus
nano bubble
waste water
Prior art date
Application number
PCT/JP2007/060125
Other languages
English (en)
French (fr)
Inventor
Kazuyuki Yamasaki
Kazuyuki Sakata
Kazumi Chuhjoh
Masaki Kataoka
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US12/303,407 priority Critical patent/US20090250396A1/en
Publication of WO2007142004A1 publication Critical patent/WO2007142004A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/348Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the way or the form in which the microorganisms are added or dosed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/106Carbonaceous materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2066Fluorine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/003Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/26Reducing the size of particles, liquid droplets or bubbles, e.g. by crushing, grinding, spraying, creation of microbubbles or nanobubbles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a wastewater treatment method and a wastewater treatment apparatus not only in a semiconductor factory and a liquid crystal factory but also in a factory that manufactures or uses an organic fluorine compound.
  • Organofluorine compounds are chemically stable substances.
  • the organic fluorine compounds have excellent properties from the viewpoints of heat resistance and chemical resistance, and are therefore used for applications such as surfactants.
  • the organic fluorine compound is a chemically stable substance, it is difficult to be decomposed by microorganisms.
  • PFOS perfluorootatasulfonic acid
  • PFOA perfluorooctanoic acid
  • the perfluorooctasulfonic acid (PFOS) and the perfluorooctanoic acid (PFOA) are chemically stable, and therefore require a high temperature of about 1000 ° C. or higher to be thermally decomposed (Japanese Patent Laid-Open No. 2005-260688). (See 2001 302551).
  • an object of the present invention is to provide a wastewater treatment method and a wastewater treatment apparatus capable of effectively decomposing a hardly decomposable organic fluorine compound by a microorganism. Means for solving the problem
  • the wastewater treatment method of the present invention comprises:
  • microorganisms, micro / nano bubble generation aids and nutrients are added to the waste water containing the organic fluorine compound, and micro nano bubbles are added to prepare water to be treated.
  • the treated water is supplied to an activated carbon tower filled with activated carbon, and the organic fluorine compound in the treated water is decomposed by the microorganism.
  • the micro-nano bubble refers to a bubble having a diameter of about 10 ⁇ m force and several hundred nm.
  • the above-mentioned micro / nano bubble generation aid means one that can stably maintain the generation state of micro / nano bubbles.
  • the nutrient is a nutrient necessary for microorganisms to become active.
  • the organic fluorine compound include perfluorooctasulfonic acid (PFOS) and perfluorooctanoic acid (PFOA).
  • microorganisms, micro / nano bubble generation aids and nutrients are added to the waste water containing the organic fluorine compound and the micro / nano bubbles are contained.
  • the treated water is prepared, the treated water is supplied to an activated carbon tower filled with activated charcoal, and the organofluorine compound in the treated water is decomposed by the microorganisms. It can be propagated on the activated carbon of the activated carbon tower, which is an immobilizing carrier for the microorganisms, and further activated by the micro-nano bubbles and the nutrient, so that the organic fluorine compound can be rationally decomposed.
  • an optimal amount of the micro / nano bubbles that activate the microorganism can be generated.
  • a hardly decomposable organic fluorine compound for example, perfluorooctasulfonic acid
  • PFOS perfluorooctanoic acid
  • PFOA perfluorooctanoic acid
  • a micro-nano bubble generation tank that houses a micro-nano bubble generator
  • An auxiliary agent tank containing an auxiliary agent for generating micro / nano bubbles and connected to the micro / nano bubble generating tank;
  • a nutrient tank containing the nutrient and connected to the micro / nano bubble generation tank;
  • Wastewater containing organic fluorine compounds is introduced into the micro / nano bubble generation tank.
  • the micro-nano bubble generation assistant is added from the assistant tank, and the nutrient is added from the nutrient tank, the micro-nano bubbles are generated by the micro-nano bubble generator. Contained, treated water is created,
  • the treated water is supplied to the activated carbon tower, and the organic fluorine compound in the treated water is decomposed by the microorganism.
  • the micro-nano bubble refers to a bubble having a diameter of about several hundred nm even with a 10 ⁇ m force.
  • the above-mentioned micro / nano bubble generation aid means one that can stably maintain the generation state of micro / nano bubbles.
  • the nutrient is a nutrient necessary for microorganisms to become active.
  • Examples of the organic fluorine compound include perfluorooctasulfonic acid (PFOS) and perfluorooctanoic acid (PFOA).
  • the wastewater containing a micro-nano bubble generation tank, a microorganism tank, an auxiliary agent tank, a nutrient tank, and an activated carbon tower and containing an organic fluorine compound is Introduced into the nanobubble generation tank, the microbe, the micronanobubble generation aid and the nutrient are added, and the micronanobubbles are contained to prepare the water to be treated.
  • the microorganism Since the organofluorine compound in the treated water supplied to the activated carbon tower is decomposed by the microorganism, the microorganism is propagated on the activated carbon of the activated carbon tower, which is an immobilization carrier for the microorganism, and It can be further activated by micro-nano bubbles and the above nutrients, and the organic fluorine compounds can be reasonably decomposed.
  • the micro-nano bubble generation aid an optimal amount of the micro-nano bubbles that activate the microorganisms can be generated.
  • PFOS perfluorooctanoic acid
  • PFOA perfluorooctanoic acid
  • An exhaust gas treatment tank containing a micro / nano bubble generator and connected to the micro / nano bubble generation tank;
  • a microorganism tank that contains microorganisms and is connected to the exhaust gas treatment tank;
  • an auxiliary tank that contains the micro-nano bubble generating aid and is connected to the exhaust gas treatment tank;
  • the water introduced into the exhaust gas treatment tank is added with the microorganisms from the microorganism tank, the auxiliary tank power is also added with the micro / nano bubble generation aid, and the nutrient agent is added to the nutrient tanker.
  • the micro / nano bubble generator contains micro / nano bubbles to create washing water
  • the exhaust gas generated by decomposing the organofluorine compound in the water to be treated by the microorganisms in the activated carbon tower is introduced into the exhaust gas treatment tank and treated with the washing water.
  • the exhaust gas treatment tank, the microorganism tank, the auxiliary agent tank, and the nutrient tank the water introduced into the exhaust gas treatment tank, Since the microorganism, the micro-nano bubble generation aid and the nutrient are added and the micro-nano bubble is contained, the washing water is prepared, and the exhaust gas is treated with the washing water. Fluorine can be reasonably treated by the activated microorganisms in the wash water.
  • the wastewater treatment apparatus of one embodiment includes an aeration unit and a relay tank connected to the activated carbon tower and the exhaust gas treatment tank, and the treated water that has passed through the activated carbon tower and the above-mentioned
  • the exhaust gas is introduced into the relay tank and separated into the water to be treated and the exhaust gas, and the exhaust gas is introduced into the exhaust gas treatment tank.
  • the treated water and the exhaust gas that have passed through the activated carbon tower are introduced into the relay tank having the aeration unit, and the treated water, the exhaust gas, Therefore, the water to be treated and the exhaust gas can be reliably treated separately.
  • the exhaust gas treatment tank is A lower water storage part that is disposed in the lower part and houses the micro / nano bubble generator and stores the washing water;
  • An upper watering part that is disposed at the upper part and sprays the washing water pumped from the lower water storage part;
  • the washing water sprayed from the upper watering part cleans the exhaust gas, is stored in the lower water storage part, and is pumped up again to the upper watering part.
  • the cleaning water sprayed from the upper watering part is washed with the exhaust gas, stored in the lower water storage part, and pumped up again to the upper watering part. Therefore, the washing water can be circulated between the upper watering part and the lower water storage part.
  • a filler is accommodated in the micro / nano bubble generation tank.
  • the microorganisms activated by the micro / nano bubbles are propagated while being fixed to the filler. Can be made.
  • a micro / nano bubble generator is accommodated in the relay tank.
  • the micro / nano bubble generator is accommodated in the relay tank, the microorganisms in the water to be treated are activated in the relay tank, and the activity is increased.
  • the organofluorine compound remaining in the water to be treated can be further decomposed by the microorganism that has been contaminated.
  • the relay tank contains a filler.
  • the microorganisms activated by the micro-nano bubbles are used for the filler as the fixed carrier.
  • the culture can be performed at a high concentration, and the treatment efficiency of the treated water can be increased.
  • the filler is filled with polyvinylidene vinylidene. It is a material.
  • the shape of the polyvinyl chloride polyvinylidene filler is, for example, a string shape or a ring shape.
  • the filler is a polyvinylidene chloride filler
  • microorganisms activated in the polysalt vinylidene filler can be cultured at a high concentration
  • the organic fluorine compound can be subjected to primary treatment.
  • the polysalt vinylidene filler has a string shape.
  • the polyvinyl chloride polyvinylidene filler since the polyvinyl chloride polyvinylidene filler has a string shape, many of the polyvinyl chloride polyvinylidene fillers are transferred to the micro-nano bubble generation tank and the relay. It can be accommodated in a tank.
  • the water to be treated separated in the relay tank is treated with chelate resin.
  • the water to be treated separated in the relay tank is treated with chelate resin, so that low concentration fluorine in the water to be treated in the relay tank is used.
  • the filler is activated carbon.
  • the activated carbon is accommodated in, for example, a mesh bag, and a mesh tube is installed between the adjacent mesh bags.
  • the filler is activated carbon
  • the organic fluorine compound adsorbed on the activated carbon can be decomposed with activated microorganisms.
  • the activated carbon can be regenerated by the activated microorganism.
  • the activated carbon is housed in a net bag.
  • the activated carbon is accommodated in the mesh bag, the activated carbon is simply put into the micro-nano bubble generation tank and the relay tank together with the mesh bag. Can be accommodated.
  • the wastewater treatment apparatus of one embodiment there are a plurality of mesh bags, and a mesh tube is provided between at least one set of adjacent mesh bags. [0038] According to the waste water treatment apparatus of this embodiment, since the mesh tube is provided between the at least one set of adjacent mesh bags, the flow of water to all the activated carbons is improved. It is possible to prevent the closure phenomenon from occurring.
  • the water to be treated separated in the relay tank is subjected to a precipitation treatment with a calcium agent.
  • the water to be treated separated in the relay tank is subjected to precipitation treatment with a calcium agent, so that high concentration fluorine in the water to be treated in the relay tank is removed.
  • a calcium agent By adding the above calcium agent, it can be precipitated as harmless calcium fluoride.
  • a filler is accommodated in the lower water storage section of the exhaust gas treatment tank.
  • the wastewater treatment apparatus of this embodiment since the filler is accommodated in the lower water storage section of the exhaust gas treatment tank, the microorganisms propagate in the filler, and the organic matter in the exhaust gas.
  • the washing water that has absorbed water can be treated in the lower water reservoir. That is, the organic fluorine compound in the washing water can be decomposed by microorganisms that have propagated and become active on the filler.
  • the filler is a polyvinyl chloride vinylidene filler.
  • the shape of the polyvinyl chloride vinylidene filler is, for example, a string shape or a ring shape
  • the filler is a polyvinylidene chloride filler
  • microorganisms activated in the polysalt vinylidene filler can be cultured at a high concentration, The organofluorine compound can be treated.
  • the polysalt vinylidene filler is in a string shape.
  • the polyvinyl chloride vinylidene filler since the polyvinyl chloride vinylidene filler has a string shape, a large amount of the polyvinyl chloride vinylidene filler is used in the exhaust gas treatment tank. Can be accommodated in the lower reservoir. [0048] In the wastewater treatment apparatus of one embodiment, the polysalt vinylidene filler is in a ring shape.
  • the polyvinyl chloride filler is in a ring shape, the polyvinyl chloride filler is used for the lower storage of the exhaust gas treatment tank. It can be easily accommodated in the water section.
  • the filler is activated carbon.
  • the activated carbon is accommodated in, for example, a mesh bag, and a mesh tube is installed between the adjacent mesh bags.
  • the filler is activated carbon
  • the organofluorine compound adsorbed on the activated carbon can be decomposed with active microorganisms.
  • the activated carbon can be regenerated by the activated microorganism.
  • the activated carbon is housed in a net bag.
  • the activated carbon is housed in the mesh bag, the activated carbon is easily put into the lower water storage part of the exhaust gas treatment tank together with the mesh bag. Can be accommodated.
