WO2007125779A1 - 熱安定性に優れた真核型アマドリアーゼ、その遺伝子及び組換え体dna、並びに熱安定性に優れた真核型アマドリアーゼの製造法 - Google Patents

熱安定性に優れた真核型アマドリアーゼ、その遺伝子及び組換え体dna、並びに熱安定性に優れた真核型アマドリアーゼの製造法 Download PDF

Info

Publication number
WO2007125779A1
WO2007125779A1 PCT/JP2007/058304 JP2007058304W WO2007125779A1 WO 2007125779 A1 WO2007125779 A1 WO 2007125779A1 JP 2007058304 W JP2007058304 W JP 2007058304W WO 2007125779 A1 WO2007125779 A1 WO 2007125779A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
eukaryotic
amadoriase
eukaryotic amadoriase
acid sequence
Prior art date
Application number
PCT/JP2007/058304
Other languages
English (en)
French (fr)
Inventor
Kozo Hirokawa
Atsushi Ichiyanagi
Original Assignee
Kikkoman Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikkoman Corporation filed Critical Kikkoman Corporation
Priority to US12/300,658 priority Critical patent/US8003359B2/en
Priority to JP2008513145A priority patent/JP5074386B2/ja
Priority to CN200780023798.XA priority patent/CN101479383B/zh
Priority to EP07741740A priority patent/EP2020439B1/en
Publication of WO2007125779A1 publication Critical patent/WO2007125779A1/ja
Priority to US12/985,858 priority patent/US8828699B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0026Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
    • C12N9/0032Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with oxygen as acceptor (1.5.3)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/906Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7)
    • G01N2333/9065Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7) acting on CH-NH groups of donors (1.5)
    • G01N2333/90672Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7) acting on CH-NH groups of donors (1.5) with oxygen as acceptor (1.5.3) in general

