WO2007129560A1 - 多価アルコールの水素化分解物の製造方法 - Google Patents

多価アルコールの水素化分解物の製造方法 Download PDF

Info

Publication number
WO2007129560A1
WO2007129560A1 PCT/JP2007/058713 JP2007058713W WO2007129560A1 WO 2007129560 A1 WO2007129560 A1 WO 2007129560A1 JP 2007058713 W JP2007058713 W JP 2007058713W WO 2007129560 A1 WO2007129560 A1 WO 2007129560A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
polyhydric alcohol
component
catalyst component
producing
Prior art date
Application number
PCT/JP2007/058713
Other languages
English (en)
French (fr)
Inventor
Nobuyoshi Suzuki
Yohei Yoshikawa
Masakatsu Takahashi
Masazumi Tamura
Original Assignee
Kao Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corporation filed Critical Kao Corporation
Priority to US12/227,025 priority Critical patent/US7799957B2/en
Priority to CN2007800161938A priority patent/CN101437781B/zh
Priority to EP07742148A priority patent/EP2017250B1/en
Publication of WO2007129560A1 publication Critical patent/WO2007129560A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/60Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by elimination of -OH groups, e.g. by dehydration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C11/00Fermentation processes for beer
    • C12C11/02Pitching yeast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina

Definitions

  • the present invention relates to a method for producing a polyhydric alcohol power or its hydrocracked product with high selectivity using a specific heterogeneous catalyst, and a hydrocracking catalyst for a polyhydric alcohol used in the above reaction.
  • C3 alcohols are useful as various industrial raw materials.
  • diols in particular 1,3-propanediol (hereinafter sometimes abbreviated as 1,3-PD), have been attracting attention as raw materials for polyesters and polyurethanes. In recent years, they have been produced efficiently and inexpensively. Development is required.
  • 1,3-PD 1,3-propanediol
  • the 1,3-PD obtained by these methods is produced in two steps and has a thermally unstable 3-hydroxypropanal as an intermediate. — There was a problem that costs were increased by causing a decrease in PD yield. For these reasons, development of a low-cost manufacturing method for 1,3-PD has been desired.
  • polyhydric alcohol such as glycerin is used to convert 1,2-propanediol (hereinafter sometimes abbreviated as 1,2-PD) and 1,3-PD in one step.
  • 1,2-PD 1,2-propanediol
  • 1,3-PD 1,3-PD
  • a method for hydrocracking glycerin is known.
  • a method using a homogeneous catalyst containing tungsten and a periodic table (short-period type) Group VIII metal component see, for example, Patent Document 1
  • a platinum group metal complex a platinum group metal complex
  • a homogeneous catalyst that is a source of metal ions for example, see Patent Document 2.
  • Patent Document 1 US Pat. No. 4,642,394
  • Patent Document 2 Special Table 2001-510816 Disclosure of the invention
  • the present invention provides:
  • a catalyst comprising (A) a heterogeneous catalyst component supporting platinum and at least one catalyst component selected from (B) a tungsten component and a molybdenum component, polyhydric alcohol and hydrogen A process for producing a hydrocracked product of a polyhydric alcohol,
  • a polyhydric alcohol hydrocracking catalyst comprising (ii) a heterogeneous catalyst component supporting platinum and (ii) at least one catalyst component selected from a tungsten component or a molybdenum component;
  • a multivalent catalyst comprising a heterogeneous catalyst component supporting ( ⁇ ′) platinum and ( ⁇ ) at least one catalyst component selected from a tungsten component and a molybdenum component on the same support.
  • Alcohol hydrocracking catalyst a heterogeneous catalyst component supporting ( ⁇ ′) platinum and ( ⁇ ) at least one catalyst component selected from a tungsten component and a molybdenum component on the same support.
  • the present invention relates to a method for producing polyhydric alcohol power and its hydrocracked product with high selectivity using a specific heterogeneous catalyst, and a hydrocracking catalyst for polyhydric alcohol used in the above reaction.
  • the inventors of the present invention include a catalyst containing a heterogeneous catalyst component supporting platinum and at least one catalyst component selected from a tungsten component and a molybdenum component, or the same.
  • a catalyst containing a heterogeneous catalyst component in which platinum and at least one catalyst selected from a tungsten component and a molybdenum component are supported on a support, a polyhydric alcohol power and its hydrocracked product choose We found that it can be manufactured with good performance.
  • the polyhydric alcohol can be hydrolyzed by heating the polyhydric alcohol and hydrogen in the presence of a hydrocracking catalyst. It is a feature.
  • the production method of the present invention will be described.
  • Examples of the polyhydric alcohols to be subjected to hydrocracking include aliphatic or alicyclic polyhydric alcohols having 2 to 60 carbon atoms, and specifically include ethylene glycol, polyethylene glycol, triethylene. Glycol, polyethylene glycol, various propanediols, various dipropanediols, various tripropanediols, various butanediols, various dibutanediols, various pentanediols, various pentanetriols, various hexanediols, various hexanetriols, glycerin, diglycerin Examples thereof include sugar alcohols such as triglycerin, polydaricerine, various cyclohexanediols, various cyclohexanetriols, pentaerythritol, trimethylolpropane, and sorbitol-mann-tol. Among these, glycerin
  • the polyhydric alcohol hydrocracked product in the present invention is obtained by causing hydrogen to act on the polyhydric alcohol and decomposing the hydroxyl group, and leaving at least one or more hydroxyl groups. Shows compounds obtained by decomposition.
  • hydrogenolysis products of glycerin (number of hydroxyl groups in the molecule: 3) are C3 diol (number of hydroxyl groups in the molecule: 2) and C3 monool (number of hydroxyl groups in the molecule: 1).
  • the hydrocracking catalyst includes (A) a heterogeneous catalyst component supporting platinum and (B) at least one catalyst component selected from a tungsten component and a molybdenum component (hereinafter referred to as hydrogenation). (Sometimes referred to as cracking catalyst I.), or containing ( ⁇ ') white metal and the above (iii) catalyst component on the same carrier (hereinafter sometimes referred to as hydrocracking catalyst II) Is used.
  • the heterogeneous catalyst component supporting platinum of (i) component in the hydrocracking catalyst there is no particular limitation on the support supporting platinum, but for example, Studies in Surface and Catalysis, 1 25, vol51, 1989 can be used.
  • these carriers alumina and carbon (activated carbon) are particularly desirable.
  • acid tungsten or acid molybdenum can be used as a carrier.