  • a mesh tube is provided between at least one pair of adjacent mesh bags.
  • the mesh tube is provided between the at least one pair of adjacent mesh bags, the flow of water to all the activated carbons is improved. It is possible to prevent the closure phenomenon from occurring.
  • microorganisms, micro / nano bubble generation aids and nutrients are added to the waste water containing the organic fluorine compound, and the micro / nano bubbles are contained.
  • the water to be treated is prepared, and the water to be treated is supplied to an activated carbon tower filled with activated charcoal, and the organic fluorine compound in the water to be treated is decomposed by the microorganisms.
  • Organofluorine compounds can be effectively decomposed by microorganisms.
  • a micro-nano bubble generation tank A wastewater containing an organic fluorine compound is introduced into the micro / nano bubble generating tank, and the microorganisms, the micro / nano bubble generating aid and the above A nutrient solution is added and the micro-nano bubbles are contained to prepare treated water.
  • the treated water is supplied to the activated carbon tower, and the organofluorine compound in the treated water is converted by the microorganism. Since it is decomposed, the hardly decomposable organic fluorine compound can be effectively decomposed by microorganisms.
  • FIG. 1 is a schematic view showing a first embodiment of a waste water treatment apparatus of the present invention.
  • FIG. 2 is a schematic view showing a second embodiment of the waste water treatment apparatus of the present invention.
  • FIG. 3 is a schematic view showing a third embodiment of the waste water treatment apparatus of the present invention.
  • FIG. 4 is a schematic view showing a fourth embodiment of the waste water treatment apparatus of the present invention.
  • FIG. 5 is a schematic view showing a fifth embodiment of the waste water treatment apparatus of the present invention.
  • FIG. 6 is a schematic view showing a sixth embodiment of the waste water treatment apparatus of the present invention.
  • FIG. 7 is a schematic view showing a seventh embodiment of the waste water treatment apparatus of the present invention.
  • FIG. 1 shows a schematic view of a first embodiment of the waste water treatment apparatus of the present invention.
  • This wastewater treatment device contains a micro / nano bubble generation tank 1 that contains a micro / nano bubble generator 23, a microorganism tank 61 that contains microorganisms, an auxiliary tank 50 that contains micro / nano bubble generation aids, and a nutrient. And an activated charcoal tower 4 filled with activated carbon.
  • the microorganism tank 61, the auxiliary agent tank 50, the nutrient tank 52, and the activated carbon tower 4 are connected to the micro / nano bubble generating tank 1, respectively.
  • the wastewater containing the organic fluorine compound is introduced into the micro-nano bubble generation tank 1, the microorganism is added from the microorganism tank 61, and the micro-nano bubble generation auxiliary agent is added from the auxiliary tank 50. Added, the nutrient is added from the nutrient tank 52, and the micro / nano bubble is generated by the micro / nano bubble generator 23. The water to be treated is created.
  • the treated water is supplied from the micro / nano bubble generating tank 1 to the activated carbon tower 4, and the organic fluorine compound in the treated water is decomposed by the microorganism.
  • the microorganism tank 61 is connected to a microorganism tank pump 62 for sending the microorganisms to the micro / nano bubble generating tank 1.
  • the auxiliary tank 50 is connected to an auxiliary tank pump 51 for sending the micro / nano bubble generating auxiliary agent to the micro / nano bubble generating tank 1.
  • the nutrient tank 52 is connected to a nutrient tank pump 53 that delivers the nutrient to the micro-nano bubble generation tank.
  • the micro / nano bubble generation tank 1 is connected to a micro / nano bubble generation tank pump 2 for sending the water to be treated to the activated carbon tower 4.
  • the microorganism may be a microorganism contained in general biologically treated water, or may be a microorganism that is particularly excellent in decomposing organic fluorine compounds. Any type is acceptable.
  • the microorganism added from the microorganism tank 61 may be determined as a target microorganism that may be the microorganism itself or may exist in the liquid.
  • the micro / nano bubble generation aid refers to one that can stably maintain the generation state of micro / nano bubbles. That is, the above-mentioned micro / nano bubble generation aid generates optimal micro / nano bubbles and activates all the microorganisms that exist!
  • the nutrient is, for example, a nutrient that contains nitrogen or phosphorus as a main component and contains a small amount of potassium, magnesium, or calcium, and is necessary when microorganisms are activated.
  • An air suction pipe 25 is connected to the micro-nano bubble generator 23, and a valve 24 for adjusting the amount of air suction is connected to the air suction pipe 25.
  • the micro / nano bubble generator 23 is connected to a circulation pump 26 for supplying water in the micro / nano bubble generator 1 to the micro / nano bubble generator 23.
  • micro / nano bubble generator 23 is supplied with water from the circulation pump 26.
  • the circulation pump 26 supplies water to the micro / nano bubble generator 23 in a necessary pressure state. ing. When supplied at the required pressure, micro-nano bubbles are generated efficiently. Necessary pressure means 1.5kg / cm 2 or more.
  • micro / nano bubble generator 23 is not limited to the manufacturer as long as it is commercially available. Specifically, Nano-Branet Laboratories Co., Ltd., Oratech Co., Ltd. and Nomura Electronics Co., Ltd. There are products. Other products include, for example, Nishika Sangyo Co., Ltd. micro bubble water production equipment and Resource Development Co., Ltd. micro bubble water production equipment, but they may be selected according to the purpose.
  • the micro-nano bubble refers to a bubble having a diameter of about 10 ⁇ m force and several hundred nm.
  • normal bubbles bubbles
  • microbubbles are bubbles having a bubble diameter of 10 m to several tens / z m, shrink in water, and eventually disappear (completely dissolve).
  • a nano bubble is a bubble having a diameter of several hundred nm or less and can exist in water forever. And it can be said that the micro-nano bubble is a bubble in which micro-bubbles and nano-bubbles are mixed.
  • micro-nano bubble generation tank 1 optimum micro-nano bubbles are generated from the micro-nano bubble generator 23 by the addition of the micro-nano bubble generation aid.
  • a water stream 27 is generated by the fine bubbles discharged from the micro-nano bubble generator 23, and this water stream 27 becomes a circulating water stream of the micro-nano bubble generation tank 1, and the micro-nano bubble generation tank 1 The inside is agitated. That is, the water stream 27 mixes the organic fluorine compound-containing waste water, the micro / nano bubble generation aid, the microorganisms, and the nutrient. Microorganisms activated by micro-nano bubbles are further activated by the addition of the above nutrients.
  • the water to be treated in the micro / nano bubble generation tank 1 is introduced into the upper part of the activated carbon tower 4 by the micro / nano bubble generation tank pump 2 with the flow rate adjusted by a valve 49.
  • the activated carbon packed in the activated carbon tower 4 is, for example, coconut shell activated carbon or coal-based activated carbon. Whether to select coconut husk activated carbon or coal-based activated carbon. A physical experiment may be performed to determine the type and shape of the activated carbon or the amount of treated water introduced.
  • An exhaust gas treatment tank 9 is connected to the micro / nano bubble generation tank 1 via a duct 7.
  • a relay tank 5 is connected to the activated carbon tower 4 and the exhaust gas treatment tank 9. That is, the relay tank 5 is connected to the activated carbon tower 4 via a pipe, and is connected to the exhaust gas treatment tank 9 via a duct 7.
  • the activated carbon tower 4 has a branch pipe on the downstream side, and one side of the branch pipe is connected to the relay tank 5 via the relay tank automatic valve 3a, and the other side of the branch pipe is connected.
  • the side is connected to the micro / nano bubble generation tank 1 through the automatic valve 3b for the micro / nano bubble generation tank.
  • the treated water discharged from the activated carbon tower 4 and the exhaust gas containing fluorine are high if the quality of the treated water is good and the organic fluorine compound is decomposed.
  • the automatic valve 3a for the relay tank is opened and the valve 3b for the micro / nano bubble generating tank is closed and introduced into the relay tank 5.
  • the middle tank I the middle tank
  • the relay tank 5 automatic valve 3a is opened without causing the inside of the relay tank 5 to foam, and the micro The nanobubble generation tank-bound valve 3b is closed, and the water to be treated and the exhaust gas are sequentially introduced into the relay tank 5.
  • the relay tank 5 has an aeration unit 65.
  • the aeration unit 65 includes an air diffuser 58 in the relay tank 5 and a blower 59 that sends air to the air diffuser 58.
  • the aeration unit 65 By the aeration unit 65, the water to be treated is bubbled.
  • the treated water exiting the relay tank 5 is treated in the next-stage wastewater treatment facility according to the content of the treated water (that is, water quality).
  • This wastewater treatment facility in the next process is often treated with fluorine-containing wastewater.
  • the exhaust gas 6 containing fluorine in the micro / nano bubble generation tank 1 and the relay tank 5 (indicated by an arrow) is introduced into the exhaust gas treatment tank 9 by the fan 8 via the duct 7.
  • the water to be treated and the exhaust gas that have passed through the activated carbon tower 4 are introduced into the relay tank 5 and separated into the water to be treated and the exhaust gas. It is introduced into the exhaust gas treatment tank 9.
  • the exhaust gas treatment tank 9 houses a micro / nano bubble generator 12.
  • a microorganism tank 63 for storing microorganisms
  • an auxiliary tank 54 for storing micro-nano bubble generation auxiliary agents
  • a nutrient tank 56 for storing nutrients.
  • the microorganism tank 63, the auxiliary agent tank 54, and the nutrient tank 56 are the same as the microorganism tank 61, the auxiliary tank 50, and the nutrient tank 52. I will omit the description.
  • the microorganism tank 63 is connected to a microorganism tank pump 64 for sending the microorganisms to the exhaust gas treatment tank 9.
  • the auxiliary tank 54 is connected to an auxiliary tank pump 55 for sending the micro / nano bubble generating auxiliary agent to the exhaust gas treatment tank 9.
  • the nutrient tank 56 is connected to a nutrient tank pump 57 that delivers the nutrient to the exhaust gas treatment tank 9.
  • the water introduced into the exhaust gas treatment tank 9 is added with the microorganism from the microorganism tank 63, added with the micro-nano bubble generating assistant from the assistant tank 54, and the nutrient tank.
  • the nutrient solution is added from 56 and the micro-nano bubbles are contained by the micro-nano bubble generator 12 to create washing water.
  • the exhaust gas generated by decomposing the organic fluorine compound in the water to be treated by the microorganisms in the activated carbon tower 4 is introduced into the exhaust gas treatment tank 9 and treated with the washing water. .
  • the exhaust gas treatment tank 9 includes a lower water storage part 11 disposed in the lower part and an upper watering part 10 disposed in the upper part.
  • the lower water storage unit 11 houses the micro / nano bubble generator 12 and stores the washing water.
  • the upper water sprinkling unit 10 sprinkles the washing water pumped up from the lower water storage unit 11.
  • the wash water sprayed from the upper water sprinkling unit 10 cleans the exhaust gas, is stored in the lower water storage unit 11, and is pumped again to the upper water sprinkling unit 10 via the water spray pump 17. Raised.
  • the upper water sprinkling unit 10 includes a porous plate 18, a plastic filler 19 (for example, trade name Teralet) and a watering nozzle 20 in order from the bottom to the top.
  • the upper watering part 10 is provided with an exhaust outlet 22 at the upper part of the watering nozzle 20.
  • the exhaust gas containing fluorine flows into the exhaust gas treatment tank 9 from the duct 7 provided between the upper watering part 10 and the lower water storage part 11, and the watering nozzle 20 Then, the water is washed with the washing water sprayed and discharged from the exhaust outlet 22.
  • the micro-nano bubble generator 12 is accommodated. Up Since the micro / nano bubble generator 12 has the same configuration as the micro / nano bubble generator 23, the description thereof is omitted.
  • An air suction pipe 14 is connected to the micro-nano bubble generator 12, and a valve 13 for adjusting the amount of air suction is connected to the air suction pipe 14.
  • the micro / nano bubble generator 12 is connected to a circulation pump 15 that supplies water in the exhaust gas treatment tank 9 to the micro / nano bubble generator 12.
  • the micro-nano bubble generator 12 is supplied with water from the circulation pump 15.
  • a water stream 16 is generated by the fine bubbles discharged from the micro / nano bubble generator 12, and this water stream 16 becomes a circulating water stream of the exhaust gas treatment tank 9, and the inside of the exhaust gas treatment tank 9 is agitated. is doing. That is, the water stream 16 mixes the organic fluorine compound-containing waste water, the micro / nano bubble generation aid, the microorganisms, and the nutrient. Microorganisms activated by micro-nano bubbles are further activated by the addition of the above nutrients.
  • Water is sprayed from the watering nozzle 20 of the upper watering part 10 via 21.
  • to-be-treated water is prepared by adding microorganisms, micro / nano bubble generation aids and nutrients to the waste water containing the organic fluorine compound and containing micro / nano bubbles.