Definitions

  • Eukaryotic amadoriase with excellent thermal stability its gene and recombinant DNA, and method for producing eukaryotic amadoriase with excellent thermal stability
  • the present invention relates to a eukaryotic amadoriase excellent in thermal stability, a gene thereof and a recombinant DNA, and a method for producing a eukaryotic amadoriase excellent in thermal stability.
  • amadoriase acidifies iminodiacetic acid or a derivative thereof (also referred to as “Amadori compound”) to produce darioxylic acid or ⁇ -ketoaldehyde, amino acid or peptide, and hydrogen peroxide.
  • Amadori compound iminodiacetic acid or a derivative thereof
  • Amadoriase has also been found to have bacterial, yeast, and fungal power (see, for example, Patent Documents 1 to 4). Amadoriase has been purified from the genera Aspergillus, Penicillium, Fusarium, Picma, oniocnaeta ⁇ , Eupeni cilliumj3 ⁇ 4, Pyrenochaeta ⁇ , ArthrmiumJ3 ⁇ 4, Neocosmospora ⁇ , Corynebacterium ⁇ , Agrobacterium, and the amino acid sequence of each amadoriase has been determined (for example, Non-Patent Documents 1 to 4 and Patent Documents 5 to 9).
  • amadoriases can be classified into two types: prokaryotic amadoriase and eukaryotic amadoriase.
  • Prokaryotic-derived prokaryotic amadriase and eukaryotic-derived eukaryotic amadriase have high and homologous amino acid sequences only within their respective types, but different types of eukaryotes. There is very little amino acid sequence homology between the type and the prokaryotic type Amadriaise.
  • Prokaryotic amadoriase has a problem in that some coenzymes are removed and the enzyme activity is lost during the purification or storage of the enzyme because the bond with the coenzyme is not a covalent bond.
  • eukaryotic amadoriase is covalently linked to a coenzyme, and thus the above-mentioned problems confirmed with prokaryotic amadoriase are not recognized. Therefore, it has excellent practical properties.
  • HbAlc glycohemoglobin
  • an enzymatic method using amadoriase that is, a method for measuring HbAlc released by decomposing HbAlc with a protease or the like and measuring the released glycoprotein or glycopeptide is proposed. (For example, see Patent Documents 10 to 13).
  • the eukaryotic amadoriase derived from Aspergillus terreus GP1 strain shows about 40% residual activity after heat treatment at 45 ° C. for 10 minutes (see, for example, Non-Patent Document 2).
  • the eukaryotic amadoriase derived from Fusarium oxysporum S 1F4 shows a residual activity of about 10% after a heat treatment at 45 ° C. for 5 minutes (see, for example, Non-Patent Document 5).
  • eukaryotic amadriase derived from Coniochaetidium savoryi ATCC36547 strain has a residual activity of 80% after heat treatment at 37 ° C or lower for 30 minutes (see, for example, Patent Document 14).
  • eukaryotic amadoriase derived from Neocosmospora vasinfecta NB RC7590 strain has a residual activity of 80% after heat treatment at 45 ° C or lower for 30 minutes.
  • the eukaryotic amadoriase derived from the Curvularia clavata YH923 strain shows a residual activity of 80% after heat treatment at 50 ° C. or lower for 30 minutes (see, for example, Patent Document 14).
  • thermostability As a general technique, in order to increase the thermal stability of an enzyme, a method for selecting an enzyme having excellent thermal stability by mutating the DNA encoding the enzyme and introducing substitution into the amino acid of the enzyme It has been known. In addition, if there is already known an example in which thermostability has been improved by amino acid substitution in a highly homologous enzyme, the thermostability is based on that information. An improvement can be expected.
  • prokaryotic amadoriases derived from bacteria belonging to the genus Corynepacteria
  • thermal stability of the prokaryotic amadoriase is improved by substituting several amino acids (for example, Non-patent document 5), it may be possible to introduce thermal stability into other prokaryotic amadoriases.
  • the amino acid sequence of amadoriase has very low homology between the eukaryotic amadoriase type and the prokaryotic amadoriase type. Therefore, the prokaryotic amadoriase derived from the genus Corynebata terium. Based on the information about amino acid mutations involved in the thermal stability of eukaryotics, it was impossible to predict the improvement of the thermal stability of eukaryotic Amadoriase.
  • Patent Document 1 Japanese Patent Publication No. 5-33997
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-270855
  • Patent Document 3 Japanese Patent Laid-Open No. 7-289253
  • Patent Document 4 Japanese Patent Laid-Open No. 8-336386
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-235585
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2004-275063
  • Patent Document 7 International Publication No. 2004Z104203 Pamphlet
  • Patent Document 8 Japanese Patent Laid-Open No. 11-155579
  • Patent Document 9 Japanese Patent Laid-Open No. 2003-79386
  • Patent Document 10 Japanese Unexamined Patent Publication No. 2001-95598
  • Patent Document 11 Japanese Patent Publication No. 05-33997
  • Patent Document 12 JP-A-11 127895
  • Patent Document 13 International Publication No.97Z13872 Pamphlet
  • Patent Document 14 Japanese Unexamined Patent Application Publication No. 2004-275013
  • Non-Patent Document 1 Arch. Microbiol. 178, 344-50, 2002
  • Non-Patent Document 2 Eur. Biochem. 242, 499-505, 1996
  • Non-Patent Document 3 Mar. Biotechnol. 6, 625-32, 2004
  • Non-patent literature 4 Biosci. Biotechnol. Biochem. 59, 487-91, 1995
  • Non-patent literature 5 Appl. Environ. Microbiol. 69, 139-45, 2003
  • the problem to be solved by the present invention is to overcome the shortcomings of conventional eukaryotic amadoriases related to thermal stability and to provide eukaryotics with excellent thermal stability for use in clinical diagnostic enzymes and enzyme sensors for diabetes.
  • the purpose is to provide a type amadoriase.
  • FPOX—CE eukaryotic amadoriase
  • FPOX—EE eukaryotic amadoriase
  • the present invention provides the following inventions.
  • a eukaryotic amadoriase having the following characteristics (a) and Z or (b):
  • a eukaryotic amadoriase having the following features (a) and (b): (a) 83% or more activity remains after heat treatment at 50 ° C for 30 minutes;
  • a eukaryotic amadoriase having the following features (a) and Z or (b):
  • a eukaryotic amadoriase having the following features (a) and (b):
  • a host cell comprising the recombinant vector according to (13) above.
  • a method for producing a eukaryotic amadoriase comprising the following steps:
  • a kit for use in the measurement of glycoprotein comprising the eukaryotic amadoriase according to any one of (1) to (11) above.
  • kits for use in measurement of glycated hemoglobin comprising the eukaryotic amadoriase according to any one of (1) to (11) above.
  • Action and substrate specificity Acts on fructosylvalylhistidine in the presence of oxygen to catalyze the reaction producing a-ketoaldehyde, norylhistidine and hydrogen peroxide.
  • a eukaryotic amadoriase with excellent heat stability, a gene encoding the same, and the like are provided, which is advantageous as a diagnostic enzyme for diabetes and a kit for measuring a diabetes marker. Used for
  • FIG. 1 is a diagram in which an amino acid sequence represented by SEQ ID NO: 1 (the uppermost row) and a eukaryotic amadoriase sequence having an amino acid sequence ability having 75% or more homology with the sequence are aligned.
  • Amadoriase is also called fructosyl amino acid oxidase or fructosylamine oxidase, which oxidizes iminodiacetic acid or its derivative (Amadori compound) in the presence of oxygen to produce darioxylic acid or ⁇ -ketoaldehyde, amino acid or Peptides and enzymes that catalyze reactions that produce hydrogen peroxide.
  • Amadoriase is widely distributed in nature and can be obtained by searching for microorganisms, enzymes of animal or plant origin.
  • microorganisms for example, filamentous fungi, yeast, or bacteria can be obtained.
  • the eukaryotic amadoriase of the present invention is a eukaryotic amadoriase (FPOX-CE, FPOX) derived from the genus Coniochaeta having the amino acid sequence shown in SEQ ID NO: 1 or the genus Eupenicillium having the amino acid sequence shown in SEQ ID NO: 2.
  • FPOX-CE eukaryotic amadoriase
  • FPOX eukaryotic amadoriase
  • FPOX-CE eukaryotic amadoriase
  • FPOX eukaryotic amadoriase
  • Eukaryotic Amadoriase and the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2, having an amino acid sequence in which 1 to several amino acids are altered or mutated, or deleted, substituted, added and Z or inserted Eukaryotic amadoriase can be mentioned.
  • filamentous fungi or yeasts such as Eupenicillium ⁇ , Pyrenochaeta J ⁇ , Arthrinium genus, Urvlana genus, Neocosmospora genus, Peniciliium genus, Fusarium genus, or Aspergillus genus, as long as the conditions regarding stability and Z or amino acid sequence are met It may be one based on the eukaryotic Amadoriase of origin! /.
  • eukaryotic amadoriase gene In order to obtain the gene of the present invention that encodes these eukaryotic amadoriases (hereinafter simply referred to as "eukaryotic amadoriase gene"), it is usually used for gene cloning.
  • the method is used.
  • microbial cells having the ability to produce eukaryotic amadoriase can be extracted from various cells by conventional methods such as the method described in Current Protocols in Molecular Biology (WILEY Interscience, 1989). it can.
  • cDNA can be synthesized using mRNA as a cage. Using the chromosomal DNA or cDNA thus obtained, a chromosomal DNA or cDNA library can be prepared.
  • a suitable probe DNA is synthesized, and a chromosomal DNA or cDNA library is used to select a eukaryotic amadoriase gene.
  • an appropriate primer DNA is prepared, and the desired polymerase chain reaction (PCR method) such as 5, RACE method or 3, RACE method is used to encode eukaryotic amadoriase.
  • PCR method polymerase chain reaction
  • DNA containing the gene fragment can be amplified and ligated to obtain DNA containing the full length of the desired eukaryotic amadoriase gene.
  • Preferred examples of the gene encoding the eukaryotic amadoriase thus obtained include the eukaryotic amadoriase gene derived from the genus Coniochaeta (Patent Document 5).
  • These eukaryotic amadoriase genes are preferably linked to various vectors as usual in terms of handling.
  • QIAGEN manufactured by Qiagen
  • pKK223-3-CFP Patent Document 5
  • the DNA encoding the eukaryotic amadoriase gene can be obtained by extraction and purification.
  • Vectors that can be used in the present invention are not limited to the above plasmids. Without limitation, any vector known to those skilled in the art such as, for example, nocteriophage and cosmid can be used. Specifically, for example, pBluescriptll SK + (manufactured by STRATAGENE) is preferred.
  • Mutation treatment of the eukaryotic amadoriase gene can be performed by any known method depending on the intended mutant form.
  • the eukaryotic amadoriase gene or a recombinant DNA incorporating the gene and a mutagen drug are brought into contact with each other; an ultraviolet irradiation method; a genetic engineering method; or a protein engineering method.
  • an ultraviolet irradiation method e.g., UV irradiation method
  • a genetic engineering method e.g., a protein engineering method.
  • Examples of the mutagen used in the above-described mutagenesis include hydroxylamine, N-methyl-N, 1-tro-N--trosoguanidine, nitrous acid, sulfite, hydrazine, formic acid, or 5- And promouracil.
  • a desired mutation can be actually induced in a eukaryotic amadoriase gene.
  • the desired mutation can be induced by contacting and acting at a reaction temperature of 20 to 80 ° C for 10 minutes or more, preferably 10 to 180 minutes at the above drug concentration of preferably 0.5 to 12M. It is. Even in the case of performing ultraviolet irradiation, it can be carried out according to a conventional method as described above (Hyundai Kagaku, p24-30, June 1989 issue).
  • a technique generally known as Site-Specific Mutage nesis can be used.
  • Kramer method Nucleic Acids Res., 12, 9441 (1984): Methods Enzymol., 154, 350 (1987): Gene, 37, 73 (1985)
  • Eckstein method Nucleic Acids Res., 13, 8749 (1985): Nucleic Acids Res., 13, 8765 (1985): Nucleic Acids Res, 14, 9679 (1986)
  • Kun kel method Proc. Natl. Acid. Sci. USA, 82, 488 (1985): Methods Enzy mol., 154, 367 (1987)).
  • a technique known as a general polymerase chain reaction can also be used (Technique, 1, 11 (1989)).
  • a desired modified eukaryotic amadoriase gene can also be directly synthesized by an organic synthesis method or an enzyme synthesis method.
  • a multi-pillar DNA analysis system CEQ2000 manufactured by Beckman Coulter, Inc.
  • the eukaryotic amadoriase gene obtained as described above is incorporated into a vector such as butteriophage, cosmid, or a plasmid used for transformation of prokaryotic cells or eukaryotic cells by a conventional method.
  • a host corresponding to the vector can be transformed or transduced by conventional methods.
  • the obtained recombinant DNA for example, Escherichia coli K12 strain, preferably Escherichia coli JM109 strain, Escherichia coli DH5 ⁇ strain (both manufactured by Takarabio Co., Ltd.), etc. Each strain is obtained by transformation or transduction to them.
  • replicas are obtained from a LB agar medium in which the obtained transformant has formed a colony on a new agar medium using a sterilized velvet dough, and cultured.
  • agar medium colonies with replicas are large enough, put a membrane soaked in a lysate such as lysozyme on the medium and allow to stand at 37 ° C for 1 hour for lysis. At this time, the lysed crude enzyme solution is adsorbed on the membrane.
  • the membrane adsorbed with the crude enzyme solution was allowed to stand at 55 ° C for 1 hour, it contained 0.1% 1M phosphorous containing the substrates fluoroenilvaline, peroxidase, TOOS and 4-aminoantipyrine.
  • the membrane adsorbed with the crude enzyme solution was allowed to stand at 55 ° C for 1 hour, it contained 0.1% 1M phosphorous containing the substrates fluoroenilvaline, peroxidase, TOOS and 4-aminoantipyrine.
  • PH8.0 potassium buffer
  • the eukaryotic amadoriase-producing strain before modification is subjected to a color development test in the same process, and the target transformant is selected by comparison.
  • a transformant having the ability to produce a thermostable eukaryotic amadoriase is used, and the modified eukaryotic amadoriase gene is further mutated by the above-described modification method.
  • a modified eukaryotic amadoriase with excellent thermal stability and a transformant having the ability to produce the same can be obtained.
  • the residual activity rate by heat treatment at 50 ° C for 30 minutes at PH 8.0 Examples include E.
  • the plasmid PKK223—3—CFP—T7 which contains the gene encoding the eukaryotic amadoriase of the present invention, is an independent administrative agency industrial technology located in 1st, 1st, Tsukuba, Higashi, Ibaraki, Japan. Deposited at the Research Institute Patent Biological Deposit Center on March 31, 2006, and has been assigned the accession number FERM BP-10593.
  • homology of amino acid sequences is determined by the GENETYX-Mac (Software Development) maximum matching and search homology programs, DNASIS Pro (Hitachi Software) maximum matching, multiple alignment, etc. It can be calculated by the program.
  • amino acid sequences are compared using a known algorithm such as the Lippman-Person method, and the amino acid sequence of each eukaryotic amadriaase This can be done by giving the maximum homology to the conserved amino acid residues present.
  • a known algorithm such as the Lippman-Person method
  • the amino acid sequence of each eukaryotic amadriaase This can be done by giving the maximum homology to the conserved amino acid residues present.
  • the homologous position is considered to exist at the same position in the three-dimensional structure, and it can be presumed that the homologous position has a similar effect on the specific function of the target eukaryotic amadoriase.
  • the position corresponding to glycine at position 184 of the amino acid sequence described in SEQ ID NO: 1 refers to the confirmed amino acid sequence of eukaryotic amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. It means an amino acid corresponding to glycine at position 184 of the eukaryotic amadoriase of SEQ ID NO: 1 when compared with the amino acid sequence of eukaryotic amadoriase.
  • the amino acid sequence can be identified by FIG. 1 in which the amino acid sequences are aligned by the above-described method of identifying the “amino acid residue at the corresponding position”.
  • glycine at position 184 in the eukaryotic amadoriase from the genus Eupenicillium glycine at position 184 in the eukaryotic amadoriase from the genus Pyr enochaeta, derived from the genus Arthrinium 184th glycine in the eukaryotic amadoriase of the genus, 184th glycine in the eukaryotic amadoriase from the genus Neocosmospora, 184th serine in the eukaryotic amadoriase from the genus Penicillium, Glycine.
  • the "position corresponding to asparagine at position 272 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of eukaryotic amadoriase derived from the genus Coniocha eta shown in SEQ ID NO: 1. When compared with the amino acid sequence of type Amadoriase, it means the amino acid corresponding to asparagine at position 272 in the amino acid sequence described in SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • eupenicillium-derived eukaryotic amadoriase is 272th asparagine
  • Pyrenochaeta-derived eukaryotic amadoriase is 270th asparagine
  • Arthrinium genus eukaryotic amadoriase is 272nd asparagine
  • Neocosmospora genus Asparagine at position 272 in the karyotype amadoriase asparagine at position 272 in the eukaryotic amadoriase from the genus Penicillium
  • asparagine at position 272 in the eukaryotic amadoriase from the genus Aspergillus is 272th asparagine
  • Pyrenochaeta-derived eukaryotic amadoriase is 270th asparagine
  • Arthrinium genus eukaryotic amadoriase is 272nd asparagine
  • the "position corresponding to 388th histidine of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of eukaryotic amadoriase, eukaryotic derived from the genus Coniochaet a shown in SEQ ID NO: 1.
  • the amino acid sequence of the type Amadoriase it means an amino acid corresponding to histidine at position 388 of the eukaryotic Amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • this strain is used as a normal solid. Although it may be cultured by a culture method, it is preferable to use a liquid culture method as much as possible. Yes.
  • the culture medium for culturing the above strain includes, for example, yeast extract, tryptone, peptone, meat extract, corn steep liquor, or one or more nitrogen sources such as soybean or wheat bran leachate, Add one or more organic salts such as sodium, potassium phosphate, potassium phosphate, magnesium sulfate, magnesium chloride, ferric chloride, ferric sulfate or manganese sulfate, and if necessary sugar