  • the tungsten oxide or molybdenum oxide can also function as a catalyst component (B) described later.
  • the supported amount of platinum is usually about 0.1 to 30% by mass, preferably 1 to 20% by mass, based on the total amount of the carrier and the supported platinum, from the viewpoint of catalytic activity.
  • the amount of the heterogeneous catalyst component supporting platinum as the component (A) is appropriately selected according to the type of polyhydric alcohol, but it is frequently used from the viewpoint of conversion rate and selectivity.
  • the amount of platinum is not less than 0. OOOlg, more preferably 0.001-0. 5g, and still more preferably 0.01-0.2g.
  • the tungsten component as the catalyst component (B) used in combination with the component (A) includes tungsten (W) as zero-valent metal itself, and inorganic compounds, organic compounds or complexes of Z or various tungsten. It is a compound. Specifically, tungstic acid (H WO) or
  • tungstic acid or its salt tungstic acid or its alkali metal salt or alkaline earth metal salt can be used. Of these, tungstic acid is particularly preferred! This tungstic acid includes taltungstic acid, metatungstic acid, and paratandastenoic acid, and the power that can be used for them is usually orthotungstic acid (H WO).
  • H WO orthotungstic acid
  • the molybdenum component as the catalyst component (B) is a molybdenum (Mo) and Z of zero-valent metal itself, or inorganic compounds, organic compounds or complex compounds of various molybdenum. Specific examples thereof include molybdenum hexacarbol, ammonium molybdate, molybdenum acetate, and molybdenum oxide.
  • heteropolyacid or its alkali metal salt or alkaline earth metal salt as the heteropolyacid or its salt in the catalyst component, among these, in particular, heteropolyacid is preferable.
  • heteropolyacid one containing at least one element of molybdenum (Mo) or tungsten (W) can be used.
  • Mo molybdenum
  • W tungsten
  • these heteropoly acid include phosphotungstic acid (H PW O), ketandas
  • Examples thereof include tennoic acid (H SiW 2 O 3) and phosphomolybdic acid (H 2 PMo 2 O 3).
  • the (B) catalyst component used in combination with the catalyst component (A) may be used alone or in combination of two or more.
  • the amount to be used is a force S appropriately selected according to the type of polyhydric alcohol, etc., and a power of 0. More preferably, it is 0.005 to 5 g, more preferably 0.01 to 5 g.
  • the hydrocracking catalyst I can be prepared by mixing the (A) catalyst component and the (B) catalyst component.
  • the hydrocracking catalyst II is a catalyst containing a heterogeneous catalyst component in which the platinum ( ⁇ ) component and the above-mentioned ( ⁇ ) catalyst component are supported on the same carrier.
  • the carrier the same examples as those exemplified above as the carrier for supporting the catalyst component (i) in the aforementioned hydrocracking catalyst I can be mentioned.
  • the ratio of platinum of ( ⁇ ') component and ( ⁇ ) catalyst component supported on the same carrier is usually about 100: 1 to 1: 100 in terms of the mass ratio of the metal element. , Preferably 10: 1 to 1:20, more preferably 5: 1 to L: 10.
  • the hydrocracking catalyst II is not particularly limited.
  • the hydrocracking catalyst II is formed by a commonly used known method such as a precipitation method, an ion exchange method, an evaporation to dryness method, a spray drying method, or a kneading method. Further, it can be prepared by supporting the ( ⁇ ′) component and the ( ⁇ ) catalyst component.
  • acid-tungsten or acid-molybdenum when used as the carrier, it can also function as the above-mentioned component.
  • the polyhydric alcohol and hydrogen are reacted in the presence of a specific catalyst. In this case, it is preferable to control the temperature.
  • the method of performing the heating and the method of using the heat of reaction are mentioned.
  • a single gas may be used, but it may be diluted with an inert gas such as nitrogen or helium.
  • the reaction solvent is preferably a protic solvent such as water, methanol, ethanol, 1 propanol, 2-propanol, n-butanol, isobutanol, 1,2-propanediol, 1,3 propanediol, ethylene glycol, etc. At least one selected from the above can be used. Among these, those containing water are preferable from the viewpoint of reactivity.
  • the amount of the reaction solvent used is preferably selected so that the polyhydric alcohol content is 1% by mass or more, and more preferably 10% by mass or more.
  • the hydrogen gas used as a raw material can be used as it is or diluted with an inert gas such as nitrogen, argon or helium.
  • reaction conditions there is no particular limitation.
  • the hydrogen pressure is usually preferably 30 MPa or less at room temperature. LOMPa is more preferred.
  • the reaction temperature is usually capable of hydrocracking at 80 ° C or higher 120 to 240 ° C from the viewpoints of conversion rate and hydrolytic selectivity of polyhydric alcohols The range of is preferable.
  • the hydrocracking reaction can employ either a batch type or a continuous type.
  • a pressurizable device such as an autoclave, which is not particularly limited, or a fixed bed flow-type device.
  • glycerin is preferably used as the polyhydric alcohol.
  • a mixture of 1,3-propanediol, 1,2-propanediol, 1-propanol and 2-propanol can be obtained as a hydrolyzate.
  • the present invention also provides a hydrogenation of a polyvalent alcohol comprising the (A) heterogeneous catalyst component supporting platinum and at least one catalyst component selected from (B) a tungsten component and a molybdenum component.
  • a polyhydric alcohol comprising a decomposition catalyst and a heterogeneous catalyst component supporting ( ⁇ ') platinum and ( ⁇ ) a tungsten component and at least one catalyst component selected from molybdenum components on the same carrier
  • a hydrocracking catalyst is also provided.
  • reaction-terminated solution was filtered and then analyzed by solution 1 H-NMR using the following apparatus to quantify the product.
  • the gas was collected in a gas bag and analyzed by the following two types of gas chromatography according to the type of gas to quantify the product.
  • the method for producing a hydrocracked product of a polyhydric alcohol according to the present invention can produce a hydrocracked product from a polyhydric alcohol, particularly 1,3-propanediol from glycerin with high selectivity. Can be used in the manufacture of these.
  • polyhydric alcohol hydrocracking catalyst of the present invention can be effectively used as a catalyst capable of producing 1,3-propanepandiol from glycerin with high selectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 不均一系触媒を用いて、多価アルコールからその水素化分解物を選択性よく製造する方法、及びその反応に用いられる水素化分解触媒に関する。  (A)白金を担持した不均一系触媒成分と、(B)タングステン成分及びモリブデン成分の中から選ばれる少なくとも1種の触媒成分を含む触媒の存在下に、あるいは同一担体上に、(A')白金と前記(B)触媒成分とを担持してなる不均一系触媒成分を含む触媒の存在下に、多価アルコールと水素とを反応させる、多価アルコールの水素化分解物の製造方法、及び多価アルコールの水素化分解触媒である。