  • the water to be treated is supplied from the micro / nano bubble generating tank 1 to the activated carbon tower 4 filled with activated carbon, and the organic fluorine compound in the water to be treated is decomposed by the microorganisms.
  • the micro-nano bubble generation tank 1, the microorganism tank 61, the auxiliary agent tank 50, the nutrient tank 52, and the activated carbon tower 4 are provided. Then, the wastewater containing the organic fluorine compound is introduced into the micro / nano bubble generation tank 1 to which the microorganism, the micro / nano bubble generation aid and the nutrient are added, and the micro / nano bubble is contained and covered. Treated water is prepared, and the treated water is supplied from the micro / nano bubble generation tank 1 to the activated carbon tower 4 and the organic fluorine compound in the treated water is decomposed by the microorganisms.
  • the activated carbon of the activated carbon tower 4 which is an immobilization carrier for the microorganisms, and is further activated by the micro-nano bubbles and the nutrient,
  • the machine fluorine compound can reasonably be decomposed.
  • an optimal amount of the micro / nano bubbles that activate the microorganism can be generated.
  • PFOS perfluorooctanoic acid
  • PFOA perfluorooctanoic acid
  • the exhaust gas treatment tank 9 the microorganism tank 63, the auxiliary agent tank 54, and the honor
  • the water introduced into the exhaust gas treatment tank 9 is added with the microorganism, the micro-nano bubble generation aid and the nutrient, and contains the micro-nano bubble, and the washing water Since the exhaust gas is treated with the washing water, the fluorine in the exhaust gas can be rationally treated with the activated microorganisms in the washing water.
  • washing water sprayed from the upper watering part 10 is washed with the exhaust gas, stored in the lower water storage part 11, and pumped up again into the upper watering part 10. Can be circulated between the upper watering part 10 and the lower water storage part 11 for use.
  • FIG. 2 shows a second embodiment of the waste water treatment apparatus of the present invention. The difference from the first embodiment shown in FIG. 1 will be described.
  • a micro / nano bubble generator 28 is accommodated in the relay tank 5.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the micro / nano bubble generator 28 has the same configuration as the micro / nano bubble generator 23 of the first embodiment shown in FIG.
  • An air suction pipe 30 is connected to the micro / nano bubble generator 28, and a valve 29 for adjusting the amount of air suction is connected to the air suction pipe 30.
  • the micro / nano bubble generator 28 is connected to a circulation pump 31 for supplying water in the relay tank 5 to the micro / nano bubble generator 28.
  • the micro / nano bubble generator 28 is supplied with water from the circulation pump 31 and sucks air from the air suction pipe 30, so that water and air cause a swirling flow at an ultra-high speed, resulting in a result.
  • micro-nano bubbles are generated after a certain time.
  • a water flow 32 is generated, and this water flow 32 becomes a circulating water flow of the relay tank 5 and stirs in the relay tank 5. Yes. That is, the water stream 32 mixes the organic fluorine compound-containing waste water, the micro-nano bubble generation aid, the microorganisms, and the nutrient. Microorganisms activated by micro-nano bubbles are further activated by the addition of the above nutrients.
  • the treated water containing the micro-nano bubbles does not contain the treated water, which has a better removal rate of the organic fluorine compound than the treated water. It was confirmed more.
  • micro / nano bubble generator 28 secures the necessary amount of air from the nozzle 29 and the air suction pipe 30 in order to generate micro / nano bubbles.
  • the treated water from the relay tank 5 is treated in the next process treatment facility depending on the water quality.
  • FIG. 3 shows a third embodiment of the waste water treatment apparatus of the present invention.
  • the micro-nano bubble generating tank 1 contains a string-like polysalt / vinylidene filler 33 as a filler. It has been. Further, the water to be treated separated in the relay tank 5 is treated with the chelate resin of the chelate resin tower.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the micro-nano bubble generation tank 1 contains the string-like polysalt / biurydene filler 33, so that the microorganisms activated by the micro-nano bubbles are not contained.
  • the cord-like polysalt-vinylidene filler 33 can be propagated while being fixed.
  • the microorganisms activated in the cord-like polysalt / bilidene filler 33 can be cultured at a high concentration, and the organic fluorine compound can be primarily treated.
  • many of the string-like polyvinylidene chloride fillers 33 can be accommodated in the micro / nano bubble generating tank 1.
  • FIG. 4 shows a fourth embodiment of the waste water treatment apparatus of the present invention.
  • activated carbon 35 as a filler is accommodated in the micro / nano bubble generating tank 1.
  • the water to be treated separated in the relay tank 5 is subjected to a precipitation treatment with a calcium agent in a calcium agent-added coagulating sedimentation facility.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the activated carbon 35 is accommodated in a mesh bag 34, and there are a plurality of mesh bags 34, and a mesh tube 36 is provided between at least one pair of the adjacent mesh bags 34, 34. .
  • the mesh bag 34 and the mesh tube 36 are accommodated in a perforated plate 37 installed in the micro / nano bubble generating tank 1.
  • the organic fluorine compound adsorbed on the activated carbon 35 can be decomposed with activated microorganisms. That is, the activated carbon 35 can be regenerated by the activated microorganisms. Further, since the activated carbon 35 is accommodated in the mesh bag 34, the activated carbon 35 can be easily accommodated in the micro / nano bubble generating tank 1 together with the mesh bag 34. In addition, since the mesh tube 36 is provided between the at least one pair of the adjacent mesh bags 34, 34, the flow of water to all the activated carbons 35 is improved, and the occurrence of a clogging phenomenon is prevented. Can be prevented.
  • FIG. 5 shows a fifth embodiment of the waste water treatment apparatus of the present invention.
  • a micro / nano bubble generator 28 is accommodated in the relay tank 5.
  • the relay tank 5 accommodates a string-like polyvinylidene filler 33 as a filler.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the micro / nano bubble generator 28 has the same configuration as the micro / nano bubble generator 23 of the first embodiment shown in FIG.
  • An air suction pipe 30 is connected to the micro / nano bubble generator 28, and a valve 29 for adjusting the air suction amount is connected to the air suction pipe 30.
  • the micro / nano bubble generator 28 is connected to a circulation pump 31 for supplying water in the relay tank 5 to the micro / nano bubble generator 28.
  • the micro / nano bubble generator 28 is supplied with water from the circulation pump 31 and sucks air from the air suction pipe 30, so that water and air cause a swirling flow at an ultra-high speed, resulting in a result. Micro-nano bubbles are generated.
  • a water stream 32 is generated, and this water stream 32 becomes a circulating water stream of the relay tank 5, and the inside of the relay tank 5 is stirred. Yes. That is, the water stream 32 mixes the organic fluorine compound-containing waste water, the micro-nano bubble generation aid, the microorganisms, and the nutrient. Microorganisms activated by micro-nano bubbles are further activated by the addition of the above nutrients.
  • the treated water containing michro nano bubbles does not contain, but compared to the treated water, the treated water contained in the treated water had a better removal rate of the organic fluorine compound. It was confirmed more.
  • micro-nano bubble generator 28 secures the necessary amount of air from the nozzle 29 and the air suction pipe 30 in order to generate micro / nano bubbles.
  • the treated water from the relay tank 5 is treated in the next process treatment facility depending on the water quality.
  • the micro / nano bubble generator 28 is accommodated in the relay tank 5, the microorganisms in the water to be treated are activated in the relay tank 5, and the activated microorganisms The organic fluorine compound remaining in the water to be treated can be further decomposed.
  • the string-like polysalt bililidene filler 33 is accommodated in the relay tank 5
  • the microorganisms activated by the micro-nano bubbles are removed from the cord-like polysalt polysalt- Can be bred while being fixed to Reden Filler 33.
  • microorganisms activated in the string-like polyvinylidene chloride filler 33 can be cultured at a high concentration, and the treatment efficiency of the treated water can be increased.
  • many of the above-mentioned cord-like polysalt vinylidene fillers 33 can be accommodated in the relay tank 5.
  • FIG. 6 shows a sixth embodiment of the waste water treatment apparatus of the present invention.
  • a micro / nano bubble generator 28 is accommodated in the relay tank 5.
  • the relay tank 5 contains activated carbon 35 as a filler. Note that, in the sixth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the micro / nano bubble generator 28 has the same configuration as the micro / nano bubble generator 23 of the first embodiment shown in FIG.
  • An air suction pipe 30 is connected to the micro / nano bubble generator 28, and a valve 29 for adjusting the air suction amount is connected to the air suction pipe 30.
  • the micro / nano bubble generator 28 is connected to a circulation pump 31 for supplying water in the relay tank 5 to the micro / nano bubble generator 28.
  • the micro-nano bubble generator 28 is supplied with water from the circulation pump 31 and sucks air from the air suction pipe 30, so that the water and air swirl at an ultra-high speed. As a result, micro-nano bubbles are generated after a certain time.
  • the water flow 32 is generated by the fine bubbles discharged from the micro / nano bubble generator 28, and this water flow 32 becomes a circulating water flow of the relay tank 5 and stirs in the relay tank 5. Yes. That is, the water stream 32 mixes the organic fluorine compound-containing waste water, the micro-nano bubble generation aid, the microorganisms, and the nutrient. Microorganisms activated by micro-nano bubbles are further activated by the addition of the above nutrients.
  • micro / nano bubble generator 28 secures the necessary amount of air from the nozzle 29 and the air suction pipe 30 in order to generate micro / nano bubbles.
  • the treated water from the relay tank 5 is treated in the next process treatment facility depending on the water quality.
  • the micro-nano bubble generator 28 is accommodated in the relay tank 5, the microorganisms in the water to be treated are activated in the relay tank 5, and the activated microorganisms The organic fluorine compound remaining in the water to be treated can be further decomposed.
  • the activated carbon 35 is accommodated in a mesh bag 34, and there are a plurality of mesh bags 34, and a mesh tube 36 is provided between at least one pair of the adjacent mesh bags 34, 34. Is provided.
  • the mesh bag 34 and the mesh tube 36 are accommodated in a perforated plate 37 installed in the relay tank 5.
  • the organic fluorine compound adsorbed on the activated carbon 35 can be decomposed with activated microorganisms. That is, the activated carbon 35 can be regenerated by the activated microorganisms. Further, since the activated carbon 35 is accommodated in the mesh bag 34, the activated carbon 35 can be easily accommodated in the relay tank 5 together with the mesh bag 34. In addition, since the mesh tube 36 is provided between the at least one pair of the adjacent mesh bags 34, 34, the flow of water to all the activated carbon 35 is improved to prevent the occurrence of a clogging phenomenon. it can.
  • FIG. 7 shows a seventh embodiment of the waste water treatment apparatus of the present invention.
  • the lower water reservoir 11 of the exhaust gas treatment tank 9 has a string-like polyvinyl chloride as a filler. Reden filler 33 is contained.
  • the same portions as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the string-like polysalt / vinylidene filler 33 is accommodated in the exhaust gas treatment tank 9, the microorganisms activated by the micro / nano bubbles are treated with the string-like polysalt / salt. It can be propagated while being fixed to the biliden filler 33.
  • the organic fluorine compound gasified in the process of decomposing the organic fluorine compound is absorbed by washing with the washing water, and microorganisms are produced by the active microorganisms propagated on the string-like polysalt / vinylidene filler 33. Decompose.
  • cord-like polysalt vinylidene fillers 33 can be accommodated in the upper and lower water storage portions 11 of the exhaust gas treatment tank 9.
  • an experimental device corresponding to the first embodiment of FIG. 1 was manufactured.
  • the capacity of the micro-nano bubble generation tank 1 is about lm 3
  • the capacity of the activated carbon tower 4 is 2 m 3
  • the capacity of the relay tank 5 is lm 3
  • the entire exhaust gas treatment tank 9 is used. as about 3m 3 capacity, 1 month, the micro-nano bubble generation tank 1, the activated carbon tower 4, Na' Oko commissioning by introducing an organic fluorine compound-containing waste water and biologically treated water in the relay tank 5 and the exhaust gas treatment tank 9 It was.
  • PFOS perfluoro The concentration of octanesulfone powder
  • concentration of PFOS at the outlet of the relay tank 5 were measured, and the removal rate of PFOS was measured and found to be 92%.
  • persistent PFOS can be effectively decomposed by microorganisms.
  • the ring-shaped polysalt vinylidene filler may be used in place of the string-like polysalt vinylidene filler 33.
  • the polyvinylidene filler can be easily accommodated in the micro / nano bubble generation tank 1, the relay tank 5 and the exhaust gas treatment tank 9.
  • the micro-nano bubble generating tank 1, the relay tank 5 and the exhaust gas treatment tank 9 are connected to the string-like polysalt vinyl-redenid filler 33 and Use activated carbon 35 above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Treating Waste Gases (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