  • yeast extract tryptone, peptone, meat extract, corn steep liquor
  • nitrogen sources such as soybean or wheat bran leachate
  • organic salts such as sodium, potassium phosphate, potassium phosphate, magnesium sulfate, magnesium chloride, ferric chloride, ferric sulfate or manganese sulfate, and if necessary sugar
  • the raw material, vitamins, etc. added appropriately are used.
  • the culture is performed at a culture temperature of 20 to 42 ° C, preferably at a culture temperature of around 37 ° C for 4 to 24 hours, more preferably at a culture temperature of around 37 ° C for 4 to 8 hours, It is preferably carried out by shaking culture, stationary culture or the like.
  • eukaryotic amadoriase can be collected from the culture by using an ordinary enzyme collecting means.
  • the bacterial cells are subjected to ultrasonic disruption treatment, grinding treatment, etc. by a conventional method, or the ability to extract this enzyme using a lytic enzyme such as lysozyme, or shaking or leaving in the presence of toluene. Lysis can be performed and this enzyme can be discharged outside the cells. Then, this solution is filtered, centrifuged, etc.
  • the nuclear acid is removed with streptomycin sulfate, protamine sulfate, manganese sulfate or the like, and then added with ammonium sulfate, alcohol, acetone or the like. Cultivate and fractionate, collect the precipitate, and obtain a crude enzyme of eukaryotic amadriase.
  • a purified eukaryotic amadoriase enzyme preparation from the crude eukaryotic amadriase enzyme, for example, a gel filtration method using Cefadettas, Ultrogel or Neugel; an adsorption elution method using an ion exchanger Electrophoretic method using polyacrylamide gel, etc .; adsorption elution method using hydroxyapatite; sedimentation method such as sucrose density gradient centrifugation; affinity chromatography method; molecular sieve, membrane or hollow fiber membrane, etc.
  • a purified eukaryotic amadoriase enzyme preparation can be obtained by appropriately selecting a fractionation method or the like, or combining them. In this way, a desired eukaryotic amadoriase with excellent thermal stability can be obtained.
  • the residual activity ratio after heat treatment at 50 ° C. for 30 minutes at pH 8.0 is compared to the pre-heat treatment activity 83% or more, preferably 90% or more, more preferably 95% or more remains.
  • the residual activity after heat treatment at 50 ° C for 30 minutes at pH 8.0 Means 50% or more, preferably 70% or more of the activity before heat treatment.
  • a eukaryotic amadoriase having excellent thermal stability is extremely advantageous in industry because the storage stability of the enzyme-containing product is remarkably improved.
  • the eukaryotic amadoriase with excellent thermal stability has a highly stable protein structure, and therefore, for example, the resistance of the protein to proteases is also improved.
  • amadoriase When measuring HbAlc with amadoriase, the ability to act on amadoriase after degrading HbAlc with protease It is very useful to use amadoriase with high protease resistance. This is because, in this measurement system, protease acts not only on HbAlc but also on amadoriase, which adversely affects the measured value of HbAlc. By using amadriase having protease resistance, the degradation of amadoriase by protease is prevented, and a separation operation is unnecessary and more accurate measurement is possible. In addition, high-concentration protease treatment, which was impossible until now, becomes possible, and the accuracy of the measured values can be improved. In addition, the protease reaction can be shortened, and this can lead to rapid measurement of HbAlc.
  • the term “having protease resistance” of the present invention means that the residual activity ratio of eukaryotic amadoriase after 50 mU protease treatment at 37 ° C for 30 minutes at pH 8.0 is the activity before protease treatment. On the other hand, it means that 40% or more, preferably 60% or more, more preferably 80% or more remain.
  • the method for measuring protease resistance is to dilute the amadoriase enzyme solution or crude enzyme solution with 0.1 M phosphate buffer (pH 8.0) so that the amadoriase activity is about 0.05 UZml, and add 50 mU of each sample. After neutral protease (Roche) is prepared, heat at 37 ° C for 30 minutes, measure the enzyme activity in the sample before and after neutral protease treatment, and determine the residual activity ratio By Protease resistance can be evaluated.
  • Examples of the method for measuring the enzyme activity of eukaryotic amadoriase in the present invention include a method for measuring the amount of hydrogen peroxide produced by the reaction of the enzyme and a method for measuring the amount of oxygen consumed by the enzyme reaction. Can be mentioned. As an example, a method for measuring the amount of hydrogen peroxide is shown below.
  • fructosyl valine is used as a substrate for measuring the activity of eukaryotic amadoriase unless otherwise specified.
  • the enzyme titer was determined by measuring the amount of enzyme that produces 1 ⁇ mol of hydrogen peroxide per minute as 1 U when measured using fructosyl valine as a substrate. ⁇ Amino acids and sugar peptides such as fructosylnorylhistidine were synthesized and purified based on the method of Sakagami et al. (See JP 2001-95598)
  • Reagent 3 Substrate solution (150 mM; final concentration 5 mM)
  • Escherichia coli JM109 (pKK223—3—CFP) strain containing a recombinant plasmid of the eukaryotic amadoriase (SEQ ID NO: 1) gene derived from the genus Coniochaeta (Patent Document 5, FERM BP—81 32: Tsukuba Sakai, Ibaraki, Japan 1 1-chome Central 6th National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center, deposited on August 1, 2002), LB—amp medium [1% (WZV) Batatotripton, 0.
  • SEQ ID NO: 1 eukaryotic amadoriase
  • Recombinant plasmid pKK2 23-3-CFP was extracted from the cells using QIAGEN tip-100 (Qiagen) and purified to obtain 100 g of recombinant plasmid pKK223-3-CFP DNA.
  • QIAGEN tip-100 Qiagen
  • Hybond N + was treated at 48 ° C for 1 hour, then 2 mM fructosyl valine, lmgZml peroxidase (Kikkoman), lmg / ml 4 aminoantipyrine (Tokyo Kasei), 1 Omg / ml TOOS (Dojin) When soaked in 0.1M potassium phosphate buffer (pH 8.0) containing a small amount of strong color development, a few strains showing strong color development were observed.
  • Colonies corresponding to this strong color development were selected from the master plate and subjected to liquid culture in 2 ml of LB-am P medium to produce modified eukaryotic amadoriase encoded by the plasmid.
  • each bacterial cell obtained was washed with 0.1 M potassium phosphate buffer (pH 8.0) and sonicated. Wave crushing and centrifugation at 15, OOOrpm for 10 minutes to prepare 1.5 ml of each crude enzyme solution. After sonication and centrifugation at 12, OOOrpm for 5 minutes, the supernatant was recovered. Using this crude enzyme solution, the residual activity (%) (activity after treatment Z activity after treatment) was calculated according to the above (thermal stability measurement method).
  • the obtained 2 strains were cultured with shaking in 2 ml of LB-amp medium at 37 ° C for 18 hours, and the plasmid was isolated from this culture solution using GFX Micro Plasmid Prep Kit (manufactured by Amersham).
  • the plasmids were named pKK223-3-CFP-Tl and ⁇ 223-3-3-CFP- ⁇ 2, respectively, and the nucleotide sequence of DNA encoding eukaryotic amadoriase in each plasmid was determined using the Multi-pillar DNA analysis system CEQ2000 (Beckman's Coulter Determined by the company).
  • Recombinant plasmids PKK223-3-CFP-T1 and pKK223-3-CFP-T2 were double digested with restriction enzymes Aatll and Sacl.
  • the about 1 kb DNA fragment from the pKK223-3-CFP-T1 DNA and the about 5 kb DNA fragment from the pKK223-3-CFP-T2 DNA were each separated by agarose gel electrophoresis and purified by a conventional method. Furthermore, both DNA fragments were ligated with T4 DNA ligase, and Escherichia coli JM109 strain was transformed to obtain recombinant plasmid PKK223-3-CFP-T3.
  • Escherichia coli JM109 (pKK223-3-C FP-T1) strain, E. coli JM109 (pKK223-3-CFP-T2) strain, E. coli JM109 (pKK 223-3 3-) carrying the recombinant plasmids thus obtained.
  • CFP-T3) strain was cultured in LB-amp medium at 37 ° C for 20 hours. Then each The cells were washed with 0.1M phosphate buffer at pH 8.0, sonicated, and centrifuged at 15, OOOrpm for 10 minutes to prepare 1.5 ml of each crude enzyme solution.
  • pKK223-3-CFP represents the wild type eukaryotic amadoriase derived from E. coli JM109 (pKK223-3-CFP), and the other three enzymes represent the eukaryotic amadoriase of the present invention.
  • the eukaryotic amadoriase obtained in the present invention is found to have excellent thermal stability.
  • Plasmid DNA was prepared from E. coli JM109 (109223-3-CFP- ⁇ 3) strain, which is a modified eukaryotic amadoriase-producing strain obtained in (4) above, by the method described in (1) above. Furthermore, mutation was introduced by the method (2) above, and then the method (3) was used. In Example 5, the modified eukaryotic amadoriase obtained above was selected as a comparison control. .
  • Four strains of E. coli that produce a modified eukaryotic amadoriase with a high residual activity rate by heat treatment at ⁇ 8.0 at 50 ° C for 30 minutes were obtained. Using the E.
  • E. coli JM109 (PKK223-3 CFP- T4), E. coli JM109 (pKK223-3 CFP- ⁇ 5), E. coli JM109 (pKK223-3 CFP- T6) carrying the recombinant plasmid thus obtained
  • E. coli JM109 (pKK223-3 CFP-T7) in LB-amp medium at 37 ° C for 20 hours and washed with 0.1 M potassium phosphate buffer (pH 8.0). Then, the mixture was sonicated and centrifuged at 15, OOOrpm for 10 minutes to prepare 1.5 ml of each crude enzyme solution.
  • pKK223-3-CFP represents a eukaryotic amadoriase derived from E. coli JM109 (pKK223-3-CFP), and the other five enzymes are eukaryotic enzymes of the present invention. Shows madoriase. As is apparent from Table 2, the eukaryotic amadoriase obtained by the present invention hardly loses its activity even after 30 minutes of heat treatment at ⁇ 8.0 at 50 ° C, and exhibits excellent thermal stability. It turns out that it has.
  • E. coli JM109 (pKK223-3-CFP-T7) was inoculated into 10 L of LB-amp medium, and a jar mentor was used. The culture was stirred for 24 hours at a culture temperature of 30 ° C under conditions of aeration volume of lLZmin and stirring speed of 600 rpm.
  • the disrupted solution was centrifuged at 9, OOOrpm for 15 minutes, and ammonium sulfate was gradually added to the supernatant to 40% saturation to precipitate excess protein. After standing overnight at 4 ° C, centrifugation (9, OOOrpm, 4 ° C, 15 minutes) was performed, and the supernatant was collected.
  • the obtained active fraction was concentrated with Centribrep 10 (Amicon), buffer-substituted with buffer A, and applied to a Q-SepharoseFF (Amersham) column (1. Ocm X 8cm). did. Elution carried Buffer C (10 mM phosphate buffer, ImM EDTA, 5% grayed Riseroru, P H8) ⁇ Buffer D (10 mM phosphate buffer, ImM EDTA, 5% glycerol, 0. 5M NaCl, pH8) with a linear gradient of It was. When the obtained active fraction was analyzed by SDS-PAGE, a single band was confirmed (molecular weight of about 52,000).
  • Eupenicillium-derived eukaryotic amadoriase (SEQ ID NO: 2) gene recombinant plasmid (puc- EFP) (Patent Document 5, FERM BP-8131) DNA as a cocoon-type DNA, SEQ ID NO: 3, PCR reaction was performed using the primer No. 4 and Pyrobest DNA polymerase (Takara Bio Inc.) under the following conditions.
  • reaction solution was electrophoresed on a 1.0% agarose gel, and it was confirmed that about 1,300 bp of DNA was specifically amplified.
  • the eukaryotic amadoriase gene derived from the genus Eupenicillium amplified by PCR was ligated with the pUTElOOK 'vector (JP-A-6-292584) cleaved with the restriction enzyme Hpal, and transformed into E. coli JM109.
  • the body plasmid pUTElOOK'-EFP was obtained.
  • the E. coli strain JM109 (pUTE 100K'-EFP) carrying this recombinant plasmid pUTElOOK'-EFP was cultured in LB-amp medium at 37 ° C with shaking for 20 hours. I got a thing. The obtained cultured cells were washed and then sonicated to confirm the expression of eukaryotic amadoriase activity derived from the genus Eu penicillium.
  • E. coli strain JM109 (pUTElOOK'-EFP) was inoculated into 100 ml of LB-amp medium and cultured with shaking at 37 ° C for 20 hours to obtain a culture. The culture was collected by centrifugation at 7, OOOrpm for 5 minutes to obtain bacterial cells.
  • primers comprising DNA sequences of SEQ ID NOS: 5 and 6 were synthesized by a conventional method.
  • DNA of the recombinant plasmid pUTElOOK'-EFP obtained in (7) above as a cage using the primers of SEQ ID NOs: 5 and 6 and Pyrobest DNA polymerase (manufactured by Takara Bio Inc.), PCR reaction was performed under the same conditions.
  • the DNA fragment thus obtained was ligated with ligase, and Escherichia coli JM109 strain was transformed to obtain a recombinant plasmid pUTElOOK'-EFP-T1.
  • the plasmid pUTElOOK′—E FP DNA is PCR was performed under the same conditions as in (7) above using primers of SEQ ID NOs: 7 and 8 and Pyrobest DNA polymerase (manufactured by Takara Bio Inc.). Approximately 6, OOObp of amplified DNA was treated with restriction enzymes Dpnl and NspV, purified by conventional methods, ligated, and transformed into E. coli strain JM109 to obtain recombinant plasmid pUTElOOK'—EFP—T2. It was.
  • the plasmid pUTElOOK'-EFP DNA was changed to a cage type, SEQ ID NO: 9, 10 primers, Pyrobest DNA polymerase (Takara Bio) PCR reaction was performed under the same conditions as in (7) above.
  • the amplified DNA fragment of approximately 6, OOObp was treated with restriction enzymes Dpnl and SnaBI, and the DNA fragment was purified by a conventional method, ligated with ligase, transformed into E. coli strain JM109, and recombinant plasmid pUTElOOK. , ⁇ EFP ⁇ T3 was obtained.
  • plasmid pUTElOOK'-EFP-T2 DNA is used as a cocoon-type plasmid to introduce plasmid pUTElOOK '-by introducing a mutation in which histidine at position 388 in the amino acid sequence shown in SEQ ID NO: 2 is substituted with tyrosine.
  • the plasmid pUTElOOK ' was transformed into a plasmid pUTElOOK'-EFP T4 in the form of a plasmid by introducing a mutation in which the glycine at position 184 of the amino acid sequence shown in SEQ ID NO: 2 was replaced with aspartic acid.
  • EFP Obtained T5.
  • SEQ ID NO: 65 AAAGGTACCAGCATCTCCAAAGCCAAACTTG 3, (reverse primer)
  • the 184th glycine of the amino acid sequence described in SEQ ID NO: 2 is aspartic acid
  • the SEQ ID NO: 2 is described.
  • the 272nd asparagine of the amino acid sequence is aspartic acid
  • the 38th 8th histidine of the amino acid sequence described in SEQ ID NO: 2 is in the tyrosine in the plasmid pUTElOOK'—EFP-T3
  • the sequence is in the plasmid pUTElOOK'—EFP-T4.
  • E. coli strains JM109 (pUTElOOK'—EFP—T1), JM109 (pUTElOOK′—EFP—T2), JM109 (pUTElOOK′—EFP—T3), JM109, which carry the recombinant plasmid thus obtained (pUTElOOK′—EFP—T4) strain and JM109 (pUTElOOK′—EFP—T5) strain were cultured in an LB-amp medium at a culture temperature of 37 ° C. for 20 hours. Each of the obtained cultured cells was washed with 0.1 M potassium phosphate buffer (pH 8.0), subjected to ultrasonic crushing treatment, centrifuged at 15, OOOrpm for 10 minutes, and each crude enzyme solution 1. 5 ml was prepared.
  • E. coli JM109 breaks varying previous eukaryotic type amadoriase produced by strains, P H8. Residual enzyme activity in heat treatment at 50 ° C, 30 min at 0 was 2.8% of the activity before heat treatment.
  • the modified eukaryotic amadoriase produced by Escherichia coli JM109 (pUTElOOK'—EFP-T1) and E. coli JM109 (pUTEIOOK'—EFP—T2) is a non-modified eukaryotic amadoriase. Than in pH 8.0, 50 ° C, heat treatment for 30 minutes. The remaining enzyme activities were improved to 7.4% and 11.9%, respectively.
  • the modified eukaryotic amadoriase produced by E. coli JM109 (pUTElOOK'—EFP-T3), E. coli JM109 (pUTElOOK'—EFP—T4), and E.
  • the eukaryotic amadoriase obtained in the present invention was found to have excellent thermal stability.
  • PKK223-3 3-CFP-T7 is a mutation that substitutes aspartic acid for the 272nd asparagine, arginine for the 302nd histidine, and tyrosine for the 388th histidine in the amino acid sequence of the eukaryotic amadoriase described in SEQ ID NO: 1. Is included. Finally, by substituting mutations that would replace the 94th arginine with lysine, the 184th glycine with aspartic acid, and the 265th ferulalanin with leucine, finally 6 It was decided to make a heavy mutant.
  • the base sequence of the DNA encoding the eukaryotic amadoriase in the pKK223-3-CFP-T8 plasmid was determined using a multi-pillar DNA analysis system CEQ2000 (manufactured by Beckman Coulter). As a result, F265L, N272D , H302R and H388Y, mutations corresponding to each substitution have been introduced.
  • Recombinant plasmids PKK223-3-3-CFP-T8 and pKK223-3-3-CFP-T5 were double digested with restriction enzymes Kpnl and SnaBI, and a pKK223-3-CFP-T8 DNA fragment of about 500 bp was obtained.
  • Approximately 5.5 kb DNA fragments were separated from CFP-T5 DNA by agarose gel electrophoresis, purified by conventional methods, ligated with T4 DNA ligase, E. coli JM109 was transformed, and recombinant plasmid PKK223-3 — CFP— Obtained T9.
  • Recombinant plasmids ⁇ 223—3—CFP— ⁇ 9 and ⁇ 223—3—CFP— ⁇ 4 After digestion with the restriction enzyme Bglll, the approximately 900 bp DNA fragment from pKK223-3-CFP-T9 DNA and approximately 5. OkbDNA fragment from PKK223 3-CFP-T4 DNA are separated by agarose gel electrophoresis and purified by conventional methods. Ligation and ligation and transformation of E. coli JM109 gave recombinant plasmid pKK223-3-CFP-T10.
  • the base sequence of the DNA encoding the eukaryotic amadoriase in the pKK223-3-CFP-T10 plasmid was determined using a multi-pillar DNA analysis system CEQ 2000 (manufactured by Beckman Coulter). It became clear that mutations corresponding to each substitution of G184D, F265L, N272D, H302R and H388Y were introduced.
  • the plasmid PKK223-3 CFP- T10 produced in this way was dated March 16, 2007 at the National Institute of Advanced Industrial Science and Technology, National Institute of Advanced Industrial Science and Technology (AIST), 1-chome, 1-chome Tsukuba, Ibaraki, Japan. At the deposit number FERM BP-10800.
  • JM109 (pKK223-3 CFP- T7), JM109 (pKK223-3 CFP- T8), JM109 (pKK223-3 CFP- T9), JM109 (pKK223— 3— CFP— T10) was cultured with JM109 (pKK223— 3— CFP) in 1 ⁇ & 11 ⁇ medium at 37 ° 0 for 20 hours, and each cell was 0.1 M phosphate. After washing with potassium buffer solution (pH 8.0), the mixture was sonicated and centrifuged at 15, OOOrpm for 10 minutes to prepare 1.5 ml of each crude enzyme solution.
  • potassium buffer solution pH 8.0
  • the eukaryotic amadoriase obtained in the present invention is excellent in that it hardly loses activity not only by heat treatment for 60 minutes at 50 ° C for 30 minutes at pH 8.0. It can be seen that it has high thermal stability.
  • PH8.0 potassium phosphate buffer