Description

明 細 書
多価アルコールの水素化分解物の製造方法
技術分野
[0001] 本発明は、特定の不均一系触媒を用い、多価アルコール力 その水素化分解物を 選択性よく製造する方法、及び上記反応に用いる多価アルコールの水素化分解触 媒に関する。
背景技術
[0002] C3アルコール類は様々な工業原料等として有用である。中でもジオール類、特に 1, 3—プロパンジオール(以下、 1, 3— PDと略記することがある。)は、ポリエステル 及びポリウレタンの原料として注目を集めており、近年効率的で、安価な製造方法の 開発が求められている。
従来、 1, 3— PDを製造する方法としては、(1)エチレンォキシドをヒドロホルミルィ匕 して 3—ヒドロキシプロパナールを合成した後、水素化させて 1, 3— PDを合成する方 法、(2)ァクロレインを水素化させ 3—ヒドロキシプロパナールを合成した後、水素化さ せて 1, 3— PDを合成する方法が知られている。
しカゝしながら、これらの方法で得られた 1, 3— PDは、 2段階で製造されること、及び 熱的に不安定な 3—ヒドロキシプロパナールを中間体としているため、 1, 3— PD収 率の低下を引き起こすことによりコストが高くなるという問題があった。これらのことから 、 1, 3— PDの低コスト製造法の開発が望まれていた。
[0003] 一方、多価アルコール、例えばグリセリンを用いて 1段階で 1, 2—プロパンジォー ル (以下、 1, 2— PDと略記することがある。)及び 1, 3— PDへ転ィ匕させるグリセリン の水素化分解法が知られている。例えば、タングステン及び周期表 (短周期型) VIII 族金属成分を含有する均一系触媒を用いた方法 (例えば、特許文献 1参照)、白金 族金属錯体及びァ-オン源力 なる均一系触媒を用いた方法 (例えば、特許文献 2 参照)が開示されている。
[0004] 特許文献 1 :米国特許第 4, 642, 394号
特許文献 2 :特表 2001— 510816号 発明の開示
[0005] 本発明は、
(1) (A)白金を担持した不均一系触媒成分と、(B)タングステン成分及びモリブデン 成分の中から選ばれる少なくとも 1種の触媒成分を含む触媒の存在下に、多価アル コールと水素とを反応させる、多価アルコールの水素化分解物の製造方法、
(2)同一担体上に、(Α')白金と、(Β)タングステン成分及びモリブデン成分の中から 選ばれる少なくとも 1種の触媒成分とを担持してなる不均一系触媒成分を含む触媒 の存在下に、多価アルコールと水素とを反応させる、多価アルコールの水素化分解 物の製造方法、
(3) (Α)白金を担持した不均一系触媒成分と、(Β)タングステン成分又はモリブデン 成分の中から選ばれる少なくとも 1種の触媒成分を含む、多価アルコールの水素化 分解触媒、及び
(4)同一担体上に、(Α')白金と、(Β)タングステン成分及びモリブデン成分の中から 選ばれる少なくとも 1種の触媒成分とを担持してなる不均一系触媒成分を含む、多価 アルコールの水素化分解触媒、
に関する。
発明を実施するための最良の形態
[0006] 上記の公知特許文献に記載の多価アルコールの水素化分解物の製造方法は、最 も有用な 1, 3— PDの選択性が低いこと、及び均一系触媒を用いているため工業的 に実施することが困難であるという問題があった。
本発明は、特定の不均一系触媒を用い、多価アルコール力 その水素化分解物を 選択性よく製造する方法、及び上記反応に用いる多価アルコールの水素化分解触 媒に関する。
本発明者らは、多価アルコールの水素化分解触媒として、白金を担持した不均一 系触媒成分と、タングステン成分及びモリブデン成分の中から選ばれる少なくとも 1種 の触媒成分とを含む触媒、あるいは同一担体上に白金と、タングステン成分およびモ リブデン成分の中から選ばれる少なくとも 1種の触媒とが担持してなる不均一系触媒 成分を含む触媒を用いることにより、多価アルコール力 その水素化分解物を選択 性よく製造できることを見出した。
本発明の多価アルコールの水素化分解物の製造方法においては、水素化分解触 媒の存在下に、多価アルコールと水素とを加熱して、該多価アルコールを水素化分 解することが特徴である。以下、本発明の製造方法について説明する。
[0007] 水素化分解の対象としての多価アルコールとしては、炭素数 2〜60の脂肪族又は 脂環式多価アルコールを挙げることができ、具体的にはエチレングリコール、ジェチ レングリコール、トリエチレングリコール、ポリエチレングリコール、各種プロパンジォー ル、各種ジプロパンジオール、各種トリプロパンジオール、各種ブタンジオール、各種 ジブタンジオール、各種ペンタンジオール、各種ペンタントリオール、各種へキサンジ オール、各種へキサントリオール、グリセリン、ジグリセリン、トリグリセリン、ポリダリセリ ン、各種シクロへキサンジオール、各種シクロへキサントリオール、ペンタエリスリトー ル、トリメチロールプロパン、さらにはソルビトールゃマン-トールなどの糖アルコール 等を例示することができる。これらの中では、工業的観点から、特にグリセリンが好ま しい。