 有機フッ素化合物を含有する排水は、マイクロナノバブル発生槽1に導入されて、微生物タンク61から微生物を添加され、助剤タンク50からマイクロナノバブル発生助剤を添加され、栄養剤タンク52から栄養剤を添加されると共にマイクロナノバブル発生機23によってマイクロナノバブルを含有されて、被処理水が作成される。上記被処理水は、上記マイクロナノバブル発生槽1から活性炭塔4に供給されて、上記被処理水中の上記有機フッ素化合物が、上記微生物によって分解される。

Description

明 細 書
排水処理方法および排水処理装置
技術分野
[0001] この発明は、例えば、半導体工場や液晶工場のみならず、有機フッ素化合物を製 造または使用する工場における排水処理方法および排水処理装置に関する。
背景技術
[0002] 有機フッ素化合物は化学的に安定な物質である。特に、上記有機フッ素化合物は 、耐熱性および耐薬品性の観点から優れた性質を有することから、界面活性剤等の 用途に用いられている。
[0003] し力しながら、上記有機フッ素化合物は、化学的に安定な物質であるが故に、微生 物によって分解され難い。例えば、上記有機フッ素化合物としてのパーフルォロオタ タスルホン酸(PFOS)やパーフルォロオクタン酸(PFOA)は、生態系での分解が進 まないことから、生態系への影響が懸念されている。すなわち、上記パーフルォロォ クタスルホン酸(PFOS)や上記パーフルォロオクタン酸(PFOA)は、化学的に安定 なため、熱分解させるためには、約 1000°C以上の高温を必要としていた(特開 2001 302551号公報参照)。
発明の開示
発明が解決しょうとする課題
[0004] そこで、この発明の課題は、難分解性の有機フッ素化合物を効果的に微生物によ つて分解することができる排水処理方法および排水処理装置を提供することにある。 課題を解決するための手段
[0005] 上記課題を解決するため、この発明の排水処理方法は、
マイクロナノバブル発生槽で、有機フッ素化合物を含有する排水に、微生物、マイ クロナノバブル発生助剤および栄養剤を添加すると共にマイクロナノバブルを含有さ せて、被処理水を作成し、
上記被処理水を、活性炭が充填された活性炭塔に供給して、上記被処理水中の 上記有機フッ素化合物を、上記微生物によって分解することを特徴としている。 [0006] ここで、上記マイクロナノバブルとは、 10 μ m力 数百 nm前後の直径を有する気泡 をいう。上記マイクロナノバブル発生助剤とは、マイクロナノバブルの発生状態を安定 して維持できるものをいう。上記栄養剤とは、微生物が活性ィ匕する際に必要な栄養素 をいう。上記有機フッ素化合物とは、例えば、パーフルォロォクタスルホン酸(PFOS )やパーフルォロオクタン酸(PFOA)を!、う。
[0007] この発明の排水処理方法によれば、マイクロナノバブル発生槽で、有機フッ素化合 物を含有する排水に、微生物、マイクロナノバブル発生助剤および栄養剤を添加す ると共にマイクロナノバブルを含有させて、被処理水を作成し、上記被処理水を、活 性炭が充填された活性炭塔に供給して、上記被処理水中の上記有機フッ素化合物 を、上記微生物によって分解するので、上記微生物を、上記微生物の固定化担体で ある上記活性炭塔の上記活性炭に繁殖させて、上記マイクロナノバブルと上記栄養 剤によって一層活性ィ匕し、上記有機フッ素化合物を合理的に分解処理できる。また、 上記マイクロナノバブル発生助剤を添加することによって、上記微生物を活性化する 上記マイクロナノバブルを、最適量発生できる。
[0008] したがって、難分解性の有機フッ素化合物(例えば、パーフルォロォクタスルホン酸
(PFOS)やパーフルォロオクタン酸 (PFOA) )を効果的に微生物によって分解する ことができる。
[0009] また、この発明の排水処理装置は、
マイクロナノバブル発生機を収容するマイクロナノバブル発生槽と、
微生物を収容すると共に上記マイクロナノバブル発生槽に接続された微生物タンク と、
マイクロナノバブル発生助剤を収容すると共に上記マイクロナノバブル発生槽に接 続された助剤タンクと、
栄養剤を収容すると共に上記マイクロナノバブル発生槽に接続された栄養剤タンク と、
活性炭を充填すると共に上記マイクロナノバブル発生槽に接続された活性炭塔と を備え、
有機フッ素化合物を含有する排水は、上記マイクロナノバブル発生槽に導入されて 、上記微生物タンクから上記微生物を添加され、上記助剤タンクから上記マイクロナ ノバブル発生助剤を添加され、上記栄養剤タンクから上記栄養剤を添加されると共 に上記マイクロナノバブル発生機によってマイクロナノバブルを含有されて、被処理 水が作成され、
上記被処理水は、上記活性炭塔に供給されて、上記被処理水中の上記有機フッ 素化合物が、上記微生物によって分解されることを特徴としている。
[0010] ここで、上記マイクロナノバブルとは、 10 μ m力も数百 nm前後の直径を有する気泡 をいう。上記マイクロナノバブル発生助剤とは、マイクロナノバブルの発生状態を安定 して維持できるものをいう。上記栄養剤とは、微生物が活性ィ匕する際に必要な栄養素 をいう。上記有機フッ素化合物とは、例えば、パーフルォロォクタスルホン酸(PFOS )やパーフルォロオクタン酸(PFOA)を!、う。
[0011] この発明の排水処理装置によれば、マイクロナノバブル発生槽と、微生物タンクと、 助剤タンクと、栄養剤タンクと、活性炭塔とを備え、有機フッ素化合物を含有する排水 は、上記マイクロナノバブル発生槽に導入されて、上記微生物、上記マイクロナノバ ブル発生助剤および上記栄養剤を添加されると共に上記マイクロナノバブルを含有 されて、被処理水が作成され、上記被処理水は、上記活性炭塔に供給されて、上記 被処理水中の上記有機フッ素化合物が、上記微生物によって分解されるので、上記 微生物を、上記微生物の固定化担体である上記活性炭塔の上記活性炭に繁殖させ て、上記マイクロナノバブルと上記栄養剤によって一層活性ィ匕し、上記有機フッ素化 合物を合理的に分解処理できる。また、上記マイクロナノバブル発生助剤を添加する こと〖こよって、上記微生物を活性ィ匕する上記マイクロナノバブルを、最適量発生でき る。
[0012] したがって、難分解性の有機フッ素化合物(例えば、パーフルォロォクタスルホン酸
(PFOS)やパーフルォロオクタン酸 (PFOA) )を効果的に微生物によって分解する ことができる。
[0013] また、一実施形態の排水処理装置では、
マイクロナノバブル発生機を収容すると共に上記マイクロナノバブル発生槽に接続 された排ガス処理槽と、 微生物を収容すると共に上記排ガス処理槽に接続された微生物タンクと、 マイクロナノバブル発生助剤を収容すると共に上記排ガス処理槽に接続された助 剤タンクと、
栄養剤を収容すると共に上記排ガス処理槽に接続された栄養剤タンクと を備え、
上記排ガス処理槽に導入された水は、上記微生物タンクから上記微生物を添加さ れ、上記助剤タンク力も上記マイクロナノバブル発生助剤を添加され、上記栄養剤タ ンクカゝら上記栄養剤を添加されると共に上記マイクロナノバブル発生機によってマイ クロナノバブルを含有されて、洗浄水が作成され、
上記活性炭塔で上記被処理水中の上記有機フッ素化合物を上記微生物によって 分解することで発生する排ガスは、上記排ガス処理槽に導入されて、上記洗浄水に よって処理される。
[0014] この実施形態の排水処理装置によれば、上記排ガス処理槽と、上記微生物タンクと 、上記助剤タンクと、上記栄養剤タンクとを備え、上記排ガス処理槽に導入された水 は、上記微生物、上記マイクロナノバブル発生助剤および上記栄養剤を添加される と共にマイクロナノバブルを含有されて、上記洗浄水が作成され、上記排ガスは、上 記洗浄水によって処理されるので、上記排ガス中のフッ素を、上記洗浄水中の活性 化した上記微生物によって、合理的に処理できる。
[0015] また、一実施形態の排水処理装置では、曝気部を有すると共に上記活性炭塔およ び上記排ガス処理槽に接続された中継槽を備え、上記活性炭塔を通過した上記被 処理水および上記排ガスは、上記中継槽に導入されて、上記被処理水と上記排ガス とに分離され、上記排ガスは、上記排ガス処理槽に導入される。
[0016] この実施形態の排水処理装置によれば、上記活性炭塔を通過した上記被処理水 および上記排ガスは、上記曝気部を有する上記中継槽に導入されて、上記被処理 水と上記排ガスとに分離されるので、上記被処理水および上記排ガスを個別に確実 に処理できる。
[0017] また、一実施形態の排水処理装置では、
上記排ガス処理槽は、 下部に配置されると共に、上記マイクロナノバブル発生機を収容して上記洗浄水を 貯水する下部貯水部と、
上部に配置されると共に、上記下部貯水部から汲み上げられた上記洗浄水を散水 する上部散水部と
を有し、
上記上部散水部から散水された上記洗浄水は、上記排ガスを洗浄して、上記下部 貯水部に貯水され、再度、上記上部散水部に汲み上げられる。
[0018] この実施形態の排水処理装置によれば、上記上部散水部から散水された上記洗 浄水は、上記排ガスを洗浄して、上記下部貯水部に貯水され、再度、上記上部散水 部に汲み上げられるので、上記洗浄水を上記上部散水部と上記下部貯水部との間 を循環して利用することができる。
[0019] また、一実施形態の排水処理装置では、上記マイクロナノバブル発生槽に、充填 材が収容されている。
[0020] この実施形態の排水処理装置によれば、上記マイクロナノバブル発生槽に、充填 材が収容されているので、上記マイクロナノバブルで活性ィ匕した上記微生物を、上記 充填材に固定しつつ繁殖させることができる。
[0021] また、一実施形態の排水処理装置では、上記中継槽に、マイクロナノバブル発生 機が収容されている。
[0022] この実施形態の排水処理装置によれば、上記中継槽に、マイクロナノバブル発生 機が収容されているので、上記中継槽で上記被処理水中の上記微生物を活性ィ匕し て、この活性ィ匕した微生物によって、上記被処理水中に残存している有機フッ素化 合物を、さらに分解できる。
[0023] また、一実施形態の排水処理装置では、上記中継槽に、充填材が収容されている
[0024] この実施形態の排水処理装置によれば、上記中継槽に、充填材が収容されている ので、上記マイクロナノバブルで活性ィ匕した上記微生物を、固定ィ匕担体としての上記 充填材に高濃度で培養できて、上記被処理水の処理効率を高めることができる。
[0025] また、一実施形態の排水処理装置では、上記充填材は、ポリ塩ィ匕ビ二リデン充填 材である。
[0026] ここで、上記ポリ塩ィ匕ビユリデン充填材の形状は、例えば、ひも状やリング状である
[0027] この実施形態の排水処理装置によれば、上記充填材は、ポリ塩化ビニリデン充填 材であるので、上記ポリ塩ィ匕ビユリデン充填材に活性ィ匕した微生物を高濃度に培養 できて、上記有機フッ素化合物を一次処理できる。
[0028] また、一実施形態の排水処理装置では、上記ポリ塩ィ匕ビユリデン充填材は、ひも状 である。
[0029] この実施形態の排水処理装置によれば、上記ポリ塩ィ匕ビユリデン充填材は、ひも状 であるので、多くの上記ポリ塩ィ匕ビユリデン充填材を、上記マイクロナノバブル発生槽 や上記中継槽に、収容することができる。
[0030] また、一実施形態の排水処理装置では、上記中継槽で分離された上記被処理水 は、キレート榭脂で、処理される。
[0031] この実施形態の排水処理装置によれば、上記中継槽で分離された上記被処理水 は、キレート榭脂で、処理されるので、上記中継槽の上記被処理水中の低濃度フッ 素を、上記キレート榭脂で高度に処理することができる。
[0032] また、一実施形態の排水処理装置では、上記充填材は、活性炭である。
[0033] ここで、上記活性炭は、例えば、網袋に収容されており、隣り合う上記網袋の間に は、網状管が設置されている。
[0034] この実施形態の排水処理装置によれば、上記充填材は、活性炭であるので、上記 活性炭に吸着した上記有機フッ素化合物を、活性ィ匕した微生物で、分解処理できる
。つまり、上記活性ィ匕した微生物によって、上記活性炭を再生できる。
[0035] また、一実施形態の排水処理装置では、上記活性炭は、網袋に収容されている。
[0036] この実施形態の排水処理装置によれば、上記活性炭は、網袋に収容されているの で、上記活性炭を、上記網袋ごと、上記マイクロナノバブル発生槽ゃ上記中継槽に、 簡単に収容することができる。
[0037] また、一実施形態の排水処理装置では、上記網袋は、複数あり、少なくとも一組の 隣り合う上記網袋の間に、網状管が設けられている。 [0038] この実施形態の排水処理装置によれば、上記少なくとも一組の隣り合う上記網袋の 間に、網状管が設けられているので、全ての上記活性炭への水の流れをよくして、閉 塞現象の発生を防止できる。
[0039] また、一実施形態の排水処理装置では、上記中継槽で分離された上記被処理水 は、カルシウム剤で、沈殿処理される。
[0040] この実施形態の排水処理装置によれば、上記中継槽で分離された上記被処理水 は、カルシウム剤で、沈殿処理されるので、上記中継槽の上記被処理水中の高濃度 フッ素を、上記カルシウム剤を添カ卩して、無害なフッ化カルシウムとして沈澱処理でき る。