Abstract

 本発明の目的は、従来の真核型アマドリアーゼが有する熱安定性に関する欠点を克服し、糖尿病の臨床診断用酵素や酵素センサーの用途に熱安定性の優れた真核型アマドリアーゼを提供すること。本発明は、Coniochaeta属若しくはEupenicillium属由来の真核型アマドリアーゼをコードするDNAに変異を加え、特定のアミノ酸残基に置換を導入し、熱安定性に関する欠点を克服した真核型アマドリアーゼ、その遺伝子及び組換え体DNA、並びに熱安定性に優れた真核型アマドリアーゼの製造法に関する。

Description

明 細 書
熱安定性に優れた真核型アマドリアーゼ、その遺伝子及び組換え体 DN A、並びに熱安定性に優れた真核型アマドリアーゼの製造法
技術分野
[0001] 本発明は、熱安定性に優れた真核型アマドリアーゼ、その遺伝子及び組換え体 D NA、並びに熱安定性に優れた真核型アマドリアーゼの製造法に関する。
背景技術
[0002] アマドリアーゼは、酸素の存在下で、ィミノ 2酢酸若しくはその誘導体(「アマドリ化合 物」とも言う)を酸ィ匕して、ダリオキシル酸若しくは α—ケトアルデヒド、アミノ酸若しくは ペプチド、及び過酸化水素を生成する反応を触媒する。
[0003] アマドリアーゼは、細菌、酵母、真菌力も見出されている(例えば、特許文献 1〜4 照)。 Aspergillus属、 Penicillium属、 Fusarium属、 Picma属、し oniocnaeta晨、 Eupeni cilliumj¾、 Pyrenochaeta晨、 ArthrmiumJ¾、 Neocosmospora厲、 Corynebacterium厲、 Agrobacterium属からアマドリアーゼが精製され、各アマドリアーゼのアミノ酸配列が 決定されている(例えば、非特許文献 1〜4、及び特許文献 5〜9参照)。
[0004] これらのアマドリアーゼは、原核型アマドリア一ゼと真核型アマドリアーゼの 2つのタ イブに分類することができる。原核生物由来の原核型アマドリア一ゼと真核生物由来 の真核型アマドリア一ゼとは互いに、それぞれのタイプ内においてのみアミノ酸配列 が高 、相同性を有する一方で、タイプを異とする真核型と原核型アマドリア一ゼのタ ィプ間においては、アミノ酸配列の相同性は極めて低い。
[0005] 原核型アマドリアーゼは、補酵素との結合が共有結合ではないため、酵素の精製 中、若しくは保存中において、一部の補酵素が外れて酵素活性を失ってしまうという 問題があった。これに対し、真核型アマドリアーゼは、補酵素との結合が共有結合の ため、原核型アマドリアーゼで確認された上記の問題は認められず、従って実用上 優れた性質を有している。
[0006] さて、糖尿病の臨床診断分野において、糖尿病患者の診断や症状管理のための 重要な血糖コントロールマーカーとして、糖ィ匕ヘモグロビン (HbAlc)が注目されて いる。この HbAlcを迅速かつ簡便に測定する方法として、アマドリアーゼを用いる酵 素的方法、すなわち、 HbAlcをプロテアーゼなどで分解し、遊離させた糖ィ匕アミノ酸 若しくは糖ィ匕ペプチドを測定する方法が提案されている(例えば、特許文献 10〜13 参照)。
[0007] アマドリアーゼを糖尿病の臨床診断用酵素としてキット試薬に処方する上では、酵 素の性質として熱安定性が要求される。 Aspergillus terreus GP1株由来の真核型ァ マドリアーゼは 45°C、 10分間の熱処理で約 40%の残存活性を示している(例えば、 非特許文献 2参照)。 Fusarium oxysporum S 1F4株由来の真核型アマドリアーゼ は 45°C、 5分間の熱処理で約 10%の残存活性を示している(例えば、非特許文献 5 参照)。また、 Coniochaetidium savoryi ATCC36547株由来の真核型アマドリア一 ゼは 37°C以下、 30分間の熱処理で 80%の残存活性を示している(例えば、特許文 献 14参照)。さらに、 Arthrinium sp. T06株、 Pyrenochaeta sp. YH807株、 Leptos phaeria nodorum NBRC7480株、 Pleospora herbarum NBRC32012株、 Ophiobo lus herpotrichus NBRC6158株由来の各真核型アマドリアーゼは 40°C以下、 30分 間の熱処理で 80%の残存活性を示している。また、 Neocosmospora vasinfecta NB RC7590株由来の真核型アマドリアーゼは 45°C以下、 30分間の熱処理で 80%の 残存活性を示している。 Curvularia clavata YH923株由来の真核型アマドリアーゼ は 50°C以下、 30分間の熱処理で 80%の残存活性を示している(例えば、特許文献 14参照)。
[0008] しかし、これらの真核型アマドリアーゼを臨床診断用の酵素として使用する上では、 さらなる熱安定性が必要とされる。すなわち、最も熱安定性の高い Curvularia clavata YH923株由来の酵素で、 50°C以下、 30分間の熱処理で 80%の残存活性を示し ているが、糖尿病の臨床診断用酵素としてキット試薬に処方することや、酵素センサ 一としての用途を考えると、さらにより高い熱安定性が要求されている。
[0009] 一般的な技術として、酵素の熱安定性を高めるためには、酵素をコードする DNA に変異を加え、酵素のアミノ酸に置換を導入し、熱安定性の優れた酵素を選抜する 方法が知られている。また、相同性の高い酵素において、アミノ酸置換によって熱安 定性を高めたという例がすでに知られている場合には、その情報をもとに熱安定性の 向上を予想することが可能である。
実際、コリネパクテリゥム属細菌由来の原核型アマドリアーゼについては、数個のァ ミノ酸を置換することによって、当該原核型アマドリア一ゼの熱安定性が向上すること が示されており(例えば、非特許文献 5参照)、他の原核型アマドリアーゼへの熱安定 性の導入も可能なことであろう。
[0010] しかし、上記で述べたように、アマドリアーゼのアミノ酸配列は、真核型アマドリア一 ゼと原核型アマドリアーゼのタイプ間において相同性が極めて低いため、コリネバタ テリゥム属細菌由来の原核型アマドリア一ゼの熱安定性に関与するアミノ酸変異につ いての情報をもとに、真核型アマドリア一ゼの熱安定性の向上を予想することは不可 能であった。
また、公知の真核型アマドリアーゼについて、アミノ酸の置換によって熱安定性を向 上させたという報告は一例もなぐ真核型アマドリア一ゼの熱安定性に関する既存の 情報を利用することはできない。実際に真核型アマドリアーゼタイプの熱安定性を高 めるために配列中のどのアミノ酸を置換すればよいかは、鋭意具体的な研究を要す ることとなる。
[0011] 特許文献 1 :特公平 5— 33997号公報
特許文献 2:特開 2000— 270855号公報
特許文献 3:特開平 7— 289253号公報
特許文献 4:特開平 8— 336386号公報
特許文献 5:特開 2003 - 235585号公報
特許文献 6:特開 2004 - 275063号公報
特許文献 7 :国際公開第 2004Z104203号パンフレット
特許文献 8:特開平 11— 155579号公報
特許文献 9:特開 2003 - 79386号公報
特許文献 10:特開 2001— 95598号公報
特許文献 11:特公平 05 - 33997号公報
特許文献 12:特開平 11 127895号公報
特許文献 13 :国際公開第 97Z13872号パンフレット 特許文献 14 :特開 2004— 275013号公報
非特許文献 1 : Arch. Microbiol. 178, 344- 50, 2002
非特許文献 2 : Eur. Biochem. 242, 499 - 505, 1996
非特許文献 3 : Mar. Biotechnol. 6, 625 - 32, 2004
非特許文献 4 : Biosci. Biotechnol. Biochem. 59, 487- 91, 1995 非特許文献 5 :Appl. Environ. Microbiol. 69, 139 -45, 2003
発明の開示
発明が解決しょうとする課題
[0012] 本発明が解決しょうとする課題は、従来の真核型アマドリアーゼが有する熱安定性 に関する欠点を克服し、糖尿病の臨床診断用酵素や酵素センサーの用途に熱安定 性の優れた真核型アマドリアーゼを提供することにある。
課題を解決するための手段
[0013] 本発明者らは、前記課題解決のために鋭意研究を重ねた結果、 Coniochaeta属由 来の真核型アマドリアーゼ(FPOX— CE)若しくは Eupenicillium属由来の真核型アマ ドリアーゼ (FPOX— EE)における特定のアミノ酸残基を特定のアミノ酸残基に置換 することにより、上記課題を解決しうることを見出し、本発明を完成した。
[0014] すなわち、本発明は、以下の発明を提供するものである。
(1)以下の(a)及び Z又は (b)の特徴を有する真核型アマドリアーゼ:
(a) pH8. 0において 50°C、 30分間の熱処理で 83%以上活性が残存する;
(b)配列番号 1記載の真核型アマドリアーゼのアミノ酸配列と 75%以上の相同性を 有するアミノ酸配列を有する。
(2)以下の(a)から (c)よりなる群から選択されるアミノ酸に対応する位置で 1つ又は それ以上のアミノ酸の改変若しくは変異を有する、上記(1)記載の真核型アマドリア 一 IT:
(a)配列表の配列番号 1記載のアミノ酸配列の 184位のグリシン;
(b)配列表の配列番号 1記載のアミノ酸配列の 272位のァスパラギン;
(c)配列表の配列番号 1記載のアミノ酸配列の 388位のヒスチジン。
(3)以下の(a)及び (b)の特徴を有する真核型アマドリアーゼ: (a) 50°C、 30分間の熱処理で 83%以上活性が残存する;
(b)配列表の配列番号 1に示されるアミノ酸配列に 1又は数個のアミノ酸の欠失、挿 入、付加、及び Z又は置換がなされたアミノ酸配列を有する。
(4)配列表の配列番号 1記載のアミノ酸配列において、 94位のアルギニン、 184位 のグリシン、 265位のフエ-ルァラニン、 272位のァスパラギン、 302位のヒスチジン、 若しくは 388位のヒスチジンの位置で 1つ又はそれ以上のアミノ酸の改変若しくは変 異を有する真核型アマドリアーゼ。
(5)配列表の配列番号 1記載のアミノ酸配列にぉ 、て、以下の(a)から (f)よりなる群 から選択される 1つ又はそれ以上の改変若しくは変異の組み合わせ力 なる真核型 アマドリアーゼ:
(a) 94位のァノレギニンがリジンに置換されて!ヽる;
(b) 184位のグリシンがァスパラギン酸に置換されている;
(c) 265位のフエ-ルァラニンがロイシンに置換されて!、る;
(d) 272位のァスパラギンがァスパラギン酸に置換されて!、る;
(e) 302位のヒスチジンがアルギニンに置換されて!、る;
(f) 388位のヒスチジンがチロシンに置換されて!、る。
(6)配列表の配列番号 1記載のアミノ酸配列にぉ 、て、 272位のァスパラギンがァス パラギン酸に置換され、 302位のヒスチジンがアルギニンに置換され、かつ、 388位 のヒスチジンがチロシンに置換されている真核型アマドリアーゼ。
(7)以下の(a)及び Z又は (b)の特徴を有する真核型アマドリアーゼ:
(a) pH8. 0において 50°C、 30分間の熱処理で 50%以上活性が残存する;
(b)配列表の配列番号 2記載の真核型アマドリアーゼのアミノ酸配列と 75%以上の 相同性を有するアミノ酸配列を有する。
(8)以下の(a)及び (b)の特徴を有する真核型アマドリアーゼ:
(a) 50°C、 30分間の熱処理で 50%以上活性が残存する;
(b)配列表の配列番号 2に示されるアミノ酸配列に 1又は数個のアミノ酸の欠失、挿 入、付加、及び Z又は置換がなされたアミノ酸配列を有する。
(9)配列表の配列番号 2記載のアミノ酸配列において、 184位のグリシン、 272位の ァスパラギン、若しくは 388位のヒスチジンの位置で 1つ又はそれ以上のアミノ酸の改 変若しくは変異を有する真核型アマドリアーゼ。
(10)配列表の配列番号 2記載のアミノ酸配列にぉ 、て、以下の(a)から (c)よりなる 群力 選択される 1つ又はそれ以上の改変若しくは変異の組み合わせ力 なる真核 型アマドリアーゼ:
(a) 184位のグリシンがァスパラギン酸に置換されている;
(b) 272位のァスパラギンがァスパラギン酸に置換されて!、る;
(c) 388位のヒスチジンがチロシンに置換されて!、る。
(11)配列表の配列番号 2記載のアミノ酸配列にぉ 、て、 184位のグリシンがァスパラ ギン酸に置換され、 272位のァスパラギンがァスパラギン酸に置換され、かつ、 388 位のヒスチジンがチロシンに置換されている真核型アマドリアーゼ。
(12)上記(1)〜(11)のいずれか 1に記載のアミノ酸配列をコードする真核型アマドリ ァーゼ遺伝子。
(13)上記(12)記載の真核型アマドリアーゼ遺伝子を含む組換えベクター。
(14)上記(13)記載の組換えベクターを含む宿主細胞。
(15)真核型アマドリアーゼを生成する方法であり、以下の段階を含む方法:
(a)上記(14)記載の宿主細胞を培養する段階;
(b)宿主細胞に含まれる真核型アマドリアーゼ遺伝子を発現させる段階;
(c)培養物力も真核型アマドリア一ゼを単離する段階。
(16)上記(1)〜(11)のいずれかに記載の真核型アマドリアーゼを含む、糖ィ匕タンパ ク質の測定において使用するためのキット。
(17)上記(1)〜(11)のいずれかに記載の真核型アマドリアーゼを含む、糖化へモ グロビンの測定において使用するためのキット。
(18)下記の (a)力 (f)の理化学的性質を有する真核型アマドリアーゼ:
(a)作用及び基質特異性:酸素存在下でフルクトシルバリルヒスチジンに作用し、 a ーケトアルデヒド、ノ リルヒスチジン及び過酸ィヒ水素を生成する反応を触媒する;
(b)至適 pH : pH6. 0〜8. 0 ;
(c)作用適温の範囲: 20〜45°C; (d)熱安定性: pH8. 0において 50°C、 30分間の熱処理で 83%以上の活性が残存;
(e)安定 pHの範囲: pH6. 0〜9. 0 ;
(f)分子量:約 52, 000 (SDS - PAGE) o
発明の効果
[0015] 本発明によれば、熱安定性の優れた真核型アマドリアーゼ及びそれをコードする遺 伝子等が提供され、糖尿病の診断用酵素等として、また、糖尿病マーカーの測定用 キットに有利に利用される。
図面の簡単な説明
[0016] [図 1]配列番号 1で示されるアミノ酸配列(最上段)及び該配列と 75%以上の相同性 を有するアミノ酸配列力もなる真核型アマドリアーゼ配列を整列させた図である。 発明を実施するための最良の形態
[0017] 以下、本発明を詳細に説明する。
アマドリアーゼとは、フルクトシルアミノ酸ォキシダーゼ、フルクトシルアミンォキシダ ーゼともいい、酸素の存在下で、ィミノ 2酢酸若しくはその誘導体 (アマドリ化合物)を 酸化して、ダリオキシル酸若しくは α—ケトアルデヒド、アミノ酸若しくはペプチド、及 び過酸化水素を生成する反応を触媒する酵素のことを ヽぅ。
アマドリアーゼは、自然界に広く分布しており、微生物や、動物若しくは植物起源の 酵素を探索することにより、得ることができる。微生物においては、例えば、糸状菌、 酵母、若しくは細菌等力 得ることができる。
[0018] 本発明の真核型アマドリアーゼは、配列番号 1に示されるアミノ酸配列を有する Con iochaeta属若しくは配列番号 2に示されるアミノ酸配列を有する Eupenicillium属由来 の真核型アマドリアーゼ (FPOX— CE、 FPOX-EE)に基づき作製された、熱安定 性の優れた、真核型アマドリアーゼの改変体である。このような変異体の例として、例 えば、また、配列番号 1若しくは 2と高い相同性 (例えば、 75%以上、好ましくは、 85 %以上、より好ましくは 95%以上)を有するアミノ酸配列を有する真核型アマドリア一 ゼ、及び、配列番号 1若しくは配列番号 2のアミノ酸配列で、 1から数個のアミノ酸が 改変若しくは変異、又は、欠失、置換、付加及び Z又は挿入されたアミノ酸配列を有 する真核型アマドリアーゼを挙げることが出来る。尚、請求の範囲に記載された、熱 安定性及び Z又はアミノ酸配列に関する条件を満たす限り、例えば、 Eupenicillium 晨、 PyrenochaetaJ禹、 Arthrinium属、し urvlana属、 Neocosmospora属、 Peniciliium属、 Fusarium属、若しくは Aspergillus属のような、他の糸状菌若しくは酵母由来の真核型 アマドリアーゼに基づき作製されたものでもよ!/、。
[0019] これらの真核型アマドリアーゼをコードする本発明の遺伝子(以下、単に「真核型ァ マドリアーゼ遺伝子」とも 、う)を得るには、通常一般的に用いられて 、る遺伝子のク ローニング方法が用いられる。例えば、真核型アマドリアーゼ生産能を有する微生物 菌体ゃ種々の細胞から常法、例えば、 Current Protocols in Molecular Biol ogy (WILEY Interscience, 1989)記載の方法により、染色体 DNA又は mRN Aを抽出することができる。さらに mRNAを铸型として cDNAを合成することができる 。このようにして得られた染色体 DNA又は cDNAを用いて、染色体 DNA又は cDN Aのライブラリーを作製することができる。
[0020] ついで、上記真核型アマドリアーゼのアミノ酸配列に基づき、適当なプローブ DNA を合成して、これを用いて染色体 DNA又は cDNAのライブラリ一力ゝら真核型アマドリ ァーゼ遺伝子を選抜する方法、あるいは、上記アミノ酸配列に基づき、適当なプライ マー DNAを作製して、 5, RACE法や 3, RACE法などの適当なポリメラーゼ連鎖反 応 (PCR法)により、真核型アマドリアーゼをコードする目的の遺伝子断片を含む DN Aを増幅させ、これらの DNA断片を連結させて、目的の真核型アマドリアーゼ遺伝 子の全長を含む DNAを得ることができる。
このようにして得られた真核型アマドリアーゼをコードする遺伝子の好ま 、一例と して、 Coniochaeta属由来の真核型アマドリアーゼ遺伝子(特許文献 5)の例などが挙 げられる。
[0021] これらの真核型アマドリアーゼ遺伝子は、常法通り各種ベクターに連結されている ことが、取扱い上好ましい。例えば、 Coniochaeta sp. NISL9330株由来の真核型ァ マドリアーゼ遺伝子をコードする DNAを含む糸且換え体プラスミド pKK223— 3— CF P (特許文献 5)から、 QIAGEN (キアゲン社製)を用いることにより、真核型アマドリア ーゼ遺伝子をコードする DNAを、抽出、精製して得ることができる。
[0022] なお、本発明において用いることのできるベクターとしては、上記プラスミドに限定さ れることなくそれ以外の、例えば、ノ クテリオファージ、コスミド等の当業者に公知の 任意のベクターを用いることができる。具体的には、例えば、 pBluescriptll SK+ (S TRATAGENE社製)等が好まし 、。
[0023] 真核型アマドリアーゼ遺伝子の変異処理は、企図する変異形態に応じた、公知の 任意の方法で行うことができる。すなわち、真核型アマドリアーゼ遺伝子あるいは当 該遺伝子の組み込まれた組換え体 DNAと変異原となる薬剤とを接触 ·作用させる方 法;紫外線照射法;遺伝子工学的手法;又は蛋白質工学的手法を駆使する方法等 を広く用いることができる。
上記変異処理に用いられる変異原となる薬剤としては、例えば、ヒドロキシルァミン 、 N—メチル— N, 一-トロ— N— -トロソグァ二ジン、亜硝酸、亜硫酸、ヒドラジン、蟻 酸、若しくは 5 -プロモウラシル等を挙げることができる。
この接触'作用の諸条件は、用いる薬剤の種類等に応じた条件を採ることが可能で あり、現実に所望の変異を真核型アマドリアーゼ遺伝子において惹起することができ る限り特に限定されない。通常、好ましくは 0. 5〜12Mの上記薬剤濃度において、 2 0〜80°Cの反応温度下で 10分間以上、好ましくは 10〜 180分間接触 ·作用させるこ とで、所望の変異を惹起可能である。紫外線照射を行う場合においても、上記の通り 常法に従い行うことができる(現代化学、 p24〜30、 1989年 6月号)。
[0024] 蛋白質工学的手法を駆使する方法としては、一般的に、 Site - Specific Mutage nesisとして知られる手法を用いることができる。例えば、 Kramer法 (Nucleic Acid s Res. , 12, 9441 (1984): Methods Enzymol. , 154, 350 (1987): Gene, 37 , 73 (1985) )、 Eckstein法(Nucleic Acids Res. , 13, 8749 (1985): Nucleic Acids Res. , 13, 8765 (1985): Nucleic Acids Res, 14, 9679 (1986) )、 Kun kel法(Proc. Natl. Acid. Sci. U. S. A. , 82, 488 (1985): Methods Enzy mol. , 154, 367 (1987) )等力挙げられる。
[0025] また、一般的なポリメラーゼチェインリアクション(Polymerase Chain Reaction)と して知られる手法を用いることもできる(Technique, 1, 11 (1989) )。なお、上記遺 伝子改変法の他に、有機合成法又は酵素合成法により、直接所望の改変真核型ァ マドリアーゼ遺伝子を合成することもできる。 [0026] 上記方法により得られる真核型アマドリアーゼ遺伝子の DNA塩基配列の決定若し くは確認を行う場合には、例えば、マルチキヤピラリー DNA解析システム CEQ2000 (ベックマン'コールター社製)等を用いることにより行うことができる。
[0027] 上述の如くして得られた真核型アマドリアーゼ遺伝子を、常法により、バタテリオファ ージ、コスミド、又は原核細胞若しくは真核細胞の形質転換に用いられるプラスミド等 のベクターに組み込み、各々のベクターに対応する宿主を常法により、形質転換又 は形質導入をすることができる。例えば、宿主として、エツシェリシァ属に属する微生 物、例えば得られた組換え体 DNAを用いて、例えば、大腸菌 K 12株、好ましくは 大腸菌 JM109株、大腸菌 DH5 α株(ともにタカラバィォ社製)等を形質転換又はそ れらに形質導入してそれぞれの菌株を得る。
[0028] 次に、本発明の真核型アマドリアーゼの生産株を選抜するためには、例えば、次の ような方法を用いることができる。
まず、得られた上記形質転換体がコロニーを形成した LB寒天培地から滅菌したビ ロード生地等で新しい寒天培地にレプリカを数枚とり、培養する。レプリカをとつた寒 天培地のコロニーが十分な大きさになったら、リゾチームなどの溶菌剤に浸した膜を 培地に重ね、 37°Cで、 1時間ほど静置し、溶菌させる。このとき溶菌した粗酵素液が 膜に吸着する。
[0029] 粗酵素液を吸着させた膜を、 55°Cの条件で 1時間静置した後、基質であるフル外 シルバリン、パーォキシダーゼ、 TOOS、 4ーァミノアンチピリンを含む 0. 1M リン酸 カリウム緩衝液 (PH8. 0)に浸した膜と重ね合わせ、紫色の発色の度合いを観察する 。改変前の真核型アマドリアーゼ生産株についても同様の工程で発色試験を行い、 その比較により目的とする形質転換体を選抜する。
[0030] この様にして、優れた熱安定性を有する本発明の真核型アマドリアーゼの生産能を 有する形質転換体を得ることができる。