また、本発明における多価アルコールの水素化分解物とは、多価アルコールに水 素を作用させて、水酸基を分解させて得られたものであり、少なくとも 1つ以上の水酸 基を残す程度に分解させて得られる化合物を示す。例えばグリセリン (分子内の水酸 基数: 3つ)の水素化分解物は、 C3ジオール (分子内の水酸基数: 2つ)、 C3モノォ ール (分子内の水酸基数: 1つ)である。
前記水素化分解触媒としては、(A)白金を担持した不均一系触媒成分と、(B)タン ダステン成分及びモリブデン成分の中から選ばれる少なくとも 1種の触媒成分を含む もの(以下、水素化分解触媒 Iと称することがある。)、あるいは同一担体上に、 (Α')白 金と、前記 (Β)触媒成分とを含むもの (以下、水素化分解触媒 IIと称することがある。 ) が用いられる。
[0008] 当該水素化分解触媒における (Α)成分の白金を担持した不均一系触媒成分にお いて、白金を担持する担体としては、特に制限はないが、例えば、 Studies in Sur face and Catalysis, 1 25, vol51, 1989に記載されているようなものを用いる ことができる。これらの担体の中では、特にアルミナや炭素 (活性炭)が望ましい。そ の他、担体として酸ィ匕タングステンや酸ィ匕モリブデンなども用いることができる。この 場合、当該酸化タングステンや酸化モリブデンは、後述の(B)触媒成分としての機能 を兼ねることもできる。白金の担持量は、触媒活性の点から、担体と担持された白金 との合計量に基づき、通常 0. 1〜30質量%程度、好ましくは 1〜20質量%である。 この (A)成分の白金を担持した不均一系触媒成分の使用量は、多価アルコールの 種類などに応じて、適宣選定されるが、転ィ匕率や選択性などの観点から、多価アルコ 一ノレ lgに対し、白金として 0. OOOlg以上力 子ましく、より好ましくは 0. 001-0. 5g 、さらに好ましくは 0. 01-0. 2gである。
[0009] 前記 (A)成分と併用される (B)触媒成分としてのタングステン成分としては、 0価の 金属そのもののタングステン (W)、及び Z又は各種タングステンの無機化合物、有 機化合物あるいは錯体ィ匕合物である。具体的には、タングステン酸 (H WO )又はそ
2 4 の塩、酸化タングステン、タングステンへキサカルボ-ル、ノ ラタングステン酸アンモ -ゥム等を挙げることができる。
タングステン酸又はその塩としては、タングステン酸又はそのアルカリ金属塩やアル カリ土類金属塩を用いることができる力 これらの中で特にタングステン酸が好まし!/ヽ 。このタングステン酸には、才ルトタングステン酸、メタタングステン酸、パラタンダステ ン酸があり、いずれも用いることができる力 通常オルトタングステン酸 (H WO )が用
2 4 いられる。
[0010] また、(B)触媒成分としてのモリブデン成分としては、 0価の金属そのもののモリブ デン (Mo)及び Z又は各種モリブデンの無機化合物、有機化合物あるいは錯体ィ匕 合物である。具体的には、モリブデンへキサカルボ-ル、モリブデン酸アンモ-ゥム、 酢酸モリブデン、酸ィ匕モリブデン等を挙げることができる。
[0011] (B)触媒成分のうちのへテロポリ酸又はその塩としては、ヘテロポリ酸又はそのアル カリ金属塩やアルカリ土類金属塩を用いることができる力 これらの中で特にへテロポ リ酸が好ましい。
ヘテロポリ酸としては、モリブデン(Mo)又はタングステン (W)の少なくとも 1種の元 素を含むものを使用することができる。これらの中では、 Mo, W力も選ばれる少なくと も 1種の元素と, Si, P力 選ばれる少なくとも 1種の元素力もなるものが好ましい。 このへテロポリ酸の具体例としては、リンタングステン酸 (H PW O )、ケィタンダス
3 12 40
テン酸 (H SiW O )、リンモリブデン酸 (H PMo O )などを挙げることができる。
3 12 40 3 12 40
当該水素化分解触媒 Iにお ヽて、前記 (A)触媒成分と併用される (B)触媒成分は、 1種を単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。その使用量は、 多価アルコールの種類などに応じて適宣選定される力 S、転ィ匕率や選択性などの観点 力ら、多価ァノレコーノレ lgに対し、 0. OOOlg以上力 S好ましく、より好ましく ίま 0. 001〜 5g、さらに好ましくは 0. 01〜5gである。