[0041] また、一実施形態の排水処理装置では、上記排ガス処理槽の上記下部貯水部に、 充填材が収容されている。
[0042] この実施形態の排水処理装置によれば、上記排ガス処理槽の上記下部貯水部に 、充填材が収容されているので、上記充填材に上記微生物が繁殖して、上記排ガス 中の有機物を吸収した上記洗浄水を、上記下部貯水部で、処理できる。つまり、上記 充填材に繁殖して活性ィ匕した微生物によって、上記洗浄水中の有機フッ素化合物を 分解できる。
[0043] また、一実施形態の排水処理装置では、上記充填材は、ポリ塩ィ匕ビ二リデン充填 材である。
[0044] ここで、上記ポリ塩ィ匕ビユリデン充填材の形状は、例えば、ひも状やリング状である
[0045] この実施形態の排水処理装置によれば、上記充填材は、ポリ塩化ビニリデン充填 材であるので、上記ポリ塩ィ匕ビユリデン充填材に活性ィ匕した微生物を高濃度に培養 できて、上記有機フッ素化合物を処理できる。
[0046] また、一実施形態の排水処理装置では、上記ポリ塩ィ匕ビユリデン充填材は、ひも状 である。
[0047] この実施形態の排水処理装置によれば、上記ポリ塩ィ匕ビ二リデン充填材は、ひも状 であるので、多くの上記ポリ塩ィ匕ビユリデン充填材を、上記排ガス処理槽の上記下部 貯水部に、収容することができる。 [0048] また、一実施形態の排水処理装置では、上記ポリ塩ィ匕ビユリデン充填材は、リング 状である。
[0049] この実施形態の排水処理装置によれば、上記ポリ塩ィ匕ビ二リデン充填材は、リング 状であるので、上記ポリ塩ィ匕ビユリデン充填材を、上記排ガス処理槽の上記下部貯 水部に、簡単に収容することができる。
[0050] また、一実施形態の排水処理装置では、上記充填材は、活性炭である。
[0051] ここで、上記活性炭は、例えば、網袋に収容されており、隣り合う上記網袋の間に は、網状管が設置されている。
[0052] この実施形態の排水処理装置によれば、上記充填材は、活性炭であるので、上記 活性炭に吸着した上記有機フッ素化合物を、活性ィ匕した微生物で、分解処理できる
。つまり、上記活性ィ匕した微生物によって、上記活性炭を再生できる。
[0053] また、一実施形態の排水処理装置では、上記活性炭は、網袋に収容されている。
[0054] この実施形態の排水処理装置によれば、上記活性炭は、網袋に収容されているの で、上記活性炭を、上記網袋ごと、上記排ガス処理槽の上記下部貯水部に、簡単に 収容することができる。
[0055] また、一実施形態の排水処理装置では、上記網袋は、複数あり、少なくとも一組の 隣り合う上記網袋の間に、網状管が設けられている。
[0056] この実施形態の排水処理装置によれば、上記少なくとも一組の隣り合う上記網袋の 間に、網状管が設けられているので、全ての上記活性炭への水の流れをよくして、閉 塞現象の発生を防止できる。
発明の効果
[0057] この発明の排水処理方法によれば、マイクロナノバブル発生槽で、有機フッ素化合 物を含有する排水に、微生物、マイクロナノバブル発生助剤および栄養剤を添加す ると共にマイクロナノバブルを含有させて、被処理水を作成し、上記被処理水を、活 性炭が充填された活性炭塔に供給して、上記被処理水中の上記有機フッ素化合物 を、上記微生物によって分解するので、難分解性の有機フッ素化合物を効果的に微 生物によって分解することができる。
[0058] また、この発明の排水処理装置によれば、マイクロナノバブル発生槽と、微生物タン クと、助剤タンクと、栄養剤タンクと、活性炭塔とを備え、有機フッ素化合物を含有す る排水は、上記マイクロナノバブル発生槽に導入されて、上記微生物、上記マイクロ ナノバブル発生助剤および上記栄養剤を添加されると共に上記マイクロナノバブル を含有されて、被処理水が作成され、上記被処理水は、上記活性炭塔に供給されて 、上記被処理水中の上記有機フッ素化合物が、上記微生物によって分解されるので 、難分解性の有機フッ素化合物を効果的に微生物によって分解することができる。 図面の簡単な説明
[0059] [図 1]本発明の排水処理装置の第 1実施形態を示す模式図である。
[図 2]本発明の排水処理装置の第 2実施形態を示す模式図である。
[図 3]本発明の排水処理装置の第 3実施形態を示す模式図である。
[図 4]本発明の排水処理装置の第 4実施形態を示す模式図である。
[図 5]本発明の排水処理装置の第 5実施形態を示す模式図である。
[図 6]本発明の排水処理装置の第 6実施形態を示す模式図である。
[図 7]本発明の排水処理装置の第 7実施形態を示す模式図である。
発明を実施するための最良の形態
[0060] 以下、この発明を図示の実施の形態により詳細に説明する。
[0061] (第 1の実施形態)
図 1は、この発明の排水処理装置の第 1の実施形態である模式図を示している。こ の排水処理装置は、マイクロナノバブル発生機 23を収容するマイクロナノバブル発 生槽 1と、微生物を収容する微生物タンク 61と、マイクロナノバブル発生助剤を収容 する助剤タンク 50と、栄養剤を収容する栄養剤タンク 52と、活性炭を充填する活性 炭塔 4とを有する。上記微生物タンク 61、上記助剤タンク 50、上記栄養剤タンク 52お よび上記活性炭塔 4は、それぞれ、上記マイクロナノバブル発生槽 1に接続されてい る。
[0062] そして、有機フッ素化合物を含有する排水は、上記マイクロナノバブル発生槽 1に 導入されて、上記微生物タンク 61から上記微生物を添加され、上記助剤タンク 50か ら上記マイクロナノバブル発生助剤を添加され、上記栄養剤タンク 52から上記栄養 剤を添加されると共に上記マイクロナノバブル発生機 23によってマイクロナノバブル を含有されて、被処理水が作成される。
[0063] 上記被処理水は、上記マイクロナノバブル発生槽 1から上記活性炭塔 4に供給され て、上記被処理水中の上記有機フッ素化合物が、上記微生物によって分解される。
[0064] 上記微生物タンク 61には、上記微生物を上記マイクロナノバブル発生槽 1に送出 する微生物タンク用ポンプ 62が接続されている。上記助剤タンク 50には、上記マイク ロナノバブル発生助剤を上記マイクロナノバブル発生槽 1に送出する助剤タンク用ポ ンプ 51が接続されている。上記栄養剤タンク 52には、上記栄養剤を上記マイクロナ ノバブル発生槽丄に送出する栄養剤タンク用ポンプ 53が接続されている。上記マイク ロナノバブル発生槽 1には、上記被処理水を上記活性炭塔 4に送出するマイクロナノ バブル発生槽用ポンプ 2が接続されて 、る。
[0065] 上記微生物は、一般の生物処理水に含まれている微生物であってもよぐ特に有 機フッ素化合物の分解に優れた微生物であってもよぐ特に限定しないで、微生物な らば、どの様な種類でも構わない。
[0066] また、上記微生物タンク 61から添加される上記微生物は、微生物そのものであって もよぐまたは、液体中に存在していてもよぐ対象とする微生物で決定すればよい。
[0067] 上記マイクロナノバブル発生助剤とは、マイクロナノバブルの発生状態を安定して 維持できるものをいう。つまり、上記マイクロナノバブル発生助剤は、最適なマイクロ ナノバブルを発生し、存在して!/ヽる微生物を全て活性ィ匕する。
[0068] 上記栄養剤は、例えば、窒素やリンを主成分として、カリウム、マグネシウムやカル シゥムを微量に含み、微生物が活性ィ匕する際に必要な栄養素をいう。
[0069] 上記マイクロナノバブル発生機 23には、空気吸い込み管 25が接続され、この空気 吸い込み管 25には、空気吸い込み量を調整するバルブ 24が接続されている。上記 マイクロナノバブル発生機 23には、上記マイクロナノバブル発生槽 1内の水を上記マ イクロナノバブル発生機 23に供給する循環ポンプ 26が接続されている。
[0070] そして、上記マイクロナノバブル発生機 23は、上記循環ポンプ 26から水を供給され
、かつ、上記空気吸い込み管 25から空気を吸い込んで、水と空気が超高速で旋回 流を起こして、結果的に一定時間後にマイクロナノバブルを発生する。
[0071] 上記循環ポンプ 26は、水をマイクロナノバブル発生機 23に必要圧力状態で供給し ている。必要圧力状態で供給すると、マイクロナノバブルが効率よく発生する。必要 圧力とは、 1.5kg/cm2以上を意味する。
[0072] 上記マイクロナノバブル発生機 23としては、市販されているものならば、メーカーを 限定するものではなぐ具体的には、株式会社ナノブラネット研究所や株式会社ォー ラテックや野村電子工業株式会社の商品がある。他の商品としては、一例として、西 華産業株式会社のマイクロバブル水製造装置や資源開発株式会社のマイクロパブ ル水製造装置があるが、 目的に従って選定すれば良い。
[0073] ここで、上記マイクロナノバブルとは、 10 μ m力 数百 nm前後の直径を有する気泡 をいう。なお、通常のバブル (気泡)は、水の中を上昇して、ついには表面でパンとは じけて消滅する。また、マイクロバブルとは、 10 m〜数十/ z mの気泡径を有する気 泡をいい、水中で縮小していき、ついには消滅 (完全溶解)してしまう。また、ナノパブ ルとは、数百 nm以下の直径を有する気泡をいい、いつまでも水の中に存在できる。 そして、マイクロナノバブルは、マイクロバブルとナノバブルとが混合したバブルであ るといえる。
[0074] そして、上記マイクロナノバブル発生槽 1内では、上記マイクロナノバブル発生助剤 の添加によって、上記マイクロナノバブル発生機 23から、最適なマイクロナノバブル が発生している。
[0075] 上記マイクロナノバブル発生機 23から吐出される微細な泡によって、水流 27が発 生し、この水流 27が、上記マイクロナノバブル発生槽 1の循環水流となって、上記マ イクロナノバブル発生槽 1内を攪拌している。つまり、上記水流 27は、上記有機フッ 素化合物含有排水、上記マイクロナノバブル発生助剤、上記微生物および上記栄養 剤を混合する。マイクロナノバブルによって活性ィ匕した微生物は、上記栄養剤の添加 によって、一層活性化する。
[0076] 上記マイクロナノバブル発生槽 1内の上記被処理水は、バルブ 49で流量を調整さ れて、上記マイクロナノバブル発生槽用ポンプ 2によって、上記活性炭塔 4の上部に 導入される。
[0077] 上記活性炭塔 4に充填された活性炭は、例えば、ヤシガラ活性炭または石炭系の 活性炭である。ヤシガラ活性炭を選定するか、石炭系の活性炭を選定するかは、処 理実験を実施して、活性炭の種類や形状、または、上記被処理水の導入量などを決 定すれば良い。
[0078] 上記活性炭塔 4内の上記活性炭には、マイクロナノバブルによって活性ィ匕した微生 物が繁殖し、この微生物が上記有機フッ素化合物を分解する。上記有機フッ素化合 物を分解すると、フッ素を含むガスを発生するが、上記被処理水と共に、上記活性炭 塔 4の下部力 流出する。
[0079] 上記活性炭に微生物が繁殖していない場合、上記活性炭に水を導入し続けると、 上記活性炭の有機物を吸着する能力が減少する。しかし、上記活性炭に繁殖した微 生物の活性度が強力であると、上記活性炭が吸着した有機物を分解し、あた力も上 記活性炭が再生された状態となる。
[0080] 従来、水道に関する浄水場では、流入水の有機物負荷が低!、ので、上記活性炭 が微生物によって再生されていたが、排水では、有機物負荷がある程度高いので、 上記活性炭の再生は稀であった。
[0081] そこで、本発明では、マイクロナノバブルで、上記被処理水中の微生物を活性化し 、固定ィ匕担体としての上記活性炭で微生物を繁殖させると、排水で有機物負荷があ つても、強力で自動再生能力のある、いわゆる生物活性炭となり、上記活性炭塔 4の 活性炭の再生が不要で、メンテナンスコストおよびランニングコストの低減が可能とな る。
[0082] 上記マイクロナノバブル発生槽 1には、ダクト 7を介して、排ガス処理槽 9が接続され ている。上記活性炭塔 4および上記排ガス処理槽 9には、中継槽 5が接続されている 。つまり、上記中継槽 5は、配管を介して、上記活性炭塔 4に接続する一方、ダクト 7 を介して、上記排ガス処理槽 9に接続する。
[0083] 上記活性炭塔 4は、下流側に、分岐配管を有し、上記分岐配管の一方側は、中継 槽行き自動バルブ 3aを介して、上記中継槽 5に接続し、上記分岐配管の他方側は、 マイクロナノバブル発生槽行き自動バルブ 3bを介して、上記マイクロナノバブル発生 槽 1に接続する。
[0084] そして、上記活性炭塔 4から排出された上記被処理水と上記フッ素を含む排ガスと は、上記被処理水の水質が良くて、上記有機フッ素化合物が分解されていれば、上 記中継槽行き自動バルブ 3aが開となりかつ上記マイクロナノバブル発生槽行きバル ブ 3bが閉となって、上記中継槽 5に導入される。
[0085] 具体的に述べると、上記被処理水の水質が悪い場合は、上記有機フッ素化合物が 充分に分解されて ヽな ヽので、上記中継槽 5に導入された水質の悪!ヽ上記被処理 水は、泡立って、この泡が、上記中 «I槽 5の内部を上昇して、ついには、上記中 «槽