[0031] さらに必要により、熱安定性の真核型アマドリアーゼの生産能を有する形質転換体 を用い、改変された該真核型アマドリアーゼ遺伝子に対して、上記に示した改変方 法により、さらに変異導入を繰り返し行うことにより、さらに熱安定性の優れた改変され た真核型アマドリアーゼ及びその生産能を有する形質転換体を得ることもできる。 [0032] 例えば、このようにして得られた熱安定性の優れた真核型アマドリアーゼを生産す る形質転換体の一例として、 PH8. 0において 50°C、 30分間の熱処理による残存活 性率が 83%以上、好ましくは 90%以上、より好ましくは 95%以上になった真核型ァ マドリアーゼを生産する大腸菌 JM109 (pKK223— 3— CFP-T7)株を挙げること ができる。一例として示した本発明の真核型アマドリアーゼをコードする遺伝子を含 むプラスミド PKK223— 3— CFP—T7は、 日本国茨城県つくば巿東 1丁目 1番地中 央第 6所在の独立行政法人産業技術総合研究所特許生物寄託センターに 2006年 3月 31日付けで寄託され、受託番号 FERM BP— 10593が付与されている。
[0033] なお、アミノ酸配列の相同性は、 GENETYX—Mac (Software Development社 製)のマキシマムマッチングやサーチホモロジ一等のプログラム、又は DNASIS Pr o (日立ソフト社製)のマキシマムマッチングやマルチプルァライメント等のプログラム により計算することができる。
[0034] また、「アミノ酸に対応する位置」を特定する方法としては、例えばリップマン—パー ソン法等の公知のアルゴリズムを用いてアミノ酸配列を比較し、各真核型アマドリア一 ゼのアミノ酸配列中に存在する保存アミノ酸残基に最大の相同性を与えることにより 行うことができる。真核型アマドリアーゼのアミノ酸配列をこのような方法で整列させる ことにより、アミノ酸配列中にある挿入、欠失にかかわらず、相同アミノ酸残基の各真 核型アマドリアーゼ配列における配列中の位置を決めることが可能である。相同位置 は、三次元構造中で同位置に存在すると考えられ、対象となる真核型アマドリアーゼ の特異的機能に関して類似した効果を有することが推定できる。
[0035] なお、本発明において、「配列番号 1記載のアミノ酸配列の 184位のグリシンに対応 する位置」とは、確定した真核型アマドリアーゼのアミノ酸配列を、配列番号 1に示さ れる Coniochaeta属由来の真核型アマドリアーゼのアミノ酸配列と比較した場合に、 配列番号 1の真核型アマドリアーゼの 184位のグリシンに対応するアミノ酸を意味す るものである。これにより、上記の「相当する位置のアミノ酸残基」を特定する方法でァ ミノ酸配列を整列させた図 1により特定することができる。
すなわち、 Eupenicillium属由来の真核型アマドリアーゼでは 184位のグリシン、 Pyr enochaeta属由来の真核型アマドリアーゼでは 184位のグリシン、 Arthrinium属由来 の真核型アマドリアーゼでは 184位のグリシン、 Neocosmospora属由来の真核型アマ ドリアーゼでは 184位のグリシン、 Penicillium属由来の真核型アマドリアーゼでは 184 位のセリン、 Aspergillus属由来の真核型アマドリアーゼでは 183位のグリシンである。
[0036] また、「配列番号 1記載のアミノ酸配列の 272位のァスパラギンに対応する位置」と は、確定した真核型アマドリアーゼのアミノ酸配列を、配列番号 1に示される Coniocha eta属由来の真核型アマドリアーゼのアミノ酸配列と比較した場合に、配列番号 1記 載のアミノ酸配列の 272位のァスパラギンに対応するアミノ酸を意味するものである。 これも上記の方法でアミノ酸配列を整列させた図 1より特定することができる。
すなわち、 Eupenicillium属由来の真核型アマドリアーゼでは 272位のァスパラギン 、 Pyrenochaeta属由来の真核型アマドリアーゼでは 270位のァスパラギン、 Arthriniu m属由来の真核型アマドリアーゼでは 272位のァスパラギン、 Neocosmospora属由来 の真核型アマドリアーゼでは 272位のァスパラギン、 Penicillium属由来の真核型アマ ドリアーゼでは 272位のァスパラギン、 Aspergillus属由来の真核型アマドリアーゼで は 272位のァスパラギンである。
[0037] さらに、「配列番号 1記載のアミノ酸配列の 388位のヒスチジンに対応する位置」とは 、確定した真核型アマドリアーゼのアミノ酸配列を、配列番号 1に示される Coniochaet a属由来の真核型アマドリアーゼのアミノ酸配列と比較した場合に、配列番号 1の真 核型アマドリアーゼの 388位のヒスチジンに対応するアミノ酸を意味するものである。 これも上記の方法でアミノ酸配列を整列させた図 1より特定することができる。
すなわち、 Eupenicillium属由来の真核型アマドリアーゼでは 388位のヒスチジン、 P yrenochaeta属由来の真核型アマドリアーゼでは 386位のヒスチジン、 Arthrinium属由 来の真核型アマドリアーゼでは 389位のヒスチジン、 Neocosmospora属由来の真核型 アマドリアーゼでは 388位のヒスチジン、 Penicillium属由来の真核型アマドリアーゼで は 388位のヒスチジン、 Aspergillus属由来の真核型アマドリアーゼでは 388位のヒス チジンである。
[0038] 上記のようにして得られた熱安定性の優れた真核型アマドリアーゼの生産能を有す る菌株を用いて、当該真核型アマドリアーゼを生産するには、この菌株を通常の固体 培養法で培養してもよいが、可能な限り液体培養法を採用して培養するのが好まし い。
[0039] また、上記菌株を培養する培地としては、例えば、酵母エキス、トリプトン、ペプトン、 肉エキス、コーンスティープリカ一あるいは大豆若しくは小麦ふすまの浸出液等の 1 種以上の窒素源に、塩ィ匕ナトリウム、リン酸第 1カリウム、リン酸第 2カリウム、硫酸マグ ネシゥム、塩化マグネシウム、塩化第 2鉄、硫酸第 2鉄あるいは硫酸マンガン等の無 機塩類の 1種以上を添加し、さらに必要により糖質原料、ビタミン等を適宜添加したも のが用いられる。
なお、培地の初発 ρΗは、 ρΗ7〜9に調整するのが適当である。
また、培養は、 20〜42°Cの培養温度、好ましくは 37°C前後の培養温度で 4〜 24 時間、さらに好ましくは 37°C前後の培養温度で 4〜8時間、通気攪拌深部培養、振 盪培養、静置培養等により実施するのが好ましい。
[0040] 培養終了後、該培養物より真核型アマドリアーゼを採取するには、通常の酵素採取 手段を用いて得ることができる。例えば、常法により菌体を、超音波破壊処理、磨砕 処理等するか、又はリゾチーム等の溶菌酵素を用いて本酵素を抽出する力、又はト ルェン等の存在下で振盪若しくは放置して溶菌を行わせ、本酵素を菌体外に排出さ せることができる。そして、この溶液を濾過、遠心分離等して固形部分を除去し、必要 によりストレプトマイシン硫酸塩、プロタミン硫酸塩、若しくは硫酸マンガン等により核 酸を除去したのち、これに硫安、アルコール、アセトン等を添カ卩して分画し、沈澱物を 採取し、真核型アマドリア一ゼの粗酵素を得る。
[0041] 上記真核型アマドリア一ゼの粗酵素よりさらに真核型アマドリアーゼ精製酵素標品 を得るには、例えば、セフアデッタス、ウルトロゲル若しくはノィォゲル等を用いるゲル 濾過法;イオン交換体を用いる吸着溶出法;ポリアクリルアミドゲル等を用いる電気泳 動法;ヒドロキシアパタイトを用いる吸着溶出法;蔗糖密度勾配遠心法等の沈降法;ァ フィ-ティクロマトグラフィー法;分子ふる 、膜若しくは中空糸膜等を用 、る分画法等 を適宜選択し、又はこれらを組み合わせて実施することにより、精製された真核型ァ マドリアーゼ酵素標品を得ることができる。このようにして、所望の熱安定性の優れた 真核型アマドリアーゼを得ることができる。
[0042] また、本発明の「熱安定性の優れた」とは、以下に述べる活性測定方法及び熱安定 性測定方法に記載した反応条件下で、配列番号 1の真核型アマドリアーゼにつ 、て は、 pH8. 0において 50°C、 30分間熱処理した後の残存活性比が熱処理前の活性 に対して 83%以上、好ましくは 90%以上、より好ましくは 95%以上残存していること 、配列番号 2の真核型アマドリアーゼについては、 pH8. 0において 50°C、 30分間熱 処理した後の残存活性が熱処理前の活性に対して 50%以上、好ましくは 70%以上 残存していることをいう。熱安定性の優れた真核型アマドリアーゼは、該酵素含有製 品等における保存性が著しく向上するため、産業上非常に有利である。
なお、熱安定性の優れた真核型アマドリアーゼは、タンパク質の構造自体が高度に 安定ィ匕しており、したがって、例えば、タンパク質のプロテアーゼに対する耐性能も向 上している。
アマドリアーゼによる HbAlc測定の際、 HbAlcをプロテアーゼで分解させた後、 アマドリアーゼを作用させるわけだ力 その際、プロテアーゼ耐性能が高いアマドリア ーゼを用いることは、非常に有用である。なぜなら本測定系においてプロテアーゼは 、 HbAlcだけではなくアマドリアーゼに対しても作用してしまい、 HbAlcの測定値に 悪影響を及ぼしてしまうからである。プロテアーゼ耐性能を有するアマドリア一ゼを用 いることで、プロテアーゼによるアマドリアーゼの分解が防がれ、分離操作が不要か つ、より正確な測定が可能になる。また、これまで不可能だった高濃度でのプロテア ーゼ処理も可能となり、測定値の精度が向上させることが可能になる。また、プロテア ーゼ反応の短時間化を図ることができ、 HbAlcの迅速測定にもつなげることができ る。
また、本発明の「プロテアーゼ耐性能を有する」とは、真核型アマドリアーゼについ て、 pH8. 0において 37°C、 30分間、 50mUのプロテアーゼ処理した後の残存活性 比がプロテアーゼ処理前の活性に対して 40%以上、好ましくは 60%以上、より好ま しくは 80%以上残存していることをいう。例えば、プロテアーゼ耐性能測定方法は、 アマドリアーゼ活性が約 0. 05UZmlとなるように、 0. 1M リン酸緩衝液 (pH8. 0) でアマドリアーゼ酵素液若しくは粗酵素液を希釈し、各サンプルに 50mUの中性プロ テアーゼ (Roche社製)をカ卩えた後、 37°Cで 30分間加温し、中性プロテアーゼ処理 前と処理後のサンプル中に含まれる酵素活性を測定し、残存活性比を求めることで プロテアーゼ耐性能を評価できる。
[0043] 真核型アマドリアーゼの活性の測定方法、基質親和性測定方法及び熱安定性測 定方法としては、種々の方法を用いることができる力 一例として、以下に、本発明で 用いる真核型アマドリアーゼ活性の測定方法及び熱安定性測定方法につ!ヽて説明 する。
[0044] (真核型アマドリアーゼ活性の測定方法)
本発明における真核型アマドリアーゼの酵素活性の測定方法としては、酵素の反 応により生成する過酸化水素量を測定する方法や酵素反応により消費する酸素量を 測定する方法などが主な測定方法として挙げられる。以下に、一例として、過酸化水 素量を測定する方法にっ 、て示す。
[0045] 以下、本発明における真核型アマドリアーゼの活性測定には、断りのない限り、フ ルクトシルバリンを基質として用いる。なお、酵素力価は、フルクトシルバリンを基質と して測定したとき、 1分間に 1 μ molの過酸ィ匕水素を生成する酵素量を 1Uと定義した フルクトシルバリン等の糖ィ匕アミノ酸、及びフルクトシルノ リルヒスチジン等の糖ィ匕ぺ プチドは、阪上らの方法に基づき合成、精製した (特開 2001— 95598号公報参照)
[0046] A.試薬の調製
(1)試薬 l : POD— 4 AA溶液
1. OkUのパーォキシダーゼ(キッコーマン社製)、 lOOmgの 4 ァミノアンチピリン (東京化成社製)を 0. 1Mのリン酸カリウム緩衝液 (pH8. 0)に溶解し、 1Lに定容す る。
(2)試薬 2 :TOOS溶液
500mgの TOOS (同仁ィ匕学社製)をイオン交換水に溶解し、 lOOmlに定容する。
(3)試薬 3 :基質溶液(150mM ;終濃度 5mM)
フルクトシルバリン 417mgをイオン交換水に溶解して 10mlに定容する。
[0047] B.測定法
2. 7mlの試薬 1, 100 1の試薬 2、及び 100 1の酵素液を混和し、 37°Cで 5分間 予備加温する。その後、試薬 3を 100 1加えて良く混ぜた後、分光光度計 (U— 200 0A、日立社製)により、 555nmにおける吸光度を測定する。測定値は、 555nmにお ける 1分後から 3分後の 1分間あたりの吸光度変化とする。なお対照液は、 100 1の 試薬 3の代わりに 100 1のイオン交換水をカ卩える以外は前記と同様にしたものであ る。これをあらかじめ作製しておいた過酸ィ匕水素の標準溶液を試薬 3の代わりに、ま た酵素液の代わりにイオン交換水を用い、その生成色素量との関係を調べたグラフ を用意する。このグラフを用いて、 37°C、 1分当たりに生成される過酸ィ匕水素のマイク 口モル数を計算し、この数値を酵素液中の活性単位とした。
[0048] (熱安定性測定方法)
真核型アマドリアーゼ粗酵素液、または真核型アマドリアーゼ精製標品を約 0. 1U /mlとなるように、 10% キシリトールを含む 0. 1M リン酸緩衝液 (pH8. 0)で希釈 し、 50°Cにて 30分間加温した。加熱前と加熱後のサンプルの酵素活性を測定し、残 存 (酵素)活性 (%)を求めることで安定性を評価した。
以下、実施例により、本発明をさらに具体的に説明する。ただし、本発明の技術的範 囲は、それらの例により何ら限定されるものではない。
実施例 1
[0049] (1)組換え体プラスミド pKK223— 3— CFP DNAの調製
Coniochaeta属由来真核型アマドリアーゼ (配列番号 1)遺伝子の組換え体プラスミ ドを有する大腸菌 JM109 (pKK223— 3— CFP)株(特許文献 5、 FERM BP— 81 32 :日本国茨城県つくば巿東 1丁目 1番地中央第 6所在の独立行政法人産業技術 総合研究所特許生物寄託センターに 2002年 8月 1日付けで寄託)を、 LB— amp培 地 [1% (WZV) バタトトリプトン、 0. 5% (WZV) ペプトン、 0. 5% (WZV) NaC 1、 50 μ g/ml Ampicilin] 100mlに接種して、 37°Cで 20時間振とう培養し、培養 物を得た。
この培養物を 7, OOOrpmで、 5分間遠心分離することにより集菌して菌体を得た。こ の菌体より QIAGEN tip- 100 (キアゲン社製)を用いて組換え体プラスミド pKK2 23— 3— CFPを抽出して精製し、組換え体プラスミド pKK223— 3— CFP DNAを 100 g得た。 実施例 2
[0050] (2)組換え体プラスミド pKK223— 3— CFP DNAの改変操作
上記糸且換え体プラスミド PKK223— 3— CFP DNA100 μ gのうち、 20 μ gを用!/、 て、 XL1— RED (STRATAGENE社製)(増殖の際、プラスミドの複製にエラーを起 こしゃすぐ改変を生じやすい)を D. M. Morrisonの方法(Method in Enzymol ogy, 68, 326-331, 1979)に従って形質転換し、約 5, 000株の形質転赚を得 た。
全コロニーからプラスミド DNAを回収するために QIAGEN sol 1 (キアゲン社製) を寒天培地上に加え、スプレッダ一で QIAGEN sol Iとともにコロニーを搔き集め、 ピペットマンで溶液を回収し、以降は通常のプラスミド回収の方法で、改変操作をカロ えた組換え体プラスミド PKK223— 3— CFP DNAを 100 g得た。前記の被改変 組換え体プラスミド PKK223— 3— CFP DNA20 gを用いて D. M. Morrisonの 方法(Method in Enzymology, 68, 326〜331, 1979)に従って大腸菌 JM109 株を形質転換し、約 1, 000株の改変を受けたプラスミドを保有する形質転赚を得 た。
実施例 3
[0051] (3)熱安定性に優れた真核型アマドリアーゼの探索
まず、得られた上記形質転換体の全てを、ビロード生地を用いて新しい LB— amp 寒天培地にレプリカした。レプリカプレート上のコロニーを Hybond— N+ (Amersha m社製)に転写し、 lOmg/ml Lysozyme (Sigma社製)液に浸した。この Hybond N+を 48°Cで 1時間処理した後、 2mM フルクトシルバリン、 lmgZml パーォキ シダーゼ (キッコーマン社製)、 lmg/ml 4 ァミノアンチピリン (東京化成社製)、 1 Omg/ml TOOS (同仁ィ匕学社製)を含む 0. 1Mのリン酸カリウム緩衝液 (pH8. 0) に浸したところ、少数の強い発色を示す株が認められた。
この強い発色に相当するコロニーをマスタープレート上より選択し、 2mlの LB— am P培地で液体培養することにより、プラスミドにコードされる改変真核型アマドリアーゼ を生産させた。
培養後、得られた各菌体を 0. 1Mのリン酸カリウム緩衝液 (pH8. 0)で洗浄、超音 波破砕、 15, OOOrpmで 10分間遠心分離し、各粗酵素液 1. 5mlを調製した。超音 波破砕し、 12, OOOrpmで 5分間の遠心分離の後、上清を回収した。この粗酵素液を 用いて、上記の(熱安定性測定方法)に従い、残存活性(%) (処理後の活性 Z未処 理の活性)を算出した。
[0052] 同様にして培養、抽出、熱処理をし、活性測定をした改変前の真核型アマドリア一 ゼと活性残存率の比較を行うことで、活性残存率が向上した改変された 2つの真核 型アマドリアーゼとその生産大腸菌を得ることができた。
得られた 2株を LB— amp培地 2ml中、 37°Cで 18時間振盪培養し、この培養液から GFX Micro Plasmid Prep Kit (Amersham社製)を用いてプラスミドを単離し た。該プラスミドをそれぞれ pKK223— 3— CFP— Tl、 ρΚΚ223— 3— CFP— Τ2と 命名し、各プラスミド中の真核型アマドリアーゼをコードする DNAの塩基配列を、マ ルチキヤピラリー DNA解析システム CEQ2000 (ベックマン'コールター社製)を用い て決定した。
その結果、 pKK223— 3— CFP—Tl中には、配列番号 1記載のアミノ酸配列の 30 2番目のヒスチジンがアルギニンに、もうひとつの pKK223— 3— CFP— T2には、配 列番号 1記載のアミノ酸配列の 388番目のヒスチジンがチロシンに置換する変異が導 入されていることが明ら力となった。
実施例 4
[0053] (4)二重変異株 pKK223— 3— CFP— T3の作製
組換え体プラスミド PKK223— 3— CFP— T1及び pKK223— 3— CFP— T2を、 制限酵素 Aatll及び Saclで 2重消化した。上記 pKK223— 3— CFP— T1DNAから 約 lkbDNA断片を、上記 pKK223— 3— CFP— T2DNAから約 5kbDNA断片を それぞれァガロースゲル電気泳動で分取し、常法により精製した。さらに、両 DNA断 片を T4DNAリガーゼで連結し、大腸菌 JM109株を形質転換して、組換え体プラス ミド PKK223— 3— CFP— T3を得た。
[0054] こうして得られた各組換え体プラスミドを保持する大腸菌 JM109 (pKK223- 3-C FP—T1)株、大腸菌 JM109 (pKK223— 3— CFP—T2)株、大腸菌 JM109 (pKK 223— 3— CFP— T3)株を、 LB— amp培地で 37°C、 20時間培養した。その後、各 菌体を pH8. 0の 0. 1Mリン酸緩衝液で洗浄、超音波破砕、 15, OOOrpmで 10分間 遠心分離し、各粗酵素液 1. 5mlを調製した。
このようにして調製した酵素液につ!、て上記の (熱安定性測定方法)の方法により、 アマドリアーゼの残存する酵素活性を測定した。結果を表 1に示す。
表 1において、 pKK223— 3— CFPは、大腸菌 JM109 (pKK223— 3— CFP)株 由来の野性型真核型アマドリアーゼを示し、他の 3種類の酵素は本発明の真核型ァ マドリアーゼを示す。この表 1から明らかなように、本発明で得られた真核型アマドリア ーゼは、優れた熱安定性を有することが判る。
[0055] [表 1] プラスミド 変異 残存活性 (%)
ΡΚΚ223- 3 -CFP ― 30. 4
ΡΚΚ223- 3 -CFP- -Τ1 H302R 58. 1
ΡΚΚ223 - 3 -CFP- -Τ2 Η388Υ 65. 4
ΡΚΚ223 - 3 -CFP- -Τ3 H302R, Η388Υ 83. 2 実施例 5
[0056] (5)改変の蓄積
上記 (4)で取得した改変された真核型アマドリアーゼ生産株である大腸菌 JM109 ( ΡΚΚ223— 3— CFP— Τ3)株から上記(1)に記載の方法によりプラスミド DNAを調 製した。さらに、上記(2)の方法より変異を導入し、続いて上記(3)の方法を用い、本 実施例 5では、先に得た改変された真核型アマドリアーゼを比較対照として選択を行 つた。 ρΗ8. 0における 50°C、 30分の熱処理による残存活性率が高ぐさらに改変さ れた真核型アマドリアーゼを生産する大腸菌を 4株取得した。このようにして得られた 大腸菌 4株を用いて、 LB— amp培地 2ml中で、 37°C、 18時間の振盪培養を行った この培養液から GFX Micro Plasmid Prep Kit (Amersham社製)を用いて プラスミドを単離した。該プラスミドをそれぞれ 1¾^223— 3—じ ?ー丁4、 pKK223 3— CFP— T5、 ρΚΚ223— 3— CFP— Τ6、及び ρΚΚ223— 3— CFP— Τ7と命 名し、各プラスミド中の真核型アマドリアーゼをコードする DNAの塩基配列を、マル チキヤビラリ一 DNA解析システム CEQ2000 (ベックマン'コールター社製)を用いて 決定した。
[0057] その結果、 302番目のヒスチジンがアルギニンに、 388番目のヒスチジンがチロシン に置換する変異に加え、 pKK223— 3— CFP— T4中には、 94番目のアルギニンが リジンに、 pKK223— 3— CFP— T5には 184番目のグリシンがァスパラギン酸に、 p KK223— 3— CFP— T6中には、 265番目のフエ-ルァラニンがロイシンに、 pKK2 23— 3— CFP— Τ7には 272番目のァスパラギンがァスパラギン酸に置換された変 異が導入されて 、ることが明らかとなつた。
[0058] こうして得られた組換え体プラスミドを保持する大腸菌 JM109 (PKK223— 3— CF P— T4)、大腸菌 JM109 (pKK223— 3— CFP— Τ5)、大腸菌 JM109 (pKK223 — 3— CFP— T6)、及び大腸菌 JM109 (pKK223— 3— CFP— T7)を、 LB— amp 培地で 37°C、 20時間培養し、各菌体を 0. 1Mのリン酸カリウム緩衝液 (pH8. 0)で 洗浄後、超音波破砕して 15, OOOrpmで 10分間遠心分離し、各粗酵素液 1. 5mlを 調製した。
このようにして調製した酵素液にっ 、て上記 (熱安定性測定方法)の方法により、残 存する酵素活性を測定した。結果を表 2に示す。
[0059] 表 2において、 pKK223— 3— CFPは、大腸菌 JM109 (pKK223— 3— CFP)由 来の改変前の真核型アマドリアーゼを示し、他の 5種類の酵素は本発明の真核型ァ マドリアーゼを示す。この表 2から明らかなように、本発明で得られた真核型アマドリア ーゼは、 ρΗ8. 0における 50°C、 30分間の熱処理によってもほとんど活性が失われ ず、優れた熱安定性を有することが判る。
[0060] [表 2] プラスミド 変異 残存活性 (%)
PKK223 —3 -CFP ― 30. 4 ρΚΚ223 —3 -CFP -Τ3 H302R, Η388Υ 83. 2 ρΚΚ223 —3 -CFP -Τ4 H302R, Η388Υ, R94K 94. 6 ρΚΚ223 -3 -CFP -Τ5 H302R, Η388Υ, G1 84D 99. 5 ρΚΚ223 -3 -CFP -Τ6 H302R, Η388Υ, F265L 1 00. 0 ρΚΚ223 -3 -CFP -Τ7 H302R, Η388Υ, N272D 96. 5 実施例 6
[0061] (6)本発明真核型アマドリアーゼの生産及び精製