当該水素化分解触媒 Iは、前記 (A)触媒成分と (B)触媒成分とを混合することによ り、調製することができる。
[0012] 一方、当該水素化分解触媒 IIは、(Α')成分の白金と、前述した (Β)触媒成分とが、 同一担体上に担持されてなる不均一系触媒成分を含む触媒であって、前記担体とし ては、前述した水素化分解触媒 Iにおける (Α)触媒成分を担持させる担体として例示 したちのと同じちのを挙げることがでさる。
この水素化分解触媒 IIにおいて、同一担体上に担持される (Α')成分の白金と、 (Β )触媒成分との割合は、金属元素の質量比で、通常 100 : 1〜1: 100程度、好ましく は 10 : 1〜1: 20、より好ましくは 5: 1〜: L: 10である。
当該水素化分解触媒 IIは、特に限定されるものではないが、沈殿法、イオン交換法 、蒸発乾固法、噴霧乾燥法、混練法など、通常採用されている公知の方法にて、担 体上に、 (Α')成分及び (Β)触媒成分を担持することで調製することができる。
なお、担体として、酸ィ匕タングステンや酸ィ匕モリブデンを用いた場合には、前記 ) 成分としての機能を兼ねることもできる。
本発明の多価アルコールの水素化分解物の製造方法においては、上記多価アル コールと水素とを特定触媒の存在下で反応させるが、その際においては、温度を制 御することが好ましぐ加熱を行う方法や反応熱を利用する方法が挙げられる。
また、反応に用いる水素については、単品ガスを用いてもよいが、窒素やヘリウム等 の不活性ガスを用いて希釈しても構わな ヽ。
[0013] 本発明の多価アルコールの水素化分解物の製造方法においては、製造工程簡略 化の観点から、反応溶媒を用いないことが好ましいが、反応溶媒を用いて、多価アル コールの水素化分解を行うことができる。
反応溶媒としては、プロトン性溶媒が好ましぐ例えば水、メタノール、エタノール、 1 プロパノール、 2—プロパノール、 n—ブタノール、イソブタノール、 1, 2—プロパン ジオール、 1, 3 プロパンジオール、エチレングリコールなどの中から選ばれる少な くとも 1種を用いることができる。これらの中では、反応性の観点から、水を含有するも のが好ましい。
反応溶媒の使用量は、多価アルコールの含有量が 1質量%以上の溶液になるよう に選ぶことが好ましく、 10質量%以上の溶液となるように選ぶことがより好ま U、。 本発明の方法において、原料となる水素ガスは、そのまま、あるいは窒素、アルゴン 、ヘリウムなどの不活性ガスで希釈して用いることができる。
[0014] 反応条件については、特に制限はなぐ使用する多価アルコールや触媒の種類な どに応じて適宣選定される力 水素圧は、通常常温で 30MPa以下が好ましぐ 0. 1 〜: LOMPaがより好ましい。反応温度は、通常 80°C以上で水素化分解を実施するこ とができる力 多価アルコールの水素化分解による転ィ匕率及び分解生成物の選択性 などの観点から、 120〜240°Cの範囲が好ましい。
水素化分解反応は、回分式及び連続式のいずれも採用することができる。また、反 応装置としては特に制限はなぐオートクレープなどの加圧可能な装置や、固定床流 通式の装置などを用いることができる。
[0015] 本発明の多価アルコールの水素化分解物の製造方法においては、多価アルコー ルとしてグリセリンを用いることが好ましい。このグリセリンを用いることにより、水素化 分解物として、 1, 3 プロパンジオール、 1, 2 プロパンジオール、 1 プロパノー ル及び 2—プロパノールなどの混合物を得ることができる。
本発明はまた、前記の (A)白金を担持した不均一系触媒成分と、(B)タングステン 成分及びモリブデン成分の中から選ばれる少なくとも 1種の触媒成分を含む、多価ァ ルコールの水素化分解触媒、並びに同一担体上に (Α')白金と (Β)タングステン成分 及びモリブデン成分の中から選ばれる少なくとも 1種の触媒成分とを担持してなる不 均一系触媒成分を含む、多価アルコールの水素化分解触媒をも提供する。
実施例 [0016] 実施例 1
攪拌機付きの 500mLのチタン製オートクレーブに、 5質量0 /0Pt/C4g、 H WO 6g
2 4
、グリセリン 12g、水 120gを加え、水素置換した。その後、水素を 3MPaまで導入した 後、加熱し、 160°Cにて 3時間反応させた。その結果、グリセリン転化率 9%、選択性 は 1, 3— PD41モル0 /0、 1, 2— PD17モル0 /0、 1—プロパノール 24モル0 /0、 2—プロ ノ V—ル 18モル0 /。であった。炭化水素ガス等は副生しな力つた。
結果を第 1表に示す。
[0017] 実施例 2〜8及び比較例 1〜8
第 1表及び第 2表に示した条件にて、実施例 1と同様に反応を実施した。 結果を第 1表及び第 2表に示す。
[0018] 実施例 9
(触媒調製)