5内の上記電極棒 60に触れて、上記中継槽行き自動バルブ 3aが閉となり、上記マイ クロナノバブル発生槽行きバルブ 3bが開となる。
[0086] 逆に、上記被処理水の水質が良ぐ上記有機フッ素化合物が分解されていれば、 上記中継槽 5内部が泡立つことはなぐ上記中継槽行き自動バルブ 3aが開となり、上 記マイクロナノバブル発生槽行きバルブ 3bが閉となって、上記被処理水および上記 排ガスが、上記中継槽 5に、順次導入されることになる。
[0087] すなわち、上記中継槽 5は、曝気部 65を有する。上記曝気部 65は、上記中継槽 5 内にある散気管 58と、この散気管 58に空気を送るブロワ一 59とを有する。この曝気 部 65によって、上記被処理水を泡立たせる。
[0088] 上記中継槽 5を出た上記被処理水は、上記被処理水の内容 (すなわち水質)によ つて、次工程排水処理設備で処理される。この次工程排水処理設備では、フッ素含 有排水の処理となる場合が多 ヽ。
[0089] 一方、上記マイクロナノバブル発生槽 1および上記中継槽 5内のフッ素を含む (矢 印で示す)排ガス 6は、ダクト 7を経由して、ファン 8により、上記排ガス処理槽 9に導入 される。
[0090] このように、上記活性炭塔 4を通過した上記被処理水および上記排ガスは、上記中 継槽 5に導入されて、上記被処理水と上記排ガスとに分離され、上記排ガスは、上記 排ガス処理槽 9に導入される。
[0091] 上記排ガス処理槽 9は、マイクロナノバブル発生機 12を収容する。上記排ガス処理 槽 9には、微生物を収容する微生物タンク 63と、マイクロナノバブル発生助剤を収容 する助剤タンク 54と、栄養剤を収容する栄養剤タンク 56とが接続されている。上記微 生物タンク 63、上記助剤タンク 54および上記栄養剤タンク 56は、上記微生物タンク 61、上記助剤タンク 50および上記栄養剤タンク 52と同様の構成であるので、その説 明を省略する。
[0092] 上記微生物タンク 63には、上記微生物を上記排ガス処理槽 9に送出する微生物タ ンク用ポンプ 64が接続されている。上記助剤タンク 54には、上記マイクロナノバブル 発生助剤を上記排ガス処理槽 9に送出する助剤タンク用ポンプ 55が接続されている 。上記栄養剤タンク 56には、上記栄養剤を上記排ガス処理槽 9に送出する栄養剤タ ンク用ポンプ 57が接続されている。
[0093] そして、上記排ガス処理槽 9に導入された水は、上記微生物タンク 63から上記微生 物を添加され、上記助剤タンク 54から上記マイクロナノバブル発生助剤を添加され、 上記栄養剤タンク 56から上記栄養剤を添加されると共に上記マイクロナノバブル発 生機 12によってマイクロナノバブルを含有されて、洗浄水が作成される。
[0094] 上記活性炭塔 4で上記被処理水中の上記有機フッ素化合物を上記微生物によつ て分解することで発生する排ガスは、上記排ガス処理槽 9に導入されて、上記洗浄水 によって処理される。
[0095] 上記排ガス処理槽 9は、下部に配置される下部貯水部 11と、上部に配置される上 部散水部 10とを有する。
[0096] 上記下部貯水部 11は、上記マイクロナノバブル発生機 12を収容して上記洗浄水 を貯水する。上記上部散水部 10は、上記下部貯水部 11から汲み上げられた上記洗 浄水を散水する。
[0097] 上記上部散水部 10から散水された上記洗浄水は、上記排ガスを洗浄して、上記下 部貯水部 11に貯水され、再度、散水ポンプ 17を介して、上記上部散水部 10に汲み 上げられる。
[0098] 上記上部散水部 10は、下から上に順に、多孔板 18、プラスチック充填材 19 (例え ば、商品名テラレット)および散水ノズル 20を有する。上記上部散水部 10には、上記 散水ノズル 20の上部に、排気出口 22が設けられている。
[0099] そして、上記フッ素を含む排ガスは、上記上部散水部 10と上記下部貯水部 11との 間に設けられた上記ダクト 7から、上記排ガス処理槽 9に流入し、上記散水ノズル 20 カゝら散水される上記洗浄水によって洗浄されて、上記排気出口 22から排出される。
[0100] 上記下部貯水部 11には、上記マイクロナノバブル発生機 12が収容されている。上 記マイクロナノバブル発生機 12は、上記マイクロナノバブル発生機 23と同様の構成 であるので、その説明を省略する。
[0101] 上記マイクロナノバブル発生機 12には、空気吸い込み管 14が接続され、この空気 吸い込み管 14には、空気吸い込み量を調整するバルブ 13が接続されている。上記 マイクロナノバブル発生機 12には、上記排ガス処理槽 9内の水を上記マイクロナノバ ブル発生機 12に供給する循環ポンプ 15が接続されている。
[0102] そして、上記マイクロナノバブル発生機 12は、上記循環ポンプ 15から水を供給され
、かつ、上記空気吸い込み管 14から空気を吸い込んで、水と空気が超高速で旋回 流を起こして、結果的に一定時間後にマイクロナノバブルを発生する。
[0103] 上記排ガス処理槽 9内では、上記マイクロナノバブル発生助剤の添カ卩によって、上 記マイクロナノバブル発生機 12から、一定時間後に最適なマイクロナノバブルが発 生している。
[0104] 上記マイクロナノバブル発生機 12から吐出される微細な泡によって、水流 16が発 生し、この水流 16が、上記排ガス処理槽 9の循環水流となって、上記排ガス処理槽 9 内を攪拌している。つまり、上記水流 16は、上記有機フッ素化合物含有排水、上記 マイクロナノバブル発生助剤、上記微生物および上記栄養剤を混合する。マイクロナ ノバブルによって活性ィ匕した微生物は、上記栄養剤の添加によって、一層活性化す る。
[0105] 上記下部貯水部 11内の上記洗浄水は、上記散水ポンプ 17によって、洗浄水配管
21を経由して、上記上部散水部 10の上記散水ノズル 20より、散水される。
[0106] そして、マイククロナノバブルを含んだ洗浄水を、マイクロナノバブルを含んで ヽな い洗浄水と比較すると、マイクロナノバブルを含んだ洗浄水の方力 上記有機フッ素 化合物の除去率が良いことが、実験により確認できた。
[0107] この理由として、マイクロナノバブルを含んだ洗浄水の気体中の汚れ成分に対する 洗浄効果の拡大が考えられる。
[0108] よって、蒸発性またはガス化しやすい有機フッ素化合物が発生した場合、洗浄水に 吸収されて、上記下部貯水部 11でマイクロナノバブルによって活性ィ匕した微生物に より分解されること〖こなる。 [0109] そして、上記排ガス処理槽 9の洗浄水は、運転開始とともに、水分が上記排気出口 22より、蒸発または飛散によって、減少してくるが、補給水を自動的に補給する(図 示しない)ボールタップが設置されて、補給水を自動的に補給し、上記下部貯水部 1 1の液面が維持される。なお、上記排ガス処理槽 9で処理されたフッ素を含む排ガス は、洗浄水に溶解して、洗浄水は、フッ素含有排水となり、次工程排水処理設備でフ ッ素が処理されることとなる。
[0110] 次に、上記構成の排水処理装置を用いて、排水を処理する方法を説明する。
[0111] 上記マイクロナノバブル発生槽 1で、有機フッ素化合物を含有する排水に、微生物 、マイクロナノバブル発生助剤および栄養剤を添加すると共にマイクロナノバブルを 含有させて、被処理水を作成する。
[0112] その後、上記被処理水を、上記マイクロナノバブル発生槽 1から活性炭が充填され た上記活性炭塔 4に供給して、上記被処理水中の上記有機フッ素化合物を、上記微 生物によって分解する。
[0113] 上記構成の排水処理装置によれば、上記マイクロナノバブル発生槽 1と、上記微生 物タンク 61と、上記助剤タンク 50と、上記栄養剤タンク 52と、上記活性炭塔 4とを有 し、有機フッ素化合物を含有する排水は、上記マイクロナノバブル発生槽 1に導入さ れて、上記微生物、上記マイクロナノバブル発生助剤および上記栄養剤を添加され ると共に上記マイクロナノバブルを含有されて、被処理水が作成され、上記被処理水 は、上記マイクロナノバブル発生槽 1から上記活性炭塔 4に供給されて、上記被処理 水中の上記有機フッ素化合物が、上記微生物によって分解されるので、上記微生物 を、上記微生物の固定化担体である上記活性炭塔 4の上記活性炭に繁殖させて、上 記マイクロナノバブルと上記栄養剤によって一層活性ィ匕し、上記有機フッ素化合物を 合理的に分解処理できる。また、上記マイクロナノバブル発生助剤を添加することに よって、上記微生物を活性ィ匕する上記マイクロナノバブルを、最適量発生できる。
[0114] したがって、難分解性の有機フッ素化合物(例えば、パーフルォロォクタスルホン酸
(PFOS)やパーフルォロオクタン酸 (PFOA) )を効果的に微生物によって分解する ことができる。
[0115] また、上記排ガス処理槽 9と、上記微生物タンク 63と、上記助剤タンク 54と、上記栄 養剤タンク 56とを有し、上記排ガス処理槽 9に導入された水は、上記微生物、上記マ イクロナノバブル発生助剤および上記栄養剤を添加されると共にマイクロナノバブル を含有されて、上記洗浄水が作成され、上記排ガスは、上記洗浄水によって処理さ れるので、上記排ガス中のフッ素を、上記洗浄水中の活性ィ匕した上記微生物によつ て、合理的に処理できる。
[0116] また、上記活性炭塔 4を通過した上記被処理水および上記排ガスは、上記曝気部 65を有する上記中継槽 5に導入されて、上記被処理水と上記排ガスとに分離される ので、上記被処理水および上記排ガスを個別に確実に処理できる。
[0117] また、上記上部散水部 10から散水された上記洗浄水は、上記排ガスを洗浄して、 上記下部貯水部 11に貯水され、再度、上記上部散水部 10に汲み上げられるので、 上記洗浄水を上記上部散水部 10と上記下部貯水部 11との間を循環して利用するこ とがでさる。
[0118] (第 2の実施形態)
図 2は、この発明の排水処理装置の第 2の実施形態を示している。図 1に示す上記 第 1の実施形態と相違する点を説明すると、この第 2の実施形態では、上記中継槽 5 に、マイクロナノバブル発生機 28が収容されている。なお、この第 2の実施形態にお いて、上記第 1の実施形態と同一の部分には、同一の参照番号を付して、詳細な説 明を省略する。
[0119] 上記マイクロナノバブル発生機 28は、図 1に示す上記第 1の実施形態の上記マイク ロナノバブル発生機 23と同様の構成であるので、その説明を省略する。
[0120] 上記マイクロナノバブル発生機 28には、空気吸い込み管 30が接続され、この空気 吸い込み管 30には、空気吸い込み量を調整するバルブ 29が接続されている。上記 マイクロナノバブル発生機 28には、上記中継槽 5内の水を上記マイクロナノバブル発 生機 28に供給する循環ポンプ 31が接続されて!、る。
[0121] そして、上記マイクロナノバブル発生機 28は、上記循環ポンプ 31から水を供給され 、かつ、上記空気吸い込み管 30から空気を吸い込んで、水と空気が超高速で旋回 流を起こして、結果的に一定時間後にマイクロナノバブルを発生する。
[0122] 上記中 «I槽 5内では、上記マイクロナノバブル発生助剤の添カ卩によって、上記マイ クロナノバブル発生機 28から、最適なマイクロナノバブルが発生して 、る。
[0123] 上記マイクロナノバブル発生機 28から吐出される微細な泡によって、水流 32が発 生し、この水流 32が、上記中継槽 5の循環水流となって、上記中継槽 5内を攪拌して いる。つまり、上記水流 32は、上記有機フッ素化合物含有排水、上記マイクロナノバ ブル発生助剤、上記微生物および上記栄養剤を混合する。マイクロナノバブルによ つて活性化した微生物は、上記栄養剤の添加によって、一層活性化する。
[0124] そして、マイククロナノバブルを含んだ被処理水は、含んで 、な 、被処理水と比較 すると、含んだ被処理水の方が、有機フッ素化合物の除去率が良いことが、実験によ り確認できた。
[0125] この理由としては、マイクロナノバブルを含んだ被処理水は、マイクロナノバブルに よって、微生物が活性化し、残存している有機フッ素化合物を分解するためである。
[0126] また、上記マイクロナノバブル発生機 28は、マイクロナノバブルを発生するために、 空気が必要となる力 必要量の空気は、上記ノ レブ 29と上記空気吸い込み管 30か ら確保している。なお、上記中継槽 5からの被処理水は、その水質によって次工程処 理設備で処理される。
[0127] したがって、上記中継槽 5に、上記マイクロナノバブル発生機 28が収容されている ので、上記中継槽 5で上記被処理水中の上記微生物を活性ィ匕して、この活性化した 微生物によって、上記被処理水中に残存している有機フッ素化合物を、さらに分解 できる。
[0128] (第 3の実施形態)
図 3は、この発明の排水処理装置の第 3の実施形態を示している。図 1に示す上記 第 1の実施形態と相違する点を説明すると、この第 3の実施形態では、上記マイクロ ナノバブル発生槽 1に、充填材としてのひも状ポリ塩ィ匕ビユリデン充填材 33が収容さ れている。また、上記中継槽 5で分離された上記被処理水は、キレート榭脂塔のキレ ート榭脂で、処理される。なお、この第 3の実施形態において、上記第 1の実施形態 と同一の部分には、同一の参照番号を付して、詳細な説明を省略する。