上記のようにして得られた本発明の真核型アマドリアーゼを生産する形質転換体、 大腸菌 JM109 (pKK223— 3— CFP— T7)を LB— amp培地 10Lに植菌し、ジャー フアーメンターを用いて、通気量 lLZmin、攪拌速度 600rpmの条件で、 30°Cの培 養温度で 24時間攪拌培養した。
得られた培養液 10Lを 7, OOOrpm、 10分間遠心分離して集菌し、バッファー A (1 OmM リン酸バッファー、 ImM EDTA、 5% グリセロール、 0. 5mM PMSF、 p H8) 500ml〖こ懸濁後、フレンチプレスにより破枠した。
破砕液は 9, OOOrpmで 15分間遠心し、上清に硫酸アンモ-ゥムを 40%飽和とな るよう徐々に添加し、余分な蛋白質を沈殿させた。 4°Cで一晩放置後、遠心(9, OOOr pm、 4°C、 15分)し、上清を回収した。
[0062] さらにこの上清に硫酸アンモ-ゥムを 60%飽和となるよう徐々に添カ卩し、 目的の蛋 白質を沈殿させた。 4°Cで一晩放置後、遠心(9, OOOrpm, 4°C、 15分)し、沈殿物を 回収した。この沈殿物に 10mlのバッファー B (10mM リン酸バッファー、 ImM ED TA、 5% グリセロール、 0. 2M NaCl、 pH8)をカ卩え、溶解し、 PD— 10 (Amersha m社製)によりバッファー置換した後、あら力じめバッファー Bで平衡ィ匕しておいた Ult rogel AcA34 (IBFバイオテクニクス社製)カラム(2. 8cm X 85cm)にアプライした 。この後、 1Lのバッファー Bで溶出させ、活性画分を回収した。
[0063] 得られた活性画分をセントリブレップ 10 (アミコン社製)で濃縮後、バッファー Aでバ ッファー置換し、 Q - SepharoseFF (Amersham社製)カラム( 1. Ocm X 8cm)にァ プライした。溶出はバッファー C (10mM リン酸バッファー、 ImM EDTA、 5% グ リセロール、 PH8)〜バッファー D (10mM リン酸バッファー、 ImM EDTA、 5% グリセロール、 0. 5M NaCl、 pH8)のリニアグラジェントで行った。得られた活性画 分を SDS— PAGEで分析したところ、単一なバンドが確認できた (分子量約 52, 000
) o
[0064] このようにして得られた酵素について、至適 pH、基質特異性などの性質を調べたと ころ、改変前の酵素の性質と同様であった。すなわち、本発明真核型アマドリアーゼ は、熱安定性以外の性質に関しては改変前の酵素の性質と同様であることがわかつ た。
実施例 7
[0065] (7)真核型アマドリアーゼをコードする組換え体プラスミドの作製
Eupenicillium属由来真核型アマドリアーゼ(配列番号 2)遺伝子の組換え体プラスミ ド(puc— EFP) (特許文献 5、 FERM BP— 8131)の DNAを铸型として、リン酸ィ匕 した配列番号 3、 4のプライマー、 Pyrobest DNAポリメラーゼ(タカラバイオ社製)を 用い、以下の条件で PCR反応を行った。
[0066] すなわち、 10 X Pyrobest緩衝液(タカラバイオ社製)を 10 μ 1、 dNTPがそれぞれ 2. 5mMになるように調整された dNTP混合溶液を 8 1、铸型となる puc— EFPプラ スミドの DNAを 350ng、上記プライマーをそれぞれ 100pmol、及び Pyrobest DN Aポリメラーゼを 1 μ 1加えて、全量を 100 μ 1とした。サーマルサイクラ一(エツペンドル フ社製)を用いて、く 94。C、 20秒— 60。C、 60秒— 72。C、 120秒〉のサイクルを 30 回繰り返した。
反応液の一部を 1. 0%ァガロースゲルで電気泳動し、約 1, 300bpの DNAが特異 的に増幅されて 、ることを確認した。
PCRで増幅した Eupenicillium属由来の真核型アマドリアーゼ遺伝子を、制限酵素 Hpalで切断した pUTElOOK'ベクター(特開平 6— 292584号公報)と連結し、大 腸菌 JM109株を形質転換して、組換え体プラスミド pUTElOOK'—EFPを得た。
[0067] この組換え体プラスミド pUTElOOK'—EFPを保持する大腸菌 JM109株(pUTE 100K'—EFP)株を、 LB— amp培地において、 37°Cの培養温度で、 20時間振とう 培養し、培養物を得た。得られた培養菌体を洗浄した後、超音波破砕したところ、 Eu penicillium属由来の真核型アマドリアーゼ活性の発現が確認された。
そこで、大腸菌 JM109株(pUTElOOK'—EFP)株を、 LB— amp培地 100mlに 接種して、 37°Cの培養温度で、 20時間振とう培養し、培養物を得た。この培養物を 7 , OOOrpmで 5分間遠心分離することにより集菌して菌体を得た。
この菌体より QIAGEN tip- 100 (キアゲン社製)を用いて糸且換え体プラスミド pU TE100K'—EFPを抽出して精製し、組換え体プラスミド pUTElOOK'— EFPの D NAを100 iu g得た。
実施例 8
[0068] (8)部位特異的改変操作
配列番号 2記載のアミノ酸配列の 184位のグリシンがァスパラギン酸に置換されて いる変異、 272位のァスパラギンがァスパラギン酸に置換されている変異、 388位の ヒスチジンがチロシンに置換されている変異を導入することにした。
まず、配列番号 2記載のアミノ酸配列の 184位のグリシンがァスパラギン酸に置換さ れている変異を導入するため、配列番号 5、 6の DNA配列よりなるプライマーを、常 法により合成した。次に、上記(7)で得た組換え体プラスミド pUTElOOK' -EFPの DNAを铸型として、配列番号 5、 6のプライマー、 Pyrobest DNAポリメラーゼ(タカ ラバイオ社製)を用い、上記 (7)と同様の条件で PCR反応を行った。
[0069] 反応液の一部を 1. 0%ァガロースゲルで分析することにより、約 6, OOObpの DNA が特異的に増幅されて ヽることが確認された。こうして得られた DNAを制限酵素 Dp nl処理で残存している铸型を切断した後、制限酵素 Kpnlで処理した。この Dpnl及 び Kpnlで処理した DNAを、 1. 0%ァガロースゲルで電気泳動し、ゲルから常法によ り DNAを抽出して、 DNA断片を回収した。
こうして得られた上記 DNA断片をリガーゼで連結し、大腸菌 JM109株を形質転換 して、組換え体プラスミド pUTElOOK'— EFP— T1を得た。
[0070] 続!、て、配列番号 2記載のアミノ酸配列(FPOX— EE)の 272位のァスパラギンが ァスパラギン酸に置換されている変異を導入するため、プラスミド pUTElOOK'— E FP DNAを铸型、配列番号 7、 8のプライマー、 Pyrobest DNAポリメラーゼ(タカ ラバイオ社製)を用い、上記(7)と同様の条件で PCR反応を行った。約 6, OOObpの 増幅 DNAを制限酵素 Dpnlと NspVで処理し、常法により精製した後、ライゲーシヨン し、大腸菌 JM 109株を形質転換して、組換え体プラスミド pUTElOOK'— EFP— T 2を得た。
[0071] また、配列番号 2記載のアミノ酸配列(FPOX— EE)の 388位のヒスチジンがチロシ ンに置換されている変異を導入するため、プラスミド pUTElOOK' -EFP DNAを 铸型、配列番号 9、 10のプライマー、 Pyrobest DNAポリメラーゼ(タカラバイオ社 製)を用い、上記(7)と同様の条件で PCR反応を行った。約 6, OOObpの増幅 DNA 断片を、制限酵素 Dpnl及び SnaBIで処理し、常法により DN A断片を精製した後、リ ガーゼで連結し、大腸菌 JM109株を形質転換して、組換え体プラスミド pUTElOOK ,― EFP— T3を得た。
[0072] さらに、プラスミド pUTElOOK'—EFP— T2の DNAを铸型として、上記配列番号 2記載のアミノ酸配列の 388位のヒスチジンがチロシンに置換される変異導入を行うこ とで、プラスミド pUTElOOK'— EFP— T4を、続いてプラスミド pUTElOOK'—EFP T4を铸型として、配列番号 2記載のアミノ酸配列の 184位のグリシンがァスパラギ ン酸に置換されている変異の導入を行うことで、プラスミド pUTElOOK'— EFP— T 5を得た。
[0073]
配列番号 5 5' GCTGGTACCTTTCAGCAACCTCTGTTCG 3' (順方向プライ マー J
配列番号 6 5, AAAGGTACCAGCATCTCCAAAGCCAAACTTG 3, (逆方向 プライマー)
(G184Dの導入用。下線部は、制限酵素 Kpnlの認識配列を示す) 配列番号 7 5' TCTTTTTCGAACCCGACGAGTATGGGGTG 3' (順方向プラ イマ一)
配列番号 8 5, TCGGGTTCGAAAAAGAACCCATATTCACC 3, (逆方向プラ イマ一)
(N272Dの導入用。下線部は、制限酵素 NspVの認識配列を示す) 配列番号 9 5' ACATCGGGAAATACGTAGTTGAGCTTTTAG 3' (順方向プ ライマー)
配列番号 10 5' CTAAAAGCTCAACTACGTATTTCCCGATGT 3' (逆方向プ ライマー)
(H388Yの導入用。下線部は、制限酵素 SnaBIの認識配列を示す) [0074] 各プラスミド中の真核型アマドリアーゼをコードする DNAの塩基配列を、マルチキ ャビラリ一 DNA解析システム CEQ 2000 (ベックマン ·コ一ルター社製)を用 、て決定 した。
[0075] その結果、プラスミド pUTElOOK'—EFP—T1中には、配列番号 2記載のアミノ酸 配列の 184番目のグリシンがァスパラギン酸に、プラスミド pUTElOOK'—EFP—T 2中には配列番号 2記載のアミノ酸配列の 272番目のァスパラギンがァスパラギン酸 に、プラスミド pUTElOOK'—EFP—T3中には配列番号 2記載のアミノ酸配列の 38 8番目のヒスチジンがチロシンに、プラスミド pUTElOOK'— EFP— T4中には配列 番号 2記載のアミノ酸配列の 272番目のァスパラギンがァスパラギン酸、及び 388番 目のヒスチジンがチロシンに置換する変異力 並びにプラスミド pUTElOOK' -EFP —T5中には配列番号 2記載のアミノ酸配列の 184番目のグリシンがァスパラギン酸 に、 272番目のァスパラギンがァスパラギン酸に、及び 388番目のヒスチジンがチロ シンに置換する変異が、導入されて ヽることが確認された。
[0076] こうして得られた上記組換え体プラスミドを保持する大腸菌 JM109 (pUTElOOK' — EFP— T1)株、 JM109 (pUTElOOK'— EFP— T2)株、 JM109 (pUTElOOK' — EFP— T3)株、 JM109 (pUTElOOK'— EFP— T4)株、及び JM109 (pUTElO OK'— EFP— T5)株を、 LB— amp培地において、 37°Cの培養温度で 20時間培養 した。得られた各培養菌体を 0. 1Mのリン酸カリウム緩衝液 (pH8. 0)で洗浄した後 、超音波破砕処理を行い、 15, OOOrpmで 10分間遠心分離し、各粗酵素液 1. 5ml を調製した。
このようにして調製した酵素液にっ 、て上記 (熱安定性測定方法)に示した方法に より、残存するアマドリアーゼの酵素活性を測定した。結果を表 3に示す。
[0077] 表 3に示すように、大腸菌 JM109 (pUTElOOK'—EFP)株によって生産される改 変前の真核型アマドリアーゼの、 PH8. 0における 50°C、 30分間の熱処理における 残存酵素活性は、熱処理前の活性の 2. 8%であった。
これに対して、大腸菌 JM109 (pUTElOOK'—EFP—T1)株、大腸菌 JM109 (p UTEIOOK'— EFP— T2)株によって生産される改変後の真核型アマドリアーゼで は、改変前の真核型アマドリアーゼよりも、 pH8. 0、 50°C、 30分間の熱処理におけ る残存酵素活性がそれぞれ 7. 4%、 11. 9%に向上していた。また、大腸菌 JM109 ( pUTElOOK'— EFP— T3)株、大腸菌 JM109 (pUTElOOK'— EFP— T4)株、及 び大腸菌 JM109 (pUTE100K'— EFP— Τ5)株によって生産される改変後の真核 型アマドリアーゼでは、改変前の真核型アマドリアーゼよりも、 pH8. 0、 50°C、 30分 間の熱処理における残存酵素活性がそれぞれ 49. 7%、 54. 8%、 78. 9%とさらに 顕著に向上していた。
本発明で得られた真核型アマドリアーゼは、優れた熱安定性を有することが判った
[0078] [表 3] プラスミド M 残存活性 (%) pUTEI OOK'- EFP 一 2. 8
PUTE1 00K - EFP-T1 G1 84D 1 1 . 9 pUTEl OOK— EFP-T2 N272D 7. 4
PUTE1 00K - EFP-T3 H388Y 49. 7 pUTEI 00K - EFP-T4 N272D, H388Y 54. 8 pUTEl OOK -EFP-T5 G1 84D, N272D, H388Y 78. 9 実施例 9
[0079] (9)改変の蓄積 (4重変異体の作製)
PKK223— 3— CFP—T7は、配列番号 1記載の真核型アマドリアーゼのアミノ酸 配列の 272番目のァスパラギンをァスパラギン酸に、 302番目のヒスチジンをアルギ ニンに、 388番目のヒスチジンをチロシンに置換する変異を含んでいる。これに、さら に 94番目のアルギニンをリジンに、 184番目のグリシンをァスパラギン酸に、 265番 目のフエ-ルァラニンをロイシンに置換するような変異をカ卩えていくことによって、最 終的に 6重変異体を作製することにした。
まず、 F265Lの変異を導入するため、配列番号 11、 12の DNA配列よりなるプライ マーを常法により合成した。次に、上記(5)で得た組換え体プラスミド pKK223— 3 — CFP—T7を铸型、配列番号 11、 12のプライマー、 Pyrobest DNAポリメラーゼ( タカラバィォ社製)を用い、上記(7)と同様の条件で PCR反応を行った。 [0080] 配列番号 11 5' TTCTTCGAACCTGATGAGTTTGGTGTAATAAAG 3' (順方 向プライマー)
配列番号 12 5, AGGTTCGAAGAAGAAGCCAAGTTCGCC 3, (逆方向プライ マー J
(F265Lの導入用。下線部は、 NspVの認識配列を示す)
[0081] 反応液の一部を 1. 0%ァガロースゲルで分析することにより、約 6kbpの DNAが特異 的に増幅されて 、ることが確認された。こうして得られた DNAを Dpnl処理で残存し ている铸型を切断した後、 NspVで処理した。この Dpnl、 NspV処理済みDNAをl. 0%ァガロースで電気泳動し、ゲルから常法により抽出して DNAを回収した。こうして 得られた DNAをライゲーシヨンし、大腸菌 JM109を形質転換して、組換え体プラスミ ド PKK223— 3— CFP— T8を得た。なお、 pKK223— 3— CFP— T8プラスミド中の 真核型アマドリアーゼをコードする DNAの塩基配列を、マルチキヤピラリー DNA解 析システム CEQ2000 (ベックマン'コールター社製)を用いて決定した結果、 F265L 、 N272D, H302R、 H388Yの各置換に相当する変異が導入されていることが明ら カゝとなった。
[0082] 改変の蓄積 (5重変異体の作製)
組換え体プラスミド PKK223— 3— CFP— T8及び pKK223— 3— CFP— T5を制 限酵素 Kpnl及び SnaBIで 2重消化し、 pKK223— 3— CFP— T8DNAから約 500 bpDNA断片を、 pKK223— 3— CFP—T5DNAから約 5. 5kbDNA断片をそれぞ れァガロースゲル電気泳動で分取し、常法により精製したのち、 T4DNAリガーゼで 連結し、大腸菌 JM 109を形質転換して、組換え体プラスミド PKK223— 3— CFP— T9を得た。
なお、 pKK223— 3— CFP—T9プラスミド中の真核型アマドリアーゼをコードする D NAの塩基配列を、マルチキヤピラリー DN A解析システム CEQ 2000 (ベックマン'コ 一ルター社製)を用いて決定した結果、 G184D、 F265L、 N272D、 H302R、 H38 8Yの各置換に相当する変異が導入されていることが明ら力となった。
[0083] 改変の蓄積 (6重変異体の作製)
組換え体プラスミド ΡΚΚ223— 3— CFP— Τ9及び ρΚΚ223— 3— CFP— Τ4を制 限酵素 Bglllで消化し、 pKK223— 3— CFP— T9DNAから約 900bpDNA断片を、 PKK223 3— CFP—T4DNAから約 5. OkbDNA断片をそれぞれァガロースゲル 電気泳動で分取し、常法により精製したのち、 T4DNAリガーゼで連結し、大腸菌 J M109を形質転換して、組換え体プラスミド pKK223— 3— CFP— T10を得た。なお 、 pKK223— 3— CFP—T10プラスミド中の真核型ァマドリァーゼをコードするDNA の塩基配列を、マルチキヤピラリー DN A解析システム CEQ 2000 (ベックマン'コー ルター社製)を用いて決定した結果、 R94K、 G184D、 F265L、 N272D、 H302R 、H388Yの各置換に相当する変異が導入されていることが明ら力となった。
こうして作製されたプラスミド PKK223— 3— CFP— T10は、日本国茨城県つくば 巿東 1丁目 1番地中央第 6所在の独立行政法人産業技術総合研究所特許生物寄託 センターに 2007年 3月 16日付けで受託番号 FERM BP— 10800として寄託され ている。
[0084] こうして得られた組換え体プラスミドを保持する大腸菌、 JM109 (pKK223— 3— C FP— T7)、JM109 (pKK223— 3— CFP— T8)、JM109 (pKK223— 3— CFP— T9)、 JM109 (pKK223— 3— CFP— T10)を、 JM109 (pKK223— 3— CFP)とと もに、 1^ &11^培地で37°〇, 20時間培養し、各菌体を 0. 1Mのリン酸カリウム緩衝 液 (pH8. 0)で洗浄後、超音波破砕して 15, OOOrpmで 10分間遠心分離し、各粗酵 素液 1. 5mlを調製した。
[0085] このようにして調製した酵素液について上記 (熱安定性測定方法)の方法により、残 存する酵素活性を測定した。結果を表 4に示す。表 4において、 JM109 (pKK223— 3— CFP)は改変前の真核型アマドリアーゼを示し、 JM109 (pKK223— 3— CFP— T7)、JM109 (pKK223— 3— CFP— T8)、JM109 (pKK223— 3— CFP— T9)、J M109 (pKK223— 3— CFP—T10)の酵素は本発明の真核型アマドリア一ゼを示 す。この表 4から明らかなように、本発明で得られた真核型アマドリアーゼは、 pH8. 0 において、 50°C、 30分間のみならず、 60分間の熱処理によっても活性をほとんど失 わず、優れた熱安定性を有していることが判る。
[0086] [表 4] プラスミド 変異 残存活性 (%)
30分後 60分後
PKK223- -3- -CFP 一 6. 1 3. 9 ρΚΚ223- -3- -CFP- -丁 7 N272D, H302R, Η388Υ 95. 0 83. 3 ρΚΚ223- -3- -CFP- -Τ8 F265L, N272D, H302R, Η388Υ 1 07. 7 1 02. 4
ΡΚΚ223- -3- -CFP- -Τ9 G1 84D, F265L, N272D, H302R, Η388Υ 1 1 2. 4 1 08. 1
ΡΚΚ223- -3 - -CFP- -Τ10 R94K, G1 84D, F265L, N272D, H302R, Η388Υ 1 1 7. 8 1 05. 7 実施例 10
[0087] (10)プロテアーゼ耐性能の確認
実施例 9までに取得した組換え体プラスミドを保持する大腸菌、 JM109 (ρΚΚ223 — 3— CFP— T7)、JM109 (pKK223— 3— CFP— T10)を、 JM109 (pKK223— 3— CFP)とともに、 LB— amp培地で 37°C, 20時間培養し、各菌体を 0. 1Mのリン 酸カリウム緩衝液 (PH8. 0)で洗浄後、超音波破砕して 15, OOOrpmで 10分間遠心 分離し、各粗酵素液 1. 5mlを調製した。
アマドリアーゼ活性が約 0. 05UZmlとなるように、 0. 1M リン酸緩衝液 (pH8. 0) で粗酵素液を希釈し、各サンプルに 50mUの中性プロテアーゼ (Roche社製)をカロ えた後、 37°Cで 30分間加温した。各サンプルについて、プロテアーゼ処理前と処理 後のサンプル中に含まれる酵素活性を測定し、残存活性比を求めることでプロテア ーゼ耐性能を評価した。結果を表 5に示す。表 5において、 JM109 (pKK223— 3— CFP)は改変前の真核型アマドリアーゼを示し、 JM109 (pKK223— CFP—T7)、J M109 (pKK223— 3— CFP—T10)の酵素は本発明の真核型アマドリア一ゼを示 す。この表 5から明らかなように、本発明で得られた真核型アマドリアーゼは、プロテ ァーゼに対する耐性能も著しく向上しており、優れた安定性を有していることが判る。
[0088] [表 5] プラスミド 変異 プロテアーゼ処理後 の残存活性 (%)
PKK223一 3 — CFP - 1 . 0 ρΚΚ223 -3 -CFP-T7 N272D, H302R, H388Y 43. 8 ρΚΚ223 -3 -CFP-T1 0 R94K, G1 84D, F265L, N272D, H302R, H388Y 1 08. 6 ·'紙面による写し(注意 .電子データが原本となります)
[この用紙は、国際出願の一部を構成せず、握際出願の用紙の枚数に算入しない]
-1 様式 PCT/RO/134 (SAFE)
この寄託された微生物又はその他の生物
材料に関する表示(PCT規則 13の 2)は、
-1-1 右記によって作成された。 -2 国際出願番号
-3 出願人又は代理人の書類記号 PCT-AB07016 下記の表示は発明の詳細な説明中に記載 o
された微生物又は生物材料に ¾連して.いる
O
-1 段落番号 0032 00
-3 寄託の表示
-3-1 寄託機関の名称 I P0D (独)産業技術総合研究所特許生物寄託センタ 一 ( I P0D)
-3-2 寄託機関のあて名 曰本国 〒305-8566茨城県つくば市東 1丁目 1番地 1 中央第 6
-3-3 寄託の日付 2006年 03月 31日 (31. 03. 2006)
-3-4 受託番号 I POD FERM BP-10593
-5 この表示を行うための指定国 . すべての指定国
下記の表示は発明の詳铀な説明中に記載
された微生物又は生物材料に関連している
-1 段落番号 0049
-3 寄託の表示
-3-1 寄託機関の名称 I POD (独)産業技術総合研究所特許生物寄託センタ 一 ( I P0P)
-3-2 寄託機関のあて名 曰本国 〒 305- 8566茨城県つくぱ市東 1丁目 1番地 1 中央第
-3-3 寄託の日付 2002年 08月 01日 (01. 08. 2002)
-3-4 受託番号 I POD FERM BP-8132
-5 この表示を行うための指定国 すべての m定国
下記の表示は発明の詳細な説明中に記載
された微生物又は生物材料に関連している
3-1 段落番号 0083
3-3 寄託の表示
3-3-1 寄託機関の名称 I P0D (独)産業技術総合研究所特許生物寄託センタ 一 ( IP0D)
3-3-2 . 寄託機関のあて名 日本国 〒 305^8566茨城県つぐば市東 1丁目 1番地 1 中央第 6
3-3-3 寄託の日付 2007年 03月 1 &日 (16. 03. 2007)
3-3-4 受託番号 IPOD FERM BP-10800
3-5 この表示を行うための指定国 すべてめ指^ a
差^え用紙 mm