巿販の 5%質量 PtZAl O 6. Ogに、 2質量0 /0パラタングステン酸アンモ-ゥム水溶
2 3
液 21mLを用いて蒸発乾固法にて担持した後、 120°Cにて 3時間乾燥した。さらに空 気流通下 500°Cで 2時間焼成した。得られた触媒は、
Figure imgf000008_0001
ミナ (Al O )に担持されたものである。
2 3
(反応)
攪拌機付きの 500mLのチタン製オートクレープに、調製した触媒 4g、グリセリン 12 g、水 120gを加え、水素置換した。その後、水素を 3MPaまで導入した後、加熱し、 1 60°Cにて 3時間反応させた。その結果、グリセリン転ィ匕率 20%、選択性は 1, 3-PD 67モル%、 1, 2— PD4モル0 /0、 1—プロパノール 18モル0 /0、 2—プロパノール 10モ ル%であった。結果を第 3表に示す。
[0019] 実施例 10〜12
市販の PtZAl Oを用いて実施例 9と同様に第 3表に示したタングステン量を担持
2 3
させ、第 1表に示した条件にて、実施例 9と同様に反応を実施した。結果を第 3表に 示す。
[0020] 実施例 13
市販の WO 6. Ogに、 10質量%塩化白金酸水溶液 6. 3mLを用いて蒸発乾固法 にて担持した後、 120°Cにて 3時間乾燥した。さらに空気流通下 500°Cで 2時間焼成 した。調製した触媒 4gを用いて、実施例 9と同様に反応を実施した。結果を第 3表に 示す。
[0021] 比較例 9〜11
市販の PdZAl O、 Ru/Al O、又は RhZAl Oを用いて実施例 9と同様に触媒
2 3 2 3 2 3
調製を行い、第 2表に示した条件にて、実施例 9と同様に反応を実施した。結果を第 4表に示す。
[0022] なお、反応終了溶液は濾過後、下記の装置により溶液1 H— NMRにて分析し、生成 物を定量した。また、ガス分はガスバッグに捕集した後、ガスの種類別に下記の 2種 のガスクロマトグラフィーにて分析し、生成物を定量した。
1)溶液1 H— NMR
装置:バリアン社製 Mercury400
内標:トリメチルシリルプロピオン酸ナトリウム
2)ガスクロマトグラフィー (低級炭化 7k素ガス)
カラム: PorapakQ、 2. lmX 3. 2mm φ、 80— 100メッシュ
検出器: FID
インジェクション温度: 200°C
デテクター温度: 200°C
He流直: 60mL/ min.
3)ガスクロマトグ フィー(GOj COガス丄
2
カラム:モレキュラーシーブ 5A
検出器: FID (カラムと検出器間にメタナイザ を装着)
インジェクション温度: 80°C
デテクター温度: 80°C
He流直: 60mL/ min.
[0023] [表 1] 第 1表一 1
Figure imgf000010_0001
(注) 5%Pt/C : 5質量%Pt/C
[0024] [表 2]
第 1表一 2
Figure imgf000010_0002
(注) 5%Pt/C : 5質量%Pt/C
[0025] [表 3] 第 2表一 1
Figure imgf000011_0001
(注) 5%Pt/C : 5g*%Pt/C
TfOH : トリフルォロメタンスルホン酸
[0026] [表 4] 第 2表一 2
Figure imgf000011_0002
(注) 5%Pt/C : 5莨量%Pt/C
5%Pd/C : 5R*%Pd/C 5%Rh/C : 5質量%Rh/C 5%Ru/C : 5質量%Ru/C
[0027] [表 5] 第 3表
〔¾002
Figure imgf000012_0001
(注) Pt5%、W5% : P 質量%、W5質量%
(注) P %、W30% : P 質量%、W30貧量%
(注) Pt10%、W5% : ^10質量%、\^5質量%
(注) P %:P 質量%
第 4表
Figure imgf000013_0001
Pd5%、W5% : Pd5 %、W5 %
(注) Ru5%、W5W : Ru5質量 96、 W5贊量 9ύ
(注) Rh5%、W5«½ : Rh5質量 96、 W5¾i%
[0029] 第 1表及び第 3表の実施例と第 2表及び第 4表の比較例の結果から、特定の触媒を 用いる本発明の多価アルコールの水素化分解生成物の製造方法は、多価アルコー ルカ その水素化分解物、特にグリセリンから 1, 3—プロパンジオールを選択性よく 製造することができることがゎカゝる。
産業上の利用可能性
[0030] 本発明の多価アルコールの水素化分解生成物の製造方法は、多価アルコールか らその水素化分解物、特にグリセリンから 1, 3—プロパンジオールを選択性よく製造 することができるので、これらの製造に利用できる。
また、本発明の多価アルコールの水素化分解触媒は、特にグリセリンから 1, 3—プ 口パンジオールを選択性よく製造できる触媒として有効に利用できる。