[0129] したがって、上記マイクロナノバブル発生槽 1に、上記ひも状ポリ塩ィ匕ビユリデン充 填材 33が収容されて 、るので、上記マイクロナノバブルで活性ィ匕した上記微生物を 、上記ひも状ポリ塩ィ匕ビユリデン充填材 33に固定しつつ繁殖させることができる。ま た、上記ひも状ポリ塩ィ匕ビユリデン充填材 33に活性ィ匕した微生物を高濃度に培養で きて、上記有機フッ素化合物を一次処理できる。また、多くの上記ひも状ポリ塩化ビ ユリデン充填材 33を、上記マイクロナノバブル発生槽 1に、収容することができる。
[0130] また、上記中継槽で分離された上記被処理水は、キレート榭脂で、処理されるので 、上記中継槽 5の上記被処理水中の低濃度フッ素を、上記キレート榭脂で高度に処 理することができる。
[0131] (第 4の実施形態)
図 4は、この発明の排水処理装置の第 4の実施形態を示している。図 1に示す上記 第 1の実施形態と相違する点を説明すると、この第 4の実施形態では、上記マイクロ ナノバブル発生槽 1に、充填材としての活性炭 35が収容されている。また、上記中継 槽 5で分離された上記被処理水は、カルシウム剤添加凝集沈殿設備のカルシウム剤 で、沈殿処理される。なお、この第 4の実施形態において、上記第 1の実施形態と同 一の部分には、同一の参照番号を付して、詳細な説明を省略する。
[0132] 上記活性炭 35は、網袋 34に収容されており、上記網袋 34は、複数あり、少なくとも 一組の隣り合う上記網袋 34, 34の間に、網状管 36が設けられている。上記網袋 34 および上記網状管 36は、上記マイクロナノバブル発生槽 1内に設置された多孔板 37 の中に、収容されている。
[0133] したがって、上記活性炭 35に吸着した上記有機フッ素化合物を、活性化した微生 物で、分解処理できる。つまり、上記活性ィ匕した微生物によって、上記活性炭 35を再 生できる。また、上記活性炭 35は、上記網袋 34に収容されているので、上記活性炭 35を、上記網袋 34ごと、上記マイクロナノバブル発生槽 1に、簡単に収容することが できる。また、上記少なくとも一組の隣り合う上記網袋 34, 34の間に、網状管 36が設 けられているので、全ての上記活性炭 35への水の流れをよくして、閉塞現象の発生 を防止できる。
[0134] また、上記中継槽 5で分離された上記被処理水は、カルシウム剤で、沈殿処理され るので、上記中継槽 5の上記被処理水中の高濃度フッ素を、上記カルシウム剤を添 加して、無害なフッ化カルシウムとして沈澱処理できる。 [0135] (第 5の実施形態)
図 5は、この発明の排水処理装置の第 5の実施形態を示している。図 1に示す上記 第 1の実施形態と相違する点を説明すると、この第 5の実施形態では、上記中継槽 5 に、マイクロナノバブル発生機 28が収容されている。また、上記中継槽 5に、充填材 としてのひも状ポリ塩ィ匕ビユリデン充填材 33が収容されている。なお、この第 5の実施 形態において、上記第 1の実施形態と同一の部分には、同一の参照番号を付して、 詳細な説明を省略する。
[0136] 上記マイクロナノバブル発生機 28は、図 1に示す上記第 1の実施形態の上記マイク ロナノバブル発生機 23と同様の構成であるので、その説明を省略する。
[0137] 上記マイクロナノバブル発生機 28には、空気吸い込み管 30が接続され、この空気 吸い込み管 30には、空気吸い込み量を調整するバルブ 29が接続されている。上記 マイクロナノバブル発生機 28には、上記中継槽 5内の水を上記マイクロナノバブル発 生機 28に供給する循環ポンプ 31が接続されて!、る。
[0138] そして、上記マイクロナノバブル発生機 28は、上記循環ポンプ 31から水を供給され 、かつ、上記空気吸い込み管 30から空気を吸い込んで、水と空気が超高速で旋回 流を起こして、結果的にマイクロナノバブルを発生する。
[0139] 上記中 «I槽 5内では、上記マイクロナノバブル発生助剤の添カ卩によって、上記マイ クロナノバブル発生機 28から、最適なマイクロナノバブルが発生して 、る。
[0140] 上記マイクロナノバブル発生機 28から吐出される微細な泡によって、水流 32が発 生し、この水流 32が、上記中継槽 5の循環水流となって、上記中継槽 5内を攪拌して いる。つまり、上記水流 32は、上記有機フッ素化合物含有排水、上記マイクロナノバ ブル発生助剤、上記微生物および上記栄養剤を混合する。マイクロナノバブルによ つて活性化した微生物は、上記栄養剤の添加によって、一層活性化する。
[0141] そして、マイククロナノバブルを含んだ被処理水は、含んで 、な 、被処理水と比較 すると、含んだ被処理水の方が、有機フッ素化合物の除去率が良いことが、実験によ り確認できた。
[0142] この理由としては、マイクロナノバブルを含んだ被処理水は、マイクロナノバブルに よって、微生物が活性化し、残存している有機フッ素化合物を分解するためである。 [0143] また、上記マイクロナノバブル発生機 28は、マイクロナノバブルを発生するために、 空気が必要となる力 必要量の空気は、上記ノ レブ 29と上記空気吸い込み管 30か ら確保している。なお、上記中継槽 5からの被処理水は、その水質によって次工程処 理設備で処理される。
[0144] したがって、上記中継槽 5に、上記マイクロナノバブル発生機 28が収容されている ので、上記中継槽 5で上記被処理水中の上記微生物を活性ィ匕して、この活性化した 微生物によって、上記被処理水中に残存している有機フッ素化合物を、さらに分解 できる。
[0145] また、上記中継槽 5に、上記ひも状ポリ塩ィ匕ビユリデン充填材 33が収容されている ので、上記マイクロナノバブルで活性ィ匕した上記微生物を、上記ひも状ポリ塩ィ匕ビ- リデン充填材 33に固定しつつ繁殖させることができる。また、上記ひも状ポリ塩化ビ ユリデン充填材 33に活性ィ匕した微生物を高濃度に培養できて、上記被処理水の処 理効率を高めることができる。また、多くの上記ひも状ポリ塩ィ匕ビユリデン充填材 33を 、上記中継槽 5に、収容することができる。
[0146] (第 6の実施形態)
図 6は、この発明の排水処理装置の第 6の実施形態を示している。図 1に示す上記 第 1の実施形態と相違する点を説明すると、この第 6の実施形態では、上記中継槽 5 に、マイクロナノバブル発生機 28が収容されている。上記中継槽 5に、充填材として の活性炭 35が収容されている。なお、この第 6の実施形態において、上記第 1の実 施形態と同一の部分には、同一の参照番号を付して、詳細な説明を省略する。
[0147] 上記マイクロナノバブル発生機 28は、図 1に示す上記第 1の実施形態の上記マイク ロナノバブル発生機 23と同様の構成であるので、その説明を省略する。
[0148] 上記マイクロナノバブル発生機 28には、空気吸い込み管 30が接続され、この空気 吸い込み管 30には、空気吸い込み量を調整するバルブ 29が接続されている。上記 マイクロナノバブル発生機 28には、上記中継槽 5内の水を上記マイクロナノバブル発 生機 28に供給する循環ポンプ 31が接続されて!、る。
[0149] そして、上記マイクロナノバブル発生機 28は、上記循環ポンプ 31から水を供給され 、かつ、上記空気吸い込み管 30から空気を吸い込んで、水と空気が超高速で旋回 流を起こして、結果的に一定時間後にマイクロナノバブルを発生する。
[0150] 上記中 «I槽 5内では、上記マイクロナノバブル発生助剤の添カ卩によって、上記マイ クロナノバブル発生機 28から、最適なマイクロナノバブルが発生して 、る。
[0151] 上記マイクロナノバブル発生機 28から吐出される微細な泡によって、水流 32が発 生し、この水流 32が、上記中継槽 5の循環水流となって、上記中継槽 5内を攪拌して いる。つまり、上記水流 32は、上記有機フッ素化合物含有排水、上記マイクロナノバ ブル発生助剤、上記微生物および上記栄養剤を混合する。マイクロナノバブルによ つて活性化した微生物は、上記栄養剤の添加によって、一層活性化する。
[0152] そして、マイククロナノバブルを含んだ被処理水は、含んで 、な 、被処理水と比較 すると、含んだ被処理水の方が、有機フッ素化合物の除去率が良いことが、実験によ り確認できた。
[0153] この理由としては、マイクロナノバブルを含んだ被処理水は、マイクロナノバブルに よって、微生物が活性化し、残存している有機フッ素化合物を分解するためである。
[0154] また、上記マイクロナノバブル発生機 28は、マイクロナノバブルを発生するために、 空気が必要となる力 必要量の空気は、上記ノ レブ 29と上記空気吸い込み管 30か ら確保している。なお、上記中継槽 5からの被処理水は、その水質によって次工程処 理設備で処理される。
[0155] したがって、上記中継槽 5に、上記マイクロナノバブル発生機 28が収容されている ので、上記中継槽 5で上記被処理水中の上記微生物を活性ィ匕して、この活性化した 微生物によって、上記被処理水中に残存している有機フッ素化合物を、さらに分解 できる。
[0156] また、上記活性炭 35は、網袋 34に収容されており、上記網袋 34は、複数あり、少 なくとも一組の隣り合う上記網袋 34, 34の間に、網状管 36が設けられている。上記 網袋 34および上記網状管 36は、上記中継槽 5内に設置された多孔板 37の中に、収 容されている。
[0157] したがって、上記活性炭 35に吸着した上記有機フッ素化合物を、活性化した微生 物で、分解処理できる。つまり、上記活性ィ匕した微生物によって、上記活性炭 35を再 生できる。また、上記活性炭 35は、上記網袋 34に収容されているので、上記活性炭 35を、上記網袋 34ごと、上記中継槽 5に、簡単に収容することができる。また、上記 少なくとも一組の隣り合う上記網袋 34, 34の間に、網状管 36が設けられているので 、全ての上記活性炭 35への水の流れをよくして、閉塞現象の発生を防止できる。
[0158] (第 7の実施形態)
図 7は、この発明の排水処理装置の第 7の実施形態を示している。図 1に示す上記 第 1の実施形態と相違する点を説明すると、この第 7の実施形態では、上記排ガス処 理槽 9の上記下部貯水部 11に、充填材としてのひも状ポリ塩化ビ-リデン充填材 33 が収容されている。なお、この第 7の実施形態において、上記第 1の実施形態と同一 の部分には、同一の参照番号を付して、詳細な説明を省略する。
[0159] したがって、上記排ガス処理槽 9に、上記ひも状ポリ塩ィ匕ビユリデン充填材 33が収 容されているので、上記マイクロナノバブルで活性ィ匕した上記微生物を、上記ひも状 ポリ塩ィ匕ビユリデン充填材 33に固定しつつ繁殖させることができる。
[0160] よって、微生物濃度が高まり、微生物が活性ィ匕しているので、フッ素を含む排ガスを 散水処理した時に、同時に上記洗浄水に吸収移行する有機物を効率的に微生物処 理することができる。
[0161] すなわち、有機フッ素化合物の分解過程でガス化した有機フッ素化合物を、上記 洗浄水によって洗浄しつつ吸収し、上記ひも状ポリ塩ィ匕ビユリデン充填材 33に繁殖 した活性ィ匕微生物によって微生物分解する。
[0162] また、多くの上記ひも状ポリ塩ィ匕ビユリデン充填材 33を、上記排ガス処理槽 9の上 記下部貯水部 11に、収容することができる。
[0163] (実験例)
図 1の第 1の実施形態に対応する実験装置を製作した。この実験装置において、上 記マイクロナノバブル発生槽 1の容量を約 lm3とし、上記活性炭塔 4の容量を 2m3と し、上記中継槽 5の容量を lm3とし、上記排ガス処理槽 9の全体容量を約 3m3として、 1ヶ月、上記マイクロナノバブル発生槽 1、上記活性炭塔 4、上記中継槽 5および上記 排ガス処理槽 9に有機フッ素化合物含有排水と生物処理水を導入して試運転をおこ なった。
[0164] 試運転後、上記マイクロナノバブル発生槽 1の入口における PFOS (パーフルォロ オクタンスルホン散)濃度と上記中継槽 5の出口における PFOSの濃度とを測定し、 P FOSの除去率を測定したところ、 92%であった。つまり、難分解性の PFOSを微生 物によって効果的に分解することができる。
なお、この発明は上述の実施形態に限定されない。例えば、上記第 3, 5, 7の実施 形態において、上記ひも状ポリ塩ィ匕ビユリデン充填材 33の代わりに、リング状ポリ塩 化ビ-リデン充填材を用いてもよぐこのリング状ポリ塩ィ匕ビユリデン充填材を、上記 マイクロナノバブル発生槽 1、上記中継槽 5や上記排ガス処理槽 9に、簡単に収容す ることができる。また、上記第 1〜上記第 7の実施形態において、上記マイクロナノバ ブル発生槽 1、上記中継槽 5や上記排ガス処理槽 9に、上記ひも状ポリ塩ィ匕ビ -リデ ン充填材 33や上記活性炭 35を用いてもょ 、。