Claims

- 請求の範囲
[1] 以下の (a)及び/又は (b)の特徴を有する真核型アマドリアーゼ:
(a) pH8. 0におレ、て 50 、 30分間の熱処理で 83%以上活性が残存する;
(b)配列番号 1記載の真核型アマドリアーゼのアミノ酸配列と 75%以上の相同性を 有するアミノ酸配列を有する。
[2] 以下の(a)から (c)よりなる群力も選択されるアミノ酸に対応する位置で 1つ又はそれ 以上のアミノ酸の改変若しくは変異を有する、請求項 1記載の真核型アマドリアーゼ:
(a)配列表の配列番号 1記載のアミノ酸配列の 184位のグリシン;
(b)配列表の配列番号 1記載のアミノ酸配列の 272位のァスパラギン;
(c)配列表の配列番号 1記載のアミノ酸配列の 388位のヒスチジン。
[3] 以下の(a)及び (b)の特徴を有する真核型アマドリアーゼ:
(a) 50°C、 30分間の熱処理で 83%以上活性が残存する;
(b)配列表の酉己列番号 1に示されるアミノ酸配列に 1又は数個のアミノ酸の欠失、挿 入、付加、及びノ又は置換がなされたアミノ酸配列を有する。
[4] 配列表の配列番号 1記載のアミノ酸配列において、 94位のアルギニン、 184位のグリ シン、 265位のフエ二ルァラニン、 272位のァスパラギン、 302位のヒスチジン、若しく は 388位のヒスチジンの位置で 1つ又はそれ以上のアミノ酸の改変若しくは変異を有 する真核型アマドリアーゼ。
[5] 配列表の配列番号 1記載のアミノ酸配列にぉレ、て、以下の (a)から (f)よりなる群から 選択される 1つ又はそれ以上の改変若しくは変異の組み合わせ力 なる真核型アマ ドリアーゼ:
(a) 94位のァノレギニンがリジンに置換されてレヽる;
(b) 184位のグリシンがァスパラギン酸に置換されて 、る;
(c) 265位のフエ二ルァラニンがロイシンに置換されてレ、る;
(d) 272位のァスパラギンがァスパラギン酸に置換されてレ、る;
(e) 302位のヒスチジンがァ /レギニンに置換されている;
(f) 388位のヒスチジンがチロシンに置換されて 、る。
[6] 配列表の配列番号 1記載のアミノ酸配列において、 272位のァスパラギンがァスパラ
差 え用紙(»2^ ギン酸に置換され、 302位のヒスチジンがアルギニンに置換され、かつ、 388位のヒス チジンがチロシンに置換されている真核型アマドリアーゼ。
[7] 以下の (a)及ぴ Z又は (b)の特徴を有する真核型アマドリア一ゼ:
(a) pH8. 0において 50°C、 30分間の熱処理で 50%以上活性が残存する;
(b)配列表の配列番号 2記載の真核型アマドリア一ゼのアミノ酸配列と 75%以上の 相同性を有するアミノ酸配列を有する。
[8] 以下の(a)及び (b)の特徴を有する真核型アマドリアーゼ:
(a) 50°C、 30分間の熱処理で 50%以上活性が残存する;
(b)配列表の配列番号 2に示されるアミノ酸配列に 1又は数個のアミノ酸の欠失、挿 入、付加、及び/又は置換がなされたアミノ酸配列を有する。
[9] 配列表の配列番号 2記載のアミノ酸配列において、 184位のグリシン、 272位のァス パラギン、若しくは 388位のヒスチジンの位置で 1つ又はそれ以上のアミノ酸の改変 若しくは変異を有する真核型アマドリアーゼ。
[10] 配列表の配列番号 2記載のアミノ酸配列において、以下の(a)から(c)よりなる群から 選択される 1つ又はそれ以上の改変若しくは変異の組み合わせ力 なる真核型アマ ドリアーゼ:
(a) 184位のグリシンがァスパラギン酸に置換されている;
(b) 272位のァスパラギンがァスパラギン酸に置換されてレ、る;
(c) 388位のヒスチジンがチロシンに置換されてレ、る。
[11] 配列表の配列番号 2記載のアミノ酸配列にぉレ、て、 184位のグリシンがァスパラギン 酸に置換され、 272位のァスパラギンがァスパラギン酸に S換され、かつ、 388位の ヒスチジンがチロシンに置換されてレ、る真核型アマドリアーゼ。
[12] 請求項 1〜; 11のいずれか一項記載のアミノ酸配列をコードする真核型アマドリア一 ゼ遺伝子。
[13] 請求項 12記載の真核型アマドリアーゼ遺伝子を含む組換えベクター。
[14] 請求項 13記載の組換えベクターを含む宿主細胞。
[15] 真核型アマドリアーゼを生成する方法であり、以下の段階を含む方法:
(a)請求項 14記載の宿主細胞を培養する段階;
差^え用紙(耀!! (b)宿主細胞に含まれる真核型アマドリアーゼ遺伝子を発現させる段階;
(c)培養物から真核型アマドリア一ゼを単離する段瞎。
[16] 請求項 1〜11のいずれか一項記載の真核型アマドリアーゼを含む、糖化タンパク質 の測定において使用するためのキット。
[17] 請求項 1〜: 11のいずれか一項記載の真核型アマドリアーゼを含む、糖化へモグロビ ンの測定において使用するためのキット。
[18] 下記の (a)力も (f)の理化学的性質を有する真核型アマドリアーゼ:
(a)作用及ぴ基質特異性:酸素存在下でフルクトシルバリルヒスチジンに作用し、 a —ケトアルデヒド、ノくリルヒスチジン及び過酸化水素を生成する反応を触媒する;
(b)至適 pH:pH6. 0〜8. 0 ;
(c)作用適温の範囲: 20〜45°C;
(d)熱安定性: pH8. 0において 50 、 30分間の熱処理で 83%以上の活性が残存;
(e)安定 pHの範囲: pH6. 0〜9. 0;
(f)分子量:約 52, 000 (SDS— PAGE)。
差替え用弒(man
PCT/JP2007/058304 2006-04-25 2007-04-17 熱安定性に優れた真核型アマドリアーゼ、その遺伝子及び組換え体dna、並びに熱安定性に優れた真核型アマドリアーゼの製造法 WO2007125779A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/300,658 US8003359B2 (en) 2006-04-25 2007-04-17 Eukaryotic amadoriase having excellent thermal stability, gene and recombinant DNA for the eukaryotic amadoriase, and process for production of eukaryotic amadoriase having excellent thermal stability
JP2008513145A JP5074386B2 (ja) 2006-04-25 2007-04-17 熱安定性に優れた真核型アマドリアーゼ、その遺伝子及び組換え体dna、並びに熱安定性に優れた真核型アマドリアーゼの製造法
CN200780023798.XA CN101479383B (zh) 2006-04-25 2007-04-17 具有优良的热稳定性的真核阿马道里酶、真核阿马道里酶的基因和重组dna,和生产具有优良的热稳定性的真核阿马道里酶的方法
EP07741740A EP2020439B1 (en) 2006-04-25 2007-04-17 Eukaryotic amadoriase having excellent thermal stability, gene and recombinant DNA for the eukaryotic amadoriase, and process for production of eukaryotic amadoriase having excellent thermal stability
US12/985,858 US8828699B2 (en) 2006-04-25 2011-02-14 Eukaryotic amadoriase, gene and recombinant DNA for the eukaryotic amadoriase, and process for production of the eukaryotic amadoriase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-120363 2006-04-25
JP2006120363 2006-04-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/300,658 A-371-Of-International US8003359B2 (en) 2006-04-25 2007-04-17 Eukaryotic amadoriase having excellent thermal stability, gene and recombinant DNA for the eukaryotic amadoriase, and process for production of eukaryotic amadoriase having excellent thermal stability
US12/985,858 Continuation US8828699B2 (en) 2006-04-25 2011-02-14 Eukaryotic amadoriase, gene and recombinant DNA for the eukaryotic amadoriase, and process for production of the eukaryotic amadoriase

Publications (1)

Publication Number Publication Date
WO2007125779A1 true WO2007125779A1 (ja) 2007-11-08

Family

ID=38655309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058304 WO2007125779A1 (ja) 2006-04-25 2007-04-17 熱安定性に優れた真核型アマドリアーゼ、その遺伝子及び組換え体dna、並びに熱安定性に優れた真核型アマドリアーゼの製造法

Country Status (5)

Country Link
US (2) US8003359B2 (ja)
EP (2) EP2520650A3 (ja)
JP (1) JP5074386B2 (ja)
CN (1) CN101479383B (ja)
WO (1) WO2007125779A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041419A1 (ja) * 2008-10-10 2010-04-15 東洋紡績株式会社 新規なフルクトシルバリルヒスチジンオキシダーゼ活性を有するタンパク質及びその改変体、並びにその利用
WO2010041715A1 (ja) * 2008-10-09 2010-04-15 協和メデックス株式会社 新規フルクトシルペプチドオキシダーゼ
JP2010115189A (ja) * 2008-10-17 2010-05-27 Toyobo Co Ltd フルクトシルアミノ酸オキシダーゼ改変体およびその利用
EP2281900A1 (en) * 2009-08-03 2011-02-09 Roche Diagnostics GmbH Fructosyl peptidyl oxidase and sensor for assaying a glycated protein
WO2012018094A1 (ja) 2010-08-06 2012-02-09 キッコーマン株式会社 基質特異性が改変されたアマドリアーゼ
WO2012043601A1 (ja) * 2010-09-29 2012-04-05 キッコーマン株式会社 アマドリアーゼ改変体
WO2013100006A1 (ja) 2011-12-28 2013-07-04 キッコーマン株式会社 熱安定性が向上したアマドリアーゼ、その遺伝子および組換えdnaならびに熱安定性が向上したアマドリアーゼの製造法
EP2639586A1 (en) 2012-03-15 2013-09-18 ARKRAY, Inc. Measurement method using enzymes
WO2013162035A1 (ja) 2012-04-27 2013-10-31 キッコーマン株式会社 フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ
WO2015020200A1 (ja) 2013-08-09 2015-02-12 キッコーマン株式会社 改変型アマドリアーゼ及びその製造法、並びにアマドリアーゼの界面活性剤耐性向上剤及びこれを用いたHbA1c測定用組成物
WO2015060429A1 (ja) 2013-10-25 2015-04-30 キッコーマン株式会社 ヘモグロビンA1cの測定方法および測定キット
WO2015060431A1 (ja) 2013-10-25 2015-04-30 キッコーマン株式会社 糖化ペプチドに作用するアマドリアーゼを用いたHbA1c測定法
WO2016063984A1 (ja) * 2014-10-24 2016-04-28 キッコーマン株式会社 デヒドロゲナーゼ活性の向上したアマドリアーゼ
US9708586B2 (en) 2010-08-06 2017-07-18 Kikkoman Corporation Amadoriase having altered substrate specificity
WO2019045052A1 (ja) 2017-08-31 2019-03-07 キッコーマン株式会社 糖化ヘモグロビンオキシダーゼ改変体及び測定方法
WO2020122231A1 (ja) 2018-12-13 2020-06-18 キッコーマン株式会社 エタノールアミンリン酸の定量方法、定量用のオキシドレダクターゼ、定量用組成物、定量用キット及び定量用センサー
WO2021256503A1 (ja) 2020-06-17 2021-12-23 キッコーマン株式会社 エタノールアミンリン酸の定量方法、定量用のオキシドレダクターゼ、定量用組成物、定量用キット、センサーチップ、及びセンサー