Claims

請求の範囲
[I] (A)白金を担持した不均一系触媒成分と、(B)タングステン成分及びモリブデン成 分の中から選ばれる少なくとも 1種の触媒成分とを含む触媒の存在下に、多価アルコ ールと水素とを反応させる、多価アルコールの水素化分解物の製造方法。
[2] 同一担体上に、(Α')白金と、(Β)タングステン成分及びモリブデン成分の中から選 ばれる少なくとも 1種の触媒成分とを担持してなる不均一系触媒成分を含む触媒の 存在下に、多価アルコールと水素とを反応させる、多価アルコールの水素化分解物 の製造方法。
[3] (Β)触媒成分がタングステン成分である請求項 1又は 2に記載の多価アルコールの 水素化分解物の製造方法。
[4] (Β)触媒成分がタングステン酸及びその塩、ならびにヘテロポリ酸及びその塩の中 力 選ばれる少なくとも 1種の触媒成分を含むものである請求項 1〜3のいずれか〖こ 記載の多価アルコールの水素化分解物の製造方法。
[5] (Β)触媒成分がタングステン酸である請求項 1〜4の 、ずれかに記載の多価アルコ ールの水素化分解物の製造方法。
[6] (Β)触媒成分がヘテロポリ酸である請求項 1〜4のいずれかに記載の多価アルコー ルの水素化分解物の製造方法。
[7] 反応溶媒としてプロトン性溶媒を用いる請求項 1〜6のいずれかに記載の多価アル コールの水素化分解物の製造方法。
[8] プロトン性溶媒が水を含有する請求項 7に記載の多価アルコールの水素化分解物 の製造方法。
[9] 多価アルコ一ルがグリセリンである請求項 1〜8の!、ずれかに記載の多価アルコ一 ルの水素化分解物の製造方法。
[10] (Α)白金を担持した不均一系触媒成分と、(Β)タングステン成分及びモリブデン成 分の中から選ばれる少なくとも 1種の触媒成分を含む、多価アルコールの水素化分 解触媒。
[II] 同一担体上に、(Α')白金と、(Β)タングステン成分及びモリブデン成分の中から選 ばれる少なくとも 1種の触媒成分とを担持してなる不均一系触媒成分を含む、多価ァ ルコールの水素化分解触媒。
PCT/JP2007/058713 2006-05-09 2007-04-23 多価アルコールの水素化分解物の製造方法 WO2007129560A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/227,025 US7799957B2 (en) 2006-05-09 2007-04-23 Process for producing product of hydrogenolysis of polyhydric alcohol
CN2007800161938A CN101437781B (zh) 2006-05-09 2007-04-23 多元醇的氢解物的制造方法
EP07742148A EP2017250B1 (en) 2006-05-09 2007-04-23 Process for producing product of hydrogenolysis of polyhydric alcohol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-129850 2006-05-09
JP2006129850 2006-05-09

Publications (1)

Publication Number Publication Date
WO2007129560A1 true WO2007129560A1 (ja) 2007-11-15

Family

ID=38667668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058713 WO2007129560A1 (ja) 2006-05-09 2007-04-23 多価アルコールの水素化分解物の製造方法

Country Status (5)

Country Link
US (1) US7799957B2 (ja)
EP (1) EP2017250B1 (ja)
CN (1) CN101437781B (ja)
MY (1) MY147359A (ja)
WO (1) WO2007129560A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143798A (ja) * 2006-12-06 2008-06-26 National Institute Of Advanced Industrial & Technology プロパンジオールの製造方法
WO2009093486A1 (ja) * 2008-01-21 2009-07-30 Kao Corporation 多価アルコールの水素化分解物の製造方法
CN101407448B (zh) * 2008-11-07 2012-05-30 南京工业大学 甘油一步转化连续制备1,3-丙二醇的方法
JP2013133305A (ja) * 2011-12-27 2013-07-08 Daicel Corp 1,3−プロパンジオールの製造方法、及びグリセリンの水素化反応用触媒

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190562B (zh) * 2010-03-17 2014-03-05 中国科学院大连化学物理研究所 一种多羟基化合物制乙二醇的方法
US8222465B2 (en) * 2011-07-28 2012-07-17 Uop Llc Catalytic process for continuously generating polyols
EP2736869A4 (en) * 2011-07-28 2015-01-07 Uop Llc OBTAINING POLYOLS FROM SACCHARIDES
BR112014017585B1 (pt) 2012-01-18 2020-11-24 Archer-Daniels-Midland Company processo para produção de hexametileno diamina a partir de materiais contendo carboidrato e intermediários para os mesmos
JP5928894B2 (ja) * 2012-08-30 2016-06-01 国立大学法人大阪大学 多価アルコールの水素化分解用触媒、及び該触媒を使用する1,3−プロパンジオールの製造方法
EP2837614A1 (en) * 2013-08-14 2015-02-18 Solvay SA Process for the manufacture of propanediol
CN104086369B (zh) * 2014-06-18 2017-04-05 华南理工大学 木薯渣氢解制备低级醇的方法
US20170203973A1 (en) * 2014-07-25 2017-07-20 Suzhou Hans Energy Storage Technology Co., Ltd. Applications of a tungsten-containing material
JP2017537920A (ja) 2014-12-02 2017-12-21 レノビア インコーポレイテッド 5−ヒドロキシメチルフルフラールから2,5−ビスヒドロキシメチルフラン、2,5−ビス−ヒドロキシメチルテトラヒドロフラン、1,6−ヘキサンジオールおよび1,2,6−ヘキサントリオールを生成する工程
CN105732306B (zh) * 2016-03-25 2017-12-22 北京石油化工学院 一种甘油氢解制备1,2‑丙二醇的方法
CN111036250B (zh) * 2018-10-15 2023-04-07 中国石油化工股份有限公司 含磷催化剂及其制备方法和应用以及甘油氢解方法
US10752568B1 (en) 2019-06-17 2020-08-25 Zhangjiagang Glory Chemical Industry Co., Ltd. Method for preparing 1,3-propanediol by hydrogenolysis of glycerol and its reaction system
CN114182294B (zh) * 2021-11-11 2023-11-14 深圳市欧格尼绿氢科技有限公司 一种电化学降解生物质精炼有机废弃物产氢的双催化剂体系和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642394A (en) 1985-07-16 1987-02-10 Celanese Corporation Production of propanediols
JPH06192147A (ja) * 1992-11-14 1994-07-12 Degussa Ag 1,2−及び1,3−プロパンジオールの同時製造方法
JP2001510816A (ja) 1997-07-23 2001-08-07 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー グリセロールの水素化分解