Claims

請求の範囲
[1] マイクロナノバブル発生槽で、有機フッ素化合物を含有する排水に、微生物、マイ クロナノバブル発生助剤および栄養剤を添加すると共にマイクロナノバブルを含有さ せて、被処理水を作成し、
上記被処理水を、活性炭が充填された活性炭塔に供給して、上記被処理水中の 上記有機フッ素化合物を、上記微生物によって分解することを特徴とする排水処理 方法。
[2] マイクロナノバブル発生機を収容するマイクロナノバブル発生槽と、
微生物を収容すると共に上記マイクロナノバブル発生槽に接続された微生物タンク と、
マイクロナノバブル発生助剤を収容すると共に上記マイクロナノバブル発生槽に接 続された助剤タンクと、
栄養剤を収容すると共に上記マイクロナノバブル発生槽に接続された栄養剤タンク と、
活性炭を充填すると共に上記マイクロナノバブル発生槽に接続された活性炭塔と を備え、
有機フッ素化合物を含有する排水は、上記マイクロナノバブル発生槽に導入されて 、上記微生物タンクから上記微生物を添加され、上記助剤タンクから上記マイクロナ ノバブル発生助剤を添加され、上記栄養剤タンクから上記栄養剤を添加されると共 に上記マイクロナノバブル発生機によってマイクロナノバブルを含有されて、被処理 水が作成され、
上記被処理水は、上記活性炭塔に供給されて、上記被処理水中の上記有機フッ 素化合物が、上記微生物によって分解されることを特徴とする排水処理装置。
[3] 請求項 2に記載の排水処理装置において、
マイクロナノバブル発生機を収容すると共に上記マイクロナノバブル発生槽に接続 された排ガス処理槽と、
微生物を収容すると共に上記排ガス処理槽に接続された微生物タンクと、 マイクロナノバブル発生助剤を収容すると共に上記排ガス処理槽に接続された助 剤タンクと、
栄養剤を収容すると共に上記排ガス処理槽に接続された栄養剤タンクと を備え、
上記排ガス処理槽に導入された水は、上記微生物タンクから上記微生物を添加さ れ、上記助剤タンク力も上記マイクロナノバブル発生助剤を添加され、上記栄養剤タ ンクカゝら上記栄養剤を添加されると共に上記マイクロナノバブル発生機によってマイ クロナノバブルを含有されて、洗浄水が作成され、
上記活性炭塔で上記被処理水中の上記有機フッ素化合物を上記微生物によって 分解することで発生する排ガスは、上記排ガス処理槽に導入されて、上記洗浄水に よって処理されることを特徴とする排水処理装置。
[4] 請求項 3に記載の排水処理装置において、
曝気部を有すると共に上記活性炭塔および上記排ガス処理槽に接続された中継 槽を備え、
上記活性炭塔を通過した上記被処理水および上記排ガスは、上記中継槽に導入 されて、上記被処理水と上記排ガスとに分離され、
上記排ガスは、上記排ガス処理槽に導入されることを特徴とする排水処理装置。
[5] 請求項 3に記載の排水処理装置において、
上記排ガス処理槽は、
下部に配置されると共に、上記マイクロナノバブル発生機を収容して上記洗浄水を 貯水する下部貯水部と、
上部に配置されると共に、上記下部貯水部から汲み上げられた上記洗浄水を散水 する上部散水部と
を有し、
上記上部散水部から散水された上記洗浄水は、上記排ガスを洗浄して、上記下部 貯水部に貯水され、再度、上記上部散水部に汲み上げられることを特徴とする排水 処理装置。
[6] 請求項 2に記載の排水処理装置において、
上記マイクロナノバブル発生槽に、充填材が収容されて ヽることを特徴とする排水 処理装置。
[7] 請求項 4に記載の排水処理装置において、
上記中継槽に、マイクロナノバブル発生機が収容されていることを特徴とする排水 処理装置。
[8] 請求項 7に記載の排水処理装置において、
上記中継槽に、充填材が収容されていることを特徴とする排水処理装置。
[9] 請求項 6または 8に記載の排水処理装置において、
上記充填材は、ポリ塩ィ匕ビユリデン充填材であることを特徴とする排水処理装置。
[10] 請求項 9に記載の排水処理装置において、
上記ポリ塩ィ匕ビユリデン充填材は、ひも状であることを特徴とする排水処理装置。
[11] 請求項 4に記載の排水処理装置において、
上記中継槽で分離された上記被処理水は、キレート榭脂で、処理されることを特徴 とする排水処理装置。
[12] 請求項 6または 8に記載の排水処理装置において、
上記充填材は、活性炭であることを特徴とする排水処理装置。
[13] 請求項 12に記載の排水処理装置において、
上記活性炭は、網袋に収容されていることを特徴とする排水処理装置。
[14] 請求項 13に記載の排水処理装置にお!/ヽて、
上記網袋は、複数あり、
少なくとも一組の隣り合う上記網袋の間に、網状管が設けられていることを特徴とす る排水処理装置。
[15] 請求項 4に記載の排水処理装置において、
上記中継槽で分離された上記被処理水は、カルシウム剤で、沈殿処理されることを 特徴とする排水処理装置。
[16] 請求項 5に記載の排水処理装置において、
上記排ガス処理槽の上記下部貯水部に、充填材が収容されていることを特徴とす る排水処理装置。
[17] 請求項 16に記載の排水処理装置において、 上記充填材は、ポリ塩ィ匕ビユリデン充填材であることを特徴とする排水処理装置。
[18] 請求項 17に記載の排水処理装置において、
上記ポリ塩ィ匕ビユリデン充填材は、ひも状であることを特徴とする排水処理装置。
[19] 請求項 17に記載の排水処理装置において、
上記ポリ塩ィ匕ビユリデン充填材は、リング状であることを特徴とする排水処理装置。
[20] 請求項 16に記載の排水処理装置において、
上記充填材は、活性炭であることを特徴とする排水処理装置。
[21] 請求項 20に記載の排水処理装置において、
上記活性炭は、網袋に収容されていることを特徴とする排水処理装置。
[22] 請求項 21に記載の排水処理装置にぉ 、て、
上記網袋は、複数あり、
少なくとも一組の隣り合う上記網袋の間に、網状管が設けられていることを特徴とす る排水処理装置。
PCT/JP2007/060125 2006-06-07 2007-05-17 排水処理方法および排水処理装置 WO2007142004A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/303,407 US20090250396A1 (en) 2006-06-07 2007-05-17 Drainage water-treating method and drainage water-treating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-157954 2006-06-07
JP2006157954A JP3974928B1 (ja) 2006-06-07 2006-06-07 排水処理方法および排水処理装置

Publications (1)

Publication Number Publication Date
WO2007142004A1 true WO2007142004A1 (ja) 2007-12-13

Family

ID=38556260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060125 WO2007142004A1 (ja) 2006-06-07 2007-05-17 排水処理方法および排水処理装置

Country Status (5)

Country Link
US (1) US20090250396A1 (ja)
JP (1) JP3974928B1 (ja)
KR (1) KR101066050B1 (ja)
TW (1) TW200812922A (ja)
WO (1) WO2007142004A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100018806A1 (it) 2021-07-15 2023-01-15 Erica S R L Processo di adsorbimento da liquidi

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4847424B2 (ja) * 2007-09-28 2011-12-28 シャープ株式会社 水処理装置
JP2010022960A (ja) * 2008-07-22 2010-02-04 Sharp Corp 水処理装置および有機フッ素化合物含有水の水処理方法
JP5079620B2 (ja) * 2008-07-28 2012-11-21 シャープ株式会社 水処理装置
JP5079638B2 (ja) * 2008-08-22 2012-11-21 シャープ株式会社 処理装置及び処理方法
JP2010046648A (ja) * 2008-08-25 2010-03-04 Sharp Corp 水処理装置および水処理方法
JP5112231B2 (ja) * 2008-09-10 2013-01-09 シャープ株式会社 処理装置及び処理方法
KR20180063752A (ko) * 2016-12-02 2018-06-12 삼성전자주식회사 배기 가스 분해 장치, 및 이를 포함하는 배기 가스 분해 시스템
KR20190078284A (ko) * 2017-12-26 2019-07-04 삼성전자주식회사 배기 가스 분해 시스템, 이를 포함하는 배기 가스 분해 복합 시스템, 균주 및 배기 가스 분해 방법
CN109316948A (zh) * 2018-08-31 2019-02-12 中国石油化工股份有限公司 一种含污泥小分子化挥发性有机气体的处理装置
US11447401B1 (en) 2019-05-06 2022-09-20 Arrowhead Center, Inc. Separation columns for per- and polyfluoroalkyl substances (PFAS) remediation
CN110394049A (zh) * 2019-07-11 2019-11-01 昆明理工大学 一种电解铝含氟烟气净化系统及净化工艺
CN113600000B (zh) * 2021-08-02 2023-06-30 武汉清叶环保工程有限公司 一种扰流式智能喷淋除臭装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354998A (ja) * 1986-08-27 1988-03-09 Ebara Infilco Co Ltd リンを含有する有機性汚水の処理方法
JPH0751686A (ja) * 1993-08-18 1995-02-28 Purio:Kk 汚水処理法
JPH1015348A (ja) * 1996-07-05 1998-01-20 Kurita Water Ind Ltd 揮発性有機ハロゲン化合物を含む気体の処理方法
JPH11267677A (ja) * 1998-03-24 1999-10-05 Sharp Corp 排水処理装置および排水処理方法
JP2003080290A (ja) * 2001-09-07 2003-03-18 Tokyo Baiotsukusu:Kk 排水系の汚れ防止剤およびそれを用いた排水系の汚れ防止方法
JP2003136087A (ja) * 2001-11-06 2003-05-13 Sharp Corp 排水処理方法および排水処理装置
JP2004267869A (ja) * 2003-03-06 2004-09-30 Kosuke Chiba 加圧式生物的排水浄化処理法
JP2007075723A (ja) * 2005-09-14 2007-03-29 Sharp Corp 水処理装置および水処理方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160438A (en) * 1990-12-28 1992-11-03 The United States Of American As Represented By The Secretary Of The Navy Method and means of sampling large regions of liquid for pollution or biological activity using bubbles
JP2812640B2 (ja) * 1992-07-31 1998-10-22 シャープ株式会社 排水処理装置および排水処理方法
US5458778A (en) * 1992-12-23 1995-10-17 Partner Gmbh Method of treating waste water from a car wash at a vehicle refueling station
JP2749495B2 (ja) * 1993-03-15 1998-05-13 長廣 仁蔵 高濃度オゾン水製造方法及び高濃度オゾン水製造装置
US5798091A (en) * 1993-07-30 1998-08-25 Alliance Pharmaceutical Corp. Stabilized gas emulsion containing phospholipid for ultrasound contrast enhancement
JP3233563B2 (ja) * 1995-12-28 2001-11-26 シャープ株式会社 排水処理装置および排水処理方法
BE1010407A4 (fr) * 1996-07-04 1998-07-07 Undatim Ultrasonics Procede et installation de traitement des eaux.
JP3350364B2 (ja) * 1996-09-06 2002-11-25 シャープ株式会社 排水処理方法および排水処理装置
US6194650B1 (en) * 1997-08-27 2001-02-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Coated object and process for producing the same
JP3434438B2 (ja) * 1997-09-18 2003-08-11 シャープ株式会社 排水処理方法および排水処理装置
US6472198B1 (en) * 1998-05-15 2002-10-29 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Slow release substrates for driving microbial transformations of environmental contaminants
JP3601976B2 (ja) * 1998-06-16 2004-12-15 シャープ株式会社 排水処理方法および排水処理装置
JP3653392B2 (ja) * 1998-06-30 2005-05-25 シャープ株式会社 排水処理方法および排水処理装置
JP3684081B2 (ja) * 1998-08-10 2005-08-17 シャープ株式会社 排水処理装置
JP3732025B2 (ja) * 1998-11-10 2006-01-05 シャープ株式会社 排水処理方法および排水処理装置
JP3697361B2 (ja) * 1999-01-28 2005-09-21 シャープ株式会社 排水処理方法および排水処理装置
US6238569B1 (en) * 1999-06-22 2001-05-29 Engineering Specialties, Inc. Flotation pile oil/water separator apparatus
JP3769148B2 (ja) * 1999-07-05 2006-04-19 シャープ株式会社 排水処理装置
JP3653422B2 (ja) * 1999-08-20 2005-05-25 シャープ株式会社 排水処理方法および排水処理装置
JP3978303B2 (ja) * 2000-04-07 2007-09-19 シャープ株式会社 排水処理方法および排水処理装置
JP2004121962A (ja) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology ナノバブルの利用方法及び装置
JP3931233B2 (ja) * 2003-03-04 2007-06-13 独立行政法人産業技術総合研究所 超微小気泡を利用したガスハイドレートの製造方法及びこの製造方法により得られる微粒子状のガスハイドレート
WO2005095285A1 (en) * 2004-03-24 2005-10-13 3M Innovative Properties Company Anti-microbial media and methods for making and utilizing the same
JP4490904B2 (ja) * 2005-11-22 2010-06-30 シャープ株式会社 水処理装置
JP3974929B1 (ja) * 2006-06-07 2007-09-12 シャープ株式会社 排水処理方法および排水処理装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354998A (ja) * 1986-08-27 1988-03-09 Ebara Infilco Co Ltd リンを含有する有機性汚水の処理方法
JPH0751686A (ja) * 1993-08-18 1995-02-28 Purio:Kk 汚水処理法
JPH1015348A (ja) * 1996-07-05 1998-01-20 Kurita Water Ind Ltd 揮発性有機ハロゲン化合物を含む気体の処理方法
JPH11267677A (ja) * 1998-03-24 1999-10-05 Sharp Corp 排水処理装置および排水処理方法
JP2003080290A (ja) * 2001-09-07 2003-03-18 Tokyo Baiotsukusu:Kk 排水系の汚れ防止剤およびそれを用いた排水系の汚れ防止方法
JP2003136087A (ja) * 2001-11-06 2003-05-13 Sharp Corp 排水処理方法および排水処理装置
JP2004267869A (ja) * 2003-03-06 2004-09-30 Kosuke Chiba 加圧式生物的排水浄化処理法
JP2007075723A (ja) * 2005-09-14 2007-03-29 Sharp Corp 水処理装置および水処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100018806A1 (it) 2021-07-15 2023-01-15 Erica S R L Processo di adsorbimento da liquidi

Also Published As

Publication number Publication date
KR101066050B1 (ko) 2011-09-20
TW200812922A (en) 2008-03-16
JP3974928B1 (ja) 2007-09-12
JP2007326008A (ja) 2007-12-20
US20090250396A1 (en) 2009-10-08
TWI359116B (ja) 2012-03-01
KR20090018639A (ko) 2009-02-20

Similar Documents

Publication Publication Date Title
WO2007142004A1 (ja) 排水処理方法および排水処理装置
JP3974929B1 (ja) 排水処理方法および排水処理装置
JP4490904B2 (ja) 水処理装置
JP5106982B2 (ja) 悪臭処理方法、悪臭処理システムおよび飼育システム
JP4685676B2 (ja) 排水処理装置
WO2006095510A1 (ja) 排ガス排水処理装置および排ガス排水処理方法
JP4861085B2 (ja) 冷却装置
JP5275121B2 (ja) 揮発性有機化合物を含有する排ガス処理装置
JP5405014B2 (ja) 脱臭装置および脱臭方法
JP2007245118A (ja) 排ガス処理方法および排ガス処理システム
JP4949742B2 (ja) 排水処理方法および排水処理装置
JP2007222810A (ja) 排ガス排水処理方法および排ガス排水処理装置
JP4619971B2 (ja) 排水処理方法および排水処理装置
JP2007237042A (ja) 排ガス処理方法および排ガス処理装置
JP4869122B2 (ja) 冷却方法および冷却装置
JP4619972B2 (ja) 排水処理方法および排水処理装置
JP2006289344A (ja) 排ガス処理装置および排ガス処理方法
JP2007319783A (ja) 排水処理方法および排水処理装置
JP5183538B2 (ja) 余剰汚泥減量装置
JP2004141865A (ja) 余剰汚泥のオゾン処理方法、及び余剰汚泥の処理装置、及び汚泥−オゾン混合器
JP2007229621A (ja) 排ガス処理方法および排ガス処理システム
JP2006281041A (ja) 有機物含有水処理装置とその運転方法
JP2004167436A (ja) 旋回噴流攪拌処理による家畜糞尿スラリー等の浄化・再資源化処理システム
KR20160018814A (ko) 오수 처리 장치, 음식물 쓰레기나 오수를 처리하기 위하여 사용되는 균상, 및 균상을 사용한 오수 처리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743560

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12303407

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087030520

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07743560

Country of ref document: EP

Kind code of ref document: A1