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2287295A1 (en) * 2009-08-03 2011-02-23 Roche Diagnostics GmbH Mutant Fructosyl amino acid oxidase
CN103937763B (zh) * 2013-01-22 2016-01-06 清华大学 R112w型酮胺氧化酶及其编码基因和应用
WO2018012607A1 (ja) * 2016-07-13 2018-01-18 キッコーマン株式会社 反応促進剤
CN108220263B (zh) 2016-12-13 2021-08-10 财团法人工业技术研究院 重组蛋白质及其制造方法与应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533997A (ja) 1991-07-26 1993-02-09 Nippondenso Co Ltd フイルムドアユニツト
JPH06292584A (ja) 1993-04-08 1994-10-21 Kikkoman Corp 変異型ピルビン酸脱水素酵素複合体のe1蛋白質 遺伝子及び変異型ピルビン酸脱水素酵素複合体のe1蛋白質
JPH07289253A (ja) 1994-03-03 1995-11-07 Kyoto Daiichi Kagaku:Kk フルクトシルアミノ酸オキシダーゼ及びその製造方法
JPH08336386A (ja) 1995-04-11 1996-12-24 Kdk Corp フルクトシルアミノ酸オキシダーゼおよびその製造方法
WO1997013872A1 (fr) 1995-10-12 1997-04-17 Kyoto Daiichi Kagaku Co., Ltd. Procede pour doser les composes d'amadori
JPH11127895A (ja) 1991-07-29 1999-05-18 Genzyme Ltd 非酵素的グリコシル化タンパク質の測定方法
JPH11155579A (ja) 1997-11-25 1999-06-15 Kikkoman Corp フルクトシルアミノ酸オキシダーゼ遺伝子、新規な組み換え体dna及びフルクトシルアミノ酸オキシダーゼの製造法
JPH11221081A (ja) * 1998-02-10 1999-08-17 Kdk Corp 耐熱性フルクトシルアミノ酸オキシダーゼ
JP2000270855A (ja) 1999-03-26 2000-10-03 Koji Hayade フルクトシルバリン酸化酵素
JP2001095598A (ja) 1999-10-01 2001-04-10 Kikkoman Corp 糖化蛋白質の測定方法
JP2003079386A (ja) 2001-06-29 2003-03-18 Kikkoman Corp 新規なフルクトシルアミノ酸オキシダーゼ
JP2003235585A (ja) 2001-09-04 2003-08-26 Kikkoman Corp 新規なフルクトシルペプチドオキシダーゼ
JP2004275013A (ja) 2003-03-12 2004-10-07 Asahi Kasei Pharma Kk 新規な酵素
JP2004275063A (ja) 2003-03-14 2004-10-07 Ichibiki Kk 新規なフルクトシルアミンオキシダーゼをコードする遺伝子及びそれを用いての該フルクトシルアミンオキシダーゼの製造方法
WO2004104203A1 (ja) 2003-05-21 2004-12-02 Asahi Kasei Pharma Corporation ヘモグロビンA1c測定法およびそれに用いる酵素とその製造法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61280297A (ja) 1985-06-04 1986-12-10 Noda Sangyo Kagaku Kenkyusho アマドリ化合物の定量法及びその定量用試薬
JP2000270588A (ja) 1999-03-18 2000-09-29 Sanyo Electric Co Ltd 動圧軸受モータ制御装置
EP1344828B1 (en) * 2000-11-28 2009-09-09 Kikkoman Corporation Novel fructosyl amino acid oxidase
JP2007228840A (ja) * 2006-02-28 2007-09-13 Toyobo Co Ltd 酵素の安定化方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533997A (ja) 1991-07-26 1993-02-09 Nippondenso Co Ltd フイルムドアユニツト
JPH11127895A (ja) 1991-07-29 1999-05-18 Genzyme Ltd 非酵素的グリコシル化タンパク質の測定方法
JPH06292584A (ja) 1993-04-08 1994-10-21 Kikkoman Corp 変異型ピルビン酸脱水素酵素複合体のe1蛋白質 遺伝子及び変異型ピルビン酸脱水素酵素複合体のe1蛋白質
JPH07289253A (ja) 1994-03-03 1995-11-07 Kyoto Daiichi Kagaku:Kk フルクトシルアミノ酸オキシダーゼ及びその製造方法
JPH08336386A (ja) 1995-04-11 1996-12-24 Kdk Corp フルクトシルアミノ酸オキシダーゼおよびその製造方法
WO1997013872A1 (fr) 1995-10-12 1997-04-17 Kyoto Daiichi Kagaku Co., Ltd. Procede pour doser les composes d'amadori
JPH11155579A (ja) 1997-11-25 1999-06-15 Kikkoman Corp フルクトシルアミノ酸オキシダーゼ遺伝子、新規な組み換え体dna及びフルクトシルアミノ酸オキシダーゼの製造法
JPH11221081A (ja) * 1998-02-10 1999-08-17 Kdk Corp 耐熱性フルクトシルアミノ酸オキシダーゼ
JP2000270855A (ja) 1999-03-26 2000-10-03 Koji Hayade フルクトシルバリン酸化酵素
JP2001095598A (ja) 1999-10-01 2001-04-10 Kikkoman Corp 糖化蛋白質の測定方法
JP2003079386A (ja) 2001-06-29 2003-03-18 Kikkoman Corp 新規なフルクトシルアミノ酸オキシダーゼ
JP2003235585A (ja) 2001-09-04 2003-08-26 Kikkoman Corp 新規なフルクトシルペプチドオキシダーゼ
JP2004275013A (ja) 2003-03-12 2004-10-07 Asahi Kasei Pharma Kk 新規な酵素
JP2004275063A (ja) 2003-03-14 2004-10-07 Ichibiki Kk 新規なフルクトシルアミンオキシダーゼをコードする遺伝子及びそれを用いての該フルクトシルアミンオキシダーゼの製造方法
WO2004104203A1 (ja) 2003-05-21 2004-12-02 Asahi Kasei Pharma Corporation ヘモグロビンA1c測定法およびそれに用いる酵素とその製造法

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", 1989, WILEY INTERSCIENCE
APPL. ENVIRON. MICROBIOL., vol. 69, 2003, pages 139 - 45
ARCH. MICROBIOL., vol. 178, 2002, pages 344 - 50
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 59, 1995, pages 487 - 91
D. M. MORRISON, METHOD IN ENZYMOLOGY, vol. 68, 1979, pages 326 - 331
EUR. J. BIOCHEM., vol. 242, 1996, pages 499 - 505
FUJIWARA M. ET AL.: "Alteration of substrate specificiry of fructosyl-amino acid oxidase from Ulocladium sp. JS-103", J. BIOSCI. BIOENG., vol. 102, no. 3, September 2006 (2006-09-01), pages 241 - 243, XP005706694 *
GENDAI KAGAKU, June 1989 (1989-06-01), pages 24 - 30
GENE, vol. 37, 1985, pages 73
HIROKAWA K. ET AL.: "Distribution and properties of novel deglycating enzymes for fructosyl peptide in fungi", ARCH. MICROBIOL., vol. 180, 2003, pages 227 - 231, XP002378413 *
HIROKAWA K. ET AL.: "Enzyme used for the determination of HbAlc", FEMS MICROBIOL. LETT., vol. 235, 2004, pages 157 - 162, XP002903440 *
HIROKAWA K. ET AL.: "Molecular cloning and expression of novel fructosyl peptide oxidases and their application for the measurement of glycated protein", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 311, 2003, pages 104 - 111, XP000446540 *
MAR. BIOTECHNOL., vol. 6, 2004, pages 625 - 32
METHODS ENZYMOL., vol. 154, 1987, pages 350
METHODS ENZYMOL., vol. 154, 1987, pages 367
NUCLEIC ACIDS RES, vol. 14, 1986, pages 9679
NUCLEIC ACIDS RES., vol. 12, 1984, pages 9441
NUCLEIC ACIDS RES., vol. 13, 1985, pages 8749
NUCLEIC ACIDS RES., vol. 13, 1985, pages 8765
PROC. NATL. ACID. SCI. U.S.A., vol. 82, 1985, pages 488
SAKAUE R. AND KAJIYAMA N.: "Thermostabilization of bacterial fructosyl-amino acid oxidase by directed evolution", APPL. ENVIRON. MICROBIOL., vol. 69, no. 1, 2003, pages 139 - 145, XP002286929 *
SAKAUE R. ET AL.: "Cloning and expression of fructosyl-amino acid oxidase gene from Corynebacterium sp. 2-4-1 in Escherichia coli", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 66, no. 6, 2002, pages 1256 - 1261, XP008041081 *
See also references of EP2020439A4 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5665081B2 (ja) * 2008-10-09 2015-02-04 協和メデックス株式会社 新規フルクトシルペプチドオキシダーゼ
US8790905B2 (en) 2008-10-09 2014-07-29 Kyowa Medex Co., Ltd. Fructosyl peptide oxidase
CN102232111B (zh) * 2008-10-09 2014-12-03 协和梅迪克斯株式会社 果糖基肽氧化酶
US8883142B2 (en) 2008-10-09 2014-11-11 Kyowa Medex Co., Ltd. Fructosyl peptide oxidase
WO2010041715A1 (ja) * 2008-10-09 2010-04-15 協和メデックス株式会社 新規フルクトシルペプチドオキシダーゼ
US8304249B2 (en) 2008-10-09 2012-11-06 Kyowa Medex Co., Ltd. Fructosyl peptide oxidase
EP2357228A4 (en) * 2008-10-09 2012-04-25 Kyowa Medex Co Ltd NOVEL PEPTIDE FRUCTOSYL-OXIDASE
EP2354224A1 (en) * 2008-10-10 2011-08-10 Toyo Boseki Kabushiki Kaisha Novel protein having fructosyl valyl histidine oxidase activity and modified product thereof, and use of the protein or the modified product
EP2354224A4 (en) * 2008-10-10 2012-06-13 Toyo Boseki NEW PROTEIN WITH FRUCTOSYL-VALYL-HISTIDINE OXIDASE ACTIVITY, MODIFIED PRODUCT FROM IT AND THE USE OF PROTEIN OR MODIFIED PRODUCT
WO2010041419A1 (ja) * 2008-10-10 2010-04-15 東洋紡績株式会社 新規なフルクトシルバリルヒスチジンオキシダーゼ活性を有するタンパク質及びその改変体、並びにその利用
US8993255B2 (en) 2008-10-10 2015-03-31 Toyo Boseki Kabushiki Kaisha Protein having fructosyl valyl histidine oxidase activity, modified protein, and use of the protein or the modified protein
JP2010115189A (ja) * 2008-10-17 2010-05-27 Toyobo Co Ltd フルクトシルアミノ酸オキシダーゼ改変体およびその利用
EP2281900A1 (en) * 2009-08-03 2011-02-09 Roche Diagnostics GmbH Fructosyl peptidyl oxidase and sensor for assaying a glycated protein
US8962271B2 (en) 2009-08-03 2015-02-24 Roche Diagnostics Operations, Inc. Fructosyl peptidyl oxidase
WO2011015325A1 (en) * 2009-08-03 2011-02-10 Roche Diagnostics Gmbh Fructosyl peptidyl oxidase and sensor for assaying a glycated protein
US8721853B2 (en) 2009-08-03 2014-05-13 Roche Diagnostics Operations, Inc. Fructosyl peptidyl oxidase
JPWO2012018094A1 (ja) * 2010-08-06 2013-10-03 キッコーマン株式会社 基質特異性が改変されたアマドリアーゼ
US9708586B2 (en) 2010-08-06 2017-07-18 Kikkoman Corporation Amadoriase having altered substrate specificity
US9062286B2 (en) 2010-08-06 2015-06-23 Kikkoman Corporation Amadoriase having altered substrate specificity
WO2012018094A1 (ja) 2010-08-06 2012-02-09 キッコーマン株式会社 基質特異性が改変されたアマドリアーゼ
WO2012043601A1 (ja) * 2010-09-29 2012-04-05 キッコーマン株式会社 アマドリアーゼ改変体
WO2013100006A1 (ja) 2011-12-28 2013-07-04 キッコーマン株式会社 熱安定性が向上したアマドリアーゼ、その遺伝子および組換えdnaならびに熱安定性が向上したアマドリアーゼの製造法
JPWO2013100006A1 (ja) * 2011-12-28 2015-05-11 キッコーマン株式会社 熱安定性が向上したアマドリアーゼ、その遺伝子および組換えdnaならびに熱安定性が向上したアマドリアーゼの製造法
US9701949B2 (en) 2011-12-28 2017-07-11 Kikkoman Corporation Amadoriase with improved thermostability, gene and recombinant DNA for the amadoriase, and method for production of amadoriase with improved thermostability
US8802366B2 (en) 2012-03-15 2014-08-12 Arkray, Inc. Measurement method using enzyme
EP2639586A1 (en) 2012-03-15 2013-09-18 ARKRAY, Inc. Measurement method using enzymes
WO2013162035A1 (ja) 2012-04-27 2013-10-31 キッコーマン株式会社 フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ
US10767211B2 (en) 2012-04-27 2020-09-08 Kikkoman Corporation Modified amadoriase reacting with fructosyl hexapeptide
EP3508577A2 (en) 2012-04-27 2019-07-10 Kikkoman Corporation Modified amadoriase capable of acting on fructosyl hexapeptide
JP2018186837A (ja) * 2012-04-27 2018-11-29 キッコーマン株式会社 フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ
WO2015020200A1 (ja) 2013-08-09 2015-02-12 キッコーマン株式会社 改変型アマドリアーゼ及びその製造法、並びにアマドリアーゼの界面活性剤耐性向上剤及びこれを用いたHbA1c測定用組成物
EP3760717A1 (en) 2013-08-09 2021-01-06 Kikkoman Corporation Amadoriase and method for producing the same, agent for improving surfactant resistance of amadoriase and composition for measuring hba1c using the same
WO2015060431A1 (ja) 2013-10-25 2015-04-30 キッコーマン株式会社 糖化ペプチドに作用するアマドリアーゼを用いたHbA1c測定法
WO2015060429A1 (ja) 2013-10-25 2015-04-30 キッコーマン株式会社 ヘモグロビンA1cの測定方法および測定キット
WO2016063984A1 (ja) * 2014-10-24 2016-04-28 キッコーマン株式会社 デヒドロゲナーゼ活性の向上したアマドリアーゼ
EP3786291A1 (en) 2014-10-24 2021-03-03 Kikkoman Corporation Amadoriase having enhanced dehydrogenase activity
US11499143B2 (en) 2014-10-24 2022-11-15 Kikkoman Corporation Amadoriase having enhanced dehydrogenase activity
WO2019045052A1 (ja) 2017-08-31 2019-03-07 キッコーマン株式会社 糖化ヘモグロビンオキシダーゼ改変体及び測定方法
WO2020122231A1 (ja) 2018-12-13 2020-06-18 キッコーマン株式会社 エタノールアミンリン酸の定量方法、定量用のオキシドレダクターゼ、定量用組成物、定量用キット及び定量用センサー
US11879149B2 (en) 2018-12-13 2024-01-23 Kikkoman Corporation Quantification method of ethanolamine phosphate, oxidoreductase for quantification, composition for quantification, kit for quantification and sensor for quantification
WO2021256503A1 (ja) 2020-06-17 2021-12-23 キッコーマン株式会社 エタノールアミンリン酸の定量方法、定量用のオキシドレダクターゼ、定量用組成物、定量用キット、センサーチップ、及びセンサー

Also Published As

Publication number Publication date
EP2520650A2 (en) 2012-11-07
US8003359B2 (en) 2011-08-23
JP5074386B2 (ja) 2012-11-14
EP2020439A1 (en) 2009-02-04
EP2020439B1 (en) 2012-08-08
US20090239239A1 (en) 2009-09-24
CN101479383B (zh) 2013-10-02
US20110136202A1 (en) 2011-06-09
US8828699B2 (en) 2014-09-09
CN101479383A (zh) 2009-07-08
EP2020439A4 (en) 2010-07-21
JPWO2007125779A1 (ja) 2009-09-10
EP2520650A3 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
WO2007125779A1 (ja) 熱安定性に優れた真核型アマドリアーゼ、その遺伝子及び組換え体dna、並びに熱安定性に優れた真核型アマドリアーゼの製造法
JP6538101B2 (ja) 基質特異性が改変されたアマドリアーゼ
JP6911066B2 (ja) フラビン結合型グルコースデヒドロゲナーゼ、フラビン結合型グルコースデヒドロゲナーゼの製造方法、およびそれを用いたグルコース測定方法
JP5873796B2 (ja) グルコース脱水素酵素
WO2017094776A1 (ja) シトクロム融合型グルコースデヒドロゲナーゼ及びグルコース測定法
JP6282115B2 (ja) 熱安定性が向上したアマドリアーゼ、その遺伝子および組換えdnaならびに熱安定性が向上したアマドリアーゼの製造法
US11499143B2 (en) Amadoriase having enhanced dehydrogenase activity
KR101766522B1 (ko) 포도당 탈수소 효소
WO2017183717A1 (ja) HbA1cデヒドロゲナーゼ
WO2012043601A1 (ja) アマドリアーゼ改変体
JPWO2017073786A1 (ja) 電子移動特性が改変されたグルコースデヒドロゲナーゼ及びグルコース測定法
EP4352210A1 (en) Novel production method of flavocytochrome b2
WO2023140286A1 (ja) 組換え発現グルタミン酸オキシダーゼ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780023798.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008513145

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007741740

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12300658

Country of ref document: US