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880748A (en) * 1972-01-03 1975-04-29 Exxon Research Engineering Co Platinum-indium-molybdenum reforming catalysts
DE4324442C1 (de) * 1993-07-21 1994-06-30 Degussa Katalysator zur Herstellung von Glyoxylsäure durch Oxidation von Glyoxal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642394A (en) 1985-07-16 1987-02-10 Celanese Corporation Production of propanediols
JPH06192147A (ja) * 1992-11-14 1994-07-12 Degussa Ag 1,2−及び1,3−プロパンジオールの同時製造方法
JP2001510816A (ja) 1997-07-23 2001-08-07 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー グリセロールの水素化分解

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CAO, J. ET AL.: "Low temperature aqueous phase reforming of sorbitol for hydrogen production", PREPRINTS, AMERICAN CHEMICAL SOCIETY, vol. 51, no. 1, 2006, pages 7 - 8
CHAMINAND J. ET AL.: "Glycerol hydrogenolysis on heterogeneous catalysts", GREEN CHEMISTRY, vol. 6, 2004, pages 359 - 361, XP003016972 *
CHAMINAND, J. ET AL.: "Glycerol hydrogenolysis on heterogeneous catalysts", GREEN CHEMISTRY, vol. 6, 2004, pages 359 - 361
SCHLAF M. ET AL.: "Metal-Catalyzed Selective Deoxygenation of Diols to Alcohols", ANGEWANDTE CHEMIE, vol. 40, no. 20, 2001, pages 3887 - 3890, XP003016973 *
See also references of EP2017250A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143798A (ja) * 2006-12-06 2008-06-26 National Institute Of Advanced Industrial & Technology プロパンジオールの製造方法
WO2009093486A1 (ja) * 2008-01-21 2009-07-30 Kao Corporation 多価アルコールの水素化分解物の製造方法
US8158834B2 (en) 2008-01-21 2012-04-17 Kao Corporation Method for producing hydrogenolysis product of polyhydric alcohol
CN101407448B (zh) * 2008-11-07 2012-05-30 南京工业大学 甘油一步转化连续制备1,3-丙二醇的方法
JP2013133305A (ja) * 2011-12-27 2013-07-08 Daicel Corp 1,3−プロパンジオールの製造方法、及びグリセリンの水素化反応用触媒

Also Published As

Publication number Publication date
MY147359A (en) 2012-11-30
EP2017250A1 (en) 2009-01-21
US20090177018A1 (en) 2009-07-09
EP2017250A4 (en) 2010-02-10
CN101437781A (zh) 2009-05-20
EP2017250B1 (en) 2012-07-18
US7799957B2 (en) 2010-09-21
CN101437781B (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
WO2007129560A1 (ja) 多価アルコールの水素化分解物の製造方法
JP5010963B2 (ja) 多価アルコールの水素化分解物の製造方法
JP5231786B2 (ja) 多価アルコールの水素化分解物の製造方法
EP1440046B1 (en) Hydrogenolysis of sugars, sugar alcohols and glycerol
EP1440048B1 (en) Hydrogenolysis of 5-carbon sugars and sugar alcohols
JP2014523864A (ja) 1,2−ペンタンジオールの調製方法
JPS5827642A (ja) 新規なルテニウム/炭素−水素化用触媒
JP2009508685A (ja) 低級アルコールの直接酸化による低級アルコールの部分酸化生成物を調製する方法、およびこの方法において使用する触媒
JP2002226414A (ja) 3−ヒドロキシエステル化合物から1,3−アルカンジオールを製造する方法
CN101735015A (zh) 一种制备新戊二醇的方法
JP5861024B2 (ja) 多価アルコールからのグリコールの製造方法
JP2009533468A (ja) アルデヒドに水素添加するための方法
CN112441911A (zh) 一种制备5-羟基戊酸的方法
JP3616642B2 (ja) 1,4−ブタンジオールの製造法
JP2004182622A (ja) 1,3−プロパンジオールの製造方法
JP5305669B2 (ja) 多価アルコールの水素化分解物の製造方法
JP5684657B2 (ja) ポリオールの水素化分解物の製造方法
KR100457416B1 (ko) 3-히드록시에스터 화합물로부터 1,3-알칸디올을 제조하는방법
JP5827925B2 (ja) エリスリトールの水素化分解物の製造方法
JP5197308B2 (ja) 多価アルコールの水素化分解物の製造方法
JP5302543B2 (ja) 多価アルコールの水素化分解物の製造方法
KR20020042397A (ko) 3-하이드록시에스터 화합물로부터 1,3-알칸디올을제조하는 방법
JP2003528065A (ja) 1,3−ジオールを調製するための方法
JP2004034021A (ja) 水素化触媒、およびこれを用いた1,3−プロパンジオールの製造方法
KR20040002364A (ko) 수소화 촉매 및 이를 이용하여 3-하이드록시프로판산알킬로부터 1,3-프로판디올을 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780016193.8

Country of ref document: CN

Ref document number: 2007742148

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12227025

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12008502484

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE